114 research outputs found

    Numerical Solution for Solving Two-Points Boundary Value Problems Using Orthogonal Boubaker Polynomials

    Get PDF
    In this paper, a new technique for solving boundary value problems (BVPs) is introduced. An orthogonal function for Boubaker polynomial was utilizedand by the aid of Galerkin method the BVP was transformed to a system of linear algebraic equations with unknown coefficients, which can be easily solved to find the approximate result. Some numerical examples were added with illustrations, comparing their results with the exact to show the efficiency and the applicability of the method

    A novel third kind Chebyshev wavelet collocation method for the numerical solution of stochastic fractional Volterra integro-differential equations

    Get PDF
    In the formulation of natural processes like emissions, population development, financial markets, and the mechanical systems, in which the past affect both the present and the future, Volterra integro-differential equations appear. Moreover, as many phenomena in the real world suffer from disturbances or random noise, it is normal and healthy for them to go from probabilistic models to stochastic models. This article introduces a new approach to solve stochastic fractional Volterra integro-differential equations based on the operational matrix method of Chebyshev wavelets of third kind and stochastic operational matrix of Chebyshev wavelets of third kind. Also, we have given the convergence and error analysis of the proposed method. A variety of numerical experiments are carried out to demonstrate our theoretical findings.Publisher's Versio

    Digital Filters and Signal Processing

    Get PDF
    Digital filters, together with signal processing, are being employed in the new technologies and information systems, and are implemented in different areas and applications. Digital filters and signal processing are used with no costs and they can be adapted to different cases with great flexibility and reliability. This book presents advanced developments in digital filters and signal process methods covering different cases studies. They present the main essence of the subject, with the principal approaches to the most recent mathematical models that are being employed worldwide

    New technique for solving the numerical computation of neutral fractional functional integro-differential equation based on the Legendre wavelet method

    Get PDF
    The aim of this work is to solve a numerical computation of the neutral fractional functional integro-differential equation based on a new approach to the Legendre wavelet method. The concept of fractional derivatives was examined in the sense of Caputo. The properties of the Legendre wavelet and function approximation were employed to determine the approximate solution of a given dynamical system. Moreover, the error estimations and convergence analysis of the truncated Legendre wavelet expansion for the proposed problem were discussed. The validity and applicability of this proposed technique to numerical computation were shown by illustrative examples. Eventually, the results of this technique demonstrate its great effectiveness and reliability

    Non-dyadic Haar Wavelet Algorithm for the Approximated Solution of Higher order Integro-Differential Equations

    Get PDF
    The objective of this study is to explore non-dyadic Haar wavelets for higher order integro-differential equations. In this research article, non-dyadic collocation method is introduced by using Haar wavelet for approximating the solution of higher order integrodifferential equations of Volterra and Fredholm type. The highest order derivatives in the integrodifferential equations are approximated by the finite series of non-dyadic Haar wavelet and then lower order derivatives are calculated by the process of integration. The integro-differential equations are reduced to a set of linear algebraic equations using the collocation approach. The Gauss - Jordan method is then used to solve the resulting system of equations. To demonstrate the efficiency and accuracy of the proposed method, numerous illustrative examples are given. Also, the approximated solution produced by the proposed wavelet technique have been compared with those of other approaches. The exact solution is also compared to the approximated solution and presented through tables and graphs. For various numbers of collocation points, different errors are calculated. The outcomes demonstrate the effectiveness of the Haar approach in resolving these equations

    Stability analysis of linear ODE-PDE interconnected systems

    Get PDF
    Les systèmes de dimension infinie permettent de modéliser un large spectre de phénomènes physiques pour lesquels les variables d'états évoluent temporellement et spatialement. Ce manuscrit s'intéresse à l'évaluation de la stabilité de leur point d'équilibre. Deux études de cas seront en particulier traitées : l'analyse de stabilité des systèmes interconnectés à une équation de transport, et à une équation de réaction-diffusion. Des outils théoriques existent pour l'analyse de stabilité de ces systèmes linéaires de dimension infinie et s'appuient sur une algèbre d'opérateurs plutôt que matricielle. Cependant, ces résultats d'existence soulèvent un problème de constructibilité numérique. Lors de l'implémentation, une approximation est réalisée et les résultats sont conservatifs. La conception d'outils numériques menant à des garanties de stabilité pour lesquelles le degré de conservatisme est évalué et maîtrisé est alors un enjeu majeur. Comment développer des critères numériques fiables permettant de statuer sur la stabilité ou l'instabilité des systèmes linéaires de dimension infinie ? Afin de répondre à cette question, nous proposons ici une nouvelle méthode générique qui se décompose en deux temps. D'abord, sous l'angle de l'approximation sur les polynômes de Legendre, des modèles augmentés sont construits et découpent le système original en deux blocs : d'une part, un système de dimension finie approximant est isolé, d'autre part, l'erreur de troncature de dimension infinie est conservée et modélisée. Ensuite, des outils fréquentiels et temporels de dimension finie sont déployés afin de proposer des critères de stabilité plus ou moins coûteux numériquement en fonction de l'ordre d'approximation choisi. En fréquentiel, à l'aide du théorème du petit gain, des conditions suffisantes de stabilité sont obtenues. En temporel, à l'aide du théorème de Lyapunov, une sous-estimation des régions de stabilité est proposée sous forme d'inégalité matricielle linéaire et une sur-estimation sous forme de test de positivité. Nos deux études de cas ont ainsi été traitées à l'aide de cette méthodologie générale. Le principal résultat obtenu concerne le cas des systèmes EDO-transport interconnectés, pour lequel l'approximation et l'analyse de stabilité à l'aide des polynômes de Legendre mène à des estimations des régions de stabilité qui convergent exponentiellement vite. La méthode développée dans ce manuscrit peut être adaptée à d'autres types d'approximations et exportée à d'autres systèmes linéaires de dimension infinie. Ce travail ouvre ainsi la voie à l'obtention de conditions nécessaires et suffisantes de stabilité de dimension finie pour les systèmes de dimension infinie.Infinite dimensional systems allow to model a large panel of physical phenomena for which the state variables evolve both temporally and spatially. This manuscript deals with the evaluation of the stability of their equilibrium point. Two case studies are treated in particular: the stability analysis of ODE-transport, and ODE-reaction-diffusion interconnected systems. Theoretical tools exist for the stability analysis of these infinite-dimensional linear systems and are based on an operator algebra rather than a matrix algebra. However, these existence results raise a problem of numerical constructibility. During implementation, an approximation is performed and the results are conservative. The design of numerical tools leading to stability guarantees for which the degree of conservatism is evaluated and controlled is then a major issue. How can we develop reliable numerical criteria to rule on the stability or instability of infinite-dimensional linear systems? In order to answer this question, one proposes here a new generic method, which is decomposed in two steps. First, from the perspective of Legendre polynomials approximation, augmented models are built and split the original system into two blocks: on the one hand, a finite-dimensional approximated system is isolated, on the other hand, the infinite-dimensional truncation error is preserved and modeled. Then, frequency and time tools of finite dimension are deployed in order to propose stability criteria that have high or low numerical load depending on the approximated order. In frequencies, with the aid of the small gain theorem, sufficient stability conditions are obtained. In temporal, with the aid of the Lyapunov theorem, an under estimate of the stability regions is proposed as a linear matrix inequality and an over estimate as a positivity test. Our two case studies have been treated with this general methodology. The main result concerns the case of ODE-transport interconnected systems, for which the approximation and stability analysis using Legendre polynomials leads to exponentially fast converging estimates of stability regions. The method developed in this manuscript can be adapted to other types of approximations and exported to other infinite-dimensional linear systems. Thus, this work opens the way to obtain necessary and sufficient finite-dimensional conditions of stability for infinite-dimensional systems

    New Advancements in Pure and Applied Mathematics via Fractals and Fractional Calculus

    Get PDF
    This reprint focuses on exploring new developments in both pure and applied mathematics as a result of fractional behaviour. It covers the range of ongoing activities in the context of fractional calculus by offering alternate viewpoints, workable solutions, new derivatives, and methods to solve real-world problems. It is impossible to deny that fractional behaviour exists in nature. Any phenomenon that has a pulse, rhythm, or pattern appears to be a fractal. The 17 papers that were published and are part of this volume provide credence to that claim. A variety of topics illustrate the use of fractional calculus in a range of disciplines and offer sufficient coverage to pique every reader's attention
    corecore