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Abstract

We consider a control problem for the wave equation: Given the initial state,
find a specific boundary condition, called a control, that steers the system to
a desired final state. The Hilbert uniqueness method (HUM) is a mathemati-
cal method for the solution of such control problems. It builds on the duality
between the control system and its adjoint system, and these systems are con-
nected via a so-called controllability operator.

In this project, we are concerned with the numerical approximation of HUM con-
trol for the one-dimensional wave equation. We study two semi-discretizations of
the wave equation: a linear finite element method (L-FEM) and a discontinuous
Galerkin-FEM (DG-FEM).

The controllability operator is discretized with both L-FEM and DG-FEM
to obtain a HUM matrix. We show that formulating HUM in a sine basis is
beneficial for several reasons: (i) separation of low and high frequency waves,
(ii) close connection to the dispersive relation, (iii) simple and effective filtering.

The dispersive behavior of a discretization is very important for its ability to
solve control problems. We demonstrate that the group velocity is determining
for a scheme’s success in relation to HUM. The vanishing group velocity for
high wavenumbers results in a dramatic decay of the corresponding eigenvalues
of the HUM matrix and thereby also in a huge condition number. We show
that, provided sufficient filtering, the phase velocity decides the accuracy of the
computed controls.

DG-FEM shows very suitable for the treatment of control problems. The
good dispersive behavior is an important virtue and a decisive factor in the suc-
cess over L-FEM. Increasing the order of DG-FEM even give results of spectral
accuracy.

The field of control is closely related to other fields of mathematics among these
are inverse problems. As an example, we employ a HUM solution to an inverse
source problem for the wave equation: Given boundary measurements for a
wave problem with a separable source, find the spatial part of the source term.
The reconstruction formula depends on a set of HUM eigenfunction controls; we
suggest a discretization and show its convergence. We compare results obtained
by L-FEM controls and DG-FEM controls. The reconstruction formula is seen
to be quite sensitive to control inaccuracies which indeed favors DG-FEM over
L-FEM.





Resumé

Numerisk approksimation af randkontrol for bølgeligningen

Vi betragter et kontrolproblem for bølgeligningen: Givet begyndelsestilstanden,
find en særlig randbetingelse, kaldet en kontrol, som styrer systemet til en øns-
ket sluttilstand. Hilbert uniqueness method (HUM) er en matematisk metode
til løsning af denne type kontrolproblem. Den bygger på dualiteten mellem kon-
trolsystemet og dets adjungeret system, og disse systemer er forbundet via en
såkaldt kontrollabilitetsoperator.

I dette projekt behandler vi den numeriske approksimation af HUM-kontrol
for bølgeligningen i én dimension. Vi studerer to semi-diskretiseringer af bøl-
geligningen: en lineær finite element metode (L-FEM) og en discontinuous
Galerkin-FEM (DG-FEM).

Ved diskretisering af kontrollabilitetsoperatoren med både L-FEM og DG-
FEM opnås en HUM-matrix. Vi viser, at formuleringen af HUM i sinus-basis er
fordelagtig af følgende grunde: (i) adskillelse af bølger med lavt og højt bølgetal,
(ii) tæt kobling til dispersionsrelationen, (iii) simpel og effektiv filtrering.

En diskretiserings dispersive egenskaber er meget vigtige for dens evne til at
løse kontrolproblemer. Vi demonstrerer, hvordan gruppehastigheden er afgørende
for en diskretiserings muligheder for succes i forbindelse med HUM. Den forsvin-
dende gruppehastighed for høje bølgetal resulterer i et dramatisk fald i HUM
matricens egenværdier og derved også i et enormt konditionstal. Vi viser at fase-
hastigheden ved passende filtrering bestemmer nøjagtigheden af de udregnede
kontroller.

DG-FEM viser sig velegnet til behandlingen af kontrolproblemer. Dens gode
dispersive egenskaber er et vigtigt fortrin, som er en afgørende faktor i dens suc-
ces over L-FEM. Ved at øge den polynomielle orden kan DG-FEM endda give
resultater med spektral nøjagtighed.

Emnet kontrol er tæt knyttet til andre matematiske områder - blandt disse
er inverse problemer. Som et eksempel på dette anvender vi HUM til løsning af
et inverst kildeproblem: givet randdata for et bølgeproblem med en separabel
kilde, find den stedslige del af kildeledet.

Rekonstruktionsformlen bygger på en serie HUM egenfunktionskontroller. Vi
foreslår en diskretisering og viser dens konvergens. Vi sammenligner ligeledes
resultater opnået med L-FEM-kontroller og DG-FEM-kontroller. Rekonstruk-
tionsformlen viser sig følsom overfor kontrolunøjagtigheder, hvilket betyder, at
DG-FEM klarer sig markant bedre end L-FEM.
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CHAPTER 1

Introduction

It has been known to scientists and engineers for centuries that partial dif-
ferential equations (PDEs) can be used to describe a huge class of physical
phenomena. In this dissertation, we shall consider control problems that are
governed by PDEs. A systematic method called the Hilbert uniqueness method
(HUM) can be used to obtain control of the wave equation. The main objective
of the dissertation is the numerical approximation of this HUM control. Before
we go into more details about ends and means, we will elaborate on the aspects
of the topic control.

1.1 What is control?
Consider a “system” whose “state” can change over time; the state of the system
could for example be its temperature or displacement. If we are allowed to act
on the system, in some way, and thereby change its state, we call the system a
control system; our action on the system is called a control. We will consider
control problems of the following kind: given the initial state, find a control that
steers the system to a specific final state.

If the system is a PDE, then the state is a function typically of the space variable.

1



2 Chapter 1. Introduction

The control of PDEs is—to distinguish it from the traditional finite-dimensional
control—often designated control of systems of distributed parameters. The two
fields share the important notions of controllability and observability. A prob-
lem is said to be controllable if there exists a control that drives the system to
the desired final state. A problem is observable on a subset of the domain or
boundary if the total energy of the system can be determined by measurements
on this subset only. Controllability and observability are mathematical duals
in the sense that a system is controllable if, and only if, its adjoint system is
observable.

It should be noted that controllability has only little in common with opti-
mal control, since optimal control deals with optimization strategies for control
problems. Controllability is, however, closely related to stabilization, homoge-
nization and inverse problems; we shall later consider an example of the relation
to the latter.

In most PDE control problems, there are many possible controls that solve
the problem, but one control has particular interest: the control of minimal
energy.

In the late 1980s, the French mathematician Jacques-Louis Lions announced
the Hilbert uniqueness method for controllability problems [Lio88]. HUM is an
abstract, systematic and constructive method that provides, among all controls,
the unique control of minimal L2-norm. The first example of its use was the
wave equation.

We shall consider a control problem for the wave equation in a bounded do-
main. The control that we seek is a boundary condition for this wave equation
which makes the problem a boundary control problem.

The concept of the problem is easily conceived in 1-d:

An idealized piece of string, which is fixed in one end, experiences
wave motion. We have the other end of the string in our hand. If
we do nothing, the motion of the idealized string will go on forever,
but if we instead move our hand up or down, we create new waves
and thus change the state of the string. If the desired final state is
zero (no motion), we may move our hand up and down in ways so to
drag out the energy of the string motion and thereby putting it to
rest. This is boundary control. The control which requires minimal
effort, in terms of hand movement, is found by HUM.

HUM has, however, the ability to deal with boundary control of the wave equa-
tion not only in 1-d but in complex geometries in higher dimensions.

Numerical methods have to be applied to obtain a specific control by the
HUM. The discretization of the wave equation introduce spurious, non-physical
waves of high frequency that threatens to ruin the control. This behavior is
closely related to the dispersive properties of the discretization. Different nu-
merical methods have been used in relation to HUM, but these have at large
been simple, lower order discretizations due to the much focus on theoretical
aspects of the numerical analysis. Only a few authors have engaged in the more
practical facets and conducted numerical studies.

The discontinuous Galerkin finite element method is a semi-discretization
method which more recently has become popular for the solution of PDEs and
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1.2 The objective 3

in particular wave problems. It is known to exhibit good dispersive behavior,
yet it has not been used for HUM control.

Ever since the introduction of HUM, the method and its underlying ideas have
influenced many other fields; one of them is inverse problems. An inverse prob-
lem concerns finding causes from measured effects which, as mentioned, is a
problem closely related to controllability and observability. Masahiro Yamamoto
used HUM for the solution of an inverse source problem for the wave equation
in his paper [Yam95]. He considered a problem with source term separable in a
temporal and a spatial part. The problem consisted, for given temporal part, of
finding the spatial part of the source from boundary measurements on part of
the boundary. It seems that no one has engaged in the numerical approximation
of his method; a lack that motivates this study.

1.2 The objective
This dissertation deals with the numerical approximation of HUM boundary
control for the wave equation. The main goal is to find “good” approximate
controls for the problem in 1-d. We take a practical approach to this end, and
we wish to examine the following topics.

I. Analyze, identify, and understand the mechanisms that may lead to di-
verging controls.

• examine the spectral properties of the discretized HUM operators

• trace the consequences of numerical dispersion through each step of
the approximation of HUM

• study the effects of formulating the problem in sine basis

II. Examine whether and how the discontinuous Galerkin-FEM can be used
for the numerical approximation of HUM boundary control.

III. Study the numerical approximation of Yamamoto’s method for the inverse
source problem.

• discretize the problem and assess the degree of ill-posedness

• examine how the known problems from numerical HUM effect the
solution of the inverse problem

IV. Develop software for HUM boundary control and for the inverse problem
and make it freely available to the benefit of others.

1.3 Scope and structure
The HUM is presented in Chapter 2 as a method for control for the wave equa-
tion. Apart from the physical control system, an auxiliary (Section 2.1) and an
adjoint system (Section 2.2) are introduced. These two systems are equipped
with energy norms and connected by a Green’s formula which establishes a fun-
damental duality between them. An observation map is assigned to the adjoint
system in Section 2.3 and the dual equivalent, a reconstruction map, is assigned

Jesper Sandvig Mariegaard Ph.D. dissertation, v. 1.1, September 7, 2009



4 Chapter 1. Introduction

to the auxiliary system in Section 2.4. The observation and the reconstruction
are combined to the so-called Λ operator whose inversion provides the solu-
tion of the HUM problem. Section 2.4 also features the representation of the
HUM operators as infinite matrices in the 1-d case; a construction that marks
the opening of the spectral study of the HUM operators. Finally, Section 2.5
presents the HUM as a minimization problem instead of an operator problem.

Chapter 3 deals with the discretization of the wave equation with the aim of
finding approximate solutions that can be used for for the numerical approxima-
tion of HUM. We shall consider numerical HUM in 1-d and study therefore the
1-d wave equation. The continuous 1-d wave equation is studied in Section 3.1.
We take the method of lines approach and consider first the semi-discretization
of the wave equation. Classical methods, such as the finite difference and finite
element method (FEM), are introduced in Section 3.2, and the discontinuous
Galerkin-FEM (DG-FEM) in Section 3.3. We rewrite the wave equation as a
conservation law with two advection equations to make it consistent with the
DG-FEM formulation. This also makes it possible to use an upwind scheme.
Section 3.4 is on time discretization which is necessary to obtain a fully dis-
crete scheme. Section 3.5 analyzes the dispersive properties of the presented
schemes which becomes important for the examination in Chapter 4. We pick
two schemes for further studies: linear FEM (L-FEM) with trapezoidal time
integration and DG-FEM with a Runge-Kutta time integration.

With the means for obtaining discrete solutions to the wave equation, we are,
in Chapter 4, ready to introduce the discretization of HUM. Section 4.1 sug-
gests a semi-discretization of HUM; any semi-discretization makes HUM a finite
dimensional control problem for which there exists a vast amount of literature.
Considering the control of the wave equation as any old finite dimensional con-
trol problem will, however, easily lead to failure.

We proceed with the full discretization before we describe the construction
of the HUM operator Λ as a matrix in Section 4.2. This section presents the
first results of the numerical study. The construction, which is carried out in
sine basis, is carefully analyzed for both L-FEM and DG-FEM. We establish
connections to the dispersive properties of the discretizations. The use of the
sine basis provides, in addition, a simple filtering procedure.

The explicit construction of Λ as a matrix rapidly becomes infeasible and
Section 4.3 presents an iterative solution to the HUM problem with a conjugate
gradient algorithm, and convergence is studied for an example. Chapter 4 is
concluded in Section 4.4 by a short review of related work and a discussion of
the obtained results.

Chapter 5 takes this dissertation in a new direction by introducing an in-
verse problem. It is the inverse source problem for the wave equation described
above (see also Section 5.1), and more importantly M. Yamamoto’s solution by
HUM presented in Section 5.2. We suggest a discretization of the reconstruc-
tion formula in the 1-d case in Section 5.3, and present the obtained numerical
results in Section 5.4. The continuous inverse problem is ill-posed; we assess
to which degree the discretized problem is ill-posed by considering the singular
values of the corresponding forward map.

HUM eigenfunction controls are needed for the reconstruction of Fourier
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1.3 Scope and structure 5

coefficients for the source term and we consider first analytic HUM controls
and then numerical controls obtained with respectively L-FEM and DG-FEM.
We attempt to restore 25 random coefficients with these three different sets of
controls in Section 5.4.6. The last section of Chapter 5 is a discussion of the
obtained results.

The final chapter, Chapter 6, features a list of the most important results
obtained in this project and a list of recommended future work.

The developed software, all written in Matlab, is considered an important con-
tribution of this work. A brief description of each function together with a short
user guide can be found in Appendix C. The complete code including examples
may be obtained at

http://www.mat.dtu.dk/people/J.S.Mariegaard/software/

The remaining appendices contain a list of symbols used in the dissertation
(Appendix A) and a few mathematical details (Appendix B).
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CHAPTER 2

HUM for the wave equation

In this chapter, we consider boundary control for the wave equation. The key
concept, apart from controllability, is observability—whether the total energy
of a system can be found by partial measurements. Controllability and observ-
ability are mathematical duals in the way that the control system is controllable
if and only if its adjoint system is observable.

We present the Hilbert uniqueness method (HUM) which is a general, sys-
tematic, and constructive method for obtaining the best1 possible control. The
method is formulated abstractly in Hilbert spaces and build on uniqueness re-
sults for the governing PDEs. We use it here in a concrete setting for the
classical wave equation in an open, bounded domain in R

d. We will remark on
the special 1-d case several times in this chapter, since we shall later study the
numerical approximation of 1-d HUM in Chapter 4.

We present HUM in two different formulations, an operator approach in Sec-
tion 2.4 and a minimization approach in Section 2.5, as these form the bases of
different ways of approximating the control, which we will return to in Chap-
ter 4.

1It is the “best” control in the sense that it is, among all possible controls, the control with
minimal L2-norm.

7



8 Chapter 2. HUM for the wave equation

The exposition below is primarily inspired by the works of E. Zuazua and
co-workers (see, e.g., [Zua05] and [MZ05]) and M. Pedersen [Ped08]. The proofs
in this chapter are not by the author and those not central to the exposition
(e.g., solvability results) have been omitted. We present proofs of central HUM
results in brevity or by a mere outline.

A word on the geometry and notation

Before setting off, we need to introduce some notation. We shall consider sys-
tems in an open, bounded domain Ω ∈ R

d with boundary Γ for the time inter-
val (0, T ). We call the time-boundary cylinder Σ = (0, T ) × Γ. A part of the
boundary will be known as the control boundary and is denoted Γ0 ⊂ Γ; the
corresponding part of Σ is denoted Σ0 = (0, T ) × Γ0.

Note that, when we consider the 1-d case, Ω will denote the line segment
(0, 1), and the control boundary Γ0 will be a single point x = 1.

Throughout this dissertation, time derivatives ∂/∂t of a function y will be shown
by the superscript y′. This is done to clearly distinct it from the spatial deriva-
tives. We will use ∆ for the Laplacian operator.

2.1 The control system
We set off by introducing the main object of our study: a wave equation which
we call the control system

u′′ − ∆u = 0, in (0, T ) × Ω, (.a)

u(t, x) =

{
κ(t, x) for x = Γ0,

0 for x = Γ \ Γ0,
t ∈ (0, T ), (.b)

u(0, x) = u0(x), u′(0, x) = u1(x), x in Ω, (.c)

where the initial data (u0, u1) ∈ L2(Ω) × H−1(Ω) is given, and κ is a function
in L2(Σ0). The space H−1(Ω) is the dual of H1

0 (Ω).

The space L2(Ω) × H−1(Ω) will be used frequently so to shorten notation
we introduce

Ẽ⋆ := L2(Ω) × H−1(Ω). (.)

Also, for the space of the boundary function κ we introduce the boundary2 space

B := L2(Σ0). (.)

We equip both spaces with the usual norms. There are good reasons for the
choice of these two spaces; they are in fact essential to HUM and the consequence
of careful analysis by J.-L. Lions [Lio88]. We will return to this below.

Before being more specific about our main objective—the control problem—
we state an existence and uniqueness result for system (.) (see, e.g., [Ped00,
page 180] for a proof).

2Note that, in spite of the name boundary space, B is the L2-space only over a part

Σ0 = (0, T ) × Γ0 of the complete time-boundary cylinder Σ = (0, T ) × Γ.
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2.1 The control system 9

Theorem 2.1. For any (u0, u1) ∈ Ẽ⋆ and any κ ∈ B there exists a unique weak
solution to (.) with the regularity

(u, u′) ∈ C([0, T ]; Ẽ⋆), (.)

moreover, the map
{
u0, u1, κ

}
7→ {u, u′} is linear and there exists a constant

c(T ) < 0 such that

‖(u, u′)‖
L∞((0,T );eE⋆) ≤ c(T )

( ∥∥(u0, u1)
∥∥

eE⋆ + ‖κ‖B
)
. 2

Remark 2.2. The wave equation is time-reversible in nature due to the symme-
try of the wave operator ∂2

t − ∆, that is, replacing t by T − t in (.) will lead
to the exact same PDE. The above regularity result holds in both directions.¥

The state of the control system (.) at time t reads (u(t, ·), u′(t, ·)), and it

belongs to the state space Ẽ⋆. Control is action on a system through a control
variable which changes the state of the system. We seek to change the state of
(.) by acting on the control boundary Γ0 with the control function κ. This
type of control is called boundary control.

We shall now define the boundary control problem for system (.).

Definition 2.3 (Control problem). Given (u0, u1) ∈ Ẽ⋆, find κ ∈ B such that
(.) is steered to zero in time T , i.e.,

u(T, x) = u′(T, x) = 0, x in Ω. 2

At this point, it is relevant to ask under which conditions this control problem
can be solved for all initial data in Ẽ⋆. This is a question about controllability.

2.1.1 Types of controllability

Different types of boundary controllability of the wave equation exist. They
can conveniently be characterized in terms of the set of reachable final states
R(T ; (u0, u1)) which we define as

R(T ; (u0, u1)) := {(u(T, ·), u′(T, ·)) | u is the solution to (.)} .

where (.) have initial data (u0, u1) ∈ Ẽ⋆ and the control κ ∈ B.

Definition 2.4 (Controllability). Let u be a solution to (.) for initial data

(u0, u1) ∈ Ẽ⋆. The system is then said to be

Exactly controllable in time T if R(T ; (u0, u1)) is equal to Ẽ⋆ for all initial

data (u0, u1) ∈ Ẽ⋆.

Approximately controllable in time T if R(T ; (u0, u1)) is dense in Ẽ⋆ for all

initial data (u0, u1) ∈ Ẽ⋆.

Null controllable in time T if the state (0, 0) ∈ R(T ; (u0, u1)) for all initial

data (u0, u1) ∈ Ẽ⋆. 2
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10 Chapter 2. HUM for the wave equation

Remark 2.5. For linear systems like (.) null controllability and exact control-
lability are equivalent notions. The null controllability problem related to the
control problem, Definition 2.3, is therefore also a problem of exact controlla-
bility. ¥

Remark 2.6. The wave equation is a partial differential equation with finite
speed of propagation. None of the above types of controllability can therefore
be expected to hold unless we allow sufficient large control time T . ¥

Approximate controllability, however interesting, is out of the scope of this
dissertation. It is only mentioned here for completeness. Readers are referred
to [GL95] or [Ped08].

2.1.2 An auxiliary system

Above, we sought a control that—forward in time—would steer the control
system from an initial state to a desired final state. Below, we will try to do the
opposite, that is, to steer an auxiliary system from a chosen final state back to
some desired initial state. This system will prove useful in the following sections.

Let ψ be the solution of the auxiliary system which we solve “backwards” in
time from T to 0

ψ′′ − ∆ψ = 0, in (0, T ) × Ω, (.a)

ψ(t, x) =

{
κ(t, x) for x = Γ0,

0 for x = Γ \ Γ0,
t ∈ (0, T ), (.b)

ψ(T, x) = ψ′(T, x) = 0, x in Ω, (.c)

where κ ∈ B. We have from Theorem 2.1 that the state (ψ(t, ·), ψ′(t, ·)) belongs

to the state space Ẽ⋆ (Remark 2.2).
A function κ ∈ B will drive the auxiliary system (.) from rest at time T

back to some initial state (ψ(0, ·), ψ′(0, ·)). The problem of finding a control κ
that steers (.) back to (ψ(0, ·), ψ′(0, ·)) = (u0, u1) is equivalent to solving the
control problem, Definition 2.3. The found control κ will by construction steer
(u0, u1) to zero as the two system are identical in this case.

2.1.3 The control area

Up till now we have not said much about the requirements on the control area—
the subset Γ0 of the boundary Γ—on which the control function can act. Natu-
rally, we expect that the control system will be exactly controllable only when
the control boundary is a sufficiently large part of the complete boundary.

The traditional way to choose the control boundary is by the following pro-
cedure. Let x0 be an arbitrary chosen point in R

d. Then choose the control
boundary

Γ0(x0) = {x ∈ Γ | (x − x0) · n ≥ 0} ,

where (x − x0) is the vector from x0 to the boundary point x and n is the out-
ward unit normal vector at x. A greater control area Γ1 ⊂ Γ0(x0) is obviously
also admissible. The choice of Γ0(x0) as control boundary area was important
in the original HUM formulation as (x − x0) · n was used as a multiplier in the
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2.2 The adjoint system 11

proof by J.L. Lions, [Lio88].

As an alternative to this choice of Γ0, Bardos, Lebeau, and Rauch proved con-
trollability for C∞ domains if “every ray of geometrical optics that propagates in
Ω and is reflected on its boundary Γ must reach Γ0 in time less than T ” [BLR92].
This is called a geometric control condition (GCC) and was proved by the use of
micro local analysis. The result was later extended to hold also for C3 domains.
Essentially, the geometric control condition says that the control boundary must
be placed such that no rays can be trapped, e.g., between parallel boundary
segments.

In general we must expect a decrease in the size of control area will imply
an increase in minimal control time T0 and that a stronger control is needed.

Remark 2.7. In 1-d where the domain Ω = (0, 1), the situation is quite simple.
There are two cases:

a) Γ0 consists of both end points, Γ0 = Γ, or
b) Γ0 consists of one end point, say x = 1.

Naturally, case b) require twice the control time T0 compared to case a). In this
dissertation, we consider only case b) with Γ0 = {1}. ¥

2.2 The adjoint system
The HUM builds upon the connection between the control system (.) and its
adjoint system

ϕ′′ − ∆ϕ = 0, in (0, T ) × Ω, (.a)

ϕ(t, x) = 0, (t, x) in Σ, (.b)

ϕ(0, x) = ϕ0(x), ϕ′(0, x) = ϕ1(x), x in Ω, (.c)

with initial data (ϕ0, ϕ1) ∈ E which is defined by

E := H1
0 (Ω) × L2(Ω). (.)

Note that this space is (almost3) the dual of the state space Ẽ⋆ for the control
system. Before elaborating on this duality, we state an existence and uniqueness
result for (.) again without proof (see, e.g., [Ped00, page 178]).

Theorem 2.8. For any (ϕ0, ϕ1) ∈ E the adjoint system (.) has a unique weak
solution with regularity

(ϕ,ϕ′) ∈ C([0, T ]; E).

Furthermore,
∂ϕ

∂n
∈ L2(Σ),

and there exists a constant c(T ) < 0 such that the estimate

‖(ϕ,ϕ′)‖L∞((0,T );E) ≤ c(T )
∥∥(ϕ0, ϕ1)

∥∥
E (.)

holds. 2

3Strictly, E is the dual of H−1(Ω) × L2(Ω) which is isometric isomorphic to eE⋆. At this

point it suffices to use E and eE⋆.
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12 Chapter 2. HUM for the wave equation

Remark 2.9. The L2-regularity of the Neumann data ∂ϕ
∂n

is a stronger result
than the standard trace results (one-half more regular) that could have been
obtained from ϕ(t, ·) ∈ H1

0 (Ω). This result—a so-called “newer” regularity
result—is due to [LLT86], and is known as the “hidden” regularity of the wave
equation. ¥

Specifically, the restriction of the Neumann data ∂ϕ
∂n

to the boundary part Γ0

belongs to the boundary space B. This “observed” quantity ∂ϕ
∂n

|Γ0
will turn out

to be essential in connection with the control problem.

2.2.1 Energy spaces

Let us define the mechanical energy E of the adjoint system (.) at time t

E(t) :=
1

2

∫

Ω

(
|∇ϕ(t, x)|2 + |ϕ′(t, x)|2

)
dx, 0 ≤ t ≤ T. (.)

The energy is constant in time (that is, (.) is conservative)

E(t) = E(0) =
1

2

∫

Ω

( ∣∣∇ϕ0(x)
∣∣2 +

∣∣ϕ1(x)
∣∣2 )

dx, 0 ≤ t ≤ T,

due to the homogeneous boundary conditions.

Remark 2.10. In 1-d where Ω = (0, 1) and solutions ϕ to (.) can be expressed
in terms of Fourier series by

ϕ(t, x) =
∑

k∈N

(
ak cos(kπt) +

bk

kπ
sin(kπt)

)
sin(kπx),

where ak and bk are defined by the expansion of the initial data

ϕ0(x) =
∑

k∈N

ak sin(kπx), ϕ1(x) =
∑

k∈N

bk sin(kπx).

The energy can be computed straight forwardly by

E(0) =
1

4

∑

k∈N

(
a2

kk2π2 + b2
k

)
. ¥

Back to the general case, the energy (.) is equivalent to the square of the
usual norm on the state space

E = H1
0 (Ω) × L2(Ω).

The norm
∥∥(ϕ0, ϕ1)

∥∥
E does, in other words, describe the mechanical energy of

the adjoint system. Consequently, we term E the energy space for the adjoint
system. Its dual space

E⋆ = H−1(Ω) × L2(Ω), (.)

trivially isometric isomorphic to Ẽ⋆ defined in (.), is the space of the permuted

data set (u1,−u0) compared to (u0, u1) of the space Ẽ⋆. The change of order
and sign can be deduced from a more elaborate definition of the adjoint wave
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2.2 The adjoint system 13

operator (see [Ras04, page 112] for a thorough deduction). We introduce the

related permutation operator Q : Ẽ⋆ → E⋆ defined by the matrix

Q =

(
0 1
−1 0

)
, such that

(
u1

−u0

)
= Q

(
u0

u1

)
.

The duality product between (u1,−u0) ∈ E⋆ and (ϕ0, ϕ1) ∈ E is defined by

〈(u1,−u0), (ϕ0, ϕ1)〉E⋆,E = 〈u1, ϕ0〉H−1(Ω),H1
0 (Ω) − 〈u0, ϕ1〉L2(Ω) (.)

= 〈(u0, u1), (ϕ0, ϕ1)〉eE
⋆,E .

where the duality product 〈·, ·〉H−1(Ω),H1
0 (Ω) is the natural extension4 of the L2-

inner product (see [Ped00, page 124]).

2.2.2 Duality

The connection between the control system and the adjoint system, which is of
fundamental importance to HUM, still needs to be made precise. We will see
how the systems are tied together by a Green’s formula, Green’s 2nd identity
(see [Ped00, page 148]).

Proposition 2.11 (Green’s 2nd identity). Let ϕ and ψ be twice differentiable
functions, then the following identity holds

∫

Ω

(
ψ∆ϕ − ψ∆ϕ

)
dx =

∫

Γ

(
ψ

∂ϕ

∂n
− ϕ

∂ψ

∂n

)
ds. (.)

2

We proceed by linking the auxiliary and the adjoint system in the following
proposition.

Proposition 2.12. Let ϕ be the solution to (.) with any initial data (ϕ0, ϕ1) ∈
E and ψ the solution to (.) with any κ ∈ B, then the following identity holds

〈(ψ′(0, ·),−ψ(0, ·)), (ϕ0, ϕ1)〉E⋆,E =

∫ T

0

∫

Γ0

κ
∂ϕ

∂n
dΓdt. 2

Proof. We will settle with a sketch of the proof—see [Ped08] for actual
calculations. First, assume ϕ and ψ to be smooth and multiply ψ′′ −∆ψ = 0
by ϕ and integrate over the space-time domain. Proceed with integration by
parts while applying relevant boundary conditions and apply next Green’s
2nd identity (.). The duality identity then follows from density. ¥

Note how the “hidden” L2-regularity of ∂ϕ
∂n

(Theorem 2.8) is truly crucial for the
identity in Proposition 2.12.

A key theorem ([Ped08, Theorem 6.3]) follows immediately from Proposi-
tion 2.12.

Theorem 2.13. The control system (.) with initial data (u1,−u0) ∈ E⋆ can
be steered to zero in time T if and only if there exists a control κ ∈ B such that

〈(u1,−u0), (ϕ0, ϕ1)〉E⋆,E =

∫ T

0

∫

Γ0

κ
∂ϕ

∂n
dΓdt (.)

for all (ϕ0, ϕ1) ∈ E , where ϕ is the solution to (.) for the initial data (ϕ0, ϕ1).2

4The duality product—or duality pairing—〈f, g〉H−1(Ω),H1
0 (Ω) is, to be fair, not con-

structed as an extension to the L2-inner product, but it reduces to this case for f ∈ L2(Ω).
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14 Chapter 2. HUM for the wave equation

Proof. The result follows straightly from Proposition 2.12 since u is exactly
controllable if and only if there exists a κ such that (u1,−u0) = (ψ′(0, ·),−ψ(0, ·)).¥

2.3 Observability
In the introduction of this chapter, we suggested that controllability and ob-
servability are mathematical duals. Before showing that the controllability of
(.) is equivalent to the observability of (.), we need to define the notion of
observability.

Loosely speaking, system (.) is said to be observable on Γ0 in time T if the
total energy of the system can be measured by a partial measurement on Γ0 for
all t ≤ T . Section 2.2.1 showed how the energy of the—conservative—adjoint
system, defined in (.), can conveniently be computed using the energy norm
on the initial data E(0) =

∥∥(ϕ0, ϕ1)
∥∥
E . We wish to measure this energy in

terms of the L2-regular Neumann data ∂ϕ/∂n at Γ0 and introduce to this end
the linear observation operator

Φ: E → B defined by Φ(ϕ0, ϕ1) =
∂ϕ

∂n

∣∣∣
Γ0

, (.)

which maps the initial data of the adjoint system (.) on the Neumann data
at Γ0. We seek, hereafter, to bound the energy of the adjoint system E(0) by
the partial measurement

∥∥Φ(ϕ0, ϕ1)
∥∥
B.

Note that, the observation operator is continuous by the “hidden” regularity
for the adjoint system (Theorem 2.8), i.e., ∃c > 0 such that

∥∥Φ(ϕ0, ϕ1)
∥∥
B ≡

∥∥∥∥
∂ϕ

∂n

∣∣∣
Γ0

∥∥∥∥
B
≤

∥∥∥∥
∂ϕ

∂n

∥∥∥∥
L2(Σ)

≤ c
∥∥(ϕ0, ϕ1)

∥∥
E . (.)

Let us define the observability of the adjoint system and state the observability
inequality.

Definition 2.14 (Observability inequality). Let (ϕ0, ϕ1) ∈ E be initial data for
the adjoint system (.), and let Φ be the operator defined by (.). We say
that system (.) is observable on Γ0 in time T if there exists a constant c(T ) > 0
such that the observability inequality

∥∥(ϕ0, ϕ1)
∥∥
E ≤ c(T )

∥∥Φ(ϕ0, ϕ1)
∥∥
B , (.)

holds for all (ϕ0, ϕ1) ∈ E . The constant c(T ) depends on the control time T
and is known as the observability constant. 2

We see that (.) implies the injectivity of Φ. As a consequence of the observ-
ability inequality, we can define a new norm on the initial data.

Proposition 2.15. Assume that the observability inequality (.) holds and let
Φ be the operator defined by (.). Then for (ϕ0, ϕ1) ∈ E the mapping

(ϕ0, ϕ1) 7→
∥∥Φ(ϕ0, ϕ1)

∥∥
B ,

from E to R defines a norm on the space of initial data E . Moreover, this norm
is equivalent to the usual norm on E . 2
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Proof. The positivity and symmetry is straight forward. The norm is equiv-
alent to the usual norm on E by the inequalities (.) and (.). ¥

Before making the link between observability and controllability, we remark on
the observability in the 1-d case.

Remark 2.16. Recall from Remark 2.10 that the energy (.) in terms of the
Fourier coefficients becomes E(0) = 1

4

∑
k∈N

(a2
kk2π2 + b2

k). The observation
data Φ(ϕ0, ϕ1) can be computed by

∂ϕ

∂x

∣∣∣
x=1

=
∑

k∈N

(−1)k
(
kπak cos(kπt) + bk sin(kπt)

)
.

If we now consider the case T = 2 and utilize the orthogonality of cos(kπt) and
sin(kπt) on L2(0, 2) it follows that

∥∥Φ(ϕ0, ϕ1)
∥∥2

B =

∫ 2

0

∣∣∣∣
∂ϕ

∂x

∣∣∣
x=1

∣∣∣∣
2

dt =
∑

k∈N

(
a2

kk2π2 + b2
k

)
.

The norm
∥∥Φ(ϕ0, ϕ1)

∥∥
B must be even greater for T > 2. Comparing with the

energy E(0) above, we see that the observability inequality (.) holds for all
T ≥ 2.

For T < 2, however, the adjoint system is not observable. If T = 2 − 2δ,
with δ > 0, then the part of ϕ0 on (1− δ, 1) ⊂ Ω which initially travels left will
not make it back to the observation boundary Γ0 = {1} in time T due to the
unit speed of propagation. ¥

2.4 HUM: the operator approach
The original HUM formulation by J.L. Lions, [Lio88], established the connection
between the adjoint system and the auxiliary system by multiplier techniques
to form an isomorphic mapping from E into E⋆. Inspired by [Ped08], we will
instead present HUM below in terms of observation and reconstruction.

2.4.1 The reconstruction operator

Recall, from Section 2.1.2, the auxiliary ψ-system that was solved backwards in
time. We introduce the reconstruction operator Ψ associated with this system

Ψ: B → E⋆ defined by Ψ: κ 7→ (ψ′(0, ·),−ψ(0, ·)). (.)

It maps the Dirichlet boundary function κ on the set of (perturbed) “end” data
(ψ′(0, ·),−ψ(0, ·)). Any boundary function κ ∈ B that solves the control problem
for initial data (u1,−u0) ∈ E⋆ also satisfies the equation

Ψ(κ) = (u1,−u0). (.)

Before continuing with specification of the control κ, we state an important
fact about the relation between the observation and reconstruction operators.

Proposition 2.17. Assume that the control system (.) is exactly controllable.
Then the operator

Ψ∗ = Φ: E → B

is the adjoint of Ψ: B → E⋆. Conversely, Φ∗ = Ψ is the adjoint of Φ. 2
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16 Chapter 2. HUM for the wave equation

Proof. Insert Ψ(κ) = (ψ′(0, ·),−ψ(0, ·)) in Proposition 2.12 and it follows
immediately

〈Ψ(κ), (ϕ0, ϕ1)〉E⋆,E =

∫ T

0

∫

Γ0

κ
∂ϕ

∂n
dΓdt

= 〈κ,Φ(ϕ0, ϕ1)〉B. ¥

2.4.2 The Λ-operator and a main theorem

A HUM control is a special control κ that, in addition to satisfying (.), is
build from the adjoint system by

HUM control: κ = Φ(ϕ0, ϕ1). (.)

This is possible only because of the “hidden” regularity (Remark 2.9). By picking
the control in this way, we make the remaining pieces fit perfectly together.

Connecting the HUM control (.) with the requirement (.) leads to the
equation

ΨΦ(ϕ0, ϕ1) = (u1,−u0). (.)

The composite operator ΨΦ is better known as the Λ operator

Λ: E → E⋆ defined by Λ = Ψ ◦ Φ. (.)

Equation (.)—with Λ in place of ΨΦ—is the heart of the original HUM. If
equation (.) can be solved, its solution provides the specific set of initial con-
ditions (ϕ̄0, ϕ̄1) to the adjoint system, that by construction leads to a control
κ = Φ(ϕ̄0, ϕ̄1) for system (.). It turns out that (.) can be solved if and
only if the observability inequality (.) holds.

By inserting the HUM control (.) and Λ(ϕ0, ϕ1) in place of (u1,−u0) in
the duality identity (.), we get

〈Λ(ϕ0, ϕ1), (ϕ0, ϕ1)〉E⋆,E =

∫ T

0

∫

Γ0

∣∣∣∣
∂ϕ

∂n

∣∣∣∣
2

dΓdt ≡
∥∥Φ(ϕ0, ϕ1)

∥∥2

B . (.)

The primary task in the original proof by J.L. Lions was to prove that (.)
defines a norm on the set of initial data (ϕ0, ϕ1) and that this norm is equivalent
to the usual norm; this was done by the multiplier (x − x0) · n as explained in
Section 2.1.3. The observability inequality (.) together with Theorem 2.13
form an alternative to the original proof, and by Proposition 2.15 we have the
same norm equivalence for

∥∥Φ(ϕ0, ϕ1)
∥∥
B. This also means that (.) forms a

norm on E and Λ is thereby a self-adjoint and positive operator. Furthermore,
by Riesz representation theorem, we have that Λ is an isomorphism from E onto
E⋆ (see [Ped00, page 220]).

We summarize the above in a main theorem.

Theorem 2.18. The control system (.) is exactly controllable on E in time T
if and only if its adjoint system (.) is observable on Γ0 in time T .

If the adjoint system is observable, then the HUM operator equation (.)
has a unique solution (ϕ̄0, ϕ̄1) and κ = Φ(ϕ̄0, ϕ̄1) defines a control for the control
problem; this control is of minimal L2-norm. Furthermore, Λ is a positive and
self-adjoint operator, and it forms an isomorphism from E onto E⋆. 2
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2.4 HUM: the operator approach 17

We conclude this section by defining a bounded linear controllability operator
Π: E⋆ → B, provided that Λ = Φ∗Φ is invertible, by

Π(u1,−u0) = (Φ(Φ∗Φ)−1)(u1,−u0). (.)

Hence, if the adjoint system is observable the operator Π maps the initial data
(u1,−u0) of the control system onto the sought control κ = Π(u1,−u0) thereby
providing its solution.

2.4.3 Constructing Λ as a matrix

The HUM key-operators Λ, Φ, and Ψ may be represented as in-finite dimen-
sional matrices Λ, Φ, and Ψ. We construct these matrices as a first step in the
direction of finite dimensional approximation.

Let, for the separable Hilbert spaces E and E⋆, the vectors {ej}j∈N
form a

basis for E and {e′j}j∈N
a basis for E⋆. We expand the initial data (ϕ0, ϕ1) and

(u1,−u0) in these bases
(

ϕ0

ϕ1

)
=

∑

j∈N

ϕjej ,

(
u1

−u0

)
=

∑

j∈N

uje
′
j ,

where ϕ and u are infinite column vectors of coefficients. We assume further
that we have the orthogonality property

〈e′j , ei〉E⋆,E = δij , i, j ∈ N.

The above expansions and the orthogonality give the following equivalence be-
tween the operator equation (.) and a matrix equation

Λ

(
ϕ0

ϕ1

)
=

(
u1

−u0

)
⇐⇒

∑

j∈N

ϕjΛej =
∑

i∈N

uie
′
i

⇐⇒ 〈
∑

j∈N

ϕjΛej , ei〉E⋆,E = 〈
∑

k∈N

uke′k, ei〉E⋆,E , ∀i ∈ N

⇐⇒
∑

j∈N

〈Λej , ei〉E⋆,Eϕj = ui, ∀i ∈ N

⇐⇒ Λϕ = u, (.)

where the matrix Λ is defined by

Λij = 〈Λej , ei〉E⋆,E , i, j ∈ N. (.)

We call this way of constructing the matrix Λ direct assembling to distinguish
it from the alternative that we will present below. Direct assembly involves
first a solution of the adjoint problem (observation) and then a solution to the
auxiliary problem (reconstruction) for each basis function ej .

If we instead use the factorization Λ = Φ∗Φ (from (.) and Proposi-
tion 2.17), we can express the matrix element Λij by

Λij = 〈Φej ,Φei〉B, i, j ∈ N, (.)

which we, as a method, denote inner product assembling. This alternative pro-
cedure only requires the solution of the adjoint system and only computation of
half the entries as we have symmetry 〈Φej ,Φei〉B = 〈Φei,Φej〉B by construction.
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18 Chapter 2. HUM for the wave equation

Remark 2.19. The entries of the infinite matrix Λ can in 1-d be computed
analytically in the Fourier basis

{√
2 sin(jπx)

}
j∈N

. The case T = 2n where

n ∈ N is particularly simple; it results in a diagonal Λ and can be found in
Remark 2.22. The computations are cumbersome when T 6= 2n (see [Ras04,
page 185] for details) and the result is generally a full matrix Λ. ¥

2.4.4 Constructing Φ and Ψ as matrices

We will construct Φ and Ψ as matrices in the same manner as we did for Λ.
To this end, we propose an orthonormal basis {bj}j∈N

for B in which we can
expand functions κ ∈ B

κ =
∑

j∈N

κjbj ,

where κ is the infinite vector of the coefficients with respect to this basis. We
rewrite the operator equation κ = Φ(ϕ0, ϕ1) as a matrix equation

Φ

(
ϕ0

ϕ1

)
= κ ⇐⇒

∑

j∈N

ϕjΦej =
∑

i∈N

κibi

⇐⇒ 〈
∑

j∈N

ϕjΦej , bi〉B = 〈
∑

k∈N

κkbk, bi〉B ∀i ∈ N

⇐⇒
∑

j∈N

〈Φej , bi〉Bϕj = κi, ∀i ∈ N

⇐⇒ Φϕ = κ, (.)

where Φ is defined by

Φij = 〈Φej , bi〉B, i, j ∈ N. (.)

The same procedure goes for the operator equation Ψκ = (ψ′(0, ·),−ψ(0, ·))

Ψκ =

(
ψ′(0, ·)
−ψ(0, ·)

)
⇐⇒

∑

j∈N

κjΨbj =
∑

i∈N

ψiei

⇐⇒ 〈
∑

j∈N

κjΨbj , ei〉E⋆,E = 〈
∑

k∈N

ψkek, ei〉E⋆,E ∀i ∈ N

⇐⇒
∑

j∈N

〈Ψbj , ei〉E⋆,Eκj = ψi, ∀i ∈ N

⇐⇒ Ψκ = ψ, (.)

where Ψ is defined by

Ψij = 〈Ψbj , ei〉E⋆,E , i, j ∈ N. (.)

Note, that picking {Φej}j∈N
as the basis {bj}j∈N

in (.) amounts to con-

structing Λ by inner product assembly; using the same basis in (.) amounts
to constructing Λ by direct assembly.

Remark 2.20. The operator Φ: E → B can be considered as two sub-operators

Φ0 : H1
0 (Ω) → B defined by Φ0ϕ0 = Φ(ϕ0, 0) (.a)

Φ1 : L2(Ω) → B defined by Φ1ϕ1 = Φ(0, ϕ1). (.b)
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2.5 HUM: The minimization approach 19

The division may be passed on to the matrix representation Φ = [Φ0,Φ1]. The
same can be done for the operator Ψ and its matrix representation Ψ. ¥

Remark 2.21. The 1-d observation of the Fourier sine basis {
√

2 sin(jπx)}j∈N

is particularly simple. Let us consider the Φ0 observation (.a) first. The
initial data (ϕ0, ϕ1) = (

√
2 sin(jπx), 0) leads to the solution

ϕ(t, x) =
√

2 cos(jπt) sin(jπx), j ∈ N,

of the adjoint system (.). By taking the normal derivative at x = 1 we obtain

Φ0
(√

2 sin(jπx)
)

= (−1)j
√

2jπ cos(jπt), j ∈ N.

Correspondingly, we get the solution ϕ(t, x) =
√

2
jπ

sin(jπt) sin(jπx) for the initial

data (ϕ0, ϕ1) = (0,
√

2 sin(jπx)) which leads to the following Φ1 observation

Φ1
(√

2 sin(jπx)
)

= (−1)j
√

2 sin(jπt), j ∈ N.

Notice the orthogonality of these observations in the special case T = 2n for
n ∈ N. ¥

Remark 2.22. The 1-d sine basis observation from Remark 2.21 has a simple
diagonal matrix representation when T = 2n for n ∈ N. We define the functions

b0
i =

√
2

T
cos(iπt), b1

i =

√
2

T
sin(iπt), i ∈ N

and recognize that
{
b0
i , b

1
i

}
i∈N

constitute an orthonormal basis for B. We con-

sider the construction of the matrix Φ = [Φ0,Φ1]. Let in the following index i
correspond to the first half of the rows in each of the matrices Φ

0 and Φ
0, and

let k correspond to the second half of the rows. Then we have the elements

Φ
0
ij =

〈
(−1)j

√
2jπ cos(jπt), b0

i

〉

B
= (−1)jjπ

√
Tδij , i, j ∈ N, (.a)

Φ
1
kj =

〈
(−1)j

√
2 sin(jπt), b1

k

〉

B
= (−1)j

√
Tδkj , k, j ∈ N. (.b)

It is trivial to extend this to Λ which also will have diagonal structure. The first
half j ∈ N of the diagonal becomes Λjj = (jπ)2T and the second half k ∈ N

becomes Λkk = T . ¥

2.5 HUM: The minimization approach
HUM has in recent years been studied in an alternative formulation to the op-
erator approach described in the Section 2.4. This alternative is formulated as a
minimization problem from which the sought initial data set (ϕ̄0, ϕ̄1), defining
the HUM-control κ, emerges as the minimizer of a certain energy functional.
One of the advantages of this more recent formulation is that it only depends on
the adjoint system—and not on the auxiliary one. The exposition in this section
has been greatly inspired by [MZ05]. Note that in this section the distinction

between E⋆ and Ẽ⋆ is not important. For this reason we use initial data in the

Jesper Sandvig Mariegaard Ph.D. dissertation, v. 1.1, September 7, 2009



20 Chapter 2. HUM for the wave equation

usual order, i.e., (u0, u1) ∈ Ẽ⋆.

We introduce the energy functional J : E → R

J (ϕ0, ϕ1) :=
1

2

∥∥Φ(ϕ0, ϕ1)
∥∥2

B − 〈(u0, u1), (ϕ0, ϕ1)〉eE
⋆,E , (.)

where Φ is the observation operator (.), (u0, u1) ∈ Ẽ⋆ is the initial data for
the control system (.), and 〈·, ·〉eE

⋆,E is the duality product defined by (.).
We wish to show that the functional J attains its minimum at (ϕ̄0, ϕ̄1) in

E and that this minimum produces the sought control by κ = Φ(ϕ̄0, ϕ̄1).

Theorem 2.23. Let (u0, u1) ∈ Ẽ⋆ and let J be the functional defined by (.).
Suppose that J has a unique minimum at (ϕ̄0, ϕ̄1) ∈ E . If ϕ̄ is the solution of
(.) for the initial conditions (ϕ̄0, ϕ̄1), then κ = ∂ϕ̄/∂n

∣∣
Γ0

defines the control

that will steer (.) to zero for the initial conditions (u0, u1). 2

Proof. By assumption J has its (unique) minimum at (ϕ̄0, ϕ̄1). This means
that

0 = lim
h→0

1

h

(
J

(
(ϕ̄0, ϕ̄1) + h(ϕ0, ϕ1)

)
− J (ϕ̄0, ϕ̄1)

)

=

∫ T

0

∫

Γ0

∂ϕ̄

∂n

∂ϕ

∂n
dsdt − 〈(u0, u1), (ϕ0, ϕ1)〉eE

⋆,E

for any (ϕ0, ϕ1) ∈ E . Then by κ = ∂ϕ̄/∂n
∣∣
Γ0

in Theorem 2.13 the proof is

complete. ¥

Now that we know that a minimizer, if it exists, provide the control that we seek,
we need a condition on the existence of a unique minimizer. The requirement
is, again, that the adjoint system is observable.

Theorem 2.24. Let (u0, u1) ∈ Ẽ⋆ be given. Assume that the adjoint system
(.) is observable on Γ0 in time T . Then the functional J defined by (.)
has a unique minimizer (ϕ̄0, ϕ̄1) ∈ E . 2

Proof. The so-called direct method of calculus of variations tells us that J
has a minimum in E provided that its a) convex, b) lower semi-continuous,
and c) coercive; the minimum is unique if J is strictly convex.

The continuity follows from the “hidden” regularity (Remark 2.9), whereas
the observability inequality can be used to establish the coercivity and strict
convexity. See [MZ05] for details. ¥

Not only do we have a means for obtaining a control, it can also be proved (see
[MZ05]) that the found control is of minimal L2-norm.

Proposition 2.25. Let κ = Φ(ϕ̄0, ϕ̄1) be the control given by minimization of
J . Then κ ∈ B is the control of minimal B-norm. 2

To summarize the findings of this section, system (.) can, for any initial

data (u0, u1) ∈ Ẽ⋆, be controlled exactly in time T by a control κ ∈ B if and
only if its adjoint system (.) is observable on E in time T on Γ0. If (.) is
observable, then the energy functional J has a unique minimizer (ϕ̄0, ϕ̄1) which
by κ = Φ(ϕ̄0, ϕ̄1) defines the control that will steer the state of (.) exactly to
zero in time T .
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CHAPTER 3

Approximating solutions to the

wave equation

The main objective of this dissertation is to seek “good” numerical approxima-
tions to the HUM-control of the wave equation. Achieving this goal primarily
involves two tasks:

(1) finding approximate solutions to the wave equation,

(2) approximating HUM itself.

Item (2) is the topic of the next chapter; this chapter is devoted to (1).

We find approximate solutions to the wave equation by the so-called method of
lines in which the discretization of the spatial and temporal part of the system
is dealt with separately. In practice, this means that we discretize the spatial
part of the wave equation first. The continuous solution y(t, ·) is approximated
by yh(t, ·), where h denote a characteristic length of the spatial discretization.
The function yh(t, ·) is represented discretely by a vector yh(t) of, e.g., nodal
values of yh(t, ·) which turns the PDE into a system of ODEs in yh(t). Secondly,
a time integration, or time-stepping, procedure takes care of the temporal part
of the system leading to a fully discrete solution.

21



22 Chapter 3. Approximating solutions to the wave equation

In this chapter, we consider the 1-d wave equation as it will be the model prob-
lem to which we shall apply control in the following chapter. The existence of
analytic solutions for this simple 1-d model, which we shall study in Section 3.1,
is a clear advantage when we consider numerical approximation of the control
in Chapter 4.

After a general discussion of how to obtain approximate solutions to the 1-d
wave equation, we turn to the main subject of this chapter which is the discon-
tinuous Galerkin finite element method. It is a recent method, compared to the
classical finite difference and finite element methods, and it is well-suited for
wave problems It has, nevertheless, not previously been used in the context of
HUM control for the wave equation.

We begin by reviewing the continuous 1-d wave equation and its solution
in Section 3.1. The classical semi-discretizations will be treated in Section 3.2
before we, in Section 3.3, consider the discontinuous Galerkin FEM. Section 3.4
deals with time integration and Section 3.5 finally concludes this chapter with
an analysis of the dispersive properties of the introduced methods.

3.1 The continuous 1-d wave equation
We need to solve the wave equations (.) and (.), which have respectively
homogeneous and inhomogeneous boundary conditions, in order to solve the
HUM control problem. In Chapter 5, we shall consider a wave equation with
a forcing term. To encompass them all, we consider the 1-d wave equation on
Ω = (0, 1)

y′′ − ∂2

∂x2
y = f, in (0, T ) × Ω (.a)

y(t, 0) = g0(t), y(t, 1) = g1(t), t ∈ (0, T ) (.b)

y(0, x) = y0(x), y′(0, x) = y1(x). x ∈ Ω, (.c)

where f is a forcing term, the functions (y0, y1) are initial data, and g0 and g1

are Dirichlet boundary conditions. It is well-known that for sufficiently smooth
data

{
y0, y1, g0, g1, f

}
the system (.) is well-posed and has a unique, classical

solution y ∈ C2([0, T ] × Ω) (see, e.g., [Eva98]).
It is also well-known, that the notion of solutions to (.) can be extended to

so-called weak solutions. These do not hold pointwise as their classical counter-
parts but in an integrated form instead. The introduction of weak formulations
open up for a wide range of numerical methods.

Let us for a moment, to simplify the exposition, assume g0 = g1 = 0. We
multiply (.a) by a smooth test function v ∈ V and integrate over the domain

∫

Ω

(y′′ − ∂2y

∂x2
)vdx =

∫

Ω

fvdx, ∀v ∈ V.

Integration by parts leads to the variational problem: find y with values y(t, ·) ∈
H1

0 (Ω) such that

〈y′′, v〉 + a(y, v) = 〈f, v〉, ∀v ∈ H1
0 (Ω), (.)
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3.1 The continuous 1-d wave equation 23

where H1
0 (Ω) is the space of test functions V and a(·, ·) is a symmetric, bi-linear,

coercive form bounded on H1
0 (Ω) defined by

a(y, v) :=
〈∂y

∂x
,
∂v

∂x

〉
. (.)

A solution y that satisfies (.) is then called a weak solution to (.a). A
classical solution to (.a) is also a weak solution. This variational formulation
is the foundation for semi-discretizations such as the finite element method as
we shall see in Section 3.2.2.

Non-homogeneous Dirichlet boundary conditions are imposed in the defini-
tion of the solution space; the test space V is defined with the corresponding
homogeneous Dirichlet condition.

Solutions for (.) with general non-smooth initial and boundary data are
naturally defined in weak sense as we saw already in Theorem 2.1 and Theo-
rem 2.8. For wave equations with L2-regular forcing term and boundary condi-
tions, we generally have unique weak solutions y ∈ C([0, T ];H) when y0 ∈ H,
that is, if the initial displacement y0 is H1(Ω) we have time-continuous y with
values y(t, ·) in that space (see, e.g., [Ped00]).

3.1.1 The wave equation as a conservation law

Equation (.a) is not the only way to express the wave equation in 1-d. It
may, like a huge class of other PDEs, be formulated as a conservation law.
A conservation law is a mathematical formulation that originates in a certain
symmetry of the corresponding physical system. In scalar form, it reads

∂y

∂t
+

∂̺(y)

∂x
= f,

where ̺ is a flux function. Note that we here, and in the rest of Section 3.1.1,
use ∂y

∂t
to denote the temporal derivative of y instead of y′ due to typograph-

ical concerns. Common examples conforming to this format are conservation
of energy and conservation of angular momentum. The discontinuous Galerkin
method—the topic of Section 3.3—and other semi-discretization methods are
formulated for conservation laws. We will introduce the wave equation as a
system of conservation laws for later use.

Let (y, z) ∈ [C2([0, T ] × Ω)]2 be a solution to

∂

∂t

[
y
z

]
+

[
0 1
1 0

]
∂

∂x

[
y
z

]
= 0, (.)

where z is an auxiliary variable and the forcing term f has been omitted to
simplify the following exposition. A function y ∈ C2([0, T ]×Ω) satisfies (.) if
and only if y is the solution to (.a) which can be verified by differentiation of
the first equation with t and the second with x.

This conservation law is a coupled system of advection equations. It can be
de-coupled by eigen-decomposition of the symmetric system matrix

[
0 1
1 0

]
= SDST, with S =

√
2

2

[
−1 1
1 1

]
, and D =

[
−1 0
0 1

]
,
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24 Chapter 3. Approximating solutions to the wave equation

which allows us to write the wave equation de-coupled as one left- and one
right-going advection equation

∂

∂t

[
p
q

]
+

[
−1 0
0 1

]
∂

∂x

[
p
q

]
= 0. (.)

The new variables p and q relate to y and z by the orthogonal transformation
[

p
q

]
= ST

[
y
z

]
.

We use this transformation to connect the initial data (p0, q0) for (.) with the
initial data (y0, y1) of (.c) via

[
p0

q0

]
= S

[
y0

z0

]
, where z0(x) = −

∫ x

0

y1(s)ds + z0(0). (.)

The expression for z0 is deduced from the first equation ∂
∂t

y + ∂
∂x

z = 0 in (.).

Each advection equation in (.) requires one boundary condition. The solution
p is left-bound and we therefore need a condition at x = 1. The right-bound
q requires, conversely, a condition at x = 0. By the S transformation and the
boundary conditions (.b) we have

y(t, 0) =
√

2
2 (−p(t, 0) + q(t, 0)) = g0(t),

y(t, 1) =
√

2
2 (−p(t, 1) + q(t, 1)) = g1(t),

which gives us the boundary conditions for (.) as

q(t, 0) = p(t, 0) +
√

2g0(t), (.a)

p(t, 1) = q(t, 1) −
√

2g1(t). (.b)

These equations clearly show that we have moved the coupling from equation
level in system (.) to the level of boundary conditions in system (.). This
allows geometric construction of the solutions and better numerical solutions,
too.

Note, finally, that the notion of solutions to (.) may be extended from
classical to weak solutions like we saw for the classical wave equation above.
Before returning to this point, we shall see how the characteristic solutions p
and q can be constructed.

Constructing solutions p and q

Solutions to ∂
∂t

p − ∂
∂x

p = 0 are left-bound and have the form p(t, x) = p̃(t + x)
as can easily be verified by insertion. This means that the solution on any
line t + x = c is constant. The line t + x = 1 separates the solution area in
two domains: the first t + x < 1 is the domain of dependence of the initial
data p(0, x) = p0(x), the second t + x > 1 is only influenced by the boundary
condition p(t, 1) = h1(t). We can write the solution

p(t, x) =

{
p0(t + x), t + x < 1

h1(t + x − 1), 1 < t + x.
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3.1 The continuous 1-d wave equation 25

Solutions to ∂
∂t

q + ∂
∂x

q = 0, on the other hand, are right-bound and of the
form q(t − x). In this case it is the line t − x = 0 that separates initial data
q(0, x) = q0(x) from boundary data q(t, 0) = h0(t). The solution is

q(t, x) =

{
q0(−(t − x)), t − x < 0

h0(t − x), 0 < t − x.

The solutions p and q are coupled via the boundary conditions as we saw in
(.). Let g0 = 0 as this is the case in the control problem (.) and it simplifies
the derivation below. This leaves us with the reduced coupling conditions

p(t, 1) = q(t, 1) −
√

2g1(t) and q(t, 0) = p(t, 0).

With this information at hand we are now able to construct the solutions ge-

3

2

1

00

1

2

3

p0(t − 2)

p0(t)

+κ(t − 1)

+κ(t − 1)

q0(3 − t) + κ(t − 2)

κ(t) + κ(t − 2)

q0(3 − t)+

t

xq0(x)

q0(1 − t)

p0(t − 1)

q
t

xp0(x)

p

p0(t − 2) + κ(t − 1)

p0(t)

q0(2 − t) + κ(t − 1)

q0(1 − t)

+κ(t)

+κ(t)

p0(t − 1) q0(2 − t)

Figure 3.1: Construction of solutions to the advection equations in p (left side) and q
(right side). Solution p gets information from the bottom (t = 0) and the
right endpoint (x = 1) and sends this data to the left (x = 0) where it
is passed to q. Solution q gets data from the bottom (t = 0) and the left
side (x = 0) and sends it all to the right (x = 1) where it is passed to p.
Dark shaded areas “carries” p0 whereas the lighter shaded “carries” q0.

ometrically as sketched in Figure 3.1. At time t = 0 the solution p is p0 on
0 < x < 1, but we also know that p is constant on any line t + x = c which
means that we know p on t + x < 1. The knowledge about p on x = 0 at
0 < t < 1 gives us the boundary condition for q on the same line, which again
defines q in 0 < t− x < 1 and so on. In this way we are able to construct p and
q step-by-step in the whole time-space domain as follows

p(t, x) =





p0(t + x), t + x < 1

q0(2 − (t + x)) −
√

2g1(t + x − 1), 1 < t + x < 2

p0(t + x − 2) −
√

2g1(t + x − 1), 2 < t + x < 3

q0(4 − (t + x)) −
√

2
(
g1(t+x−1) + g1(t+x−3)

)
, 3 < t + x < 4

· · · · · ·
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and

q(t, x) =





q0(−(t − x)), t − x < 0

p0(t − x), 0 < t − x < 1

q0(2 − (t − x)) −
√

2g1(t − x − 1), 1 < t − x < 2

p0(t − x − 2) −
√

2g1(t − x − 1), 2 < t − x < 3

· · · · · ·
In the homogeneous case, g0 = g1 = 0, we can even write the solutions for all
t ≥ 0 in short, closed form

p(t, x) =

{
p0(t + x − ⌊t + x⌋), ⌊t + x⌋ even

q0(⌈t + x⌉ − (t + x)), ⌊t + x⌋ odd

and

q(t, x) =

{
q0(⌈t − x⌉ − (t − x)), ⌈t − x⌉ even

p0(t − x − ⌊t − x⌋), ⌈t − x⌉ odd

where the floor function x 7→ ⌊x⌋ maps x ∈ R to largest integer not greater than
x and the ceiling function x 7→ ⌈x⌉ maps x ∈ R to the smallest integer not less
than x.

We can easily allow L2-regular initial and boundary data in our construc-
tion of p and q. The solutions are unique and constant on the characteris-
tic lines; everything—including possible discontinuities—are propagated along
these lines. If we have the data p0, q0 ∈ L2(Ω) then p and q will be weak
solutions to (.).

Let us summarize: If (y0, y1) is given as initial data to (.) we may obtain
the data (p0, q0) for the corresponding system in characteristic variables by
(.). Then, after solving the system in p and q, we restore the solution y by

y =
√

2
2 (−p + q).

3.2 Classical semi-discretizations

This section deals with semi-discretizations of the wave equation (.) with
the purpose of determining approximate solutions to y. Let in the following
yh : (0, T ) × Ω → R denote an approximation to y where h refers to a charac-
teristic length of the spatial discretization. This gives rise to two fundamental
questions:

1. how do we represent the approximate solution yh ?

2. in which way should yh satisfy the PDE ?

Typically, we seek yh in a finite dimensional subspace of the solution space
and express it by a series of either basis functions for the approximation space
or by interpolating Lagrange polynomials. To these series correspond solution
vectors, marked with bold, y containing coefficients (modes) or nodal values at
grid points.

We can require the approximate solution yh to satisfy the wave equation in
several different ways. For this characterization, it is convenient to consider the
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residual1

Rh(t, x) = y′′
h(t, x) − ∆yh(t, x) − f(t, x). (.)

If the residual is zero for all (t, x) ∈ (0, T ) × Ω then yh is the exact solution.
Collocation is an approach requiring yh to satisfy Rh(t, xi) = 0 at a set of
discrete points xi. These interpolation points are called collocation points. We
will see an example of this below when considering the finite difference method.
A competing approach is the Galerkin method and its relatives (e.g., Petrov-
Galerkin) where one seeks solutions yh such that the residual is orthogonal to
all test functions v in some finite dimensional test space Vh. The finite element
method is most often build on this type of requirement.

We will briefly revise two classical methods, the finite difference method
(FDM) and the finite element method (FEM), below. We will also very briefly
discuss other important methods such as the spectral method and the finite
volume method in Section 3.2.4. All these methods will serve as a source of
reference and an introduction to important semi-discretizations concepts before
moving on to discontinuous Galerkin FEM in Section 3.3.

3.2.1 The finite difference method (FDM)

The basic idea of the FDM is to replace continuous derivatives in the PDE with
linear combinations of discrete function values called finite differences. This
simple, intuitive idea is one of the main advantages of this method.

First step is to introduce an equidistant grid on Ω = (0, 1) with N inner grid
points

0 = x0, x1, . . . , xN , xN+1 = 1, (.)

with spacing h = 1/(N + 1). Then identify the approximate solution yh with
the vector y containing N discrete values for fixed t

y(t) = [y1(t), . . . , yN (t)]T,

where yi(t) = yh(t, xi) for i = 1, . . . , N . Notice that the values at the endpoints
are not included as they are defined by the Dirichlet boundary conditions (.b).

Local polynomial interpolation, e.g., yh(t, x) =
∑2

i=0 αi(t)(x − xk)i for x ∈
[xk−1, xk+1], may be used for reconstruction. The forcing term f is sampled on
the same grid resulting in the vector f(t) = [f1(t), . . . , fN (t)]T, where fi(t) =
f(t, xi) for i = 1, . . . , N .

The second step is the approximation of the 1-d Laplacian −∂2/∂x2 by finite
differences. If we choose 2nd order central finite differences, around xi, in (.a)
we obtain the following N difference equations

y′′
i (t) − yi+1(t) − 2yi(t) + yi−1(t)

h2
= fi(t), i = 1, . . . , N, t ∈ (0, T ).

By assuming homogeneous boundary conditions y(t, 0) = y(t, 1) = 0 for a mo-
ment, we may write the total scheme in the form

y′′(t) + Ay(t) = f(t), (.)

1The residual may be defined slightly different with ∆ replaced by an approximate ∆h as
is the case for the finite difference method.
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where A is the discrete (negative) Laplacian defined by

Aij =
1

h2
(2δij − δi,j−1 − δi,j+1), i, j = 1, . . . , N. (.)

This is equivalent to requiring the residual—with ∆ replaced by its finite differ-
ence approximation—to vanish at the collocation points xi. The ODE-system
(.) can now be solved via time integration provided a sampling of the ini-
tial data (.c). We postpone the treatment of non-homogeneous boundary
conditions to Section 3.2.3. Time integration will be dealt with in Section 3.4.

Upwinding

If one wishes to take advantage of the characteristic form (.) it can be done
by using one-sided finite differences. The derivative ∂

∂x
for the advection equa-

tion with the left-bound component p is wisely approximated by ∂
∂x

p(t, xi) ≈
1
h
(pi(t) − pi−1(t)) as all information is coming from the right side of xi. Like-

wise for q we may employ a left-sided finite difference in the approximation of
∂
∂x

q(t, xi) which reads 1
h
(qi+1(t)− qi(t)). In this way we could obtain a scheme

in a matrix form similar to (.). We will return to upwinding in Section 3.3.

3.2.2 The finite element method (FEM)

Let us again assume that y(t, 0) = y(t, 1) = 0. Consider the following (nodal)
representation by the set of compact basis functions {ψL

i }i≤N with the property
ψL

i (xj) = δij

yh(t, x) =

N∑

i=1

yh(t, xi)ψ
L

i (x), (.)

where yh(t, xi) is the nodal value of yh in the node xi. The nodal values can be
collected in a column vector y(t) = [yh(t, x1), . . . , yh(t, xN )]T.

We insert yh in the variational form (.) and obtain the Galerkin formula-
tion: find yh ∈ Vh such that

∫

Ω

y′′
hvdx +

∫

Ω

∂yh

∂x

∂v

∂x
dx =

∫

Ω

fvdx, ∀v ∈ Vh, (.)

where we have replaced the infinite test space V by the N dimensional subspace
Vh spanned by the basis functions

Vh := span {ψL

1 , . . . , ψL

N} .

The Galerkin formulation (.) is actually equivalent to requiring the residual
(.) to be orthogonal to all basis functions

∫

Ω

Rh(t, x)ψL

n(x)dx = 0, n = 1, . . . , N.

We insert (.) in the Galerkin form (.) to obtain N equations constituting
a FEM for the wave equation

My′′(t) + Ky(t) = Mf(t), (.)
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where the mass and stiffness matrices are defined by

Mij =

∫

Ω

ψL

i (x)ψL

j (x)dx, (.)

Kij =

∫

Ω

∂ψL
i

∂x
(x)

∂ψL
j

∂x
(x)dx. (.)

Notice how the stiffness matrix is symmetric and positive definite like its bi-
linear ancestor a(·, ·) of (.). The matrix M−1K is an approximation to the
negative Laplacian in the basis {ψn}n≤N .

Consider a basis consisting of piecewise linear polynomials, so-called hat
functions,

ψL

i (x) =





(x − xi−1)/(xi − xi−1) for xi−1 ≤ x ≤ xi,

(x1+i − x)/(x1+i − xi) for xi ≤ x ≤ xi+1,

0 otherwise,

(.)

for i = 1, . . . , N . On an equidistant grid with spacing h, the mass and stiffness
matrices (.) and (.) become

Mij = h( 2
3δij + 1

6 (δi,j−1 + δi,j+1)), i, j = 1, . . . , N (.)

Kij =
1

h
(2δij − (δi,j−1 + δi,j+1)), i, j = 1, . . . , N. (.)

The stiffness matrix’ relation to the finite difference approximation (.) of
the discrete Laplacian A is simply K = hA for equidistant grids. The only
difference between the 2nd order central finite difference method (.) and the
present linear FEM is thereby the appearance of the mass matrix. Schemes with
a non-diagonal mass matrix are sometimes called implicit semi-discretizations
as they lead to systems of implicit algebraic equations when handled with an
explicit time marching approach.

Notice how the FDM approximates the PDE, where FEM instead seeks
approximations to its solution. Notice also that FEM have no “direction” which
means that upwind-type solutions, like the one sketched in the preceding section,
are not possible with FEM.

We still need to specify how to deal with boundary and initial conditions to
complete the treatment of the FEM semi-discretization (.). We will return to
this matter shortly after a brief description about mixed finite element methods.

A mixed FEM

A set of basis functions ψL
n was used to approximate y in the above FEM for-

mulation. The same set of basis functions were, implicitly, used to expand the
“velocity” y′

h. It is, however, possible to pick different bases for yh and y′
h. The

formulation is then usually called a mixed FEM. This can sometimes be advan-
tageous and even the most natural choice for some PDEs such as the Stokes
equation for viscous fluid flow [BS02].

A relevant method with the standard linear splines as basis for yh and a
piecewise constant basis for y′

h suitable for control of the wave equation was
described in [CM06, page 419–420]. The resulting scheme is part of a unified
formulation which we will present below. The same mixed FEM, which also is
known as the “box method”, was also used by J.M. Rasmussen in [Ras04].
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On an equidistant grid with spacing h the resulting mass matrix becomes
[CM06]

Mij = h( 1
2δij + 1

4 (δi,j−1 + δi,j+1)), i, j = 1, . . . , N.

The stiffness matrix is identical to (.).

3.2.3 A unified formulation

It can easily be verified that the above FDM, linear FEM, and mixed FEM
on equidistant grids are all contained in the semi-discretization (.) with the
following α-family of mass and stiffness matrices [VB82, page 33]

Mij = h((1 − 2α)δij + α(δi,j−1 + δi,j+1)), i, j = 1, . . . , N, (.)

Kij =
1

h
(2δij − (δi,j−1 + δi,j+1)), i, j = 1, . . . , N, (.)

where α is a parameter 0 ≤ α ≤ 1/2. We have the following special cases:

α = 0 2nd order central FDM
α = 1/12 Higher order (Störmer-Numerov)
α = 1/6 FEM with linear splines
α = 1/4 Mixed FEM with piecewise constant basis for y′

h,

where the Störmer-Numerov choice is the only leading to truncation errors of
order O(h4) all other choices of α lead to an O(h2) accuracy [VB82].

A unified description like the above, which also was used by J.M. Ras-
mussen in [Ras04], allows a unified analysis and implementation. It will serve as
the main source of comparison when working with the discontinuous Galerkin
method which we will see to shortly.

The final unified FEM-FDM scheme reads

My′′(t) + Ky(t) = Mf(t) + g(t) (.)

where M and K are defined by (.) and (.) and the boundary contribution
vector g is

g(t) = [ 1
h
g0(t), 0, . . . , 0, 1

h
g1(t)]

T. (.)

when the boundary conditions (.b) are non-homogeneous. Note that non-zero
Dirichlet conditions are actually included in the definition of the trial space and
the representation of yh for the FEM case.

In standard ODE first order form, the scheme becomes

[
M 0

0 M

]
d

dt

[
y(t)
y′(t)

]′
+

[
0 −M

K 0

] [
y(t)
y′(t)

]
=

[
0

Mf(t) + g(t)

]
. (.)

In both cases, (.) and (.), the initial data (.c) may simply be sampled

y(0) = y0 := [y0(x1), . . . , y
0(xN )]T,

y′(0) = y1 := [y1(x1), . . . , y
1(xN )]T,

to obtain discrete initial conditions. For initial data which is reasonable band-
limited in the frequency spectrum this is good choice. For less band-limited
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data, however, a simple sampling will introduce an aliasing effect leaving higher
frequency components indistinguishable from their low frequency alias [VB82].
If necessary these high frequency parts can be eliminated via a Fourier transform
of higher resolution. The same goes for the forcing term f .

3.2.4 Other classical methods

The finite difference and finite element methods are the most widespread among
semi-discretization methods for PDEs but two other classical methods deserve
mentioning here as they are important to the discontinuous Galerkin FEM. We
are thinking about the finite volume method and the spectral method.

The finite volume method, which is particularly important in the field of
computational fluid dynamics, is based on the subdivision of the spatial domain
into cells. The residual is required to vanish on each cell which leads to a
local scheme. Volume integrals over the cell volumes are transformed to surface
integrals by Gauss’ theorem which results in the need for evaluating fluxes at the
cell interfaces. Different fluxes lead to different finite volume methods—design
of such fluxes is a science in itself.

Spectral and pseudo-spectral methods are high order methods which in
bounded, non-periodic cases depend on special non-equidistant grids such as
Chebyshev and Legendre grids (often given a Lobatto or Lobatto-Gauss pre-
fix). The use of these clustered grids avoid the Runge phenomenon known from
high order polynomial interpolation on equidistant grids. In this way spec-
tral differentiation with very high accuracy is attained which can be used for
highly accurate semi-discretization of PDEs. See [Tre00] and [Boy01] for more
on spectral methods.

3.3 Discontinuous Galerkin FEM
Each of the above classical methods for semi-discretizations have their pros and
cons. A more recent method called discontinuous Galerkin FEM (abbreviated
DG-FEM) combines elements—advantages say its advocates—from several of
these classical methods to obtain a highly flexible method of possible high order.

The solution is represented by a sum of K local solutions—one on each of
the K conforming, non-overlapping elements D

k, k = 1, 2, . . . ,K. The global
solution is not required to be continuous across the interfaces, which is the prop-
erty that justifies “discontinuous” in the name of the method. It should be noted
that due to extensive use of superscripts on y in this function, we use ∂y

∂t
instead

of the y′ like in Section 3.1.1.

DG-FEM, which is closer related to finite volumes than the other classical semi-
discretizations, is a method developed for conservation laws. We consider a
scalar law in the form

∂y

∂t
+

∂̺(y)

∂x
= f. (.)

where ̺ is a flux function. The most simple form is the unforced (f = 0)
advection equation with constant speed for which the flux function ̺ is

̺(y) = ay, a constant.
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Note that equation (.), however simple, is the prototype for the characteristic
form of the wave equation (.). We present a DG-scheme for the advection
equation below.

The exposition here relies heavily on the work of J. Hesthaven and T. War-
burton [HW08]. This holds true for the implementation of DG-FEM as well.

3.3.1 A DG-scheme for the advection equation

The local solution yk is approximated by a polynomial of degree Np −1 on each
element D

k = (xk
L, xk

R). We expand yk in two ways

yk
h(t, x) =

Np∑

n=1

ŷk
n(t)ψn(x) =

Np∑

i=1

yk
h(t, xk

i )ℓk
i (x). (.)

The first representation is a modal one, where ŷk
n(t) is the expansion coefficients

of Np local polynomial basis functions ψn, n = 1, . . . , Np. The second is a nodal
representation in which ℓi is the i’th interpolating Lagrange polynomial with
ℓi(x

k
j ) = δij where xk

i ∈ D
k, i = 1, . . . , Np. We have, in either case, a total of

Np · K unknowns.
The residual for the advection equation (.) with f = 0 and h(y) = ay is

Rh(t, x) =
∂yh

∂t
+

∂(ayh)

∂x
.

A way to let the approximation fulfill the PDE is to require the residual to
“vanish” is some way on each element.

Let ζn represent either the modal basis function ψn or the nodal ℓk
n in the

following. The derivation of the DG-scheme holds in both cases resulting re-
spectively in the modal and nodal formulation. We require that the residual is
orthogonal to all basis functions on each element D

k, that is,

∫

Dk

Rh(t, x)ζn(x)dx = 0, 1 ≤ n ≤ Np, (.)

which is the classic Galerkin requirement—just element-wise. Applying integra-
tion by parts in the spatial direction yields

∫

Dk

(∂yk
h

∂t
ζn − (ayk

h)
∂ζn

∂x

)
dx = −

[
(ayk

h)ζn

]xk
R

xk
L

, 1 ≤ n ≤ Np,

which is Np pure local equations. No connection to other elements or boundary
conditions exist; the equations are consequently not suitable for obtaining global
solutions.

This connection may be established, however, by relaxing requirement (.)
slightly by replacing (ayk

h) on the right side by a linear combination of values at
the local interface points xk

L and xk
R and the interface points of the neighboring

elements; that is, for the left end, xk
L, replace (ayk

h(xk
L)) by a combination of

(ayk
h(xk

L)) and (ayk−1
h (xk−1

R )) and similar for the right end.
We therefore replace (ayk

h) in the equations by (ayh)∗ and denote this new
quantity, which is legacy from the finite volume method, the numerical flux.
The right choice of this flux depends heavily on the dynamics of the underlying
PDE. We shall return to this issue shortly. The numerical flux also determines
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how to assign the Dirichlet boundary conditions as they will play the role of
neighboring interface point at x = 0 for D

1 and at x = 1 for D
K . Inserting the

numerical flux results in the weak DG-scheme for D
k

∫

Dk

(∂yk
h

∂t
ζn − (ayk

h)
∂ζn

∂x

)
dx = −

[
(ayh)∗ζn

]xk
R

xk
L

, 1 ≤ n ≤ Np. (.)

The alternative strong formulation is obtained by performing integration by
parts once more

∫

Dk

(∂yk
h

∂t
ζn +

∂(ayk
h)

∂x
ζn

)
dx =

[(
(ayk

h) − (ayh)∗
)
ζn

]xk
R

xk
L

, 1 ≤ n ≤ Np. (.)

Either case gives us a total of Np · K equations for the same number of un-
knowns. The weak and strong formulations are mathematically equivalent but
may behave different numerically.

Notice how, in both the weak and strong case, the right hand term is respon-
sible for the flow of information between elements and for boundary conditions
as well. This emphasizes the important role of the numerical flux (ayh)∗.

Inserting either the nodal or modal representation of yh in either the strong
or weak formulation will result in a DG-scheme, which can be used for compu-
tation. We will from now on concentrate on the nodal form (replace ζn with ℓn)
of the strong scheme which for element k leads us to a system of ODEs

Mk d

dt
yk + Sk(ayk) =

[(
(ayk

h) − (ayh)∗
)
ℓk(x)

]xk
R

xk
L

, (.)

where yk and ℓk(x) are respectively the vector of the local nodal solution and
the vector of Lagrange polynomials

yk = [yk
h(t, xk

1), . . . , yk
h(t, xk

Np
)]T, ℓk(x) = [ℓk

1(x), . . . , ℓk
Np

(x)]T,

and the local mass Mk and stiffness matrices Sk are determined by

Mk
ij = 〈ℓk

i , ℓk
j 〉Dk Sk

ij =
〈
ℓk
i ,

dℓk
j

dx

〉

Dk
, (.)

where 〈·, ·〉Dk is the local L2-inner product on L2(Dk).
Notice the local nature of the method: all operators are local and the only

exchange of information between elements take place across interfaces via the
numerical flux.

Numerical flux

The design of a good numerical flux is a big and important topic—and strongly
problem dependent, too. We shall mention only the most basic examples here,
but they are, however, adequate for our simple 1-d linear wave equation.

Let y− denote the local interface point belonging to element D
k and y+ the

interface point of the neighboring element. We define the average and jump
across an interface by

{{y}} =
y− + y+

2
, [[y]] = n−y− + n+y+,
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where n− is the outward normal on element D
k and n+ is the outward normal

of the neighbor. In the 1-d case the normals reduce to either +1 or −1.
If we wish to take information from one side only, which seems like a sensible

choice for the advection equation, we can use an upwind flux

(ay)∗ = {{ay}} + 1
2 |a| [[y]]. (.)

If we know that information flows in both directions a central flux, which averages
interior and exterior information, might be a good choice

(ay)∗ = {{ay}}. (.)

We can express both fluxes and any combination of them via the family

(ay)∗ = {{ay}} + |a| 1 − α

2
[[y]], 0 ≤ α ≤ 1, (.)

which reduces to a pure central flux for α = 1 and pure upwinding when α = 0.
The numerical flux is fundamental not only for flow of information between

elements but also for assigning boundary conditions. When a > 0 the advection
equation need a boundary condition at the left end of the domain. A Dirichlet
condition y(t, x1

L) = g0(t) at this point may be considered, when viewed upon
from the first element D

1, as the value y+ and in this way assigned through the
numerical flux.

Stability

Stability of (.), which is central for the convergence, can be shown by use of
an energy method as explained in [HW08, page 25]. Equation (.) is multiplied
by yT which gives an expression for the change of local energy over time. By
summing over all elements, we require the change of energy to be less than
or equal to zero in case of homogeneous Dirichlet conditions. The authors in
[HW08] show that (.) is stable with the α-flux (.) for 0 ≤ α ≤ 1.

3.3.2 The LGL grid and DG-basis functions

We claimed in the beginning of Section 3.3 that the DG method was highly flex-
ible and of possible high order. Furthermore, we have not put any restrictions
on the local polynomial order Np − 1 of yk

h in (.). We do know, however,
that polynomial interpolation on equidistant grids breaks down due to Runge
phenomena for even moderate order. Here DG-FEM borrows from the theory
of spectral methods. What we need locally is a clustered grid and our preferred
choice is a Legendre, a Legendre-Gauss-Lobatto (LGL), grid, since it translates
to standard L2-norms directly instead of weighted L2-norms as in the Cheby-
shev case.

We wish to set up a reference element r ∈ I = [−1, 1] and introduce for this
reason the affine mapping

x ∈ D
k = [xk

L, xk
R] : x(r) = xk

L +
hk

2
(1 + r), −1 ≤r ≤ 1,

r ∈ I = [−1, 1] : r(x) = −1 +
2

hk
(x − xk

L), xk
L ≤x ≤ xk

R,
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Figure 3.2: The first seven normalized Legendre polynomials eP0, . . . , eP6 as function
of r ∈ I. The linear eP1 is marked with a dashed-dotted line, eP3 with
dashed line, eP6 with solid line and the remaining with dotted lines.

where hk = (xk
R − xk

L) is the size of element D
k. We introduce an orthonormal

basis on I of normalized Legendre polynomials (Figure 3.2 shows the first 7)

ψn(r) = P̃n−1(r) =
Pn−1(r)√

γn−1
, γn =

2

2n + 1
, (.)

where Pn(r) is the Legendre polynomial of order n and γn is a normalization
factor. This basis is the optimal polynomial basis on I as it reduces the local
modal mass matrix Mij = 〈ψi, ψj〉I to the identity, which means that we can
recover the i’th component of ŷ by the L2-projection ŷi = 〈yh, ψi〉I. The inner
product 〈·, ·〉I is the standard inner product over L2(I). A Gaussian quadrature
rule can be used to obtain nodes and weights for an (2Np −1)’th order accurate
quadrature. We will, however, consider it as an interpolation problem

y(ri) =

Np∑

n=1

ŷnP̃n−1(ri), i = 1, . . . , Np,

where ri are Np distinct grid points. We define the generalized Vandermonde
matrix V by

Vij = P̃j−1(ri), i, j = 1, . . . , Np, (.)

for any set of distinct ri ∈ I. This allows us to write

y = V ŷ,

where y = [y(r1), . . . , y(rNp
)]T and ŷ = [ŷ1, . . . , ŷNp

]T by the uniqueness of
polynomial interpolation.

By using Lagrange basis polynomials with the property ℓi(rj) = δij (shown
for Np = 7 on Figure 3.3), we can express the interpolation

y(r) ≈ yh(r) =

Np∑

n=1

ŷnP̃n−1(r) =

Np∑

i=1

y(ri)ℓi(r). (.)

This gives us the relation
V Tℓ(r) = P̃ (r), (.)

where ℓ(r) = [ℓ1(r), . . . , ℓNp
(r)]T and P̃ (r) = [P̃0(r), . . . , P̃Np−1(r)]

T. Hesthaven
and Warburton [HW08] show that the best approximating polynomial of order
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Figure 3.3: Interpolating Lagrange polynomials ℓi for which ℓi(rj) = δij and Np = 7
on the LGL grid. The grid points rj are marked by (o) and ℓ3 is marked
with a solid line.

Np − 1 is obtained when the Lebesgue constant max
∑Np

i=1 |ℓi(r)| is minimized.
And furthermore, that this occurs when the grid points are defined as the zeros
of

f(r) = (1 − r2)P̃ ′
Np−1(r),

known as the Legendre-Gauss-Lobatto (LGL) quadrature points.

Mass and stiffness matrices

The local (nodal) mass and stiffness matrices (.) can be related to their
equivalents on the reference element I by

Mij = 〈ℓi, ℓj〉I Sij =
〈
ℓi,

dℓj

dx

〉

I

,

where 〈·, ·〉I is the L2 inner product on I. From (.) we know that ℓi can be

expressed by the Vandermonde matrix V and the Legendre polynomials P̃n and
due to the orthogonality of the latter we have

M = (V V T)−1. (.)

Differentiation on the reference element can be done with the matrix Dr with
the (ij)’th entry dℓj/dr|ri

. It may be expressed by

Dr = VrV
T, (.)

where Vr is defined by [Vr]ij = dP̃j/dr|ri
. Finally, the stiffness matrix may be

found by the identity
S = MDr. (.)

On element D
k the matrices M and S become

Mk =
hk

2
M , Sk = S,

where hk is the width of element D
k.

The surface integral

The right hand side of (.) is a surface integral which on the reference element
I becomes

[
(ayh − (ay)∗)ℓ(r)

]1
−1

= (ayh − (ay)∗)
∣∣
rNp

eNp
− (ayh − (ay)∗)

∣∣
r1

e1
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where ei is the i’th coordinate vector in R
Np .

ODE system

With the gained knowledge we can now write the local DG-scheme for the
advection equation in standard ODE-form d

dt
y = Lh(y, t) as

d

dt
yk = −a(Mk)−1Syk + (Mk)−1

[
ℓk(x)

(
ayk

h − (ayh)∗
)]xk

R

xk
L

, (.)

where the mass and stiffness matrices are given via the Vandermonde matrix
(.) and the differentiation matrix (.) as (.) and (.). The surface
term can be determined as explained above and the flux is given by (.).

Consistency and convergence

Lax equivalence theorem [LR56] says that consistency and stability implies con-
vergence of a numerical scheme. Consistency is about approximations of func-
tions and operators—are they consistent with their continuous ancestors? Our
approximation is consistent if the t = 0 error y(0, x) − yh(0, x) and the trunca-
tion error tends to zero for an increasing number of variables Np ·K. Hesthaven
and Warburton prove [HW08, page 77] that this holds for the just presented
DG-approximation with Legendre polynomials. Hence, by recalling the stabil-
ity result on page 34, we can conclude that the DG-scheme for the advection
equation is convergent.

3.3.3 A DG-scheme for the wave equation

We have just seen a DG-formulation for the prototypical advection equation.
It is tempting to use the characteristic form (.) which consists of exactly
two advection equations when seeking a DG method for the wave equation.
Alternatively, we may take our starting point in (.a) which we can formulate
as a system

∂y

∂t
= z, g =

∂y

∂x
,

∂z

∂t
=

∂g

∂x
.

It may be approximated by the local scheme

d

dt
yk = zk (.a)

gk =
hk

2
Dry

k (.b)

d

dt
zk = −(Mk)−1Sgk + (Mk)−1

[
ℓk(x)

(
gk

h − (gh)∗
)]xk

R

xk
L

, (.c)

where gk = hk

2 Dry
k is the gradient of yk in x-direction formed by the dif-

ferentiation matrix Dr, defined in (.), and the Jacobian factor hk

2 . This
gradient serves as the flux function gh in the third line. The vectors yk, gk and
zk contains the nodal values at element D

k for yh, gh, and yh approximating
y, g and z. Figure 3.4(left) shows the structure of the resulting right hand side
Lh of the ODE-system d

dt
Y (t) = LhY (t) where Y (t) = [y,z]T.

A central flux (.) is a simple first choice for the numerical flux (gh)∗.
An upwind flux, on the contrary, can not be used as information passes in both
directions.
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Upwinding is, however, very well-suited for wave problems which suggest
us to construct our DG scheme for the characteristic variables p and q (.)
instead. It consists of an advection equation with a = −1 in p and one with
a = 1 in q leading to the local system

d

dt
pk = (Mk)−1Spk − (Mk)−1

[
ℓk(x)

(
pk

h − (ph)∗
)]xk

R

xk
L

, (.a)

d

dt
qk = −(Mk)−1Sqk + (Mk)−1

[
ℓk(x)

(
qk
h − (qh)∗

)]xk
R

xk
L

, (.b)

for which we use upwinding (.) as numerical flux. The coupling between
(.a) and (.b) occurs on the boundary as defined in (.). With homoge-
neous Dirichlet condition at x = 0 and inhomogeneous y(t, 1) = κ(t) at x = 1,
we get

ph(t, xK
R ) = qh(t, xK

R ) −
√

2κ(t),

qh(t, x1
L) = ph(t, x1

L),

where xK
R = 1 and x1

L = 0. These expressions are used respectively in the flux p∗h
as p+

R on element D
K and in the flux q∗h as q+

L on element D
1. Figure 3.4(right)

shows the right hand side Lh of the resulting ODE-system d
dt

Y (t) = LhY (t)
where Y (t) = [p, q]T.

Figure 3.4: The structure (non-zero elements) of the right hand side Lh of d
dt

Y =
LhY for (.) (left plot) and (.) (right plot). Here shown with K =
6 elements and Np = 10 nodes per element.

The system has, according to (.), the local initial data

pk(0) =
√

2
2

(
− (y0)k + (z0)k

)
,

qk(0) =
√

2
2

(
(y0)k + (z0)k

)
,

where (y0)k is a vector with the nodal values [y0(xk
1), . . . , y0(xk

Np
)]T of the ini-

tial condition y0 on element D
k. The vector (z0)k consists of the nodal val-

ues [z0(xk
1), . . . , z0(xk

Np
)]T of the k’th element of the anti-derivative z0(x) =

−
∫ x

0
y1(s)ds + z0(0) (.). If y1 is only known by its nodal values on the LGL

grid, we will need a routine for determining its anti-derivative; we present this
routine next.
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The anti-derivative

The anti-derivative F of a function f defined by its nodal values f = ⊕K
k=1f

k

on an LGL grid is

F (x) =

K⊕

k=1

F k(x), F k(x) =

∫ x

xk
L

fk(s)ds + F k(xk
L), xk

L ≤ x ≤ xk
R,

where ⊕ is the direct sum. The local part fk can be expressed in its modal form
on the reference element I by

fk(r) =

Np∑

n=1

f̂k
n P̃n−1(r).

We may determine the k’th anti-derivative on I by (omitting the integration
constant)

F k(r) = hk

2

∫ r

−1

fk(s)ds =

Np∑

n=1

f̂k
n

∫ r

−1

P̃n−1(s)ds, −1 ≤ r ≤ 1,

where the factor hk

2 emerges from the transformation of the integral to the
reference element. For the anti-derivative of the standard Legendre polynomial
Pn we have the relation [Asm05, page 315]

∫ r

−1

Pn(s)ds =
1

2n + 1

(
Pn+1(r) − Pn−1(r)

)
,

which can be normalized, just like (.),

∫ r

−1

P̃n(s)ds =

√
γn

2

(√
γn+1P̃n+1(r) −

√
γn−1P̃n−1(r)

)
, (.)

where the normalization still is γn = 2
2n+1 . We define the integration matrix J I

by

J I

ij =

∫ ri

−1

P̃j−1(s)ds, i, j = 1, . . . , Np.

We summarize our findings for the anti-derivative F of f represented by the
nodal vector fk = [fk(xk

1), . . . , fk(xk
Np

)]T on element D
k with the following

expression

F k = hk

2 J IV −1fk + c,

where F k = [F k(xk
1), . . . , F k(xk

Np
)]T, V the Vandermonde matrix (.) and c

is an integration constant.
Notice that if f is not well resolved and has information in its highest mode

f̂k
Np

, on one or more elements D
k, this information will be partially lost. We can

represent polynomials of order up to Np − 1, yet the anti-derivative F will in
this case have polynomial information up to order Np according to (.), that

is, an F̂ k
Np+1 component on top of the possible Np modes. If f , on the contrary,

is well resolved and all its highest modes f̂k
Np

are zero, then the integration is
exact.

When possible it is, of course, preferable to use the initial condition z0

directly instead of finding the anti-derivative of y1.
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3.4 Time integration
In our hands are now several different semi-discretizations of the wave equation
all of which can be condensed to at least one of the two forms

(1) a second order system My′′(t) + Ky(t) = Mf(t) of size N like (.)

(2) a first order system Y ′(t) = LhY (t) of size 2N like (.)

where Y may represent [y,y′]T or the characteristic variables [p, q]T from (.)
corresponding to a choice of right hand side Lh. Although all of the above semi-
discretizations could easily fit in (2) there are convenient ways to treat second
order systems which suggests keeping both ODE formulations side by side.

It remains to integrate (1) or (2) in time to obtain the fully discrete solution.
An abundance of methods exists for this task. We shall focus only on a few of
them: The Newmark scheme is a classic choice for the treatment of dynamic
system like (1). Runge-Kutta methods are build on quadrature rules are most
naturally formulated for first order systems (2). Simple finite difference time-
stepping, on the other hand, applies easily to both (1) and (2). The explicit mid-
point rule and the trapezoidal rule are two simple schemes for time integration;
they will appear below for second order system as special cases of the Newmark
algorithm. J. Rasmussen analyzed in [Ras04] these two schemes for first and
second order systems and derived discrete energy norms corresponding to the
continuous system in both cases.

The simple finite difference methods have their primary advantage when it
comes to the numerical analysis. Generalized Newmark, higher-order Runge-
Kutta and other advanced schemes produce, in return, more accurate results—
sometimes even compensating for incorrect dispersion behavior of semi-discre-
tizations (see e.g., [Kre01, Kre06b, Kre08]) or some other unwanted property.
We will return to numerical dispersion and related issues in Section 3.5.

ODE stability can be analyzed by considering the eigenvalues of Lh. The
eigenvalues should be in the stability region of the time integration scheme, and
an important factor for this stability is the Courant number which is the ratio
between the time step and spatial step size µ = ∆t/h. We shall not go in to the
details of stability analysis here but refer to [Ise96] for the analysis of stability
of finite difference and Runge-Kutta schemes and to [Kre06a] for analysis of the
Newmark method.

The Newmark scheme

The Newmark scheme [New59] is formulated for mechanical systems

My′′(t) + Cy′(t) + Ky(t) = Mf(t),

where the matrices M ,C and K are the mass, damping and stiffness matrix,
respectively. In the case of the classical wave equation, treated in this disser-
tation, there is no (structural) damping, i.e., C = 0. We will, however, keep
C in the formulation for a moment while introducing the basic concepts of the
method. Note that the right hand side Mf may contain contributions from
boundary conditions alongside the sampling of the forcing term f .

In the following, we consider M discrete instances of the time t that is
0 = t0, t1, . . . , tm, . . . , tM = T with regular spacing ∆t.
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The idea behind the Newmark scheme is to use different approximations for
the displacement Um = y(tm), the velocity V m = y′(tm) and the acceleration
Am = y′′(tm). Collecting the above for time step m + 1 gives

MAm+1 + CV m+1 + KUm+1 = Mfm+1. (.)

For Um+1 and V m+1 consider these modified Taylor approximations, where
Am is replaced by weighted average of Am and Am+1

Um+1 = Um + ∆tV m +
∆t2

2
[(1 − 2β)Am + 2βAm+1] (.)

V m+1 = V m + ∆t[(1 − γ)Am + γAm+1], (.)

where 0 ≤ β ≤ 1
2 and 0 ≤ γ ≤ 1. The unknowns Am+1, V m+1 and Um+1 can

be computed from the three above equations (.)–(.) since fm+1 is known.

A Newmark algorithm when C = 0

In the case of the wave equation (C = 0) we can do the Newmark time-stepping
as follows.

The algorithm is set off by an initialization procedure involving the initial
conditions y(0) and y′(0).

U0 = y(0)

V 0 = y′(0)

solve MA0 = Mf0 − KU0 for A0

The consecutive steps m = 0, 1, . . . depends on the choice of the two Newmark
parameters β and γ

Utmp = Um + ∆tV m + 1
2∆t2(1 − 2β)Am

Vtmp = V m + ∆t(1 − γ)Am

solve [M + β∆t2K]Am+1 = Mfm+1 − KUtmp

Um+1 = Utmp + ∆t2βAm+1

V m+1 = Vtmp + ∆tγAm+1.

Certain parameter choices lead to well-known time integration schemes.

Central FD The choice β = 0, γ = 1
2 will result in the symmetric and well-

known explicit midpoint rule (leap-frog formula if FDM)

M
Um+1 − 2Um + Um−1

∆t2
+ KUm = Mfm.

It is second order accurate in time but explicit therefore requiring special
care when deciding the time step size ∆t.

Trapezoidal rule Choosing β = 1
4 , γ = 1

2 will lead to the so-called trapezoidal
rule which also is second order accurate in time but, opposite to the above,
implicit and hence unconditionally stable. This scheme is also well-known
and is in addition energy conserving [Kre06a]—which is very attractive
for conservative systems like the treated.
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Runge-Kutta schemes

There exists a rich theory for numerical integration or quadrature which it is
more commonly called. The employment of this theory in the field of differential
equations of the type

y′(t) = Lh(y(t), t)

results in the class of so-called Runge-Kutta methods [Run95, Kut01]. Let us
integrate from tm to tm+1 = tm + ∆t

y(tm+1) = y(tm) +

∫ tm+1

tm

Lh(y(τ), τ)dτ

= y(tm) + ∆t

∫ 1

0

Lh(y(tm + ∆tτ), tm + ∆tτ)dτ.

We replace this integral with a quadrature rule on ν nodes and weights cj and
bj , j = 1, . . . , ν like

ym+1 = ym + ∆t
ν∑

j=1

bjLh(y(tm + cjτ), tm + cjτ)

which leaves open the question on how to approximate y at times later than
tm, that is, y(tm + cjτ) for j = 2, . . . , ν. The idea of the explicit Runge-Kutta
(ERK) method is here to introduce a set of approximants ξj for y(tm + cjτ)
and then use linear combinations of the preceding approximants for ξj+1.

ξ1 = ym

ξ2 = ym + ∆ta2,1Lh(tm, ξ1)

ξ3 = ym + ∆ta3,1Lh(tm, ξ1) + ∆ta3,2Lh(tm + c2∆t, ξ2)

...

ξν = ym + ∆t
ν−1∑

i=1

aν,iLh(tm + ci∆t, ξi).

With these approximants at hand we can complete the quadrature by

ym+1 = ym + ∆t
ν∑

j=1

bjLh(ξj , tm + cjτ)

which constitute an explicit Runge-Kutta method of ν stages. Any such method
can be displayed in a RK tableaux

c1

c2 a2,1

...
...

. . .

cν aν,1 · · · a1,ν−1

b1 · · · bν−1 bν .
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Instead of a classic ERK, a low storage ERK (LSERK) with five stages can be
used

ξ0 = ym

...

ki = aik
i−1 + ∆tLh(tm + ci∆t, ξi−1)

ξi = ξi−1 + bik
i

...

ym+1 = ξ5

resulting in a fourth order scheme. We will use this scheme, with the coefficients
on page 64 in [HW08], for the DG-FEM semi-discretization.

3.5 Method properties and analysis
We have now introduced several methods for the numerical solution of the wave
equation. They will be used, in the next chapter, as an important tool for the
numerical solution of the HUM control problem. It is well-known (see, e.g.,
[Zua05]) that the numerical dispersion and, in particular, the group velocity of
a numerical scheme is determining for its ability to deal with control problems.
In the next section, we analyze the dispersive properties of some of the schemes
introduced above. Section 3.5.2 concludes this chapter with a brief numerical
convergence analysis of the schemes verifying the implementation.

3.5.1 The dispersion relation and group velocity

To analyze the presented scheme’s dispersive properties, we will assume spatially
periodic domains. Let us consider simple periodic solutions of the form

y(t, x) = ei(ωt−ξx) (.)

where i is the complex unit, ω is the frequency, and ξ is the wave number. The
insertion of this solution in a PDE gives a dispersion relation

ω = ω(ξ).

It is quite easy to see that we for the classical wave equation, ∂2y
∂t2

− ∂2y
∂x2 = 0,

get the relation ω(ξ) = ξ. And correspondingly for the advection equation,
∂y
∂t

− a ∂y
∂x

= 0, we get the relation ω(ξ) = aξ. These simple linear relationships
show that both equations are non-dispersive.

A monochromatic wave travel at the phase speed

c =
ω(ξ)

ξ
(.)

which by design is c = 1 at all wavelengths for our wave equation. A more
important concept is, however, the group velocity cg which is defined as

cg =
dω(ξ)

dξ
. (.)
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The group velocity for the wave equation is again simply cg = 1. A wave
packet—and its energy—propagates at the group velocity [Tre82].

We shall now move away from the analysis at PDE level to the analysis of
semi-discretizations.

Dispersion analysis of semi-discrete schemes

Let us consider the dispersive properties of the semi-discretization of the wave
equation by the unified α-scheme (.). We insert the spatially discrete trial
solution

y(t, xn) = ŷnei(ωt−ξxn)

where xn = nh and h is the grid spacing. This gives us the numerical dispersion
relation [VB82]

ωα(ξ) =
sin(ξh/2)

ξh/2

ξ√
1 − 4α sin2(ξh/2)

,

which shows that the scheme, in contrast to the underlying PDE, is dispersive.
We get the phase velocity by (.)

cα =
sin(ξh/2)

ξh/2

1√
1 − 4α sin2(ξh/2)

.

As a measure of the dispersive properties, the phase velocity is plotted in Fig-
ure 3.5 for four different choices of the parameter α. Figure 3.6 shows the

α = 1/4

α = 1/6

α = 1/12

α = 0

ξh/π

cα

phase speed, α semi-discretization

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

Figure 3.5: Dispersion diagram for the unified scheme showing the phase speed as
function of the discrete wavenumber.

corresponding group velocities. Notice that even though the phase speeds are
approximated well for α = 0, 1/12 and 1/6, the group velocities behave quite
differently; they all tend to zero as ξh → π. It seems that the linear FEM
scheme (α = 1/6) is best: it is the closest approximant to the correct phase
velocity and the group velocity is slightly above the correct value meaning that
discretized wave packets travel a little faster than at cg. This behavior is fa-
vorable to group velocities lower than the exact when it comes to control as we
shall see in the next chapter.

Things are a little more complicated for the DG-FEM semi-discretization. Let
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α = 1/4

α = 1/6

α = 1/12

α = 0

ξh/π

cα g

group velocity, α semi-discretization
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Figure 3.6: The group velocity as function of the discrete wavenumber for the unified
semi-discretization.

us consider the advection equation since we use this in the characteristic DG-
FEM formulation (.). With the upwind flux and a = 1, the scheme reads

hk

2
M

dyk

dt
+ S(yk) = −e1

(
yk

h(xk
L) − yk−1

h (xk−1
R )

)
,

where hk is the length (xk
R − xk

L) of element D
k and ei is the i’th coordinate

vector in R
Np . We assume, in the following, that the element size is constant

h = hk. We suggest the trial solution

yk(t, xk) = ŷkei(ωt−ξxk)

with the Np sized coefficient vector ŷk. As in [HW08, page 89], we assume
periodicity of the solutions and obtain the generalized eigenvalue problem

(
S + e1(e

T

1 − eiξheT

Np
)
)
ŷk = iω

h

2
Mŷk (.)

It is solved numerically and from the solution we derive the phase velocities
cDG,Np for Np = 3, . . . , 7 as shown in Figure 3.7. Differentiation gives the corre-

Np = 3

Np = 7

ξh/Npπ

cD
G

phase speed, DG-FEM (upwind) semi-discretization

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

Figure 3.7: The phase speed (physical mode) as function of the discrete wavenum-
ber for the DG-FEM semi-discretization of the advection equation with
upwind flux (.).

sponding group velocities c
DG,Np
g shown in Figure 3.8. See also the zoom of left
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Np = 3

Np = 7

ξh/Npπ

cD
G
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group velocity, DG-FEM (upwind) semi-discretization
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Figure 3.8: The group velocity (physical mode) as function of the discrete wavenum-
ber for the DG-FEM semi-discretization of the advection equation with
upwind flux (.).
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Figure 3.9: A zoom of the plots in Figure 3.7(left) and 3.8(right) for the range 0 ≤
ξh/Np ≤ π/2. In both plots, the graphs range from Np = 3 (uppermost)
to Np = 7 (lower-most).

half of these two plots in Figure 3.9.

The plots may be compared with those for the unified scheme in Figure 3.5
and 3.6. Note, however, that Figure 3.5 and 3.6 show the dispersive properties
of a semi-discretization of the wave equation, while Figures 3.7–3.9 are for a
semi-discretization of the advection equation. But since the wave equation in
essence is two advection equations, it is still meaningful to compare the plots.

The low wavenumbers on Figure 3.7 (and left part of Figure 3.9) show that
DG-FEM exhibit accurate dispersive behavior and the higher the polynomial
order Np, the better. For high wavenumbers, especially the group velocity show
strongly unphysical behavior going negative after about ξh/Np = 0.85π; energy
can be propagated in the opposite direction of the physical one by high wave
number components. But what we do not see on this plot is the corresponding
damping—or dissipation—which, luckily, is very strong in the same region. The
dissipation is found as the imaginary part of the complex eigenvalues of (.).

Dispersion analysis of fully discrete schemes

We shall now see what happens after we integrate the ODEs of the semi-discrete
schemes in time. Let ∆t be the time step size in the following. Besides the time
integration scheme, the Courant number, µ = ∆t/∆x where ∆x is the spatial
grid spacing, plays a significant role for the dispersive behavior.
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Consider the fully discrete trial solution

ym
n = ei(ωtm−ξxn)

where tm = m∆t. We insert this in a fully discrete scheme, which for, e.g., the
unified scheme with central finite difference time discretization yields

M
ym+1 − 2ym + ym−1

∆t2
+ Kym = 0.

After insertion, we obtain an expression in ξh with µ as an important parameter
[Ras04], in this case

sin2(ω∆t/2) =
µ2 sin2(ξh/2)

1 − 4α sin2(ξh/2)
.
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Figure 3.10: Dispersion diagram (group velocity) for second order FDM (α = 0) with
explicit midpoint rule time integration.
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Figure 3.11: Dispersion diagram (group velocity) for linear FEM (α = 1/6) with
explicit midpoint rule time integration.

We show the corresponding group velocity for different Courant numbers µ
on Figure 3.12 for the FDM (α = 0) and on Figure 3.13 for the FEM (α = 1/6).
The graphs on both figures resemble quite closely the graphs for α = 0 and

α = 1/6 on Figure 3.6. The time integration has in this case only little effect
on the dispersive behavior of the semi-discrete schemes. Increasing the Courant
number does, however, have an amplifying effect on the graphs. Conversely, it
tends, as expected, to the time continuous case as µ → 0.

Let us also consider trapezoidal time integration. Integrating (.) by the
trapezoidal scheme gives [Ras04]

tan2(ω∆t/2) =
µ2 sin2(ξh/2)

1 − 4α sin2(ξh/2)
.
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Figure 3.12: Dispersion diagram (group velocity) for second order FDM (α = 0) with
explicit midpoint rule time integration.
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Figure 3.13: Dispersion diagram (group velocity) for linear FEM (α = 1/6) with
explicit midpoint rule time integration.
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Figure 3.14: Dispersion diagram (phase speed) for linear FEM (α = 1/6) with im-
plicit trapezoidal time integration.
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Figure 3.15: Dispersion diagram (phase speed) for linear FEM (α = 1/6) with im-
plicit trapezoidal time integration.

We show the phase speed for FDM in Figure 3.14 and for FEM in Figure 3.15
for different Courant numbers µ. Figure 3.16 and 3.17 show the corresponding
group velocities. This time integration has, contrary to integration by central
finite differences, a strong effect on the dispersive behavior of both semi-discrete
schemes. The effect of increasing the Courant number is also opposite; here it
reduces the group velocities.

We choose linear FEM with trapezoidal integration for the use with numeri-
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Figure 3.16: Dispersion diagram (group velocity) for second order FDM (α = 0) with
implicit trapezoidal time integration.
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Figure 3.17: Dispersion diagram (group velocity) for linear FEM (α = 1/6) with
implicit trapezoidal time integration.

cal HUM. Both phase (Figure 3.15) and group velocity (Figure 3.17) is approx-
imated well by this scheme, and it seems that the Courant number µ = 0.6
gives the best approximation. The explicit midpoint rule, on the contrary, takes
FEMs semi-discrete dispersion relation (Figurea 3.5–3.6 with α = 1/6) in the
wrong direction. The FDM with explicit midpoint rule integration seems a wor-
thy contender to FEM with trapezoidal integration, but the scheme is singular
in the sense that it consists of the same approximation in space and time whose
shortcomings therefore cancel out.

We integrate DG-FEM with a higher order Runge-Kutta scheme (LSERK)
which generally has smaller effect on the dispersion relation in the interest-
ing low wavenumber region. The precise analysis can be made with the use of
Padé approximants.

3.5.2 Convergence

Finally, we shall very shortly demonstrate the convergence of the DG-FEM
scheme (.) for smooth data. We consider a homogeneous wave equation in
w with the arbitrarily chosen smooth initial data

w0(x) = sin(2πx) − 0.3 sin(4πx),

w1(x) = sin(3πx) − π
5 sin(5πx).

It is integrated in time by an LSERK method [HW08, page 64] (see also page 43)
until T = 1.87

√
2 for different values of the polynomial order Np−1 and number

of elements K. We study the so-called h-convergence on Figure 3.18 by fixing
Np = 3 and varying the number of elements K. The p-convergence is studied
by increasing the order Np for a fixed number of elements. A convergence
plot of this kind is shown on Figure 3.19 with K = 6. We will refrain from
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Figure 3.18: h-convergence for the DG-FEM scheme (.) with Np = 3. The graphs
represent the L2-norm of the error for respectively the normal deriva-
tive ∂wh
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Figure 3.19: p-convergence for the DG-FEM scheme (.) with K = 6. The graphs
represent the L2-norm of the error for respectively the normal deriva-
tive ∂wh
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at x = 1, the time derivative ∂wh
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at t = T , and wh and t = T .

going deeper into this analysis and conclude here only that the scheme (and its
implementation) is convergent—at least for smooth data.
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CHAPTER 4

Numerical HUM

The topic of this chapter is the numerical approximation of HUM. Chapter 3
introduced discretizations for the wave equation—the main ingredient in nu-
merical HUM. We discretize the wave equation in order to find approximate
controls. High-frequency spurious (non-physical) solutions to the wave equa-
tion arising from this discretization are known to pose a serious threat to the
convergence of the approximate controls [Zua05]. The phenomena is closely
related to the dispersion relation and the group velocity of the discretization;
using a convergent scheme for the approximation of the wave equation is no
guarantee in terms of convergence of controls. The diagram in Figure 4.1 gives
schematic view of the challenge. Luckily, it is also known that convergence can

Numerical PDE (h, ∆t) PDE

Control k (h, ∆t) Control κ

(h, ∆t) → 0

Discrete exact controllability Exact controllability

Convergence?

(h, ∆t) → 0

Figure 4.1: Diagram over the convergence of numerical HUM.
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be restored by proper filtering or regularization. We will return to this.

HUM is a very general method able to deal with multi-dimensional problems.
The numerical approximation of it is, however, not even fully understood in 1-d.
Furthermore, working with only one spatial dimension offers some advantages
over higher dimensions in terms of reduced (simple characteristic rays) dynam-
ics, fewer technicalities and access to exact solutions. HUM is not necessary for
boundary controllability in 1-d, though, other methods could be applied. The
motivation is, however, not the control of a 1-d problem, but HUM it-self and,
as the ultimate goal, HUM control of multidimensional problems in complex
geometries. This is the background for this study of the numerical HUM for the
1-d wave equation.

In this chapter, we study different ways of finding numerical HUM controls.
Several theoretical accounts on the relation between numerical dispersion and
control can be found in the literature. We will take a more practical approach
and study the consequences of inexact phase and group velocities in concrete
cases for linear FEM (L-FEM). The discontinuous Galerkin-FEM (DG-FEM)
was introduced in Chapter 3 and is very well-suited for wave problems. It has
not previously been used for HUM-control. We study the abilities of DG-FEM
for numerical HUM in this chapter and compare the results with those obtained
by L-FEM.

We wish, furthermore, to examine the effect of discretizing the problem in
sine basis as the sine basis is a natural eigenfunction basis for the problem and
it relates well to the numerical dispersion of a discretization. This has not pre-
viously been described in the literature.

This chapter sets off by a short review of linear finite-dimensional control theory
in Section 4.1.1. A finite-dimensional control problem is exactly what we obtain
after spatial semi-discretization of our infinite-dimensional HUM control prob-
lem. The semi-discrete HUM will be described in Section 4.1.2. We study two
semi-discretizations, L-FEM and DG-FEM, in detail; we review their properties
here, too. The fully discrete HUM problem is described in Section 4.1.3.

We deal with the direct solution of HUM in Section 4.2 where we present the
construction of the L matrix approximating the fundamental Λ operator. This
can be done by either direct or inner-product assembly. We also show how the
discretization of the minimization formulation of HUM is closely related to the
inner-product assembly in Section 4.2.2. Hereafter, Section 4.2.3 shows how the
L matrix is constructed in sine basis. We present the numerical study of this
construction with L-FEM and DG-FEM in Sections 4.2.4 and 4.2.5, respectively.

The explicit construction of the L matrix rapidly becomes infeasible as the
degrees of freedom increase. Section 4.3 is about an iterative alternative to
the direct approach. We present the classical conjugate gradient algorithm
formulated for HUM by Glowinski, Li and Lions [GLL90] in Section 4.3.1. In
Section 4.3.2, we introduce a new filtering step in the algorithm consisting of
basis truncation. Section 4.3.3 features a test problem and we examine different
values of the truncation parameter as well as convergence for L-FEM and DG-
FEM. Finally, Section 4.4 concludes the chapter by a discussion and a short
review of related work.
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4.1 Discrete control
We need to discretize the system that we want to control in order to obtain
approximate controls. The system is a wave equation, a PDE, and we discretize
in two steps: first spatially which results in a semi-discrete model, a system of
ODEs; secondly, time integration leads to a fully discrete model. The spatial
discretization is in many ways the most important step as it determines most of
the dynamics of the model, suggests norm approximations, and gives rise to a
finite-dimensional control system of ODEs. The ODE control problem is linear
and could be approached with the standard tools from classical control theory.
But the transition from PDE to ODE also means that the rich Hilbert space
structure of the PDE controllability problem, for which the right spaces and
norms are truly essential to its solution, is replaced by an ODE setting with
much less structure. Suddenly does the control time T , for example, according
to classical control theory, not matter, even though we know from infinite di-
mensional theory that it should, due to the finite speed of propagation. In this
way, we may obtain non-physical solutions to the control problem if we are not
careful. For this reason, we will focus much on semi-discrete systems in this
section. We begin with the most simple ideas from the huge area of control of
finite-dimensional systems.

4.1.1 Classical control theory

The state-space representation of a control system, which is very common in
classical finite dimensional control theory (see, e.g., [CF03]), reads

x′(t) = Ax(t) + Bv(t), 0 ≤ t ≤ T (.a)

x(0) = x0, (.b)

with state x(t) in the state space X and control v(t) in the control space U .
The N × N matrix A is denoted the system matrix and B is the input matrix
and is of size N × Ñ where Ñ ≤ N .

We define the controllability matrix

Wc := [AN−1B,AN−2B, . . . ,AB,B]

with the i’th column being the vector AN−iB. The exact controllability of (.)
may be checked with the (Kalman) rank condition.

Theorem 4.1 (Rank Condition). The pair {A,B}, i.e., system (.), is con-
trollable if and only if the controllability matrix Wc has full rank N . If so the
system is controllable to any time T > 0. 2

We refer to [CF03] for a proof. The rank condition is easy to test in the special
case where A is diagonalizable. We state the following result without proof (see
[Ras04]).

Theorem 4.2. Let A be diagonalizable, A = V DV −1, and let B be a column
vector. The control system (.) is controllable if and only if the eigenvalues of
A are distinct and the vector V −1B contains no zero values. 2

Writing the control system in eigenvector basis

V −1x′(t) = DV −1x(t) + V −1Bv(t)

Jesper Sandvig Mariegaard Ph.D. dissertation, v. 1.1, September 7, 2009



54 Chapter 4. Numerical HUM

shows us why all elements of V −1B must be non-zero; any zero element would
leave that specific eigenmode uncontrollable.

The adjoint system associated to (.) is

y′(t) = A∗y(t), (.a)

y(0) = y0, (.b)

with the “output” or observation

Cy(t)

where C = B∗. An observability matrix, whose non-singularity is equivalent to
the observability of (.), may be constructed in a similar way as the control-
lability matrix above. The pair {A,B} is controllable if and only if the pair
{A∗,B∗} is observable (see [CF03])—just as we saw for the wave equation in
Chapter 2.

Much more could be said about the classical control theory, but we refer in-
stead to the works of Sontag [Son98], Corless and Frazho [CF03], and for a
more HUM-minded approach to Micu and Zuazua [MZ05].

4.1.2 Semi-discrete HUM

Chapter 3 showed how the wave equation can be approximated by systems of
ODEs. Let, in the subsequent exposition, N ∈ N be the number of elements
in a vector y approximating the function y defined on Ω. The approximation
of the infinite dimensional energy space E = H1

0 (Ω) × L2(Ω) which we call
X is therefore 2N -dimensional. We use X ⋆ to denote the approximation of
E⋆ = H−1(Ω) × L2(Ω); this approximation is also 2N -dimensional.

The distinction between the spaces X and X ⋆ may, at this point, seem some-
what artificial since X = X ⋆ = R

2N and all norms are equivalent in R
2N . We

wish, however, to equip X and X ⋆ with discrete norms reflecting the properties
of their infinite dimensional ancestors. Let (y, z) ∈ E and (u, v) ∈ E⋆ and let
[y,z]T ∈ X and [u,v]T ∈ X ⋆ be their approximating vectors. The norms of X
and X ⋆ are

∥∥∥∥
[

y

z

]∥∥∥∥
X

= ‖y‖1 + ‖z‖0 (.)

∥∥∥∥
[

u

v

]∥∥∥∥
X⋆

= ‖u‖−1 + ‖v‖0 (.)

where ‖·‖1 is an approximation of the H1
0 (Ω) norm, ‖·‖0 an approximation to

the L2(Ω) norm, and ‖·‖−1 to the H−1(Ω) norm. We approximate the duality
product 〈·, ·〉E⋆,E by

〈
[

u

v

]
,

[
y

z

]
〉X⋆,X = 〈u,y〉−1,1 + 〈v,z〉0, (.)

where 〈·, ·〉−1,1 approximates the duality product between H−1(Ω) and H1
0 (Ω).

The discrete norms and the duality product depend on the choice of semi-
discretization. They will be specified below for L-FEM and DG-FEM.
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Let us consider a generic semi-discrete model of the wave equation (.)

Y ′(t) = LhY (t) + Bhg1(t), t ∈ [0, T ] (.a)

Y (0) = Y 0, (.b)

where Y (t) consists of two N -sized1 vectors, e.g., Y (t) = [y,z]T with corre-
sponding initial data Y 0. The system matrix Lh of size 2N ×2N is an approxi-
mation to the spatial differential operator and the boundary matrix Bh assigns
the scalar boundary condition g1(t) to the system. Both of these matrices have
elements according to the choice of semi-discretization (see below).

Based on the model (.), we introduce a 2N -sized approximation to the
control system (.)

U ′(t) = LhU(t) + Bhk(t), t ∈ [0, T ] (.a)

U(0) = U0, (.b)

where the initial data (u0, u1) of the continuous system (.) have been sampled,
or projected onto X ⋆, resulting in the vector U0 = [u0,u1]T. The function k is
a boundary control applied at the right end of the domain. This representation
is in state space form (.). The state space is X and the control space is in
this case simply R as k is a scalar function.

We associate a semi-discrete control problem to system (.).

Definition 4.3. Given U0 ∈ X ⋆, find k ∈ B such that (.) is steered to zero in
time t = T , i.e., U(T ) = 0. 2

The semi-discrete control problem is a finite dimensional control problem in
state space form (.). We may examine whether the pair {Lh,Bh} is control-
lable for a choice of semi-discretization by Theorem 4.2, but a positive result is
no guarantee in terms of physically meaningful controls. Applying the methods
from classical control will in general not lead to useful controls for the PDE.

We proceed with the HUM approximation by considering the 2N -sized ap-
proximation of the adjoint system (.) with the variable W as the semi-discrete
counterpart to ϕ

W ′(t) = LhW (t), t ∈ [0, T ] (.a)

W (0) = W 0, (.b)

for which the initial data W 0 = [w0,w1]T corresponds to the continuous
(ϕ0, ϕ1) of (.). Further, let ChW (t) denote an approximation to the normal
derivative ∂

∂n
at x = 1

∂

∂n
ϕ(1, t) ≈ ChW (t). (.)

The output matrix Ch needs to provide a convergent approximation of ∂
∂n

for
h → 0.

Finding the observation ChW (t) from the initial data W 0 is called semi-
discrete observation. It is now formally defined.

1In the case of DG-variables each vector consists of Np ·K elements; we use the convention
N = Np · K in this case.
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Definition 4.4 (sd-observation). Let W 0 ∈ X be initial data for (.), and let
W (t) be the solution of (.) for this initial data. Computing the Neumann
output ChW (t) is then called sd-observation. The related operator

P
sd

: X → B defined by P
sd

: W 0 7→ ChW (t), (.)

is called the sd-observation operator. 2

Note that P
sd

is a semi-discrete approximation to the observation operator Φ
defined in (.). Note also that sd-observation requires an exact solution of
(.) as time is still continuous.

The semi-discrete operator equation

Let us also define a semi-discrete version of system (.)

Z′(t) = LhZ(t) + Bhk(t), t ∈ [0, T ] (.a)

Z(T ) = 0, (.b)

which is solved backwards in time, so that the output at t = 0 becomes Z(0).
Parallel to the reconstruction introduced in Section 2.4, we will define the semi-
discrete reconstruction.

Definition 4.5 (sd-reconstruction). Given a function k ∈ B assume that (.)
is solvable for that k. We solve (.) to obtain the output [z′(0),−z(0)]T ∈ X ⋆

and call this operation sd-reconstruction. The corresponding operator

R
sd

: B → X ⋆ defined by R
sd

: k 7→
[

z′(0)
−z(0)

]
, (.)

is denoted the sd-reconstruction operator. 2

R
sd

is a semi-discrete approximation to the reconstruction operator Ψ defined
in (.).

We seek a specific function k ∈ B that satisfies the requirement

R
sd

k =

[
u1

−u0

]
.

Such a function k will by construction solve the semi-discrete control problem
and is hence called a control.

A control k driving the semi-discrete system (.) to zero in time t = T is
called a HUM-control if it is formed by

k = P
sd

[
w0

w1

]
(.)

where W 0 = [w0,w1]T is a set of initial data for the semi-discrete adjoint
system (.).

The semi-discrete HUM operator equation becomes

L
sd

[
w0

w1

]
=

[
u1

−u0

]
, (.)
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where the operator L
sd

L
sd

: X → X ⋆ defined by L
sd

:= R
sd

P
sd

(.)

approximates the Λ operator (.). The operator L
sd

takes discrete initial data
[w0,w1]T and maps it to the approximate Neumann boundary data ChW (t),
then takes this data as Dirichlet boundary condition k(t) = ChW (t) and maps

it onto the t = 0 state [z′(0),−z(0)]T. If the solution W
0

to the HUM equation

(.) exists, it provides the sought control by k = P
sd

W
0
.

The operator L
sd

maps between two 2N dimensional vector spaces and can
therefore be considered as a 2N by 2N matrix. Finding the matrix elements,
however, would require the exact solutions of (.) and (.). Obviously, we
need to integrate in time to make the systems fully discrete. Before doing so
we will go through some details about the two semi-discretizations, L-FEM and
DG-FEM, that we will study throughout this chapter.

L-FEM semi-discretization

The unified scheme (.) has the linear FEM (L-FEM) as a special case with
α = 1/6. Let y be a column vector with N nodal values y(xn) for n = 1, . . . , N
of the function y defined on Ω. The L-FEM approximation yh reads

y ≈ yh =

N∑

n=1

yh(xn)ψL

n(x)

where ψL
n is the linear hat basis function (.).

Let furthermore en be a coordinate vector in R
N . The system and boundary

matrix of the generic model (.), where Y (t) = [y(t),y′(t)]T, become (see also
Section 3.2.3)

Lh =

[
0 I

−M−1K 0

]
, Bh =

[
0

1
h
eN

]
. (.)

The mass matrix M is defined in (.) with α = 1/6 and the stiffness matrix
K in (.). We check that the ODE system is controllable by Theorem 4.2.

We approximate the normal derivative at the right endpoint with a simple
first order finite difference (yN+1 − yN )/h = −yN/h. This gives the output
matrix

Ch =
[
− 1

h
eT

N 0
T

]
. (.)

The mass and stiffness matrices give rise to natural approximations of the L2-
and H1-norms. Let u and v be functions in L2(Ω) and uh and vh their finite
element approximations. Let u be an N sized column vector with uh(xn) at
position n and likewise for v.

The approximate L2-inner product 〈·, ·〉0 becomes

〈u, v〉L2(Ω) ≈ 〈uh, vh〉L2(Ω) =

N∑

i=1

N∑

j=1

uh(xi)vh(xj)〈ψL

i , ψL

j 〉L2(Ω)

= uTMv =: 〈u,v〉0 (.)
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according to the definition of the mass matrix (.). Equivalently, we have for
u, v ∈ H1

0 (Ω) and their approximants uh and vh

〈u, v〉H1(Ω) ≈ 〈uh, vh〉H1(Ω) =

N∑

i=1

N∑

j=1

uh(xi)vh(xj)〈ψL

i , ψL

j 〉H1(Ω)

= uTKv =: 〈u,v〉1 (.)

c.f. the definition of the stiffness matrix (.). We will use the norms ‖·‖0 and
‖·‖1 induced by the above inner products. This also gives the X -norm by (.).

Rasmussen deduced in [Ras04], by energy conservation principles, a discrete
norm for X ⋆ by the H−1(Ω)-inner product for u, v ∈ H−1(Ω)

〈u,v〉−1 := uTMK−1Mv (.)

where M−1K = (K−1M)−1 approximates the Laplacian. For the duality
product (.) Rasmussen used

〈u,w〉−1,1 := uTMw (.)

where u and w are approximating vectors of u ∈ H−1(Ω) and v ∈ H1
0 (Ω),

respectively. We will use these approximations too and have thus by (.) and
(.) specified the X ⋆-norm and the duality product between X and X ⋆. This
concludes the review of L-FEM.

DG-FEM semi-discretization

Let us consider the DG-FEM semi-discretization in characteristic variables p
and q introduced in (.) (see also Section 3.1.1).

The LGL-grid and the local higher order polynomial basis on each element
are some of the major differences compared to the L-FEM approach. The do-
main is divided into K elements each of which has Np interpolation points that
are LGL distributed. The local polynomial basis has order Np − 1. Functions
y defined on Ω are represented on each element D

k by (.)—a sum of Np

interpolating Lagrange basis functions ℓi (nodal) or a sum of Np normalized

Legendre polynomials P̃n (modal)

y ≈ yh =

K⊕

k=1

yk
h, yk

h(t, x) =

Np∑

i=1

yk
h(t, xk

i )ℓk
i (x) =

Np∑

n=1

ŷk
n(t)P̃n−1(x).

Recall also that we do not require functions to be continuous across interfaces.
Local mass and stiffness matrices Mk and Kk are defined on each element
D

k in (.) and the K local approximations are connected via the numerical
flux which accounts for the flow of information between elements. We will use
upwind fluxes (.); left-bound for p and right-bound for q.

We fit the DG semi-discretization in the generic model (.) by letting
Y (t) = [p(t), q(t)]T where p is the nodal vector representing p and likewise
with q. The system matrix Lh is shown in (.).

Boundary conditions are assigned by the numerical flux. The choice of up-
wind flux determines that the only influence of the Dirichlet condition at x = 1
will be on p on element K. Let 0 be a zero column vector of size Np and let en

be a vector of equal size with a 1 at position n and 0 elsewhere. We pre-multiply
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with the Jacobian contribution hk/2 and the inverse mass matrix and obtain
the boundary matrix

BT

h =
[
0, . . . ,0,

hK

2
(MK)−1eNp

∣∣∣0, . . . ,0
]

where hK = (xK
R − xK

L ) is the size of element D
K and the vertical bar indicates

the center of the vector (and thus dividing the p and q parts). The pair {Lh,Bh}
is found controllable by Theorem 4.2.

In the previous example about L-FEM, we used a simple first order finite
difference approximation for the approximation of the normal derivative which
came naturally from the underlying linear FEM basis. Equivalently, it comes
natural for the DG semi-discretization to use the local polynomial basis for
approximation of the normal derivative. The calculation of the local derivative
∂yk

h/∂x on element D
k is straightforward with the differentiation matrix Dr,

(.), and the Np nodal values of the derivative become

2

hk
Dry

k,

where yk contains the nodal values of yh on element D
k and the Jacobian scaling

with the element size hk = (xk
R−xk

L) concerns mapping to the reference element.
The normal derivative is found by evaluating the derived polynomial of element
D

K at the right endpoint, x = xK
R = 1.

∂y

∂n

∣∣∣
Γ0

≈ 2

hK
Dr(Np, :)y

K (.)

where Dr(Np, :) denotes the bottom row (number Np) of the differentiation ma-
trix Dr. The bottom row is associated with the right endpoint of the reference
element. By recalling that y =

√
2/2(−p + q), we can now form the output

matrix Ch belonging to the generic system (.)

Ch =
[
0, . . . ,0,−

√
2

hK
Dr(Np, :)

∣∣∣0, . . . ,0,

√
2

hK
Dr(Np, :)

]
. (.)

It remains now to specify discrete inner products and norms reflecting the nature
of the energy spaces E and E⋆. Let u and v be functions in L2(Ω) and u and
v their nodal DG approximation vectors each consisting of the K local nodal
vectors uk and vk of size Np. The approximate L2-inner product 〈·, ·〉0 becomes

〈u,v〉0 :=

K∑

k=1

(uk)TMkvk (.)

due to the definition of the local mass matrix (.). Equivalently, for u, v ∈
H1

0 (Ω) we get the approximate H1-inner product 〈·, ·〉1

〈u,v〉1 :=

K∑

k=1

(
2

hk
Dru

k)TMk(
2

hk
Drv

k). (.)

We will use the norms induced by the inner products. Furthermore, we will use

〈u,v〉−1,1 :=

K∑

k=1

(uk)TMkvk (.)
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for the approximation of the duality product 〈u, v〉H−1,H1
0

as with L-FEM. The
norms for X and X ⋆ and the duality product between them follow by (.),
(.), and (.).

4.1.3 Discrete HUM

To make the problem fully discrete, we now introduce M − 1 time steps from
0 to T with uniform step size ∆t such that tm = m∆t for m = 0, 1, . . . ,M − 1.
The discretization is necessary for obtaining numerical solutions to the ODE
systems (.) and (.). We replace the continuous boundary space B with the
time discrete T = R

M with the inner product

〈p, q〉T = ∆tpqT (.)

where p and q are row vectors of size 1 × M .
We now introduce a collection of discrete operators for a choice of time

integration scheme (see Section 3.4). They all map between finite dimensional
vector spaces and are for this reason in essence matrices. We wish, however,
to distinguish between applying the operator (matrix-vector multiplication) and
explicitly constructing the underlying matrix and therefore keep this distinction.
We let capital letters denote the discrete operators and bold capital letters their
matrix representations.

Definition 4.6 (discrete observation). Given the initial data [w(0),w′(0)]T ∈
X for (.) we define the discrete observation operator

P : X → T defined by P :

[
w0

w1

]
7→ p, (.)

where p = [p(0), . . . , p(M∆t)] with p(m∆t) = ChW (m∆t). The vector W (m∆t)
is the numerical solution to (.) at time step m. 2

Definition 4.7 (discrete reconstruction). Given k ∈ T we define the discrete
reconstruction operator

R : T → X ⋆ defined by R : k 7→
[

z1

−z0

]
, (.)

where [z1,−z0]T is the state of (.) at t0 = 0 after its time integration from
T to 0. 2

With these fully discrete operators at hand, we now define our discrete approx-
imation to Λ

L : X → X ⋆ defined by L := RP. (.)

Equivalent to (.) we introduce the discrete HUM operator equation

L

[
w0

w1

]
=

[
u1

−u0

]
. (.)

Its solution [w̄0, w̄1]T, if it exists, provides the sought approximate control by

kT = P

[
w̄0

w̄1

]
.

The continuous Λ is dependent on T only (for fixed Γ0). Its approximation
L depends, however, also on:

Jesper Sandvig Mariegaard Ph.D. dissertation, v. 1.1, September 7, 2009



4.2 Construction of the L matrix 61

Semi-discretization scheme Lh (element size h, and approximation order p).

• Approximation of normal derivative Ch.

• Assigning the Dirichlet boundary condition with Bh.

Time integration method and time step size ∆t.

The discrete HUM equation (.) can be solved directly by constructing L
as a matrix, which we shall see in Section 4.2, or iteratively—matrix-free—as
we shall do in Section 4.3.

4.2 Construction of the L matrix
The operator L may be used to obtain a matrix representation L in the same
way as we did for Λ previously. Section 2.4 described two different ways of
constructing Λ as a matrix: direct assembly (.) and inner-product assembly
(.). We will apply the same practices for L.

Let in the following ej for 1 ≤ j ≤ 2N be vectors constituting a basis in X .
The canonical basis is the simplest choice, but it might not be a sensible one.
Later in this chapter, we will use a discrete basis related to the eigenfunctions
of the continuous HUM operator.

Direct assembly

We construct L by direct assembly by computing

Lij = 〈Lej ,ei〉X⋆,X , i, j = 1, . . . , 2N, (.)

where L is defined by (.) and 〈·, ·〉X⋆,X is the approximation (.) to duality
product 〈·, ·〉E⋆,E between E and E⋆.

Inner-product assembly

The inner-product assembly of L is done by

Lij = 〈Pej , Pei〉T , i, j = 1, . . . , 2N, (.)

where P is defined by (.) and 〈·, ·〉T is the approximation (.) to the inner
product 〈·, ·〉B.

It is worth noticing that inner product assembly, in contrast to direct as-
sembly, do not require reconstruction; hence only half the computations are
needed.

4.2.1 Matrix assembling—procedures and details

We wish to determine the elements of L by direct assembly (.) and need
therefore the action of the operator L defined by (.). The output of L[w0,w1]T

is denoted [z1,−z0]T.
Let now, and in the rest of this chapter, ej denote a basis vector in R

N

(instead of in X ); the set {ej}j≤N
constitute a basis for R

N . We apply L to

the basis vectors ej in the position of first w0 and then w1, that is,
[

z
1,0
j

−z
0,0
j

]
= L

[
e0

j

0

]
and

[
z

1,1
j

−z
0,1
j

]
= L

[
0

e1
j

]
, j = 1, . . . , N
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where the superscript 0 denotes that z
i,0
j is created from w0 and likewise with

the 1 on z
i,1
j . The corresponding 0 or 1 superscript on ej is only to indicate the

position of ej ; we use the same basis for w0 and w1.
It is convenient to divide L into four N × N sub-matrices Li, i = 1, 2, 3, 4

enumerated

L =

[
L1 L2

L3 L4

]
.

Each sub-matrix describes the effect of L applied to one initial data vector for
the adjoint system w0 or w1 on either z0 or z1 of the control system. The
elements of the sub-matrices are determined for i, j = 1, . . . , N by

L1
ij = 〈z1,0

j ,e0
i 〉−1,1 L2

ij = 〈z1,1
j ,e0

i 〉−1,1

L3
ij = 〈z0,0

j ,e1
i 〉0 L4

ij = 〈z0,1
j ,e1

i 〉0,

}
(.)

where the discrete inner products depend on the semi-discretization scheme.
The duality product 〈·, ·〉X⋆,X has here been split in 〈·, ·〉−1,1 and 〈·, ·〉0 in accor-
dance with (.). In the case of L-FEM, 〈·, ·〉−1,1 and 〈·, ·〉0 are defined by (.)
and (.) while by (.) and (.) for DG-FEM.

If we instead approach the construction of L by the inner product assembly
technique (.), we only need the discrete observation (.). Consider the
row vectors p0

j and p1
j produced by discrete observation

(p0
j )

T = P

[
e0

j

0

]
and (p1

j )
T = P

[
0

e1
j

]
, (.)

for j = 1, . . . , N . The superscript 0 on p0
j indicates the observation of the

initial data w0 and equivalently with 1 on p1
j . The sub-matrices of L are now

assembled according to (.) by the i, j = 1, . . . , N operations

L1
ij = 〈p0

j ,p
0
i 〉T L2

ij = 〈p1
j ,p

0
i 〉T

L3
ij = 〈p0

j ,p
1
i 〉T L4

ij = 〈p1
j ,p

1
i 〉T .

}
(.)

where the time discrete L2-inner product 〈·, ·〉T is defined by (.).
After computing the elements of L by (.) or (.), the specific set of

initial data [w̄0, w̄1]T of the adjoint system can be found by solving the 2N×2N
linear system [

L1 L2

L3 L4

] [
w0

w1

]
=

[
u1

−u0

]
. (.)

The approximate control k is then computed by applying P to the solution

kT = P

[
w̄0

w̄1

]
. (.)

The vector k is an approximation of the continuous control κ to which it should
converge for h → 0. We will examine the convergence later in this chapter.

Matrices P and R

Let us take the T -inner product between observation vector p0
j or p1

j (.) and
a basis vector bi in T . This constructs the matrix P

P =
[

P 0 P 1
]
, P 0

ij = 〈p0
j , bi〉T , P 1

ij = 〈p1
j , bi〉T , (.)
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which has M ×2N elements. The inner product assembly corresponds to taking
∆tP TP as L.

P tells us almost everything that we need to know about a discretization
in regards to HUM-control and about L, too, as P—in essence—is the square
root of L. P even comes as a natural by-product when constructing L by either
assembly technique as it simply consists of the discrete observation of the basis
vectors (.). The observation of the sine basis is a step on the way to L when
using direct assembly.

With the matrix P , we can determine the approximate control k from the
solution [w̄0, w̄1]T of (.) by a matrix-vector multiplication

kT =
[

P 0 P 1
] [

w̄0

w̄1

]
,

instead of solving the wave equation as in (.).

The discrete reconstruction operator R can be used to construct a corresponding
reconstruction matrix R similar to what we just did with the discrete observa-
tion operator. It is not hereby said that this is a practical thing to do. The
analysis, however, provide some useful insight. Let us introduce the construction
of R as the discrete equivalent of (.)

R =

[
R1

R0

]
, R0

ij = 〈z0
j ,e1

i 〉0, R1
ij = 〈z1

j ,e0
i 〉−1,1, (.)

where i, j = 1, . . . , N and z1
j and z0

j are the output vectors of the reconstruction
[

z1
j

−z0
j

]
= Rbj , j = 1, . . . , N,

where R is defined by (.). If we use the observation vector p0
j or p1

j in place
of bj , we recover the directly assembled L which is of course no surprise since
L = RP .

We will now shortly depart from the construction of L and look at the min-
imization approach to HUM before proceeding with the remaining assembling
details.

4.2.2 Discrete HUM by minimization

In Section 2.5, we showed how HUM, as an alternative to the operator approach,
could be formulated as a minimization problem for the functional J defined in
(.). Let us replace Φ(ϕ0, ϕ1) with the approximation P [w0,w1]T and the
continuous spaces E , E⋆ and B with the discrete equivalents in (.) to obtain
the discretized functional

Jh

([
w0

w1

] )
=

1

2

∥∥∥∥P

[
w0

w1

]∥∥∥∥
T
− 〈

[
u1

−u0

]
,

[
w0

w1

]
〉X⋆,X . (.)

If we furthermore apply P as the matrix (.), use the discrete norm (.)
and the discrete duality product (.) with (.), we get

Jh

( [
w0

w1

] )
=

1

2
∆t

(
P

[
w0

w1

] )T(
P

[
w0

w1

] )
−

[
u1

−u0

]T [
M 0

0 M

] [
w0

w1

]
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Let us now, for brevity, introduce the variables

w :=

[
w0

w1

]
A := ∆tP TP , b :=

[
M 0

0 M

] [
u1

−u0

]
.

This reduces the functional to

Jh(w) = 1
2wTAw − wTb

where we easily identify a quadratic and a linear term. The matrix A is sym-
metric and by the spectral decomposition

A = QDQT,

we de-couple the above expression and have

Jh(w) = 1
2wTQDQTw − wTb

= 1
2ŵTDŵ − ŵTb̂.

The new vector ŵ is the transformation QTw and b̂ = QTb. The de-coupled
system consists of 2N scalar quadratic expressions of the type 1

2ax2 − bx where
a, b ∈ R, a > 0 for which the minimum is simply xmin = a−1b. Equivalently, we
find the minimum for Jh to be

ŵmin = D−1b̂,

which we can transform back to

wmin = QD−1QTb

= A−1b.

This is not surprising, though, as it is standard practice to rewrite a linear
problem Aw = b as the minimization of a quadratic functional 1

2wTAw−wTb.
It is included here to show that the minimization of the discrete functional
corresponds to using the inner-product assembly technique (.) since A =
∆tP TP . Constructing P as a matrix before minimizing the functional (.) is,
however, not a very practical thing to do. We refer to Section 4.3 for a practical
iterative approach to the problem.

4.2.3 The sine basis

We now return to the assembling of matrix L and in particular to the choice
of a suitable basis. Remark 2.22 gave for T = 2 an analytic expression for the
infinite observation matrices Φ

0 and Φ
1 in orthonormal sine basis

{
es
j(·)

}
j∈N

where
es
j(x) =

√
2 sin(jπx), x ∈ Ω. (.)

We shall consider truncated versions of Φ
0 and Φ

1 and sample in the time
domain (tm = m∆t) to obtain the “exact” discrete observation of es

j for j =
1, . . . , N

p0
j = [p0

j (0∆t), . . . , p0
j ((M − 1)∆t)], p0

j (t) = (−1)j
√

2jπ cos(jπt) (.a)

p1
j = [p1

j (0∆t), . . . , p1
j ((M − 1)∆t)], p1

j (t) = (−1)j
√

2 sin(jπt). (.b)
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Collecting these vectors as columns in a matrix would give the observation
matrix P in canonical basis. Alternatively, we can take discrete versions of
the orthonormal bases b0

j (t) =
√

2/T cos(jπt) and b1
j (t) =

√
2/T sin(jπt) for

j = 1, . . . , N when T = 2

b0
j = [b0

j (0∆t), . . . , b0
j ((M − 1)∆t)],

b1
j = [b1

j (0∆t), . . . , b1
j ((M − 1)∆t)].

Computing the inner products (.) with this basis clearly results in diagonal
matrices

P 0
ij ≡ 〈p0

j , b
0
i 〉T = (−1)j

√
Tjπδij ,

P 1
ij ≡ 〈p1

j , b
1
i 〉T = (−1)j

√
Tδij ,

for i = 1, . . . , N and j = 1, . . . , N . The diagonal structure is a manifestation
of the exact dispersion relation—waves at all wavelengths travel at speed one.
When we in a minute turn to approximations of P , we will see that the matrix
is shaped by the numerical dispersion relation for the related scheme.

Let us consider the construction of L by inner product assembly for each
of its sub-matrices (.) when T = 2. Sub-matrices L2 and L3 will be zero
(inner product between p0

j and p1
j ). Sub-matrix L1 = ∆t(P 0)TP 0 will have the

elements L1
ij = T (jπ)2δij for i, j = 1, . . . , N , and sub-matrix L4 = ∆t(P 1)TP 1

will have the elements L4
ij = Tδij for i, j = 1, . . . , N .

Also reconstruction is particularly simple when T = 2. The periodicity of
cos(jπt) and sin(jπt) allows easy reversion of the wave equation and the “exact”
reconstruction becomes

Rex(
√

2 cos(jπt)) =

[
(−1)jTjπes

j

0

]
,

and

Rex(
√

2 sin(jπt)) =

[
0

(−1)j+1Tes
j

]
,

for j = 1, . . . , N . The direct assembly would quite clearly result in the same
diagonal matrix L as above.

The diagonal structure of the exact L tells us that T = 2n is a very special
case where the modes are not mixed. The sub-matrix L1 act in this case like the
Laplacian. The discrete Laplacian belonging to a particular semi-discretization
is therefore a natural choice for pre-conditioning for iterative solution of the
operator equation (.). We will return to this issue in Section 4.3.

The sinusoids are closely connected with the Laplacian and the wave equa-
tion. It is well-known that the sine functions {es

j}j∈N
constitute an orthonormal

basis for the Laplacian in 1-d. The solutions to the (homogeneous) wave equa-
tion (.) is “carried” by sine and cosine functions as can be seen from the Fourier
or semi-group solution (or the above analysis). Not only this speaks for the use
of sinusoids as basis for the problem—but also the separation of waves into low
and high-frequency components and the close link to the dispersion relation in
this case are strong arguments.

On the other hand, are sinusoids with short wavelengths compared to the grid
size not easily approximated by polynomials which both semi-discretizations use
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as shape functions. The pros and cons of the use of sinusoids as basis for the
construction of L will be discussed further in the end of this chapter.

4.2.4 Constructing L with L-FEM

Let us take a closer look at the construction of L with L-FEM on an equidistant
grid with spacing h (see L-FEM on page 57). When nothing else is mentioned
in the following, we use trapezoidal time integration (see Section 3.4) with the
Courant number µ = 0.6 for the time step ∆t = µh. Recall that N = 1/h− 1 is
the number of inner grid points which also is the number of basis functions ej .

We need a basis {ej}j≤N
in order to construct the matrix L. The simplest

choice is to use the canonical basis

ee
j = [ee

j(x1), . . . , e
e
j(xN )]T, ee

j(xi) = δij , i, j = 1, . . . , N,

where xi = i h and the superscript e denotes ‘canonical’. In the eyes of the
L-FEM semi-discretization, this basis is its own hat basis consisting of the func-
tions ψL

n defined in (.). The linear spline representation of the basis vector
ee

j is therefore simply

eLe
j (x) = ψL

j (x), x ∈ Ω, j = 1, . . . , N,

with superscript L indicating the use of L-FEM. We will, however, as explained
in the previous section, focus on the sampled sine basis which we mark by the
superscript s

es
j = [es

j(x1), . . . , e
s
j(xN )]T, es

j(xi) =
√

2 sin(jπxi), i, j = 1, . . . , N.

By interpolation, we have the piecewise linear function

eLs
j (x) =

N∑

i=1

es
j(xi)ψ

L

i (x), x ∈ Ω, i, j = 1, . . . , N, (.)

which is the L-FEM representation of the sine function es
j .

Using the sine basis makes it necessary to have a procedure for translating
between coefficients and nodal values which can be done in several ways. We
choose the continuous sine basis as our starting point. Let us consider the sine
expansion of a function f ∈ L2(Ω), which is zero in both endpoints,

f(x) =

∞∑

k=1

f̂k es
k(x), x ∈ Ω.

No cosines are needed in the expansions since f is zero at the endpoints. By
the orthonormality of es

k, we can compute the coefficients f̂k by the L2-inner
product

f̂k = 〈f, es
k〉L2(Ω), k = 1, 2, . . . . (.)

We wish to approximate the N first coefficients by

f̂L

k = 〈f ,es
k〉0, k = 1, . . . , N, (.)
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where the inner product is defined by (.) and f consists of N sampled values
f(xi), i = 1, . . . , N of f . Furthermore, we define the synthesis

f(x) ≈
N∑

k=1

f̂L

k eLs
k (x), x ∈ Ω,

which approximates f . Notice that we use index k for coefficients and index j
when we refer to a specific basis function.

Before we proceed with the approximation of HUM, we shall briefly consider
the difference of using the canonical basis ee

j and the sine basis es
j . Both bases

can be used for the construction of L and the total result would be the same
due to the linearity of the problem and the perfect transformation between the
canonical and sine basis—each canonical basis vector ee

j may be seen as a linear
combination of the vectors es

j , j = 1, . . . , N , and vice versa.

Figure 4.2 shows the coefficients f̂k and f̂L

k for k = 1, . . . , N of three hat
functions (canonical basis vectors) eLe

j , j = 2, 6 and 27. Notice that almost all

j=2 j=6 j=27
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Figure 4.2: The spectrum of three hat basis functions eLe
j , j = 2, 6 and 27. The

solid stems with (×)-marks show the coefficients 〈eLe
j , es

k〉L2(Ω) for k =
1, . . . , 100. The dotted stems with (o)-marks show the L-FEM coeffi-
cients 〈eLe

j , eLs
k 〉0 for k = 1, . . . , N . The vertical dashed-dotted line marks

N—the number of basis elements in the L-FEM representation. The
small inlets show the position of the relevant hat function on Ω.

modes are excited for all three canonical basis function, and notice also the
aliasing effect for high wavenumbers. Whereas the sine basis separate well and
poorly resolved parts of a function, the canonical basis mixes all that valuable
information together. If waves at all wavelengths, however, travelled at the
correct speed c = 1, the compact, localized nature of the canonical basis would
be kept, thus leading to a sparse observation matrix. But this is, due to nu-
merical dispersion, not the case. We conclude that we keep most information
and characteristic behavior by using the sine basis (see also the discussion in
Section 4.2.3).

Representation of sinusoids by linear splines

How well we can approximate a sine wave by linear splines depends on the ra-
tio between the wavenumber j and the number of grid points N . For small
wavenumbers j compared to N the approximation error will be negligible. Rel-
ative large wavenumbers with only a few grid points per wavelength will, on
the contrary, lead to significant errors. Consider the Fourier coefficients f̂k for
k = 1, . . . 2N of the linear splines eLs

j for j = 1, . . . , N , shown in Figure 4.3.
The left half of the figure contains the sinusoids that we can represent with
N = 49 L-FEM sine basis functions. The right half shows the higher frequency
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Figure 4.3: The bottom plot shows the spectrum of the N L-FEM sine representa-
tions eLs

j . The gray scaled element in index (j, k) displays the absolute
value of the coefficient 〈eLs

j , es
k〉L2(Ω); black is 1, white is 0. The top plot

shows the value of the corresponding coefficient (notice: only one per col-
umn). The vertical dashed-dotted line marks the number of basis vectors
N = 49—the coefficients to the left are represented in the sampled sine
basis, the part to right of the line represents the alias error.

alias corresponding to the modes k > N of the hat basis shown in Figure 4.2.
Notice that Figure 4.3 shows that any one sinusoid es

j with wavenumber j ≤ N

is represented, unambiguously, by only one eLs
j , j ≤ N . This one-to-one corre-

spondence, which is well-known, is a special feature of the equidistant grid. We
mention it because this does not hold for the DG-FEM semi-discretization as
we shall see in Section 4.2.5.

The linear spline eLs
j is not well approximated solely by es

j when j is large;
it also has higher frequency components of which the lowest, es

(2N−j), is shown
on the right hand side of Figure 4.3. This is essential for understanding the
approximation error made when trying to approximate es

j by the piecewise linear

eLs
j . This error as a function of j is shown in Figure 4.4 together with the L2-

norm of eLs
j . The approximation error is significant for large j, say, j > N

2 . This

L2-norm of es
japproximation error

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

Figure 4.4: L2-norm of the L-FEM (N = 49) sine basis eLs
j and the (normalized) L2-

norm of the approximation error
˛̨
eLs

j − es
j

˛̨
both as functions of the index

j.

error is important to keep in mind when we later compare our findings with an
analytic result obtained from exact es

j .
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Observation of the sine basis

Let us consider the discrete observation P of the L-FEM sine basis eLs
j for

j = 1, . . . , N with the observation time T = 2. The discrete observation (.)
amounts to (1) solving a wave equation, here with L-FEM semi-discretization
(.), and (2) finding the approximate normal derivative by Ch defined in
(.).

The discrete observation can be divided in P 0 observation and P 1 observa-
tion as seen in (.). We know from (.) that the exact P 0 observation of the
j’th sinusoid is p0

j (m∆t) = (−1)j
√

2jπ cos(jπm∆t) and the exact P 1 observation

is p1
j (m∆t) = (−1)j

√
2 sin(jπm∆t) with m = 0, . . . ,M − 1 when T = 2.

We compute normalized temporal Fourier coefficients for k = 1, . . . , N of the
P 0 observation of es

j for j = 1, . . . , N by

βcos
jk =

〈
P 0es

j ,p
0
k

〉

T

/∥∥p0
k

∥∥2

T , (.a)

βsin
jk =

〈
P 0es

j , kπp1
k

〉

T

/ ∥∥p0
k

∥∥2

T . (.b)

Exact observation would give βcos
jk = δjk and βsin

jk = 0, but due to numerical
dispersion and other numerical effects it is expected that the approximation
P 0es

j will have other coefficients than βcos
jj .

We shall first consider two examples: the P 0 observation of es
7 and that of

es
32. Hereafter, we will consider the P 0 observation of all N basis functions

collectively. The analysis of P 1 observation has been omitted; we remark only
that it exhibits behavior very similar to P 0 observation.

Figure 4.5 shows the L-FEM approximated P 0 observation of the 7’th sinusoid,
es

7, by its Fourier coefficients (.).
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Figure 4.5: Fourier coefficients (.) of the P 0 observation of es
7 as function of the

index k. The left plot shows the cosine coefficients (.a) and the right
plot shows the sine coefficients (.b). Observation was made with L-
FEM with N = 49, T = 2, µ = 0.6.

The 7’th cosine coefficient comes out very strong, but we already see a be-
ginning deterioration: cosine coefficients other than j = 7 are present (small
though) and a single sine mode has also appeared.

The observation of the 32’nd mode can be seen in Figure 4.6. The the-
oretical values, βcos

32,k = δ32,k and βsin
32,k = 0, are almost unrecognizable from

Figure 4.6. This cannot all be explained from the error made from start when
approximating the initial data es

j by linear splines; that is only a tiny piece of
the explanation. We will return to the cause of this misfortune after a look at
the big picture.
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Figure 4.6: Fourier coefficients (.) of the P 0 observation of es
32 otherwise like Fig-

ure 4.5.

We depict the absolute values of the coefficients (.) for all N discrete P 0

observations, P 0(es
j), j = 1, . . . , N in Figure 4.7. The j’th row in the image
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Figure 4.7: Absolute value of the Fourier coefficients (.) of the P 0 observation of
es

j for j = 1, . . . , N . The left side shows the cosine coefficients (.a)
and the right side shows the sine coefficients (.b). Values scale in gray
from 0 (white) to 1 (black).

represents the information in a plot like Figure 4.5 or 4.6. Theoretically, the left
image should show a (black) diagonal only and the right one should be blank.
Figure 4.7 reveals, however, that only the first few L-FEM observation vectors
exhibit this “correct” behavior. Roughly, the first half j < N/2 of the observa-
tion vectors appear at least tolerable, whereas the remaining, j > N/2, vectors
are particularly problematic as they contain no components of the highest fre-
quencies (notice all columns greater than 42 are approximately zero). What we
see here is a consequence of the scheme’s numerical dispersion relation: the long
wavelength components travel at near correct phase speed whereas components
at shorter wavelengths travel too slow (see Figure 3.15). This behavior leads to
observation of frequencies which are lower than the correct ones.

The close relation between the observation and the dispersion relation is
obvious. The observation of the sine basis may, in fact, be considered a practical
verification of the dispersion relation shown on Figure 3.15. Figure 4.8 shows
the absolute value |βcos

jk + iβcos
jk | of the coefficients (.), where i is the complex

unit, for P 0 observations made from L-FEM discretization with four different
Courant numbers µ, that is, with different time step sizes ∆t. On the images
are also shown the phase velocities as functions of j. The largest coefficients
on each image follows the phase velocity line quite clearly. Also the dissipation
plays a role on both Figure 4.8 and on Figure 4.7. A gray “fog” appears in
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Figure 4.8: Coefficient images similar to Figure 4.7 with P 0 observations of the sine
basis. All are discretized with L-FEM and trapezoidal time integration
but with different Courant numbers µ. The phase velocity from Fig-
ure 3.15 is also shown in each case.

the leftmost part (the lowest coefficients) on each image; this “fog” is caused by
dissipation. Another damping effect can be seen by the diminishing strength of
diagonal. Finally, we see a smearing effect on the black diagonal already after
a few sinusoids; this is also partly due to dissipation. Damping is a well-known
property of lower order schemes such as the L-FEM.

Collectively, these effects result in bad conditioning of the observation matrix
P—and increasingly so for finer grids. Particularly in the situations µ = 0.6
and µ = 0.8 we loose orthogonality on the highest modes in the observation
space P (X )—the “angle” between the last, high-frequency, observations goes
towards 0 for h → 0. This corresponds to—almost—loosing a dimension in the
observation space. A similar thing happens in the cases µ = 0.2 and µ = 0.4—at
least as long as we do not allow longer control time than T = 2. The faster
phase velocity leaves small “gaps”, or rarefaction areas, in the spectrum which
also deteriorates the orthogonality in the observation space. The described loss
of orthogonality will lead to ill-posedness when we later consider the inversion
of matrix L derived from the observation map.

Reconstruction and matrix L

We continue with the reconstruction by R from the above found vectors of
observation, P 0(es

j) and P 1(es

j) for j = 1, . . . , N . Discrete reconstruction (.)
consists of solving the backwards wave equation (.) with a Dirichlet boundary
condition applied by Bh which defined in (.) for L-FEM.

We compute the elements of L by direct assembly (.)—still using the sine
basis. Results very similar to the ones below would be seen with inner-product
assembly; see Section 4.2.5 for the use of this technique. The inner-products
used in direct assembly (.) are defined in (.) and (.) for L-FEM.
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Figure 4.9 shows the eigenvalues of the constructed L alongside the analytic
values. The lower plot displays the relative error for the approximation of each
eigenvalue. The use of the sine basis results—theoretically—in a diagonal L.
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Figure 4.9: Logarithmic plot of the eigenvalues of L for T = 2 with L-FEM approx-
imation (N = 49, µ = 0.6) marked with dots. The triangles show the
eigenvalues obtained with normalized sine basis eeLs

j = eLs
j /

‚‚eLs
j

‚‚
L2(Ω)

.

The solid line shows the exact eigenvalues. The relative error is shown
with dots and triangles, respectively, in a separate plot below.

The eigenvalues of L are therefore the union of the eigenvalues of L1 and L4.
In this way, the left half of Figure 4.9 shows the eigenvalues of L1, the right
shows the eigenvalues for L4.

Only the first few eigenvalues (long wavelengths) of L1 are approximated
reasonable well. The same holds for the eigenvalues of L4. Then up till around
2/3 (long to moderate wavelengths) of the eigenvalues for both L1 and L4 are
tolerable. The remaining, though, are quite bad; that holds again for both
L1 and L4. And for increasing wavenumber j it gets increasingly worse and
the eigenvalues quickly drop to near-zero values. The smallest eigenvalues of
L have dropped far below the bottom of the plot in Figure 4.9 and are of the
order 10−10.

These rapidly decaying eigenvalues which makes L very ill-conditioned has
to do with numerical dispersion, yet it cannot be explained by the phase velocity
alone. Consider Figure 4.10 which shows the first N eigenvalues, correspond-
ing to the left half of Figure 4.9, of L obtained with four different Courant
numbers µ = 0.2, 0.4, 0.6 and 0.8. On the right side of the figure, we see the
group velocities (see Figure 3.17) multiplied by the exact eigenvalues. The close
connection between the decaying eigenvalues and the group velocity seems ev-
ident, although not as simple as the relation between the phase velocity and
P 0 observation. The group velocity tends to zero for j → N for all L-FEM
discretizations presented in Section 3.5.1. This manifests itself in unphysical
periodicity seen, e.g., for P 0(es

N − es
(N−1)) = P 0(es

N ) − P 0(es
(N−1)).

The huge condition number of L, which in this case with N = 49, µ =
0.6, T = 2 is cond(L) ≈ 1018, is a major obstacle for obtaining useful solutions
to the matrix equation (.). It is quite easy to see from Figure 4.9 that any
short wavelengths in the initial data [u1,−u0]T will be blown up and dominate
the solution [w̄0, w̄1]T completely.
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Figure 4.10: Left: Logarithmic plot of the eigenvalues of L1 computed with L-FEM
with respectively µ = 0.2, 0.4, 0.6 and 0.8. Right: The exact eigenvalues
times the group velocity for the same four schemes.

A simple filter

It is clear by now that some filtering or regularization is needed in order to
restore useful solutions. Several things can be done as explained in Zuazua’s
review [Zua05]; among these are Fourier filtering, Tychonoff regularization or
bi-grid algorithms.

We have formulated L in sine basis, and it allows us to construct a family
of reduced matrices L(Nc)

of size 2Nc × 2Nc, where Nc is a cut-off number 1 ≤
Nc ≤ N . Each of the four sub-matrices of L(Nc)

consists of the Nc first elements
of the first Nc columns of L. Let Ln

(Nc)
, n = 1, 2, 3, 4 be the four sub-matrices

of L(Nc)
. Then L(Nc)

can be constructed from the sine observations by the inner
product assembly

(L1
(Nc)

)ij = 〈P 0es
j , P

0es
i 〉T (L2

(Nc)
)ij = 〈P 1es

j , P
0es

i 〉T
(L3

(Nc)
)ij = 〈P 0es

j , P
1es

i 〉T (L4
(Nc)

)ij = 〈P 1es
j , P

1es
i 〉T .

}
(.)

for i, j = 1, . . . , Nc. It can be defined in the same way for direct assembly.

Consider the family of reduced matrices {L(Nc)
}Nc≤N . The full matrix L is

restored by taking Nc = N , that is, L(N) = L. Figure 4.11 shows the condition
number of the complete family, Nc = 1, . . . , N , of reduced matrices L(Nc)

. It

cut-off Nc
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n
d
(L

)
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Figure 4.11: Logarithmic plot of the condition number of the reduced matrix L(Nc)

as function of the number of modes Nc. The dashed line shows the the-
oretical value.

illustrates the same problem with the highest modes as we studied in Figure 4.9.
We can only expect reasonable behavior of L if we discard the highest modes and
take, e.g., Nc = ⌊3/4N⌋ (largest integer less than 3/4N), when constructing
the reduced L(Nc)

.
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Eigenfunction controls

The approximation of L is not our ultimate goal, we are really looking for good
approximate controls. How well we have achieved this end can be assessed by
considering the set of what we will call eigenfunction controls. We define an
eigenfunction control ηj for j ∈ N as a control for either the data

u0(x) = 0, u1(x) = es
j(x),

or the data

u0(x) = es
j(x), u1(x) = 0.

We will focus here on controls for the latter since will need these in Chapter 5.
The controls are found by

ηj = −ΦΛ−1

[
0

−es
j

]
,

where Φ is the continuous observation operator (.) and Λ is the HUM op-
erator defined in (.). In the 1-d case with T = 2, the controls are easily
determined analytically as

ηex
j (t) = (−1)j+1

√
2

T
sin(jπt), j = 1, 2, . . . .

We note that these controls constitute a basis on B.
Consider the approximate eigenfunction controls

ηj = −P(Nc)
L−1

(Nc)

[
0

−es
j

]
, j = 1, . . . , Nc,

computed by the reduced matrix L(Nc)
introduced above also for T = 2.

We examine the coefficients of the L-FEM eigenfunction controls ηj with
respect to the basis of the exact eigenfunction controls ηex

k and call these coef-
ficients

βeig
jk = 〈ηj ,η

ex
k 〉T / ‖ηex

k ‖T , j, k = 1, . . . , Nc, (.)

where the vector ηex
k contains M discrete samples of ηex

j (t). We use a filter with
cut-off index Nc = 35 as it seems reasonable both in terms of the eigenvalues
(Figure 4.9) and the condition number of L (Figure 4.11). Approximate controls
computed with two different Courant numbers µ = 0.6 and µ = 0.2 are studied.

Figure 4.12 shows the spectrum, that is, the absolute value of the coeffi-
cients βeig

jk , of eigenfunction controls with µ = 0.6. The error of the obtained
coefficients is shown on Figure 4.13. Although not perfect, these results are fair
especially if we judge by how well the black diagonal is retained in Figure 4.12.
Also, the low frequencies show very little error as we see on the left part of the
error image in Figure 4.13. The central and lower right region on the error plot
does, however, reveal relatively large errors. The l2-error of the coefficients of
each L-FEM eigenfunction control (each row in the image) is plotted as function
of the index j in Figure 4.16. We will comment on this error after studying the
controls obtained with µ = 0.2.

Let us consider the spectrum of L-FEM eigenfunction controls with µ = 0.2
on Figure 4.14. The smaller Courant number means 3 times as many time steps
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Figure 4.12: The spectrum (.) of the eigenfunction controls ηj , j = 1, . . . , Nc

obtained by L-FEM with N = 49, Nc = 35 and µ = 0.6. The corre-
sponding numerical phase velocity is shown with a thin, solid line.
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Figure 4.13: log10 of the error on coefficients shown on Figure 4.12 with µ = 0.6.
The average l2 error is 0.476, and the average max-error is 0.371.

which would give more accurate results if it were not for numerical dispersion.
The coefficients on Figure 4.14 stray away from the diagonal just as we saw on
Figure 4.8(upper left) which is of course no surprise as we again consider the
observation of sinusoidal initial data. We see that the coefficients stick very
close to the phase velocity curve also shown on the figure. The corresponding
error is shown on Figure 4.15. The region around the diagonal is very dark since
the controls have a distinct frequency error.

Figure 4.16 displays the l2-error of the coefficients of each control j (each
row in the image) for both µ = 0.2 and µ = 0.6. On this figure, it is quite
clear that µ = 0.6 gives a better result than µ = 0.2. This is due to numerical
phase velocity of µ = 0.2 is too fast compared to the exact value. Notice that
the eigenvalues of L was, in fact, approximated better with µ = 0.2 than with
µ = 0.6 (Figure 4.10).
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Figure 4.14: Spectrum (.) of the eigenfunction controls ηj for j = 1, . . . , Nc ob-
tained by L-FEM with N = 49, Nc = 35 and µ = 0.2. The correspond-
ing numerical phase velocity is shown with a thin, solid line.
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Figure 4.15: log10 of the error on coefficients shown on Figure 4.14 with µ = 0.2.
The average l2 error is 0.999, and the average max-error is 0.834.
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Figure 4.16: l2 error of coefficients for each eigenfunction control ηj as function of
the index j for two different approximations with respectively µ = 0.2
and µ = 0.6 both with N = 49, Nc = 35, T = 2.
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An example with very little noise

Consider an example with T =
√

11 − e/3 ≈ 2.411. Allowing T > 2 relaxes
the problem a bit (and reduce the condition number of L), but the non-zero
elements stray away from the diagonal distinctive for L when T = 2. We keep
N = 49 and µ = 0.6. These choices result in a matrix L with condition number
3.24 · 1014 and eigenvalues very similar to those displayed in Figure 4.9. Let the
functions

u0 =
√

2 sin(5πx), u1 = 0,

be initial data for a control problem. We perturb u0 slightly by adding 0.01%
of random noise and call the perturbed data u0

ε. The spectrum of u0
ε consists of

a 1 at the fifth position and random values around 10−5 at all other places.
We sample u0

ε, solve the HUM problem (.) and compute the control (.).
We do the same—solve (.) and compute the control—with a reduced L(Nc)

un-filtered control

filtered control
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Figure 4.17: Control of u0 =
√

2 sin(5πx) with 0.01% noise computed by L (upper
plot) and by reduced L(Nc) with Nc = 36 (lower plot). L-FEM with
N = 49 and µ = 0.6 was been used in both cases and T =

√
11 − e/3.

The dashed line is the exact solution.

with Nc = ⌊3/4N⌋ = 36. Both computed controls can be seen in Figure 4.17.
The strong effect from the high-frequency components of the noise is evident for
the un-filtered control. The blow up is caused by the last, near-zero eigenvalues
of L. If we instead consider the accuracy of computed initial data w̄0 and w̄1

for the adjoint problem, the noise is even more pronounced. It is needless to
say that more irregular initial data or shorter control time T would render yet
worse approximate controls. For sufficiently bandlimited data, however, e.g.,
with bandlimit Nc = ⌊3/4N⌋, solutions computed by L or L(Nc)

would show no
real difference.

Asymptotic properties

The control time T influences the properties of the matrix L in an intuitive way.
The longer the time for observation the more we are able to observe and the
condition number of L decreases. But only slowly. And we wish not to relax
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Table 4.1: Amplitude error of computed solutions with full matrix L and reduced
L(Nc) with Nc = 36. w̄0

h and w̄1
h are the linear splines generated by the

vectors w̄0 and w̄1. The norms are computed by the approximations
(.) and (.).

full, N reduced, 3/4N∥∥w̄0
h − ϕ̄0

∥∥
L2(Ω)

9.61e+04 2.86e-02
∥∥w̄1

h − ϕ̄1
∥∥

L2(Ω)
3.40e+05 3.90e-02

‖kh − κex‖L2(0,T ) 2.05e+00 3.74e-02

the control time just to pay regards to specific numerical effects; T = 2 is in
many ways the most interesting case.

Unfortunately the spacing h has a much stronger effect on the conditioning
of L—the condition number increases dramatically with decreasing h. Further-
more, the cost of computing L rapidly becomes massive when h decrease as
it requires the solution of 2 or 4N wave equations (depending on the type of
assembly procedure) of increasing size.

It becomes infeasible to construct the matrix very quickly—even in this 1-d
case. We may instead resort to an iterative method for the solution of a large
problem. Section 4.3 is dedicated to the conjugate gradients method for the
iterative solution of the problem (.). We postpone convergence analysis of
approximate controls to that section. We may, at this point, assume convergence
of controls for properly bandlimited initial data.

Changing the temporal spacing (for fixed h), that is, the Courant number µ
also has an effect on the matrix L and the control. But as we saw in the study
of eigenfunction controls computed with two different Courant numbers, this
effect is highly dependent on the time integration scheme. Decreasing µ does
not necessarily give more accurate results, but neither does it necessarily lead
to worse conditioning of L. One most consult the scheme’s numerical dispersion
relation before drawing any conclusions about asymptotic properties for µ.

Concluding remarks

We have used L-FEM as semi-discretization with trapezoidal time integration in
this section. Before we could engage in the construction of L, we had to choose
its basis. We chose the sine basis over the canonical due to the former’s ability to
separate well and poorly resolved waves. The N linear approximants represented
the same N continuous sine functions unambiguously in the frequency domain;
the amplitude errors were significant, though.

We studied the P 0 observation of the sines basis and, we found that much
of the frequency behavior was shaped by the numerical phase velocity; the
effects of numerical dissipation were also apparent. We considered schemes with
different Courant numbers and saw, for different reasons though, that numerical
dispersion threatened the orthogonality in the observation space.

The matrix L was constructed by direct assembly, and we compared the nu-
merically found eigenvalues with the exact ones. The eigenvalues corresponding
to low wavenumbers were approximated well, the midrange wavenumbers toler-
able, but the ones corresponding to the high wavenumbers were very poor and
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tended to zero rapidly. The near-zero eigenvalues caused the condition number
of L to rocket leaving the solution extremely sensitive to noise (see Figure 4.17).
These effects were attributed numerical group velocity which also tends to zero
for high wavenumbers. The formulation in sine basis gave rise to a simple filter-
ing procedure consisting of truncating the assembly of each of the sub-matrices
Ln, n = 1, 2, 3, 4 after Nc basis functions. This Fourier filter required therefore
only Nc/N times the computations of the full matrix.

We used the filter when we computed a set of so-called eigenfunction controls.
We computed these controls with two different Courant numbers µ = 0.2 and
µ = 0.6, and studying the spectrum of the results showed that numerical phase
velocity has a major impact on the quality of the controls. Not knowing about
the effects of numerical dispersion, one might think that the better temporal
resolution of µ = 0.2 would ensure better results. This was, however, not the
case. The results from µ = 0.6 were better due to better numerical phase
velocity. A filter will eliminate the effect of the vanishing group velocity, but
even small inaccuracies in the phase velocity will come out strong as frequency
error for the computed controls.

4.2.5 Constructing L with DG-FEM

Section 3.3 introduced the discontinuous Galerkin-FEM as a method for semi-
discretization. We shall use the DG-FEM scheme formulated for characteristic
variables, which was specified on page 58 ff, with the 4’th order LSERK time
integration (see page 43) with Courant number µ = 0.6.

We will primarily use a discretization with K = 10 elements and fifth order
local polynomial approximation, Np = 6. This semi-discretization has K · (Np−
1)−1 = 49 inner nodes (recall element endpoints are defined twice) which equals
the number of inner nodes used in the L-FEM discretization in the previous
section. We use N for the number of inner nodes K · (Np − 1) − 1. Four other
discretizations, all with exactly N = 49 inner points, will be used too, but to a
lesser extend. All five grids are presented below

grid 0 : Np = 6, K = 10,

grid a : Np = 2, K = 50,

grid b : Np = 3, K = 25,

grid c : Np = 11, K = 5,

grid d : Np = 51, K = 1.

When nothing else is mentioned we use grid 0 (shown in bold face). Let in the
following xk

i denote the i’th node, 1 ≤ i ≤ Np, on the k’th element, 1 ≤ k ≤ K.

We wish to represent the continuous sine basis (.) on a DG-grid. We have
already argued for the use of a sinusoidal basis (see discussion in Section 4.2.3),
thus we also acknowledge that other could have been used, e.g., a basis con-
structed from the local polynomial basis. But the author had only limited
success with this.

The sine basis

The DG-formulation suggests two different ways of representing the continuous
sine basis (.): a nodal and a modal. The nodal is based on interpolation
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after sampling of the continuous function es
j in the grid points xk

i

es
j(x

k
i ) =

√
2 sin(jπxk

i ), j = 1, . . . , N.

We collect all these values in the j’th vector

ess
j = [ess,1

j . . . ,ess,K
j ]T, e

ss,k
j = [es

j(x
k
1), . . . , es

j(x
k
Np

)]T, (.)

where the superscript ss is for sampled sine. We obtain an order Np−1 polyno-
mial on each element D

k by the interpolation Lagrangian polynomials ℓi from
the nodal values of the vector e

ss,k
j . The collected piecewise polynomial becomes

ess
j =

K⊕

k=1

ess,k
j in Ω, ess,k

j (x) =

Np∑

i=1

es
j(x

k
i )ℓi(x), x ∈ D

k. (.)

We will refer to this sampled approximation of the sine basis function es
j by the

nodal “basis” vector ess
j or by the function ess

j .

The normalized Legendre polynomials P̃n constitute an orthonormal basis on
L2(−1, 1). It allows us to expand any L2-function on element D

k in this basis by
mapping to the reference element I = [−1, 1]. Consider the sine basis function
es
j on element D

k = [xk
L, xk

R] mapped to reference element I

es
j

∣∣
Dk(r) =

√
2 sin

(
jπ(xk

L +
hk

2
(1 + r))

)
, −1 ≤ r ≤ 1.

We project this function onto the Legendre basis and obtain the coefficients

ê s,k
j,n = 〈es

j

∣∣
Dk , P̃n−1〉I, n = 1, 2, . . .

for the expansion

es
j

∣∣
Dk(r) =

∞∑

n=1

ê s,k
j,n P̃n−1(r).

The bi-linear form 〈·, ·〉I is the L2-inner product on the reference element. Let us
collect the Np first Legendre coefficients for all K elements in the modal vector

ê
ps
j = [ê ps,1

j , . . . , ê ps,K
j ]T, ê

ps,k
j = [ê s,k

j,1 , . . . , ê s,k
j,Np

]T, (.)

where the superscript ps is for projected sine. The corresponding nodal vector
is obtained by the Vandermonde matrix (.) and reads

e
ps
j = [V ê

ps,1
j , . . . ,V ê

ps,K
j ]T.

The truncated Legendre expansion leads to an order Np −1 polynomial on each
element D

k. We collect these in the approximating function

eps
j =

K⊕

k=1

eps,k
j in Ω, eps,k

j (r) =

Np∑

n=1

ê s,k
j,n P̃n−1(r), −1 ≤ r ≤ (.)

We will use the function eps
j or the vector e

ps
j to refer to this L2-projection of

the sine basis function es
j .
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Locally, on each element, the projection onto the space of Legendre poly-
nomials gives the “best” approximation in terms of minimal L2-error [HGG07].
The procedure does, however, not necessarily lead to continuous approxima-
tions and specifically not to zero values in the domain endpoints. Figure 4.18
shows an example with a projected and a sampled approximation of es

32 on a
part of the domain. Notice how the projected function deviate from zero at the

Close-up on two approximations of
√

2 sin(32πx) with Np = 6,K = 10

x

0 0.025 0.05 0.075 0.1 0.125 0.15
-2

-1

0

1

2

Figure 4.18: A close-up on element D
1 and the left part of D

2 for two approxima-
tions of es

32 =
√

2 sin(32πx)—one based on sampling ess
32 (dashed, ∗)

and one based on projection eps
32 (solid, o) for grid 0. Compare with the

exact function (dotted line).

left endpoint and the significant discontinuity at the interface between D
1 and

D
2. It seems reasonable from the plot, though, that this function should have

smaller L2-error compared to the sampled approximation.

We have now defined two piecewise polynomial approximations to the sine
basis function es

j : the sampled ess
j and the projected eps

j . Before moving on
to using them as basis for the construction of the matrix L, we shall assess
their quality as approximations to es

j . Sine functions with long wavelengths
(small j) compared to the number of nodes N are expected to be approximated
quite well by piecewise polynomials. The theory of polynomial approximation
tells us, on the other hand, that approximation of sinusoidals of short wave-
lengths (large j) compared to N should be handled with caution. In general
4 points-per-wavelength are required to obtain exponential decay of coefficients
for approximation with polynomials [HGG07].

The L2-norm of the approximation error made when approximating the j’th
sine basis function for grid 0 is shown on Figure 4.19. The projected data shows
smaller error than the sampled as we would expect—the difference is small,
though.

Figure 4.20 shows the approximation error for the sampled data on all five
grids. From about j = 30 onwards the error for all grids are approximately the
same. The approximation error of the projected sinusoids for the other four
grids behave very similarly; the plots have been omitted for brevity.

Let us now consider the behavior of the two approximations in Fourier
domain. We seek polynomial approximations of the j’th sine function which
demonstrate corresponding spectral properties. Recall the standard expansion

f(x) =
∞∑

i=1

f̂s
i es

i(x), f̂s
i = 〈f, es

i〉L2(Ω), i = 1, 2, . . .
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basis vector j

Relative approximation error (L2-norm), Np = 6,K = 10

sampled basis

L2-projected basis
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10−2

100

Figure 4.19: The L2-norm of the error approximating es
j by sampling, ess

j , and L2-
projection, eps

j , for grid 0.

Relative approximation error (L2-norm)

basis vector j

Np = 2

Np = 50

5 10 15 20 25 30 35 40 45
10−8

10−6

10−4
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100

Figure 4.20: The L2-norm of the error approximating es
j by sampling for all five

grids.

that we saw on page 66. We have determined the coefficients f̂i for the approx-
imating functions f = ess

j and f = eps
j for i, j = 1, . . . , N for all five grids in

Figure 4.21 and 4.22. All polynomials have higher frequency components as
well, but they are not relevant here and have been omitted from the plots.

The images can be compared with the left side of Figure 4.3 which showed the
spectrum of the L-FEM approximation of the same sine basis. Not surprisingly,
the left plot of Figure 4.21(a) shows clear resemblance with Figure 4.3; they
both display coefficients found from linear approximation of the sampled sine
functions on an equidistant grid with N = 49 grid points. We see again only
diagonal values and that the values of the coefficients decrease for large j (turns
from black to gray on the plots).

The quadratic polynomial approximations of grid b gives rise to unwanted
ambiguity for j > 25 as seen on left plot on Figure 4.21(b). By ambiguity we
mean that the polynomial approximation of sinusoid es

j with large wavenumber,
say j = 27 will “look like” a combination of the 27’th and the 23’rd mode.
This ambiguity is not seen when approximation sinusoids by linear splines on
an equidistant grid which Figure 4.3 also showed. We expect the boundary
observation, P (ess

27), to contain the two components as well.

The same phenomena can be seen from about j = 25 onwards in Fig-
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(a) Grid a: Np = 2, K = 50.
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(b) Grid b: Np = 3, K = 25.
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(c) Grid 0: Np = 6, K = 10.

Figure 4.21: Absolute value of the sine spectrum of the functions ess
j (left side) and

eps
j (right side) for three different grids. The piecewise polynomial ess

j

is induced by sampling (.) and eps
j is made from projection (.).

On all six images each row shows the coefficients 〈fj , e
s
i〉L2(Ω) of the j’th

approximate basis function. A black square indicates the value of the
corresponding coefficient is 1; smaller values are shown in gray.
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(a) Grid c: Np = 11, K = 5.
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(b) Grid d: Np = 51, K = 1.

Figure 4.22: The sine spectrum of the functions ess
j (left side) and eps

j (right side) for
grid c and d. See caption of Figure 4.21 for further explanation.

ure 4.21(b,c) and 4.22(a). The periodicity of the “ambiguity pattern” is related
to the number of elements. Instead of having the same wavelength in all of
Ω, the wavelength of ess

j with large j varies over Ω. The phenomena is not
as pronounced for eps

j since the projected sine is not forced to be continuous
across element interfaces (see also Figure 4.18). This wavelength variation of
the sampled sines will carry over to the observation and cause mixed frequencies.

We need to specify how we determine approximations to the coefficients f̂s
i

for a given DG-function f identified with its vector of nodal values f . We define
for i = 1, . . . , N the approximate coefficients

f̂ ss
i = 〈f ,ess

i 〉0, f̂ps
i = 〈f ,eps

i 〉0,

from which we synthesize by

f(x) ≈
N∑

i=1

f̂ ss
i ess

i (x), f(x) ≈
N∑

i=1

f̂ps
i eps

i (x).

where the inner product 〈·, ·〉0 is defined in (.).
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Regardless the choice of representation technique—sampling or projection—
roughly the first half of the sine basis functions appear reasonably approximated
by local polynomials. This is in agreement with an asymptotic result in [HGG07]
saying 4 points-per-wavelength are required to obtain exponential convergence.
Judging from the number of off-diagonal elements in the spectrum images, Fig-
ure 4.21 and 4.22, and the smaller L2-error, we should be in favor of projecting
our sine basis onto the local Legendre polynomials instead of sampling. That
this projection is not necessarily zero on the domain boundary could, on the
other hand, be a problem to the observation of the sine basis.

Observation of the sine basis

Observation consists of (1) solution of the wave equation (.) and (2) approxi-
mation of the normal derivative, Ch. The output matrix Ch, which is based on
exact differentiation of the underlying polynomial, was specified in (.). We
will call it the polynomial derivative.

Results found by polynomial derivative will be compared to the approxima-
tion found by the simple first order finite difference

∂yh

∂n

∣∣∣
Γ0

≈
yh(xK

Np
) − yh(xK

Np−1)

xK
Np

− xK
Np−1

(.)

where xK
Np

= 1 is the right endpoint (the last node of element D
K), xK

Np−1 is
its nearest neighbor and yh is the approximate solution. Notice that since we
enforce boundary conditions only weakly yh(xK

Np
) is not necessarily zero. We

will refer to this approximation by finite difference or fd. derivative.

Before going into the actual observation, we shall assess the quality of the deriva-
tives for the two sine approximations ess

j and eps
j . Approximation by polynomial

derivative is highly accurate when applied to the sampled basis with small j as
can be seen on the left side of Figure 4.24. For non-smooth functions, on the

|d
y
/d

n
|

basis vector j

Normal derivative of sine basis vectors at x = 1

proj.,fd

sampled, fd.

proj., poly.

sampled, poly.

5 10 15 20 25 30 35 40 45

101

102

103

Figure 4.23: The absolute value of four different approximations to the normal
derivative of the sine basis vectors es

j , j = 1, . . . , N at x = 1. Polynomial
differentiation or first order finite differences has been used to approx-
imate the derivative for the projected and the sampled sine basis. The
dotted line is the exact derivative.

contrary, the approximation is not good. Higher order polynomial representa-

Jesper Sandvig Mariegaard Ph.D. dissertation, v. 1.1, September 7, 2009



86 Chapter 4. Numerical HUM

tions of non-smooth functions are well-known to exhibit undesirable behavior
at endpoints. This effect is aggravated further by taking the derivative.

Figure 4.23 shows the absolute value of approximate normal derivatives
found from the sampled or projected sine basis with either polynomial or first
order finite difference approximation. We see how the polynomial derivatives
show strong over-shooting for j > 25. The two approximations based on the
projected basis show a dramatic drop in size for the highest basis vectors.

We find the relative error of the four approximate derivatives on Figure 4.24.
It is remarkable to note that the simple first order approximation of the deriva-

re
la

ti
ve

er
ro

r

basis vector j

d/dn of sin(jπx) at x=0
proj.,fd

sampled, fd.

proj., poly.

sampled, poly.
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10−1
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Figure 4.24: The relative error of four different approximations of ∂/∂n at x = 1 for
the sine basis. Polynomial differentiation or first order finite differences
has been used to approximate the derivative for the projected and the
sampled sine basis. The inlet is a zoom of the relative error from 12 to
49 with different scaling on the ordinate axis.

tive gives the most satisfactory result after, say, j = 25. Notice also the disap-
pointing accuracy for the projected basis even for quite low numbers of j.

We now return to the observation of our discrete sine basis. We consider obser-
vation with observation time T = 2, and we concentrate on P 0 observation; the
results for P 1 observation have been omitted as they are very similar. The com-
puted discrete observation may be compared to the exact observation (.).
We will do this in two ways: We first examine the “spectrum” of the discrete
observation by determining the coefficients with respect to the exact temporal
basis, (.), for each observation P 0es

j . Secondly, we will examine the L2-norm

of the amplitude error for each observation P 0es
j . We compare results obtained

from the sampled basis (.) and the projected basis (.) calculated by poly-
nomial (.) and fd. derivative (.).

Recall the exact temporal basis vectors p0
i and p1

i defined in (.) and the
following coefficients of P 0 observation

βcos
ji =

〈
P 0es

j ,p
0
i

〉

T

/∥∥p0
i

∥∥2

T ,

βsin
ji =

〈
P 0es

j , iπp1
i

〉

T

/∥∥p0
i

∥∥2

T ,

for i, j = 1, . . . , N . Consider the spectrum images of Figure 4.25 with the coef-
ficients βcos

ji and βsin
ji computed for the P 0 observation of the sampled sines ess

j

for j = 1, . . . , N with respectively polynomial and finite difference derivative.
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The observation of about the first half of the sampled basis vectors seems satis-
factory by either differentiation technique. The absolute value of the coefficients
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sin

b
as

is
ve

ct
or

j

exact temporal basis

10 20 30 4010 20 30 40

10

20

30

40

10

20

30

40

(a) Polynomial derivative
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(b) Finite difference derivative

Figure 4.25: Absolute value of βcos
ji and βsin

ji coefficients of P 0ess
j with respect to the

exact temporal cosine basis (left) and sine basis (right) where ess
j is the

sampled sine basis. (a) shows the result with polynomial derivative
(.) and (b) with finite difference derivative (.).

for finite difference derivative (a) are lower than the ones for polynomial differ-
entiation (b) for j > 25 as we would expect from Figure 4.23. Notice in both
cases the very close resemblance with the pattern from Figure 4.21(c). Basis
vectors with j greater than 30 appear not solely by “their own” wavenumber
but as a linear combination of more than one. This combination carry over to
the observation as we anticipated above. Figure 4.25 also shows a dissipative
smearing effect on the high-frequency components; it is worth noticing that it
happens later than we saw for L-FEM on Figure 4.7.

The frequency plots on Figure 4.26 of the discrete observations of the pro-
jected sine basis (.) show also a pattern inherited from their basis vectors
(see right plot in Figure 4.21(c)). The ambiguity patterns are less pronounced
than for the sampled basis, but the failure to represent the high-frequency ob-
servations is unfortunately intact. The space of observations should cover all
frequencies up to N for L to be consistent with Λ (for N -bandlimited initial
data). Both Figure 4.25 and 4.26 show, however, unfortunate lacks in the high
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Figure 4.26: Absolute value of βcos
ji and βsin

ji coefficients of P 0e
ps
j with respect to the

exact temporal cosine basis (left) and sine basis (right) where e
ps
j is the

projected sine basis. (a) shows the result with polynomial derivative
(.) and (b) with finite difference derivative (.).

frequencies and just like L-FEM we loose orthogonality in the observation space.

Figure 4.27 shows the L2-norm of the relative amplitude error for each basis
vector. Notice that even small errors in frequency comes out very strongly on
this plot. What is more interesting, though, is that amplitude errors of the
projected and the sampled basis are almost identical in spite of their different
behavior in the frequency domain. This holds for both approximate derivatives.

It seems, at this point, that the polynomial derivative delivers better results
than the finite difference derivative especially for long wavelengths as we see on
Figure 4.27. All approximations showed, however, the same problems for short
wavelengths which we saw on the right side of all spectrum plots in Figure 4.25
and 4.26.

Matrix L by inner-product assembly

Let us construct the matrix L by inner product assembly (.) with T = 2.
We need, for this purpose, the P 0 observation vectors examined above together
with the corresponding P 1 observations. L is computed for both the sampled
(.) and the projected sine basis (.).
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Figure 4.27: L2-norm of the relative error of the P 0 observation of each basis vector
for the sampled and projected basis with polynomial and finite differ-
ence derivative.

One way to examine the quality of L is to compare its eigenvalues with
the theoretical values. See Figure 4.28 for the eigenvalues of three different
approximate L. It seems that matrix L computed with the projected sine basis
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Figure 4.28: Eigenvalues of three different L all assembled via the inner-product
technique shown on logarithmic scale. The values from index 1 through
49 correspond to the eigenvalues of L1 whereas index 50 to 98 corre-
spond to the eigenvalues of L4. The dotted line shows the exact eigen-
values. The plot in the bottom shows the relative error also on logarith-
mic scale.

performs marginally better than the matrix constructed via the sampled basis.
Both of these are determined with polynomial derivatives. The finite difference
derivative clearly results in less accurate eigenvalues compared to the results
obtained by polynomial derivatives (the fd. derivative for the projected basis
have been omitted from the plot—it behaves very similar to the fd. derivative
of the sampled basis). This poorer behavior is a consequence of the regularizing
effect of the finite difference derivative—see Figure 4.23.

The first 10 eigenvalues computed with polynomial derivative are quite ac-
curate compared to those obtained by L-FEM shown on Figure 4.9. The error
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levels for moderate wavenumbers are approximately the same, around 10%, for
DG-FEM and L-FEM.

Let us again study the family of reduced matrices L(Nc)
obtained by (.)

where Nc is the cut-off index 1 ≤ Nc ≤ N .
Consider five reduced matrices L(Nc)

all with cut-off Nc = 20, but computed
on the five different grids that we introduced on page 79. The first Nc eigenval-
ues of L(Nc)

, corresponding to the eigenvalues of L4
(Nc)

, are shown on Figure 4.29;
the sub-matrix is of most interest since it will be needed in Chapter 5. The

er
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index

Eigenvalues of L4 for different grids
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Figure 4.29: The error for the eigenvalues of the inner product assembled L4
(Nc)

with
Nc = 20 for grid a (on top), b, 0, c and d (lowest) that respectively has
polynomial order 1,2,5,10 and 50.

higher the order, the better the eigenvalues. The discretization with K = 1
polynomial of order (Np − 1) = 50 gives eigenvalues with a general error level
as low as 10−10. This “spectral” accuracy has its price in terms of computation
time; the computation takes about 10 times as long as with our standard 5’th
order discretization due to restriction on the time step size by stability concerns.

The operator Λ is a positive, self-adjoint operator and its matrix approxima-
tion should therefore be symmetric and positive definite. Since L is assembled
by inner-products (.) we are guaranteed symmetry by construction. The
positive definiteness is, however, not ensured by construction. Let us use the
ratio between the number of non-positive eigenvalues and the total number of
eigenvalues as a measure of lack of positive definiteness. Figure 4.30 displays 1
minus this ratio for L(Nc)

as a function of Nc. In all three cases shown on the
figure, the first negative eigenvalue for L(Nc)

occurs for Nc = 34.
Figure 4.31 shows the condition number of the reduced L(Nc)

as a function
of the cut-off number Nc. Until Nc = 25 the condition number scale as the
theoretical condition number (πNc)

2 (from the exact eigenvalues), but for larger
Nc it increases dramatically due to the near-zero eigenvalues of L4

(Nc)
. This is

the case for all three approaches. The corresponding condition number of L(Nc)

for L-FEM, which we examined in Figure 4.11, followed the theoretical value up
to larger Nc.

Matrix L by direct assembly

Let us now construct L by direct assembly (.) for the sampled and the
projected basis. We do this for polynomial derivatives alone; finite difference
derivatives lead to results of poorer quality and are no longer considered. Recall
that direct assembly involves a reconstruction process after observation. The
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Figure 4.30: The degree of positive definiteness of L(Nc) versus cut-off number Nc.
The measure is simply 1 minus the ratio between the number of non-
positive eigenvalues of and the total number of eigenvalues.
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Figure 4.31: Logarithmic plot of the condition number of the reduced matrix L(Nc)

as function of the cut-off number Nc. The dotted line depicts the theo-
retical condition number justified by the corresponding exact eigenval-
ues.

Dirichlet data is applied through the numerical flux as discussed in Section 3.3.3,
that is, in our case with an upwind flux as described by Bh in (.). We use
the inner product approximations (.) and (.).

The continuous HUM relies on the special relationship between observation
Φ and reconstruction Ψ: they are each other’s adjoint. This relation was kept
(at large) for approximation with L-FEM due to the “symmetry” between mea-
suring Neumann data and applying Dirichlet data. This simple “symmetry”
does not hold for DG—at least not in the DG-formulation used here. This does,
however, not necessarily mean that L will not be symmetric, but that the semi-
discretization does not guarantee it. The symmetry of L is important, though,
not only for the sake of mimicking the properties of Λ but also if we want to solve
the control problem iteratively by efficient algorithms like conjugate gradients.
We will return to this in Section 4.3.

Before studying the symmetry of the constructed L, we shall examine its
eigenvalues in Figure 4.32. The eigenvalues are quite similar to those of the
inner-product assembled L which we saw on Figure 4.28. Roughly half the
eigenvalues—those corresponding to the longest wavelengths—are good whereas
the rest drop dramatically in size (far below the bottom figure) causing severe
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Figure 4.32: Eigenvalues of two different L constructed by direct assembly shown on
logarithmic axis. The dotted line shows the exact eigenvalues. The plot
in the bottom shows the corresponding relative error also on logarith-
mic scale.

problems for the solution of the matrix equation (.). When “inverted”, the
matrix will blow up any short wavelength component of the input. Different
strategies can be applied to meet this difficulty as we discussed previously. We
will once more study the family of reduced matrices L(Nc)

.
Figure 4.33 shows a simple measure of the degree of positive definiteness. It

seems almost identical to the plot for the inner-product assembled matrix on
Figure 4.30. The matrices L(Nc)

are positive definite for all Nc ≤ 32.
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1

Figure 4.33: The degree of positive definiteness of L(Nc) versus cut-off number Nc.
The measure is 1 minus the ratio between the number of non-positive
eigenvalues of and the total number of eigenvalues.

We also measure the degree of symmetry of L(Nc)
as shown on Figure 4.34.

It is a simple measure reasoning that if a matrix A is symmetric the norm∥∥A − AT
∥∥ is zero, and the norm is one if A is anti-symmetric AT = −A. The

measure is

Degree of symmetry = 1 −
∥∥A − AT

∥∥
‖A + AT‖ ,

which is 1 for symmetric matrices and 0 for the opposite case. The choice of
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Figure 4.34: Degree of symmetry, 1 −
‚‚A − AT

‚‚ /
‚‚A + AT

‚‚, of reduced L(Nc) as a
function of the cut-off number Nc.

norm obviously effects the measure. We have used the largest singular value-
norm.

99% symmetry is retained uptil Nc = 20 whereas Nc = 25 allows almost
95% symmetry. It decays faster from here and more so for L made from the
projected basis than for L made from the sampled basis.

The condition number of L(Nc)
grows fast after Nc = 25 for increasing Nc—

see Figure 4.35—again very similar to the situation for the inner-product as-
sembled L(Nc)

.
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Figure 4.35: Logarithmic plot of the condition number of the reduced matrix L(Nc)

as function of the cut-off number Nc. The dotted line shows the theo-
retical condition number dictated by corresponding exact eigenvalues.

We conclude that there is only very little difference between the results
obtained by inner product assembly and by direct assembly when measuring
on the eigenvalues and condition numbers. The inner product assembled L is
symmetric by construction. This section shows that the direct assembled L is
not symmetric. We need to reduce it quite a lot to get a matrix which is almost
symmetric. This lack of symmetry is an unfortunate drawback when comparing
to L-FEM.
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Eigenfunction controls

We shall now study the quality of the eigenfunction controls that DG-FEM
produce. Let ηj be the control

ηj = −P(Nc)
L−1

(Nc)

[
0

−es
j

]
, j = 1, . . . , Nc.

We consider two different discretizations, grid 0 and grid c, and use Nc = 35
as cut-off index in both cases. The choice of Nc = 35 is made for the sake of
comparison with L-FEM, if this had not been in mind, the approximation of
sines (Figure 4.19) and the eigenvalues of the computed L would have suggested
Nc = 30.

The βeig
jk coefficient for the discretization with Np = 6,K = 10 (grid 0) are

shown on Figure 4.36. The corresponding errors can be found on Figure 4.37.
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Figure 4.36: Spectrum (.) of the eigenfunction controls ηj for j = 1, . . . , Nc ob-
tained by Np = 6, K = 10 and Nc = 35.

We see that the result are quite accurate in most of the spectrum, but also that
errors become large for j, k > 25. This suggests that a little more filtering would
be a good idea here—decrease the cut-off index to an Nc between 25 and 30.
Compare the images with those for L-FEM in Figure 4.12–4.15. The results for
DG-FEM are clearly better. Notice also the ambiguity patterns on Figure 4.37
inherited from the representation of sines by local polynomials (see Figure 4.21).

Let us consider the control coefficients for the discretization with Np =
11,K = 5 (grid c) in Figure 4.38 and their error in Figure 4.39. The higher
order results in greater accuracy, yet it seems again that the filtering with Nc

is insufficient.

Finally, Figure 4.40 shows the l2 error on the coefficients for each eigen-
function control ηj as function of j. This plot shows the significantly lower
error for the controls from grid c compared to grid 0. Though, if the plot is
compared to Figure 4.16, which showed the equivalent l2-errors for L-FEM, it
becomes apparent that both sets of DG-FEM controls are much better than the
L-FEM ditto. The good dispersive properties of the DG-FEM discretizations
are evident.
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Figure 4.37: log10 of the error on coefficients shown on Figure 4.36 with Np = 6, K =
10.
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Figure 4.38: Spectrum (.) of the eigenfunction controls ηj for j = 1, . . . , Nc ob-
tained by Np = 11, K = 5 and Nc = 35.

Concluding remarks

We have used DG-FEM for the approximation of HUM boundary control in
this section. We considered five different discretizations—five grids—ranging
from low to high order, but all with N = 49 inner grid points. Two different
polynomial representations of the sinusoidal basis were suggested: a sampled
sine and a projected sine. The approximation by higher order polynomials gave
rise to, what we called, “ambiguity patterns” in the frequency images. These
were more pronounced for sampled than for the projected sines.

The observation of both sine representations was carried out with two dif-
ferent approximations for the normal derivate: one based on the differentiation
of the underlying local polynomial (called polynomial derivate) and one based
on a simple first order finite differences (called fd. derivative). The former is
the most natural for the DG-formulation, but it has deficiencies when the order
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Figure 4.39: log10 of the error on coefficients shown on Figure 4.36 with Np =
11, K = 5.
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Figure 4.40: l2 error of coefficients for each eigenfunction control ηj as function of
the index j for two different discretizations ,respectively, Np = 6, K =
10 and Np = 11, K = 5 both with Nc = 35, T = 2.

of the local polynomial goes up—as when approximating sinusoids with mod-
erate to high wavenumbers. However, the fd. derivative did not remedy this
and was therefore rejected. The remaining investigations were carried out using
polynomial derivatives; determining the derivative remains a weak link, though.

The first half of the sine observations seemed quite good—in agreement with
the dispersion relation (Figure 3.9). But as the wavenumber count increased,
the situation worsened. The highest frequencies were not sufficiently present
(almost missing) which resulted in diminishing orthogonality of the observation
space for those frequencies.

We studied also the construction of L and its properties. The first 10 eigenval-
ues of L were quite accurate, the next 20 were on par with the L-FEM results,
while the remaining were bad. The convergence of the first 20 eigenvalues of L4

was demonstrated for increasing polynomial order; we even obtained “spectral”
accuracy by using grid d.

Both inner product and direct assembly of L were considered. Similar re-
sults were obtained and we therefore suggest the use of inner product assembly
since it requires only half the computations. It seemed that the problems, in
terms of rapidly growing condition number and lack of positive definiteness etc.,
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arose earlier for DG-FEM than for L-FEM. This called for a cut-off index no
higher than Nc = 30.

The eigenfunction controls ηj obtained with DG-FEM were far better than
those by L-FEM except for j > 25. For the discretization with Np = 6,K = 10
the first 10 eigenfunction controls were of good quality (l2-error less than 10−2),
but increasing the order to Np = 11,K = 5 gives at least 15 good eigenfunction
controls (l2-error less than 10−3). It should be noted that, in both these cases,
a smaller cut-off index Nc (around 25-30) is necessary for DG-FEM to render
reasonable results than for L-FEM (around 35).

Improvements and future work with DG-FEM for HUM

DG-FEM works quite well for HUM in the low wavenumber region, but it could
be improved for the midrange wavenumbers. We suggest below a few ideas for
improvement.

Prolate spheroidal wave functions. We have argued for the use of sine ba-
sis functions in relation to HUM. Global trigonometric functions are, however,
only poorly approximated by local polynomials when the wavelengths are short.
Prolate spheroidal wave functions [SP61] (hereafter PSWFs) may be used as
an alternative to polynomials for local approximation. PSWFs are very well-
suited for approximation of band-limited functions [XRY01]. They constitute a
complete orthonormal basis in L2(−1, 1) like the (normalized) Legendre poly-
nomials.

In practice, PSWFs are conveniently determined from series of Legendre
polynomials—the coefficients decay superalgebraicaly [XRY01]. By replacing
the local polynomial basis in the DG semi-discretization with PSWFs, the
method would be much better equipped for the sine basis. Quoting [Boy04]
PSWFs “oscillate more uniformly on x ∈ L2(−1, 1) than either Chebyshev or
Legendre polynomials” which was exactly what we missed in this section for
sine functions with relative short wavelengths.

Grid mapping. It is possible that the use of other interpolation points—like
the ones suggested in [KTE93]—instead of the LGL points used here, could
result in better resolution of trigonometric functions. In the article [KTE93] the
authors introduce a set of new interpolation points reducing the extreme values
of the differentiation operator and thereby allowing much larger time steps. The
new points are much more equally distributed which results in better resolution
properties. It is questionable, however, how much better approximations of
the sine basis functions this approach could lead to. The underlying basis is
still polynomial and one way or the other not ideal for the approximation of
trigonometric functions.

Use of local polynomial basis. If we let go of the sine basis, using a combina-
tion of DG’s local Legendre bases as basis for L might be a good idea. Globally
continuous combinations which are restricted to zero on the boundary would
possibly be a sensible choice. In this way we could still separate modes—only
now the basis would be local as well. The highest modes would still be causing
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trouble for the observation due to the differentiation (normal derivative at Γ0)
and the numerical dispersion.

4.3 Iterative HUM by conjugate gradients

The numerical solution of a wave equation of size N requires order MN3 floating
point operations (flops) where M = NT/µ is the number of time steps. We
need to solve 2N or 4N wave equations, depending on assembly technique, to
construct the matrix L. As the number of DOFs increases, it quickly becomes
very expensive to solve the control problem in this way. It is needless to say
that solving HUM-control problems by matrix assembling in 2- and 3-d will
rapidly become extremely demanding. To meet these difficulties, we need an
iterative—matrix-free—HUM solution.

The pioneering work by Glowinski, Li and Lions in [GLL90] on the numer-
ical approximation of HUM featured a conjugate gradient algorithm. Their
algorithm is in fact a preconditioned conjugate gradient method. This was not
explicitly mentioned in the paper, but a solution of a homogeneous Poisson
equation works as a sensible preconditioner for the algorithm. No other itera-
tive method for the solution of the HUM problem have been described in the
literature. The algorithm from [GLL90] have, however, been used in several
other works counting [GKW89], [AL98], and [CMM08].

The method of conjugate gradients [HS52] is an iterative method for solving
linear problems like the generic system

Ax = b,

where A is a symmetric, positive definite N ×N matrix. Solution by conjugate
gradients is a natural choice of method for HUM as the underlying operator Λ
is self-adjoint and positive. A “good” discretization should therefore lead to a
symmetric and positive definite matrix. The convergence of conjugate gradients
is fast if the eigenvalues of A are clustered (condition number is small), but if
this is not the case, a preconditioner Mp which “looks like” A might be helpful.
The preconditioned problem

M−1
p Ax = M−1

p b,

should be easier to solve and the matrix M−1
p A better conditioned. The per-

fect preconditioner is Mp = A−1 but this would require solving the full direct
problem. Using the diagonal of A (Jacobi preconditioning) or its approximate
eigenvalues, if they are known a priori, are other more practical possibilities.

4.3.1 The algorithm

Given discrete initial data [u1,−u0]T for the control problem (.), we aim at
solving the preconditioned HUM problem

[
M−1

p 0

0 I

] [
L1 L2

L3 L4

] [
w0

w1

]
=

[
M−1

p 0

0 I

] [
u1

−u0

]
, (.)

where the preconditioner Mp is an approximation to the Laplacian in a clamped
domain Ω as the eigenvalues of L1 are quite similar to those of the Laplacian. As
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as example will the L-FEM semi-discretization (.) lead to M−1
p = K−1M

where K is the stiffness and M the mass matrix.
We do not wish to construct the matrix L, but solve (.) by the following

algorithm.

Algorithm 4.1 (CG-HUM). Conjugate gradient solution of HUM-problem due to
[GLL90].

(w0
[0],w

1
[0]) ← (0, 0)

k[0] ← P (w0
[0],w

1
[0]) (observation)

(z1,−z0) ← R(k[0]) (reconstruction)
r0
[0] ← M−1

p (z1 − u1) (residual vector, preconditioning)

r1
[0] ← −(z0 − u0) (residual vector)

γ0 ← ‖(r0
[0], r

1
[0])‖

2
X (squared residual norm)

(e0
[0],e

1
[0]) ← (r0

[0], r
1
[0]) (steepest descent)

j ← 0
while (γj/γ0) < tol2 do

k̄[j] ← P (e0
[j],e

1
[j]) (observation)

(z̄1,−z̄0) ← R(k̄[j]) (reconstruction)
r̄0
[j] ← M−1

p z̄1 (preconditioning)

r̄1
[j] ← −z̄0

ρj ← γj / 〈(r̄0
[j], r̄

1
[j]), (e

0
[j],e

1
[j])〉X

(w0
[j+1],w

1
[j+1]) ← (w0

[j],w
1
[j]) − ρj(e

0
[j],e

1
[j]) (update initial data)

k[j+1] ← k[j] − ρj k̄[j] (update control)
(r0

[j+1], r
1
[j+1]) ← (r0

[j], r
1
[j]) − ρj(r̄

0
[j], r̄

1
[j]) (update residual vectors)

γj+1 ← ‖(r0
[j+1], r

1
[j+1])‖

2
X (squared residual norm)

(e0
[j+1],e

1
[j+1]) ← (r0

[j+1], r
1
[j+1]) + (γj+1/γj)(e

0
[j],e

1
[j]) (search direction)

j ← j + 1
end while

The action of the L operator is divided in observation by P and reconstruction
by R. The main difference between this algorithm and a standard conjugate
gradients algorithm is the use of the energy norm X -norm defined in (.) and
two residual vectors. All computations are done in X space—the approximation
to E—due to the preconditioning step; the residual (r0, r1) would otherwise had
been an element in X ⋆.

The eigenvalue distribution of the discretized Λ operator L suffer from two
problems in relation to CG solution.

1. The natural distribution of eigenvalues of L lead to slow convergence. The
eigenvalues of L1 scale like (πn)2 for 1 ≤ n ≤ N when T is close to 2;
they are approximately constant for L4. This distribution is effectively
accounted for by the preconditioner in the above algorithm.

2. The effect of numerical dispersion (incorrect group velocity for short wave-
length components) lead to real ill-conditioning of L. We need a filtering
or regularization procedure to account for this effect. Solution by conju-
gate gradients become very inefficient when cond(L) is huge.

The lack of clustering of the eigenvalues is, however, not the only problem.
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The studies of the constructed L in Section 4.2.4 and Section 4.2.5 also revealed
lack of symmetry and positive definiteness. The CG method does not even apply
in such cases! In practice though, we can try anyway and for smooth data, we
will be fine. If higher Fourier modes are excited, however, (e.g., by noise) the
algorithm will most likely diverge, and we therefore need a filtering procedure.

4.3.2 Filtering by basis truncation

With the knowledge of the appearance of the assembled L obtained in previous
sections, we design a filter which counteracts both the ill-conditioning and the
lack of symmetry.

We introduce the projection P(Nc)
onto the space of the first Nc sine basis

functions

y(Nc)
= P(Nc)

y defined by y(Nc)
=

Nc∑

j=1

〈y,es
j〉0es

j , (.)

where es
j is the sampled sine basis (ess

j for DG-FEM) and 1 ≤ Nc ≤ N is the
cut-off number. Replace now the observation P and reconstruction R in the
above algorithm with the filtered equivalents

P(Nc)
= P ◦ P(Nc)

(.)

R(Nc)
= P(Nc)

◦ R. (.)

The filtered observation and reconstruction gives rise to a modification of Algo-
rithm 4.1 which we call MCG-HUM.

Algorithm 4.2 (MCG-HUM). Modified conjugate gradient solution of HUM-prob-
lem with filtering by sine basis truncation at Nc.

[like Algorithm 4.1 with P replaced by P(Nc)
and R replaced by R(Nc)

]

This algorithm can be applied to projected initial data P(Nc)
[u1,−u0]T. We

control hence a projection on the space of the first Nc sine basis functions.
In the following, we will often use the fraction Nc/N , e.g., 1/2 or 1/3, to

describe the threshold for the basis truncation.

4.3.3 A test problem

We introduce the function

ftp(x) = 1(0,1) exp(−(5(x − 0.35))6), x ∈ R,

where the subscript tp is for test problem. Notice that ftp is 0 outside (0, 1) ⊂ R.
A plot of this function can be seen in Figure 4.41.

Let us now consider a control problem with T = 2.4 and the following smooth
initial data

u0
tp(x) = ftp(x), u1

tp(x) = 0, x ∈ Ω. (.)

The exact initial data for the corresponding adjoint problem (.) becomes

ϕ̄0
tp(x) = 0, ϕ̄1

tp(x) = − 1
2ftp(x), x ∈ Ω, (.)
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Figure 4.41: The initial data u0 of the test problem.

and the exact HUM control is

κtp(t) = 1
2ftp(1 − t) − 1

2ftp(t − 1), t ∈ [0, T ]. (.)

Figure 4.42 displays the HUM-control κtp as function of time t. The first nine
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Figure 4.42: The exact HUM-control κ solving the test problem.

digits of the L2-norm of this control is

‖κtp‖L2(Σ0)
= 0.406572002.

Numerical solution (by DG-FEM)

We sample the initial data u0 in (.) at the DG grid points xk
i for i = 1, . . . , Np

and k = 1, . . . ,K and collect the values in the vector u0
DG. This nodal represen-

tation is then filtered by basis truncation (.). We can compare this filtered
approximation with the original function (.); a good approximation of the
initial data is necessary for good approximations of the control.

The DG-setup described on page 59 ff. provides the discretization. We use
the sampled sine basis (.) and the energy norm (.) defined by DG-FEM
norms (.) and (.). After discretization, the MCG-HUM algorithm is used
for the numerical solution. The pre-conditioning with Mp corresponds to solving
a Poisson equation. DG-FEM is a method for solving conservation laws, but it
can be modified to deal with elliptic problems as well. We refer to [HW08, page
p. 265] for the details.

We say convergence is attained when the relative residual is 10−6. If the algo-
rithm converges, the obtained initial data for the adjoint problem

{
w̄0

DG, w̄1
DG

}

and the approximate control kDG may be compared with the exact functions
(.) and (.). See Table 4.2 below for such comparison.
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Results

Consider our favorite DG-grid with K = 10 elements and 5’th order polynomi-
als, Np = 6. We apply the MCG-HUM algorithm with different basis truncation
factors. See Figure 4.43 for a plot of the relative residual error as function of
iteration number. We observe how the solutions with 1/1 and 1/2 basis trunca-
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Figure 4.43: Logarithmic plot of the relative error of the residual as function of iter-
ation number for different basis truncations with DG-FEM (K = 10
and Np = 6).

tion do not converge due to lack of symmetry as we saw for the equivalent L(Nc)

on Figure 4.34. For stronger filters with 1/3 and 1/4 truncation the algorithm
converges.

Compare Figure 4.43 with L-FEM solutions for the same filter factors on
Figure 4.44. Note the different scaling of the x-axis on this plot compared to
Figure 4.43; DG-FEM requires fewer iterations than L-FEM.

Convergence

We will now examine the p-convergence of the method with 1/4 basis truncation
by changing the polynomial order Np while keeping the number of elements K
fixed. Figure 4.45 shows the norm of the relative residual vs. iteration number
of the CG algorithm for four different polynomial orders all with 1/4 truncation.
We see that the algorithm converges quite fast for all four discretizations and
the higher the order, the faster the convergence. Table 4.2 shows the accuracy
of the results obtained after convergence (residual < 10−6). We have used the
approximate norms ‖·‖

0
defined in (.) for ‖·‖L2(Ω) and ‖·‖T defined in (.)

for ‖·‖L2(0,T ).

We see how the sought initial data (w̄0
DG, w̄1

DG) for the adjoint system clearly
converges towards (ϕ̄0

tp, ϕ̄1
tp). The approximate controls kDG converges, likewise,

towards the exact control κtp.
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Figure 4.44: Logarithmic plot of the relative error of the residual as function of iter-
ation number for different basis truncations with L-FEM (N = 49).
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Figure 4.45: Logarithmic plot of the relative error of the residual as function of it-
eration number for DG-FEM solutions (K = 10) with four different
polynomial orders Np. All solutions have been filtered with 1/4 basis
truncation.

4.4 Concluding remarks

The proceeding section gives a short review on related work. Hereafter, Sec-
tion 4.4.2 discusses the results obtained in this chapter.
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Table 4.2: CG-algorithm results with 1/4 basis truncation for DG-FEM with K = 10
and different polynomial order Np.

Np = 3 Np = 6 Np = 12 Np = 18

# iterations 7 6 5 3

‖u0
tp−u0

DG‖L2(Ω)

‖u0
tp‖L2(Ω)

2.902e-02 2.010e-04 1.261e-07 2.741e-11
∥∥w̄0

DG

∥∥
L2(Ω)

9.137e-04 2.036e-04 4.313e-05 1.855e-05

‖ϕ̄1
tp−w̄1

DG‖L2(Ω)

‖ϕ̄1
tp‖L2(Ω)

1.637e-01 4.526e-02 6.891e-04 1.383e-05

‖κtp−kDG‖
L2(0,T )

‖κtp‖L2(0,T )
1.787e-01 4.640e-02 1.253e-03 4.467e-04

‖kDG‖L2(0,T ) 0.3999170 0.4061986 0.406575 0.4065726

4.4.1 Related work

R. Glowinski, J.L. Lions and C.H. Li were the authors of the pioneering work
[GLL90] on the numerical approximation of HUM. The paper presented a conju-
gate gradient algorithm, described in Section 4.3.1 above, and a bi-grid approach
for filtering out the spurious high-frequency solutions. They used a 2nd order
central FDM (equal to (.)) for their semi-discretization. They exposed the
numerical approximation of HUM as a difficult and very sensitive problem with
bad asymptotic behavior. In [Glo92], Glowinski extended the algorithm to in-
clude a Tychonoff regularization procedure.

E. Zuazua has later been one of the main characters in the further development
of numerical HUM. Zuazua and co-workers, S. Micu, J. I. Infante, C. Castro,
and M. Negreanu among many others, have put much focus on the mathematical
analysis of semi-discrete schemes in relation to HUM.

The lack of so-called uniform observability has been pointed out as the main
problem. Discrete versions of the observability inequality (.) are analyzed for
h → 0; for the standard FDM scheme the related observability constant C → ∞
as h → 0. This diverging behavior is denoted non-uniform observability. In the
important paper [IZ99] Infante and Zuazua introduced the use of a discrete
version of Ingham’s inequality in the proof of non-uniform observability and
in the recovering of uniform observability after filtering. For another example
of theoretical treatment of numerical HUM, see Micu’s use of bi-orthogonal
sequences in [Mic02].

Zuazua’s group has also refined the use of bi-grid procedures in the works
[NZ03] and [NZ04a]. The bi-grid algorithm involves the use of a second, coarse
grid for some of the computations thereby ruling out the high-frequency waves.

Some focus have been given to the mixed FEM in relation to numerical HUM
recently, although already used in [GKW89]. Castro and Micu have analyzed
the benefits of using mixed FEM for HUM in [CM06]. The mixed FEM has a
dispersion relation which is very well-suited for control since the high-frequency
components travel at higher instead of lower than the correct speed.

The work by A. Münch, [Mün04] and [Mün05], inspired by conservative
schemes of S. Krenk mentioned in Section 3.4, shows how a family of implicit
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schemes for the 1-d wave equation can be used to obtain uniform controllability.
The methods are, however, very specific for 1-d problems.

More practical approaches to the numerical approximation of HUM have been
sparse. Notable are, nevertheless, the optimization based approaches of M. Gun-
zburger and co-workers in [JGH03] and [GHJ06], the wavelet filtering technique
with computations presented by M. Negreanu and co-workers in [NMS06], and
the Ph.D. dissertation of J. M. Rasmussen [Ras04]. The latter contributed some
computational efforts with detailed numerical considerations.

4.4.2 Discussion

This chapter began with the semi-discretization of HUM which also marked
the transition from infinite dimensional control to finite dimensional control.
We worked out the details for two schemes: L-FEM and DG-FEM, and contin-
ued with the full discretization of HUM leading to the discrete operator L as
approximation to the fundamental HUM-operator Λ.

Section 4.2 was about constructing L as a matrix L in order to solve the
discretized HUM problem directly. We presented two different ways of assem-
bling L and introduced a set of sinusoids as basis. Yet not previously described
in the literature, using a sine basis is natural for two reasons: 1) sinusoids are
eigenfunctions to the HUM problem, 2) sinusoids are closely linked to the dis-
persion relation of the scheme which, more or less, defines its ability to deal with
control. Trigonometric functions are, on the other hand, not well approximated
by polynomials, especially not for short wavelengths. Both semi-discretizations
studied in this chapter are build from local polynomials.

The construction of L from L-FEM semi-discretization was the topic of Sec-
tion 4.2.4. This section showed how the use of the sine basis clarified the close
relationship between the dispersion relation and the numerical HUM. By study-
ing the spectrum of the observation of the sine basis, we could see the effect
of numerical dispersion for each wavelength component. Changing the Courant
number had a significant effect on the observation. The main problem was the
diminishing orthogonality of the “highest” directions in the observation space. A
consequence was the exponential growth of the condition number of L and that
even very small amounts of noise would blow up and ruin the solution of the
control problem. A filter was needed. We used a filter based on sine basis trun-
cation which was another benefit of the use of the sine basis. We also computed
the eigenfunction controls for L-FEM with two different Courant numbers, and
by studying their spectra, we found that they were shaped after their numeri-
cal phase velocities. The controls computed with the smallest Courant number
(finest temporal resolution) were not as good as those computed with larger
Courant number (coarser temporal resolution). We concluded that numerical
phase velocity is very important for control.

Section 4.2.5 dealt with the construction of L with DG-FEM semi-discreti-
zation. We compared two different ways of representing the sine basis: a nodal
based on sampling and a modal based on projection. The latter had the smallest
approximation error in the L2-norm since the Legendre polynomials, which are
the modal basis functions, constitute an orthonormal basis in L2. The use of
a higher order polynomial DG-basis gave some additional challenges in terms
of wavenumber ambiguity when representing the sine functions. The problems
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were most pronounced for the sampled sines due to the irregular sampling on
the LGL grid. It was problematic as unambiguous observation is important
for the control—if we do not know which waves we are seeing, then we cannot
expect to control them. The higher order polynomial basis allowed accurate
computation of the derivative, which we needed for observation, but for low
wavenumbers only. The normal derivatives of short wavelength sinusoids are
only poorly approximated by high order polynomials as is well-known.

The spectrum of the observation of each basis vector was examined for DG-
FEM, too. This showed a clear improvement over the L-FEM approximations
for the first half of the sine functions. The last sine functions of short wave-
length, however, gave poorer results than with L-FEM. It seems that the high
order polynomial derivative could have something to do with this, although our
attempt to use a low order approximation gave even worse results. Once more
the consequence was vanishing orthogonality in the observation space for the
higher wavenumbers which again threatened the control.

In the end after constructing L with respectively the sampled and projected
sine basis, only very little difference showed. We chose the sampled sine for its
simplicity. The matrix L lacked the symmetry that we would prefer it to inherit
from Λ. We introduced a family of reduced matrices L(Nc)

corresponding to the
use of a reduced sine basis, that is, filtering by sine basis truncation, and we
restored thereby symmetry. We considered the eigenvalues of L and found that
DG-FEM provided accurate results for the eigenvalues that corresponded to low
wavenumbers, moderate accuracy was obtained for midrange wavenumbers, the
remaining tended to zero. We demonstrated the convergence for the eigenvalues
by increasing the polynomial order. It was possible to obtain “spectral” accuracy
for the first 20 eigenvalues with grid d. We also computed eigenfunction controls
which were superior to those obtained by L-FEM even though a little more
filtering was needed.

The HUM problem was also solved iteratively by a conjugate gradients al-
gorithm in Section 4.3. Here we could use the knowledge of the properties of
L obtained in the previous sections: eigenvalue distribution, condition number,
and lack of symmetry. We proposed a filtering step in the algorithm based on
projection onto a reduced set of sine basis functions. We examined different
filter factors for a DG-FEM discretized test problem and saw the convergence
of the sufficiently filtered algorithm. It seemed that a relatively strong filter,
e.g., keeping only the 1/3 lowest modes, is necessary for convergence.

The DG-FEM discretization gave good results for sines with low wavenumbers,
but it needs improvement for waves with midrange wavenumbers. In this region
it is comparable to L-FEM—especially if we take in to account that L-FEM is
much simpler and only of low order. A promising idea is to replace the local
polynomial basis in DG-FEM with prolate spheroidal wave functions (PSWF)
which are much better suited for the approximation of sine waves.

In this chapter, we have argued for the use of the sine basis for numerical
HUM. This is of course a special possibility for the 1-d problem which does not
carry over to higher dimensional control. This does not, however, make the use
of the sine basis irrelevant for 1-d problems. It proved very useful for shedding
light on the nature of the problem and, in particular, on the connection with
numerical dispersion. We can still use the idea of using a modal basis in multi-
dimensional problems, e.g., with a PSWF basis. The combination of a local
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and a modal basis, which DG-FEM allows, could prove very strong for control
problems.
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CHAPTER 5

The inverse problem—an

application of HUM

So far this dissertation has been about HUM boundary control for the wave
equation. This chapter goes in another direction and consider an inverse source
problem for the wave equation. We shall later see how HUM can be used for its
solution, but let us first introduce the notation of inverse problems.

In the words of J.B. Keller, “two problems are inverses of one another if the
formulation of each involves all or part of the solution of the other” [Kel76].
Nowadays, an inverse problem is often specified as a problem of “determining
causes for a desired or observed effect” [EHN96]. A certain pattern can be rec-
ognized: An operator F maps some “model parameters” x into some “data” y
and from this we may formulate two problems

Forward: Given x, evaluate F (x),

Inverse: Given y, solve F (x) = y for x.

In this chapter, we are concerned with an inverse source problem of determining
an external force x from boundary measurements y. Applying the operator F
corresponds, in this case, to solving a wave equation. The problem is called
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an inverse source problem when x is an external source and not actual model
parameters.

This chapter is build on the paper “Stability, reconstruction formula and regular-
ization for an inverse source hyperbolic problem by a control method ”, [Yam95],
by M. Yamamoto. In this paper, M. Yamamoto presented an inverse source
problem for the wave equation and showed how it could be dealt with in a
unified manner by HUM. The problem’s source term may be separated in a
spatial part f and a temporal part σ. The inverse problem consists of finding
the unknown f from boundary measurements for given σ.

Yamamoto’s method is interesting since it inherits the generality of HUM,
meaning that it is applicable for multi-dimensional problems and has great po-
tential for dealing with inverse problems for a wide range of PDEs (see, e.g.,
[Nic00] and [NZ04b] for results for, respectively, Maxwell’s equations and vi-
brating beams).

The goal of this chapter is the numerical approximation of the reconstruction1 of
the source term’s spatial part f . The solution relies on a set of HUM controls for
an auxiliary problem. We know, however, that finding numerical HUM controls
is difficult, but how does the problems from numerical HUM effect the recon-
struction? We wish to examine whether our numerical HUM controls found
with L-FEM and DG-FEM in Chapter 4 can be used for the reconstruction and
how the use of DG-FEM controls compare to the use of L-FEM controls. We
shall also examine the degree of ill-posedness of the problem and, if necessary,
apply regularization. How the temporal part σ effect the problem and its re-
construction will be assessed, too.

After introducing the inverse problem in more detail in Section 5.1, we present
Yamamoto’s results concerning stability, reconstruction and regularization in
Section 5.2.

We suggest a discretization of the reconstruction in the 1-d case in Sec-
tion 5.3. This discretization is followed by a numerical study in Section 5.4. We
cover the generation of reliable data in Section 5.4.1 and estimate the degree of
ill-posedness by studying the singular values of the forward map in Section 5.4.2.

The reconstruction formula relies on the use of eigenfunction controls ob-
tained by HUM. Section 5.4.3 presents numerical results with analytic HUM
controls. Section 5.4.4 and Section 5.4.5 present results with numerical HUM
controls obtained after, respectively, L-FEM and DG-FEM semi-discretization.
The study is finalized in Section 5.4.6 with the reconstruction of 25 random
coefficients by analytic, L-FEM, and DG-FEM controls. We end this chapter
by a short discussion in Section 5.5.

Briefly on the geometry and notation

In this chapter, we shall first consider the general case Ω being an open, bounded
domain in R

d with boundary Γ. As in Chapter 2, Σ is the time-boundary
cylinder Σ = (0, T ) × Γ. The observation boundary is denoted Γ0, and the

1It should be noted that reconstruction in this chapter is not the same as reconstruction
in the previous chapters. In this chapter, reconstruction means obtaining the spatial part of
a source term, and in particular its Fourier coefficients, from boundary data.
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corresponding part of Σ is Σ0 = (0, T ) × Γ0. To shorten notation we introduce

∂Γ0
v =

∂v

∂n

∣∣∣
Γ0

The numerical study in Section 5.3 and 5.4 is carried out in the 1-d case Ω =
(0, 1) with x = 1 as observation boundary.

5.1 An inverse source problem
Let v = vf be the solution to the (forced) wave equation

v′′ − ∆v = σ(t)f(x), in (0, T ) × Ω, (.a)

v(t, x) = 0, (t, x) on Σ, (.b)

v(0, x) = 0, v′(0, x) = 0, x in Ω, (.c)

for given f ∈ L2(Ω) and σ ∈ C1[0, T ] with σ(0) 6= 0.
We have the following existence and uniqueness result [Yam95].

Theorem 5.1. If σ ∈ C1[0, T ], then for any f ∈ L2(Ω) there exists a unique
weak solution to (.) with regularity

v ∈ C1([0, T ];H1
0 (Ω)) ∩ C2([0, T ];L2(Ω)), (.)

∂v

∂n
∈ H1((0, T );L2(Γ)). (.)

Moreover, ∃c > 0 such that

‖(v, v′)‖L∞((0,T );H1
0 (Ω)×L2(Ω)) ≤ c ‖f‖

L2(Ω)
. (.)

and ∥∥∥
∂vf

∂n

∥∥∥
H1((0,T );L2(Γ))

≤ c ‖f‖
L2(Ω)

(.)

for some constant c > 0 independent of f . 2

We introduce, for Γ0 ⊂ Γ, the following subspace of H1((0, T );L2(Γ))

B1 := H1((0, T );L2(Γ0)), (.)

which we equip with the H1 inner product

〈u, v〉B1 =

∫ T

0

∫

Γ0

(
u(t, x)v(t, x) +

∂u

∂t
(t, x)

∂v

∂t
(t, x)

)
dxdt, (.)

for all u, v ∈ B1; we use the norm induced by the inner product ‖u‖2
B
1 = 〈u, u〉B1 .

We are now ready to define the inverse problem.

Definition 5.2 (Inverse source problem). Let σ ∈ C1[0, T ] be given and let
v = vf be the solution to (.) for some unknown f ∈ L2(Ω). Then we define
the inverse source problem:

For given data ∂Γ0
vf ∈ B1 for (.), find f. (ISP)

2
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The (ISP) asks whether we can determine the spatial part f of the source
term σ(t)f(x) for the system (.) by the additional information ∂Γ0

vf on a
part Γ0 of the boundary. This problem is the inverse compared to the forward
problem: from the known source σ(t)f(x) determine the solution v to (.). We
introduce the map G

G : L2(Ω) → B1 defined by G(f) = ∂Γ0
vf , (.)

and summarize the above in the following two lines:

Forward: Given f, evaluate G(f),

Inverse: Given ∂Γ0
v, solve G(f) = ∂Γ0

v for f.

Notice how the existence, uniqueness and stability of the forward problem is
ensured by Theorem 5.1.

5.1.1 Examination of the inverse problem

We wish to address the following four aspects of the inverse problem.

I. Identifiability. The existence of a solution is ensured by considering the
data ∂Γ0

vf ∈ G(f). But what about uniqueness—is the solution to (ISP)
unique?

II. Stability. Does the solution f depend continuously on the data ∂v/∂n
on Σ0? Can we estimate the L2-norm of f by some norm on the boundary
data ∂Γ0

vf?

III. Reconstruction. How can we determine the Fourier coefficients of f
in terms of the data ∂Γ0

vf and thereby give an explicit formula for the
reconstruction of f?

IV. Regularization. The problem is ill-posed. What can we do to regulaize
solutions?

The existence and uniqueness of an inverse problem is a little different from
dealing with the same questions for the corresponding forward problem. Firstly,
we note that we consider only data in the image G(f) of the forward map
G. For this reason, existence of solutions is no issue. Secondly, uniqueness of
solutions is obtained by M. Yamamoto as a byproduct of the stability analysis
(see Section 5.2.1).

We will return to questions II–IV in Section 5.2.

5.1.2 An auxiliary inverse ‘initial data’ problem

In order to use HUM for the inverse problem (ISP), we will now introduce an
auxiliary inverse problem; it will prove very useful in the subsequent sections.

Let w = wf be the solution, for given f ∈ L2(Ω), to the system

w′′ − ∆w = 0, in (0, T ) × Ω (.a)

w(t, x) = 0, (t, x) in Σ (.b)

w(0, x) = 0, w′(0, x) = f(x), x in Ω, (.c)
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which is equal to system (.) with ϕ0 = 0 and ϕ1 = f . According to Theo-
rem 2.8 system (.) has a unique solution for which (w,w′) ∈ C([0, T ];H1

0 (Ω)×
L2(Ω)) and the Neumann data ∂w

∂n
∈ L2((0, T ) × Γ).

As the L2 counterpart of (.) we now introduce for Γ0 ⊂ Γ

B0 := L2((0, T ) × Γ0), (.)

which is equal to B of Chapter 2 (we use the superscript 0 in this chapter to
emphasize its L2 = H0 nature compared to the H1 ditto of B1).

We note that we can express the solution of (.) in terms of the eigensolu-
tions {λk, φk}k, k ∈ N, by

w(t, x) =
∞∑

k=1

〈f, φk〉L2(Ω)

sin λkt

λk

φk(x). (.)

This Fourier series solution will be important for the reconstruction of (IIDP).

For system (.) we define the auxiliary inverse problem (IIDP).

Definition 5.3 (inverse ‘initial data’ problem). Let w = wf be the solution of
(.) for some unknown f ∈ L2(Ω). Then we define the inverse ‘initial data’
problem:

Given the data ∂Γ0
wf for (.), find f, (IIDP)

where ∂Γ0
wf ∈ B0 is the available Neumann data on Σ0. 2

Or in plain words: can we determine the unknown initial velocity w′(0, ·) = f
from the additional information ∂Γ0

wf?

The claimed relation between (ISP) and (IIDP) is supported by the ensuing
proposition which connects the solution of (.) to the solution of (.).

Proposition 5.4. Let σ ∈ C1(0, T ) and let vf be the solution of (.) and wf

the solution of (.) for f ∈ L2(Ω). Then we have

vf (t, x) =

∫ t

0

σ(s)wf (t − s, x)ds, for t > 0, x ∈ Ω. 2

Proof. The result can be established for f ∈ C∞
0 (Ω) by applying Duhamel’s

principle (see F. Johns classic [Joh82, p.135], also referenced in [Yam95]). It
is extended to hold for any f ∈ L2(Ω) by approximating f with a sequence of
C∞

0 -functions and using the L∞ estimates (.) and (.). ¥

5.2 A HUM solution to the inverse problem
The primary message of M. Yamamoto’s paper [Yam95] was that HUM can
be used for dealing with the stability, reconstruction and regularization of the
inverse problem (ISP) in a unified manner. In fact, HUM is used for the solution
of (IIDP) which by boundary integral operators is connected to (ISP).

We shall consider the stability of (IIDP) and (ISP) in Section 5.2.1, then
reconstruction in Section 5.2.2, and finally regularization in Section 5.2.3.
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5.2.1 Stability

To ensure stability of the inverse problem we seek a bound on the size of f by a

suitable norm on the Neumann data ∂u(f)
∂n

on Γ0. HUM provides such bounds
and also conditions on the observation time T and the size of the observation
boundary Γ0 ⊂ Γ.

Stability of (IIDP)

Stability of the inverse problem (IIDP) is a direct consequence of the observ-
ability of (.).

Proposition 5.5 (Stability of (IIDP)). Let system (.) be observable, i.e., it
satisfies the observability inequality (.). Given ∂Γ0

wf ∈ B0 we have the
following estimate

c−1 ‖∂Γ0
wf‖

B
0 ≤ ‖f‖

L2(Ω)
≤ c ‖∂Γ0

wf‖
B
0 ,

where c > 0 is a constant. 2

Remark 5.6. The inequality on the right side is the so-called observability in-
equality for the system (.). The left side inequality is a regularity result—
the “hidden” regularity (see (.))—for the wave equation. The key point is
that mapping f 7→ ‖∂Γ0

wf‖
B
0 constitutes a norm on the initial data (Proposi-

tion 2.15) which, in this case, is (0, f). ¥

The observability of system (.) puts requirements on the observation time T
due to the finite speed of propagation of waves. Furthermore, conditions on the
size of Γ0—see Section 2.1.3—are also consequences of HUM.

It remains to connect this result with the stability of (ISP).

Stability of (ISP)

We are closing in on the main stability theorem, but first we need a few lemmas
needed for its proof.

Let us define the boundary integral operator K : B0 → B1 with the kernel
σ ∈ C1[0, T ] with σ(0) 6= 0 by

(Kg)(t, x) =

∫ t

0

σ(t − s)g(s, x)ds, t ∈ (0, T ), x ∈ Γ0. (.)

The following lemma ([Yam95, Lemma 3]) establishes a needed stability result
for this central integral operator.

Lemma 5.7. Let K : B0 → B1 be the operator defined by (.). Then there
exists a constant c = c(T,Ω) > 0 such that

c−1 ‖Kg‖
B
1 ≤ ‖g‖

B
0 ≤ c ‖Kg‖

B
1 , (.)

for any g ∈ B0. 2

Proof. Firstly, observe that from the integral equation (.) we have for
some constant c̆ > 0

‖Kg‖
B
0 ≤ c̆ ‖g‖

B
0 . (.)
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Secondly, take the time derivative of (.) for σ ∈ C1[0, T ]

∂Kg

∂t
(t) = σ(0)g(t) +

∫ t

0

σ′(t − s)g(s)ds.

Since we have assumed that σ(0) 6= 0, this is a Volterra integral equation of
second kind for which we have

c̃−1

∥∥∥∥
∂Kg

∂t

∥∥∥∥
B
0

≤ ‖g‖
B
0 ≤ c̃

∥∥∥∥
∂Kg

∂t

∥∥∥∥
B
0

. (.)

Now, by recalling from the definition of the H1-norm (.) that

‖g‖2
B
1 = ‖g‖2

B
0 + ‖∂g/∂t‖2

B
0 ,

we easily obtain the left hand side inequality of (.); we simply add (.)
to the left part inequality of (.). The right hand side inequality is simply
obtained by adding ‖g‖

B
0 to the right most part of (.). ¥

By Duhamel’s principle, Proposition 5.4, and Lemma 5.7 we can deduce the
following result.

Lemma 5.8. For f ∈ C∞
0 (Ω) let vf and wf be the solutions of (.) and (.),

respectively. Then there exists a constant c > 0 such that

c−1 ‖∂Γ0
vf‖

B
1 ≤ ‖∂Γ0

wf‖
B
0 ≤ c ‖∂Γ0

vf‖
B
1 . (.)

2

Proof. Since f ∈ C∞
0 (Ω) the solution w = wf is sufficiently smooth on

[0, T ] × Ω so we have

∂

∂n

∫ t

0

σ(s)w(t − s, x)ds =

∫ t

0

σ(s)
∂w

∂n
(t − s, x)ds, (t, x) ∈ (0, T ) × Γ.

By Duhamel’s principle,Proposition 5.4, the right hand side equals ∂Γ0
v, which

means
∂Γ0

vf (t) =
(
K∂Γ0

wf

)
(t), (t, x) ∈ (0, T ) × Γ0.

Hence, by the estimate (.) we are done. ¥

We are now ready to state the main stability theorem ([Yam95, Theorem 1]).

Theorem 5.9 (Stability of (ISP)). Let T and Γ0 be so that system (.) is
observable and let vf be the solution of (.). Then there exists a constant
c > 0 such that

c−1 ‖∂Γ0
vf‖

B
1 ≤ ‖f‖

L2(Ω)
≤ c ‖∂Γ0

vf‖
B
1 ,

for all f ∈ L2(Ω). 2

Proof. We need to extend the result of Lemma 5.8 to hold for f ∈ L2(Ω).
This is done by considering a sequence {fn}n∈N of C∞

0 -functions fn, for which
the inequality (.) holds. Then since C∞

0 (Ω) is dense in L2(Ω), we can
pick the sequency such that ‖fn − f‖

L2(Ω)
→ 0 for n → ∞ and by the use

of the bound (.) the result (.) holds for f ∈ L2(Ω). Finally, the by
Proposition 5.5 we conclude the proof. ¥
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5.2.2 Reconstruction

The reconstruction of f can be done by determining its Fourier coefficients. We
expand f in terms of the previously mentioned eigenfunctions φk, k ∈ N

f =
∞∑

k=1

〈f, φk〉L2(Ω)φk,

where 〈f, φk〉L2(Ω) are the Fourier coefficients f̂k of f . As these coefficients are
unavailable, we seek to determine them by measurements of ∂Γ0

u(f). Initially,
we will, however, find the coefficients 〈f, φk〉L2(Ω) in terms of ∂Γ0

wf from (IIDP).

Reconstruction for (IIDP)

In Chapter 2 we saw how the controllability of a control system was closely
linked to the observability of its adjoint system. We can view (.) as the
adjoint system of some control system. Recall, also from Chapter 2, that a
HUM control is a specific control build from the Neumann data ∂Γ0

w of the
adjoint system on the observation boundary Γ0.

Note that, from the solution (.) of (.), we have the following expansion

of the Neumann data
∂wf

∂n
on Γ0

∂Γ0
wf =

∞∑

k=1

〈f, φk〉L2(Ω)

sinλkt

λk

∂Γ0
φk. (.)

Recall the controllability operator Π: E⋆ → B0, defined in Chapter 2 by
(.), which gives the control κ of minimal norm for a control problem with
the initial data (u1,−u0). We will consider a reduced case of this map with the
initial data (0,−u0) and call the corresponding operator

Π0 : L2(Ω) → B0, Π0(u0) = Π

[
0

−u0

]
. (.)

The main idea is now to use a series of HUM eigenfunction controls ηk = Π0(φk)
formed by the eigenfunctions u0 = φk to “sample” the Fourier coefficients
〈f, φk〉L2(Ω) of the expansion of ∂Γ0

wf (.) in B0. We will use this idea first
on a single eigenfunction f = φl which gives the following result ([Yam95,
Lemma 5]).

Lemma 5.10. Let system (.) be observable and (λk, φk), k ∈ N be the corre-
sponding eigensolutions. Furthermore, let Π0 be the HUM-controllability oper-
ator defined in (.). Then we have the identity

〈 sin λlt

λl

∂Γ0
φl,−Π0φk〉B0 = δkl, (.)

k, l = 1, 2, . . ., where δkl is the Kronecker delta. 2

Proof. Observe that with the initial conditions (ϕ0, ϕ1) = (0, φl) the system
(.) has the solution

ϕ(t, x) =
sin(λlt)

λl

φl(x), (t, x) in (0, T ) × Ω, (.)
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which on Γ0 has the normal derivative ∂Γ0
ϕ(t, x) = sin(λlt)

λl
∂Γ0

φl(x).

Let ψ = ψ(κ) be the solution of (.) for any κ ∈ B0 and ϕ the solution
(.) to the adjoint system. Then we have

〈ψ(κ)(0, ·), φl〉L2(Ω) = −〈κ,
sin(λlt)

λl

∂Γ0
φl〉B0 for l = 1, 2, . . . (.)

which follows from Theorem 2.13.

Now, let u0 = φk and choose the control function κ ∈ B0 to be the HUM-
control κ = Π0φk, then (.) follows directly from (.), since ψ(κ)(0, ·) =
u0 = φk. ¥

Proposition 5.11. Let system (.) be observable. Given ∂Γ0
wf in B0, the func-

tion f with the Fourier expansion f =
∑

k∈N
f̂kφk can be reconstructed by

computing

f̂k = 〈∂Γ0
wf ,−Π0φk〉B0 , k ∈ N, (.)

where Π0 is the controllability operator (.). 2

Proof. Assume that we have an orthonormal basis{θ̃k}k∈N for B0 such that

∂Γ0
wf =

∞∑

l=1

〈∂Γ0
wf , θ̃l〉B0 θ̃l.

Now, by introducing (.) in this expansion, we get

∂Γ0
wf =

∞∑

l=1

〈 ∞∑

k=1

〈f, φk〉L2(Ω)

sinλkt

λk

∂Γ0
φk, θ̃l

〉

B
0
θ̃l

=

∞∑

l=1

∞∑

k=1

〈f, φk〉L2(Ω)〈
sin λkt

λk

∂Γ0
φk, θ̃l〉B0 θ̃l.

Choose θ̃l as −Π0φl. Then by Lemma 5.10

∂Γ0
wf =

∞∑

k=1

〈f, φk〉L2(Ω)θ̃k,

which implies that 〈f, φk〉L2(Ω) = 〈∂Γ0
wf ,−Π0φk〉B0 for all k ∈ N and hence

completes the proof. ¥

Reconstruction for (ISP)

So far we have found a reconstruction formula for f in (IIDP) in the data
∂Γ0

wf ∈ B0. It remains to connect this result with (ISP), and we need an
integral operator to this end.

Consider the Volterra integral equation of second kind for (t, x) ∈ Σ0

σ(0)θ′(t, x) +

∫ T

t

(
σ′(ξ − t)θ′(ξ, x) + σ(ξ − t)θ(ξ, x)

)
dξ = η(t, x), (.)

where σ is the temporal distribution of the source in (.) and σ(0) 6= 0.
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Remark 5.12. The Volterra equation (.) is uniquely solvable for η ∈ B0 and
θ ∈ B1 by the so-called resolvent kernel and

‖θ‖
B
1 ≤ c ‖η‖

B
0

where c > 0 is a constant. ¥

Due to the unique solvability of (.), we may define a boundary integral
operator Ξ which connects η ∈ B0 to θ ∈ B1.

Definition 5.13 (Ξ operator). Let σ ∈ C1[0, T ] with σ(0) 6= 0. Then for η ∈ B0

we define the bounded operator Ξ

Ξ: B0 → B1 by θ = Ξη, (.)

such that θ ∈ B1 is defined by the solution of (.). 2

This operator allows us to state the main reconstruction result ([Yam95, Theo-
rem 2]) as follows.

Theorem 5.14. Let T and Γ0 be so that system (.) is observable. Given

∂Γ0
u(f) in B1, the function f ∈ L2(Ω) with the Fourier expansion f =

∑
k∈N

f̂kφk

can be reconstructed by computing

f̂k = 〈∂Γ0
u(f),Ξ(−Π0φk)〉B1 , k ∈ N, (.)

where Π0 is the controllability operator (.) and Ξ is the operator defined in
Definition 5.13. 2

Proof. Proposition 5.11 reduces the proof to a matter of establishing

〈∂Γ0
u(f),Ξ(−Π0φk)〉B1 = 〈∂Γ0

wf ,−Π0φk〉B0 ,

for all k ∈ N. Recall that ∂Γ0
u(f) = K∂Γ0

wf , where K : B0 → B1 is the
operator (.). Now, let us, for g ∈ B0 and h ∈ B1, define theadjoint
K∗ : B1 → B0 of K by

〈Kg, h〉B1 = 〈g,K∗h〉B0 .

It is easy to verify by direct calculations that K∗ is the left inverse of Ξ, that
is, K∗Ξη = η for all η ∈ B0. This leads us to the following simple verification
of our initial claim

〈∂Γ0
u(f),Ξ(−Π0φk)〉B1 = 〈K∂Γ0

wf ,Ξ(−Π0φk)〉B1

= 〈∂Γ0
wf ,K∗Ξ(−Π0φk)〉B0

= 〈∂Γ0
wf ,−Π0φk〉B0 . ¥

5.2.3 Regularization

Regularization is an important topic in the field of inverse problems as almost all
inverse problems are ill-posed. Consider the operator G : L2(Ω) → B0 defined
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by Gf = ∂Γ0
vf . This operator is compact from L2(Ω) to B0. We seek, for given

g0 ∈ B0, solutions f0 to the equation

Gf0 = g0,

which due to the compactness of G is an ill-posed problem [Yam96].
If the available data gδ is inexact with noise level δ, the task is to reconstruct

reasonable approximations fδ to f0, that is, to solve the problem

Gfδ = gδ,

where ‖gδ − g0‖B0 ≤ δ. By reasonable we mean that ‖fδ − f0‖L2(Ω) → 0 for

δ → 0. Notice that gδ might not be in the range of the forward map R(G).
Furthermore, G−1 : R(G) → L2(Ω) is not continuous even though G is injective.

Yamamoto considers a Tikhonov-type regularization procedure where the
functional

Hα(f) = ‖Gf − gδ‖2
B0 + α ‖f‖2

L2(Ω)

should be minimized over f ∈ L2(Ω).
In order to derive concrete convergence rates for this regularization, Ya-

mamoto uses a result from HUM theory on the range of the adjoint map G∗

which coincides with the reachable set of a related control system. We will
not go further into these details here as discretization itself will have suffi-
ciently regularizing effect to make the problem well-posed (or only very mildly
ill-posed)—see Section 5.4.2.

5.3 Discrete reconstruction
We now proceed with the numerical approximation of the reconstruction pre-
sented in Section 5.2.2. We consider the 1-d case Ω = (0, 1) like in the numerical
HUM study in Chapter 4. Recall that the normalized eigenfunctions used in
the expansion (.) in 1-d simply reads

φk(x) = es
k(x) =

√
2 sin(kπx), x ∈ Ω, k = 1, 2, . . . .

Let us introduce a semi-discretization with N ∈ N elements such that a function
v defined on Ω gets approximated by the vector v with N elements. The space
X 0 with the inner product 〈·, ·〉0 replaces L2(Ω). The choice of numerical scheme
determines this discrete inner product, e.g., definition (.) for L-FEM and
(.) for DG-FEM.

Let f be a function in L2(Ω). We assume that f is Nc-bandlimited, where
Nc ≤ N , such that we may expand it by Nc eigenfunctions φk, k = 1, . . . , Nc

f(x) =

Nc∑

k=1

f̂kφk(x), f̂k = 〈f, φk〉L2(Ω).

Semi-discretization suggests ck = 〈f ,es
k〉0 as approximation to the Fourier coef-

ficients f̂k. The vector f consists of N sampled values of f and the vector es
k is

in the same way a sampling of es
k. These cannot be found directly, however, as f

is unknown, hence we need a reconstruction formula to recover the coefficients.
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Note that if f is not Nc bandlimited we will only attempt to restore its first Nc

coefficients.
Time discretization is also necessary before we proceed. We introduce a set

of M discrete time instances t = m∆t for m = 0, . . . ,M −1 where ∆t is the time
step. We define two inner product spaces T 0 and T 1 over R each of size M but
with different inner products. The first, T 0, that approximates B0, equals T
with the inner product 〈·, ·〉T 0 defined in (.). The second, T 1, approximates
B1 and is equipped with the inner product

〈g,h〉T 1 := 〈g,h〉T 0 + 〈DgT,DhT〉T 0 (.)

≡ ∆t ghT + ∆t g(DTD)hT

corresponding to the H1 inner product 〈·, ·〉B1 . The vectors g and h are here
row vectors in R

M and D is a temporal differentiation matrix defined by

Dij =





1/∆t j = i

−1/∆t j = i − 1

0 elsewhere,

(.)

for i, j = 1, . . . ,M .

5.3.1 Discrete (IIDP)

We wish to discretize the inverse initial data problem (IIDP) defined on page 113
and, in particular, the reconstruction of f by its Fourier coefficients (.).

Consider first a semi-discretization equivalent to the one described in Sec-
tion 4.1.2 for the HUM problem. We replace a function w defined on Ω by the
vector w with N elements. Recall that system (.) is a special case of the
adjoint HUM system (.), and its semi-discretization thus fit in the form (.)
with W 0 = [0,f ]T, where f is the discrete representation of f .

The reconstruction of (IIDP) is based on the measurement of the Neumann
data ∂wf/∂n at Σ0 of the auxiliary problem (.). We assume that this data is
available to us in discrete form in the row vector g̃

g̃ = [∂Γ0
wf (0), ∂Γ0

wf (∆t), . . . , ∂Γ0
wf ((M − 1)∆t)]T.

The Neumann data was, in Section 5.2.2, projected onto the space of eigenfunc-
tion controls constructed by the controllability operator Π = ΦΛ−1; we called
the eigenfunctions controls ηk = −Π(0,−φk). The discrete equivalents of these
functions are the row vectors

ηk = −PL−1

[
0

−es
k

]
, k = 1, . . . , Nc (.)

where P is defined by (.) and L by (.). We assume here that L is
invertible.

With g̃ and ηk we may approximate the coefficients f̂k = 〈f ,es
k〉0 by the

following a discrete equivalent to (.)

f̂k ≈ 〈g̃,ηk〉T 0 ≡ ∆t g̃ηT

k , k = 1, . . . , Nc.
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5.3.2 Discrete (ISP)

It remains to make the connection from the eigenfunction controls to the source
problem (.). In Section 5.2.2 we introduced the solution of a Volterra integral
equation to this end.

Discretization of the Volterra integral equation

The Volterra integral equation (.) establishes the pivotal connection between
(IIDP) and (ISP). Note that the equation has no x-dependence in this simple
1-d case where Γ0 is a point. We present below a simple discretization of this
integral equation. Let in the following σ be a given row vector of size M with
the m’th element σ(m∆t); recall that σ(0) 6= 0. Let, furthermore, σ′ be a vector
of same size holding the derivative information σ′(m∆t) at m = 0, . . . ,M − 1.
Consider the matrix equation

σ(0)DθT + U(σ′)DθT + U(σ)θT = ηT

where θ and η are M -sized vectors approximating the functions θ and η and
the M × M differentiation matrix D is defined in (.). The matrix U(b) is
an M × M upper triangular matrix with elements

[U(b)]ij =

{
∆t bj j ≥ i,

0 j < i,
i, j = 1, . . . ,M,

where bj is the j’th element in the M sized vector b and ∆t is the time step
size. Row i of the matrix U(σ) multiplied the vector θT thus approximates the

integral
∫ T

i∆t
σ(s − t)θ(s)ds with kernel σ.

We now approximate the Volterra integral equation (.) by the matrix
equation

Xσθ = η, (.)

where Xσ is an M × M Volterra matrix defined by

Xσ := σ(0)D + U(σ′)D + U(σ). (.)

If it exists, the inverse X−1
σ approximates the Ξ operator defined in (.).

The discrete reconstruction formula

Let g be a row vector of M time discrete Neumann data measurements at the
right endpoint of Ω

g = [∂Γ0
vf (0), ∂Γ0

vf (∆t), . . . , ∂Γ0
vf ((M − 1)∆t)]T

corresponding to the function ∂Γ0
vf . We approximate the Nc first of the coeffi-

cients (.) by

f̂k ≈ cr
k =

〈
g,−X−1

σ ηk

〉

T 1
, k = 1, . . . , Nc, (.)

where Xσ is the Volterra matrix (.) and ηk is the eigenfunction control
(.). The discrete inner product 〈·, ·〉T 1 is defined in (.).
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5.4 Numerical results
We now have a formula (.) for the discrete reconstruction of the Fourier
coefficients of the unknown spatial distribution f of the source. The current
section presents a numerical study of this reconstruction. Formula (.) relies
on three components

(i) reliable data g (solution of the forward problem)

(ii) approximation of the HUM eigenfunction controls ηk

(iii) approximation of the Volterra integral operator Xσ

The first item (i) may seem trivial, but it is not since the wavenumber can be
high and we need to solve the forward problem numerically. For some choices
of the temporal distribution σ of the source, we may, however, obtain analytic
solutions to the forward problem g = G(f) when f = φk. Section 5.4.1 describes
the generation of accurate and reliable data.

Item (ii) was the subject of Chapter 4. We will again focus on the L-FEM
and DG-FEM semi-discretizations for the construction of controls. We know
from Chapter 4 that this approximation is difficult, and in order to assess the
quality of Xσ as approximation of Ξ (iii) we will consider the special case
T = 2 which grants the possibility of using simple analytic HUM eigenfunction
controls ηex

k . Section 5.4.3 studies the numerical reconstruction with analytic
controls. The results of that section will be compared to results obtained with
L-FEM generated controls ηL

k in Section 5.4.4 and results by DG-FEM generated
controls ηL

k in Section 5.4.5.

5.4.1 Data and the forward problem

Data g for the inverse problem needs to be generated from f so we can assess the
quality of the reconstructed solution. This is done by solving the forced wave
equation (.) with the right hand side σ(t)f(x). For known σ the forward,
linar problem reads

G : f 7→ ∂Γ0
vf ,

where vf is the solution of (.) and ∂Γ0
vf is the Neumann data at x = 1.

We get most information by solving for one eigenfunction f = φl at the time
for l = 1, . . . , Nc. We shall, in the following investigation, use three different
temporal functions σ which allow analytic solution of the forward problem in
1-d when f = φl. The σ functions, which all satisfy the requirement σ(0) 6= 0,
are

σa(t) = 1,

σb(t) = cos(πt) + t2 − 3t + 1,

σc(t) = cos(20πt).

These functions behave quite differently and are used to examine the effect of
σ on the reconstruction. The different characteristics of these functions form
different Volterra matrices Xσa

, Xσb
, and Xσc

.
The simple σa has the derivative σ′

a(t) = 0 which makes the second term
U(σ′)D of (.) vanish. The function σb is smooth and contain both a poly-
nomial and a trigonometric part. It is zero at t = T , but its derivative is
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non-zero in both endpoints. The function σc oscillates fast and harmonically,
and its derivative is zero at both endpoints. It is expected that σc requires finer
resolution compared to σa and σb due to its fast variation.

Let us finally remark that for other σ functions for which analytic solution
are not available, we need an accurate numerical solution on a very fine grid. It
could, e.g., be the Störmer-Numerov semi-discretization (unified scheme (.)
with α = 1/12) which is second order accurate. It is important to use different
solvers for the forward and inverse problems. The use of the same solver for
both purposes may, reversely, be unrealistically advantageous and is known as
inverse crime (see [CK98]).

Let us consider a particular situation of the forward problem with σa(t) = 1
and f = φl. We seek an analytic solution to this problem. The corresponding
auxiliary problem (.) has the solution

w(t, x) =
sin(lπt)

lπ
φl(x),

and the Neumann data ∂Γ0
wf = (−1)l

√
2 sin(lπt). We obtain the Neumann data

for the source problem by applying the integral operator K, defined in (.),

∂Γ0
vf = K∂Γ0

wf =

∫ t

0

1(−1)l
√

2 sin(lπs)ds

= (−1)l

√
2

lπ

(
− cos(lπt) + cos(0)

)
.

The exact solution to the forward problem gl = G(φl) with σa is therefore

ga
l (t) = (−1)l

√
2

lπ
(1 − cos(lπt)), l = 1, . . . , Nc (.)

where the superscript a indicates the use of σa. We call ga
l the eigenfunction

data. Analytic solutions to the forward problem also exist for σb and σc. The
expressions are very long but can be found in Appendix B.1.

5.4.2 The degree of ill-posedness

Let us consider σa and store the eigenfunction data ga
l as rows in a matrix Ga

with the l’th row being ga
l at M discrete times

Ga
ml = (−1)l

√
2

lπ

(
1 − cos(lπm∆t)

)
, l = 1, . . . , Nc, m = 0, 1, . . . ,M − 1.

We study the singular values µk of this matrix to get an idea of the degree of
ill-posedness of the inverse problem for the situation σa(t) = 1. P. C. Hansen
[Han98] uses the following classification: the problem is characterized as mildly
ill-posed if the singular values µk = O(k−α) for α ≤ 1, moderately ill-posed
if µk = O(k−α) for α > 1, and severly ill-posed if µk = O(e−αk) for α > 1.
Figure 5.1 shows the singular values of matrix Ga. We see that µk scale like
k−1 which corresponds to a mild ill-posedness of the inverse problem according
to the above classification. It seems therefore that the discretization itself has a
sufficient regularizing effect to make it computationally stable. The problem is
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Figure 5.1: The singular values (dots) of the matrix Ga for σa(t) = 1 computed for
l = 1, . . . , 300 and M = 1000 discrete time steps (T = 2). The dashed
line, y(k) = 10 k−1, shows the asymptotic behavior.

therefore not very sensible to noise. Notice, however, that this is not necessarily
true for the reconstruction too.

The other temporal distributions, σb and σc, result in matrices Gb and Gc

with similar behavior. The plots have for this reason been omitted.

5.4.3 Reconstruction with analytic HUM controls

We now proceed with the primary investigation of Xσ which we construct for
σa, σb, and σc for T = 2 by (.). This results in three M ×M matrices Xσa

,
Xσb

, and Xσc
. We shall study the numerical reconstruction of the correspond-

ing eigenfunction data ga
l ,gb

l , or gc
l but first we describe the construction of the

analytic eigenfunction controls ηex
k .

Exact HUM eigenfunction controls

We know from Chapter 2 that the special case T = 2 allows a simple exact HUM
solution to the control problem with the initial data (u0, u1) = (φk, 0). The cor-
responding initial data of the adjoint problem becomes (ϕ̄0, ϕ̄1) = (0,− 1

T
φk)

according to Remark 2.19. The eigenfunction control, which we obtain by ob-
servation with Φ, reads

ηex
k (t) = (−1)k+1

√
2

T
sin(kπt), k = 1, . . . , Nc.

This analytic result allows us to check the consistency of the discrete Volterra
integral operator Xσ without dealing with the difficult approximation of HUM
at the same time. We store M samples of the function ηex

k in the row vector

ηex
k = [ηex

k (0), ηex
k (∆t), . . . , ηex

k ((M − 1)∆t)].

This eigenfunction control vector will be used for the numerical reconstruction.
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Numerical reconstruction

Let the vector g hold discrete data generated from f by the forward map G(f).

The first Nc Fourier coefficients f̂k of f may be approximated by the recon-
struction formula

f̂k ≈ cr
k = 〈g,−X−1

σ ηex
k 〉T 1 , k = 1, . . . , Nc,

where the superscript r is for reconstructed. Let gl be the data generated from
the l’th eigenfunction f = φl which means that the exact Fourier coefficients
are f̂k = δkl for K = 1, . . . , Nc. All Nc original coefficients k = 1, . . . , Nc for all
Nc eigenfunctions l = 1, . . . , Nc may be collected in a matrix Cex with elements
Cex

kl = δkl. We assemble a corresponding matrix of reconstructed coefficients
Cr with elements

Cr
kl = 〈gl,−X−1

σ ηex
k 〉T 1 , k, l = 1, . . . , Nc.

We will compare the coefficient matrix Cr with Cex for our three concrete
choices of σ below. When nothing else is mentioned, we use Nc = 25 and
M = 285 discrete times.

(a) Reconstruction when σ = σa

Let the temporal distribution be the constant σa which gives us the Volterra
matrix Xσa

and the exact eigenfunction data ga
l with discrete values of the

function (.). We compute the reconstructed coefficients of the matrix Ca,r

by

C
a,r
kl = 〈ga

l ,−X−1
σa

ηex
k 〉T 1 , k, l = 1, . . . , Nc.

Consider first two examples: l = 4 and l = 23. We show the reconstructed
coefficients C

a,r
k,4 of the first case in Figure 5.2. Coefficient number 4, which
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Figure 5.2: Reconstructed (*) and exact (o) Fourier coefficients for f = φ4 (upper
plot) with σa and analytic controls ηex

k . The lower plot shows the corre-
sponding error for each coefficient on a logarithmic scale.

should be C
a,ex
4,4 = 1, is C

a,r
4,4 = 0.9987 whereas the rest is zero (at the order of

machine precision 10−15). The coefficients C
a,r
k,23 of the second case l = 23 is

shown in Figure 5.3. The reconstructed coefficient C
a,r
23,23 is 0.9577 instead of

1 while the zeros are obtained to machine precision again. The less degree of
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Figure 5.3: Reconstructed (*) and exact (o) Fourier coefficients for f = φ23 (upper
plot) with σa and analytic controls ηex

k . The lower plot shows the corre-
sponding error for each coefficient on a logarithmic scale.

precision in C
a,r
23,23 compared to C

a,r
4,4 is probably due to the faster variation of

ga
23 than of ga

4 .
The log10 of the absolute error for all elements of the complete coefficient

matrix Ca,r is plotted in gray scale in Figure 5.4. All off-diagonal elements are

index l
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Figure 5.4: Image of log10 of the error |Ca,r − Cex| after reconstruction with ana-
lytic controls ηex

k and σa. Dark gray entries show greater error than light
gray. A column l shows the error for each of the Nc = 25 reconstructed
coefficients k = 1, . . . , Nc from the eigenfunction data ga

l = G(φl). The
average l2 error over the columns is 0.0177.

machine zeros while the elements of the diagonal increase with the index. The
error of the diagonal elements behaves quadratically |Ca,r

kk − Cex
kk| = 8·(10)−5k2.

We measure the l2 error for each eigenfunction data vector ga
l , that is, for each

column in the error matrix, and take the average. In this case, where it has
the value 0.0177, it is identical to the average of the diagonal elements as all
off-diagonal elements are zero.

By increasing the number of time steps M , we can examine the convergence
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of Xσa
. The convergence plot in Figure 5.5 displays quadratic convergence.

The reconstruction formula converge quite clearly in this case with σa and an-

∝ M−2

M

er
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r

max error

mean l2 error
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10−2

10−1

100

Figure 5.5: The max error, maxkl |Ca,r
kl − Cex

kl |, and the average l2 error as functions
of temporal resolution M for σa and analytic controls ηex

k in log-log axes.
The dotted line, y(M) ∝ M−2, shows the rate of decay.

alytic HUM controls.

(b) Reconstruction when σ = σb

The use of the partly trigonometric, partly polynomial σb makes the reconstruc-
tion a bit more challenging. The corresponding Volterra matrix is Xσb

. The
eigenfunction data gb

l is a vector of discrete values of the exact solution gb
l of

the forward problem with f = φl. It can be seen in full length in Appendix B.1.

Let us again consider the coefficients for gb
4 and gb

23. Figure 5.6 shows the
coefficients 〈gb

4,−X−1
σb

ηex
k 〉T 1 . We see that the “zero” coefficients are no longer
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Figure 5.6: Reconstructed (*) and exact (o) Fourier coefficients for f = φ4 (upper
plot) with σb and analytic controls ηex

k . The lower plot shows the corre-
sponding error for each coefficient on a logarithmic scale.

zero but in the order of 10−3—higher for low k and lower for high k. The error
of coefficient four is 0.002156, that is, about the same size as for σa.

The reconstructed coefficients for the data gb
23 are shown in Figure 5.7. The
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Figure 5.7: Reconstructed (*) and exact (o) Fourier coefficients for f = φ23 (upper
plot) with σb and analytic controls ηex

k . The lower plot shows the corre-
sponding error for each coefficient on a logarithmic scale.

“zero” coefficients show smaller error than for gb
4, about 10−4 again decreasing

with index k. The 23’rd coefficient has error 0.03722.
We compute the reconstructed coefficients for all eigenfunction data and put

the results in the coefficient matrix Cb,r defined by

C
b,r
kl = 〈gb

l ,−X−1
σb

ηex
k 〉T 1 .

We show the absolute error in Figure 5.8 as log10

∣∣Cb,r − Cex
∣∣. The off-diagonal
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Figure 5.8: Image of log10 of the error
˛̨
˛Cb,r

kl − Cex
kl

˛̨
˛ after reconstruction with an-

alytic controls ηex
k and σb. The average l2 error over the columns is

0.0155.

entries decrease for increasing k and l, whereas the opposite is the case for the
diagonal elements that scale roughly like the diagonal elements for σa.

Figure 5.9 shows the max error and the average l2 error for the reconstructed
coefficients in log-log axes. The error clearly decreases with increasing temporal
resolution M—first quadratically and then linearly for M > 1000. We conclude
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y(M) ∝ M−2
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Figure 5.9: The max error, maxkl

˛̨
˛Cb,r

kl − Cex
kl

˛̨
˛, and the average l2 error as function

of temporal resolution M for σb and analytic controls ηex
k in log-log axes.

The dotted lines, y(M) ∝ M−2 and y(M) ∝ M−1, show the approximate
rate of decay for low and high M , respectively.

that the reconstruction converges for σb as well, though, a bit slower for high
M compared to the convergence for σa.

(c) Reconstruction when σ = σc

We proceed with the examination for σ = σc in the same way as for σa and
σb. Notice, however, that due to the fast oscillations of σc, we will need higher
temporal resolution compared to the other two functions. For now we stick with
M = 285, though.

The exact data gc
l (see Appendix B.1) is sampled and stored in the vector

gc
l . We also generate a Volterra matrix Xσc

from σc.

Figure 5.10 shows the reconstructed coefficients 〈gc
4,−X−1

σc
ηex

k 〉T 1 for f =
φ4. The error is significant for the 3’rd and the 4’th coefficients. For k > 5 it is
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Figure 5.10: Reconstructed (*) and exact (o) Fourier coefficients for f = φ4 (up-
per plot) with σc and analytic controls ηex

k . The lower plot shows the
corresponding error for each coefficient on a logarithmic scale.

less than 10−2 and decreasing.
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Similarly, the reconstructed coefficients of f = φ23 from the data gc
23 are

shown in Figure 5.11.
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Figure 5.11: Reconstructed (*) and exact (o) Fourier coefficients for f = φ23 (up-
per plot) with σc and analytic controls ηex

k . The lower plot shows the
corresponding error for each coefficient on a logarithmic scale.

We compute the reconstructed coefficients for all eigenfunction data and put
the results in the coefficient matrix Cc,r defined by

C
c,r
kl = 〈gc

l ,−X−1
σc

ηex
k 〉T 1 .

The log10 absolute errors of these coefficients are shown in Figure 5.12. The
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Figure 5.12: Image of log10 of the error |Cc,r
kl − Cex

kl | after reconstruction with an-
alytic controls ηex

k and σc. The average l2 error over the columns is
0.307.

errors are generally greater than the ones we saw for σb in Figure 5.8. The
average l2 error is 0.307 compared to 0.0155 for σb. The first few diagonal
coefficients are particularly bad; the first 6 coefficients, which all should be 1,
are

−0.1984 − 1.6015 3.0223 1.6141 1.3128 1.1899
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Finer temporal discretization is needed for tolerable results. Notice also that
the values of column 20 are a bit off which is most likely due to the singularity
of the forward solution gc

l for l = 20 (see Appendix B.1).
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Figure 5.13: The max error, maxkl |Cc,r
kl − Cex

kl |, and the average l2 error as func-
tion of temporal resolution M for σc and analytic controls ηex

k in log-log
axes. The dotted line, y(M) ∝ M−1.5, shows the approximate rate of
decay.

We need around M = 1500 for σc to reach the same error level that we had
with just M = 150 for σa and σb. But the reconstruction converges also in this
case.

We have now seen that the numerical reconstruction converges with σa,
σb, and σc. It seems reasonable, on this basis, to conclude that the numerical
reconstruction converges with the use of analytic controls ηex

k and smooth σ. But
what happens if we replace the analytic controls with inexact controls obtained
with numerical HUM? This is the subject of the next sections.

5.4.4 Numerical reconstruction with L-FEM

We shall now draw on the knowledge about numerical HUM with L-FEM semi-
discretization that we gained in Section 4.2.4. Since we need not only a single
control but a set of eigenfunction controls, it seems most practical to construct
the controllability matrix L at least when the number of coefficients Nc are of
the same order as the number of grid points N , e.g., Nc = 1

2N . If Nc <<
N , however, we prefer instead the conjugate gradient algorithm 4.2 (MCG-
HUM) presented on page 100. We will focus here on the use of the matrix
L. Section 4.2.4 revealed that it is not feasible to use the full matrix, that is,
Nc = N , but also that the formulation in sine basis allows an easy reduction of
L.

We need to construct the reduced controllability matrix L(Nc)
for T = 2. No-

tice that we, in this chapter, have used Nc for the number of Fourier coefficients
that we wish to recover. In the previous chapter, Nc was used to designate the
cut-off number for the reduced number of sine basis functions used for L(Nc)

.
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The two uses go well together since we need exactly Nc eigenfunction controls,
which we get from L(Nc)

, for the reconstruction of Nc Fourier coefficients. In
this section, we will use Nc = 25 and define the L-FEM eigenfunction controls

ηL

k = −P(Nc)
L−1

(Nc)

[
0

−es
j

]
, k = 1, . . . , Nc,

where P(Nc)
is the reduced observation operator (.) (in sine basis). Both P(Nc)

and L(Nc)
are constructed in L-FEM semi-discretization introduced on page 57

with N = 49 inner nodes. The superscript L on ηL

k denotes the use of L-FEM
semi-discretization. We use trapezoidal time integration with a Courant number
such that M = 285.

Notice that the fraction Nc/N , which we denoted the filter fraction in the
last chapter, is deciding for the quality of the controls. The smaller the fraction
the more well-resolved are the short wavelength components.

Reconstruction

We will in the following examination focus mostly on σb as not to make the
exposition unnecessarily long. We compute the coefficients by the reconstruction
formula

C
b,L
kl = 〈gb

l ,−X−1
σb

ηL

k〉T 1 , k, l = 1, . . . , Nc,

where the superscript L again denotes L-FEM; the superscript r has been omit-
ted. As before, we set off by studying reconstruction of the fourth eigenfunction
l = 4 which can be seen in Figure 5.14. The coefficients are restored quite well
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Figure 5.14: Reconstructed (*) and exact (o) Fourier coefficients for f = φ4 (upper
plot) with σb and L-FEM (N = 49) numerical controls ηL

k . The lower
plot shows the corresponding error for each coefficient on a logarithmic
scale.

with a general error level of about 10−3. Figure 5.15 shows the reconstruction
of the l = 23’rd eigen function. The first 20 zeroes are retained quite well but
the 23’rd coefficient, which should be one, is zero and the coefficients near it
are off as well. This is most likely due to the numerical dispersion effects which
also was seen in the falling eigenvalues of L4 in Figure 4.9.

The log10 error of all coefficients for all eigenfunction data for σa, σb, and
σc is shown on Figure 5.16 on page 134. Observe, when comparing with the
equivalent images for the analytic controls in Figures 5.4, 5.8, and 5.12, how
the plots here are dominated by the error of the numerical HUM. The average
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Figure 5.15: Reconstructed (*) and exact (o) Fourier coefficients for f = φ23 (upper
plot) with σb and L-FEM (N = 49) numerical controls ηL

k . The lower
plot shows the corresponding error for each coefficient on a logarithmic
scale.

l2-errors are also large and we conclude that more than N = 49 elements are
needed for reasonable reconstruction of all Nc = 25 coefficients.
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(a) log10 error; L-FEM with σa. Mean l2-error=0.676.
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(b) log10 error; L-FEM with σb. Mean l2-error=0.678.
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(c) log10 error; L-FEM with σc. Mean l2-error=0.956.

Figure 5.16: Images of log10 of the error
˛̨
C

·,L
kl − C

·,ex
kl

˛̨
after reconstruction with L-

FEM (N = 49) numerical controls ηL
k and three different σ (a,b, and c).

The l2-error showed under each of the above images is calculated as the
average of the l2-error of each column.
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Convergence

Even though L-FEM did not give satisfactory results in the study above, it
might will if we increase N and thereby decrease the filter fraction Nc/N . We
fix the ratio between M and N so the Courant number µ = ∆t/h = 0.6, that
is M = T

0.6 (N + 1) + 1. The max error and the average l2 error are plotted in
logarithmic axes as function of M in Figure 5.17 to show the convergence. The

y(M) ∝ M−2
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Figure 5.17: The max error, maxkl

˛̨
˛Cb,L

kl − Cex
kl

˛̨
˛, and the average l2 error as function

of temporal resolution M for σb and L-FEM controls ηL
k in log-log axes.

The following numbers of inner grid points were used in the computa-
tions N = 39, 49, 69, 82, 99, 124, 149, 174, 234 and 289. The dotted line,
y(M) ∝ M−2, shows the approximate rate of decay.

plot shows a quadratic convergence yet with errors well above those shown on
Figure 5.9 for analytic controls.

5.4.5 Numerical reconstruction with DG-FEM

Let us consider the numerical reconstruction by eigenfunction controls obtained
by DG-FEM semi-discretization. We compute the following set of controls

ηDG

k = −P(Nc)
L−1

(Nc)

[
0

−ess
k

]
, k = 1, . . . , Nc,

where P(Nc)
and L(Nc)

are the reduced matrices obtained with DG-FEM semi-
discretization as described in Section 4.2.5 and ess

k is the sampled sine basis
defined in (.). Alternatively, we could use the projected sines e

ps
k (.)

which make up another polynomial representation of the continuous sine basis.
The superscript DG on ηDG

k denotes the use of DG-FEM semi-discretization.
The control time is still T = 2.

We use our favorite grid with K = 10 elements and local polynomial order
Np = 6, as in Section 4.2.5, which gives N = 49 inner nodes. The Courant
number µ = 0.6 is used which gives M = 285 discrete times; h is here the
minimal grid spacing.

Reconstruction

We wish to reconstruct the eigenfunctions φl for l = 1, . . . , Nc one at the time.
Data gb

l is generated from f = φl with σb. We try to reconstruct the eigenfunc-
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tion from this data with the reconstruction formula

C
b,DG

kl = 〈gb
l ,−X−1

σb
ηDG

k 〉T 1 , k, l = 1, . . . , Nc.

Once more, we study the reconstruction of the fourth eigenfunction l = 4 first
as may be seen in Figure 5.18. The result is satisfactory, similar to that of
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Figure 5.18: Reconstructed (*) and exact (o) Fourier coefficients for f = φ4 (upper
plot) with σb and DG-FEM (Np = 6, K = 10) numerical controls ηDG

k .
The lower plot shows the corresponding error for each coefficient on a
logarithmic scale.

L-FEM, and the general error level is around 10−3. We see, however, some
fluctuations from k = 15 and onwards. The error for l = 23, which we see
on Figure 5.19, is increasing with the index k and it becomes noticeable after
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Figure 5.19: Reconstructed (*) and exact (o) Fourier coefficients for f = φ23 (upper
plot) with σb and DG-FEM (Np = 6, K = 10) numerical controls ηDG

k .
The lower plot shows the corresponding error for each coefficient on a
logarithmic scale.

k = 20. But compared to the corresponding error for L-FEM (Figure 5.15), the
present results are good. The yet inexact results for high k relates again to the
decaying eigenvalues for L4 (see Figure 4.32).

The images of the log10 error for all coefficients for σa, σb, and σc, shown in
Figure 5.20, reveal a huge performance difference between L-FEM and DG-FEM
(compare with Figure 5.16). Especially, the first two images have very light gray
tones, testifying small errors, compared to the much darker ones on Figure 5.16.
The presented images bear closer resemblance with those made with analytic
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controls in Figures 5.4 and 5.8, at least for the first 16 or 17 coefficients; the
highest coefficients are of lower quality. In the lower left corner we see the
ambiguity patterns discussed in Section 4.2.5—see, e.g., Figure 4.25(a) and the
surrounding text. The dark gray area in the lower right corner reveals greater
error than for the rest of the coefficients and is the major contributor to the
average l2-error.
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(a) log10 error; DG-FEM with σa. Mean l2-err=0.0492.
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(b) log10 error; DG-FEM with σb. Mean l2-err=0.0523.
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(c) log10 error; DG-FEM with σc. Mean l2-err=0.366.

Figure 5.20: Images of log10 of the error
˛̨
C

·,DG

kl − C
·,ex
kl

˛̨
after reconstruction with

DG-FEM (Np = 6, K = 10) numerical controls ηDG
k and three different

σ (a,b, and c). The l2-error showed under each of the above images is
calculated as the average of the l2-error of each column.
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Convergence

We now vary the number of elements K to examine the h-convergence of the
reconstruction with DG-FEM controls. Let Np = 6 be fixed and let M scale
with K such that we keep the Courant number µ = ∆t/h. We study the case
with σb and compute the average l2-error and the max error. The results are
plotted in logarithmic axes in Figure 5.21.

y(M) ∝ M−1y(M) ∝ M−8

M

er
ro

r

max error

mean l2 error

102 103
10−4

10−3

10−2

10−1
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Figure 5.21: h-convergence of the max error, maxkl

˛̨
˛Cb,DG

kl − Cex
kl

˛̨
˛, and the av-

erage l2 error as function of temporal resolution M for σb and DG-
FEM controls ηDG

k in log-log axes. The numbers of elements were
K = 7, 10, 14, 19, 28, 36, 49 and 64 and the local polynomial order
Np = 6. The dotted lines show the approximate rates of decay for low
and high M , respectively. See computational details in Table 5.1.

The convergence is very fast, proportional to M−8, in the beginning but
seems to hit a hurdle after K = 14 which makes the convergence only linear
hereafter. This is the error of Xσb

that takes over—compare with the numbers
in Figure 5.9. It is therefore advisable not to use more elements than K = 14
when the polynomial order is Np = 6 as the gain in accuracy for the controls
will be consumed by the Xσ error. The numerical controls are here sufficiently
accurate and the simple low order differentiation and integration of Xσ now
becomes the major obstacle for more accurate reconstruction.

Table 5.1 shows the details behind the data points of the plot in Figure 5.21.
For each K there is shown a corresponding number of inner nodes N = K(Np −
1)−1, filter fraction Nc/N , number of discrete times M , and of course the error
values.

Let now K = 10 be fixed. We vary the local polynomial order Np to study
the p-convergence—Figure 5.22 shows the results. The fast convergence, pro-
portional to M−6, of the reconstruction for low Np is due to the fast convergence
of DG-FEM controls. Again, the error of Xσb

(see Figure 5.9) becomes domi-
nating shortly after M = 500 (Np = 8). This suggest to use polynomial order
no higher than Np = 8 when the number of elements are K = 10 for the same
reason as before. Table 5.2 displays the details of the p-convergence analysis.
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Table 5.1: Values used for the h-convergence analysis of the numerical reconstruc-
tion with DG-FEM controls (see Figure 5.21). The local polynomial order
is everywhere Np = 6. Below K is the number of elements, N is the num-
ber of inner grid points, Nc/N is the filter fraction, M is the number of
discrete times, l2 is short for l2-error, and max is short for max error.

K 7 10 14 19 28 36 49 64
N 34 49 69 94 139 179 244 319

Nc/N 0.7353 0.5102 0.3623 0.2660 0.1799 0.1397 0.1025 0.0784
M 200 285 399 541 796 1023 1392 1818
l2 1.5282 0.0523 0.0044 0.0024 0.0017 0.0014 0.0011 0.0009

max 6.4297 0.2440 0.0169 0.0064 0.0043 0.0034 0.0025 0.0019

y(M) ∝ M−1y(M) ∝ M−6
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Figure 5.22: p-convergence of the max error, maxkl

˛̨
˛Cb,DG

kl − Cex
kl

˛̨
˛, and the average

l2 error as function of temporal resolution M for σb and DG-FEM con-
trols ηDG

k in log-log axes. The number of elements was K = 10 and the
local polynomial orders Np = 5, 6, 8, 10, 13, 16 and 19. The dotted lines
show the approximate rates of decay for low and high M , respectively.
See computational details in Table 5.2.

Table 5.2: Values used for the p-convergence analysis of the numerical reconstruction
with DG-FEM controls (see Figure 5.22). The number of elements is K =
10. See Table 5.1 for detailed explanation.

Np 5 6 8 10 13 16 19
N 39 49 69 89 119 149 179

Nc/N 0.6410 0.5102 0.3623 0.2809 0.2101 0.1678 0.1397
M 195 285 521 830 1429 2192 3118
l2 0.7402 0.0523 0.0025 0.0017 0.0011 0.0008 0.0006

max 3.5676 0.2440 0.0066 0.0042 0.0024 0.0016 0.0011
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5.4.6 An example with random coefficients

So far we have solely considered results for one eigenfunction data vector gl at
the time. We will conclude this numerical study with the numerical reconstruc-
tion of 25 random Fourier coefficients. A random sequence of numbers all from
the set [−1;−0.05]∪ [0.05; 1] has been generated. The forward problem with σb

is solved analytically (see Appendix B.1) and the Neumann data is stored in
the vector gb.

We try to reconstruct the random coefficients from the data gb with the
reconstruction formula (.) with three different sets of eigen function controls
ηk.

(i) Analytic HUM controls ηex
k (Figure 5.23)

(ii) Numerical HUM controls with L-FEM ηL

k (Figure 5.24)
(iii) Numerical HUM controls with DG-FEM ηDG

k (Figure 5.25)

Each of the figures below presents f , its Fourier coefficients and the error of
each coefficient. In all cases M = 285 has been used. The analytic eigenfunction

x
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Figure 5.23: Numerical reconstruction performed with analytic HUM controls ηex
k

and M = 285. Upper plot: the graph of the reconstructed f (solid)
and the original f (dotted). Lower left: the reconstructed Fourier coef-
ficients (*) and the original coefficients (o) as function of the index k.
Lower right: the absolute error of each coefficient.

controls should, according to the error image of Figure 5.8, lead to a small error
as we also see on Figure 5.23. The caption of Figure 5.8 reported an average
error level around 10−2 which corresponds quite well to the error on the lower
right plot of Figure 5.23.

The situation is quite different for the L-FEM numerical HUM controls
shown in Figure 5.24. The reconstructed f does not resemble the original f .
Only the first half of the coefficients are approximated reasonably.

With DG-FEM controls the results are much better as we see on Figure 5.25.
The coefficient errors are less than 10−2 except for a few after k = 20 and the
graph of the original f is followed close by the reconstructed f .

That DG-FEM performed better than L-FEM was after all expected as DG-
FEM is a higher order method, yet the difference for the numerical reconstruc-
tion is still notable.
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Figure 5.24: Numerical reconstruction made with numerical L-FEM (N = 49) HUM
controls ηL

k and M = 285. The graph of f (upper); the Fourier coeffi-
cients (lower left); the error of each coefficient (lower right).
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Figure 5.25: Numerical reconstruction made with numerical DG-FEM (Np = 6; K =
10) HUM controls ηDG

k and M = 285. The graph of f (upper); the
Fourier coefficients (lower left); the error of each coefficient (lower
right).

5.5 Concluding remarks
In this chapter, we have considered an inverse source problem for the wave
equation. The source term was separable in a spatial part f and a temporal
part σ. For given σ, the inverse problem consisted of finding f from measured
Neumann data on a part of the boundary Γ0. Yamamoto showed in his paper
[Yam95] how the HUM could be used for a unified solution to the problems of
stability, reconstruction, and regularization. An auxiliary problem, related to
the source problem by a boundary integral operator K, could be considered the
adjoint of a controllability problem. By probing this auxiliary problem with
eigenfunctions and measuring the output on the boundary by inner products
with eigenfunction controls, we restored the Fourier coefficients of f . The fi-
nal task was to connect the boundary data of the auxiliary problem with the
boundary data of the original problem. This was done by the already mentioned
boundary integral operator.

Numerical approximations of Yamamoto’s solution to the inverse problem have
not been published before. We conducted a numerical study of the reconstruc-
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tion of f in 1-d in this chapter. A discretization was proposed, and the three
basic components of the reconstruction formula, (i) generation of data g, (ii)
Volterra matrix Xσ, and (iii) eigenfunction controls ηk, were addressed.

Regarding (i), we used analytic solutions of the forward problem to generate
eigenfunction data gl = G(φl). We introduced a simple approximation of the
Volterra integral equation with first order approximations of differentiation and
integration which led to the Volterra matrix Xσ. We used three different sets
of eigenfunction controls: analytic HUM controls ηex

k , numerical HUM controls
obtained with, respectively, L-FEM semi-discretization ηL

k, and DG-FEM semi-
discretization ηDG

k .
Yamamoto showed that the forward map G is compact and the inverse prob-

lem therefore ill-posed. We assessed the degree of ill-posedness of the inverse
problem in 1-d by examining the singular values of the forward problem. The
availability of analytic solutions, obtained for the auxiliary problem and mapped
to the source problem by an integral equation, made the analysis reliable since
we thereby ruled out the effect of numerical errors. The singular values of G
scaled like k−1 for the index k corresponding to only a mild ill-posedness of the
inverse problem. This property was not greatly influenced by changing σ—at
least not for the three types of σ studied here. Since the discretized problem
was only mildly ill-posed, no regularization was needed.

The temporal distribution of the source σ had an effect on the quality of the
numerical reconstruction. This became evident after studying the reconstruction
results obtained with analytic HUM controls and three different σ for M = 285.
The first, σa, which was simply the constant 1, reconstructed the zero coefficients
to machine precision while providing reasonable reconstruction for the “ones”.
The smooth σb allowed similar reconstruction of the “ones” whereas the “zeros”
had an error level of 10−3. The fast, harmonically oscillating σc required a
higher number of discrete time steps. Convergence was showed for all three σ
with different rates of decay, though.

The reconstruction with numerical HUM controls obviously resulted in higher
error level compared to the analytic HUM controls. The use of L-FEM with
N = 49 inner grid points seemed insufficient for the reconstruction of Nc = 25
coefficients; only about half the coefficients could be reconstructed with reason-
able accuracy. A DG-FEM discretization with the same number of inner grid
points, but with more degrees of freedom, though, provided far better results
than L-FEM. The reconstruction converged for both semi-discretizations. L-
FEM generally lacked far behind DG-FEM until DG-FEM reached the error
level of the Volterra matrix which after K = 14 (with Np = 6) or Np = 8 (with
K = 10) became the major source of error. This analysis also showed that even
though the inverse problem is not severly ill-posed, the reconstruction process
is quite sensible to HUM control inaccuracies. It proved, furthermore, that our
simple choices of approximate differentiation and integration for Xσ were suffi-
cient as the error from inaccurate control is the dominating factor. This holds
unless we use HUM controls made with high order DG-FEM which will put Xσ

to the test.
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CHAPTER 6

Conclusion

This final chapter will summarize the main results of this work and offer a view
of its perspectives as well as suggest future work.

6.1 Results
The first three chapters of this dissertation contained the background necessary
for the studies made in Chapter 4 and 5. Chapter 4 treated the numerical ap-
proximation of HUM boundary control, and Chapter 5 dealt with the numerical
approximation of a reconstruction formula for an inverse problem. Both chap-
ters were concluded by a discussion which we shall not repeat here. We will
instead try to condense the main results in just a few paragraphs.

6.1.1 The control problem and numerical HUM

The numerical approximation of HUM boundary control for the wave equation is
well-known to be difficult. We have studied numerical HUM in 1-d with mainly
two different discretizations of the wave equation: the linear FEM (L-FEM) and
the discontinuous Galerkin-FEM (DG-FEM).
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Sinusoidal basis. A choice of basis function needs to be made when discretiz-
ing HUM. The use a sinusoidal basis has not previously been described in
the literature. We presented the use of a sine basis and showed its advan-
tages over the canonical basis: (i) separation of waves with small and large
wavenumbers, (ii) a very close connection to the dispersive properties of
a discretization, (iii) a simple and effective filtering procedure reducing
the number of computations in the construction of matrix L by the factor
Nc/N .

L-FEM for numerical HUM. We presented the assembly of matrix L with
L-FEM semi-discretization. Our study showed the importance of choosing
a scheme with good dispersive properties. Many authors have argued that
group velocity is determining for the success of numerical HUM. Group
velocity is known to be of significant importance for control. We demon-
strated how the vanishing group velocity of waves with highest wavenum-
bers led to a dramatical decay of the eigenvalues of L which in turn led
to huge condition numbers. In this way, group velocity is determining for
the success of the numerical approximation. We found, on the other hand,
that it is the phase velocity that decides the quality and the accuracy of
the control after filtering.

DG-FEM for numerical HUM. DG-FEM has not previously been used in
the context of HUM boundary control for the wave equation. We applied
the method which demonstrated superior results, particularly in the low
frequency region, compared to L-FEM. By increasing the order of DG-
FEM, we even obtained spectral accuracy for the eigenvalues of L. The
representation of sinusoids with large wavenumbers by local polynomials
does, however, point at the limitations of the used formulation. The “am-
biguity patterns”, showing the variation of frequencies over the domain,
remained in the approximation and could be seen in the resulting eigen-
function controls.

6.1.2 The inverse problem and the numerical reconstruction

Chapter 5 dealt with an inverse source problem for the wave equation. We
investigated the numerical aspects of a method by M. Yamamoto and proposed a
numerical approximation to the reconstruction in 1-d. The source term consisted
of a known temporal part σ and an unknown spatial part f .

The discrete forward problem. By analyzing analytic solutions for the for-
ward problem, we were able to assess the degree of ill-posedness of the
inverse problem. We studied the distribution of singular values and found
that the inverse problem was only mildly ill-posed; the temporal distribu-
tion of the source σ had only negligible effect on this matter.

The discrete reconstruction formula. We suggested a simple discretization
of the reconstruction formula and the Volterra integral equation. The
discretization converged for increasingly fine temporal discretizations. We
also saw that the rate of convergence was influenced by the choice of σ.

Reconstruction by numerical HUM controls. After studying the recon-
struction with analytic HUM controls, we considered the eigenfunction

Jesper Sandvig Mariegaard Ph.D. dissertation, v. 1.1, September 7, 2009



6.2 Future work 147

controls found by numerical HUM with respectively L-FEM and DG-
FEM. We showed that, in spite of the problem being only mildly ill-posed,
the numerical reconstruction was sensible to inaccurate eigenfunction con-
trols. The sensibility was particular pronounced for frequency errors since
the Fourier coefficients of f are reconstructed by eigenfunction data, one
wavenumber at the time. This certainly favored the DG-FEM controls
over the L-FEM ones.

6.1.3 Software contributions

The developed software for the HUM solution of the boundary control for the
wave equation and the inverse source problem has been made freely available
from http://www.mat.dtu.dk/people/J.S.Mariegaard/software/. It is the inten-
sion that scholars of HUM or inverse problems can download the code for study-
ing, modification and extension. The motivation for sharing this software came
from the author’s own problems with finding code for dealing with HUM control.

6.2 Future work
As with most other scientific endeavors, this project posed at least as many
questions as it answered. A few of these and some ideas of improvement, which
seem particularly promising, are listed below.

Dispersion and dissipation. The dispersive behavior of a discretization in
regards to control was given a lot of attention in this dissertation. Yet,
it would be interesting to go even further in this analysis. Can precise
predictions be made about the capabilities of a discretization in respect
to control alone by considering its dispersive relation? Can we quantify
predictions? In terms of required filter index Nc? In terms of convergence
rates? Speaking accuracy, the dissipation of a scheme is obviously impor-
tant as well. We saw the consequences of dissipative behavior when we
studied the L-FEM observation of the sine basis vectors, but we did not
link it directly to a specific dissipation relation like we did for dispersion.
Also in the case of DG-FEM both the dispersive and dissipative properties
need to be connected closer to the method’s HUM results.

Other bases. Although several of our results relied on the formulation of HUM
in sine basis, this basis has its limitations and finding alternative bases of
modal-type would be an obvious objective for future investigations. If
we use semi-discretizations build on polynomial basis functions, it is nat-
ural to utilize those as building blocks for numerical HUM and thereby
eliminating the loss that we inevitable sustain by translating to and from
trigonometric functions. Furthermore, going into 2- and 3-d would also re-
quire alternatives to the sinusoids as these will no longer be eigenfunctions
in more general and complex geometries.

DG-FEM derivative. We needed to find the normal derivative at the right
end of the domain to find the observation of the adjoint problem. The
polynomial basis of DG-FEM constituted a challenge in this regard since
derivatives of polynomials are well-known to be of low quality at the end-
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points. It is possible that the use of a weak filter on the rightmost element
could improve this.

PSWFs for DG-FEM. In the end of Section 4.2.5, we suggested the use of
so-called prolate spheroidal wave functions (PSWFs) as alternative to the
polynomial basis in the DG-FEM formulations. PSWFs are much better
suited for the approximation of sinusoids and would probably improve the
sine formulation of HUM significantly.

Uniform observability. One of the great strengths of DG-FEM is its strong
theoretical foundation. It is highly desirable to back the numerical findings
obtained during this project with rigorous numerical analysis, e.g., a
convergence analysis.

2- and 3-d problems. The employment of HUM for the solution of a control
problem in 1-d reminds about the saying “take not a musket to kill a
butterfly”. But as explained previously, the ultimate goal is indeed higher
dimensional control problems in complex domains where HUM really has it
advantages. The DG-FEM is well-suited for general geometries, too. The
main obstacle seems the use of some other basis function, as explained
above, which can be generalized to 2- and 3-d.
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APPENDIX A

List of Symbols

The following lists of symbols are not exhaustive, but they contain the most
important symbols used in this dissertation.

General notation

Symbol Description
≡ equivalence by definition
:=, =: equality defining left and right hand side, respectively
R the real numbers
N the natural numbers

¤
′ time derivative of a function, e.g., u′ = ∂u/∂t

〈a, b〉C inner product between a and b in C
‖a‖A A-norm of a ∈ A
〈a′, a〉A⋆,A duality product between a′ ∈ A⋆ and a ∈ A.
∆ The Laplacian operator
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HUM for the wave equation, Chapter 2

Symbol Description Page
Ω open, bounded subset of R

d—in 1-d Ω = (0, 1) 8
Γ boundary of Ω 8
Γ0 control boundary Γ0 ⊂ Γ—in 1-d Γ0 = {1} 8
Σ time-boundary cylinder Σ := (0, T ) × Γ 8
Σ0 domain of control Σ0 := (0, T ) × Γ0—in 1-d Σ0 = (0, T ) 8

u solution to the control system (.) 8
u0, u1 initial data for the control system 8
κ control function (Dirichlet boundary condition on Σ0) 8
ψ solution to the auxiliary system (.) 10
ϕ solution to the adjoint system (.) 11
ϕ0, ϕ1 initial data for the adjoint problem 11

E energy space for the adjoint system E := H1
0 (Ω)×L2(Ω) 11

E⋆ dual E⋆ = H−1(Ω) × L2(Ω) of the energy space E 12

Ẽ⋆ control system energy space Ẽ⋆ := L2(Ω) × H−1(Ω) 8
B boundary space B = L2(Σ0) 8
〈·, ·〉E⋆,E duality product between the spaces E⋆ and E 13
E(t) mechnical energy of the adjoint system at time t 12

Φ observation operator defined in (.) 14
Ψ reconstruction operator Ψ = Φ∗ defined in (.) 15
Λ HUM operator Λ := Ψ ◦ Φ 16
Π control operator Π := ΦΛ−1 17
(ϕ̄0, ϕ̄1) solution to the equation Λ(ϕ0, ϕ1) = (u1,−u0) 20
Φ, Ψ, Λ matrix representation of above operators 17

J HUM energy functional defined in (.) 20
(ϕ̄0, ϕ̄1) unique minimum of the functional J 20

Approximating solutions to the wave equation, Chapter 3

Symbol Description Page
y solution to the model wave equation (.) 22
y0, y1 initial data for the wave equation 22
g0, g1 Dirichlet boundary data for the wave equation 22
f right hand side for the wave equation 22
z auxiliary variable (advection system) 23
p, q characteristic wave variables 24

yh approximate solution to (.) 26
Rh residual for yh in (.) 27
N number of inner grid points 27
h uniform grid spacing h = 1/(N + 1) 27

Continued on the next page
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Symbol Description Page
y vector of nodal values (or coefficients) of yh 27
ψL

n basis function for linear FEM (hat basis) 29
M mass matrix 29
K stiffness matrix 29
α parameter for the unified semi-discretization 29

D
k k’th element D

k = (xk
L, xk

R) in DG-FEM formulation 31
K number of elements 31
hk length hk = xk

R − xk
L of element D

k 34
Np number of nodes per element (polynomial order is Np−1) 32
yk

h local approximate solution 32
ℓk
i i’th Lagrange basis polynomial on element D

k 32
yk vector of nodal values on element D

k 33
ŷk vector of modes on element D

k 35
Mk local DG-FEM mass matrix 33
Sk local DG-FEM stiffness matrix 33
(ay)∗ numerical flux 34
I reference element I = (−1, 1) 35

P̃n−1 normalized Legendre polynomial 35
V Vandermonde matrix 35
Dr differentiation matrix on reference element I 36
pk, qk nodal vectors of the approximate characteristics ph, qh 38

∆t time step size 41
M number of discrete instances of time 41
Lh right hand side of ODE 40
µ Courant number µ = ∆t/h 40

ω frequency of trial solution 43
ξ wavenumber of trial solution 43
c phase velocity 43
cg group velocity 43

Numerical HUM, Chapter 4

Symbol Description Page
u(t) approximation of u(t) sized N × 1 55
U(t) control system state U(t) = [u(t),u′(t)]T 55
U0 initial data [u0,u1]T for the control system 55
k control function for the semi-discrete system 55
Lh system matrix sized 2N × 2N 55
Bh boundary matrix sized 2N × 1 55
z(t) column vector of size N × 1 approximating ψ(t) 56
Z(t) state Z(t) = [z(t),z′(t)]T for the auxiliary system 56
w(t) column vector of size N × 1 approximating ϕ(t) 55
W (t) state W (t) = [w(t),w′(t)]T for the adjoint system 55

Continued on the next page
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Symbol Description Page
W 0 initial data [w0,w1]T for the adjoint system 55
Ch output matrix sized 1 × 2N 55

X finite dimensional state space approximating E 54
X ⋆ finite dimensional state space approximating E⋆ 54

P
sd

semi-discrete observation operator approximating Φ 56
R

sd

semi-discrete reconstruction operator approximating Ψ 56
L

sd

semi-discrete controllability operator approximating Λ 57

T discrete time space R
M w norm (.) approximating B 60

P discrete observation operator approximating Φ 60
R discrete reconstruction operator approximating Ψ 60
L discrete controllability operator approximating Λ 60
(w̄0, w̄1) solution to the HUM equation L[w0,w1]T = [u1,−u0]T 60
k time discrete control sized M × 1 60
L matrix representations of L assembled by (.) or (.) 61
Li submatrix i = 1, 2, 3 or 4 of matrix L 61
L(Nc)

reduced L by Nc sine basis functions 73
P matrix representation P =

[
P 0 P 1

]
of operator P 62

R matrix representation R =
[

R0 R1
]

of operator R 63

es
j j’th sine basis function es

j(x) =
√

2 sin(jπx) 64
p0

j , p
1
j exact P 0 and P 1 observation of es

j 64

f̂k k’th Fourier sine coefficient of f 66
es

j nodal vector with N equidistant samples of es
j 66

eLs
j linear spline approximation to es

j 66

f̂L

k linear approximation to f̂k by 66
ess

j nodal vector (DG-FEM) with samples of es
j 80

ess
j discontinuous piecewise polynomial interpolating ess

j 80

f̂ss
k k’th Fourier sine coefficient by inner product with ess

j 84
e

ps
j nodal vector of values obtained by projection of es

j 80

eps
j discontinuous piecewise polynomial interpolating e

ps
j 80

f̂ps
k k’th Fourier sine coefficient by inner product with e

ps
j 84

Mp conjugate gradient pre-conditioner 98

The inverse problem, Chapter 5

Symbol Description Page
v or vf solution to the source problem (.) 111
σ temporal part (known)of the forcing term in (.) 111
f spatial part (unknown) of the forcing term 111
G forward map G(f) = ∂Γ0

vf for the source problem 112
w or wf solution to the auxiliary problem (.) 113
λk, φk k’th eigensolution to the eigenvalue prob. associated

(.)
113

Continued on the next page
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Symbol Description Page
B1 boundary space for the source problem system 111
B0 boundary space for the auxiliary system 113
K boundary integral operator with kernel σ 114
Ξ bounded operator defined by the Volterra equation (.) 118

T 1 discrete approximation to B1 with inner product (.) 120
T 0 discrete approximation to B0 with inner product (.) 120
D temporal differentiation matrix sized M × M 120
Xσ matrix approximation to Ξ−1 sized M × M 121
σa, σc, σc three examples of σ 122
ga

l , gb
l , g

c
l exact soln. to forward problem with above σ and f = φl 123

C·,r matrix of reconstructed coefficients by exact controls 125
C·,L the same but by L-FEM controls 132
C·,DG the same but by DG-FEM controls 136
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APPENDIX B

Mathematical details

B.1 Analytic solution to the forward problem

We consider the forward map G defined by (.). The forward problem is
solved analytically in 1-d with two different σ for the eigenfunction
f = φk =

√
2 sin(kπx). We solve the auxiliary problem (.) with f = φk first

which gives

∂Γ0
wφk

= (−1)k
√

2 sin(kπt), t ∈ (0, T ), k ∈ N.

Then we map the boundary data by the boundary integral opererator (.) by

gk =

∫ t

0

σ(t − s)∂Γ0
wφk

ds, t ∈ (0, T ), k ∈ N,

with the two different σ. The computations of the integrals are done in Maple1.

1http://www.maplesoft.com
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156 Chapter B. Mathematical details

Solution with σb

Let σ = σb = cos(πt) + t2 − 3t + 1 then the above integral gives the following
result.

gb
1 (t) =

√
2

2π3

(
2 cos (π t)π2 − 2π2 − 2 t2π2 + 4 + 6 tπ2

− 4 cos (π t) − sin (π t)π3t − 6π sin (π t)
)

for k = 1 and

gb
k(t) =

(−1)k
√

2

π3k3 (k2 − 1)

(
t2k4π2 + cos (π t)π2k4 + 2 − 2 k2 − k2π2 + 3 tk2π2

− t2k2π2 + k4π2 − 3 tk4π2 + 3 k3π sin (tkπ) − 2 cos (tkπ)π2k4

− 3 kπ sin (tkπ) + k2π2 cos (tkπ) + 2 cos (tkπ) k2 − 2 cos (tkπ)
)

for k = 2, . . ..

Solution with σc

For σc = cos(20πt) we get

gc
k(t) = −

√
2 (−1)

k
k

π (k2 − 400)

(
− 524288 (cos (π t))

20
+ 2621440 (cos (π t))

18

− 5570560 (cos (π t))
16

+ 6553600 (cos (π t))
14 − 4659200 (cos (π t))

12

+ 2050048 (cos (π t))
10 − 549120 (cos (π t))

8
+ 84480 (cos (π t))

6

− 6600 (cos (π t))
4

+ 200 (cos (π t))
2 − 1 + cos (tkπ)

)

for k 6= 20. In the special case k = 20 we have

gc
20 (t) =2

√
2t sin (π t) cos (π t)

(
131072 (cos (π t))

18 − 589824 (cos (π t))
16

+ 1114112 (cos (π t))
14 − 1146880 (cos (π t))

12
+ 698880 (cos (π t))

10

− 256256 (cos (π t))
8

+ 54912 (cos (π t))
6 − 6336 (cos (π t))

4

+ 330 (cos (π t))
2 − 5

)
.
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APPENDIX C

The Matlab package

IPHUM1DWAVE is the name of the Matlab1 package that accompany this disser-
tation. During the course of this project more than 200 Matlab files have been
developed; a few of these are collected in IPHUM1DWAVE.

IPHUM1DWAVE is organized in 5 modules.

Module WAVE: for the solution of the 1-d wave equation by the unified dis-
cretization (including L-FEM).

Module HUM: for the solution of HUM boundary control by construction of L

or by conjugate gradients. HUM depends on WAVE.

Module DGWAVE: for the solution of the 1-d wave equation by DG-FEM. DGWAVE
depends on Matlab module CODES1D2 from [HW08].

Module DGHUM: as HUM but with DG-FEM discretization. DGHUM depends on
DGWAVE.

1http://www.mathworks.com
2http://www.caam.rice.edu/~timwar/NUDG/Book/Software.html
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158 Chapter C. The Matlab package

Module IP: for the solution of the inverse source problem with HUM. IP de-
pends on WAVE+HUM and/or DGWAVE+DGHUM.

We will describe the basic functionality of these modules below. For each module
we give a short user guide, examples of use, and a one-line summary of the core
functions. The complete documentation and all files can be obtained at

http://www.mat.dtu.dk/people/J.S.Mariegaard/software/

The Matlab files comes bundled in a .zip-file (including the necessary files from
[HW08]—see copyright file), and after download and extraction, IPHUM1DWAVE
is ready to use. The user starts Matlab, change directory to the folder with the
extracted files, and types

>> startup

and instructions for further use follows. The user types >> help [function name]

to get information about the use a particular function or module.

C.1 Module WAVE

The purpose of WAVE is to discretize and solve the 1-d wave equation by the uni-
fied scheme (.). A number of different time integration schemes are provided
(see Section 3.4).

C.1.1 Function summary

PLOTWAVE Plot solution of 1-d wave equation
RHSWAVE Compute rhs of 1st order syst. wave eq Y ′ = f(t, Y )
SOLVEU Solve 1-d wave equation with u(t, 1) = k(t)
SOLVEW Solve 1-d wave eq with homogeneous BCs
SOLVEWAVE Solve 1-d wave eq with Dirichlet BCs
WAVEGLOBALS Declare all global variables for wave solver
WAVESTARTUP Discretization for the 1-d wave equation

It should be noted that SOLVEU and SOLVEW only are “shells” passing data to the
actual solver SOLVEWAVE; function SOLVEU find approximate solution to u-system
(.) and SOLVEW find approximate solution to w-system (.). Before solving
the user needs to discretize space and time by WAVESTARTUP.

C.1.2 Short user guide

(a) Discretize space and time

1) Declare globals by calling WAVEGLOBALS

2) Enter final time T, grid spacing h and Courant number mu
3) Decide spatial discretization by parameter alp (= α)

alp=0: 2nd order central finite difference (FDM)
alp=1/12: higher order (Störmer-Numerov)
alp=1/6: linear FEM (L-FEM)
alp=1/4: mixed FEM
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C.2 Module HUM 159

4) Run WAVESTARTUP (sets up geometry, matrices, etc.)

(b) Solve wave equation

1) Enter discrete initial data w0 and w1 as “functions” of xs
2) Enter boundary conditions (if non-zero) g1 as “function” of tvec
3) Choose time integration method odemthd

odemthd=’cfd’: explicit mid-point rule
odemthd=’trapez’: trapezoidal rule (implicit),
odemthd=’newmark’: Newmark method (options bet and gam),
odemthd=’RK5’: 5 stage ERK (option Mass),
odemthd=’ode45’: build-in ode45 (options: Mass, AbsTol, etc.)

4) Solve with SOLVEWAVE, SOLVEW or SOLVEU

(c) Post-process

1) Plot solution with PLOTWAVE

2) Examine error, e.g., using mass matrix Mh etc.

C.1.3 Examples of use

Matlab code C.1: A simple wave equation with homogeneous boundary conditions
by FDM and trapezoidal time integration (default)

1 %% (a) discretize space and time

2 waveglobals ( ) ; % declare all globals

3 h=0.05; T=4; % grid space h=dx; final time T

4 mu=0.5; % dt = CFL*dx

5 alp =0; % FDM

6 wavestartup (mu) ; % set -up geometry , matrices , etc

7

8 %% (b,c) wave equation + plot

9 w0 = sin (2∗pi∗xs ) ; % initial data w(0,x) = w0

10 w1 = 0∗ xs ; % initial data w’(0,x)= w1

11 [ ts ,W]=solveW(w0 ,w1 ) ; % solve wave equation

12 plotwave (W, t s ) % plot solution

C.2 Module HUM

The purpose of HUM is to solve the discretized boundary control problem for
the 1-d wave equation by numerical HUM. The module allows solving the HUM
problem by either construction the matrix L (see Section 4.2) or iteratively by
conjugate gradients (see Section 4.3).

C.2.1 Function summary

BSFILT Filter by projection onto set of basis functions
CGHUM Solve HUM by conjugate gradients
HUMLAM Solve HUM by construction of L matrix
LAMSIN Construct L matrix in sine basis
OBSSIN Compute discrete observation P of sine basis vectors
SOLVEPSI Solve backward wave equation (Psi)
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160 Chapter C. The Matlab package

The most important functions for the end-user are CGHUM (algorithm MCG-
HUM) and HUMLAM (HUM by L construction) which both solves the HUM con-
trol problem given the initial data.

C.2.2 Short user guide

(a) Discretize space and time as in C.1.2(a).

(b) Control problem

1) Enter discrete initial data u0 and u1 as “functions” of xs
2) Choose time integration method as global godemthd (as odemthd in

C.1.2(b))
3) Solve control problem with HUMLAM or CGHUM

(c) Post-process

1) Use SOLVEU to test found control, plot result with PLOTWAVE.
2) Compute norms on output u(T, x) and u′(T, x) with mass matrix Mh

C.2.3 Examples of use

Matlab code C.2: HUM solution to boundary control problem; solution by construc-
tion of L-FEM discretized matrix L in sine basis.

1 %% (a) discretize space and time

2 global godemthd ;
3 waveglobals ( ) ; % declare all globals

4 h=0.02; T=2.13; % grid space h=dx; final time T

5 mu=0.5; % Courant number dt = mu*dx

6 alp =1/6; % L-FEM

7 wavestartup (mu) ; % set -up geometry , matrices , etc.

8

9 %% (b) control problem

10 u0 = sin ( pi∗xs ) . ^ 4 .∗ sin (5∗pi∗xs ) ; % initial data

11 u1 = 0 .∗ xs ; % -

12 godemthd = ’trapez ’ ; % time integration methods

13 Lmthd = ’sin’ ; Nc = f loor (N/2 ) ; % type of L construction , filter

14 [ e0 , e1 , k , L ,P]=humlam(u0 , u1 , Lmth ,Nc ) ; % HUM solution

15

16 %% (c) post -processing

17 [ ts ,U] = solveU (u0 , u1 , k ) ; % test found control

18 uT = U(1 :N,end ) ; % u(T,x)

19 L2uT= sqrt (uT’∗Mh∗uT) , % L2 norm of output

20 L2k = sqrt ( L20Tinprod (k , k ) ) , % L2 norm of control

Matlab code C.3: Changes to be made in the above code to use MCG-HUM algo-
rithm instead.

13 t o l = 1e−6; f i l t f r a c = 1/2 ; % CG -tolerance and filter

14 [ e0 , e1 , k , r e s i d ] = cghum(u0 , u1 , to l , [ ] , [ ] , f i l t f r a c ) ; % MCG -HUM algo.

C.3 Module DGWAVE

The purpose of DGWAVE is to discretize and solve the 1-d wave equation by
DG-FEM (see Section 3.3.3). The standard wave equation is transformed to a
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system of two de-coupled advection equations in characteristic variables p and
q (see Section 3.1.1).

C.3.1 Function summary

DGEVAL Evaluate DG-function f on points xx
DGH1IP Compute H1(Ω)-inner product for two DG-functions
DGINT Compute anti-derivative of DG-function
DGL2IP Compute L2(Ω)-inner product for two DG-functions
DGSTARTUP Set up DG-FEM discretization
DGWAVEPQ Solve pq-wave equation by DG-FEM
DGWAVERHSPQ Compute rhs of pq-system with DG-FEM

For the end-user the functions DGSTARTUP and DGWAVEPQ are the most important;
they correspond to WAVESTARTUP and SOLVEWAVE of the WAVE module. Note that
the function DGINT can be used to find the anti-derivative of the initial data
y′(0, x) = y1(x) needed for the initial data for the p, q-system.

C.3.2 Short user guide

(a) Discretize space and time

1) Declare globals by WAVEGLOBALS (from module WAVE) and GLOBALS1D

(from module Codes1D)
2) Enter final time T and Courant number mu
3) Enter number of elements K and points per element Np
4) Run DGSTARTUP (sets up geometry, matrices, etc.)

(b) Wave equation

1) Enter discrete initial data y0 and y1 as “functions” of x
2) Enter boundary conditions (if non-zero) g1 as “function” of tvec
3) Solve with DGWAVEPQ (uses LSERK time integration)

(c) Post-process

1) Plot solution (use, e.g., DGEVAL)
2) Examine error (use, e.g., DGL2IP or DGH1IP), etc.

C.3.3 Examples of use

Matlab code C.4: A wave equation with homogeneous boundary conditions solved by
DG-FEM.

1 %% (a) Discretize space and time

2 clear a l l ;
3 waveglobals ; Globals1D ( ) ; % load all wave globals

4 T = 2 ; mu=0.6; % final time and Courant num

5 dgstartup (6 ,10 ,mu) ; % DG -FEM discretiz. Np=6; K=10

6

7 %% (b) Wave equation

8 w0 = sin (2∗pi∗x ) ; % initial data w(0,x) = w0

9 w1 = 0∗x ; % initial data w’(0,x)= w1

10 [ ts ,W]=dgwavepq (w0 ,w1 ) ; % solve wave equation
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C.4 Module DGHUM

The purpose of DGHUM is to solve the DG-FEM discretized boundary control
problem for the 1-d wave equation by numerical HUM. It has functionality
parallel to HUM but due to the different types of spatial discretization; module
HUM cannot be used with DGWAVE.

C.4.1 Function summary

DGCGHUM Solve HUM by conjugate gradients (DG-FEM)
DGBSFILT Filter by projection onto set of basis functions
DGHUMLAM Solve HUM by construction of L matrix
DGLAMSIN Construct L matrix in sine basis by DG-FEM
DGOBSSIN Compute discrete observation P of sine basis vectors
DGPSI Solve backward wave equation (Psi)

The most important functions for the end-user are DGCGHUM (DG-FEM imple-
mentation of algorithm MCG-HUM) and DGHUMLAM (HUM by DG-FEM L con-
struction) which both solves the HUM control problem given the initial data.

C.4.2 Short user guide

(a) Discretize space and time as with DGWAVE C.3.2(a).

(b) Control problem

1) Enter discrete initial data u0 and u1 as “functions” of x
2) Solve control problem with DGHUMLAM or DGCGHUM

(c) Post-process

1) Use DGWAVEPQ to test found control
2) Compute L2 norm of final state (u(T, x), u′(T, x)) by use of DGL2IP

C.4.3 Examples of use

Matlab code C.5: DG-FEM discretized HUM solution to the boundary control prob-
lem; solution by construction of matrix L in sine basis.

1 %% (a) Discretize space and time

2 clear a l l ;
3 waveglobals ; Globals1D ( ) ; % load all wave globals

4 T = 2 . 1 3 ; mu=0.6; % final time and Courant num

5 dgstartup (6 ,10 ,mu) ; % DG -FEM discretiz. Np=6; K=10

6

7 %% (b) control problem

8 u0 = sin ( pi∗x ) . ^ 4 .∗ sin (5∗pi∗x ) ; % initial data

9 u1 = 0 .∗ x ; % -

10 Nc = f loor (N/3 ) ; % type of L construction , filter

11 [ e0 , e1 , k , L ,P]=dghumlam(u0 , u1 ,Nc ) ; % HUM solution

12

13 %% (c) post -processing

14 [ ts ,U] = dgwavepq (u0 , u1 , k ) ; % test found control

15 uT = U(1 :Np∗K, end ) ; % u(T,x)

16 L2uT= sqrt ( dgL2ip (uT,uT) ) , % L2 norm of output

17 L2k = sqrt ( L20Tinprod (k , k ) ) , % L2 norm of control
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Matlab code C.6: Changes to be made in the above code to use MCG-HUM algo-
rithm instead.

10 t o l = 1e−6; f i l t f r a c = 1/3 ; % CG -tolerance and filter

11 [ e0 , e1 , k , r e s i d ]=dgcghum(u0 , u1 , to l , [ ] , [ ] , f i l t f r a c ) ; % MCG -HUM algo

C.5 Module IP

The purpose of IP is to solve the inverse source problem (ISP) for the 1-d wave
equation. The solution consists of reconstructing the Fourier coefficients of the
unknown spatial part f of the source term.

C.5.1 Function summary

H10TINPROD Compute H1(0, T )-inner product for two functions
IPDATA Generate random Fourier coefs for inverse problem
IPFORWARD Compute numerical solution to forward problem
IPFORWARDEX Compute exact solution to forward problem
IPHUMBASIS Construct HUM eigenfunction control-basis
IPPLOTCOEF Plot reconstructed and original coefficients
IPSIGMA Return function handle for a sigma function
IPVOLTERRA Construct Volterra matrix for Volterra BIE

C.5.2 Short user guide

(a) Discretize space and time by either WAVE (see Section C.1.2(a)) or DGWAVE
(see Section C.3.2(a))

(b) Forward problem

1) Provide original f , e.g., randomly by IPDATA

2) Provide σ and its derivative as function handles, e.g., with IPSIGMA

3) Generate g by solving forward problem by IPFORWARD or IPFORWARDEX

(c) Reconstruction formula

1) Decide cut-off index Nc

2) Compute eigenfunction controls eta by IPHUMBASIS w method hummthd

hummthd=’anal’: analytic controls (when T = 2)
hummthd=’lamsin’: L in sine basis
hummthd=’cghum’: MCG-HUM for WAVE
hummthd=’dglamsin’: L in sine basis (DG-FEM)
hummthd=’dgcghum’: MCG-HUM for DG-FEM

3) Construct Volterra matrix Xsg by IPVOLTERRA

4) Compute “IP-basis” tht by solving Xsg*tht = eta

5) Compute reconstructed coefficients by H1(0, T )-inner product be-
tween g and tht

(d) Post-process

1) Compare reconstructed and original coefficients with IPPLOTCOEF
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C.5.3 Examples of use

Matlab code C.7: An inverse problem with 25 coefficients, σb and exact generated
boundary data. Reconstruction by L-FEM eigenfunction controls.

1 %% (a) Set -up wave -environment

2 clear a l l ;
3 global godemthd phi ;
4 waveglobals ( ) ; % load all wave globals

5 T = 2 ; h = 0 . 0 2 ; CFL=0.353; % discretization

6 alp = 1/6 ; godemthd=’trapez ’ ; % L-FEM + trapezoidal rule

7 wavestartup (CFL) ; % set -up system

8

9 %% (b) Generate data for forward problem

10 Nc = 25 ; % number of fourier coefs.

11 [ cex ] = ipdata (Nc ) ; % coeff of original f

12 sgm=’b’ ; % sigma -b

13 [ sgfun , dsgfun ]= ipsigma (sgm ) ; % sigma function handles

14 g = ipforwardex ( cex , sgm , tvec ) ; % forward problem

15

16 %% (c) Reconstruction formula

17 %Nc = 25; % cut -off index = num of coefs

18 [ eta , phi ]= iphumbasis (Nc , ’lamsin ’ ) ; % eigenfunction controls

19 [ Xsg]= i p v o l t e r r a ( sg fun ( tvec ) , dsgfun ( tvec ) ) ; % Volterra matrix

20 tht = (Xsg\(−eta ’ ) ) ’ ; % "IP -basis"

21 cr = H10Tinprod (g , tht ) ; % reconstructed coefficients

22

23 %% (d) Plot results

24 i p p l o t c o e f ( cex , c r ) ; % compare coefficients
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