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Abstract 

The objective of this study is to explore non-dyadic Haar wavelets for higher order integro-differential equations. In this research 

article, non-dyadic collocation method is introduced by using Haar wavelet for approximating the solution of higher order 

integrodifferential equations of Volterra and Fredholm type. The highest order derivatives in the integrodifferential equations are 

approximated by the finite series of non-dyadic Haar wavelet and then lower order derivatives are calculated by the process of 

integration. The integro-differential equations are reduced to a set of linear algebraic equations using the collocation approach. The 

Gauss - Jordan method is then used to solve the resulting system of equations. To demonstrate the efficiency and accuracy of the 

proposed method, numerous illustrative examples are given. Also, the approximated solution produced by the proposed wavelet 

technique have been compared with those of other approaches. The exact solution is also compared to the approximated solution 

and presented through tables and graphs. For various numbers of collocation points, different errors are calculated. The outcomes 

demonstrate the effectiveness of the Haar approach in resolving these equations. 

 

Keywords- Fredholm integro-differential equations, Volterra integro-differential equations, Non-dyadic Haar wavelets, 

Collocation method. 

 

 

 

1. Introduction 
The solutions of differential and integro-differential equations (IDES) have become highly significant 

across several fields of science and engineering during the past few years. Many of the researchers are 

working to handle the different kinds of complexities while formulating the mathematical models (Yan et 

al., 2023), (Gao et al., 2023) to study the real time phenomenon. Many problems appearing in science and 

engineering of real-life phenomena are modelled by using IDES. The IDES find their applications in 

chemical kinetics, fluid dynamics, aerospace system, potential theory etc (Khan et al., 2022). A variety of 

differential equations having initial and boundary constraints arising in science and engineering presenting 

significant phenomenon can be transformed into integrodifferential equations. More specifically, IDEs can 

be used to create models that explain hereditary properties. These equations are difficult to solve 

analytically and require time-consuming calculations. As a result, most of the researchers presented 

computational methods for addressing such types of equations. 

 

In recent years, the approximation theory for functional equations has gained a lot of interest, and several 

researchers have proposed numerical techniques for solving these equations. There are a variety of 

analytical and numerical methods to solve integro-differential (ID) equations including Taylor collocation 

method (Yalcinbas and Sezer, 2000), Adomain decomposition method (Wazwaz, 2001), Tau method 
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(Hosseini and shahmorad, 2003), Chebyshev collocation method (Akyüz and Sezer, 2005), Rational Haar 

function method (Maleknejad and Mirzaee, 2006), Sine-cosine wavelet method (Kajani et al., 2006), Finite 

difference method (Zhao and Coreless, 2006), Differential transform method (Darania and Ebadian, 2007), 

Homotopy pertibution method (Yusufoğlu, 2009), Bessel polynomial method (Yüzbaşı et al., 2011), 

Monotone iterative method (Al-Mdallal, 2012), Meshless method (Dehghan and Salehi, 2012), Improved 

Haar wavelet collocation method (Aziz and Al-Fhaid, 2014), Legendre wavelet (Chandel et al., 2015), 

Multiscale galerkin method (Chen et al., 2015), Sectorial operators (Raja et al., 2022), Shifted legendre 

polynomial is used for approximating the solution of ID difference equations (Saadatmandi and Dehghan, 

2010). The primary objective of the study is to use Legendre polynomials as a method of finding a solution 

to ID-difference equation of higher order. To solve these equations analytically is generally getting more 

difficult. Expanding the approximate solution in terms of shifted Legendre polynomials having unknown 

coefficients, the problem has been reduced to a set of linear equations. Then, the value of coefficients 

of Legendre polynomials are determined by using the tau method and the operational matrices of delay and 

derivative. The authors provide illustrative numerical examples and a comparison to prior research to prove 

the effectiveness of the proposed technique. The singular higher order integro-differential equations have 

been solved analytically by using B-spline collocation method (Zemlyanova and Machina, 2020). Using 

the B-spline method, author introduce two computational schemes for approximating the solution to 

systems of integro-differential equations that arise in Steigmann-Ogden surface energy crack problems. The 

corresponding linear systems have been demonstrated to be well-conditioned, and numerical experiments 

agree well with their standard solutions. The author claims that even though this article focuses on a specific 

singular equation, the proposed method can easily be applied to more such type of problems. The Haar 

wavelet has been applied for obtaining the solution of integro-differential equations of third order (Alqarni 

et al., 2021). The author uses the Haar collocation algorithm to provide a numerical solution to IDE of 3rd 

order subject to boundary constraints. The technique is applicable to the solution of both linear as well as 

nonlinear IDES. In both nonlinear as well as linear integro-differential equations, Haar functions are used 

to approximatively represent the third-order derivative. Values of lower order derivative and the solution 

to the unknown function can be obtained via integration process. For solving linear systems, the Gauss 

elimination technique has been used, while for nonlinear systems, the Broyden technique is favoured. 

Several examples serve to demonstrate the validity and convergence of the presented algorithm. Also, the 

existence and uniqueness of solution of IDES of 3rd order having initial conditions via Haar wavelet has 

been proved (Amin et al., 2023). Wavelets are contemporary orthonormal functions that can dilate and 

translate. Such characteristic makes wavelet based numerical methods qualitatively better than other 

methods. In literature, dyadic wavelets play a large role. Chui and Lian created non-dyadic Haar wavelets 

utilising multiresolution analysis (Chui and Lian, 1995). The non-dyadic Haar wavelets are used in the 

literature for solving various differential model, such as Boundary value problems (Arora at al., 2018) 

Fractional - Burgers’ equation (Arora et al., 2020), and Fisher Kolmogorov Petrovsky equation (Kumar and 

Arora, 2022) etc. 

 

However, non-dyadic Haar wavelets have not yet been utilized to solve higher order integro-differential 

equations, which is the primary motivation for solving higher order integro-differential equations. In this 

manuscript, we have approximated the solution of higher-order integrodifferential equations by utilizing 

nondyadic Haar wavelets. The rest of manuscript is structured as, the basic preliminaries related to non-

dyadic Haar wavelets is presented in section 2 of the manuscript. The main algorithm that is constructed by 

using non-dyadic Haar wavelets is presented in section 3. In order to check the validation of the presented 

algorithm, some experiments have been performed that are explained in section 4. The whole manuscript 

is concluded in section 5.  
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2. Non-Dyadic Haar Wavelets 
In a dyadic Haar wavelet, the whole wavelet family is generated by only one mother wavelet, whereas in 

non-dyadic Haar wavelet, the wavelet family is generated by two mother wavelets having different shapes 

and different characteristics. Standard representation of non-dyadic Haar wavelet is presented here (Chui 

and Lian, 1995; Mittal and Pandit, 2017). 

 

Haar scaling function  

𝜓1(𝑧) = 𝜙
0(𝑧) = {

1          𝑧 𝜖 [0,1]
0          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                                                                              (1) 

 

Symmetric Haar wavelet 

𝜓𝑖(𝑧) = 𝜙
1(3𝑗𝑧 − 𝑘) =

1

√2
 

{
 
 

 
 −1                 𝑧 𝜖 [𝛾1(𝑖),  𝛾2(𝑖))

   2                  𝑧 𝜖 [𝛾2(𝑖),  𝛾3(𝑖))

−1                 𝑧 𝜖 [𝛾3(𝑖),  𝛾4(𝑖))

0                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                                   (2) 

𝑓𝑜𝑟 𝑖 = 2, 4,… , 3𝑝 − 1 

 

Anti-Symmetric Haar wavelet 

𝜓𝑖(𝑧) = 𝜙
2(3𝑗𝑧 − 𝑘) = √

3

2

{
 
 

 
 1               𝑧 𝜖 [𝛾1(𝑖),  𝛾2(𝑖))

   0               𝑧 𝜖 [𝛾2(𝑖),  𝛾3(𝑖))

−1                𝑧 𝜖 [𝛾3(𝑖),  𝛾4(𝑖))

0                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                                     (3) 

𝑓𝑜𝑟 𝑖 = 3, 6,… , 3𝑝 

 

where, 

𝛾1(𝑖) =
𝑘

𝑝
 , 𝛾2(𝑖) =

3𝑘 + 1

3𝑝
,  𝛾3(𝑖) =

3𝑘 + 2

3𝑝
 , 𝛾4(𝑖) =

𝑘 + 1

𝑝
, 𝑝 = 3𝑗 , 

 𝑗 = 0, 1, 2, …  𝑎𝑛𝑑  𝑘 = 0, 1, 2, . . . 𝑝 − 1. 
 

Here 𝑖 is the wavelet number, dilation factor is represented by the variable 𝑗, and the translation parameter 

is represented by 𝑘 for the wavelet family. The values of 𝑖 can be easily computed from the expression 𝑖 −
 1 =  3𝑗  +  2𝑘  (for those wavelet numbers 𝑖 that are multiples of 2) and 𝑖 −  2 =  3𝑗  +  2𝑘 (for other 

remaining wavelet numbers 𝑖). 
 

Eq.(1) − Eq. (3) can be integrated easily over the interval [A, B) the required number of times, by using 

the formula which is given as 

𝑞𝛿,𝑖(𝑧) =
1

Γ(𝛿)
∫
𝜓𝑖(𝑥)(𝑧 − 𝑥)

𝛿−1𝑑𝑥; 𝛿 𝜖 [0,𝑚],𝑚 = 1, 2, 3, …   
 𝑎𝑛𝑑 𝑖 = 1, 2, 3, . . .3𝑝

𝑧

𝐴
                                                                  (4) 

 

After calculating the above integrals, the value of integrals is: 

𝑞𝛿,𝑖(𝑧) =
𝑧𝛿

𝛤(𝛿+1)
       ,       𝑓𝑜𝑟 𝑖 = 1                                                                                                                   (5) 

 

𝑞𝛿,𝑖(𝑧)′𝑠   𝑓𝑜𝑟    𝑖 = 2,4,6,8,⋯ , 3𝑝 − 1 are given by  
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𝑞𝛿,𝑖(𝑧) =

 √
1

2

{
 
 
 

 
 
 

0                                                                                                                                          𝑧 𝜖 [0,  𝛾1(𝑖))
−1

𝛤(𝛿+1)
(𝑧 − 𝛾1(𝑖))

𝛿                                                                                                        𝑧 𝜖 [𝛾1(𝑖),  𝛾2(𝑖)) 

1

𝛤(𝛿+1)
[−(𝑧 − 𝛾1(𝑖))

𝛿 
+ 3(𝑧 − 𝛾2(𝑖))

𝛿 
]                                                              𝑧 𝜖 [𝛾2(𝑖),  𝛾3(𝑖))

1

𝛤(𝛿+1)
[−(𝑧 − 𝛾1(𝑖))

𝛿 
+ 3 (𝑧 − 𝛾2(𝑖))

𝛿 
− 3 (𝑧 − 𝛾3(𝑖))

𝛿 
]                            𝑧 𝜖 [𝛾3(𝑖),  𝛾4(𝑖))

1

𝛤(𝛿+1)
[−(𝑧 − 𝛾1(𝑖))

𝛿 
+ 3 (𝑧 − 𝛾2(𝑖))

𝛿 
− 3 (𝑧 − 𝛾3(𝑖))

𝛿 
+ (𝑧 − 𝛾4(𝑖))

𝛿 
]        𝑧 𝜖 [𝛾4(𝑖), 1)

      (6) 

 

 

𝑞𝛿,𝑖(𝑧)′𝑠   𝑓𝑜𝑟    𝑖 = 3,5,7,9,⋯ , 3𝑝  are given by  

𝑞𝛿,𝑖(𝑧) =

√
3

2

{
 
 
 

 
 
 
0                                                                                                                                      𝑧 𝜖 [0,  𝛾1(𝑖))
1

𝛤(𝛿+1)
(𝑧 − 𝛾1(𝑖))

𝛿                                                                                                   𝑧 𝜖 [𝛾1(𝑖),  𝛾2(𝑖)) 

1

𝛤(𝛿+1)
[(𝑧 − 𝛾1(𝑖))

𝛿 
−  (𝑧 − 𝛾2(𝑖))

𝛿 
]                                                              𝑧 𝜖 [𝛾2(𝑖),  𝛾3(𝑖))

1

𝛤(𝛿+1)
[ (𝑧 − 𝛾1(𝑖))

𝛿 
− (𝑧 − 𝛾2(𝑖))

𝛿 
−  (𝑧 − 𝛾3(𝑖))

𝛿 
]                             𝑧 𝜖 [𝛾3(𝑖), 𝛾4(𝑖))

1

𝛤(𝛿+1)
[(𝑧 − 𝛾1(𝑖))

𝛿 
−  (𝑧 − 𝛾2(𝑖))

𝛿 
−  (𝑧 − 𝛾3(𝑖))

𝛿 
+ (𝑧 − 𝛾4(𝑖))

𝛿 
]       𝑧 𝜖 [𝛾4(𝑖), 1)

             (7) 

 

 

In Haar scale 3 wavelet collocation approach, collocation point for the interval [𝐴, 𝐵] is given by the relation 

𝑧𝑚 = 𝐴 + (𝐵 − 𝐴)
𝑚−0.5

3𝑝
;  𝑚 =  1, 2, 3, . . . , 3𝑝                                                                                             (8) 

 

3. Non-Dyadic Haar Wavelet Collocation Algorithm (NDHWCA) 
In this section, a numerical method has been designed by utilizing non-dyadic Haar wavelets for 

approximating the solutions of higher order integrodifferential equations. 

 

3.1 Lemma 1 

If 𝑢(𝑧) 𝜖 𝑙2(𝑅) over the interval [𝐴, 𝐵] such that 𝑢(𝑧) = ∑ 𝑎𝑖𝜓𝑖(𝑧)
3𝑝
𝑖=0  then the value of integral in (Aziz 

and Haq, 2010; Kumar and Bakhtawar, 2022) is given by 

∫ 𝑢(𝑧)
𝐵

𝐴
𝑑𝑧 =

𝐵−𝐴

3𝑝
 ∑ 𝑢(𝑧𝑚) =

3𝑝
𝑚=1

𝐵−𝐴

3𝑝
 ∑ 𝑢 (𝐴 + (𝐵 − 𝐴) (

𝑚−0.5

3𝑝
))

3𝑝
𝑚=1                                                 (9) 

 

3.2 Method of Solution 

Now consider 𝑛𝑡ℎ order integrodifferential equations 

𝑢(𝑛)(𝑧) + 𝑚(𝑧)𝑢(𝑛−1)(𝑧) +⋯+ 𝑛(𝑧)𝑢(𝑧) = 𝜇1 ∫ 𝑤1(𝑧, 𝑦)𝑢(𝑦)𝑑𝑦 + 𝜇2 ∫ 𝑤2(𝑧, 𝑦)𝑢(𝑦)𝑑𝑦 +
𝑧

𝑚

𝑛

𝑚
𝑔(𝑧)         (10) 

 

With initial conditions 𝑢(0) = 𝜃1, 𝑢
′(0) = 𝜃2, 𝑢

′′(0) = 𝜃3, … . 𝑢
(𝑛−1)(0) = 𝜃𝑛. 

 
Here 𝑚 and 𝑛 are functions of 𝑧. 𝑤1 and 𝑤2 are kernels or nucleus of integration. 𝜇1, 𝜇2, 𝜃1, 𝜃2, … , 𝜃𝑛  are 

real constants. 𝑔(𝑧) is known function which is already given. The primary objective is to find the value of 

unknown function 𝑢(𝑧) that will satisfy the integrodifferential Eq. (10). 
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Now assume that  

𝑢(𝑛)(𝑧) =  ∑ 𝑎𝑖𝜓𝑖(𝑧)
3𝑝
𝑖=1                                                                                                                              (11) 

 

Integrating Eq. (11) from 0 to 𝑧 and by using initial conditions 

𝑢(𝑛−1)(𝑧) − 𝑢(𝑛−1)(0) =  ∑ 𝑎𝑖𝐿𝑖,1(𝑧)  ;  𝑤ℎ𝑒𝑟𝑒 𝐿𝑖,   1 (𝑧) = ∫ 𝜓𝑖(𝑧) 𝑑𝑧
𝑧

0

3𝑝
𝑖=1                                               (12) 

𝑢(𝑛−1)(𝑧) = 𝜃𝑛 + ∑ 𝑎𝑖𝐿𝑖,1(𝑧)  ;  𝑤ℎ𝑒𝑟𝑒 𝐿𝑖,   1 (𝑧) = ∫ 𝜓𝑖(𝑧) 𝑑𝑧
𝑧

0

3𝑝
𝑖=1                                                          (13) 

 

Again, integrating Equation (13) and by using the initial conditions value of 𝑢(𝑛−2)(𝑧) will be obtained. By 

doing the same procedure, values of all lower order derivatives 𝑢(𝑛−3)(𝑧) , 𝑢(𝑛−4)(𝑧) , 𝑢(𝑛−5)(𝑧),… and 

for the unknown function 𝑢(𝑧) would be obtained. By substituting all the values in integrodifferential 

equations and the integrals involved are calculated by the formula given in Equation (9) and by putting the 

collocation points a 3𝑝 × 3𝑝 system of equations is obtained. This system of equations is then solved by 

using the Gauss elimination method (GEM) for finding the values of unknown Haar coefficients. Finally, 

by putting these coefficients solution at collocations points has been obtained.  

 

4. Numerical Experiments 
For checking the accuracy of the method, the method is implemented to different experiments and the 

results obtained by this method are compared with results already available in the literature. The maximum 

absolute error,  𝑙2 − 𝑒𝑟𝑟𝑜𝑟,  𝐸𝑚𝑎𝑥 − 𝑒𝑟𝑟𝑜𝑟, 𝑎𝑛𝑑 𝑙∞ − 𝑒𝑟𝑟𝑜𝑟 has been calculated for checking the accuracy 

of the presented algorithm, by using the MATLAB software, where 𝑢𝑎𝑝 is the approximate solution (AE) 

and  𝑢𝑒𝑥 is the exact solution (ES) at different collocation points. The relation for calculating 𝐸𝑐𝑝 and 𝑀𝑐𝑝 

(Amin et al., 2023). 

𝑙2 − 𝑒𝑟𝑟𝑜𝑟 =
√∑ |𝑢(𝑧𝑚)𝑒𝑥−𝑢(𝑧𝑚)𝑎𝑝|

23𝑝
𝑖=1

∑ |𝑢(𝑧𝑚)𝑒𝑥|
23𝑝

𝑖=1

 , 𝐸𝑚𝑎𝑥 − 𝑒𝑟𝑟𝑜𝑟 = √∑ |𝑢(𝑧𝑚)𝑒𝑥 − 𝑢(𝑧𝑚)𝑎𝑝|
23𝑝

𝑖=1 . 

𝑙∞ − 𝑒𝑟𝑟𝑜𝑟 = 𝐸𝑐𝑝 = 𝑚𝑎𝑥|𝑢(𝑧𝑚)𝑒𝑥 − 𝑢(𝑧𝑚)𝑎𝑝| ,𝑀𝑐𝑝 = √
∑ |𝑢(𝑧𝑚)𝑒𝑥−𝑢(𝑧𝑚)𝑎𝑝|

23𝑝
𝑖=1

3𝑝
. 

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 − 𝑒𝑟𝑟𝑜𝑟 = |𝑢(𝑧𝑚)𝑒𝑥 − 𝑢(𝑧𝑚)𝑎𝑝|. 

 

Experiment 1: Consider the 1st order Volterra IDES (Wazwaz, 2011). 

𝑢′(𝑧) = 1 − 2 𝑧 𝑠𝑖𝑛(𝑧) + ∫ 𝑢(𝑡)𝑑𝑡      ; 𝑢(0) = 0
𝑧

0
                                                                                        (14) 

 

The ES found from the literature is 𝑢(𝑧) = 𝑧 cos (𝑧) and the solution obtained by using the presented 

technique is 𝑢(𝑧) = ∑ 𝑎𝑖𝐿𝑖,1(𝑧)
3𝑝
𝑖=1 . 

 

Table 1. Computation of exact and approximated solution for experiment 1. 
 

𝑧 ES AS Value of Absolute Error 

0.05555556 0.05546984 0.05529813 1.72E-04 

0.16666667 0.16435721 0.16384454 5.13E-04 

0.27777778 0.26712977 0.26628349 8.46E-04 

0.38888889 0.35985091 0.35868307 1.17E-03 

0.50000000 0.43879128 0.43731840 1.47E-03 

0.61111111 0.50050672 0.49874944 1.76E-03 

0.72222222 0.54191119 0.53989379 2.02E-03 

0.83333333 0.56034354 0.55809342 2.25E-03 

0.94444444 0.55362678 0.55117387 2.45E-03 



Kumar & Bakhtawar: Non-dyadic Haar Wavelet Algorithm for the Approximated Solution of… 
 

 

792 | Vol. 8, No. 4, 2023 

 
 

Figure 1. Graphical comparison of ES and AS for Experiment 1. 

 

 

The solution obtained by the proposed method is compared with that of ES, which is presented in Table 1 

and Figure 1. 𝑙2 − 𝑒𝑟𝑟𝑜𝑟, 𝑙∞ − 𝑒𝑟𝑟𝑜𝑟, and 𝐸𝑚𝑎𝑥 − 𝑒𝑟𝑟𝑜𝑟 for different values of 𝑗 are calculated and is 

presented in Table 2. From Table 2, it can be observed that by increasing the values of 𝑗 error decreases. 

The obtained result is compared with already existing results in the literature. The error obtained by using 

the presented algorithm for 𝑗 = 2 is 10−4 whereas by using Haar wavelet and Legendre wavelet the error 

is  10−2 and 10−3 respectively as shown in Table 2. From Figure 1, it can be observed that the approximated 

solution coincides well with that of exact solution, which proves the convergence of the proposed method. 

Figure 2 represents the absolute value of error for different collocation points. The better accuracy of the 

results can be achieved by increasing the level of resolution 𝑗. 
 

 

Table 2. Computation of errors for Experiment 1. 
 

𝑗 𝑙2 − 𝑒𝑟𝑟𝑜𝑟 𝑙∞ − 𝑒𝑟𝑟𝑜𝑟 𝐸𝑚𝑎𝑥 − 𝑒𝑟𝑟𝑜𝑟 
𝐸𝑚𝑎𝑥 − 𝑒𝑟𝑟𝑜𝑟 by using Haar 

method (Shiralashetti, 2017) 

𝐸𝑚𝑎𝑥 − 𝑒𝑟𝑟𝑜𝑟 by using Legendre 

method (Shiralashetti, 2017) 

0 3.43E-02 2.06E-02 2.51E-02 ---------- --------- 

1 3.79E-03 2.45E-03 4.77E-03 ---------- --------- 

2 4.20E-04 2.79E-04 9.17E-04 1.37e-02 1.21e-03 

3 4.67E-05 3.12E-05 1.77E-04 3.49e-03 3.10e-04 

4 5.19E-06 3.47E-06 3.40E-05 8.81e-04 7.82e-05 

5 5.77E-07 3.86E-07 6.54E-06 2.20e-04 1.96e-05 
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Figure 2. Graph of absolute error for Experiment 1. 

 
Experiment 2: Consider the 2nd order Fredholm IDE (Rahman, 2007). 

𝑢′′(𝑧) = 𝑒𝑧 − 𝑧 + 𝑧 ∫ 𝑡 𝑢(𝑡)𝑑𝑡      ; 𝑢(0) = 1
1

0
, 𝑢′(0) = 1                                                                           (15) 

 

The ES obtained from literature is 𝑢(𝑧) = 𝑒𝑧 whereas the AS obtained by using the proposed method is 

𝑢(𝑧) = 1 + 𝑧 + ∑ 𝑎𝑖𝐿𝑖,2(𝑧)
3𝑝
𝑖=1 . 

 
Table 3. Computation of exact and approximated solution for experiment 2. 

 

𝑧 ES AS Value of Absolute Error 

0.055555556 1.057127745 1.057127677 6.74E-08 

0.166666667 1.181360413 1.181358593 1.82E-06 

0.277777778 1.320192788 1.320184363 8.43E-06 

0.388888889 1.475340615 1.475317497 2.31E-05 

0.500000000 1.648721271 1.648672135 4.91E-05 

0.611111111 1.842477459 1.842387747 8.97E-05 

0.722222222 2.059003694 2.058855612 1.48E-04 

0.833333333 2.300975891 2.300748409 2.27E-04 

0.944444444 2.571384435 2.571053288 3.31E-04 

 

The solution obtained by the proposed method is compared with that of ES and presented in Table 3 and 

Figure 3 for Experiment 2. The 𝑙2 − 𝑒𝑟𝑟𝑜𝑟, 𝑙∞ − 𝑒𝑟𝑟𝑜𝑟, 𝑎𝑛𝑑 𝐸𝑚𝑎𝑥 − 𝑒𝑟𝑟𝑜𝑟 are calculated for different 

values of 𝑗 for Experiment 2 which is presented in Table 4. The value of absolute error is presented 

graphically in Figure 4. From Table 4, it can be observed that by increasing the value of 𝑗 error decreases. 

The results obtained are compared with the results calculated by using Haar wavelets and cosine and sine 

wavelet methods in the literature. The error obtained by using the proposed method for 𝑗 = 5 is 10−7 where 

as the error is 10−5 and 10−6 in case of Haar wavelet method and Cosine Sine wavelet method respectively 

as presented in Table 4. Figure 3 shows that the estimated solution closely matches the precise solution, 

demonstrating the convergence of the proposed approach. An improved level of precision in the results can 

be attained by increasing the resolution 𝑗. 
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Figure 3. Graphical comparison of ES and AS for experiment 2. 

 
Table 4. Computation of errors for experiment 2. 

 

𝑗 𝑙2 − 𝑒𝑟𝑟𝑜𝑟 𝑙∞ − 𝑒𝑟𝑟𝑜𝑟 𝐸𝑚𝑎𝑥 − 𝑒𝑟𝑟𝑜𝑟 
𝐸𝑚𝑎𝑥 − 𝑒𝑟𝑟𝑜𝑟 

(Shiralashetti, 2017) 

𝐸𝑚𝑎𝑥 − 𝑒𝑟𝑟𝑜𝑟 
(Shiralashetti, 2017) 

0 6.78E-04 2.03E-03 2.07E-03 ------- ------- 

1 8.23E-05 3.31E-04 4.41E-04 ------- ------- 

2 9.23E-06 4.13E-05 8.58E-05 3.07e-03 4.09e-04 

3 1.03E-06 4.77E-06 1.65E-05 8.48e-04 1.13e-04 

4 1.14E-07 5.36E-07 3.18E-06 2.22e-04 2.96e-04 

5 1.27E-08 5.98E-08 6.12E-07 5.69e-05 7.60e-06 

 

 
 

Figure 4. Graph of absolute error for experiment 2. 
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Experiment 3: Consider the 8th order IDE of Fredholm type (Shang and Han, 2010). 

𝑢8(𝑧) = −8𝑒𝑧 + 𝑧2 + 𝑢(𝑧) + ∫ 𝑧2 𝑢′(𝑡)𝑑𝑡      
1

0
                                                                                         (16) 

 

with initial conditions 𝑢(0) = 1, 𝑢′(0) = 0, 𝑢′′(0) = −1  𝑢′′′(0) = −2, 𝑢(4)(0) = −3, 𝑢(5)(0) =

−4, 𝑢(6)(0) = −5, 𝑢(7)(0) = −6. 

 

The ES for obtained from literature is 𝑢(𝑧) = (1 − 𝑧)𝑒𝑧 and the AS is 𝑢(𝑧) = 1 −
𝑧2

2
−
𝑧3

3
−
𝑧4

8
−
𝑧5

30
−

𝑧6

144
−

𝑧7

840
+ ∑ 𝑎𝑖𝐿𝑖,8(𝑧)

3𝑝
𝑖=1 . 

 
Table 5. Computation of exact and approximated solution for experiment 3. 

 

z ES AS Value of Absolute Error 

0.055555556 0.998398426 0.998398426 1.11E-14 

0.166666667 0.984467011 0.984467011 4.50E-12 

0.277777778 0.953472569 0.953472569 1.91E-10 

0.388888889 0.901597043 0.901597041 2.10E-09 

0.500000000 0.824360635 0.824360623 1.23E-08 

0.611111111 0.716519012 0.716518963 4.90E-08 

0.722222222 0.571945471 0.571945319 1.52E-07 

0.833333333 0.383495982 0.383495595 3.87E-07 

0.944444444 0.142854691 0.142853848 8.43E-07 

 

The solution obtained by the proposed method is compared with that of ES and is presented in Table 5 and 

Figure 5 for Experiment 3. The 𝑙2 − 𝑒𝑟𝑟𝑜𝑟, 𝑙∞ − 𝑒𝑟𝑟𝑜𝑟, and 𝐸𝑚𝑎𝑥 − 𝑒𝑟𝑟𝑜𝑟  are calculated for different 

values of 𝑗 for Experiment 3 which is presented in Table 6, and it can be observed that by increasing the 

values of 𝑗 error decreases. The graph for absolute error for level of resolution 2 is presented in Figure 6. It 

is possible to deduce that the proposed technique converges on the exact solution based on the fact that the 

approximated solution closely matches that of the precise solution, as can be seen in Figure 5. The absolute 

value of the error across all the different collocation points is displayed in Figure 6. By raising the degree 

of resolution 𝑗, one can improve the precision of the outcomes obtained. 

 

 
 

Figure 5. Graphical comparison of ES and AS for experiment 3. 
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Table 6. Computation of errors for experiment 3. 
 

𝑗 𝑙2 − 𝑒𝑟𝑟𝑜𝑟 𝑙∞ − 𝑒𝑟𝑟𝑜𝑟 𝐸𝑚𝑎𝑥 − 𝑒𝑟𝑟𝑜𝑟 
0 2.94E-06 3.94E-06 3.95E-06 

1 4.06E-07 8.43E-07 9.41E-07 

2 9.13E-08 2.88E-07 3.67E-07 

 

 
 

Figure 6. Graph of absolute error for experiment 3. 

 

Experiment 4: Consider the Volterra IDE of 3rd order (Yüzbaşı et al., 2011). 

𝑢′′′(𝑧) − 𝑧𝑢′′(𝑧) =
4

7
𝑧9 −

8

5
𝑧7 + 6𝑧2 − 𝑧6 − 6 + 4∫ 𝑧2𝑡3𝑢(𝑡)𝑑𝑡 

𝑧

0
                                                             (17) 

 

having initial conditions 𝑢(0) = 1, 𝑢′(0) = 2 and 𝑢′′(0) = 0 . The ES for this problem is 𝑢(𝑧) = 1 + 2𝑧 −

𝑧3 and the AS is 𝑢(𝑧) = 2𝑧 + ∑ 𝑎𝑖𝐿𝑖,3(𝑧)  
3𝑝
𝑖=1 + 1.  

 

The computation of ES and AS for different collocation points (when level of resolution is 1) is presented 

in Table 7. The value of absolute error is also calculated and presented in Table 7. Different errors are 

calculated for different resolution level and presented in Table 8. In Table 8, a comparison is also made 

among the value of 𝑀𝑐𝑝 and 𝐸𝑐𝑝 errors with existing results in the literature (Amin et al., 2023) and it can 

be observed that our results are much better than the previous one. The graph for absolute error which is 

10−16 is presented in Figure 8 for level of resolution 2. The graphical comparison of approximated and 

exact solution for different collocation points is displayed in Figure 7, and it can be observed that the graph 

exactly coincides on one another proving the convergence of the method.  

 
Table 7. Computation of exact and approximated solution for experiment 4. 

 

𝑧 ES AS Value of Absolute Error 

0.055555556 1.110939643 1.110939643 0 

0.166666667 1.328703704 1.328703704 0 

0.277777778 1.534122085 1.534122085 0 

0.388888889 1.718964335 1.718964335 0 

0.500000000 1.875000000 1.875000000 0 

0.611111111 1.993998628 1.993998628 2.22045E-16 

0.722222222 2.067729767 2.067729767 0 

0.833333333 2.087962963 2.087962963 0 

0.944444444 2.046467764 2.046467764 0 
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Figure 7. Graphical comparison of ES and AS for experiment 4. 
 

 
Table 8. Computation of errors for experiment 4. 

 

𝑗 𝑙2 − 𝑒𝑟𝑟𝑜𝑟 𝐸𝑚𝑎𝑥 − 𝑒𝑟𝑟𝑜𝑟 𝑀𝑐𝑝 − 𝑒𝑟𝑟𝑜𝑟 
𝑀𝑐𝑝 − 𝑒𝑟𝑟𝑜𝑟 

(Amin et al., 2023) 
𝐸𝑐𝑝 − 𝑒𝑟𝑟𝑜𝑟 

𝐸𝑐𝑝 − 𝑒𝑟𝑟𝑜𝑟 

(Amin et al., 2023) 

0 0 0 0 2.68E-05 0 5.36E-05 

1 4.15E-17 2.22E-16 7.40E-17 7.65E-06 2.22E-16 2.08E-05 

2 8.31E-17 7.69E-16 1.48E-16 1.98E-06 4.44E-16 6.70E-06 

3 5.18E-17 8.31E-16 9.23E-17 5.01E-07 4.44E-16 1.91E-06 

4 4.80E-17 1.33E-15 8.55E-17 1.25E-07 4.44E-16 5.12E-07 

5 3.03E-17 1.46E-15 5.39E-17 3.14E-08 4.44E-16 1.32E-07 

 

 

 
 

Figure 8. Graph of absolute error for experiment 4. 
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Experiment 5: Consider the Fredholm IDE of 3rd order (Gegele et al., 2014). 

𝑢′′′(𝑧) = 1 − 𝑒 + 𝑒𝑧 + ∫ 𝑢(𝑡)𝑑𝑡      
1

0
                                                                                                          (18) 

 

having initial conditions 𝑢(0) =  𝑢′(0) = 𝑢′′(0) = 1. 
 

The ES for this Fredholm equation is 𝑢(𝑧) = 𝑒𝑧 and the AS is 𝑢(𝑧) = 𝑧 +
𝑧2

2
+ ∑ 𝑎𝑖𝐿𝑖,3(𝑧)  

3𝑝
𝑖=1 + 1. 

 

The computation of ES and AS for different collocation points (when level of resolution is 1) is presented 

in Table 9. The value of absolute error is also calculated and presented in Table 9. Different errors are 

calculated for various resolution level and presented in Table 10. In Table 10, a comparison is presented 

for different value of 𝑀𝑐𝑝 and 𝐸𝑐𝑝 errors with existing results in the literature (Amin et al., 2023). The graph 

for absolute error which is 10−5 is presented in Figure 10 for level of resolution 2. Figure 9 shows a graphic 

comparison between the approximated and exact solutions for several collocation points, making it obvious 

that the graphs precisely overlap on one another, demonstrating the method's convergence. 

 
Table 9. Computation of exact and approximated solution for experiment 5. 

 
𝑧 ES AS Value of Absolute Error 

0.055555556 1.057127745 1.057128982 1.23713E-06 

0.166666667 1.181360413 1.181374950 1.45375E-05 

0.277777778 1.320192788 1.320234909 4.21202E-05 

0.388888889 1.475340615 1.475425767 8.51512E-05 

0.500000000 1.648721271 1.648866171 1.44900E-04 

0.611111111 1.842477459 1.842700212 2.22752E-04 

0.722222222 2.059003694 2.059323918 3.20223E-04 

0.833333333 2.300975891 2.301414864 4.38973E-04 

0.944444444 2.571384435 2.571965258 5.80823E-04 

 

 

 
 

Figure 9. Graphical comparison of ES and AS for experiment 5. 
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Table 10. Computation of errors for experiment 5. 
 

𝑗 𝑙2 − 𝑒𝑟𝑟𝑜𝑟 𝐸𝑚𝑎𝑥 − 𝑒𝑟𝑟𝑜𝑟 𝑀𝑐𝑝 − 𝑒𝑟𝑟𝑜𝑟 
𝑀𝑐𝑝 − 𝑒𝑟𝑟𝑜𝑟 

(Amin et. al., 2023) 
𝐸𝑐𝑝 − 𝑒𝑟𝑟𝑜𝑟 

𝐸𝑐𝑝 − 𝑒𝑟𝑟𝑜𝑟 

(Amin et. al., 2023) 

0 1.35E-03 4.14E-03 2.39E-03 1.10E-03 3.94E-03 1.95E-03 

1 1.58E-04 8.44E-04 2.81E-04 2.83E-04 5.81E-04 5.62E-04 

2 1.76E-05 1.63E-04 3.15E-05 7.13E-05 7.04E-05 1.50E-04 

3 1.96E-06 3.15E-05 3.50E-06 1.78E-05 8.05E-06 3.88E-05 

4 2.17E-07 6.06E-06 3.89E-07 4.46E-06 9.03E-07 9.87E-06 

5 2.42E-08 1.17E-06 4.32E-08 1.11E-06 1.01E-07 2.48E-06 

 

 

 
 

Figure 10. Graph of absolute error for experiment 5. 

 

 

Experiment 6: Consider the Fredholm IDE of 4𝑡ℎ order (Gegele et al., 2014). 

𝑢𝑖𝑣(𝑧) =
1

4
+ (1 − 2𝑙𝑛2)𝑧 −

6

(1+𝑧)4
+ ∫ (𝑧 − 𝑡)𝑢(𝑡)𝑑𝑡      

1

0
                                                                         (19) 

 

having initial conditions 𝑢(0) = 0,  𝑢′(0) = 1, 𝑢′′(0) = −1, 𝑢′′′(0) = 2. The ES obtained from literature 

is 𝑢(𝑧) = ln (𝑧 + 1) and the AS is 𝑢(𝑧) = 𝑧 −
𝑧2

2
+
𝑧3

3
+ ∑ 𝑎𝑖𝐿𝑖,4(𝑧)

3𝑝
𝑖=1 . 

 

The computation of ES and AS for different collocation points (when level of resolution is 4) is presented 

in Table 11. The value of absolute error is also calculated and presented in Table 11. A comparison is 

presented to the value of absolute error with that of power series method and Chebyshev series method 

(Gegele et al., 2014). Different errors are calculated for various resolution level and presented in Table 12. 

From Table 12, it can be observed that error becomes lesser as the value of 𝑗 is raised. The graph for absolute 

error which is 10−4 is presented in Figure 12 for level of resolution 2. Figure 11 displays a graphical 

comparison of an approximated and an exact solution for several collocation points. It can be seen that the 

graphs perfectly coincide on one another, which proves that the technique successfully convergent. 
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Table 11. Computation of exact and approximated solution for experiment 6. 
 

𝑧 ES AS Value of Absolute Error 

Value of Absolute Error 

by using Power series 

(Gegele et al., 2014) 

Value of Absolute Error by 

using Chebyshev series 

(Gegele et al., 2014) 

0.00 0.002055 0.002055 2.94E-14 0 2.70E-08 

0.10 0.096058 0.096058 5.46E-09 6.01E-07 3.32E-07 

0.20 0.185403 0.185403 4.27E-08 9.14E-06 4.23E-07 

0.30 0.264262 0.264262 1.34E-07 6.21E-05 5.25E-06 

0.40 0.337354 0.337354 3.02E-07 4.52E-05 2.37E-06 

0.50 0.405465 0.405466 5.66E-07 3.36E-05 3.98E-05 

0.60 0.471802 0.471803 9.64E-07 2.73E-05 2.17E-05 

0.70 0.531596 0.531598 1.48E-06 1.64E-05 1.73E-05 

0.80 0.588015 0.588017 2.15E-06 4.30E-04 1.27E-05 

0.90 0.643585 0.643588 3.02E-06 2.01E-04 1.11E-05 

0.99 0.692118 0.692122 4.00E-06 1.16E-04 3.17E-04 

 

 

 
Table 12. Computation of errors for experiment 6. 

 

𝑗 𝑙2 − 𝑒𝑟𝑟𝑜𝑟 𝐸𝑚𝑎𝑥 − 𝑒𝑟𝑟𝑜𝑟 𝑀𝑐𝑝 − 𝑒𝑟𝑟𝑜𝑟 𝐸𝑐𝑝 − 𝑒𝑟𝑟𝑜𝑟 

2 2.908011E-04 6.556580E-04 1.261814E-04 3.090407E-04 

3 3.241298E-05 1.265906E-04 1.406562E-05 3.564459E-05 

4 3.602701E-06 2.437114E-05 1.563410E-06 4.007867E-06 

 

 

 

 
 

Figure 11. Graphical comparison of ES and AS for experiment 6. 
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Figure 12. Graph of absolute error for experiment 6. 

 

 

5. Conclusions and Future Scope 
In this research article, Non-dyadic Haar wavelet collocation algorithm (NDHWCA) is presented for 

finding the approximate solution of Fredholm integrodifferential equations and Volterra integrodifferential 

equations of higher order. The highest order derivative is approximated by the non-dyadic Haar wavelets 

and then by using the process of integration lower order derivatives are obtained. The proposed method is 

applied to different experiments and the results obtained are much better than the previous results. Results 

is presented through tables and graphs. For all the computational work, MATLAB software is used. The 

following is an overview of the primary benefits of NDHWCA:  

(i) The effectiveness and execution of NDHWCA with the use of MATLAB software can be easily 

achieved.  

(ii) By increasing the dilation factor, error becomes lesser proving the convergence of the method. 

(iii) The proposed algorithm converges faster than the Haar scale 2 wavelets. 

(iv) As compared to other known methods, the NDHWCA has been shown to yield better results that are 

more accurate. 

(v) The NDHWCA can be extended to resolve complex higher order integrodifferential equations having 

nonlinearity in them.  

(vi) The proposed algorithm can also be extended for the solution of fractional integrodifferential 

equations. 

(vii) The presented technique can also be extended to solve integral equations. 
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