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 الحل العددي لمسائل القيم الحدودية في نقطتين بإستخدام متعددات حدود بوبكر المتعامدة
 

 ملخصال

 في هذا البحث, تم تقديم تقنية جديدة لحل مسائل القيمة الحدودية في نقطتين, اٌستخدمت الدالة التعامدية لمتعددة حدود بوبكر مع طريقة
كالركين لتحويل المسألة الحدودية الى نظام من المعادلات الجبرية الخطية مع العوامل المجهولة والتي يمكن حلها بسهولة للحصول 

تقريبي . كذلك تمت إضافة بعض الامثلة العددية مع الرسوم التوضيحية ومقارنة النتائج بالنسبة الى الحل الحقيقي  على الحل ال
 لتوضيح كفاءة وقابلية هذه الطريقة . 

Abstract 

 In this paper, a new technique for solving boundary value problems (BVPs) is introduced. An orthogonal function 

for Boubaker polynomial was utilizedand by the aid of Galerkin method the BVP was transformed to a system of 

linear algebraic equations with unknown coefficients, which can be easily solved to find the approximate result. 

Some numerical examples were added with illustrations, comparing their results with the exact to show the efficiency 

and the applicability of the method.    

Key words-Orthogonal Boubaker polynomials, boundary value problem, Galerkin method. 

 

1. Introduction 

Boundary value problems represent a wide fielding 

the branch of numerical studies related with 

problems in Applied Physics and Engineering.  

Let 𝐼 = (𝑎, 𝑏) be an interval and p, q,r be 

Continuous functions then Dirichlet First kind 

Two-point boundary value problem is given by [1] 

𝑢′′ + 𝑝(𝑡)𝑢′ + 𝑞(𝑡)𝑢 = 𝑟(𝑡)𝑎 < 𝑡 < 𝑏
and boundaryconditions

𝑢(𝑎) = 𝛾1  ,    𝑢(𝑏) = 𝛾2

} … (1) 

A lot of researches deal with this kind of differential 

equations, Rahmat Ali Khan proposed generalized 

quasilinearization technique for solving a second 

order differential equation with separated boundary 

 conditions [2], Anwar Ja'afar Mohamad-Jawad 

gave four numerical methods for solving second 

order on-linear BVPs [3], Naseif J. Al-Jawari et al. 

studied the controllability of nonlinear 

boundary value control systems using 

functional analysis proceeding [4], Getin 

M. et al, gave a method based on Lucas 

polynomials for solving high-order linear 

BVP [5]. 

Obviously, in recent decades there is a 

large interesting using different kinds of 

orthogonal functions like orthogonal 

polynomials and wavelets for solving linear 

and nonlinear problems in physics and 

engineering, many researchers worked in 

this field. Dr. Suha N. Shihab et al.,used 

Legendre wavelets method for solving 

BVPs [6],Olagunju A. and Joseph Folake 

L., utilized third kind Chebyshev
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Polynomials Vr(x) in collocation methods for

BVPs For solving BVPs [7].

Siddu Chamabasappa and Kumbinira saiahS. 

introduced a new generalized operational matrix 

of integration to solve nonlinear singular BVPs 

using Hermite wavelets [8], Shirala shettiS. And 

Srinivasa K. used Hermit wavelets method for 

solving linear and nonlinear singular initial and 

boundary value problems [9].  

Boubaker polynomial is first utilized for solving 

heat equation in physical applications then many 

researches concerning this polynomial have 

taken place in different proceedings. Since their 

first appearance it presents a new powerful tool 

for solving different kinds of differential 

equations and optimal control problems [10-14]. 

In this paper, the orthogonal Boubaker function 

was introduced and used with Galerkin method 

to solve some boundary value problems. The 

paper is arranged as follows, the next section 

gives a fundamental idea about orthogonal 

Boubaker polynomials and the third section is 

related with the proposed method for solving 

BVP's. At last we added some numerical 

examples presenting different kinds of BVP's. 

2. Orthogonal Boubaker polynomials 

A set S of Polynomials of an inner 

 product space is called orthogonal if  

< 𝑓, 𝑔 >= 0 for every f ≠ g (f, g ∈ S).  

Boubaker polynomial Bo presented as in [10]  

as follows  

 
2

1 20

2 ( 4 ) 2
( ) ( 1)         ,  = 0,1,2,...  

0 ( )

  then ( ) = 1,   ( ) = ,    ( ) = +2 , ...

k

k r k r r k r
Bo t t krk r k r

Bo t Bo t t Bo t t

 
 
     

 
 

 

Since Boubaker polynomials are not 

orthogonal,  

the Gram-Schmidt method has been applied to 

find the orthogonal Boubaker polynomials, the 

first six orthogonal Boubaker polynomials 

denoted by Bm(𝑡)  were found to be[15]. 

 

B0(𝑡) =1,    

B1( 𝑡) =
 1

2
(2𝑡 − 1) ,   

B2(𝑡) =
1

 6
(6𝑡2 − 6𝑡 + 1), 

B3(𝑡) =
1

 20
(20𝑡3 − 30𝑡2 + 12𝑡 − 1), 

B4(𝑡) =  
1

70
(70 𝑡4 − 140𝑡3 + 90𝑡2 − 20𝑡 + 1), 

B5(𝑡) = 
1

252
(252𝑡5 − 630 𝑡4 + 560𝑡3 −

    210𝑡2 + 30𝑡 − 1), 

B6(𝑡) = 
1

924
(924𝑡6 − 2772𝑡5 + 3150 𝑡4 −

1680𝑡3 + 420𝑡2 − 42𝑡 + 1). 

 

3.The method 

The process in steps is as follows 

- Assuming the orthogonal Boubaker 

polynomial with certain coefficients ai'sfor 

the unknown function u( 𝑡) defined on [0,1] 

as follows 

𝑢(𝑡) ≈ ∑ 𝑎𝑖𝐵𝑜𝑖 (𝑡)

𝑚

𝑖=0

, 𝑖 = 1,2, … , 𝑚 … (2) 

𝐵(𝑡) = [𝐵𝑜0 (𝑡)𝐵𝑜1(𝑡)𝐵𝑜2(𝑡)𝐵𝑜3(𝑡) … 𝐵𝑜𝑚(𝑡)]𝑇 

represents orthogonal Boubaker polynomials 

with ai' s as the  required coefficients. 

- Substituting eq.(2) in (1) and extracting 

R(𝑡) which represents the residual 

𝑅(𝑡) =   0                                               … (3) 

-Now applying Galerkin method to eq.(3). 

The weight functions were chosen to be the 

same as the orthogonal Boubaker terms 

(since it represent linear independence) and 

integrating their product with 𝑅(𝑡) in [0,1] , 

then we get a system of algebraic equations 

with unknown coefficients ai's. 

-Substituting for some values of 𝑡to find the 

values of the unknown coefficients. 

Remark:Since the same terms for the weights 

and trial functions were used, the results 

would be the same as if Rayleigh-Ritz 

method was used [16]. 

4.Numerical Examples: 

Example1: Consider the second-order 

boundary value differential equation: 

(𝑡2 + 1)𝑢(2)(𝑡) + 𝑢́(𝑡) = 1             … (4) 

with boundary conditions:  

   u(0) = 0, 𝑢(1) = 1 

The exact solution for this problem is 

𝑢(𝑡) = 𝑡 

The steps of the Process would be: 

-Assuming the orthogonal Boubaker 

polynomial with coefficients ai's(i=0,…,4) 

for the unknown function u( 𝑡) defined on 

[0,1] as follows 

 𝑢(𝑡) ≈ ∑ 𝑎𝑖𝐵𝑜𝑖 (𝑡)4
𝑖=0 , 𝑖 =

1,2, … ,4     …(5) 

- Substituting Eq.(5) in (4) and extracting 

R(𝑡) which represents the residual 

𝑅(𝑡) =   0                                      … (6) 

-Now applying Galerkin method to Eq.(6).  
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The weight functions were chosen to be the same 

as the orthogonal Boubaker terms and 

integrating their product with 𝑅(𝑡) in [0,1] , then 

we get a system of algebraic equations with 

unknown coefficients ai' s. 

Using Matlab the required coefficients would be 

a0 = 0. 5 

a1=1 

a2 = 0 

a3 = 0 

a4 = 0 

Table (1) shows the numerical results for this 

example with k=1, M=4 are compared with 

exact solution, graphically illustrated in Fig.1. 

Table (1) Numerical solution of Example1 

 

 

Figure (1) 

Example2: Consider the third-order boundary 

value differential equation: 

𝑡2𝑢(3)(𝑡) + 𝑢(2)(𝑡) = 2 

with boundary conditions  

u(0) = 0 , 𝑢(1) = 1 

The exact solution for this problem is 𝑢(𝑡) = 𝑡2 

         Table (2) shows the numerical results 

for this example with k =1, M = 4 are 

compared with exact solution, graphically 

illustrated in Fig.2 

         The required coefficients are 

a0 = 0.333333333333333 

a1= 1 

a2 =1 

a3 = 0 

a4= 0 
 

Table (2) Numerical solution of Example2 

𝑡 ue(𝑡) uappr(𝑡) error 

0 0 0 0 

0.1 0.01 0.01 0 

0.2 0.04 0.04 0 

0.3 0.09 0.09 0 

0.4 0.16 0.16 0 

0.5 0.25 0.25 0 

0.6 0.36 0.36 0 

0.7 0.49 0.49 0 

0.8 0.64 0.64 0 

0.9 0.81 0.81 0 

1.0 1.0 1.0 0 

 

 

Figure (2) 

 

Example3: Consider the second-order 

boundary value differential equation: 

12𝑡2𝑢(2)(𝑡) + 24𝑡𝑢́(𝑡)

= −30𝑡4 + 204𝑡3

− 351𝑡2 + 110𝑡 

𝑡 ue(𝑡) uappr(𝑡) error 

0 0 0 0 

0.1 0.1 0.1 0 

0.2 0.2 0.2 0 

0.3 0.3 0.3 0 

0.4 0.4 0.4 0 

0.5 0.5 0.5 0 

0.6 0.6 0.6 0 

0.7 0.7 0.7 0 

0.8 0.8 0.8 0 

0.9 0.9 0.9 0 

1.0 1.0 1.0 0 
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with boundary conditions u(0) =1 , 𝑢(1) = 2 

 

The exact solution for this problem is  

𝑢(𝑡) =
1

24
(−3𝑡4 + 34𝑡3 − 117𝑡2 + 110𝑡

+ 24) 

         Table (3) shows the numerical results for 

this example with k=1, M=4 are compared with 

exact solution, graphically illustrated in Fig.3 

The required coefficients are:  

a0 = 1.995833333333333 

a1= 0.8833333333333333 

a2= -2.96428571428571 

a3= 1.166666666666667 

a4 = -0.124999999999999 

Table (3) Numerical solution of Example3 

 

 
                      Figure(3)  

 

Example4: Consider the second-order 

boundary value - differential equation: 

(𝑡 + 1)𝑢(2)(𝑡) + 𝑢́(𝑡) = 0 

with boundary conditions  

  𝑢(1) = 1   , [(𝑡 + 1)𝑢́(𝑡)]𝑡=2 = 1  

   The exact solution for this problem is 

u(𝑡)=1+ln (
𝑡+1

2
) 

        Table (4) shows the numerical results 

for this example with k=1, M=5 are 

compared with exact solution, graphically 

illustrated in Fig.4 
 

         The required coefficients are 

, =0.6931818181818180a 

=0.6818181818181821a 

0.233766233766234-=2a  

=0.1136363636363643a 

0.056818181818182-=4a 
 
 

Table (4) Numerical solution of Example4 
𝑡 ue(t) uappr.(t) Error 

0 0.306852819 0.306818181 0.00003463 

0.1 0.402162999 0.402267045 0.000104046 

0.2 0.489174376 0.489454545 0.00028016 

0.3 0.569217083 0.569539772 0.00032268 

0.4 0.643325056 0.643545454 0.00022039 

0.5 0.712317927 0.712357954 0.00004002 

0.6 0.776856448 0.776727272 0.00005913 

0.7 0.837481070 0.837267045 0.00021402504 

0.8 0.894639484 0.894454545 0.00018493888 

0.9 0.948706705 0.948630681 0.00007602379 

1.0 1.0 1.0 0.0 

 

 
Figure (4) 

5. Conclusion 

 In this paper, the capability of orthogonal 

Boubaker polynomials with Galerkin method 

for solving some BVPs was proved, these 

polynomials have been deduced using Gram-

Schmidt method. Also this method can be 

presented as utilizing Raleigh-Ritz method in 

addition to Galerkin method according to the 

𝑡 ue(𝑡) uappr(𝑡) error 

0 1.0000000000 1.00000000000 0.00 

0.1 1.4109875000 1.41098750000 0.0 

0.2 1.7328000000 1.73280000000 0.0 

0.3 1.9734875000 1.97348750000 0.0 

0.4 2.1408000000 2.14080000000 1x 10-14 

0.5 2.2421875000 2.24218750000 0.0 

0.6 2.2848000000 2.28480000000 0.0 

0.7 2.2754875000 2.27548749999 1x 10-14 

0.8 2.2208000000 2.22080000000 0.0 

0.9 2.1269874999 2.12698749999 0.0 

  1.0 2.0000000000 2.00000000000 0.0 
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condition mentioned in the paper. In all 

examples the approximate solution is equivalent 

to the exact solution as shown in all figures .This 

method can be extended for other special applied 

kinds of BVPs in Physics and Engineering with 

other different boundary conditions. 
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