34,966 research outputs found

    Reinforced sol–gel thermal barrier coatings and their cyclic oxidation life

    Get PDF
    Cyclic oxidation life enhancement of sol–gel thermal barrier coatings is obtained via the reinforcement of the controlled micro-crack network that forms during the initial sintering of the deposit. Two different sol–gel methods are used to fill in the process-induced cracks, namely dipcoating and spray-coating. Filling parameters, for instance the number of passes or the viscosity of the sol are adjusted, using various techniques such as profilometry and microstructural analysis, to optimise crack filling. Cyclic oxidation tests are implemented at both 1100C and 1150C to investigate the efficiency of the various reinforcement procedures developed and address the influence of the specific microstructure on the oxidation behaviour

    Pembinaan dan penilaian program rekabentuk rasuk keluli (PRRK) sebagai alat kognitif dalam pembelajaran rekabentuk struktur di kalangan pelajar diploma kejuruteraan awam KUiTTHO

    Get PDF
    Kajian awal yang telah dijalankan mendapati pelajar Kejuruteraan Awam KUiTTHO menghadapi masalah kognitif dalam pembelajaran mata pelajaran Rekabentuk Struktur khasnya dalam pemahaman konsep dan prosedur reka bentuk. Langkah pengiraan yang terlalu banyak selalunya mengelirukan pelajar sehinggakan mereka hilang minat dan tumpuan. Bagi membantu mereka, satu program telah disediakan dengan menggunakan perisian Microsoft Excel bagi tujuan menganalisis dan mereka bentuk rasuk keluli bagi meningkatkan tahap kemahiran kognitif terhadap matapelajaran tersebut. Program Rekabentuk Rasuk Keluli (PRRK) ini disediakan berdasarkan kaedah reka bentuk yang diamalkan oleh British Standard Institution, Structural Use of Steel Work In Building. Seramai dua puluh satu orang pelajar semester akhir Diploma Kejuruteraan A warn yang mengambil mata pelajaran Rekabentuk Struktur telah diminta menilai program ini. Penilaian telah dijalankan terhadap isi, sifat mesra pengguna dan kebolehlaksanaan program menggunakan kaedah skor min. Selain itu perkaitan antara pengalaman pelajar menggunakan komputer sebagai sumber pembelajaran dengan penilaian PRRK juga telah dilihat. Keputusan skor min menunjukkan isi PRKK adalah baik, bersifat mesra pengguna dan mempunyai sifat kebolehlaksanaan. Ujian korelasi Spearman pula menunjukkan bahawa tidak terdapat sebarang perkaitan yang signifikan di antara pengalaman pelajar menggunakan komputer sebagai sumber pembelajaran dengan penilaian PRRK

    A review of the meteorological parameters which affect aerial application

    Get PDF
    The ambient wind field and temperature gradient were found to be the most important parameters. Investigation results indicated that the majority of meteorological parameters affecting dispersion were interdependent and the exact mechanism by which these factors influence the particle dispersion was largely unknown. The types and approximately ranges of instrumented capabilities for a systematic study of the significant meteorological parameters influencing aerial applications were defined. Current mathematical dispersion models were also briefly reviewed. Unfortunately, a rigorous dispersion model which could be applied to aerial application was not available

    Effects of different needles and substrates on CuInS2 deposited by electrostatic spray deposition

    Get PDF
    Copper indium disulphide (CuInS2) thin films were deposited using the electrostatic spray deposition method. The effects of applied voltage and solution flow rate on the aerosol cone shape, film composition, surface morphology and current conversion were investigated. The effect of aluminium substrates and transparent fluorine doped tin oxide (SnO2:F) coated glass substrates on the properties of as-deposited CuInS2 films were analysed. An oxidation process occurs during the deposition onto the metallic substrates which forms an insulating layer between the photoactive film and substrate. The effects of two different spray needles on the properties of the as-deposited films were also studied. The results reveal that the use of a stainless steel needle results in contamination of the film due to the transfer of metal impurities through the spray whilst this is not seen for the glass needle. The films were characterised using a number of different analytical techniques such as X-ray diffraction, scanning electron microscopy, Rutherford back-scattering and secondary ion mass spectroscopy and opto-electronic measurements

    Influence of excipients on spray-dried powders for inhalation

    Get PDF
    Two areas attracting considerable attention when developing effective pulmonary drug delivery systems include the improvement of aerosolisation efficiency of the inhaled formulation and the controlled release of drug from the formulation following deposition within the lung. In this study, four saccharides were employed as excipients in the preparation of spray-dried powder formulations for the pulmonary drug delivery. Beta-cyclodextrin-, starch-, and sodium carboxymethylcellulose (NaCMC)-based spray-dried powders showed a significant (one-way ANOVA, Duncan's test, p < 0.05) increase in lower stage drug deposition in the Next Generation Impactor (NGI) when compared to lactose-based spray-dried powders. Furthermore, NaCMC-based spray-dried powder formulations exhibited a sustained drug release profile in dissolution testing; approximately 80% of salbutamol sulphate was released after an hour, whereas drug from the lactose-based spray-dried powder formulation was released within 5 min. Our results clearly demonstrate that the inclusion of NaCMC in spray-dried powder formulations increases the aerosolisation efficiency of the powder and also offers the potential for sustained drug release, which may be of benefit in the treatment of local and systemic conditions

    Inhalable spray-dried chondroitin sulphate microparticles: effect of different solvents on particle properties and drug activity

    Get PDF
    Spray-drying stands as one of the most used techniques to produce inhalable microparticles, but several parameters from both the process and the used materials affect the properties of the resulting microparticles. In this work, we describe the production of drug-loaded chondroitin sulphate microparticles by spray-drying, testing the effect of using different solvents during the process. Full characterisation of the polymer and of the aerodynamic properties of the obtained microparticles are provided envisaging an application in inhalable tuberculosis therapy. The spray-dried microparticles successfully associated two first-line antitubercular drugs (isoniazid and rifabutin) with satisfactory production yield (up to 85%) and drug association efficiency (60%-95%). Ethanol and HCl were tested as co-solvents to aid the solubilisation of rifabutin and microparticles produced with the former generally revealed the best features, presenting a better ability to sustainably release rifabutin. Moreover, these presented aerodynamic properties compatible with deep lung deposition, with an aerodynamic diameter around 4 μm and fine particle fraction of approximately 44%. Finally, it was further demonstrated that the antitubercular activity of the drugs remained unchanged after encapsulation independently of the used solvent.UID/Multi/04326/2019; SFRH/BD/52426/2013; ED481B 2018/071info:eu-repo/semantics/publishedVersio

    Dual antibiotherapy of tuberculosis mediated by inhalable locust bean gum microparticles

    Get PDF
    Despite the existence of effective oral therapy, tuberculosis remains a deadly pathology, namely because of bacterial resistance and incompliance with treatments. Establishing alternative therapeutic approaches is urgently needed and inhalable therapy has a great potential in this regard. As pathogenic bacteria are hosted by alveolar macrophages, the co-localisation of antitubercular drugs and pathogens is thus potentiated by this strategy. This work proposes inhalable therapy of pulmonary tuberculosis mediated by a single locust bean gum (LBG) formulation of microparticles associating both isoniazid and rifabutin, complying with requisites of the World Health Organisation of combined therapy. Microparticles were produced by spray-drying, at LBG/INH/RFB mass ratio of 10/1/0.5. The aerodynamic characterisation of microparticles revealed emitted doses of more than 90% and fine particle fraction of 38%, thus indicating the adequacy of the system to reach the respiratory lung area, thus partially the alveolar region. Cytotoxicity results indicate moderate toxicity (cell viability around 60%), with a concentration-dependent effect. Additionally, rat alveolar macrophages evidenced preferential capture of LBG microparticles, possibly due to chemical composition comprising mannose and galactose units that are specifically recognised by macrophage surface receptors. (C) 2017 Elsevier B.V. All rights reserved.National Portuguese funding through FCT - Fundacao para a Ciencia e a Tecnologia [PTDC/DTP-FTO/0094/2012, UID/BIM/04773/2013, UID/Multi/04326/2013, UID/QUI/00100/2013, PEst-OE/QUI/UI4023/2011

    Automated Plasma Spray (APS) process feasibility study

    Get PDF
    An automated plasma spray (APS) process was developed to apply two layer (NiCrAlY and ZrO2-12Y2O3) thermal barrier coatings to aircraft and stationary gas turbine engine blade airfoils. The APS process hardware consists of four subsystems: a mechanical positioning subsystem incorporating two interlaced six degree of freedom assemblies (one for coating deposition and one for coating thickness monitoring); a noncoherent optical metrology subsystem (for in process gaging of the coating thickness buildup at specified points on the specimen); a microprocessor based adaptive system controller (to achieve the desired overall thickness profile on the specimen); and commerical plasma spray equipment. Over fifty JT9D first stage aircraft turbine blade specimens, ten W501B utility turbine blade specimens and dozens of cylindrical specimens were coated with the APS process in preliminary checkout and evaluation studies. The best of the preliminary turbine blade specimens achieved an overall coating thickness uniformity of 53 micrometers (2.1 mils), much better than is achievable manually. Comparative evaluations of coating thickness uniformity for manually sprayed and APS coated specimens were performed. One of the preliminary turbine blade evaluation specimens was subjected to a torch test and metallographic evaluation. Some cylindrical specimens coated with the APS process survived up to 2000 cycles in subsequent burner rig testing

    Minimising energy use in milk powder production using process integration techniques

    Get PDF
    Spray drying of milk powder is an energy intensive process and there remains a significant opportunity to reduce energy consumption by applying process integration principles. The ability to optimally integrate the drying process with the other processing steps has the potential to improve the overall efficiency of the entire process, especially when exhaust heat recovery is considered. However, achieving the minimum energy targets established using pinch analysis results in heat exchanger networks that, while theoretically feasible, are impracticable, unrealistic, contain large number of units, and ultimately uneconomic. Integration schemes that are acceptable from an operational point of view are examined in this paper. The use of evaporated water is an important factor to achieve both energy and water reductions. The economics of additional heat recovery seem favourable and exhaust heat recovery is economically justifiable on its own merits, although milk powder deposition should be minimised by selecting an appropriate target temperature for the exhaust air. This will restrict the amount of heat recovery but minimise operational risk from heat exchanger fouling. The thermodynamic constraints caused by the operating temperatures of the dryer and the poor economics exclude the use of heat pumps for exhaust heat recovery in the short to medium term

    Electrochemical characterization of nanoporous nickel oxide thin films spray-deposited onto indium-doped tin oxide for solar conversion scopes

    Get PDF
    Nonstoichiometric nickel oxide (NiOx) has been deposited as thin film utilizing indium-doped tin oxide as transparent and electrically conductive substrate. Spray deposition of a suspension of nanoparticles in alcoholic medium allowed the preparation of uniform coatings. Sintering of the coatings was conducted at temperatures below 500°C for few minutes. This scalable procedure allowed the attainment of films with mesoporous morphology and reticulated structure. The electrochemical characterization showed that electrodes possess large surface area (about 1000 times larger than their geometrical area). Due to the openness of the morphology, the underlying conductive substrate can be contacted by the electrolyte and undergo redox processes within the potential range in which is electroactive. This requires careful control of the conditions of polarization in order to prevent the simultaneous occurrence of reduction/oxidation processes in both components of the multilayered electrode. The combination of the open structure with optical transparency and elevated electroactivity in organic electrolytes motivated us to analyze the potential of the spray-deposited films as semiconducting cathodes of dye-sensitized solar cells of p-type when erythrosine B was the sensitizer
    corecore