205,260 research outputs found

    New approaches to investigating the function of mycelial networks

    Get PDF
    Fungi play a key role in ecosystem nutrient cycles by scavenging, concentrating, translocating and redistributing nitrogen. To quantify and predict fungal nitrogen redistribution, and assess the importance of the integrity of fungal networks in soil for ecosystem function, we need better understanding of the structures and processes involved. Until recently nitrogen translocation has been experimentally intractable owing to the lack of a suitable radioisotope tracer for nitrogen, and the impossibility of observing nitrogen translocation in real time under realistic conditions. We have developed an imaging method for recording the magnitude and direction of amino acid flow through the whole mycelial network as it captures, assimilates and channels its carbon and nitrogen resources, while growing in realistically heterogeneous soil microcosms. Computer analysis and modeling, based on these digitized video records, can reveal patterns in transport that suggest experimentally testable hypotheses. Experimental approaches that we are developing include genomics and stable isotope NMR to investigate where in the system nitrogen compounds are being acquired and stored, and where they are mobilized for transport or broken down. The results are elucidating the interplay between environment, metabolism, and the development and function of transport networks as mycelium forages in soil. The highly adapted and selected foraging networks of fungi may illuminate fundamental principles applicable to other supply networks

    EU-Rotate_N – a decision support system – to predict environmental and economic consequences of the management of nitrogen fertiliser in crop rotations

    Get PDF
    A model has been developed which assesses the economic and environmental performance of crop rotations, in both conventional and organic cropping, for over 70 arable and horticultural crops, and a wide range of growing conditions in Europe. The model, though originally based on the N_ABLE model, has been completely rewritten and contains new routines to simulate root development, the mineralisation and release of nitrogen (N) from soil organic matter and crop residues, and water dynamics in soil. New routines have been added to estimate the effects of sub-optimal rates of N and spacing on the marketable outputs and gross margins. The model provides a mechanism for generating scenarios to represent a range of differing crop and fertiliser management strategies which can be used to evaluate their effects on yield, gross margin and losses of nitrogen through leaching. Such testing has revealed that nitrogen management can be improved and that there is potential to increase gross margins whilst reducing nitrogen losses

    Modeling and supervisory control design for a combined cycle power plant

    Get PDF
    The traditional control strategy based on PID controllers may be unsatisfactory when dealing with processes with large time delay and constraints. This paper presents a supervisory model based constrained predictive controller (MPC) for a combined cycle power plant (CCPP). First, a non-linear dynamic model of CCPP using the laws of physics was proposed. Then, the supervisory control using the linear constrained MPC method was designed to tune the performance of the PID controllers by including output constraints and manipulating the set points. This scheme showed excellent tracking and disturbance rejection results and improved performance compared with a stand-alone PID controller’s scheme

    Converting simulated total dry matter to fresh marketable yield for field vegetables at a range of nitrogen supply levels

    Get PDF
    Simultaneous analysis of economic and environmental performance of horticultural crop production requires qualified assumptions on the effect of management options, and particularly of nitrogen (N) fertilisation, on the net returns of the farm. Dynamic soil-plant-environment simulation models for agro-ecosystems are frequently applied to predict crop yield, generally as dry matter per area, and the environmental impact of production. Economic analysis requires conversion of yields to fresh marketable weight, which is not easy to calculate for vegetables, since different species have different properties and special market requirements. Furthermore, the marketable part of many vegetables is dependent on N availability during growth, which may lead to complete crop failure under sub-optimal N supply in tightly calculated N fertiliser regimes or low-input systems. In this paper we present two methods for converting simulated total dry matter to marketable fresh matter yield for various vegetables and European growth conditions, taking into consideration the effect of N supply: (i) a regression based function for vegetables sold as bulk or bunching ware and (ii) a population approach for piecewise sold row crops. For both methods, to be used in the context of a dynamic simulation model, parameter values were compiled from a literature survey. Implemented in such a model, both algorithms were tested against experimental field data, yielding an Index of Agreement of 0.80 for the regression strategy and 0.90 for the population strategy. Furthermore, the population strategy was capable of reflecting rather well the effect of crop spacing on yield and the effect of N supply on product grading

    Specifications for modelling fuel cell and combustion-based residential cogeneration device within whole-building simulation programs

    Get PDF
    This document contains the specifications for a series of residential cogeneration device models developed within IEA/ECBCS Annex 42. The devices covered are: solid oxide and polymer exchange membrane fuel cells (SOFC and PEM), and internal combustion and Stirling engine units (ICE and SE). These models have been developed for use within whole-building simulation programs and one or more of the models described herein have been integrated into the following simulation packages: ESP-r, EnergyPlus, TRNSYS and IDA-ICE. The models have been designed to predict the energy performance of cogeneration devices when integrated into a residential building (dwelling). The models account for thermal performance (dynamic thermal performance in the case of the combustion engine models), electrochemical and combustion reactions where appropriate, along with electrical power output. All of the devices are modelled at levels of detail appropriate for whole-building simulation tools

    Carbon capture from natural gas combined cycle power plants: Solvent performance comparison at an industrial scale

    Get PDF
    Natural gas is an important source of energy. This article addresses the problem of integrating an existing natural gas combined cycle (NGCC) power plant with a carbon capture process using various solvents. The power plant and capture process have mutual interactions in terms of the flue gas flow rate and composition vs. the extracted steam required for solvent regeneration. Therefore, evaluating solvent performance at a single (nominal) operating point is not indicative and solvent performance should be considered subject to the overall process operability and over a wide range of operating conditions. In the present research, a novel optimization framework was developed in which design and operation of the capture process are optimized simultaneously and their interactions with the upstream power plant are fully captured. The developed framework was applied for solvent comparison which demonstrated that GCCmax, a newly developed solvent, features superior performances compared to the monoethanolamine baseline solvent

    Sustainable seabed mining: guidelines and a new concept for Atlantis II Deep

    No full text
    The feasibility of exploiting seabed resources is subject to the engineering solutions, and economic prospects. Due to rising metal prices, predicted mineral scarcities and unequal allocations of resources in the world, vast research programmes on the exploration and exploitation of seabed minerals are presented in 1970s. Very few studies have been published after the 1980s, when predictions were not fulfilled. The attention grew back in the last decade with marine mineral mining being in research and commercial focus again and the first seabed mining license for massive sulphides being granted in Papua New Guinea’s Exclusive Economic Zone.Research on seabed exploitation and seabed mining is a complex transdisciplinary field that demands for further attention and development. Since the field links engineering, economics, environmental, legal and supply chain research, it demands for research from a systems point of view. This implies the application of a holistic sustainability framework of to analyse the feasibility of engineering systems. The research at hand aims to close this gap by developing such a framework and providing a review of seabed resources. Based on this review it identifies a significant potential for massive sulphides in inactive hydrothermal vents and sediments to solve global resource scarcities. The research aims to provide background on seabed exploitation and to apply a holistic systems engineering approach to develop general guidelines for sustainable seabed mining of polymetallic sulphides and a new concept and solutions for the Atlantis II Deep deposit in the Red Sea.The research methodology will start with acquiring a broader academic and industrial view on sustainable seabed mining through an online survey and expert interviews on seabed mining. In addition, the Nautilus Minerals case is reviewed for lessons learned and identification of challenges. Thereafter, a new concept for Atlantis II Deep is developed that based on a site specific assessment.The research undertaken in this study provides a new perspective regarding sustainable seabed mining. The main contributions of this research are the development of extensive guidelines for key issues in sustainable seabed mining as well as a new concept for seabed mining involving engineering systems, environmental risk mitigation, economic feasibility, logistics and legal aspects
    corecore