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"We can claim to understand the plant when we can express it all in a mathematical 
model." 

Folke Skoog, over coffee, 1955 

INTRODUCTION 

An inherent feature of biological science is the conceptualization of complex 
systems into organization levels-from lower levels such as molecules, 
organelles, and cells to higher levels such as communities, populations, and 
ecosystems. Each of those hierarchic levels possesses a characteristic behav­
ior resulting from integration of sublevel processes under influences from 
the external environment. Classical plant physiology explores the mechanis­
tic basis for that behavior by reductionist techniques, by seeking to isolate 
each sublevel process from the influences of higher levels and from compet­
ing elements at the same level. Quantitative integration of those mecha­
nisms into an explanation of system behavior, however, remains a task for 
integrative physiology. In that task, the interactions within and between 
levels become the foci of research. Particularly concerned with that problem 
are crop physiologists, whose task is to explain the behavior of vegetation 
in a variable environment. 

Some types of physiological information are readily extrapolated from 
lower to higher levels; others are not. An understanding of certain qualita­
tive phenomena, such as photoperiodism or the phase changes of lipids with 
temperature, may be used more or less directly in interpreting and pre­
dicting organism behavior. In other cases, the extrapolations may be frus­
trated by the very complexity of the interactions and their quantitative and 
temporal natures. As an example, the adequacy of a nutrient uptake system 
depends on variations in the activity of ion carriers in root membranes, ion 
availability in the soil, root surface area and distribution, degree of suberiza­
tion, cortical and xylem transport resistances, ion assimilation capacity, and 
sink demand. The system is further complicated by its dynamic character 
-each of those factors is subject to diurnal and seasonal change. 

Mathematical modeling is used increasingly as a method for effecting 
such integrations. That approach has been favored by the absence of other 
effective methodologies, by the emerging formalism of systems analysis, and 
by computers. The efforts in animal science are rather advanced. Major 
areas of work include explanatory models for thermoregulation, blood cir­
culation, morphogenetic control, neurological functioning, and even artifi­
cial intelligence. It has even been possible to deal with the biochemical 
kinetics of ruminant digestion as a basis for organismal growth (5, 98). The 
basis for such work in many instances has been feedback theory developed 
in the 1940s (6, 72, 100), enzyme kinetics (42a, 49, 105), and compartmen­
talization concepts (2, 49). 
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The plant sciences have lagged well behind except in the physical aspects 
of the plant environment and community physiology. We find expanding 
interest in mathematical formulations of specific biological processes, with 
major attention given to such subjects as leaf growth and phyllotaxy (35, 
69, 124, 128), carrier kinetics (20), photosynthesis (15, 17, 48, 119), and 
catenary diffusion sequences (84). The biomathematical analysis of physio­
logical problems has been given extended treatments by Nobel (84), Riggs 
(99), and Thomley (117). In contrast, the integrative systems approach has 
been limited largely to the higher organization levels. That seems to reflect 
the quantitative concerns of systems ecologists and others, particularly of 
agronomists, for the behavior of vegetation. The grassland (56, 88) and 
tundra (12) biome studies, as examples, are impressive for their scope but 
are short in physiological detail. Workers in those areas have drawn more 
on the concepts of systems analysis and environmental physics as the start­
ing point for their work. The systems level is also the arena for our own 
work on physiological models, emphasized in this essay. Our models focus 
on the organismal and systems levels, but the approach outlined is also 
applicable to integration at lower levels. 

We distinguish two broad categories of crop models: same-level descrip­
tive models and multilevel explanatory models. A wide range of descriptive 
models exist. Multivariate regression models, for example, are used widely 
for the important task of yield prediction in variable climates (10, 81, 82, 
93, 96, 116). Such models may be static, i.e. involving no concept of time. 
Variables in that case are integrated seasonal totals of yield, rainfall, and 
temperature. Sophistication is improved by introducing some concept of 
time based, for example, on the calculation of developmental rate as a 
function of temperature during the season (101, 108) and by sharpening the 
environmental parameters, e.g. use of a soil moisture balance rather than 
rainfall as an input variable (3, 10). 

The explanatory approach emphasized here is considerably more sophis­
ticated. It employs dynamic models of the system hierarchy in an effort to 
provide prediction and explanation of integrated behavior from more de­
tailed knowledge of the underlying physiological and morphological pro­
cesses (26, 28). All such knowledge becomes descriptive at the ultimate level 
of reduction. While crop models do not go that far, they do become descrip­
tive where knowledge is lacking or simplification is required .. However, with 
a hierarchic structure, description at lower levels becomes explanatory of 
higher levels. A dynamic structure also aids in explanation, and the capabil­
ity for continuous printout of many variables contrasts to experimental 
work generally providing observations only for discrete times. 

In dynamic models, a system is described by a set of state variables (such 
as the weights of various organs) that are updated at each iteration of the 
model by rate variables (such as the flow of carbon in photosynthesis and 
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respiration) defining changes in the state variables (Figure 1, left). The 
rate variables are considered to be constant during the iteration interval 
(DELT) so that the change in state is DELT X rate. DELT must be small 
enough that the assumed constancy is reasonably accurate. Models with too 
large an iteration interval give wrong results and may develop oscillations 
because of repeated overshoot and undershoot. The calculation of rate 
variables depends upon information from external forcing variables (such 
as air temperature) and internal auxiliary variables (such as the meris­
tematic status of an organ) drawn from the current state of the system 
(Figure 1, right). A state variable and its determining processes represent 
a minimum hierarchy that becomes explanatory when the rate processes are 
calculated by rules based on the biological, chemical, or physical mecha­
nism involved. A feature of most models is the use of balance equations at 
each level to ensure that conservation of mass and energy is observed. The 
method is not limited to integration from lower to higher levels, although 
that is the approach used with crop models. Recognizing that controls 
operate both upward and downward in biological hierarchies, one might 
employ simplified-ecosystem or organismal-level models to provide the con­
trolling environment for a detailed organ or tissue model. 
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Figure 1 (left) A relational diagram for the transfer of carbon from atmospheric C02 to new 
assimilates (ASM) by photosynthesis (PS) and then by growth (GR) to new BIOMASS. Also 
shown are the reverse transfers by remobilization (RM) and respiration (RSP). (right) The 
hypothesis is extended with auxiliary variables controlling the growth rate of a leaf (GRL). 
The effect of assimilate supply on leaf growth rate (EALG) is shown to depend upon the ASM 
level; effectors for temperature (ETLG) and water status (EWLG) would be calculated in 
sub-routines. The meristematic fraction of the leaf capable of growth (FLCG) interacts with 
a maximum relative growth rate parameter (MRGR) to determine potential leaf growth. Other 
attributes of the leaf feedback to other processes: leaf area index (LAI) to photosynthesis; 
senescence state (SEN) to remobilization; and leaf weight and development state to mainte­
nance respiration (MRSP). GRSP represents a calculation of the respiration associated with 
the growth achieved during each iteration of the model. 
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Although explanatory hierarchic modeling is still in its infancy and has 
not been subject to extensive development by systems analysts (70), the 
method holds great potential for plant physiology. Starting in the mid-1960s 
(11, 22, 114), it has become an active area of research by crop physiologists. 
For example, Milthorpe & Moorby's Crop Physiology (73) derives from 
their efforts in dynamic modeling, and the Trebon (107) and Long Ashton 
(62) conference volumes show a heavy modeling content. Much of the 
current activity is reported at workshops and in limited distribution publi­
cations. Annals of Botany, Agricultural Meteorology, Journal of Theoretical 
Biology, Crop Science, and the Dutch Simulation Monographs are among 
the major publications for botanical models. Rather than attempting an 
exhaustive review, the following essay draws largely from our own work. 
Our plan is: first,. to present a limited background on the state-variable 
approach to systems analysis; second, to outline some of the special prob­
lems and attributes found in crop models at community, organismal, and 
cellular levels; and then to close with a survey of applications. 

THE MODELING PROCESS 

Model building should begin with a clear formulation of objectives concern­
ing the use of the completed model. Biological systems are so complex that 
their models always represent a simplification or abstraction of the real 
system. That contrasts with some cases in engineering where the realized 
machine may be only an approximation of the perfection visualized in the 
model or plan. The objectives provide a basis for decisions about necessary 
simplifications. A second task, involving identification of the variables and 
processes that define the system, is aided by relational diagrams for the main 
variables (such as Figure 1 ). That task is coupled with the formulation of 
mathematical expressions for rate variables (i.e. differential equations). The 
choice and structure of those equations constitute a set of implicit assump­
tions about the system which should be carefully defined. The same is true 
in the choice of parameters for the equations. Taken together, the model 
with its parameterized equations represents a collective hypothesis about 
the real system. That leads directly to the construction of a computer 
program to execute the model and then to the critical step of validation 
(122). 

Validation is distinguished from verification, which means testing to see 
that the computer program in fact operates on input data in the intended 
way. In addition to an a priori analysis of the model's structure (81a), 
validation generally involves comparison of model predictions with results 
from independent experiments relating to both processes (e.g. photosynthe­
sis rate) and system states (e.g. biomass levels) (see Figure 2, p. 347). Some 
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modelers use such comparisons as a basis for calibrating or "tuning" their 
models. That usually involves empirical adjustments of parameters to bring 
model performance into correspondence with standard behavior. Calibra­
tion can create a model useful for mimicking reality but is a dangerous 
practice for explanation. Departures from realism in model behavior usu­
ally represent either errors or incompleteness in the implicit assumptions 
on basic processes which should be given direct attention. de Wit (25) 
distinguished among real systems as repeatable, recurrent, or unique in 
terms of validation. Repeatable systems, such as fields of corn or manufac­
tured cars, can easily be done again in independent validation experiments. 
Peat formation and forest successions, however, although recurrent in time, 
are too slow to repeat, and validation must be made on submodels or 
through comparison with a series of real systems in different stages of 
development. Examples of unique systems are the Mississippi River and 
biospheric cyling of carbon dioxide. In those cases, experimental perturba­
tions of the real system may be hazardous, impractical, or socially unaccept­
able. Although validation may be possible from historic knowledge of past 
great events, it is clear that very strict criteria are needed in such construc­
tions, particularly when they are used in forming public policy. 

Validation may be extended through behavioral analyses (response of the 
model system to some pertubation, e.g. leaf pruning or climate change) and 
sensitivity analyses (response of the model system to systematic variations 
in model structure or of one parameter or input variable; Figure 2). They 
reveal the degree of truthfulness or realism with which the model handles 
the intended problem. They also tell us about the importance of various 
components in achieving that truthfulness and thus provide an objective 
basis for the simplification of complex models. 

Those stages in model building are not mutually exclusive, and iteration 
and feedback among the stages is considerable ( 4). The process is actually 
little different from that used in experimental research, with the model 
hypotheses accepted or rejected through validation tests. Many subjective 
decisions are involved, and the quality of the model depends greatly on the 
skill and knowledge of the modeler. Almost invariably, deficiencies are 
found in the information base that define needs for additional experiments. 
That in itself has been one of the most rewarding features of modeling. 

The choice of an appropriate time interval for iterations of a model is 
closely linked to objectives and to the levels of the system being modeled. 
In principle, the iteration interval must be only 0.1 to 0.2 times as long as 
the time required for a system to recover from a small perturbation. In 
practice, a sensitivity analysis with shorter intervals is usually necessary to 
determine the effect on accuracy. Higher levels and/or larger systems usu­
ally respond more slowly, and crop growth can be modeled with daily or 
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weekly advances. But an interval of 1 to 2 hours must be used if sensitivity 
to diurnal events is required, while stomatal closure and some cellular 
processes require intervals of minutes or even seconds for accurate simula­
tion. 

Those facts cause coupling difficulties of the "stiff-system" sort when very 
fast subsystems are used to explain the behavior of the slower whole. If 
computer time is freely available, that problem is overcome by operating 
with an iteration interval appropriate to the fastest subsystem. Costs can be 
reduced sharply with special integration routines which allow the use of 
longer time intervals (43a), but those have yet to be used widely by crop 
modelers. Crop modelers sometimes use empirical submodels with slower 
time constants on the basis that less error results from that than from other 
features of their models. Alternatively, one can avoid the problem by limit­
ing the hierarchic structure to two or three levels and thus restricting the 
range of time constants within the memory and computational capacities 
of their computers (and budgets). Either approach tends to compromise our 
objective of developing explanatory detail. At any level of detail, coupling 
problems are reduced by the introduction of negative feedback control since 
slight overshoot in one part of the system in one iteration tends to be 
corrected by a slight undershoot in the next. 

Modeling can be facilitated with special simulation languages designed 
for use with state-variable models (9, 14, 39, 94). Such languages include 
integration routines, Gaussian generators, timing and array devices, auto­
matic input/ output formating, function generators for interpolation of 
tabular data, and a selection of more specialized intrinsic functions that can 
be accessed easily. Such languages are more expensive of computer time but 
save effort in programming. More important, the simplified programs can 
serve as a means for communication between modeler and experimenter. 
Thus far, plant modelers generally have not selected a universal simulation 
language. That plus the fact that few crop models are directed to the same 
objective means that very few standard program modules are shared by 
different modelers. 

HIERARCHIC LEVELS IN CROP GROWTH MODELS 

The principal focus of the output of crop growth models is community 
behavior. Such models simulate the production of new photosynthates, the 
partitioning of that material to growth, respiration and storage, and the 
related morphogenesis. The greatest attention is given to the state variables 
that define the environment and the age, weight, and morphology of the 
main elements of the biomass. That may be done with perhaps 50 to 100 
state variables (21, 22, 87, 118). Computer models with 100 state variables 
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are quite large and carry the danger that the model will be insensitive to 
incorrect opinions about structure and parameters. But a detailed hierar­
chic structure may require a very large number of variables, and some crop 
models concerned with integrative physiology have employed much larger 
numbers of variables [BACROS (11, 27, 29); SUBGOL (37, 38, 55); PO­
TATO: Ng, unpublished]. 

The level of detail is determined by the aim of the modeling effort and 
the relative importance of various subprocesses to system behavior. Impor­
tant processes should be developed with more detail. However, large models 
such as BACROS and SUBGOL also tend to reflect the present state of 
knowledge, providing detail on what is known and retreating to simple 
mimicking efforts on subjects such as morphogenesis where less is known. 
Models of limited size may be sufficient for many objectives. For that 
purpose, the highly detailed models can be simplified, following sensitivity 
analyses. It is also possible in that way to formulate simple algorithms of 
detailed submodels for use in more comprehensive models (37, 121). 

The following sections outline some of the characteristics of model struc­
ture found with the various hierarchic levels of crop-growth models. Such 
models represent limited ecosystems consisting of the producer community 
and relevant abiotic components. 

Community /Ecosystem Level 
The milieu for crop growth is determined by environmental processes that 
function largely at the ecosystem level. The key elements are radiation 
interception and exchange, evaporation and transpiration, aerodynamic 
transport, and microclimate profiles as well as water and nutrient supplies. 
Each of those is some function of the area occupied by the vegetation and 
can be modeled as a vertical distribution. Environmental physicists have 
developed highly detailed explanatory models for most of those topics. For 
example, detailed models are available on infiltration and movement of 
water in soil (115, 123), including in some cases the influence of an expand­
ing root system (53, 60, 63). Radiation interception by foliage also can be 
approached with rather sophisticated light distribution models (19, 24, 33, 
44, 64, 76, 77, 102), and microweather within the vegetation can be simu­
lated by coupling such models into net radiation budgets (latent and sensible 
heat exchanges and radiation balance) and eddy transport models (44, 83, 
109, 126). 

A useful approach for both aerial and soil environments is to subdivide 
the systems into horizontal layers, considering balances for each property 
within each layer, and using transport equations to calculate vertical fluxes 
between layers (Figure 2 shows the results of such calculations for air 
temperature and humidity). Transport equations (flux= gradient X conduc-
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tivity) are used also for nutrient and water fluxes into roots and for water 
and carbon dioxide exchange by the leaves. Several interesting issues de­
velop here. The conductivity term can be defined explicitly for a small 
system-in the case of roots, a single cell, or a small root segment-but it 
takes on a more general, empirical context when applied to a whole root 
system. But subdivision into smaller parts or layers can introduce a stiff­
system problem. Radiation, for example, is absorbed at the surface soil layer 
and within leaves by very thin strata with a low capacity for heat storage. 
Those strata change temperature very rapidly in contrast to mixed air and 
the rest of the soil, which as large systems have much greater heat capacities 
and change temperature more slowly with time. Goudriaan (44) modeled 
that with a "bypassing" method in which the fast system is iterated to 
steady state and then abandoned (assumed to remain in steady state) until 
a new iteration is made of the higher level. 

Organismal/organ-level elements, such as the size and characteristics of 
the foliage and root systems, enter directly into some of the physical pro­
cesses. Most crop models have dealt only with random or homeogeneous 
distributions of roots and leaves within each layer, although other distribu­
tions may be important in nature. Those other arrangements, e.g. with 
plants in rows, can become quite complex (16, 42, 44). Microclimate models 
frequently include biological processes such as stomatal behavior, which 
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Figure 2 Validation of the BACROS, flux-dependent, microclimate simulator for air temper­
ature and humidity through comparisons with profiles measured within a corn crop at Wage­
ningen, the Netherlands. The profiles indicate the difference in temperature and humidity 
within the canopy as compared to that observed above the canopy at 3 m. Simulations with 
and without stomatal regulation represent a sensitivity analysis for the necessity of a submodel 
on stomatal control [adapted from (29)]. 
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regulates water loss, and "suberization," which modifies root permeability 
to water and nutrients. The importance of stomatal control is illustrated 
clearly in Figure 2. Detailed models of stomatal action also have been 
developed (97, 110), and many ecosystem models include stomatal depen­
dence upon the current levels of C02, water, and radiation. 

Photosynthesis also is best treated as an ecosystem process because of its 
close dependence upon foliage display, radiation interception, and eddy 
transport. The more advanced models include all of those features. Shaw­
croft et al (109), for example, started with Duncan's (33) light distribution 
model for a layered leaf canopy. Ross (102) and Goudriaan (44) also pre­
sented highly detailed light models. Coupling light distribution with a leaf 
photosynthesis model achieves a simulation of canopy production. The 
simpler approaches employ a measured light-response curve for leaf photo­
synthesis; for more detail, a leaf model (15, 17, 48, 119) incorporating 
attributes such as quantum efficiency and a dependence of the saturation 
rate on temperature and C02 internal can be used. C02 internal can be 
simulated with an eddy transport model (to give C02 external) and a 
stomatal model (44). 

Ecosystem models of that type offer a high degree of realism and accuracy 
in simulations of the main processes in crop productivity-photosynthesis, 
transpiration, and respiration of crop canopies. But it is not yet practical 
to employ all details available on ecosystem behavior in crop growth models 
which explore the partitioning of photosynthate during growth and devel­
opment. The result would be a vast model very taxing to both computers 
and researchers. Submodels for the ecosystem parts can be simplified in 
various ways. BACROS retains considerable explanatory detail in the envi­
ronmental and photosynthesis modules while using only rudimentary plant 
growth sections. In contrast, SUBGOL and POTATO employ simplified 
environmental modules while expanding on plant growth and development. 
In both cases, air and soil temperatures are taken as daylength-dependent, 
sinusoidal (or other) variations of reported screen temperatures, and evapo­
transpiration is estimated from a modified Penman equation (75) taking into 
account dew-point temperature and daily wind run with a submodel to 
describe (rather than simulate) stomatal conductance. BACROS simulates 
microweather within the canopy (Figure 2) whereas SUBGOL does not. 
BACROS approaches photosynthesis with a description of canopy architec­
ture and a simple radiation penetration model coupled with transport equa­
tions for estimating the movement of C02 into the leaf based on stomatal 
conductance and the C02 gradient between leaf and air. In the Davis 
models, photosynthesis was reduced to a tabular presentation by running 
the Duncan photosynthesis simulator for 100 combinations of leaf-area 
distributions and solar altitude for clear and overcast skies, using a standard 
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light-response function for leaf photosynthesis (37). The clear and overcast 
tables are interpolated at each hour according to solar angle and the ratio 
of potential and current daily total radiation (thus adjusting for cloudiness). 
Those hourly rates are then reduced by temperature and water-deficit func­
tions, but C02 variations are ignored. Both approaches provide fast and 
reasonably accurate simulations of the photosynthate supply available for 
plant growth. 

Organ/ Organismal Level 
The simplified vegetation models provide a framework within which the 
whole-plant level can be developed. An imp~rtant aspect of that coupling 
is that a simulation of competitive effects due to varying plant density is 
achieved. At the plant level we can focus on detailed morphological descrip­
tions of roots, stems, and leaves and their growth and ontogeny. Such 
models serve as means to explore partitioning and developmental processes 
and as a basis for integrative explanations of vegetation-level processes. 
Gutierrez et al (46) and Wang et al (127) incorrectly characterized crop 
growth models of that type as "single-plant" models (and also their limited­
ecosystem model as a "population" model). Rather clearly, vegetation pro­
cesses are simulated in such models at the ecosystem. level, and those 
processes provide the photosynthate supply, water and nutrient status, and 
external environment which serve as forcing and auxiliary variables for the 
plant level. The multilevel model thus becomes reductionist as well as 
integrative. 

Options exist to divide the plant into functional morphological classes 
(leaves, stems, and roots) and model each class en masse, or to model each 
individual leaf, internode, tuber, or fibrous root. Even when successive 
organs are considered separately, that is usually done for a "standard plant" 
so that the organs of all plants are identical. The en masse method may be 
used when ecosystem behavior is the principal interest, but the individual 
organ approach is usually required when integrative physiology is the aim. 
Some models take an intermediate approach by simulating the bulk behav­
ior of all leaves or roots within specific "age" classes. That facilitates distinc­
tion of physiological capabilities (e.g. growth or senesence) according to 
developmental state and is a common approach for root systems. The age 
classes can be retained in programming devices known as "pushdown ta­
bles," advanced by an aging or developmental-rate submodel. 

Modeling the initiation, growth, and development of individual organs in 
an explanatory way is not always easy or in some cases even possible. Little 
information exists about the mechanisms controlling the morphogenesis of 
individual organs. In many cases, the modeling becomes descriptive-for 
example, by using a temperature-dependent plastochron to control the 
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initiation of successive leaves. Difficult questions also arise with the mor­
phogenetic rules for integration and coordination of organs into whole 
plants. The rules center on partitioning (the distribution of new assimilates 
to growth centers) and physiological age. One approach to partitioning is 
to set the model "genotype" into descriptive allocation patterns (74, 96, 
120) which may be drawn from real plants. But fixed allocations are likely 
to fail when the simulations are placed in a new environment. A more 
explanatory approach requires simulating morphological and physiological 
plasticity in response to density and other features of the environment, using 
variables that introduce the properties of apical dominance, photosynthate 
and water supplies, microclimate position, and age. 

Photosynthate supply is made a central factor for organismal integration 
by following the nutritional-control approach of Brouwer and de Wit (11, 
27) in which organ growth is dependent upon the concentration of available 
assimilates. The assimilate pool visualized in Figure 1 includes all readily 
available carbon fractions. It is fed by rates of photosynthesis and remobili­
zation of materials from senescing organs, and is depleted by rates of 
growth, respiration, and storage. The growth of one organ then indirectly 
affects all others by altering that common pool. A division of the general 
pool into compartments for each growth center according to transport 
resistance (117) or axial position (52) attempts an explanatory basis compat­
ible with morphological concepts but opens the issue of how to model 
vascular transport as a variable function of growth and development. 
Thornley (117) and Goeschl et al (131) have developed very nice models of 
phloem transport based on the number and dimension of cells but without a 
good solution to the developmental aspects. We have settled on a empirical 
"priority" concept in which each class of organs is given a different response 
function for substrate dependence. Those functions incorporate qualitative 
properties of transport resistance or position, as deduced from shading and 
pruning experiments with whole plants (37, 38), and the quantitative nature 
of substrate dependence of growth when unconstrained by transport (54). 
That approach gives more explanation to the simulation than descriptive 
allometry. 

Similar pools can be established for water status and nutrient supplies. 
With water, which affects growth through variations in turgor, we have 
used a bulked water-status parameter such as plant relative water content 
(RWC), which is simulated from a balance between water uptake and 
transpiration. 

The interaction of two or more pools, plus other variables relating to age 
and environment, establishes a dynamic pattern of partitioning that may 
include a balancing of root and shoot functions (11, 37). The balancing can 
be done with a model analogy (Figure 3) to real plants in which shoot 
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Figure 3 A relational diagram for a hypothesis about the functional balance of root and leaf 
growth based on carbon and water. The transfer of water from the soil through the plant to 
the air determines the current water content of the plant (WCP) and its relative water content 
(RWC). RWC in turn regulates root and leaf growth rates, according to the response functions 
(EW) shown to the right, and stomates. Also on the right are the response functions for the 
effects of assimilate supply (EA) on growth rates. Stomatal status (STO) is influenced by 
current radiation (RAD) and RWC and in turn regulates transpiration (TR) and photosynthe­
sis (PS). The feedback from ROOT weight to water uptake rate (UR) involves root length (RL) 
and its suberization (SUBR) with age. 

Structure similar to this is used in BACROS, SUBGOL, and POTATO. 

growth is more affected than root growth by water or nutrient status (root 
supply functions) and root growth is more affected than shoot growth by 
assimilate status (a shoot supply function). Such functional balances repre­
sent hierarchic (across level) feedback loops, and their inclusion provides 
realistic organismal integration and greatly increases the power of the 
model. In addition, the door is then open to validation against data from 
root pruning and defoliation experiments (27, 38). 

The state variables of interest in simulating the growth of an organ are 
its weight at present (Wt) and its rate of growth (GR). A common formula­
tion is: 

GR = MRGR·F(AGE)·Wt·MIN(EA, EW, ET) 

where MRGR is the maximum unrestrained relative growth rate (g g-lt-1), 
and F(AGE) is an "age" -dependent fraction of organ weight still capable 
of growth. MIN(EA, EW, ET) indicates the use of Liebig's law of the 
minimum to choose among the response functions for the most limiting of 
the effects of assimilate supply (EA), water status (EW), or temperature 
(ET) in that iteration. The new weight of the organ at the future time can 
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be simply Wt + GR X DELT. Figure 1, right, diagrams that scheme while 
Figure 4 shows the operation of such effectors during the growing season 
for sugar beet. 

The cleanest conception of a response function is as the relative effect of 
one factor on the rate of a process with all other factors maintained near 
optimal levels. Thus, we would have the relative effect of temperature on 
growth rate, with assimilate, nutrients, and water nonlimiting. Such ideali­
zations are not easy to achieve in experiments but can sometimes be ap­
proached with isolated systems (54, 79). 

Liebig's law seems to hold in many cases, particularly when short time 
steps (1 hr) are employed. But in other cases, the effects of several fac­
tors may be additive or multiplicative and a multivariate approach [e.g. 
F(EA, EW, ET)] is required for limiting factor interactions. That is 
always necessary when growth rates are calculated for long time intervals 
(1 day). With either method, the modeling becomes descriptive at this level. 
The response functions and their interactions result from complex cell-level 
processes that cannot be modeled in detail largely because we do not under­
stand the systems. For example, the basis of the response function for the 
temperature dependence of growth rate is unknown, and the manner and 
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Figure 4 Operation of the Liebig's law analogy in SUBGOL for the effects of water status 
(EW), assimilate supply (EA), and temperature (ET) on sugar-beet leaf growth rate. The effect 
factors are derived from response functions such as those shown in Figure 3; a value of 1.0 
indicates that the factor is not limiting to growth rate. The diurnal course of the effectors is 
shown for 15, 30, and 120 days after emergence on May 16, at Davis, California (38 N) with 
7 plants m-2; LAI, m2m-2/total biomass, g m-2 were 0.14/33, 1.18/180, and 4.82/2520 respec­
tively at 15, 30, 120 days. 

The shaded area shows the course of the most limiting factors. Inadequate root length leads 
to a water deficit (low EW) on day 15 but is not a factor thereafter in this well watered crop. 
On day 30, sink capacity is limited by the small size of the storage root and EA is near 
saturation for leaf growth; low night temperature (ET) is the main limiting factor. But at day 
120, the system is source-limited (low EA; the storage root is very large and has a high capacity 
for growth) and temperature (ET), surprisingly, is not directly limiting to leaf growth rate. 
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mechanisms of how that may interact with substrate supply and other 
factors are also unknown. 

Similar problems arise with the developmental concepts embodied in 
F(AGE). We can visualize F(AGE) as dependent upon the fractions of the 
organ that remain capable of further weight additions through division, 
expansion, or differentiation. With the sugar beet model, we approached 
that with descriptive cell division/ differentiation generators to gain realistic 
simulations of the size of successive leaves (see Figure 5 later) (68). With 
wheat, Morgan (78) employed a simulation of apex size and primordium 
generation for that purpose. While the meristematic fraction of a particular 
organ depends to a considerable extent on past growth, other developmental 
events depend more on age or inductive conditions. Most crop growth 
models include aging routines in which chronological time is converted to 
"physiological time," or experience, with a temperature-response function 
such as has been found for plastochron events (37, 51), or as a "heat sum" 
( 46). Suberization of roots, senescence, and "maturity" can be mimicked in 
that way while phasic development may require an additional dependence 
upon photoperiod ( 61, 117). Processes such as germination can be modeled 
with "dispersed delay" routines to generate a distribution of developmental 
states (28, 57, 95). But all of those approaches are only descriptive of 
developmental rate. 

Leaf initiation rate is a key developmental control for organismal integra­
tion because that sets the rate of production of new leaves and lateral 
potential ( 67). Modeling of lateral branch initiation and growth has not 
been well developed. Frijters has expressed branching ( 41) and inflorescence 
( 40) rule information in analytical equations, but the few crop models which 
deal with branching (78, 129; Ng unpublished with POTATO) have taken 
a simpler approach. A potential branching rule is set which is then limited 
at each iteration by assimilate status and physiological age (i.e. old axillary 
buds, long suppressed by lack of assimilate, lose their potential for growth). 
Similar aging/stress routines can be invoked for shedding of plant parts 
such as the flowers and bolls of cotton (32, 129). 

The number, dry weight, and physiological age of various organs thus 
simulated represent a basic morphological description of the plant. It is also 
important to know something about the size and disposition of those organs. 
With leaves, for example, disposition in a foliage canopy influences mutual 
shading, affecting both production rate and leaf senescence. Crop models 
generally have depended on descriptive translation techniques using mor­
phological response functions for converting a simulated increment of dry 
weight into an increment of size. With leaves, the key expression is area and 
can be translated from the weight of a leaf using an area/weight ratio 
expressed as a function of temperature and radiation environments, age, and 
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assimilate status by means of the same "effector" approach we showed for 
the calculation of growth rates. Fortunately, crop ecology provides consid­
erable information on how area/weight ratios vary with internal and exter­
nal conditions (but not on why). Information is much less satisfactory on 
the variations in physiological capability during development. 

Cell/Tissue Level 
The effort given to modeling tissue and lower levels of organization has been 
much less than we saw at the higher levels. Crop modelers, with their 
principal focus on community behavior, find that cellular submodels not 
only tax their competence but also lead to unmanageably large models. 
More seriously, we have a very poor understanding of how organ behavior 
is determined by cellular processes. As a result, tissue-level information in 
organismal models frequently consists of descriptive functions. 

Considering the great amount of information which exists on metabolic 
pathways, the kinetic properties of enzymes, and biomathematics of compo­
nent elements, the modeling of tissues does not appear difficult. Some 
progress has been made with integration of differential equations for un­
compartmentalized biochemical components of such systems (43, 71). But 
placing that into a physiological model of a tissue is another matter (2, 49, 
85). Morphological and developmental description is just as essential at the 
cellular level as at the organismallevel. We need to work toward an ability 
to simulate the changes in metabolic ability and compartmentation which 
occur during development, and an explanatory approach will require a 
simulation of the controls over cell differentiation (130). 

Critical in our current work with a simulator of nitrate metabolism (85) 
are the size of the cytosol and vacuolar compartments and the membrane 
transport capacity between them. No explanatory basis exists now for simu­
lating those entities over time, and they must be dealt with descriptively. 
Indeed, the word vacuole has become rare in indices of plant physiology 
texts. We also must use descriptive generators to translate experimental 
data on the kinetics of biochemical processes in vitro (generally per unit 
tissue fresh weight or per unit protein) into cellular-level physiological 
process. Despite those problems, the insights gained from the nitrate model 
are quite intriguing: while the biochemical model explains the dynamics of 
certain intermediates, organismal properties (supplies of nitrate and carbon, 
sinks for amino acids) rather than enzyme kinetics provide the principal 
means of regulation. Except where branched pathways occur, it seems that 
metabolic systems can be simplified to single operators, or a few sequentially 
linked operators, each performing a transfer function according to certain 
rules. 

Models dealing with the stoichiometry of biochemical processes have 
been more successful than kit1etic mqdels ... Theb{!st exatn.ple is the elegant 
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respiration model of Penning de Vries and coworkers (91 ). In that, a simple 
set of assumptions regarding synthesis via least-cost pathways, degree of 
respiratory coupling, and "tool" maintenance allows the model to calculate 
substrate use, 0 2 requirement, and C02 production for the respiration 
associated with the biosynthesis of specific end products. The model has 
been subjected to validation tests (89, 92) with reasonable success, and 
unknown elements such as tool maintenance (cost of enzyme and mRNA 
turnover) were subjected to sensitivity analyses (91 ). 

The Penning de Vries model has been used to calculate biological effi­
ciency in the formation of complex organs (7, 111). And it has been simpli­
fied for use in crop growth models (29, 55), where it adds a great deal of 
explanation to the simulations, and season-long consequences of biomass 
composition can be evaluated. Its success in those instances results from 
treatment of the new growth en masse, without attention to cellular detail 
except to specify the biochemical composition of existing and newly formed 
biomass. 

That approach holds that the respiration costs of biosyntheses and 
growth are independent of temperature and that temperature operates only 
through an influence on the rates of biosynthesis. The respiratory costs of 
cell maintenance must be approached more empirically. In Penning de 
Vries' (90) analysis, the explanatory basis of maintenance respiration lies 
principally in coupling to lipid and nonenzymic protein turnover and maint­
ence of ion concentrations. Those processes cannot be assessed in detail, but 
under normal conditions they can be estimated (90) to require 15 to 25 mg 
glucose g-1 (dry weight) day-1 for leaf tissue. That amount falls within the 
range of observed values. The maintenance respiration load is a critical 
factor to productivity-variations in its rate between 1 and 3% per day lead 
to large difference in predictions of organ growth (104) and seasonal pro­
ductivity (55). 

SPECIAL ISSUES IN PHYSIOLOGICAL MODELING 

We have noted how the concept of physiological age and the relations 
between structure and function introduce difficulties for modeling crop 
growth. In those cases, the modeling efforts provide a new viewpoint for 
experimental studies on uncommon topics in plant physiology. The follow­
ing sections comment on two other biological issues of similar promise and 
on the ways in which modelers have coped with them. 

Stochastic Versus Deterministic Simulation 
Real biological systems display a great deal of variation at all levels of 
organization. One part of that variation is the result of the plasticity that 
plants show with variations in environment; another arises from the geno-
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typic variability of plant populations. There are good arguments for sto­
chastic treatment of environment and biological response, but the models 
we have described are mostly deterministic in that all plants are of a single 
genotype and are exposed to a single starting time and a single environment. 
The deterministic approach provides a prediction of mean behavior, follow­
ing the law oflarge numbers. On a small scale (one cell, one plant), however, 
there can be large departures from that mean. Methods for introducing 
probabilistic elements into initial conditions and rate variables are readily 
available in computer languages. Their use can quickly become a meaning­
less exercise, however. A community model of stochastic plants requires 
three-dimensional treatment of space with lateral duplication of the organis­
mal model-a prohibitively large problem. More fundamentally, the 
"noise" generated by realistic stochastic treatment of 100 variables over 
1000 iterations can exceed by many orders of magnitude the variation found 
in real systems. The explanation for that difference is that real systems are 
strongly constrained by feedback, functional balances, and other homeo­
static mechanisms. Stochastic variations in individual processes are strongly 
damped or eliminated in the integrated system. Thus, explanatory models 
must also include feedback mechanisms if they are to achieve realism. The 
only alternative is to provide arbitrary limits to the course of the simulation, 
and that degenerates to description and leads to a loss of predictive value. 
One way of studying variation is to introduce distributive (57) or stochastic 
generators into only selected processes. A large number of simulations 
would then generate a "genetic" or "environmental" population sample. 
We have done little of that because of high cost and questions in interpreta­
tion. 

Those questions bear closely on the problems associated with the impor­
tant issue of simulations of mixed vegetation (8, 12, 56, 88). That problem 
has yet to be studied seriously with detailed plant growth models, but it is 
easier in some respects since speCific spatial arrays can be established and 
a limited number of genetically different organismal models can be linked 
laterally. Complementary models of that sort must give attention to the 
vertical distribution of leaves and roots so that central issues of interference 
among species for radiation, nutrients, and water are simulated properly. 

Adaptation 
Some crop growth models automatically predict the larger aspects of cli­
mate-induced physiological and morphological change. Since the simula­
tions are dynamic, the current state of the system (number, size, and age 
of organs) represents a condition with adaptation to the environmental 
history used in the simulation. Also, as noted above, morphological transla­
tions can be made subject to the current environment (e.g. sun vs shade for 
leaves) for each increment of growth. 
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The deterministic aspects of genetic adaptation are handled easily by a 
change in model structure to a new "genotype." But physiological adapta­
tion involving alterations in physiological capability per unit tissue (in 
contrast to the weight of tissue capable of a function) must be handled 
carefully. Some physiological adjustments occur rapidly. Those can be 
accommodated by broadening the physiological functions so that optimum 
performance occurs over a broader range of conditions than might be found 
with short-term observations [e.g. the photosynthesis-temperature relation 
in BACROS (29)]. Phenomena such as hardening, with their attendant slow 
changes in anatomy and physiological capability of both existing and new 
tissues, are more difficult. If a reasonable data base can be found (which 
unfortunately is generally not the case), the process can be described in a 
manner analogous to that of physiological age, using an integrator of stress 
experience. That indicator can then be used in modifying physiological 
processes and morphological translations to produce a hardened state. 
Crop modelers have yet to give serious attention to physiological adapta­
tion. Most are still focused on developing realistic simulations of "nor­
mal" plants, well watered and well supplied with nutrients, but eventu­
ally we must also come to an ability to simulate acclimatory processes 
(112). 

APPLICATIONS 

Crop physiologists have long sought some means for applying physiological 
information to quantitative interpretations of plant growth in agricultural 
systems. State-variable models with hierarchic structure deal directly with 
the translation to the field of mechanisms elucidated in the laboratory. 
Progress toward interpretation of field behavior has been slow, however, 
largely because of the nature and infancy of the method. The rather special 
kinds of physiological and morphological information required as input 
come largely from specialized-organ and organismal-level research in which 
the information base is weak. Thus, the modeling efforts couple poorly with 
the current mainstreams of cellular-level research. In our own programs, 
we find that 50 to 80% of our effort goes into experiments to fill such 
information gaps. Other problems arise from the interdisciplinary and sub­
jective nature of the work. Good biology is essential, but biologists generally 
are not very skilled in systems analysis and the best systems analysts may 
be poor biologists. 

Fall-out benefits, however, such as Penning de Vries' respiration studies 
(90, 91), the erect-leaf hypothesis (31, 33) and the Buringh-van Heemst (13) 
analysis of world food production have been significant, and the crop mod­
els themselves have been highly useful in certain applications. Some of the 
major areas merit brief review. 
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Productivity and Bioclimatology 

Many crop models have had yield prediction as a principal objective. In 
some cases that objective has been attained consistently and well, in others, 
accuracy is poor. The estimates of gross photosynthesis provided by ecosys­
tem-level models, when corrected for respiration, provide good predictions 
of primary productivity (1, 24). Economic yields can be derived from that 
using generalized partitioning factors, and our best current estimates of 
global food production under various agricultural strategies have been ob­
tained in that way (13). 

The addition of an organismal level adds additional environmental de­
pendence and accuracy to the prediction. But most dynamic models with 
organismallevel submodels are aimed more at optimal conditions than at 
usual commercial conditions. As a result, the multivariate regression mod­
els reviewed earlier are still the principal means for yield prediction. With 
proper tuning, such models accommodate better to average field conditions 
since the historic data include the effects of variations in plant stand, disease 
and pests, and nutrient and water supply which may be the principal 
determinants of yield. Such regression models perform best in predicting the 
mean performance of a population of fields, whereas the dynamic models 
may work best with the individual field. Among dynamic models, the 
Gutierrez cotton model, when parameterized for normal production prac­
tice, performs well in prediction ( 46). BACROS and SUBGOL, which give 
emphasis to the achievement of realism through hierarchic structure rather 
than to accuracy, have done surprisingly well in prediction for optimum 
conditions. That success probably derives from accuracy in simulating 
photosynthetic productivity, which under optimal conditions varies chiefly 
with radiation (1). 

The orientation of existing crop growth models toward optimal condi­
tions limits their use in crop management research. Exceptions occur with 
varietal-choice and timing aspects of management. With forage crops, for 
example, management decisions center on timing and intensity of clipping 
or grazing. The SIMED alfalfa simulator (52) handles the recovery from 
such defoliation quite well. The consequences of various management strat­
egies can be given in graphical displays useful for extension education and 
research. 

Dynamic models, either complex or simplified, will be particularly useful 
in climatological assessments. Preliminary results including the prediction 
that thermoperiodism can result from the integration of growth processes 
under diurnal regimes are promising (66). Such models can be used in 
regional climate analyses (66, 113, 121) and as a basis for upgrading the 
multivariate methods. 
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Integrative Physiology and Ideotype Evaluation 

The integrative physiological aspects of crop models have been directly 
relevant to some of the major issues in crop physiology. The greatest advan­
tage comes from quantitative integration over time of simple physiological 
and morphological traits in source-sink relations. Such models constitute 
organized bodies of knowledge about whole-plant physiology. The simula­
tions provide a way to describe and explain the consequences of increasing 
or decreasing photosynthate supply and the number of meristematic centers 
or their capability for growth. Similarly, one can explore the effects of 
specific weather sequences. 

In the thermoperiodism case (66), large diurnal fluctuations in air tem­
perature placed the growing leaves at temperatures unfavorable for growth 
for many hours each day. Soil temperature fluctuated less and the roots 
remained at temperatures favorable for growth throughout the day. Larger 
sugar beet storage roots were obtained in such simulations. 

Since the opinions in the models can be viewed as "genetic traits," the 
models can serve in a similar way for formulating and evaluating genetic 
combinations (ideo types) more suitable in crop production than existing 
strains (30, 65). At present, plant breeders have little basis other than trial 
and error for combining quantitative physiological and morphological traits 
into new phenotypes. An integrative tool is needed because yield improve­
ments through plant breeding almost invariably have come through 
changes in partitioning rather than through improvements in photosyn­
thetic capability (23, 36). In one example, Duncan et al (34) have shown 
with a simulation model of peanut that dramatic yield increases in cultivars 
of that species came solely from changes in flowering time and other aspects 
of partitioning. In other cases, the simulations allow clear identification of 
features such as crop duration and slow development of leaf area as princi­
pallimits to seasonal yield. It seems likely that future improvements in most 
crops will also come through changes in partitioning rather than in photo­
synthesis. That certainly is the case with cotton and sugar beet. But many 
of the simple partitioning traits such as lodging resistance in small grains 
have been well explored, and progress will rest more on combinations of 
quantitative traits. The possible combinations of traits can be very large, but 
by simulation, certain optimal hypotheses can be identified as breeding 
objectives. 

It is surprising how many model predictions for ideotype concepts are 
counter-intuitive--a low maintenance respiration requirement may trans­
late into a greater respiration loss over a season [because more biomass is 
accumulated early (55)]--or outside of conventional wisdom. One hypothe­
sis about sugar beet (from shading experiments) was that storage beet 
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growth was accomplished from surplus assimilate not used by leaves. That 
opinion yielded a decent sugar beet simulator, and by changing leaf growth 
potentials (genetic switch), sugar beet, chard, and mangel phenotypes were 
generated (67, 68). The simulated result was similar (Figure 5), however, 
when the control was placed on root growth, i.e. chard leaves became large 
because their roots had a low capacity for growth. That conflict led to 
experiments with reciprocal grafts between chard and beet that confirmed 
the concomitant operation of both hypotheses ( 68). As another example, 
the models generally predict that source, not sinks, is limiting to production 
rate in closed stands. That shows clearly in Figure 4 where growth rate at 
120 days is surprisingly independent of temperature. Under those condi­
tions, a high capacity for growth as characterized in hybrid vigor is quickly 
negated by areal restraints (radiation, water and C02 flux). High densities 
of small plants are shown to do as well as low densities of large, heterotic 
plants. 
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Figure 5 Simulations with SUBGOL of the weights of successively numbered genetically 
identical sugar-beet leaves. The storage-root submodel was modified to mimic the small roots 
of chard and the large roots of mangel-wurzeln. Leaves grown in competition with normal 
sugar beet storage roots are shown in the center, in competition with chard roots to the left, 
and with mangel-wurzeln roots to the right. Emergence on May 16 with 7 plants m-2 at Davis, 
California (38 N). 

The principal features of the juvenile-adult leaf sequence in these varieties is duplicated: 
small, slow growing leaves early followed by large leaves and then smaller leaves, reflecting 
the effectors displayed in Figure 4. However, the later leaves are smaller than real leaves, 
indicating some defect in the model in simulating the plasticity to intra- and interplant 
competition [adapted from (68)]. 



Plant-Herbivore Relations 
There is an increasing use of crop growth models across trophic levels in 
which the crop model serves as a dynamic description of the substrate and 
environment for grazing animals. The emphasis in pest management studies 
is reflected in Ruesink's review (103). Most entomological models empha­
size the description of pest population dynamics, with stochastic submodels 
to simulate the infection and spread of the insects. The amount and specific 
sites for insect feeding or disease damage become important. Combined 
models of that sort have proved to be reliable predictors of pest or disease 
development and expected injury to the crop, and they are useful in the 
study of control strategies. Combined models have been developed for many 
situations with those for cotton (46, 47, 58, 59, 127), alfalfa (45), and apple 
(95) serving as examples. In some cases, those have led to simplified eco­
nometric models for decisions about spraying or praying. There have been 
similar efforts toward the simulation of plant diseases (125). The combined 
models also offer a means, little used as yet, for examining biological effi­
ciency (energy and nutrient transfers) in host-parasite couplings. 

Similar activity is found with researchers concerned in analyses of the 
grazing of vegetation by large animals. Much of that work centers on range 
and pasture management (18, 88, 106) and ruminant nutrition (98), but the 
issue is met also in studies of natural grazing of tundra (12) and grassland 
(56, 88). Here again, somewhat simplified vegetation models characterize 
the supply and nutritional status of feed and the physical environment of 
the animals. Such models frequently must deal with mixed vegetation, such 
as the grass-legume combination, and with variations in animal preferences 
for the various forages. 

AN ASSESSMENT: SENSE OR NONSENSE 

Several things are now clear about the future of systems analysis in plant 
physiology. The unbridled enthusiasm that many of us displayed during our 
early euphoria with the method must now be tempered. A great deal of hard 
work remains, and "grand" models are not about to substitute for real 
plants and real experiments. Still, in many ways the modeling is ahead of 
the information base, and it is likely to remain there as computer capacities 
increase and costs decline. That is particularly true at the whole-plant level 
which has not been emphasized in plant physiology research. We can ex­
pect the modeling efforts to continue as sources of innovative questions 
(and sometimes of answers) about those gaps in our knowledge of plant 
life. 



362 LOOMIS, RABBINGE & NG 

Passioura (86) raised a storm among modelers with a pungent and 
thoughtful essay on "Sense and Nonsense in Crop Simulation." One of his 
suggestions was that a little clear thinking about systems problems would 
contribute more to the advance of our science than complex models. Passi­
oura was not alone among the cautionaries. Crop modeling has shared the 
criticism directed at other areas of modern ecology as lacking in depth and 
unifying concepts and subject to excessive jargon. But just as conceptual 
models such as "carriers" and "genes" and simple analytical models such 
as Fick's Law and the Michaelis-Menten expression are now integral fea­
tures of plant physiology, so are hierarchic simulation models. Their raison 
d'etre is that the problem is there. No other means exists as powerful for 
the integrative physiology of plants as adaptive control systems. Quantita­
tive assessments of the importance of various physiological and morphologi­
cal traits, extrapolations from laboratory to field, conduct of otherwise 
impossible exp,eriments, and the exploration of integrative controls are all 
within their domain ( 4, 80). It was once hoped that phytotrons would fill 
that role. But phytotrons have not been used effectively for that, and it now 
seems that modelers will be the principal consumers of phytotron results 
(37, 50) and that models will be the integrative tool. 

We feel also that there is considerable promise for the use of systems 
analysis for integration at lower levels. The early efforts are promising but 
nothing in plant physiology yet approaches the detail and sophistication of 
the models of cellular processes found in animal research. One limitation 
is the evident lack of a physiological systems view in plant biochemistry for 
processes other than photosynthesis; modern plant biochemistry texts re­
flect this in their focus on natural product classes rather than plants. Cell 
physiologists are well equipped to fill the serious information gap between 
cell and whole-plant physiology. Progress with tissue-level models would 
provide considerable help for crop modelers, who have generally proceeded 
from the top down. 

The fact that hierarchic models have been limited more by our knowledge 
and conceptualizations of the system than by computing facilities, software, 
and system theory is a natural reflection of the need for at least a few more 
years of effort in plant physiology research. But the more we learn through 
reductionist research, the greater the need and opportunity for integrative 
research. Our conviction is that systems methods will become more and 
more central to plant physiology. 
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The plant sciences have lagged well behind except in the physical aspects 
of the plant environment and community physiology. We find expanding 
interest in mathematical formulations of specific biological processes, with 
major attention given to such subjects as leaf growth and phyllotaxy (35, 
69, 124, 128), carrier kinetics (20), photosynthesis (15, 17, 48, 119), and 
catenary diffusion sequences (84). 'rhe biomathematical analysis of physio­
logical problems has been given extended treatments by Nobel (84), Riggs 
(99), and Thomley (117). In contrast, the integrative systems approach has 
been limited largely to the higher organization levels. That seems to reflect 
the quantitative concerns of systems ecologists and others, particularly of 
agronomists, for the behavior of vegetation. The grassland (56, 88) and 
tundra (12) biome studies, as examples, are impressive for their scope but 
are short in physiological detail. Workers in those areas have drawn more 
on the concepts of systems analysis and environmental physics as the start­
ing point for their work. The systems level is also the arena for our own 
work on physiological models, emphasized in this essay. Our models focus 
on the organismal and systems levels, but the approach outlined is also 
applicable to integration at lower levels. 

We distinguish two broad categories of crop models: same-level descrip­
tive models and multilevel explanatory models. A wide range of descriptive 
models exist. Multivariate regression models, for example, are used widely 
for the important task of yield prediction in variable climates (10, 81, 82, 
93, 96, 116). Such models may be static, i.e. involving no concept of time. 
Variables in that case are integrated seasonal totals of yield, rainfall, and 
temperature. Sophistication is improved by introducing some concept of 
time based, for example, on the calculation of developmental rate as a 
function of temperature during the season (101, 108) and by sharpening the 
environmental parameters, e.g. use of a soil moisture balance rather than 
rainfall 818 an input variable (3, 10). 

The explanatory approach emphasized here is considerably more sophis­
ticated. It employs dynamic models of the system hierarchy in an effort to 
provide prediction and explanation of integrated behavior from more de­
tailed knowledge of the underlying physiological and morphological pro­
cesses (26, 28). All such knowledge becomes descriptive at the ultimate level 
of reduction. While crop models do not go that far, they do become descrip­
tive where knowledge is lacking or simplification is required .. However, with 
a hierarchic structure, description at lower levels becomes explanatory of 
higher levels. A dynamic structure also aids in explanation, and the capabil­
ity for continuous printout of many variables contrasts to experimental 
work generally providing observations only for discrete times. 

In dynamic models, a system is described by a set of state variables (such 
as the weights of various organs) that are updated at each iteration of the 
model by rate variables (such as the flow of carbon in photosynthesis and 
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Although explanatory hierarchic modeling is still in its infancy and has 
not been subject to extensive development by systems analysts (70), the 
method holds great potential for plant physiology. Starting in the mid-1960s 
(11, 22, 114), it has become an active area of research by crop physiologists. 
For example, Milthorpe & Moorby's Crop Physiology (73) derives from 
their efforts in dynamic modeling, and the Trebon (107) and Long Ashton 
(62) conference volumes show a heavy modeling content. Much of the 
current activity is reported at workshops and in limited distribution publi­
cations. Annals of Botany, Agricultural Meteorology, Journal of Theoretical 
Biology, Crop Science, and the Dutch Simulation Monographs are among 
the major publications for botanical models. Rather than attempting an 
exhaustive review, the following essay draws largely from our own work. 
Our plan is: first,. to present a limited background on the state-variable 
approach to systems analysis; second, to outline some of the special prob­
lems and attributes found in crop models at community, organismal, and 
cellular levels; and then to close with a survey of applications. 

THE MODELING PROCESS 

Model building should begin with a clear formulation of objectives concern­
ing the use of the completed model. Biological systems are so complex that 
their models always represent a simplification or abstraction of the real 
system. That contrasts with some cases in engineering where the realized 
machine may be only an approximation of the perfection visualized in the 
model or plan. The objectives provide a basis for decisions about necessary 
simplifications. A second task, involving identification of the variables and 
processes that define the system, is aided by relational diagrams for the main 
variables (such as Figure 1). That task is coupled with the formulation of 
mathematical expressions for rate variables (i.e. differential equations). The 
choice and structure of those equations constitute a set of implicit assump­
tions about the system which should be carefully defined. The same is true 
in the choice of parameters for the equations. Taken together, the model 
with its parameterized equations represents a collective hypothesis about 
the real system. That leads directly to the construction of a computer 
program to execute the model and then to the critical step of validation 
(122). 

Validation is distinguished from verification, which means testing to see 
that the computer program in fact operates on input data in the intended 
way. In addition to an a priori analysis of the model's structure (81a), 
validation generally involves comparison of model predictions with results 
from independent experiments relating to both processes (e.g. photosynthe­
sis rate) and system states (e.g. biomass levels) (see. Figure 2, p. 347). Some 
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weekly advances. But an interval of 1 to 2 hours must be used if sensitivity 
to diurnal events is required, while stomatal closure and some cellular 
processes require intervals of minutes or even seconds for accurate simula­
tion. 

Those facts cause coupling difficulties of the ''stiff-system,, sort when very 
fast subsystems are used to explain the behavior of the slower whole. If 
computer time is freely available, that problem is overcome by operating 
with an iteration interval appropriate to the fastest subsystem. Costs can be 
reduced sharply with special integration routines which allow the use of 
longer time intervals ( 43a), but those have yet to be used widely by crop 
modelers. Crop modelers sometimes use empirical submodels with slower 
time constants on the basis that less error results from that than from other 
features of their models. Alternatively, one can avoid the problem by limit­
ing the hierarchic structure to two or three levels and thus restricting the 
range of time constants within the memory and computational capacities 
of their computers (and budgets). Either approach tends to compromise our 
objective of developing explanatory detail. At any level of detail, coupling 
problems are reduced by the introduction of negative feedback control since 
slight overshoot in one part of the system in one iteration tends to be 
corrected by a slight undershoot in the next. 

Modeling can be facilitated with special simulation languages designed 
for use with state-variable models (9, 14, 39, 94). Such languages include 
integration routines, Gaussian generators, timing and array devices, auto­
matic input/ output formating, function generators for interpolation of 
tabular data, and a selection of more specialized intrinsic functions that can 
be accessed easily. Such languages are more expensive of computer time but 
save effort in programming. More important, the simplified programs can 
serve as a means for communication between modeler and experimenter. 
Thus far, plant modelers generally have not selected a universal simulation 
language. That plus the fact that few crop models are directed to the same 
objective means that very few standard program modules are shared by 
different modelers. 

HIERARCHIC LEVELS IN CROP GROWTH MODELS 

The principal focus of the output of crop growth models is community 
behavior. Such models simulate the production of new photosynthates, the 
partitioning of that material to growth, respiration and storage, and the 
related morphogenesis. The greatest attention is given to the state variables 
that define the environment and the age, weight, and morphology of the 
main elements of the biomass. That may be done with perhaps 50 to 100 
state variables (21, 22, 87, 118). Computer models with 100 state variables 
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tivity) are used also for nutrient and water fluxes into roots and for water 
and carbon dioxide exchange by the leaves. Several interesting issues de­
velop here. The conductivity term can be defined explicitly for a small 
system-in the case of roots, a single cell, or a small root segment-but it 
takes on a more general, empirical context when applied to a whole root 
system. But subdivision into smaller parts or layers can introduce a stiff­
system problem. Radiation, for example, is absorbed at the surface soil layer 
and within leaves by very thin strata with a low capacity for heat storage. 
Those strata change temperature very rapidly in contrast to mixed air and 
the rest of the soil, which as large systems have much greater heat capacities 
and change temperature more slowly with time. Goudriaan ( 44) modeled 
that with a "bypassing" method in which the fast system is iterated to 
steady state and then abandoned (assumed to remain in steady state) until 
a new iteration is made of the higher level. 

Organismal/organ-level elements, such as the size and characteristics of 
the foliage and root systems, enter directly into some of the physical pro­
cesses. Most crop models have dealt only with random or homeogeneous 
distributions of roots and leaves within each layer, although other distribu­
tions may be important in nature. Those other arrangements, e.g. with 
plants in rows, can become quite complex (16, 42, 44). Microclimate models 
frequently include biological processes such as stomatal behavior, which 
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Figure 2 Validation of the BACROS, flux-dependent, microclimate simulator for air temper­
ature and humidity through comparisons with profiles measured within a com crop at Wage­
ningen, the Netherlands. The profiles indicate the difference in temperature and humidity 
within the canopy as compared to that observed above the canopy at 3 m. Simulations with 
and without stomatal regulation represent a sensitivity analysis for the necessity of a submodel 
on stomatal control [adapted from (29)]. 
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light-response function for leaf photosynthesis (37). The clear and overcast 
tables are interpolated at each hour according to solar angle and the ratio 
of potential and current daily total radiation (thus adjusting for cloudiness). 
Those hourly rates are then reduced by temperature and water-deficit func­
tions, but C02 variations are ignored. Both approaches provide fast and 
reasonably accurate simulations of the photosynthate supply available for 
plant growth. 

Organ/Organismal Level 
The simplified vegetation models provide a framework within which the 
whole-plant level can be developed. An important aspect of that coupling 
is that a simulation of competitive effects due to varying plant density is 
achieved. At the plant level we can focus on detailed morphological descrip­
tions of roots, stems, and leaves and their growth and ontogeny. Such 
models serve as means to explore partitioning and developmental processes 
and as a basis for integrative explanations of vegetaiion-level processes. 
Gutierrez et al (46) and Wang et al (127) incorrectly characterized crop 
growth models of that type as "single-plant" models (and also their limited­
ecosystem model as a "population" model). Rather clearly, vegetation pro­
cesses are simulated in such models at the ecosystem. level, and those 
processes provide the photosynthate supply, water and nutrient status, and 
external environment which serve as forcing and auxiliary variables for the 
plant level. The multilevel model thus becomes reductionist as well as 
integrative. 

Options exist to divide the plant into functional morphological classes 
(leaves, stems, and roots) and model each class en masse, or to model each 
individual leaf, internode, tuber, or fibrous root. Even when successive 
organs are considered separately, that is usually done for a "standard plant" 
so that the organs of all plants are identical. The en masse method may be 
used when ecosystem behavior is the principal interest, but the individual 
organ approach is usually required when integrative physiology is the aim. 
Some models take an intermediate approach by simulating the bulk behav­
ior of all leaves or roots within specific "age" classes. That facilitates distinc­
tion of physiological capabilities (e.g. growth or senesence) according to 
developmental state and is a common approach for root systems. The age 
classes can be retained in programming devices known as "pushdown ta­
bles," advanced by an aging or developmental-rate submodel. 

Modeling the initiation, growth, and development of individual organs in 
an explanatory way is not always easy or in some cases even possible. Little 
information exists about the mechanisms controlling the morphogenesis of 
individual organs. In many cases, the modeling becomes descriptive-for 
example, by using a temperature-dependent plastochron to control the 
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Figure 3 A relational diagram for a hypothesis about the functional balance of root and leaf 
growth based on carbon and water. The transfer of water from the soil through the plant to 
the air determines the current water content of the plant (WCP) and its relative water content 
(RWC). RWC in tum regulates root and leaf growth rates, according to the response functions 
(EW) shown to the right, and stomates. Also on the right are the response functions for the 
effects of assimilate supply (EA) on growth rates. Stomatal status (STO) is influenced by 
current radiation (RAD) and RWC and in turn regulates transpiration (TR) and photosynthe­
sis (PS). The feedback from ROOT weight to water uptake rate (UR) involves root length (RL) 
and its suberization (SUBR) with age. 

Structure similar to this is used in BACROS, SUBGOL, and POTATO. 

growth is more affected than root growth by water or nutrient status (root 
supply functions) and root growth is more affected than shoot growth by 
assimilate status (a shoot supply function). Such functional balances repre­
sent hierarchic (across level) feedback loops, and their inclusion provides 
realistic organismal integration and greatly increases the power of the 
model. In addition, the door: is then open to validation against data from 
root pruning and defoliation experiments (27, 38). 

The state variables of interest in simulating the growth of an organ are 
its weight at present (Wt) and its rate of growth (GR). A common formula­
tion is: 

GR = MRGR·F(AGE)·Wt·MIN(EA, EW, ET) 

where MRGR is the maximum unrestrained relative growth rate (g g-1t-1), 

and F(AGE) is an "age" -dependent fraction of organ weight still capable 
of growth. MIN(EA, EW, ET) indicates the use of Liebig's law of the 
minimum to choose among the response functions for the most limiting of 
the effects of assimilate supply (EA), water status (EW), or temperature 
(ET) in that iteration. The new weight of the organ at the future time can 
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mechanisms of how that may interact with substrate supply and other 
factors are also unknown. 

Similar problems arise with the developmental concepts embodied in 
F(AGE). We can visualize F(AGE) as dependent upon the fractions of the 
organ that remain capable of further weight additions through division, 
expansion, or differentiation. With the sugar beet model, we approached 
that with descriptive cell division/differentiation generators to gain realistic 
simulations of the size of successive leaves (see Figure 5 later) (68). With 
wheat, Morgan (78) employed a simulation of apex size and primordium 
generation for that purpose. While the meristematic fraction of a particular 
organ depends to a considerable extent on past growth, other developmental 
events depend more on age or inductive conditions. Most crop growth 
models include aging routines in which chronological time is converted to 
"physiological time," or experience, with a temperature-response function 
such as has been found for plastochron events (37, 51), or as a "heat sum" 
( 46). Suberization of roots, senescence, and "maturity" can be mimicked in 
that way while phasic development may require an additional dependence 
upon photoperiod ( 61, 117). Processes such as germination can be modeled 
with "dispersed delay" routines to generate a distribution of developmental 
states (28, 57, 95). But all of those approaches are only descriptive of 
developmental rate. 

Leaf initiation rate is a key developmental control for organismal integra-
tion because that sets the rate of production of new leaves and lateral 
potential ( 67). Modeling of lateral branch initiation and growth has not 
been well developed. Frijters has expressed branching ( 41) and inflorescence 
( 40) rule information in analytical equations, but the few crop models which 
deal with branching (78, 129; Ng unpublished with POTATO) have taken 
a simpler approach. A potential branching rule is set which is then limited 
at each iteration by assimilate status and physiological age (i.e. old axillary 
buds, long suppressed by lack of assimilate, lose their potential for growth). 
Similar aging/stress routines can be invoked for shedding of plant parts 
such as the flowers and bolls of cotton (32, 129). 

The number, dry weight, and physiological age of various organs thus 
simulated represent a basic morphological description of the plant. It is also 
important to know something about the size and disposition of those organs. 
With leaves, for example, disposition in a foliage canopy influences mutual 
shading, affecting both production rate and leaf senescence. Crop models 
generally have depended on descriptive translation techniques using mor­
phological response functions for converting a simulated increment of dry 
weight into an increment of size. With leaves, the key expression is area and 
can be translated from the weight of a leaf using an area/weight ratio 
expressed as a function of temperature and radiation environments, age, and 
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respiration model of Penning de Vries and coworkers (91). In that, a simple 
set of assumptions regarding synthesis via least-cost pathways, degree of 
respiratory coupling, and "tool" maintenance allows the model to calculate 
substrate use, 0 2 requirement, and C02 production for the respiration 
associated with the biosynthesis of specific end products. The model has 
been subjected to validation tests (89, 92) with reasonable success, and 
unknown elements such as tool maintenance (cost of enzyme and mRNA 
turnover) were subjected to sensitivity analyses (91 ). 

The Penning de Vries model has been used to calculate biological effi­
ciency in the formation of complex organs (7, 111 ). And it has been simpli­
fied for use in crop growth models (29, 55), where it adds a great deal of 
explanation to the simulations, and season-long consequences of biomass 
composition can be evaluated. Its success in those instances results from 
treatment of the new growth en masse, without attention to cellular detail 
except to specify the biochemical composition of existing and newly formed 
biomass. 

That approach holds that the respiration costs of biosyntheses and 
growth are independent of temperature and that temperature operates only 
through an influence on the rates of biosynthesis. The respiratory costs of 
cell maintenance must be approached more empirically. In Penning de 
Vries' (90) analysis, the explanatory basis of maintenance respiration lies 
principally in coupling to lipid and nonenzymic protein turnover and maint­
ence of ion concentrations. Those processes cannot be assessed in detail, but 
under normal conditions they can be estimated (90) to require 15 to 25 mg 
glucose g-1 (dry weight) day-1 for leaf tissue. That amount falls within the 
range of observed values. The maintenance respiration load is a critical 
factor to productivity-variations in its rate between 1 and 3% per day lead 
to large difference in predictions of organ growth (104) and seasonal pro­
ductivity. (55). 

SPECIAL ISSUES IN PHYSIOLOGICAL MODELING 

We have noted how the concept of physiological age and the relations 
between structure and function introduce difficulties for modeling crop 
growth. In those cases, the modeling efforts provide a new viewpoint for 
experimental studies on uncommon topics in plant physiology. The follow­
ing sections comment on two other biological issues of similar promise and 
on the ways in which modelers have coped with them. 

Stochastic Versus Deterministic Simulation 
Real biological systems display a great deal of variation at all levels of 
organization. One part of that variation is the result of the plasticity that 
plants show with variations in environment; another arises from the geno-
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The deterministic aspects of genetic adaptation are handled easily by a 
change in model structure to a new "genotype." But physiological adapta­
tion involving alterations in physiological capability per unit tissue (in 
contrast to the weight of tissue capable of a function) must be handled 
carefully. Some physiological adjustments occur rapidly. Those can be 
accommodated by broadening the physiological functions so that optimum 
performance occurs over a broader range of conditions than might be found 
with short-term observations [e.g. the photosynthesis-temperature relation 
in BACROS (29)]. Phenomena such as hardening, with their attendant slow 
changes in anatomy and physiological capability of both existing and new 
tissues, are more difficult. If a reasonable data base can be found (which 
unfortunately is generally not the case), the process can be described in a 
manner analogous to that of physiological age, using an integrator of stress 
experience. That indicator can then be used in modifying physiological 
processes and morphological translations to produce a hardened state. 
Crop modelers have yet to give serious attention to physiological adapta­
tion. Most are still focused on developing realistic simulations of "nor­
mal" plants, well watered and well supplied with nutrients, but eventu­
ally we must also come to an ability to simulate acclimatory processes 
(112). 

APPLICATIONS 

Crop physiologists have long sought some means for applying physiological 
information to quantitative interpretations of plant growth in agricultural 
systems. State-variable models with hierarchic structure deal directly with 
the translation to the field of mechanisms elucidated in the laboratory. 
Progress toward interpretation of field behavior has been slow, however, 
largely because of the nature and infancy of the method. The rather special 
kinds of physiological and morphological information required as input 
come largely from specialized-organ and organismal-level research in which 
the information base is weak. Thus, the modeling efforts couple poorly with 
the current mainstreams of cellular-level research. In our own programs, 
we find that 50 to 80% of our effort goes into experiments to fill such 
information gaps. Other problems arise from the interdisciplinary and sub­
jective nature of the work. Good biology is essential, but biologists generally 
are not very skilled in systems analysis and the best systems analysts may 
be poor biologists. 

Fall-out benefits, however, such as Penning de Vries' respiration studies 
(90, 91), the erect-leafhypothesis (31, 33) and the Buringh-van Heemst (13) 
analysis of world food production have been significant, and the crop mod­
els themselves have been highly useful in certain applications. Some of the 
major areas merit brief review. 
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Integrative Physiology and Ideotype Evaluation 

The integrative physiological aspects of crop models have been directly 
relevant to some of the major issues in crop physiology. The greatest advan­
tage comes from quantitative integration over time of simple physiological 
and morphological traits in source-sink relations. Such models constitute 
organized bodies of knowledge about whole-plant physiology. The simula­
tions provide a way to describe and explain the consequences of increasing 
or decreasing photosynthate supply and the number of meristematic centers 
or their capability for growth. Similarly, one can explore the effects of 
specific weather sequences. 

In the thermoperiodism case (66), large diurnal fluctuations in air tem­
perature placed the growing leaves at temperatures unfavorable for growth 
for many hours each day. Soil temperature fluctuated less and the roots 
remained at temperatures favorable for growth throughout the day. Larger 
sugar beet storage roots were obtained in such simulations. 

Since the opinions in the models can be viewed as "genetic traits," the 
models can serve in a similar way for formulating and evaluating genetic 
combinations (ideo types) more suitable in crop production than existing 
strains (30, 65). At present, plant breeders have little basis other than trial 
and error for combining quantitative physiological and morphological traits 
into new phenotypes. An integrative tool is needed because yield improve­
ments through plant breeding almost invariably have come through 
changes in partitioning rather than through improvements in photosyn­
thetic capability (23, 36). In one example, Duncan et al (34) have shown 
with a simulation model of peanut that dramatic yield increases in cultivars 
of that species came solely from changes in flowering time and other aspects 
of partitioning. In other cases, the simulations allow clear identification of 
features such as crop duration and slow development of leaf area as princi­
pallimits to seasonal yield. It seems likely that future improvements in most 
crops will also come through changes in partitioning rather than in photo­
synthesis. That certainly is the case with cotton and sugar beet. But many 
of the simple partitioning traits such as lodging resistance in small grains 
have been well explored, and progress will rest more on combinations of 
quantitative traits. The possible combinations of traits can be very large, but 
by simulation, certain optimal hypotheses can be identified as breeding 
objectives. 

It is surprising how many model predictions for ideotype concepts are 
counter-intuitive-a low maintenance respiration requirement may trans­
late into a greater respiration loss over a season [because more biomass is 
accumulated early (55)]-or outside of conventional wisdom. One hypothe­
sis about sugar beet (from shading experiments) was that storage beet 
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Plant-Herbivore Relations 
There is an increasing use of crop growth models across trophic levels in 
which the crop model serves as a dynamic description of the substrate and 
environment for grazing animals. The emphasis in pest management studies 
is reflected in Ruesink's review (103). Most entomological models empha­
size the description of pest population dynamics, with stochastic submodels 
to simulate the infection and spread of the insects. The amount and specific 
sites for insect feeding or disease damage become important. Combined 
models of that sort have proved to be reliable predictors of pest or disease 
development and expected injury to the crop, and they are useful in the 
study of control strategies. Combined models have been developed for many 
situations with those for cotton (46, 47, 58, 59, 127), alfalfa (45), and apple 
(95) serving as examples. In some cases, those have led to simplified eco­
nometric models for decisions about spraying or praying. There have been 
similar efforts toward the simulation of plant diseases (125). The combined 
models also offer a means, little used as yet, for ,examining biological effi­
ciency (energy and nutrient transfers) in host-parasite couplings. 

Similar activity is found with researchers concerned in analyses of the 
grazing of vegetation by large animals. Much of that work centers on range 
and pasture management (18, 88, 106) and ruminant nutrition (98), but the 
issue is met also in studies of natural grazing of tundra (12) and grassland 
(56, 88). Here again, somewhat simplified vegetation models characterize 
the supply and nutritional status of feed and the physical environment of 
the animals. Such models frequently must deal with mixed vegetation, such 
as the grass-legume combination, and with variations in animal preferences 
for the various forages. 

AN ASSESSMENT: SENSE OR NONSENSE 

Several things are now clear about the future of systems analysis in plant 
physiology. The unbridled enthusiasm that many of us displayed during our 
early euphoria with the method must now be tempered. A great deal of hard 
work remains, and "grand" models are not about to substitute for real 
plants and real experiments. Still, in many ways the modeling is ahead of 
the information base, and it is likely to remain there as computer capacities 
increase and costs decline. That is particularly true at the whole-plant level 
which has not been emphasized in plant physiology research. We can ex­
pect the modeling efforts to continue as sources of innovative questions 
(and sometimes of answers) about those gaps in our knowledge of plant 
life. 
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