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 24 
S Summary  25 

A model has been developed which assesses the economic and environmental performance of 26 

crop rotations, in both conventional and organic cropping, for over 70 arable and horticultural 27 

crops, and a wide range of growing conditions in Europe. The model, though originally based on 28 

the N_ABLE model, has been completely rewritten and contains new routines to simulate root 29 

development, the mineralisation and release of nitrogen (N) from soil organic matter and crop 30 

residues, and water dynamics in soil. New routines have been added to estimate the effects of 31 

sub-optimal rates of N and spacing on the marketable outputs and gross margins. The model 32 

provides a mechanism for generating scenarios to represent a range of differing crop and fertiliser 33 

management strategies which can be used to evaluate their effects on yield, gross margin and 34 

losses of nitrogen through leaching. Such testing has revealed that nitrogen management can be 35 

improved and that there is potential to increase gross margins whilst reducing nitrogen losses..  36 

 37 
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 40 

 Introduction  41 

Large amounts of nitrogen are applied to intensively cultivated land, especially where field 42 

vegetables are grown. DEMYTTENAERE ET AL. (1990) and GOULDING (2000) showed that growing 43 

field vegetable crops can lead to large amounts of potentially leachable nitrate being left in the soil 44 

after harvest. Since the value of the produce is high in comparison to the cost of additional fertiliser, 45 

the temptation to over-fertilise is high, leading to greater risks of nitrate pollution. Increasing 46 

environmental concerns about high nitrate levels in drinking water from such intensive land use now 47 

demands effective systems of fertiliser recommendation. 48 

NEETESON and CARTON (2001) reviewed the multiple pathways by which nitrogen applied to field 49 

vegetable crops could pollute the environment. Many EU directives and national regulations are 50 

now in place, which seek to regulate the use of fertilisers. Many of these were identified by an 51 

EU concerted action, the NUMALEC project (DE CLERCQ et al. 2001).  52 

In some countries, supermarkets are demanding that the produce they sell has been grown 53 

according to environmentally sound practices and have introduced assurance schemes as a result. 54 

Model based decision support systems can be valuable tools for consultants and farmers to help 55 

meet these increasingly tight standards and regulations. 56 

Two existing decision support models: N Expert (FINK and SCHARPF 1993) and WELL_N (RAHN 57 

et al. 1996) are available to supply fertiliser advice for field vegetable production in Germany and 58 

the UK respectively. WELL_N is based on routines in the N_ABLE model (GREENWOOD 2001). 59 

The N_ABLE model, however, only operates on single season crops and RAHN et al. (1992, 60 

1998) demonstrated that crops can be more effectively fertilised if N fertiliser is managed over 61 

whole crop rotations.  62 

A new model, EU-Rotate_N, was developed, with EU funding, as a tool for assessing the effects 63 

of different fertiliser and rotational practices on losses of nitrogen to the environment and gross 64 

margin returns across Europe. This paper describes the model, its validation using a German 65 

dataset, and demonstrates its use in examining the effects of different agricultural practices under 66 

Norwegian conditions.  67 

 68 
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 Materials and Methods  69 

 70 

The model consists of a number of modules which simulate: plant growth both below and above 71 

ground, nitrogen mineralisation from the soil and crop residues and subsequent N uptake. These 72 

processes are regulated by weather factors such as rainfall, temperature and radiation. Modules 73 

simulate the flow of water and nitrogen in the soil, into the plant and subsequent 74 

evapotranspiration or leaching.  The modules operate on a daily basis, utilising data from soil 75 

properties, crop residues, fertiliser and weather data where appropriate (Figure 1).  The model can 76 

simulate any number of crops in the rotation with a maximum limit of 30 years.  77 

 78 

<Figure 1>: The organisation of the main model modules. 79 

 80 

 Description of the soil  81 

In the model, soil is divided into 40 vertical layers of 0.05m thickness. After planting, these 82 

layers are split horizontally into 0.05 m wide cells. The number of cells horizontally depends on 83 

row width. When the crop is harvested or the residues are incorporated the horizontal cells are 84 

merged into one unit until the next crop is planted. Describing the soil in this way allows for 85 

more accurate simulation of root growth of row crops compared to the original N_ABLE model. 86 

While the crop is growing all the processes described below are simulated at the cell level.   87 

 88 

The basic properties of the soil layers are provided by the user of the model and include the water 89 

content at permanent wilting point, field capacity, and at saturation. These hydraulic properties 90 

control water availability to the plant and allow calculation of drainage. Mineralisation and losses 91 

of nitrogen by denitrification are adjusted for water content. Other inputs include pH, which 92 

allows for simulation of N losses where urea fertilisers are used, and the organic matter content of 93 

the soil, which affects the supply of N from mineralisation. The clay and sand content is used to 94 

calculate denitrification, hydrolysis of urea, and ammonia volatilisation from the top layer. 95 

 96 

 The water module  97 
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Crop evapotranspiration is calculated using the FAO approach (ALLEN et al. 1998). The main 98 

parameters are those related to the evaporative demand of the atmosphere, summarized by the 99 

reference evapotranspiration (ET0) and a crop coefficient that varies with crop development.  100 

 101 

The effects of water stress on plant growth are considered and it is assumed that the reduction in 102 

dry matter accumulation due to water deficit is proportional to the transpiration reduction (HANKS 103 

1983; SHANI and DUDLEY 2001). 104 

 105 

Water infiltration and redistribution in the soil follow a capacitance approach similar to the one in 106 

the N_ABLE model, but this has been modified using a drainage coefficient that allows the water 107 

transfer between layers above field capacity to be controlled progressively (in more than one day) 108 

and more or less rapidly depending on soil type (RITCHIE 1998). Drainage at any depth is given 109 

as the downward water flow from the cell elements at this depth. The module also accounts for 110 

two-dimensional capillary flow by adopting a soil water normalised diffusion approach (ROSE 111 

1968; RITCHIE 1998). The main parameters that define the hydraulic soil properties, such as the 112 

water content at field capacity and wilting point, are input by the user for the different soil layers. 113 

Values can be estimated from soil texture when not available. (SAXTON et al. 1986) 114 

 115 

Runoff is calculated using the approach by the U.S. National Resource Conservation Service 116 

(NRCS, formerly the Soil Conservation Service) based on studies of small  agricultural 117 

watersheds (< 800 ha) across the United States. (NRCS 2004) 118 

 119 

 Mineralisation module  120 

The calculation of N mineralisation from organic matter is based on the routines used in the 121 

DAISY model (HANSEN et al. 1990). Carbon dynamics in the soil are described by three pairs 122 

(slow or rapid decomposition) of conceptual pools (soil organic matter, soil microbial biomass 123 

and added organic matter). Decomposition rate coefficients are temperature and moisture 124 

dependent and reflect the environmental conditions of the simulated site; decay and respiration 125 

rates of soil microbial biomass are additionally influenced by soil clay content. Efficiency 126 

parameters determine the loss of CO2 during the single turnover processes. N release as NH4
+ is a 127 

consequence of C lost as CO2 from the system that maintains fixed C to N ratios in the different 128 
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pools. Processes of nitrification and denitrification are implemented to complete the turnover 129 

model. 130 

Residues of crops simulated with the crop growth module enter the mineralisation routine with a 131 

dynamic C to N ratio determined by crop N content, harvest index and a factor determining the N 132 

content in crop residues relative to the N content in the harvested crop parts, which reflects the 133 

growth conditions of the crop during the season with respect to N supply. A fixed C to N ratio is 134 

assigned to the slow decomposing part of the material whereas the C to N ratio of the fast 135 

decomposable part will then vary depending on total N content in the plant material. 136 

Decomposition rate coefficients of both pools are also fixed (ABRAHAMSEN and HANSEN 2000). 137 

C to N ratios and partitioning coefficients for crop residues are derived from stepwise chemical 138 

digestion experiments (JENSEN et al. 2005). Parameters for the release of N from manure and 139 

slurry were taken from the DAISY model (ABRAHAMSEN and HANSEN 2000).  140 

N volatilisation from applied manures and slurries are described using an empirical relation 141 

implemented in the ALFAM model (SØGAARD et al. 2002). A soil pH dependency factor was 142 

introduced by fitting data from HE et al. (1999) to Michaelis-Menten kinetics and subsequently 143 

normalising the relation between pH and volatilisation half-life time to pH 7.0. 144 

Hydrolysis of, and gaseous N loss from, applied urea fertiliser is calculated based on routines of 145 

the AMOVOL model (SADEGHI et al. 1988), taking into account the temperature dependent 146 

equilibrium between the ammonium ions in solution and gaseous ammonia, as well as the effect 147 

of soil organic matter, soil temperature and soil water content on the hydrolysis process itself. An 148 

atmospheric resistance parameter finally governs the loss of gaseous ammonia from the top soil. 149 

 150 

 Snow and frost module 151 

The original snow model, developed at the University of Helsinki by VEHVILÄINEN and 152 

LOHVANSUU (1991), was used to calculate water equivalent, but modified by KARVONEN (2003) 153 

to calculate snow depth, which is important for determining soil freezing and thawing. This has 154 

been further modified and calibrated by iterative simulation using a 10-year dataset from 155 

Norway, as described by RILEY and BONESMO (2005). The approach has been validated with 156 

independent data. 157 

 158 
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The soil frost module is based on two approaches, one for freezing and one for thawing. The 159 

approach for soil freezing was proposed by OLSEN and HAUGEN (1997) and assumed uniform 160 

thermal properties throughout the profile; values are taken from the SOIL model (JANSSON 1991). 161 

The module requires input of surface temperature as modified by the snow pack. The approach 162 

used for thawing is that of the ECOMAG model (MOTOVILOV et al. 1999). Both freezing and 163 

thawing processes have been validated for Norwegian conditions.  164 

 165 

The snow and frost calculation routines affect water infiltration and associated processes such as 166 

leaching. In brief, it is assumed that infiltration ceases when soil freezes. If the soil surface is 167 

frozen, it is assumed that precipitation is either stored in the snow pack, if present, or it is lost to 168 

surface runoff. During snowmelt and soil thaw, an amount of melt-water equal to the difference 169 

between field capacity and saturation is stored for later infiltration, whilst the remainder passes to 170 

surface runoff. When complete soil thaw occurs the stored melt-water passes through the profile.  171 

 172 

 Root module   173 

The calculations in the root module consist of three main parts: i) first the physical extension of 174 

the root system is calculated, ii) then the total root length of the crop is calculated, and iii) finally 175 

the distribution of the root system with depth and distance from the crop row is calculated. The 176 

root module has been described and tested in PEDERSEN et al. (2009). 177 

 178 

The depth development of the root system (rz) is calculated from the accumulated temperature 179 

sum (Tcumul)  from crop planting. After a lag period (ddglag) the rooting depth increases linearly 180 

with accumulated temperature sum from its starting value (zstart), using the crop specific rooting 181 

depth develop rate Krz.. After a lag period (ddglag) the rooting depth increases linearly with 182 

accumulated temperature sum from its starting value (zstart). The length of the lag period and the 183 

rate of rooting depth development are controlled with crop specific parameter values. This 184 

approach to simulation of crop rooting depth is based on a number of studies showing good linear 185 

relationships between accumulated temperature sum and rooting depth (KRISTENSEN and 186 

THORUP-KRISTENSEN 2004; THORUP-KRISTENSEN 2006; THORUP-KRISTENSEN and VAN DEN 187 

BOOGAARD 1998; KAGE et al. 2000). 188 
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   189 

( )( )zlagcumulstartz KrddgTzr ⋅−+=  (1) 190 

 191 

Horizontal root extension is calculated in the same way, but for each soil layer the calculation 192 

starts when the roots reach this layer rather than when the crop is planted. In this way horizontal 193 

root growth starts progressively later at larger depths. 194 

 195 

Root biomass is calculated as a fraction of aboveground crop biomass. For all crops this fraction 196 

is reduced with higher crop biomass, but crops are parameterized into three classes with either 197 

high, medium or low fractions of root biomass. The fraction of biomass allocated to the roots 198 

start at 0.65 at very low crop biomass for all root classes, fall to 0.5, 0.3, and 0.2 at 2 Mg dry 199 

matter ha-1, and to 0.1, 0.05 and 0.02 when crop biomass exceed 9 Mg ha-1  for high medium and 200 

low fractions respectively. Total root length is then calculated from the simulated root biomass 201 

and a fixed specific root length which is used for all crops. 202 

 203 

Most vegetable crops are grown as row crops. Simulated root length is distributed spatially into 204 

the 2D array of 0.05 by 0.05 m soil cells used in the model to simulate the effects of the row crop 205 

structure on crop rooting and uptake of water and nitrogen. Root distribution is calculated to a 206 

maximum depth of 2 m, and to a maximum width of half crop row distance. GERWITZ and PAGE 207 

(1974) proposed a logarithmic root length function declining from the topsoil downwards. The 208 

assumption of a logarithmic decline in root density has been used in simulation models (e.g. the 209 

Daisy model, HANSEN et al. 1990), but in these models a rooting depth defined by a very low root 210 

density is assumed, and then the logarithmic function is used to distribute root length in the soil 211 

layers above the rooting depth. This inevitably leads to very low root densities in deeper soil 212 

layers. In our approach the root density at rooting depth is allowed to vary, meaning that we can 213 

simulate higher root densities in deep soil layers. Below rooting depth, root density is simulated 214 

to decline fast to zero, using a simple linear function. The steepness of the logarithmic decline 215 

within the root zone is controlled by one parameter for the vertical distribution (az) and another 216 

parameter for the horizontal distribution (ax). The root length at depth z is calculated as: 217 

rootlengthz = L0e-az•*z            (2) 218 

 219 
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where L0 is root density at the soil surface, and z is the soil depth. Root density decline from 220 

beneath the crop row to the inter row soil is calculated by a similar function.  221 

With some crops the plant to plant distance within the row is significant, but the effects of this 222 

cannot be simulated by the 2D approach used here, a 3D approach would be needed. During early 223 

growth this will lead to an overestimation of N availability, as the model will simulate that all N 224 

present close to the crop row will be available to the plants. To avoid this, we use the estimation 225 

of root width to calculate the fraction of the soil between plants within a row which is in contact 226 

with plant roots, and then reduce daily N uptake by this fraction. 227 

 228 

 229 

Crop growth and critical N  230 

Crop growth in EU-Rotate_N uses a total dry matter yield at harvest Wmax t/ha as a target yield.  231 

This approach overcomes difficulties that arise when trying to parameterise the large variety of 232 

different vegetable crops for photosynthesis-driven algorithms, but requires the user to provide the 233 

target. Each day the increment in plant dry matter is calculated from: 234 

 235 

  
WK

WGGGK
W WTN

+
=∆

1

2      (3) 236 

 237 

where W is the cumulative dry weight, and K1 = 1 t ha-1. GT is the effective day degree for the day 238 

divided by the average day degree throughout the entire growing period, where the effective day 239 

degree is the average temperature for the day less a base temperature, with the limitation that if the 240 

average temperature exceeds 20°C then it is set equal to 20° C, GREENWOOD (2001). GN and GW are 241 

the growth coefficients dependent on crop %N and water supply respectively.  K2 is calculated from 242 

the integral of the above equation with GN GW and GT set equal to 1. The equation is then  243 

 244 

Ph

PP

TT
WWKWWK

K
−

−−+
=

lnln 1maxmax1
2     (4) 245 

 246 
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where WP is the dry weight at planting, Wmax is the target total dry matter yield (t ha-1), Th is the time 247 

of final harvest and Tp is the time of drilling or planting in days from Jan 1st. 248 

 249 

We use a unified equation to define critical %N (The minimum N content in the plant required for 250 

maximum growth) for different crops, i.e. 251 

 252 

  )1(% 26.0 W
Crit ebaN −⋅+⋅=      (5) 253 

 254 

where %Ncrit is the critical %N, W = total dry matter yield (t ha-1), and a and b are  crop-specific 255 

coefficients. These coefficients are included for the crops used in the test of the model in Table 1 and 256 

are similar to those described in GREENWOOD (2001).  257 

 258 

Luxury N consumption is permitted to take place. It is calculated as follows: 259 

 260 

critlux NRN %% max =       (6) 261 

 262 

where %Nmax is the maximum possible crop %N, and Rlux (>1) is the coefficient for luxury N 263 

consumption (examples shown in Table 1) 264 

).  265 

 266 

For each day a growth coefficient GN is calculated as: 267 

 268 

  )0.1,
%
%min(

crit
N N

NG =      (7) 269 

 270 

where %N is the actual %N in the dry matter of the whole plant (excluding fibrous roots). 271 

 272 

Similarly, a growth coefficient GW can be activated which regulates growth depending on water 273 

supply which is calculated as: 274 

 275 
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TR

TR
G act

W =        (8) 276 

 277 

where TRact and TR are the actual and potential transpiration rates. 278 

<<Table 1>> 279 

 280 

 281 

 282 

 N uptake 283 

N uptake is calculated as a function of crop N demand on a specific day and the potential root N 284 

uptake on the same day. The simulated crop N demand is calculated in the crop growth part of the 285 

model. The potential supply from the soil is calculated as a function of the root length in each soil 286 

unit and the content of ammonium-N and nitrate-N in each soil unit to control root N uptake 287 

efficiency. This is calculated separately for ammonium and nitrate N.  Equation 9 shows the 288 

calculation for potential ammonium N uptake.  289 

 290 

( )
42

14
4 NHS

SNHSrootlength
N N

potNH +
−⋅⋅

=  (9) 291 

 292 

with NH4 being the soil ammonium concentration and SN a crop specific parameter. Diffusion 293 

terms are not included in the simulation, since they are assumed to be very small over the 294 

relevant time spans for the simulations. N in the form of nitrate is highly mobile in the soil, and 295 

diffusion processes will only limit uptake on the very short term even at low root density. The 296 

value of S1 determines the minimum amount of ammonium-N which can be left in the soil (e.g.  297 

THORUP-KRISTENSEN 2001, 2006). ), and is set to prevent further uptake when less than 5 kg 298 

ammonium-N is present in the top 30 cm soil layer.  S2 reduces N uptake as these minimal values 299 

are approached.  300 

 301 

A function is then used to balance actual N uptake according to crop N demand and potential root 302 

N uptake. At very high or low N supply relative to demand, the uptake will be fully controlled by 303 
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crop N demand and potential root N supply respectively. When N demand is close to potential N 304 

uptake, the simulated uptake will be below either value.  305 

 306 

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−⋅=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

demand

pot

N
N

demandup eNN 1  (10) 307 

 308 

Often, the calculated actual N uptake will be lower than the potential root N supply. When this is 309 

the case, the actual depletion of soil N will be reduced proportionally from the potential value in 310 

all soil cells. Finally a specific calculation is made of N taken up from below 0.9 m in the soil. 311 

This is made as N leaching loss and other N balance figures are shown mainly for the 0-0.9 m 312 

soil layer in much of the model output, and it is therefore necessary also to have an output 313 

showing how much N is taken up from below this zone.  314 

 315 

 316 

Fertility building crops 317 

As it is difficult to specify an appropriate target yield for a fertility building crop an alternative 318 

approach is used. The user specifies Good, Medium or Bad growth to determine crop growth 319 

rates rather than final DW production. The increment in plant dry matter on each day is calculated 320 

from: 321 

 322 

  ),min( typeTNtype WWGGGW ∆=∆     (11)  323 

 324 

where W is the cumulative dry weight,  Gtype and typeW∆  is set to one of three possible values (good, 325 

medium, bad), which categorize growing conditions. Growth rate, varies from 2 to 6% per day for 326 

poor and good crops with a  maximum dry weight increment of between 20 and 60 kg/ha dry matter 327 

for poor and good crops respectively..  GN and GT are the growth coefficients dependent on the crop 328 

%N and day degree.  The calculation of the growth coefficient GN is the same as that for a cash crop. 329 

The growth coefficient GT is calculated: 330 

 331 
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⎪
⎪
⎩

⎪
⎪
⎨

⎧

<

≤≤
−

−
>

=

etemperaturbasedegreeday

degreeday etemperaturbase
etemperaturbase

etemperaturbasedegreeday
degreedayif

GT

0

0.10
0.10

0.100.1

 (12) 332 

 333 

Another crop parameter, litter loss, specifies the percentage of biomass which is returned to the 334 

upper layer of the soil each day; it is then mineralised as a crop residue. This is particularly 335 

significant for longer term leys. The user can specify dates at which the crop is mown – on these 336 

occasions 50% of the biomass is either mulched or removed from the field.  337 

 338 

Most fertility building crops are legumes and nitrogen fixation is the main source of nitrogen in 339 

organic cropping systems. A crop parameter specifies whether the crop is N fixing or not (this also 340 

applies to cash crops). The growth of N fixing crops is not limited by nitrogen in the soil as any 341 

deficiency in soil supply is met by fixation of N from the air. 342 

 343 

Annual crops are killed after an appropriate period of time for example after the 1st of March. 344 

regardless of the ‘harvest date’ set by the user. Crops are also killed if the temperature drops below a 345 

specified value, Phacelia is killed when the temperature drops below -5 °C.. 346 

 347 

Modelling of the growth of undersown crops begins at the harvest of the crop canopy with an 348 

appropriate dry matter and nitrogen content; the user can choose between Good, Medium and Bad 349 

performance as an understorey to provide different starting  Dry matter yields which are 2000, 1000, 350 

500 kg/ha  for good medium and bad crops respectively.  351 

 352 

 Estimation of marketable yield 353 

Two strategies were adopted to convert total dry matter yield (TDM) into yield of marketable 354 

produce. 355 

 356 

For the first, our own published and un-published field research data were collected, where both 357 

total dry matter and marketable yields were measured across Europe. The algorithms developed 358 
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allow direct conversion of total dry matter yield (TDM) into fresh marketable yield (MFY) at any 359 

given N supply and take into account the effects of both sub- and supra-optimal supply of N.  360 

 361 

( )avNRTDMMFY ⋅=  (13)              362 

 363 

R(Nav) being the ratio of marketable yield to total dry matter yield and Nav the available nitrogen 364 

in soil and plant to 90 cm. The ratio R(Nav) is specific for each crop and depends on the 365 

proportion of available N used for each crop. The formula for R(Nav) is a linear or polynomial 366 

relationship of available nitrogen (Nav). 367 

 368 

( ) 3
av3

2
av2av10av NrNrNrrNR ⋅+⋅+⋅+=  (14)               369 

 370 

The terms r0, r1, r2, and r3 are empirically chosen for each crop. For a simple constant relationship 371 

r1, r2 and r3 = 0. For a linear relationship r2 and r3  = 0. Otherwise, the relationship is non-linear. For 372 

some crops, more polynomial terms may be needed because of different behaviour in the sub- 373 

and supra-optimum ranges.  374 

In a second approach, the single plant fresh weight is calculated by using the harvest index (HI) 375 

to calculate the dry weight of the harvested parts. Then, with the dry matter content (cDM) and the 376 

plant population (n), an average single plant fresh weight yield (PFY) is produced: 377 

DMcn
HITDMPFY

⋅
⋅

=  (15) 378 

A normal distribution of plant fresh weights are assumed with a coefficient of variation (e.g. 379 

20%) and a lower and upper limit of marketable plant fresh weight can be set (e.g., the EU trade 380 

specifications). With this information, an average fresh weight of marketable plants within these 381 

specifications is calculated. Using the plant population again, the marketable yield (MFY) and the 382 

residues left post-harvest are calculated. A more detailed description of this approach can be 383 

found in NENDEL et al. (2008). 384 

 385 

Plants with a single product per plant use the second approach; other crops, such as those with 386 

multiple products or multiple harvests, use the direct conversion approach.  After calculation of 387 
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marketable yield the fraction of N harvested or left in the field as crop residues is then calculated. 388 

The ratio of N in the marketed part of the crop to the whole crop is taken from the Crop shown in 389 

Table 1.   390 

 391 

 Gross margin calculation 392 

With the marketable yield modelled, the calculation of the crop gross margin (GM) uses the 393 

standard equation: 394 

( )Nfertdepind VCVCVCiceMFYGM ++−⋅= Pr  (17)                 395 

where the variable costs dependent (VCdep) and independent (VCind) of marketable yield  is 396 

provided by the user in the model run files. VCind should include, for example, cost per hectare of 397 

seed, transplants, fleece, irrigation, crop protection, and weed control. It should also include the 398 

cost of fertiliser application, but not the fertiliser itself. Variable costs dependent (VCdep) on the 399 

marketable yield should be provided per unit (e.g. tonnes) marketed and are then multiplied by 400 

the modelled marketable yield. They consist of packaging and drying, transport, harvest casual 401 

labour and market commission cost. The variable costs (VCNfert) are the costs of inorganic and 402 

organic fertilisers, dependent on the fertiliser amounts and the prices of the fertilisers. 403 

The triggered amount of N fertiliser and number of applications are multiplied by the cost of 404 

fertiliser and the cost per application as specified in the input file. Subsidies are not considered in 405 

the gross margin calculation. Rotational gross margin is cumulative gross margin of all crops in 406 

the rotation (including the negative gross margin of cover crops) divided by the number of years 407 

simulated.  408 

 409 

 Model use  410 

The model requires input data in plain text format to describe soil properties, the initial soil 411 

mineral N and initial soil water content conditions. It can then be supplemented by blocks of text 412 

for each individual crop. These blocks contain planting and harvesting dates and the management 413 

of crop residues. The fertilisation and irrigation of these crops can be controlled by a range of 414 

fixed and automatic triggers. The automatic triggers can be used to fertilise or irrigate when 415 
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certain threshold values are met. To run the model five other text format files are required, one 416 

containing meteorological data, and four others containing parameters for mineral and organic 417 

fertilisers, crop growth and crop residues. The model, along with example files, can be 418 

downloaded from  419 

www.warwick.ac.uk/go/eurotaten      420 

 Testing the model 421 

The model was tested against field data acquired from a range of sites in each country 422 

participating in the EU-Rotate_N project. Within this short paper it is impossible to reproduce all 423 

the results so an example of the validation on an independent data set in Germany is presented.   424 

The Palatinate region in South-West Germany covers the area from the banks of the Rhine in the 425 

East to the rising hills of the Palatinate Forest in the West. The Palatinate is one of the 426 

economically most important and at the same time one of the most diverse field vegetable 427 

production areas in Germany. 19 biannual crop rotations on 14 farms have been monitored from 428 

April 2003 until the end of 2004. The growers followed different production strategies, including 429 

fertilizer regimes of various intensities. Five rotations were grown on organic farms. A wide 430 

range of crops, including all major arable and horticultural crops, was represented. In addition, 431 

simulations were performed for 8 rotations similarly monitored at two research stations in eastern 432 

Germany, 4 on sand and 4 on clay soils. All crops were grown with a single (non-limiting) level 433 

of nitrogen fertilizer, reflecting actual user practice. Details of the crop rotations under 434 

observation are given in 21. 435 

 436 

<< Table 2 >> 437 

 438 

During the vegetable growing period, soil was sampled every two weeks. Each time, soil samples 439 

from 15 points on each plot were taken from 0-30 cm, 30-60 cm, and 60-90 cm depth. In 2004, 440 

the frequency of sampling was less whilst non-vegetable crops such as cereals, maize, sugar beets 441 

and fertility building crops were grown.  In the soil samples, soil moisture and mineral N content 442 

were determined. Total crop dry matter was determined at harvest of each crop Nitrogen content 443 
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of these samples was determined in a Vario EL element analyser (elementar Analysengeräte 444 

GmbH, Hanau, Germany). 445 

.  446 

To simulate the monitored crop rotations the model was initialised by running it on the same crop 447 

rotations twice in advance. This was carried out in order to initialise the starting properties of the 448 

soil organic matter pools before the testing against measured data was carried out. Observed 449 

yields were set as crop target yield parameters. Weather data observed at the Karlsruhe weather 450 

station (DWD 2003) was used. Soil hydraulic parameters were determined from texture 451 

information according to the German Soil Survey Manual (AG BODENKUNDE 1994). Crop 452 

parameters that were used are shown in Table 1.  453 

 454 

Model performance for soil mineral nitrogen and soil moisture was calculated by comparing 455 

measured and predicted values for the three soil layers. For above-ground biomass dry matter and 456 

nitrogen concentrations, measured and predicted values at harvest were compared. The following 457 

model assessment statistics were used: root mean square error and mean absolute error (RMSE 458 

and MAE; WILMOTT and MATSUURA 2005), model bias (MBE; ADDISCOTT and WHITMORE 459 

1987), model efficiency (EF; NASH and SUTCLIFFE 1970) and index of agreement (d; WILMOTT 460 

1981). Two example rotations with different N regimes were selected to demonstrate the 461 

applicability of the model: (i) an organic farm crop rotation on a loamy soil (Rotation 8 in 2), 462 

where the use of organic fertilisers occasionally leads to very high soil mineral N contents, and 463 

(ii) a conventional, extensive crop rotation on sand (Rotation 15 in 2), where all year round 464 

ground cover and minimal fertiliser rates result in low soil mineral N levels. 465 

 466 

 Case studies - Norway  467 

A case study was selected where early vegetable crops were planted within a 6 year rotation with 468 

spring cereals as break crops. The case study was selected in contrasting soil types in the southern 469 

coastal regions of Norway to illustrate the effects of N management on nitrate requirement and N 470 

leaching.  The study was based on two choices of N management.  471 

 472 

A survey of grower practice revealed that levels of N fertilizer applied to vegetables often exceed 473 

the rates specified by the Norwegian Institute for Agricultural and Environmental Research. The 474 
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reasons for this include a desire to safeguard against deficiencies as well as a tendency to 475 

overestimate the expected/target yield level (to which current recommendations are linked). 476 

Growers make little use of mineral N measurements to check for early season N supply, as small 477 

field size and limited time in spring combine to make this method impracticable and costly. A 478 

modelling approach is an effective way of taking into account previous leaching losses and N 479 

mineralization from crop residues. The following two scenarios are compared: 480 

• ‘Current recommendations’ (set according to yield level, based mainly on  FYSTRO et al. 481 

2006)  482 

• ‘ Current grower practice’ (based on survey if available, otherwise estimated)  483 

 Results  484 

 Testing the model 485 

Testing the model against field data of 27 highly diverse crop rotations yielded an index of 486 

agreement (d) which indicates that 71% of the variations in soil mineral N, 82% of the variations 487 

in crop N concentration and more than 87% of the variations in soil water content can be 488 

explained by the model, see Table 3. 489 

 490 

<<Table 3>> 491 

 492 

 For dry matter yield, 95% of the variation was explained by the model. However, this was 493 

expected as maximum target yields were an input to the model. On the basis of the statistical tests 494 

referred to in the materials and methods section, overall bias (MBE) is relatively low. The 495 

performance of the simulations for soil mineral N were variable on individual rotations but the 496 

model was still able. to simulate the differences in soil mineral N between the two contrasting 497 

rotations,.figure 2. Compared to the observations, the model is able to simulate both production 498 

systems with an average Index of Agreement of 0.65 for Rotation 8 and 0.33 for Rotation 15. 499 

MBE for Rotation 8 was 28.2 kg N ha-1 (0–30cm), –21 (30–60cm) and –12 (60–90cm) and for 500 

Rotation 15 3 kg N ha-1 (0–30cm), –3 kg N ha-1 (30–60cm) and –3 kg N ha-1 (60–90cm), 501 

respectively. 502 

<< Figure 2 >> 503 
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 504 

 Case Study Norway  505 

To parameterise the soil mineralization routine, the EU-Rotate_N model was run without any 506 

crops to check that the rates of release of N from soil organic matter were similar to those 507 

measured in the field. Once parameterised, the model was run for 3 cropping rotations in the 508 

southern coastal region of Norway. Table 4 shows the simulation results.  Survey results revealed 509 

that growers often applied up to 36% more N than recommended as good practice. With 510 

recommended management practices nitrate concentrations in the drainage water were nearer the 511 

50 mg/litre EU limit for drinking water. The model simulated that on light soils (CS) gross 512 

margin increased by 14%, suggesting that higher grower N rates may be economically justified 513 

but not environmentally as simulated leaching was increased by 19%.  514 

 515 

Examination of the detailed outputs showed that there was a leaching peak during the cultivation 516 

of the third cauliflower crop and that using currently recommended rates the crop could fail – 517 

hence the reason for the higher application rates. Further investigation showed that if the lower 518 

rate of nitrogen was split into 3 rather than 2 applications and applied to coincide with crop 519 

demand, increases in gross margin could be achieved without applying any additional fertiliser 520 

(Table 5). Leaching losses could also be reduced. The most effective treatment to increase gross 521 

margin was splitting the N into 6 applications as it made it much more available to the growing 522 

crop.  A technique such as fertigation might be used to deliver this approach but the capital cost 523 

(not included) might outweigh the benefit.   524 

 525 

<Table 4> 526 

<Table 5>  527 

 528 

 Discussion  529 

The EU-Rotate_N model enables the effect of different strategies of fertilisation and crop 530 

management over rotations for both field vegetable and major arable crops to be tested. The 531 

example simulations demonstrated that the model is able to predict the soil mineral N dynamics  532 
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for two contrasting production systems. The model was able to simulate the higher amounts of 533 

soil mineral N in the rotation with large inputs of organic N compared with the rotation receiving 534 

more optimised inputs of mineral fertiliser N.  In the case studies  the value of the model to match 535 

demand of crops more closely to supply in order to reduce N losses was demonstrated.  536 

 537 

Most of the modules are based on existing models which have already been extensively validated 538 

but few studies have validated the operation of the entire model.  Currently few datasets covering 539 

rotations are available for such a validation to be carried out but this situation should improve in 540 

the future.  541 

 542 

One of the new modules simulates the growth of roots for field vegetable and some arable crops 543 

that are grown in wide rows using a two dimensional approach the single dimension approach for 544 

water and N uptake being inadequate (SCHRÖDER et al. 1996; THORUP-KRISTENSEN and VAN DEN 545 

BOOGAARD 1998, 1999). Since the range of plant morphology in field vegetable crops makes 546 

modelling of growth and development of leaf area for photosynthesis too complex 547 

(BARANAUSKIS 2005) EU-Rotate_N uses the target yield approach used in the N_ABLE and 548 

WELL_N models (GREENWOOD 2001). This enables the simulation of dry matter accumulation in 549 

a large variety of field vegetables with different morphologies as well as in multiple harvest crops 550 

such as cucumbers or courgettes.  This simplification does lead to a limitation that target yield 551 

has to be estimated before the model can be run, however suitable values for target yields can be 552 

obtained from previous experiments or can be based on growers expert knowledge.  553 

 554 

The model also simulates recovery of N that has leached below the depth of shallow rooted crops, 555 

by crops with deeper roots allowing the planning of rotations to minimise N losses. The 556 

importance of N supply to successive crops through decomposing crop residues, left in the field 557 

by the preceding one, is often poorly described in dynamic process based -models for agricultural 558 

systems (KERSEBAUM et al. 2007). Automatically triggered fertilisation and irrigation events 559 

allow the calculation of long-term scenarios to assess different strategies for improving the N 560 

efficiency in vegetable crop rotations. Such strategies were demonstrated under drip and furrow 561 

irrigation systems used by Mediterranean producers (DOLTRA et al. 2007), within highly variable 562 
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input production systems (NENDEL 2009) or within organic low-input production systems 563 

(SCHMUTZ et al. 2006, 2008)  564 

 565 

Rotation planning is particularly important in  organic production systems where the application 566 

of permitted fertilisers and manures must also be optimised. Very simple approaches has been 567 

used for predicting N availability in organic systems (PADEL 2002, CUTTLE 2006), approaches 568 

which avoid many of the difficulties associated with the EU-Rotate_N approach of handling the 569 

recycling of N as a result of litter loss and mowing residues. However, such simple approaches 570 

are also less able to deal with complex rotations and frequent short term fertility building crops 571 

common in field vegetable production. A more sophisticated approach has been used in the 572 

NDICEA model (KOOPMANS and BOKHORST 2002; VAN DER BURGT et al. 2006), originally 573 

developed for use under Dutch conditions. This model does allow rotations to be built up but it 574 

does not take into account reductions in yield attributable to lack of water or N, neither does it 575 

include any of the economic aspects of EU-Rotate_N.  576 

 577 

The ability to calculate gross margins across crop rotations will support farmers in balancing 578 

environmental and economic objectives. This is in contrast to typical practice, where evaluations 579 

of the economic and environmental impact (in terms of N leaching) of farmer’s decisions or 580 

political measures range from very simple approaches based on yield and N leaching assessment 581 

with the help of non-feedback functions (HASLER 1998) to quite advanced approaches using 582 

dynamic soil-crop-atmosphere models for specific problems at different scales. The most 583 

frequently employed models in this context are EPIC (HUGHES et al. 1995; TEAGUE et al. 1995; 584 

KELLY et al. 1996; JOHNSON, SOIL-SOILN (VATN et al. 1999, 2002), FASSET (BERNTSEN et al. 585 

2003), CropSyst (FARES 2003; MORARI et al. 2004) and STICS (SCHNEBELEN et al. 2004). 586 

However, these models do not include any economic assessments. An ecological and economical 587 

evaluation of different fertiliser strategies on a regional level using EU-Rotate_N was presented 588 

by NENDEL (2009). 589 

 590 

 Conclusions 591 

 592 
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The case study demonstrated how the EU-Rotate_N model can be used as a tool to illustrate the 593 

effects of different management strategies on yield and nitrogen losses. It is clear that, following 594 

recommended practice which include assessments of available N in the soil, can reduce the 595 

amounts of applied fertiliser in most cases, thereby reducing N losses, particularly by leaching.  596 

The simulations in southern Norway illustrate that the model will in some situations recommend 597 

higher N rates than those based on National recommendations, e.g. in situations where there is a 598 

risk of significant N leaching loss during crop growth. Helping farmers in general to reduce N 599 

inputs, but also sometimes to increase fertilisation of crops where needed due to soil and weather 600 

conditions, will be a major advantage of using the model for N advice. However, the model could 601 

be further used to refine the management practices to minimise N leaching.  These practices 602 

could be tested in the field and demonstrated to farmers.  603 

 604 

The EU-Rotate_N decision support system provides a platform for evaluating the impact of 605 

implementing national fertiliser recommendations on crop, environmental and economic outputs 606 

of varied crop rotations, which could subsequently allow the identification of leaky points and 607 

beneficial practices to plug them. Contrasting beneficial practices, which can reduce the 608 

environmental impact with “reasonable” economic costs can be tested against each other. 609 

Fluctuations in input and output prices, subsidies and tax effects can also be analysed, providing 610 

a dynamic feedback that could help both farmers and policymakers in the future.  611 
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Tables 800 
 801 
Table 1 Main crop parameter values used for testing the operation of the EU-Rotate_N model over 802 
rotations shown in Table 2  803 
 804 
 805 
Table 2 Crop rotations monitored for model testing. FEA = Farmer’s environmental awareness, SOM = 806 
Soil organic matter content. 807 
 808 
Table 3 Statistical evaluation of model performance assessed over 27 sites in Germany: root mean squared 809 
error (RSME), mean absolute error (MAE), mean bias error (MBE), modeling efficiency (EF), and index 810 
of agreement (d). 811 

 812 
Table 4. Key annual N-flows (kg/ha) and gross margins (Euro/ha per year) simulated for various 813 
early vegetable crops grown in 6-year rotations with spring cereals in coastal regions of Southern 814 
Norway, with  currently recommended N fertilizer rates (A), and assumed grower N fertilizer 815 
rates (B). (All data are means of all six years in the rotation, calculated for the period 2000-2005) 816 

1 Proportion of the rotation time expressed as a % when leached nitrogen was greater than  817 
0.1 kg/ha/day. 818 
2 Drainage same for both A+B case studies  819 
 820 

Table 5. The simulated effect of different fertilizer management strategies on environmental and 821 
economic outputs of Cauliflower crops grown on Sand soils in southern Norway 822 

 823 

Figures 824 

 825 
Figure 1: The organisation of the main model modules. 826 
 827 
Figure 2  828 
Soil mineral nitrogen dynamics in 0-30 cm (A, D), 30-60 cm (B, E) and 60-90 cm (C, F) in two 829 
different crop rotations (A, B, C: Rotation 8: onion – spinach – spinach – maize on a light sandy 830 
loam soil in South-Western Germany; D, E, F:Rotation 15: carrot – winter wheat – lucerne on a 831 
sandy soil in Eastern Germany). Symbols: observed data; solid lines: model simulation. 832 

 833 

 s 834 
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Table 1  
 
CROP a b RlUX Base ddglag Krz az HI N_ratio 
          
Dutch_White_Cabbage 3.45 0.6 1 7 100 0.0014 1.5 0.65 0.9 
Cabbage_Summer 2.6 1.1 1 7 100 0.001 2 0.75 0.9 
Cabbage_Wint/Spring 2.6 1.1 1 7 100 0.001 1.5 0.54 1.2 
Calabres 3.45 0.6 1 7 100 0.001 2 0.28 0.6 
Carrot 1 1.26 1.5 7 250 0.0007 3 0.83 2 
Cauliflower 3.45 0.6 1 7 100 0.001 2 0.45 0.9 
Leek 2 4 1.4 7 350 0.0003 8 0.68 1.2 
Lettuce_Butterhead 1.35 1.35 1 7 100 0.001 3 0.8 0.8 
Lettuce_Crisp 2.6 1.1 1 7 100 0.001 2 0.8 0.8 
Maize_grain 0.6 9 1 7 100 0.0014 3 0.8 0.8 
Onion 1.35 2.42 1 7 250 0.0003 8 0.75 2 
Peas 1.35 3 1 7 100 0.001 3 0.25 0.6 
Potato_Early 1.35 3 1.5 7 100 0.0007 3 0.8 2 
Potato_Late 1.35 3 1.5 7 100 0.0007 3 0.95 1.9 
Radish 1.35 1.87 1.2 7 100 0.001 3 0.5 1.4 
Spinach 1.35 3 1 7 100 0.001 3 0.71 0.8 
Sugar_Beet 1.11 1.38 1.65 7 250 0.001 2 0.7 2.8 
Turnip 1.35 3 2 7 100 0.001 2 0.47 1.5 
Wheat 1.35 3 1.2 4 100 0.001 3 0.51 0.3 
Lamb's_Lettuce 1.35 3 1.2 4 250 0.0014 3 0.95 1 
Kohlrabi 1.35 3 1.4 3 100 0.0014 3 0.7 1.5 
Celery 1.35 3 1.3 6 250 0.0004 3 0.7 1 
Celeriac 1.35 3 1.2 6 250 0.0004 3 0.71 2 
Small_Radish_Spring 1.35 3 1.2 2 100 0.001 3 0.84 0.8 
Small_Radish_Summer 1.35 3 1.2 2 100 0.001 3 0.85 0.8 
Parsley 1.35 3 1.4 4 250 0.001 3 0.75 0.6 
Radicchio 1.6 3 1.3 7 100 0.0012 3 0.4 1 
Spring_onion 1.35 2.42 1 7 200 0.0003 8 0.9 1 
Barley 1.35 3 1.2 4 100 0.001 3 0.51 0.3 
Rye_and_Triticale 1.35 2 1.2 4 100 0.001 3 0.5 0.3 
Maize_(corn_cob_mix) 0.6 9 1 7 100 0.0014 3 0.7 0.8 
Maize_(silage) 0.6 9 1 7 100 0.0014 3 0.93 0.8 
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a and b are crop specific parameters for equation 5 - %N, Rlux = coefficient for luxuary consumption, Base=Base temperature Degree oC , ddglag  = lag period 
before root growth begins Degree oC  days. rz, az = Form parameter for root development in vertical and horizontal directions m. HI= Harvest Index (dry matter 
basis).  N_Ratio = %N in residue DM / %N in harvested DM 
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Table 2  
 

Nr. Strategy FEA Soil type SOM Total N Irrig.  Crop rotation 
    % kg N ha-1 mm 1st year 2nd year 

1  intensive low silty loam 1.4 570 210 Spring onion – Lamb’s lettuce Winter wheat 
2  intensive low silty loam 1.3 1182 474 2×Small radish – Spring onion Small radish – Winter rye 

3
a 

intensive high light sandy loam 1.7 
240 840 Kohlrabi – Radish Spinach – Celery 

b 280 840 Kohlrabi – Radish Spinach – Celeriac 

4
a 

intensive high light loamy sand 1.0 
590 755 Phacelia – Lettuce – Phacelia Cauliflower – Phacelia  

b 590 755 Phacelia – Lettuce – Phacelia Romanesco – Phacelia 
5  agriculture high silty loam 1.4 450 620 Cauliflower – Cauliflower Sugar beet 

6
a 

intensive low light clayey loam 1.5 
470 685 Broccoli – Lamb’s lettuce Onion 

b 470 685 Broccoli – Lamb’s lettuce Cauliflower 

7
a 

organic high light sandy loam 1.5 
65 145 Potato – Weeds – Winter rye Lettuce 

b 65 205 Potato – Weeds – Winter rye Kohlrabi 
8  organic high light sandy loam 1.5 250 320 Onion – Spinach – Spinach Maize 

9
a 

organic moderate silty loam 1.8 
120 165 Pea (ind.) – Lamb’s lettuce Parsley 

b 141 165 Pea (ind.) – Lamb’s lettuce Carrot 
10  intensive high silty loam 1.5 216 350 3×Parsley Potato – Spinach 
11  intensive low light clayey loam 2.3 520 725 2×Broccoli Potato 
12  extensive high light sandy loam 1.5 260 150 Onion – Mustard Potato 
13  extensive high silty loam 1.4 330 195 Lettuce – Sudan grass Potato – Sudan grass  
14  extensive very high light clayey loam 1.5 220 195 Turnip Radicchio – Ryegrass 
15  experiment  sand 1.2 200 503 Carrot – Winter wheat   Lucerne  
16  experiment  sand 1.2 380 644 Leek – Winter wheat   Lucerne 
17  experiment  sand 1.2 190 334 Summer rye Carrot 
18  experiment  sand 1.2 340 427 Summer rye Leek 
19  experiment  sandy clayey loam 2.2 154 251 Carrot Summer wheat  
20  experiment  sandy clayey loam 2.2 305 175 Broccoli Summer wheat 
21  experiment  sandy clayey loam 2.2 141 100 Summer wheat Carrot 
22  experiment  sandy clayey loam 2.2 287 80 Summer wheat Broccoli 
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Table 3  

 
  Soil mineral N Soil water Dry matter yield N concentration

kg N ha-1 kg kg-1 t ha-1 % 
n no unit 2383 771 89 85 
RMSE unit 62.72 0.07 2.02 1.07 
MAE unit 42.38 0.05 0.97 0.81 
MBE unit -9.87 0.00 -0.75 -0.16 
EF no unit -0.14 0.51 0.79 0.47 
d no unit 0.71 0.87 0.95 0.82 
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Table 4 
 

Soils Sandy. 
loam 

Sandy. 
loam 

Sand 

Rotation name  AS BS CS 
 early potato sum. cabbage sum. cabbage 

 early carrot early. potato early. potato 

 spring wheat spring wheat spring wheat 

 summer. onion early cauliflower early cauliflower 

 early carrot early potato early potato 

 spring barley spring barley spring barley 

A – Currently Recommended Rates 
Total N fertilizer  110 142 144 
Net N mineralisation 59 71 65 
Total N uptake 109 133 118 
Marketable N offtake 82 99 90 
Leaching below 90cm 77 99 109 
1% Time leaching >0.1 14.1 15.4 16.1 
2Drainage below 90 cm 
(mm) 762 749 799 
Average Nitrate 
concentration mg/l 45 58 60 
Gr. margin (Euro./ha) 3850 2200 1717 
    
B - Assumed Grower N Rates 
Total N fertilizer  150 183 183 
Total N uptake 125 153 143 
Marketable N offtake 94 114 107 
Leaching below 90cm 105 123 130 
1% Time leaching >0.1 14.4 15.8 16.2 
Average Nitrate1 
concentration mg/l 61 73 72 
Gr. margin (Euro/ha) 3933 2350 1967 
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Table 5  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Practice Amount and timing 
fertilizer kg/ha N  

Leaching on 13/5/03 
kg/ha N 

Gross Margin 
Cauliflower crop 
Euro 

Recommended Rate 
(2 splits) 

10/4 @ 196 
20/5 @ 43 

33 - 548 

Grower Practice 10/4 @ 237 
20/5 @ 52.5 

26 555 

Modified 
Recommended 
Practice (3 splits) 

10/4, 5/5, 30/5 @ 80 
kg/ha N  

12 1360 

Regular Feeding 6 
applications  

10/4,30/4,10/5.20/5,30/5, 
9/6 @ 40 kg/ha N 

14 2170 
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Figure 1  
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FIGURE 2  
 


