11 research outputs found

    Real-time identification of sliding friction using LabVIEW FPGA

    Get PDF
    Friction is present in all mechanical systems, and can greatly affect system stability and control in precision motion applications. In this paper, we present application of a frictional model to trajectory planning of a part centering system with real-time identification of model parameters through system force and position response. This identification is carried out using LabVIEW motion control software and digital signal processing (DSP) and field-programmable gate array (FPGA) hardware. A comparison of hardware performance for force measurement is also made

    Design of a Flexible Centering Tooling System

    Get PDF
    Precise machining of bearing rings is integral to the quality of assembled bearings. The output accuracy of center-based machining systems such as lathes or magnetic chuck grinders can relate directly to the accuracy of part centering before machining. Traditionally, such machines achieve centering by either hard tooling to which the ring is pressed, or through manual centering by a skilled operator using a brass hammer. Hard tooling has the problems of being subject to wear, dimensional inaccuracy, and additional setup time at part type changeover. Manual centering methods are subject to human error, both in accuracy and repeatability. Whether through setup time or manual centering time, either method requires skilled labour a nd is relatively expensive

    Dynamics of an inverted pendulum with delayed feedback control

    Get PDF
    The article of record as published may be found at: http://dx.doi.org/10.1137/030600461We consider an experimental system consisting of a pendulum, which is free to rotate 360 degrees, attached to a cart. The cart can move in one dimension. We describe a model for this system and use it to design a feedback control law that stabilizes the pendulum in the uprigiht position. We then introduce a time delay into the feedback and prove that for values of the delay below a critical delay, the system remains stable. Using a center manifold reduction, we show that the system undergoes a supercritical Hopf bifurcation at the critical delay. Both the critical value of the delay and the stability of the limit cycle are verified experimentally. Our experimental data is illustrated with plots and videos.Approved for public release; distribution is unlimited

    Adaptive Compensation of Friction Forces with Differential Filter

    Get PDF
    In this paper, we design an adaptive controller to compensate the nonlinear friction model when the output is the position. First, we present an adaptive differential filter to estimate the velocity. Secondly, the dynamic friction force is compensated by a fuzzy adaptive controller with position measurements. Finally, a simulation result for the proposed controller is demonstrated

    Modelowanie i optymalizacja dyskretnych układów mechatronicznych

    Get PDF
    Postęp cywilizacyjny stał się przyczynkiem do rozwoju nauk interdyscyplinarnych. Na tym gruncie rozwinęła się mechatronika – nowoczesna dziedzina nauki, obejmująca doskonale opanowaną mechanikę, nowszą elektronikę oraz równolegle formowaną wiedzę z zakresu symulacji numerycznych, sterowania i optymalizacji. Te ostatnie stawiają mechanikę układów dynamicznych i elektronikę w całkiem nowej roli. Są one podstawą projektów mechatronicznych o znaczeniu eksperymentalnym – poznawczym i praktycznym – aplikacyjnym. Z tego względu, inżynier mechatronik, automatyk lub elektronik powinien czerpać wiedzę użyteczną i nabywać takie umiejętności, które pozwolą mu sprostać wyzwaniom technicznym na miarę XXI wieku. Przyszły inżynier-naukowiec to coraz częściej student nauk technicznych. Wiedza techniczna oraz przekonanie o potrzebie jej wykorzystania zyskuje na znaczeniu, ponieważ wiąże się z rozwojem cywilizacyjnym. Wymierne korzyści obejmują wytwarzanie dóbr materialnych, poprawiających jakość życia ludzi, składowanie i transport towarów, komunikację i telekomunikację, automatyzację procesów technologicznych, produkcję i dostawy energii, wydobycie surowców, opanowanie środowiska naturalnego, unowocześnienie struktur wojskowych, loty w przestrzeń kosmiczną i wiele innych. Wynika z tego, że programy kształcenia studentów na kierunkach technicznych muszą być na bieżąco dostosowywane do pędzącego postępu cywilizacyjnego. Zagadnienia o charakterze teoretycznym i doświadczalnym podejmowane w tej monografii wychodzą temu naprzeciw

    A Hybrid Controller for Stability Robustness, Performance Robustness, and Disturbance Attenuation of a Maglev System

    Get PDF
    Devices using magnetic levitation (maglev) offer the potential for friction-free, high-speed, and high-precision operation. Applications include frictionless bearings, high-speed ground transportation systems, wafer distribution systems, high-precision positioning stages, and vibration isolation tables. Maglev systems rely on feedback controllers to maintain stable levitation. Designing such feedback controllers is challenging since mathematically the electromagnetic force is nonlinear and there is no local minimum point on the levitating force function. As a result, maglev systems are open-loop unstable. Additionally, maglev systems experience disturbances and system parameter variations (uncertainties) during operation. A successful controller design for maglev system guarantees stability during levitating despite system nonlinearity, and desirable system performance despite disturbances and system uncertainties. This research investigates five controllers that can achieve stable levitation: PD, PID, lead, model reference control, and LQR/LQG. It proposes an acceleration feedback controller (AFC) design that attenuates disturbance on a maglev system with a PD controller. This research proposes three robust controllers, QFT, Hinf , and QFT/Hinf , followed by a novel AFC-enhanced QFT/Hinf (AQH) controller. The AQH controller allows system robustness and disturbance attenuation to be achieved in one controller design. The controller designs are validated through simulations and experiments. In this research, the disturbances are represented by force disturbances on the levitated object, and the system uncertainties are represented by parameter variations. The experiments are conducted on a 1 DOF maglev testbed, with system performance including stability, disturbance rejection, and robustness being evaluated. Experiments show that the tested controllers can maintain stable levitation. Disturbance attenuation is achieved with the AFC. The robust controllers, QFT, Hinf , QFT/ Hinf, and AQH successfully guarantee system robustness. In addition, AQH controller provides the maglev system with a disturbance attenuation feature. The contributions of this research are the design and implementation of the acceleration feedback controller, the QFT/ Hinf , and the AQH controller. Disturbance attenuation and system robustness are achieved with these controllers. The controllers developed in this research are applicable to similar maglev systems

    Comprehensive modeling and robust nonlinear control of HDD servo systems

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Controle a estrutura variável de robôs manipuladores interagindo com ambientes passivos

    Get PDF
    Tese (doutorado) - Universidade Federal de Santa Catarina, Centro Tecnológico. Programa de Pós-Graduação em OdontologiaMuitas tarefas, em robótica, requerem uma efetiva interação do robô com o ambiente. Esta interação é caracterizada por uma força de contato, que precisa ser controlada. Nos últimos vinte anos, diversas leis de controle direcionadas a situações deste tipo foram propostas. Entretanto, somente algumas destas leis levam em conta perturbações externas e incertezas paramétricas do sistema. Por isso, neste trabalho, são propostos controladores robustos baseados em estrutura variável, que têm por objetivo controlar o movimento e a força de contato do efetuador final de robôs manipuladores, durante a realização de tarefas em ambientes passivos, mesmo na presença das perturbações e das incertezas mencionadas acima. Estudam-se controladores tanto para o robô rígido como para o robô de juntas flexíveis, em contato com ambientes cinemáticos, flexíveis e dinâmicos. Diversos resultados de simulação são apresentados, entre os quais uma comparação do controlador a estrutura variável com um controlador baseado em dinâmica inversa

    Commande des systèmes sous frottement utilisant le formalisme LMI : application aux systèmes robotiques avec contact et aux actionneurs pneumatiques

    Get PDF
    Le frottement présente systématiquement un risque accablant dans l'altération des performances de mouvement des systèmes mécaniques. La mise-en-place d'un système de contrôle efficace pour dissiper ce genre d'anomalie constitue encore un sujet d'actualité dans les domaines de la recherche et de l'ingénierie. Les mécaniciens, les tribologues, spécialistes de la théorie de frottement, et les automaticiens oeuvrent pour l'étude de ce phénomène des points de vue: caractérisation, modélisation et compensation. Une revue assez exhaustive de ces travaux est présentée dans le chapitre 1. Dans le présent travail de thèse, nous proposons un schéma général de contrôle des systèmes sous frottement que nous pouvons utiliser dans plusieurs applications. En respectant les paradigmes standards de stabilité, de robustesse et d'optimisation (de types H2, H∞ , etc.), ce shéma est basé sur l'estimation en boucle fermée du frottement dynamique, selon le modèle de LuGre, et la structure dynamique de contrôle linéaire par retour de sortie. La synthèse de cette commande repose sur les outils numériques des inégalités matricielles linéaires. En plus, pour tenir compte de la variété des structures dynamiques de mouvement et aussi de force dans les différents dispositifs en question, le schéma de la commande que nous proposons peut comprendre des termes d'actions statiques (ou) dynamiques, linéaires (ou) non linéaires et éventuellement robustes. Une illustration simple de la commande de mouvement d'une masse, sur une surface sous frottement, est exposée dans le chapitre 2. Il s'agit d'une généralisation du principe de commande stabilisante par rétroaction statique introduit par Canudas et al.(1995). Ensuite, nous appliquons notre schéma dans des cas plus complexes (non linéarités, incertitudes et couplages de force/position non négligeables). Pour ce faire, nous proposons dans le chapitre 3 l'étude de la commande hybride de position/force du robot manipulateur dont l'élément final est en contact sous frottement avec une surface donnée. Dans le chapitre 4, nous développons le schéma de contrôle de force (i.e. de pression) de l'actionneur pneumatique. Et dans le chapitre 5, nous présentons le schéma détaillé de contrôle de position de ce type d'installation qui renferme plusieurs points de contact avec frottement. Des résultats expérimentaux sont présentés pour valider notre approche de commande et aussi la comparer à d'autres schémas de commande et/ou de compensation de frottement. Pour conclure ce travail, nous recommandons, en particulier, l'extension de l'approche proposée en utilisant un modèle de frottement encore plus générale comme celui de glissement généralisé de Maxwell (GMS) dans une suite logique et aussi ambitieuse de ce travail
    corecore