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Dynamics of an Inverted Pendulum with Delayed Feedback Control∗

Maria Landry†, Sue Ann Campbell‡, Kirsten Morris§, and Cesar O. Aguilar¶

Abstract. We consider an experimental system consisting of a pendulum, which is free to rotate 360 degrees,
attached to a cart. The cart can move in one dimension. We describe a model for this system and
use it to design a feedback control law that stabilizes the pendulum in the upright position. We then
introduce a time delay into the feedback and prove that for values of the delay below a critical delay,
the system remains stable. Using a center manifold reduction, we show that the system undergoes
a supercritical Hopf bifurcation at the critical delay. Both the critical value of the delay and the
stability of the limit cycle are verified experimentally. Our experimental data is illustrated with
plots and videos.
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1. Introduction. In this paper, we examine various aspects of an inverted pendulum
system based on the experimental setup depicted schematically in Figure 1. In this system, a
pendulum is attached to the side of a cart by means of a pivot which allows the pendulum to
swing in the xy-plane. A force F (t) is applied to the cart in the x direction, with the purpose
of keeping the pendulum balanced upright. See Table 1 for a complete list of notation.

We assume that the pendulum may be modeled as a thin rod. Then, applying Newton’s
second law to the linear and angular displacement, we arrive at the equations of motion for
the system

(M + m)ẍ + εẋ + mlθ̈ cos θ −mlθ̇2 sin θ = F (t),(1.1)

mlẍ cos θ + 4
3ml2θ̈ −mgl sin θ = 0.(1.2)
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Figure 1. Inverted pendulum system.

Table 1
Notation.

x(t) Displacement of the center of mass of the cart from point O

θ(t) Angle the pendulum makes with the top vertical

M Mass of the cart

m Mass of the pendulum

L Length of the pendulum

l Distance from the pivot to the center of mass of the pendulum (l = L/2)

P Pivot point of the pendulum

F (t) Force applied to the cart

In our experimental setup, the force F (t) on the cart is

F (t) = αV (t) − βẋ(t),(1.3)

where V (t) is the voltage in the motor driving the cart, and the second term represents
electrical resistance in the motor. The voltage V (t) can be varied and is used to control the
system. The values of the parameters for our experimental setup [21] are given in Table 2.
The precise value of the viscous friction ε is difficult to measure; however, we expect that it
will be of a similar order of magnitude as β. Our work will thus consider ε in the range [0, 15].

A more convenient form of the equations is found by solving for ẍ and θ̈ from equations
(1.1) and (1.2) and introducing the variables

y = (y1, y2, y3, y4)
T

= (x, θ, ẋ, θ̇)T .
(1.4)
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Table 2
Values of parameters in experimental system.

Parameter Value Description

wM 0.360 Kg Weight mass

M 0.455 Kg + wM Mass of the cart

m 0.210 Kg Mass of the pendulum

L 0.61 m Length of the pendulum

g 9.8 m/s Acceleration due to gravity

ε unknown Viscous friction

Km 0.00767 V/(rad/sec) Motor torque and back emf constant

Kg 3.7 Gearbox ratio

R 2.6 Ω Motor armature resistance

d 0.00635 m Motor pinion diameter

α 1.7189 (KmKg)/(Rd)

β 7.682 α2R

We thus obtain the following equivalent first-order system:

ẏ = f(y) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

y3

y4

4F (t) − 4εy3 + 4mly2
4 sin y2 − 3mg sin y2 cos y2

4(M + m) − 3m cos2 y2

(M + m)g sin y2 − (F (t) − εy3) cos y2 −mly2
4 sin y2 cos y2

l(4
3(M + m) −m cos2 y2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.(1.5)

It is well known that for (1.5) with no control (F (t) = 0), the cart at rest with the
pendulum in the upright position is an unstable equilibrium, while the cart at rest with the
pendulum in the downward position is a stable equilibrium. This is reviewed in the next
section. In section 3 we apply a feedback control to the system; i.e., the voltage V (t), and
hence the force F (t), will be set to a function of the states x, θ, ẋ, θ̇. We show that for the
controlled system, the pendulum in the upright position (with the cart at rest) is a stable
equilibrium while that in the downward position is now an unstable equilibrium. Finally, we
consider the effect of a time delay into the feedback loop. In section 4 we show that for values
of delay below a critical value, the equilibrium with the pendulum in the upright position
remains stable and above this value this equilibrium becomes unstable. In section 5 we use a
center manifold reduction to show that when the upright position loses stability a supercritical
Hopf bifurcation takes place, giving rise to a stable limit cycle. These theoretical predictions
are confirmed by our experimental results.

The control of the inverted pendulum is a classic problem which has application to both
biological and mechanical balancing tasks. As such there have been many papers written on
the subject. Here we briefly review the ones most directly related to our work, i.e., those that
involve time delayed feedback. Other references can be found within the papers cited. In
contrast with our model (1.5) and choice of feedback (section 3), all of these papers eliminate
the cart dynamics from the problem by neglecting the viscous friction (and resistance in
the cart motor) and using feedback which depends only on θ and θ̇. Stability analysis of
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this second-order equation can be found in the work of Stépán and collaborators [14, 23].
Stépán and Kollár [24] formulate conditions on the delay such that stabilizing controllers can
and cannot exist. Atay [1] does a similar analysis employing position feedback only, but with
multiple delays. Sieber and Krauskopf [22] show there is a codimension three bifurcation point
in the model and use center manifold and normal form analysis to show that this point acts
as an organizing center for the dynamics of the system. The emphasis of these studies is on
theoretical analysis of the model for arbitrary parameters, whereas we focus on understanding
the model with the parameters dictated by our experimental setup. Finally, we note the
work of Cabrera and Milton [2, 3], who study, theoretically and experimentally, an inverted
pendulum where the control is provided by a person (the “stick balancing problem”). The
emphasis of this work is on the interplay between the time delay and the noise in the system.

2. Stability of the uncontrolled system. Consider the inverted pendulum system as given
by (1.5). When there is no control applied, i.e., F (t) = 0, every point ȳ of the form

ȳ = (c, nπ, 0, 0)T , c ∈ R, n = 0,±1,±2, . . . ,

is an equilibrium point of the system. The equilibria with n even correspond to the upright
position of the pendulum and those with n odd to the downward position. Note that the
equilibria are not isolated but lie on lines parallel to the y1-axis. This is a consequence of
the equivariance of f(y) with respect to the Euclidean group acting on the first coordinate
of y. (In physical terms, our model (1.1)–(1.2) is unchanged by arbitrary reflections and
translations in the variable x.) The lines correspond to group orbits of equilibria.

In this and the following sections, we will make use of the linearization of (1.5) about the
equilibrium y = ȳ,

u̇ = Df(ȳ)u,(2.1)

where u = y − ȳ. Recall that the linear stability of an equilibrium point ȳ is determined
by the eigenvalues of the Jacobian matrix Df(ȳ). To study these eigenvalues we will use
the Routh–Hurwitz criterion, e.g., [17, pp. 82–85]. Stated for the specific case of a cubic
polynomial, it is as follows.

Proposition 1. Consider the cubic polynomial

a0λ
3 + a1λ

2 + a2λ + a3,

where ai are all real. A necessary condition for all the roots of the polynomial to be in the
left-half-plane is that all the ai be nonzero and have the same sign. Define b1 = a2 − a0a3/a1.
The number of roots of the polynomial with positive real parts is equal to the number of sign
changes in the sequence a0, a1, b1, a3.

2.1. Downward position: n odd. For n odd, it follows from (1.5) that

Df(ȳ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 1 0

0 0 0 1

0 −3
mg

m + 4M
−4

ε

m + 4M
0

0 −3
(M + m)g

l(m + 4M)
−3

ε

l(m + 4M)
0

⎞
⎟⎟⎟⎟⎟⎟⎠
.
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It is easy to see that Df(ȳ) has a zero eigenvalue corresponding to the direction along
the line of equilibria. Thus the equilibria on this line will not be asymptotically stable.
However, applying [9, Theorem 4.3] they will be orbitally asymptotically stable if the rest of
the eigenvalues of Df(ȳ) have negative real parts.

The nonzero eigenvalues are the roots of the cubic

λ3 +
4ε

m + 4M
λ2 +

3(M + m)g

l(m + 4M)
λ +

3gε

l(m + 4M)
= 0.

For all positive values of the parameters, aj > 0, j = 0, . . . , 3, and b1 = 9mg
4l(m+4M) > 0.

Thus, by Proposition 1, all the roots of the polynomial have negative real parts. We conclude
that the ȳ are orbitally asymptotically stable when n is odd. This means [9] that if y(0) is
sufficiently close to ȳ for some odd n, then y(t) approaches some point on the line (c, nπ, 0, 0)
as t → ∞.

2.2. Upright position: n even. For n even,

Df(ȳ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 1 0

0 0 0 1

0 −3
mg

m + 4M
−4

ε

m + 4M
0

0 3
(M + m)g

l(m + 4M)
3

ε

l(m + 4M)
0

⎞
⎟⎟⎟⎟⎟⎟⎠
.(2.2)

The characteristic equation for Df(ȳ) is

λ

(
λ3 +

4ε

m + 4M
λ2 − 3(M + m)g

l(m + 4M)
λ− 3gε

l(m + 4M)

)
= 0.(2.3)

So, as for the equilibria corresponding to the downward position, there is always one zero
root. Consider the cubic polynomial which is the second factor of (2.3). For all positive values
of the parameters, a0, a1 > 0, a2, a3 < 0, and b1 = − 9mg

4l(m+4M) < 0. Thus, by Proposition 1,
the polynomial has one root with positive real part. We conclude, as expected, that the
equilibria ȳ with n even are unstable.

3. Stability of the controlled system. Consider the inverted pendulum system as given
by (1.5). As shown in the last section, the upright pendulum state y = 0 is an unstable
equilibrium point when there is no control applied. In this section we will use the linearized
model to design a controller so that this point becomes a locally stable equilibrium point.

Using (2.2), the linearization of system (1.5) about y = 0 is given by

ẏ(t) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 1 0

0 0 0 1

0 −3
mg

m + 4M
−4

ε

m + 4M
0

0 3
(M + m)g

l(m + 4M)
3

ε

l(m + 4M)
0

⎞
⎟⎟⎟⎟⎟⎟⎠

y(t) +

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0

0

4

(m + 4M)

− 3

l(m + 4M)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

F (t).(3.1)
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As described in the introduction, the force F (t) on the cart is

F (t) = αV (t) − βẋ(t) = αV (t) − βy3(t),(3.2)

where V (t) is the voltage in the motor driving the cart, and the second term represents
electrical resistance in the motor.

Define the control vector b = (0, 0, 4α
(m+4M) ,−

3α
l(m+4M))

T and the system matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0

0 0 0 1

0 −3
mg

m + 4M
−4

(β + ε)

m + 4M
0

0 3
(M + m)g

l(m + 4M)
3

β + ε

l(m + 4M)
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.(3.3)

The model for the controlled system linearized about the upright position can be written

ẏ = Ay + bV (t).(3.4)

We solved a linear quadratic control problem in order to design the control V (t) so that
the upright position becomes a stable equilibrium point as described in, e.g., [17]. Consider
the linear quadratic cost functional

inf
V (t)∈L2(0,∞)

∫ ∞

0

[
y(t)TQy(t) + rV (t)2

]
dt.

The weights Q ≥ 0 and r > 0 are chosen to reflect the relative importance of reducing the
states y and the cost of the control V . The solution to this problem is the feedback law

V (t) = −r−1bTPy(t),

where P is the unique symmetric positive-definite solution to the algebraic Riccati equation

ATP + PA− Pbr−1bTP + Q = 0.

This feedback is guaranteed to lead to a controlled system where the upright position is a
locally stable equilibrium point.

The Riccati equation may be solved numerically for given values for A, b, r, and Q. We
used the physical parameter values of Table 2. Experimental work indicated that ε = 2.1 is
a reasonable estimate for the viscous friction. Using the best model available is important
in controller design since modeling errors degrade the system performance, sometimes to the
extent of instability. It is not always sufficient to use an underestimate of damping, since
increasing damping from a nominal value may sometimes lead to instability; see, e.g., [18].
The analysis below verifies that the control law chosen stabilizes the system for a range of
values of ε which includes the physically reasonable values.

Since the system is linear and single-input, the control weight r can be absorbed into
the state weight Q and was set to 1. The state weight Q was chosen to penalize the po-
sitions heavily with small costs on the velocities. This choice of weights penalizes nonzero
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position so that the resulting controller will maintain the pendulum near the upright position.
Reducing the velocities to zero is a secondary objective. The particular choice of diagonal
Q = diag(5000, 3000, 20, 20) within these considerations is somewhat arbitrary. These choices
lead to the feedback law

V (t) = k · y(3.5)

with the feedback gain

k = (70.7107, 142.5409, 50.6911, 26.9817).(3.6)

To find the other equilibrium points of the controlled system, put F (t) = αV (t) − βy3(t)
with V (t) = k · y in (1.5). It is then easy to show that the equilibrium points are given by

ȳn =

(
−k2

k1
nπ, nπ, 0, 0

)T

, n = 0,±1,±2, . . . .(3.7)

The equilibrium points ȳn with n even correspond to the pendulum in the upright position,
while those with odd values of n correspond to the pendulum in the downward position.

As mentioned above, the feedback law (3.6) is guaranteed to lead to a controlled system
that is locally stable about the upright position, with a damping parameter ε = 2.1. We will
show that the controlled system is locally stable in this position over a range of values for the
damping parameter ε. Let di, i = 1, . . . , 4, indicate the components of the vector d = αk.
Then, using (3.2) and (3.5), the force F (t) can be written

F (t) = d · y − βy3.(3.8)

Consider the linearization of the system (1.5) about any upright equilibrium point ȳ2k, k ∈ Z,
with F (t) given by the feedback law (3.8). We obtain

Df(ȳ2k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0

0 0 0 1

4
d1

m + 4M

4d2 − 3mg

m + 4M
4
d3 − (β + ε)

m + 4M
4

d4

m + 4M

−3
d1

l(m + 4M)
3
(M + m)g − d2

l(m + 4M)
3
β + ε− d3

l(m + 4M)
−3

d4

l(m + 4M)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

We will show that ȳ2k is a locally asymptotically stable equilibrium point by showing that
all the eigenvalues of Df above have negative real parts. Since the parameter ε is unknown,
the eigenvalues of Df(ȳ2k) are functions of ε. Figure 2 shows Re(λi)(ε), i = 1, . . . , 4, using the
parameter values in Table 2. Note that Re(λ3)(ε) = Re(λ4)(ε). Also Re(λ1)(ε) = Re(λ2)(ε)
until about ε = 2, where they branch off. The Routh–Hurwitz criterion can be used to verify
that for the given parameter values,

Re (λi(ε)) < 0, i = 1, . . . , 4, for 0 ≤ ε < 55.2.

Therefore, the upright equilibrium points ȳ2k are locally asymptotically stable equilibrium
points if 0 ≤ ε < 55.2. This certainly includes all physically reasonable values of ε; thus we
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Figure 2. Real parts of the four eigenvalues for the equilibria with the pendulum in the upright position,
control applied.

can be confident that ȳ2k will be locally asymptotically stable in the experimental setting. As
was the object of the controller design, applying the feedback control F (t) changes the upright
position θ = nπ, n even, from a locally unstable equilibrium to a locally asymptotically stable
equilibrium.

Experimental results are shown in Figure 3. Even at steady-state there is a small-
amplitude persistent oscillation. This oscillation is periodic with frequency 2.2 rad/s. Since
the sampling time is very small compared to the system dynamics (50 ms) and the oscillations
are periodic, this does not appear to be a chaotic response to quantized digital control as
observed in [6] and studied in [12]. A possible cause of the oscillations is the presence of a
pair of closed-loop eigenvalues in the linearized system with small real and imaginary parts
λ ≈ −2.3 ± 2.5i. If this mode is excited, it would lead to oscillations close to the observed
frequency. A possible source of excitation of this mode is noise in the experimental apparatus.
There is a filter that attenuates the effects of high frequency noise; however, low frequency
components are not attenuated. Another possible cause for these oscillations is the presence
of “stiction” or other unmodeled friction in the experimental apparatus. This unmodeled
nonlinear effect would lead to overshoot by the linear feedback. Such behavior was predicted
theoretically in a balancing system with backlash [14]. It was also observed experimentally
in a similar balancing apparatus by Hirschorn and Miller [13]. Friction-generated limit cycles
are also shown in simulations of a simple cart system [20].
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Figure 3. Data for the experimental system with no time delay. Initial conditions close to an equilibrium
with the pendulum upright were chosen. The system was perturbed, by giving a small tap to the pendulum, at
t ≈ 60s and t ≈ 100s. Clicking on the above image displays the associated movie (60046 01.mpg).

In a similar manner, it may be shown that the matrix Df(ȳ2k+1) has an eigenvalue with
positive real part, for the parameter values in Table 2 and 0 ≤ ε ≤ 100, which includes
all physically reasonable values of the damping parameter. Thus, the equilibrium points
corresponding to the pendulum in the downward position are unstable. Applying the control
F (t) changes the downward position from a locally stable equilibrium into a locally unstable
equilibrium.

4. Effect of time delay. Consider the system given by (1.1) and (1.2) with θ close to 0.
We have seen in section 3 that the equilibrium point at θ = 0 is locally asymptotically stable
when the feedback controlled voltage (3.5) is applied. In this section we will study the effect
of time delay in the feedback law.

We assume that there is a time delay τ between when the variables used in the feedback
law (3.5) are measured and when the voltage V (t) is applied. This leads to the new expression

V (t) = k · y(t− τ).(4.1)

In the experimental system, the actual time delay τ is insignificant; however, we can artificially
increase the delay in the feedback loop.

Using (4.1), (3.8), (1.4), and (1.5) shows that the system is now modeled by the nonlinear
delay differential equation

ẏ(t) = f(y(t),y(t− τ)),(4.2)

where

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60046_01.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60046_01.mpg
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f(y(t),y(t− τ)) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0

0

4

4(M + m) − 3m cos2 y2(t)

− 3 cos y2(t)

l(4(M + m) − 3m cos2 y2(t))

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

4∑
j=1

djyj(t− τ)(4.3)

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

y3(t)

y4(t)

−4(β + ε)y3(t) + 4mly4(t)
2 sin y2(t) − 3mg sin y2(t) cos y2(t)

4(M + m) − 3m cos2 y2(t)

(M + m)g sin y2(t) + (β + ε)y3(t) cos y2(t) −mly4(t)
2 sin y2(t) cos y2(t)

l(4
3(M + m) −m cos2 y2(t))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

It is easy to check that this equation has the same equilibria as (1.5) and that its lineariza-
tion about y = 0 is

ẏ(t) = Ay(t) + By(t− τ),(4.4)

where A is given by (3.3) and

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0

0 0 0 0

4d1

m + 4M

4d2

m + 4M

4d3

m + 4M

4d4

m + 4M

− 3d1

(m + 4M)l
− 3d2

(m + 4M)l
− 3d3

(m + 4M)l
− 3d4

(m + 4M)l

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.(4.5)

One might expect that if the time delay is sufficiently large, the feedback will not be able
to “keep up” with the system, and the equilibrium at θ = 0 will become unstable. We will
show that this is true, both theoretically and experimentally. We first calculate the theoretical
value of the critical destabilizing delay. We then corroborate this value of the critical delay
by introducing delay in the feedback loop in our experimental apparatus.

To study the stability of (4.4) we look for solutions of the form y(t) = veλt. Substituting
this into (4.4) and then dividing by eλt yield

λv = Av + Bve−λτ .

Nontrivial solutions v �= 0 will exist when det(A + Be−λτ − λI) = 0. Defining

P (λ; ε) =
l

3
(m + 4M)λ4 +

4l

3
(β + ε)λ3 − (M + m)gλ2 − (β + ε)gλ,

Q(λ) =

(
d4 −

4l

3
d3

)
λ3 +

(
d2 −

4l

3
d1

)
λ2 + d3gλ + d1g,
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this condition can be written as

P (λ; ε) + e−λτQ(λ) = 0.(4.6)

Equation (4.6) is the characteristic equation for the delay differential equation (4.4).
We now make use of some standard results from the stability theory of delay differential

equations [5, 15]. It was shown in section 3 that when τ = 0 all roots of (4.6) have negative
real parts. Thus, for τ > 0 sufficiently small, all roots of (4.6) have negative real parts. The
critical delay is the smallest positive value of τ where (4.6) has a root with zero real part. At
this value of τ the trivial solution will lose stability.

Defining

G(λ; ε) = − Q(λ)

P (λ; ε)
,

(4.6) can be rewritten as

G(λ; ε) = eλτ .(4.7)

Pure imaginary roots of (4.6) exist when (4.7) is satisfied for λ = iω, ω ∈ R. Thus, for a given
value of damping ε, we need to find the value(s) of ω such that

|G(iω; ε)| = 1.(4.8)

The corresponding values of τ are obtained from

τ =
1

ω
[arg{G(iω; ε)} + 2kπ] .(4.9)

The critical delay, τc, is the smallest positive value of τ satisfying (4.9). The critical
frequency ωc is the corresponding value of ω. For the undamped case (ε = 0) we found that
ωc ≈ 31.178 and τc ≈ 0.0413. For 0 ≤ ε ≤ 15, the critical value of the delay ranged from .0413
to .075, as shown in Figure 4. We see that friction has a small effect on the critical delay.

Experimental tests were run to determine the experimental critical delay, and it was
found to be τc ≈ 0.062. This value corresponds to ε ≈ 10.6. With these parameter values
the characteristic equation (2.3) has a pair of pure imaginary roots as well as a pair at
approximately −2.7 ± 2.37i.

Figures 3, 5, and 6 illustrate the behavior of the system at delays below and above the
critical value. In all these cases the initial conditions were chosen so that the system was near
the upright equilibrium. The pendulum was perturbed by a small tap in order to illustrate the
stability or instability of the equilibrium point. For values below the critical delay (Figures 3
and 5) the system returns to the zero equilibrium after perturbation, illustrating the stability
of this equilibrium point. There are small oscillations around zero in all the experiments.
These are likely due to the same causes as the persistent oscillations in the undelayed system
discussed in section 3: low frequency noise that is exciting the stable mode corresponding to
the roots of the characteristic equation with small negative real part and nonzero imaginary
part and/or the presence of stick-slip friction between the cart and the track.
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Figure 4. Critical time delay, τc, as a function of the damping parameter, ε. The experimentally observed
value is indicated by the dashed line.

0 20 40 60 80 100 120
−15

−10

−5

0

5

10

15

time (s)

x 
(c

m
)

(a) Position

0 20 40 60 80 100 120
−10

−8

−6

−4

−2

0

2

4

6

8

10

time (s)

an
gl

e 
(d

eg
)

(b) Angle

Figure 5. Data for the experimental system with .060s time delay. Initial conditions close to an equilibrium
with the pendulum upright were chosen. The system was perturbed, by giving a small tap to the pendulum, at
t ≈ 40s and t ≈ 80s. Clicking on the above image displays the associated movie (60046 02.mpg).

Consider now a delay above the critical delay (Figure 6). After a perturbation, there is
a transient, and the system then approaches a limit cycle. After another perturbation, the
system returns to the limit cycle. This indicates the presence of a stable limit cycle. This
suggests that there is a supercritical Hopf bifurcation at the critical value of the delay. This
observation is verified theoretically in the next section using center manifold analysis.

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60046_02.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60046_02.mpg
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Figure 6. Data for the experimental system with .064s time delay. Initial conditions close to an equilibrium
with the pendulum upright were chosen. The system was perturbed, by giving a small tap to the pendulum,
at t ≈ 20s, t ≈ 40s, t ≈ 60s, and t ≈ 80s. Clicking on the above image displays the associated movie
(60046 03.mpg).

5. Hopf bifurcation. The previous section showed that the trivial solution of (4.2), i.e.,
the upright equilibrium, loses stability when τ = τc, as given in (4.9). At such points, the
characteristic equation of the linearization (4.4) has a pair of pure imaginary eigenvalues
±iωc, as defined by (4.8). It is straightforward to check that the delay differential equation
(4.2) satisfies the conditions for a Hopf bifurcation to occur at each of these points. See [11,
pp. 331–333] for a statement of a Hopf bifurcation theorem for delay differential equations.
In this section we will determine whether this bifurcation is supercritical, i.e., gives rise to a
stable limit cycle as the equilibrium becomes unstable, or subcritical, i.e., loses an unstable
limit cycle as the equilibrium becomes unstable.

To study the criticality of the Hopf bifurcation, it is useful to view the solutions of (4.2)
and (4.4) as evolving in C([−τ, 0],R4), the space of continuous functions mapping the interval
[−τ, 0] into R

4. Despite the infinite-dimensionality of this space, many of the properties of
solutions of delay differential equations such as (4.2) are similar to those for ordinary differen-
tial equations. In particular, as described in [11] we have the following. At a Hopf bifurcation
point, there exists a two-dimensional center manifold in the solution space. Further, if all
the other roots of the characteristic equation of the linearization about the equilibrium have
negative real parts, then this manifold is attracting and the long term behavior of solutions
to the nonlinear delay differential equation is well approximated by the flow on this manifold.
As discussed in [8, 28], the criticality of the Hopf bifurcation can be determined by studying
the dynamics on the center manifold. We note that since the manifold is finite-dimensional,
the dynamics on it will be described by a system of ordinary differential equations. In this
section we will find this system of ordinary differential equations.

Expanding f in (4.2) in a Taylor series about y = 0, we can rewrite the system in the form

ẏ = Ay(t) + By(t− τ) + F (y(t),y(t− τ)) ,(5.1)

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60046_03.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60046_03.mpg
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where F contains the nonlinear terms and is O(y3). It has been shown in [19, 28] that when the
lowest order terms in the nonlinearity of the delay equation are of third order (i.e., of the same
order as the lowest order terms in the normal form of the Hopf bifurcation), the dynamical
system of the center manifold is determined to third order by projecting the delay differential
equation onto the subspace, P , of solutions of (4.4) corresponding to the eigenvalues λ = ±iωc.
In fact, it can be shown that the dynamical system, accurate to O(W3), is [19, 28]

Ẇ(t) = MW(t) + Ψ(0)F (Φ(0)W(t),Φ(−τc)W(t)) ,(5.2)

where F is as in (5.1), M =
(
iωc 0
0 −iωc

)
, Φ(s) is a basis for P , W(t) = (z(t), z̄(t))T , and z(t) is

a complex variable. Ψ(s) is a basis for the linear subspace, corresponding to P , of the (formal)
adjoint problem of (4.4) defined with respect to the scalar product

〈ψ(s), φ(s)〉 = ψ(0) · φ(0) +

∫ 0

−τc

ψ(s + τc)Bφ(s) ds.(5.3)

We thus need to do the following: (1) calculate Φ(s); and (2) use the scalar product (5.3)
to find the basis Ψ(s). We can then substitute these into (5.2) to find the dynamical system
of the center manifold.

In section 4, we saw that assuming a solution of the form y = veλt for the linear delayed
system (4.4) yielded the eigenvector equation

(A + Be−λτ − λI)v = 0.(5.4)

Setting λ = iωc and τ = τc and solving for the eigenvector v = (v1, v2, v3, v4) in the standard
way, we obtain

v =

⎛
⎜⎜⎜⎝

v1

v2

v3

v4

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

−(g + 4
3ω

2
c l)

ω2
c

−iωc(g + 4
3ω

2
c l)

iω3
c

⎞
⎟⎟⎟⎠ v0,(5.5)

where v0 is an arbitrary constant.

Let φ(s) = veiωcs, −τc ≤ s ≤ 0, where v is given by (5.5). The matrix Φ(s) = [φ(s), φ̄(s)]
then forms a basis for the subspace P .

Note that for the scalar product (5.3), 〈ψ̄(s), φ(s)〉 = 〈ψ(s), φ̄(s)〉 and 〈ψ̄(s), φ̄(s)〉 =
〈ψ(s), φ(s)〉, since the entries of B are real.

Let ψ(t) = le−iωcs, 0 ≤ s ≤ τc, where l is a constant vector. We will choose l so that the
matrix Ψ(s) = [ψ(s), ψ̄(s)]T forms a basis for the linear space of the (formal) adjoint problem.
This means we must choose v0 and l so that

〈Ψ,Φ〉 =

(
〈ψ, φ〉 〈ψ, φ̄〉
〈ψ̄, φ〉 〈ψ̄, φ̄〉

)
=

(
1 0

0 1

)
.



INVERTED PENDULUM WITH DELAYED FEEDBACK CONTROL 347

Consider first the off-diagonal elements:

〈
ψ(s), φ̄(s)

〉
= ψ(0) · φ̄(0) +

∫ 0

−τc

ψ(s + τc)Bφ̄(s) ds

= l · v̄ +

∫ 0

−τc

le−iωc(s+τc)Bv̄e−iωcs ds

=
1

2iωc
l(2iωcI + Beiωcτc −Be−iωcτc)v̄

= − 1

2iωc
l(A + Be−iωcτc − iωcI)v̄ +

1

2iωc
l(A + Be−iωcτc − iωcI)v

= − 1

2iωc
l(A + Be−iωcτc − iωcI)v̄ +

1

2iωc
l · 0.

Thus, if we require l = (l1, l2, l3, l4) to be such that

l(A + Be−iωcτc − iωcI) = 0,(5.6)

then 〈ψ(s), φ̄(s)〉 = 0 = 〈ψ̄(s), φ(s)〉. Equation (5.6) is easily solved to yield

l =

(
ω2α1, ω

2α2 − g(ω2 + α1 + iωα3), ω(ωα3 − iα1),
4

3
ωl(ωα3 − I(ω2 + α1))

)
l0,(5.7)

where

α1 =
4d1e

−iωcτc

m + 4M
, α2 =

4d2e
−iωcτc − 3mg

m + 4M
, α3 =

4(d3e
−iωcτc − β − ε)

m + 4M
,

and l0 is an arbitrary constant.
Now consider the diagonal elements. Using the expressions (5.5) and (5.7) and simplifying

with Maple [27], we find

〈ψ(s), φ(s)〉 = l · v +

∫ 0

−τc

le−iωc(s+τc)Bveiωcs ds

= l(I + e−iωcτcτcB)v

= l(A + Be−iωcτc − iωcI)vτc + l

(
I

(
iωc +

1

τc

)
−A

)
vτc

= l (I (iωcτc + 1) −Aτc)v

= l0v0η,

where

η =
4

3

(
4(β + ε)lτ

m + 4M
+ l

)
ω6 +

(
4(β + ε)gτ

m + 4M
+ α2 − g − 4

3
lα1

)
ω4 − 3gα1ω

2

+ i

(
4

3
lτω7 +

4(M + m)gτ

m + 4M
ω5 − 2gα3ω

3

)
.
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Figure 7. Value of the criticality coefficient, cR112, as a function of the damping parameter, ε.

If we let l0 = (v0η)
−1, the conditions 〈ψ(s), φ(s)〉 = 1 = 〈ψ̄(s), φ̄(s)〉 will be satisfied. This

leaves one free parameter v0.

To find the dynamical system of the center manifold, we need only to consider the first
component of (5.2):

ż = iωcz + l · F (Φ(0)W + Φ(−τc)W)

= iωcz + c111z
3 + c112z

2z̄ + c122zz̄
2 + c222z̄

3 + O(|z|5).

Setting z = x + iy and cjkl = cRjkl + icIjkl yields the dynamical system of the center manifold
in real coordinates

ẋ = −ωcy + (cR111 + cR112 + cR122 + cR222)x
3 + (−3cR111 + cR112 + cR122 − 3cR222)xy

2 + O(‖x‖5),

ẏ = ωcx + (3cR111 + cR112 − cR122 − 3cR222)x
2y + (−cR111 + cR112 − cR122 + cR222)y

3 + O(‖x‖5).

It can be shown that c111 = c222 and c112 = c122 and hence that the criticality of the Hopf
bifurcation is determined by the quantity cR112 [10, p. 152]. Using Maple, we determined Φ
and Ψ, as indicated above, for the parameter values of Table 2 and for 0 ≤ ε ≤ 15. As can
be seen in Figure 7, the value of cR112 varies with ε but is always negative for the physically
reasonable range. (Note that the value of v0 does not affect the sign of cR112.) We thus
conclude that the Hopf bifurcation is supercritical [10, p. 152]. This analysis is consistent
with the experimental results presented in the previous section.

We performed numerical simulations on the nonlinear model (1.5) using a fourth-order
Runge–Kutta solver adapted for delay differential equations, available through the package
XPPAUT [7]. We used parameters as in Table 2 with ε = 10.6 and τ = 0.061 or τ = 0.063,
i.e., just below or just above the critical delay. For each set of parameter values we show
the results of two simulations with initial functions mimicking the initial conditions of the
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Figure 8. Numerical simulations of the nonlinear model (1.5). Parameter values are as in Table 2 with
ε = 10.6. Initial functions are (x(t), θ(t), ẋ(t), θ̇(t)) = (0, θ0, 0, 0), −τ ≤ t ≤ 0, with θ0 = 0.01, 0.1 radians.
(a) For τ = 0.061 the trivial solution (upright equilibrium position) is stable. (b) For τ = 0.063 there is a stable
periodic orbit. Shown are plots of θ versus t; the plots of x versus t are similar.

experiment, i.e., (x(t), θ(t), ẋ(t), θ̇(t)) = (0, θ0, 0, 0), −τ ≤ t ≤ 0, with θ0 = 0.001 and θ0 = 0.1
(radians). The results are shown in Figure 8. It is clear that for τ = 0.061 the trivial solution
(i.e., the upright equilibrium position) is stable while for τ = 0.063 there is a stable periodic
orbit. This supports our conclusion that the model exhibits a supercritical Hopf bifurcation
at the critical delay.

The experimental system also passes from stability to instability at this value of the time
delay. However, the experimental system also exhibits small periodic oscillations. Again, this
is likely due to unmodeled effects. In particular, as noted above, unmodeled stiction and
Coloumb friction can lead to qualitatively different behavior in the model [20, 13].

6. Discussion. We studied a model for a pendulum system where feedback control is used
to maintain the pendulum in the upright position. We designed a controller for this system
and showed that if the sampling time delay is not too large, then the controller still locally
stabilizes the system. Using a center manifold reduction, we showed that when the time delay
is large enough, stability is lost, a supercritical Hopf bifurcation occurs, and the system has a
stable limit cycle solution. Our theoretical results are supported by experimental data.

While our model reproduces most of the behavior of the experimental system, it is not
perfect. In certain situations the experimental system exhibits low amplitude, low frequency
oscillations not predicted by the model. We suggest that this phenomenon is due to noise
exciting modes corresponding to eigenvalues with small negative real parts. An alternative
explanation is the presence of stick-slip friction between the cart and the track. A thorough
investigation of these ideas would require reformulating the model, and hence we leave this to
future work.

The interpretation of experimental results can be subject to debate. We are convinced
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that the results shown in Figure 6 support the prediction of our model that the system exhibits
a supercritical Hopf bifurcation. However, it is also possible to interpret this figure as showing
bistability between a steady-state and periodic orbit. This is not something we observe in
our model. Thus this latter interpretation might suggest that there are unmodeled nonlinear
effects in the experimental system.

The study of delay induced bifurcations has exploded in recent years. Much of this work
has focused on analyzing models for physical systems with very little on experimental systems,
the exceptions being lasers (e.g., [4, 25]) and circuits (e.g., [16, 26]). We believe ours is the first
paper to demonstrate a delay induced Hopf bifurcation both theoretically and experimentally
in a mechanical system.
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