737 research outputs found

    Pengaruh adukan dan kepekatan partikel silicon karbida sebagai penguat terhadap kelakuan salutan komposit matriks nikel

    Get PDF
    Affordable quality housing is vital in developing countries to meet its growing population. Development of a new cost effective system is crucial to fulfill these demands. In view of this, a study is carried out to develope a Precast Lightweight Foamed Concrete Sandwich Panel (PLFP), as a new affordable building system. Experimental investigation and finite element analysis to study the structural behaviour of the PLFP panel under axial load is undertaken. The panel consists of two foamed concrete wythes and a polystyrene insulation layer in between the wythes. The wythes are reinforced with high tensile steel bars and tied up to each other through the polystyrene layer by steel shear connectors bent at an angle of 45º. The panels are loaded with axial load until failure. The ultimate load carrying capacity, load-lateral deflection profile, strain distributions, and the failure mode are recorded. Partial composite behaviour is observed in all specimens when the cracking load is achieved. Finite element analysis is also carried out to study the effect of slenderness ratio and shear connectors which are the major parameters that affect the strength and behaviour of the panels. An empirical equation to predict the maximum load carrying capacity of the panels is proposed. The PLFP system proposed in this research is able to achieve the intended strength for use in low rise building. Considering its lightweight and precast construction method, it is feasible to be developed further as a competitive IBS building system

    Coconut dehusker machine

    Get PDF
    Generally, coconut is dehusked manually using either a machete or a spike. These methods required skill labor and tiring to use. Attempts made so far in development of dehusking tools have been only partially successful and not effective in replacing manual methods. The reasons quoted for the failure of these tools include unsatisfactory and incomplete dehusking, breakage of the coconut shell while dehusking, spoilage of useful coir, greater effort needed than manual methods, etc

    Review on Multi Level Inverter Topologies and Control Strategies for Solar Power Conversion

    Get PDF
    Nowadays solar power has become an alternate method of power generation for standalone systems for both urban and rural electrification. The Power Electronics converters used for the power conversion should provide quality AC output to have near sinusoidal voltage. The inverter topology and the PWM technique of the inverter play a vital role in providing quality output. This paper reviews recent contribution to establish the current status and development of the technology to provide reader with an insightful review of multilevel inverters and its control strategy. A brief overview of Multi Level Inverters (MLI) topology and advantages of Cascaded H-Bridge Multi Level Inverter (CHBMLI) for solar power conversion is presented and the various control strategies for CHBMLI are discussed with view point of quality output.  Among the different PWM techniques discussed, the Elliptical Multi Carrier PWM (EMC PWM) control strategy is the new modulation technique which successfully improves the DC bus utilization without over-modulation and without adding third harmonic to fundamental frequency. Also, the technique is successful in reducing the %THD at the output voltage. The control strategy is simple even with increased   level of output voltage, which is not possible in SVPWM technique.  Hence, the EMC PWM technique is having better performance when compared to Multi Carrier PWM (MCPWM) technique, Space Vector PWM (SVPWM) technique and Third Harmonic Injection PWM (THIPWM) technique.&nbsp

    Asymmetric multilevel topology for photovoltaic energy injection to microgrids

    Get PDF
    The massive penetration of renewable energy sources in the utility grid has emerged as the solution to obtain clean energy in modern electric systems, which are gradually replacing their generators that produce CO2 emissions to achieve a sustainable growing. Power electronics is quite relevant in the deep penetration of renewable energy, because the use of such equipment is mandatory to integrate these new resources with the existing facilities. In order to reach higher power ranges, multilevel topologies are the state-of-the-art solution, due to the limited rating of the actual semiconductor devices. Furthermore, latest trends show that asymmetric multilevel configurations are an attractive technology to connect directly the power converters to the grid. This paper analyze the photovoltaic energy injection to microgrids using a hybrid approach that mixes the existing topologies: string, multistring and central inverter to implement an asymmetric structure that generate highly sinusoidal resulting waveforms. This document includes a simple analysis of the proposed configuration and highlights the advantages of using an asymmetric converter, supported with stationary and dynamic simulated results

    Multilevel Converter Topologies for Utility Scale Solar Photovoltaic Power Systems

    Get PDF
    Renewable energy technologies have been growing in their installed capacity rapidly over the past few years. This growth in solar, wind and other technologies is fueled by state incentives, renewable energy mandates, increased fossil fuel prices and environmental consciousness. Utility scale systems form a substantial portion of electricity capacity addition in modern times. This sets the stage for research activity to explore new efficient, compact and alternative power electronic topologies to integrate sources like photovoltaics (PV) to the utility grid, some of which are multilevel topologies. Multilevel topologies allow for use of lower voltage semiconductor devices than two-level converters. They also produce lower distortion output voltage waveforms. This dissertation proposes a cascaded multilevel converter with medium frequency AC link which reduces the size of DC bus capacitor and also eliminates power imbalance between the three phases. A control strategy which modulates the output voltage magnitude and phase angle of the inverter cells is proposed. This improves differential power processing amongst cells while keeping the voltage and current ratings of the devices low. A battery energy storage system for the multilevel PV converter has also been proposed. Renewable technologies such as PV and wind suffer from varying degrees of intermittency, depending on the geographical location. With increased installation of these sources, management of intermittency is critical to the stability of the grid. The proposed battery system is rated at 10% of the plant it is designed to support. Energy is stored and extracted by means of a bidirectional DC-DC converter connected to the PV DC bus. Different battery chemistries available for this application are also discussed. In this dissertation, the analyses of common mode voltages and currents in various PV topologies are detailed. The grid integration of PV power employs a combination of pulse width modulation (PWM) DC-DC converters and inverters. Due to their fast switching nature a common mode voltage is generated with respect to the ground, inducing a circulating current through the ground capacitance. Common mode voltages lead to increased voltage stress, electromagnetic interference and malfunctioning of ground fault protection systems. Common mode voltages and currents present in high and low power PV systems are analyzed and mitigation strategies such as common mode filter and transformer shielding are proposed to minimize them

    Model Predictive Control for Mitigating Sensor Attacks on Multilevel Inverters

    Get PDF
    Nowadays, multilevel power inverters have become a hot research topic which are being widely used in smart grids. They are also driving devices for conveyors, compressors, motors, and can enable uninterruptible power supply for critical loads such as database centers or telecommunications base stations. In the future, smart grids will play an important role to achieve higher efficiency, smarter control and better performance. Such an ambitious goal can only be achieved by inverters with higher voltage and power levels. The smart grids are the typical cyber-physical systems that is composed of physical processes and computation units combined by sensors, actuators, and communication devices. The smart grids are apt to errors and vicious attacks on their physical construction leading to considerable damage, such as false data injection (FDI), denial of service (DOS). The vicious data injection can effectively bypass the detection of system and cause serious effects on the grid. In recent years, some advanced control approaches have been proposed to perform inverter current control. Among them, model predictive control (MPC) is a promising one that makes use of explicit system models to predict its future response and optimize system performance. It has unique advantages that can accurately forecast the future response of the system and have fast response. However, the effectiveness and the accuracy of the conventional MPC rely on whether the system model is accurate. Uncertainty and false data injection in the system model sometimes lead to unresponsive or even unstable control systems. Conventional MPC is hard to keep the system stable when the uncertainty and malicious attack happen. In existing studies, although various attacks have been investigated, the undetectable false data injection aiming at the inverter system was rarely studied. In the thesis, the model of the cascaded H-bridge inverter is established and conventional MPC to achieve load current control is applied. It shows great performance to achieve load current control and has fast dynamic control. Then considering various attack signals such as step attack signals, pulse attack signals to the sensors in the system, the conventional MPC loses the ability to achieve a stable and effective current control. According to simulation results, Kalman Filter model is built which can filter some Gaussian noises from the sensors in the system. Then from the perspective of attacker, a special FDI attack is designed that can effectively bypass the Kalman Filter. For the system that targeted by the FDI and DOS attack, a new controller is designed based on the K-Nearest Neighbor (KNN) algorithm and MPC strategy which can achieve the load current control with high output quality. Finally, the new control method based on KNN and MPC is compared with conventional MPC. The simulation results are analyzed and conclusion have been made. A modified MPC combined with KNN algorithm proposed in this thesis can detect bad data that can enter the system without triggering alarms. The case studies show the modified MPC based on KNN algorithm can achieve current control accurately when the system is injected by various attack signals showing better performance of current control with low total harmonic distortion (THD)

    Closed-Loop Control and Performance Evaluation of Reduced Part Count Multilevel Inverter Interfacing Grid-Connected PV System

    Get PDF
    Multilevel inverters (MLIs) have drawn a tremendous attention in power sector. Application of MLI has grown extensively to improve the power quality and efficiency of the photovoltaic (PV) system. For an MLI interfacing PV system, the size, cost and voltage stress are the key constraints of the MLI that need to be minimized. This paper presents a novel reduced part count MLI interfacing single-stage grid-tied PV system along with a closed-loop control strategy. The proposed MLI consists of n repeating units and a level boosting circuit (LBC) that assists to generate 4n+7 voltage levels instead of 2n+3 levels. Three different algorithms are proposed for suitable selection of dc-link voltages to further enhance the levels. Comparative analysis is carried out to confirm the superiority of developed MLI. The workability of the proposed MLI is investigated with a 1.3 kW PV system. The closed-loop control strategy ensures the maximum power tracking, dc-link voltage balancing, satisfactory operation of the MLI and injection of clean sinusoidal grid current under any dynamic changes. Comprehensive simulation analysis is carried out considering a 15-level MLI structure. The practicality of the topological advancement for PV system is further confirmed by experimental tests under different dynamic conditions.publishedVersio

    Model Predictive Control for Mitigating Sensor Attacks on Multilevel Inverters

    Get PDF
    Nowadays, multilevel power inverters have become a hot research topic which are being widely used in smart grids. They are also driving devices for conveyors, compressors, motors, and can enable uninterruptible power supply for critical loads such as database centers or telecommunications base stations. In the future, smart grids will play an important role to achieve higher efficiency, smarter control and better performance. Such an ambitious goal can only be achieved by inverters with higher voltage and power levels. The smart grids are the typical cyber-physical systems that is composed of physical processes and computation units combined by sensors, actuators, and communication devices. The smart grids are apt to errors and vicious attacks on their physical construction leading to considerable damage, such as false data injection (FDI), denial of service (DOS). The vicious data injection can effectively bypass the detection of system and cause serious effects on the grid. In recent years, some advanced control approaches have been proposed to perform inverter current control. Among them, model predictive control (MPC) is a promising one that makes use of explicit system models to predict its future response and optimize system performance. It has unique advantages that can accurately forecast the future response of the system and have fast response. However, the effectiveness and the accuracy of the conventional MPC rely on whether the system model is accurate. Uncertainty and false data injection in the system model sometimes lead to unresponsive or even unstable control systems. Conventional MPC is hard to keep the system stable when the uncertainty and malicious attack happen. In existing studies, although various attacks have been investigated, the undetectable false data injection aiming at the inverter system was rarely studied. In the thesis, the model of the cascaded H-bridge inverter is established and conventional MPC to achieve load current control is applied. It shows great performance to achieve load current control and has fast dynamic control. Then considering various attack signals such as step attack signals, pulse attack signals to the sensors in the system, the conventional MPC loses the ability to achieve a stable and effective current control. According to simulation results, Kalman Filter model is built which can filter some Gaussian noises from the sensors in the system. Then from the perspective of attacker, a special FDI attack is designed that can effectively bypass the Kalman Filter. For the system that targeted by the FDI and DOS attack, a new controller is designed based on the K-Nearest Neighbor (KNN) algorithm and MPC strategy which can achieve the load current control with high output quality. Finally, the new control method based on KNN and MPC is compared with conventional MPC. The simulation results are analyzed and conclusion have been made. A modified MPC combined with KNN algorithm proposed in this thesis can detect bad data that can enter the system without triggering alarms. The case studies show the modified MPC based on KNN algorithm can achieve current control accurately when the system is injected by various attack signals showing better performance of current control with low total harmonic distortion (THD)

    The Essential Role and the Continuous Evolution of Modulation Techniques for Voltage-Source Inverters in the Past, Present, and Future Power Electronics

    Get PDF
    The cost reduction of power-electronic devices, the increase in their reliability, efficiency, and power capability, and lower development times, together with more demanding application requirements, has driven the development of several new inverter topologies recently introduced in the industry, particularly medium-voltage converters. New more complex inverter topologies and new application fields come along with additional control challenges, such as voltage imbalances, power-quality issues, higher efficiency needs, and fault-tolerant operation, which necessarily requires the parallel development of modulation schemes. Therefore, recently, there have been significant advances in the field of modulation of dc/ac converters, which conceptually has been dominated during the last several decades almost exclusively by classic pulse-width modulation (PWM) methods. This paper aims to concentrate and discuss the latest developments on this exciting technology, to provide insight on where the state-of-the-art stands today, and analyze the trends and challenges driving its future

    A photovoltaic integrated unified power quality conditioner with a 27-level inverter

    Get PDF
    Abstract This paper presents a Unified Power Quality Conditioner (UPQC) with a 27- level inverter based on an asymmetric H-bridge topology. Each phase of the inverter is composed of three H-bridges, supplied by three DC sources scaled in the power of three. The output of the multilevel inverter is connected directly to the point of common coupling (PCC) without the need to a transformer or a filter. The calculation of the Shunt Active Power filter (SAPF) compensation current is based on the generalized theory of synchronous frame (d-q theory) while the calculation of a series active filter voltage is based on Instantaneous Reactive Power (p-q theory). The control of the SAPF is achieved by using a closed loop vector control followed by a new multilevel modulation technique. In addition to the capability of harmonic elimination of both current and voltage drawn from the source, the UPQC can produce real and reactive power to feed the loads during prolonged voltage outages or source shortage.  The injection of real and reactive power depends on the state of charge (SOC) of batteries, the frequency of the system, real and reactive power of the load, and power factor at the point of PCC. The proposed UPQC strategy is simulated in MATLAB SIMULINK and the results has shown a significant improved in Total Harmonics Distortion (THD) of both the voltage and currents. 
    • …
    corecore