837 research outputs found

    Impact analysis of actuator torque degradation on the IRB 120 robot performance using simscape-based model

    Get PDF
    Actuators in a robot system may become faulty during their life cycle. Locked joints, free-moving joints, and the loss of actuator torque are common faulty types of robot joints where the actuators fail. Locked and free-moving joint issues are addressed by many published articles, whereas the actuator torque loss still opens attractive investigation challenges. The objectives of this study are to classify the loss of robot actuator torque, named actuator torque degradation, into three different cases: Boundary degradation of torque, boundary degradation of torque rate, and proportional degradation of torque, and to analyze their impact on the performance of a typical 6-DOF robot (i.e., the IRB 120 robot). Typically, controllers of robots are not pre-designed specifically for anticipating these faults. To isolate and focus on the impact of only actuator torque degradation faults, all robot parameters are assumed to be known precisely, and a popular closed-loop controller is used to investigate the robot’s responses under these faults. By exploiting MATLAB-the reliable simulation environment, a simscape-based quasi-physical model of the robot is built and utilized instead of an actual expensive prototype. The simulation results indicate that the robot responses cannot follow the desired path properly in most fault cases

    Disturbance observer-based fault-tolerant control for robotic systems with guaranteed prescribed performance

    Get PDF
    The actuator failure compensation control problem of robotic systems possessing dynamic uncertainties has been investigated in this paper. Control design against partial loss of effectiveness (PLOE) and total loss of effectiveness (TLOE) of the actuator are considered and described, respectively, and a disturbance observer (DO) using neural networks is constructed to attenuate the influence of the unknown disturbance. Regarding the prescribed error bounds as time-varying constraints, the control design method based on barrier Lyapunov function (BLF) is used to strictly guarantee both the steady-state performance and the transient performance. A simulation study on a two-link planar manipulator verifies the effectiveness of the proposed controllers in dealing with the prescribed performance, the system uncertainties, and the unknown actuator failure simultaneously. Implementation on a Baxter robot gives an experimental verification of our controller

    Failure tolerant teleoperation of a kinematically redundant manipulator: an experimental study

    Get PDF
    Includes bibliographical references (page 765).Teleoperated robots in harsh environments have a significant likelihood of failures. It has been shown in previous work that a common type of failure such as that of a joint "locking up," when unidentified by the robot controller, can cause considerable performance degradation in the local behavior of the manipulator even for simple point-to-point motion tasks. The effects of a failure become more critical for a system with a human in the loop, where unpredictable behavior of the robotic arm can completely disorient the operator. In this experimental study involving teleoperation of a graphically simulated kinematically redundant manipulator, two control schemes, the pseudoinverse and a proposed failure-tolerant inverse, were randomly presented under both nonfailure and failure scenarios to a group of operators. Based on performance measures derived from the recorded trajectory data and operator ratings of task difficulty, it is seen that the failure-tolerant inverse kinematic control scheme improved the performance of the human/robot system

    Verification and Validation of Robot Manipulator Adaptive Control with Actuator Deficiency

    Get PDF
    This work addresses the joint tracking problem of robotic manipulators with uncertain dynamical parameters and actuator deficiencies, in the form of an uncertain control effectiveness matrix, through adaptive control design, simulation, and experimentation. Specifically, two novel adaptive controller formulations are implemented and tested via simulation and experimentation. The proposed adaptive control formulations are designed to compensate for uncertainties in the dynamical system parameters as well as uncertainties in the control effectiveness matrix that pre-multiplies the control input. The uncertainty compensation of the dynamical parameters is achieved via the use of the desired model compensation–based adaptation, while the uncertainties related to the control effectiveness matrix are dealt with via two fundamentally different novel adaptation methods, namely with bound-based and projection operator-based methods. The stability of the system states and convergence of the error terms to the origin are proven via Lyapunov–based arguments. Extensive numerical studies are performed on a two–link planar robotic device, and experimental studies are preformed on Quansers QArm to illustrate the effectiveness of both adaptive controllers. In the experimental validation of the theory, both adaptive controllers demonstrate remarkable resilience, maintaining control of the Quanser QArm even with up to an 80% control input deficiency. After tuning the gains, both joints satisfactorily tracked the desired trajectories. When evaluating the entire experiment, the norm of the square of the total error is averaged. The bound-based controller exhibited an average error of 2.816◦ across all cases, while the projection operator-based controller had a reduced average error of 1.012◦ across all cases. Furthermore, over time, there is a noticeable decrease in error for both joints. These results underscore the robustness and effectiveness of the proposed adaptive controllers, even under substantial actuator deficiencies. The results highlight the significance of achieving near-perfect system knowledge and the careful selection of controls for desirable system performanc

    3D Printed Soft Robotic Hand

    Get PDF
    Soft robotics is an emerging industry, largely dominated by companies which hand mold their actuators. Our team set out to design an entirely 3D printed soft robotic hand, powered by a pneumatic control system which will prove both the capabilities of soft robots and those of 3D printing. Through research, computer aided design, finite element analysis, and experimental testing, a functioning actuator was created capable of a deflection of 2.17” at a maximum pressure input of 15 psi. The single actuator was expanded into a 4 finger gripper and the design was printed and assembled. The created prototype was ultimately able to lift both a 100-gram apple and a 4-gram pill, proving its functionality in two prominent industries: pharmaceutical and food packing

    Parallel Manipulators

    Get PDF
    In recent years, parallel kinematics mechanisms have attracted a lot of attention from the academic and industrial communities due to potential applications not only as robot manipulators but also as machine tools. Generally, the criteria used to compare the performance of traditional serial robots and parallel robots are the workspace, the ratio between the payload and the robot mass, accuracy, and dynamic behaviour. In addition to the reduced coupling effect between joints, parallel robots bring the benefits of much higher payload-robot mass ratios, superior accuracy and greater stiffness; qualities which lead to better dynamic performance. The main drawback with parallel robots is the relatively small workspace. A great deal of research on parallel robots has been carried out worldwide, and a large number of parallel mechanism systems have been built for various applications, such as remote handling, machine tools, medical robots, simulators, micro-robots, and humanoid robots. This book opens a window to exceptional research and development work on parallel mechanisms contributed by authors from around the world. Through this window the reader can get a good view of current parallel robot research and applications

    Fault tolerant control for sensor fault of a single-link flexible manipulator system

    Get PDF
    This paper presents a new approach for sensor fault tolerant control (FTC) of a single-link flexible manipulator system (FMS) by using Finite Element Method (FEM). In this FTC scheme, a new control law is proposed where it is added to the nominal control. This research focuses on one element without any payload assumption in the modelling. The FTC method is designed in such way that aims to reduce fault while maintaining nominal FMS controller without any changes in both faulty and fault free cases. This proposed FTC approach is achieved by augmenting Luenberger observer that is capable of estimating faults in fault detection and isolation (FDI) analysis. From the information provided by the FDI, fault magnitude is assessed by using Singular Value Decomposition (SVD) where this information is used in the fault compensation strategy. For the nominal FMS controller, Proportional- integral- derivative (PID) controller is used to control the FMS where it follows the desired hub angle. This work proved that the FTC approach is capable of reducing fault with both incipient and abrupt signals and in two types of faulty conditions where the sensor is having loss of effectiveness and totally malfunction. All the performances are compared with FTC with Unknown Input Observer (FTC-UIO) method via the integral of the absolute magnitude of error (IAE) method

    [Advanced Development for Space Robotics With Emphasis on Fault Tolerance Technology]

    Get PDF
    This report describes work developing fault tolerant redundant robotic architectures and adaptive control strategies for robotic manipulator systems which can dynamically accommodate drastic robot manipulator mechanism, sensor or control failures and maintain stable end-point trajectory control with minimum disturbance. Kinematic designs of redundant, modular, reconfigurable arms for fault tolerance were pursued at a fundamental level. The approach developed robotic testbeds to evaluate disturbance responses of fault tolerant concepts in robotic mechanisms and controllers. The development was implemented in various fault tolerant mechanism testbeds including duality in the joint servo motor modules, parallel and serial structural architectures, and dual arms. All have real-time adaptive controller technologies to react to mechanism or controller disturbances (failures) to perform real-time reconfiguration to continue the task operations. The developments fall into three main areas: hardware, software, and theoretical
    • …
    corecore