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ABSTRACT

This work addresses the joint tracking problem of robotic manipulators with uncertain dynam-

ical parameters and actuator deficiencies, in the form of an uncertain control effectiveness matrix,

through adaptive control design, simulation, and experimentation. Specifically, two novel adaptive

controller formulations are implemented and tested via simulation and experimentation. The pro-

posed adaptive control formulations are designed to compensate for uncertainties in the dynamical

system parameters as well as uncertainties in the control effectiveness matrix that pre-multiplies the

control input. The uncertainty compensation of the dynamical parameters is achieved via the use of

the desired model compensation–based adaptation, while the uncertainties related to the control ef-

fectiveness matrix are dealt with via two fundamentally different novel adaptation methods, namely

with bound-based and projection operator-based methods. The stability of the system states and

convergence of the error terms to the origin are proven via Lyapunov–based arguments. Extensive

numerical studies are performed on a two–link planar robotic device, and experimental studies are

preformed on Quansers QArm to illustrate the effectiveness of both adaptive controllers. In the

experimental validation of the theory, both adaptive controllers demonstrate remarkable resilience,

maintaining control of the Quanser QArm even with up to an 80% control input deficiency. After

tuning the gains, both joints satisfactorily tracked the desired trajectories. When evaluating the

entire experiment, the norm of the square of the total error is averaged. The bound-based controller

exhibited an average error of 2.816◦ across all cases, while the projection operator-based controller

had a reduced average error of 1.012◦ across all cases. Furthermore, over time, there is a noticeable

decrease in error for both joints. These results underscore the robustness and effectiveness of the

proposed adaptive controllers, even under substantial actuator deficiencies. The results highlight

the significance of achieving near-perfect system knowledge and the careful selection of controls

for desirable system performance.
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1 Introduction

This thesis delves into the critical exploration of the implementation of adaptive control of

robotic manipulators, particularly under the influence of uncertainties and actuator deficiencies.

Chapter 1 elucidates the significance of this research and provides a diverse review of relevant

literature. Chapter 2 offers an in-depth background on the Quanser QArm, including the derivation

of necessary equations of motion, providing context for the theoretical constructs validated using

the Quanser QArm robotic manipulator. In Chapter 3, the model formulation for a standard adaptive

controller is presented, complemented by motivational experimental results. This is succeeded by

the exposition of the theoretical contributions to the dynamic model. Chapter 4 and Chapter 5

respectively detail the simulation results and the experimental results, including a discussion on

these findings. Finally, Chapter 6 provides a conclusion to this work.

1.1 Importance of Research

This research addresses the challenging and relevant problem of adaptive control of robotic

manipulators with uncertain dynamical parameters and actuator deficiencies. These uncertainties

can affect the performance and stability of the robotic manipulators, especially in scenarios where

precise and robust tracking is required [4]. The existing methods for adaptive control of robotic

manipulators have some limitations, such as requiring exact knowledge of the control effectiveness

matrix, assuming constant or bounded uncertainties, or relying on fault detection and isolation

schemes. This thesis fundamentally builds upon the work presented in [5], which introduced

innovative adaptive controller designs to compensate for the unknown control effectiveness matrix.

In fact, this thesis primarily focuses on the verification and experimental validation of this paper’s

theoretical constructs. Therefore, substantial portions of the original work from this paper are

replicated in this thesis to provide a comprehensive context for the experimental validation. The

technical objectives of this thesis are to experimentally validate the theoretical and simulated results

presented in the referenced paper and to maintain control of a robotic manipulator with potentially

high actuator deficiencies.

The foundational research of this thesis makes several significant contributions and introduces

1



novel concepts. Firstly, it presents a new Lyapunov-like function, a new projection operator-based

design, and a new bound-based design, for the adaptive control of robotic manipulators with actuator

deficiencies. Secondly, it establishes the asymptotic stability and tracking performance of the

robotic manipulators under both controller designs. Lastly, this thesis validates theoretical results

through both numerical simulations on a 2-degree-of-freedom serial robotic arm and experimental

studies using the Quanser QArm robotic manipulator.

The implications of this research are far-reaching. It enhances the robustness and effectiveness

of robotic manipulators in various scenarios, including industrial automation, medical robotics,

and space exploration. It also provides new insights and tools for adaptive control theory and, more

importantly, that they work in practice.

Furthermore, there are many possible future directions and open problems that can follow this

work. These include extending the results to cooperative or networked robot systems, dealing with

nonlinear and time-varying uncertainties, designing output feedback controllers, and incorporating

learning mechanisms. This work serves as a stepping stone for further advancements in this field.

1.2 Review of the Relevant Literature

A significant challenge in the realm of robot manipulator control pertains to compensating for

dynamic and/or kinematic uncertainties. From a theoretical standpoint, when the dynamic model

of a robot manipulator exhibits structured or parametric uncertainties, adaptive control techniques

become the preferred approach. To address kinematic uncertainties, several research efforts have

focused on adaptive task space tracking control. In [6], Cheah introduced an adaptive law for esti-

mating uncertain kinematic model parameters, particularly for the approximate Jacobian method.

Notably, this method does not necessitate task space velocity and the inverse of the approximate

Jacobian matrix. Cheah et al. [7, 8] proposed an approximate Jacobian controller for robot ma-

nipulators with uncertainties in kinematics and Jacobian, all without relying on task space velocity

and the inverse Jacobian matrix. In [9], Cheah presented methods involving approximate trans-

pose Jacobian and inverse Jacobian for set-point control of non-redundant robots with parametric

kinematic uncertainties. For dynamic uncertainties, adaptive control formulations have been ex-

2



plored in several works. Zergeroglu et al. [10], Xian et al. [11] feature an adaptive controller

designed to achieve asymptotic operational space tracking despite parametric uncertainties related

to the dynamic model. Tatlicioglu et al. [12, 13] developed a quaternion-based adaptive full-state

feedback controller for redundant robot manipulators afflicted by parametric uncertainties in their

dynamic model. Tatlicioglu et al. [14, 15] present an adaptive feedback linearizing control strategy

to compensate for parametric uncertainties in dynamics.

In the realm of addressing uncertainties in robot control, the literature explores various learning-

based control strategies. Initial contributions to repetitive learning control in the context of robotic

systems have been made by researchers [16–18]. However, it is important to note that these control

schemes can only ensure asymptotic convergence under specific and restrictive conditions on the

underlying plant dynamics. To enhance the robustness of the control methods put forth in [16] and

[17], modifications have been introduced in the form of a so-called Q-filter within the repetitive

update rule. Furthermore, in an effort to improve the robustness of the previously proposed

repetitive learning algorithm, researchers in [19] and [20] have devised a scheme that leverages

the use of Kernel functions in the update rule. In their pursuit of enhancing the robustness of

repetitive learning controllers, Sadegh et al. [21] introduce a saturated update rule. Additionally, in

[22], the authors present a full-state feedback learning controller that not only achieves asymptotic

tracking but is also supported by a stability analysis based on Lyapunov principles. In [23], [24],

and [25], a novel approach is taken by employing a model-free observer in conjunction with an

innovative feedforward learning component. This approach resulted in the design of an output

feedback repetitive learning controller tailored for robotic manipulators with periodic trajectories.

Importantly, this method ensures asymptotic tracking despite the uncertainties stemming from the

robot’s dynamics and the absence of velocity measurements. In [26], an adaptive operational space

controller is introduced for redundant robots, considering time-varying uncertainties and tasks

without knowledge of their bounds. Recent research has also delved into adaptive control for robot

end-effector motion, as seen in [27] and [28]. It is worth noting that nearly all of these approaches

require the robot dynamics to conform to a specific form, typically the linear parametrization
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property.

In the pursuit of addressing the complex problem of joint tracking in robotic manipulators with

uncertain dynamical parameters and actuator deficiencies, numerous researchers have proposed

diverse methodologies [4, 29–39].

1.2.1 Relevant Approaches in the Presence of Unknown Control Effectiveness

Here, various strategies that have been employed to control uncertain robotic manipulators with

unknown control effectiveness are given, with their unique perspectives and solutions. In robotic

manipulator dynamics, the diminution in effectiveness is conceptualized as a constant, diagonal

matrix that multiplies the control input [30]. This matrix is referred to by various names such

as the control effectiveness matrix [34–36], actuator torque coefficient matrix [30], transmission

matrix [37], constant torque matrix [38], and actuator health condition matrix [39]. In this work,

however, the term control effectiveness matrix is favored. From a control-theoretic perspective,

the uncertainty of the control effectiveness matrix implies that the control input is not relayed

to the system as intended, necessitating the need for compensation. By examining these varied

approaches, we aim to gain a deeper understanding of the problem at hand and the effectiveness

of our proposed adaptive controllers in comparison. Below, a summary of relevant approaches are

given.

Liu et al. [30] present an online monitoring system of actuator degradation and failures, where

an adaptive fault-tolerant control method for robot manipulators is used. Specifically, the paper

introduces a new parametric dynamic model that incorporates the actuator torque coefficients and

proposes an adaptive control scheme that can compensate for the model uncertainty and monitor

the actuator performance on-line. The authors also discuss how the proposed algorithm can be

used to detect actuator failures using the parameter deviation and commanded torque magnitude as

indicators. The paper demonstrates the effectiveness of the proposed method through theoretical

analysis and simulation results. The drawback of the method given in this paper is using over-

parameterization, which complicates the solution.

Tao et al. [29] present an adaptive actuator failure compensation scheme for a cooperative
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manipulator system with parameter uncertainties. The scheme uses multiple individual failure

compensators and direct adaptation of controller parameters to handle uncertain actuator failures

and parameter uncertainties. The scheme ensures closed-loop stability and asymptotic output

tracking of the system output, despite the failures. The effectiveness of the scheme is verified by

simulation results of a benchmark cooperative manipulator system with two degrees of freedom

and three actuators. The difference of the methods given in this paper is that the formulation is

based on task-space (not joint-space) control.

Luca et al. [31] present a method for detecting and isolating actuator faults in robot manipulators

using generalized momenta. The method does not require acceleration estimates or simulation of

the nominal robot dynamics and covers a general class of input faults. The method is based on

comparing the nominal input torque and the generalized momenta, which are decoupled from the

effects of faults and inputs. The method generates residuals that are linearly driven by the faults

and can be used for fault identification. The method is tested on a two-revolute joint planar robot

under gravity and different types of actuator faults and shows good performance in reconstructing

the faults and a decoupled behavior of the residuals. The authors also discuss the advantages of

using generalized momenta for fault detection and isolation and the limitations of the method in

terms of model accuracy and disturbance rejection. The drawback of the method given in this paper

is using the results in Liu [30] with less computation required but still using over-parameterization
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2 QArm Model

In this section, a comprehensive overview of the experimental plant, specifically the QArm

robotic manipulator, is provided. This includes detailed specifications and the underlying dynamic

equations, thereby establishing a robust context for the forthcoming experimental results. Sub-

sequently, we elucidate the transformation process between the output of the adaptive controller,

namely the commanded torque, and the corresponding input of the QArm robotic manipulator.

2.1 QArm Dynamics

For the experimental results of this thesis, the Quanser QArm Modern Manipulator Arm is used,

which is a 4-degree-of-freedom (DOF) serial robotic manipulator with a tendon-based two-stage

gripper and an RGBD camera. The QArm is designed for modern engineering education and

academic research applications [2]. See Figure 2.1 for the QArm in the FAST Lab at Embry-Riddle

Aeronautical University.

Figure 2.1 Picture of the Quanser QArm in the FAST Lab. FAST Lab website: [1]
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To use the QArm most effectively for research purposes it is important to understand its

geometry, dynamics, kinematics, and built-in control system. If the tip of the two-stage gripper

arm is located at some point in space that we call p⃗, then this point can be defined by its position

vector, [px, py, pz]
T , called the task space, or some combination of joint angles, [θ1 θ2 θ3 θ4], called

the joint space.

The dynamics of the QArm represent a highly complex nonlinear system that describes the

motion of the 4 joints of the system: the base joint, the shoulder joint, the elbow joint, and the wrist

joint. The geometry of the system can be seen in Figure 2.2, where the lengths of each arm the

location of each joint and their corresponding joint frame, as well as how each of the direction of

joint angles and angular velocities, are shown.

Figure 2.2 Frame diagram for the Quanser QArm manipulator [2].
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Furthermore, as the arm moves, the locations of the centers of mass of each link change which

affects the dynamics of the system, as illustrated in Figure 2.3. Studying these figures can help in

understanding the dynamics of the system, specifically how each link interacts with other links.

Figure 2.3 Rigid body diagram for the Quanser QArm manipulator [2].

The QArm is capable of two types of kinematics: forward kinematics and inverse kinematics.

Forward kinematics uses transformation matrices to provide a mapping from the joint space to

the task space. Inverse kinematics uses transformation matrices to do the opposite and provide a

mapping from task space to joint space. The system can also be described using the Lagrangian,

which uses the kinetic energies Ti and potential energies Pi of the system joint to derive the equations

of motion. This thesis uses the joint space to control the robotic manipulator using novel adaptive
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controllers. It is important to understand the Lagrangian dynamics because they are how the joint

torques are derived.

The equations of motion are derived using the Lagrangian method; however, for the purposes

of this thesis, a full derivation of the kinetic and potential energies is not given. These derivations

can be found on the Quanser QArm website under “USER MANUALS” [2]. To create the

mathematical model of the nonlinear system, this section starts with the completed Lagrangian to

obtain the equations of motion. The Lagrangian in this system is defined as the sum of all the

kinetic and potential energies of each joint, which is expressed in Equation (2.1).

L =
4

∑
n=1

Tn −
4

∑
n=1

Pn (2.1)

Plugging in the values for Tn (kinetic energy) and Pn (potential energy) for each joint and

calculating the summation we get Equation 2.2,

L =

(
1
2

I1A +
1
2

m2 (λ2 −λc2)
2 c2

2 +
1
2

I2As2
2 +

1
2

I2Lc2
2 +

1
2

m3λ
2
2 c2

2 +
1
2

m3λ
2
c3s2

23

−m3λ2λc3c2s23 +
1
2

I3Ls2
23 +

1
2

I3Ac2
23 +

1
2

m4 (λ3 −λc4)
2 s2

23 +
1
2

m4λ
2
2 c2

2

−m4 (λ3 −λc4)λ2c2s23 +
1
2

I4Ls2
23 +

1
2

I4Ac2
23

+
1
2

mLλ
2
3 s2

23 +
1
2

mLλ
2
2 c2

2 −mLλ2λ3c2s23

)
θ̇

2
1

+

(
1
2

m2 (λ2 −λc2)
2 +

1
2

I2L +
1
2

m3λ
2
2 +

1
2

m3λ
2
c3 −m3λ2λc3s3 +

1
2

I3L

+
1
2

m4 (λ2 +λ3 −λc4)
2 +

1
2

I4L +
1
2

mLλ
2
2 +

1
2

mLλ
2
3 −mLλ2λ3s3

)
θ̇

2
2

+

(
1
2

m3λ
2
c3 +

1
2

I3L +
1
2

m4 (λc4 −λ3)
2 +

1
2

I4L +
1
2

mLλ
2
3

)
θ̇

2
3

+

(
1
2

I4A

)
θ̇

2
4 −

(
I4Ac23

)
θ̇1θ̇4
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+

(
m3λ

2
c3 −m3λc3λ2s3 + I3L +m4 (λ3 −λc4 −λ2s3)(λ3 −λc4)

+I4L −mL
(
λ

2
3 −λ2λ3s3

))
θ̇2θ̇3

−m1g(λ1 −λc1)−m2g(λ1 − (λ2 −λc2)s2)−m3g(λ1 −λ2s2 −λc3c23)

−m4g(λ1 −λ2s2 − (λ3 −λc4)c23)−mLg(λ1 −λ2s2 −λ3c23) . (2.2)

For the experimental results of this thesis, only the shoulder and elbow joints, θ2 and θ3, are

used; therefore the equations for the torque of the base and wrist do not need to be derived. The

following equation can be used to derive the necessary joint torques, which are the inputs into the

system:

τi =
d
dt

(
dL

dθ̇i

)
− dL

dθi
. (2.3)

The second joint is the shoulder joint, which sits just above the top of the control box and has a

range of motion between −85◦ and +85◦. This joint is very complicated because it must take into

account the moment of inertia of every joint beside the base, which has a small moment of inertia

(MOI). The torque required by this joint is given by

τ2 =
d
dt

(
dL

dθ̇2

)
− dL

dθ2
. (2.4a)

dL

dθ̇2
=
(

m2 (λ2 −λc2)
2 + I2L +m3λ

2
2 +m3λ

2
c3 −2m3λ2λc3s3 + I3L

+m4 (λ2 +λ3 −λc4)
2 + I4L +mLλ

2
2 +mLλ

2
3 −2mLλ2λ3s3

)
θ̇2

+
(

m3λ
2
c3 −m3λc3λ2s3 + I3L

+m4 (λ3 −λc4 −λ2s3)(λ3 −λc4)+ I4L −mL
(
λ

2
3 −λ2λ3s3

))
θ̇3. (2.4b)

d
dt

(
dL

dθ̇2

)
=
(

m2 (λ2 −λc2)
2 + I2L +m3λ

2
2 +m3λ

2
c3 −2m3λ2λc3s3 + I3L
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+m4 (λ2 +λ3 −λc4)
2 + I4L +mLλ

2
2 +mLλ

2
3 −2mLλ2λ3s3

)
θ̈2

+
(

m3λ
2
c3 −m3λc3λ2s3 + I3L

+m4 (λ3 −λc4 −λ2s3)(λ3 −λc4)+ I4L −mL
(
λ

2
3 −λ2λ3s3

))
θ̈3

−
(

2m3λ2λc3c3 +2mLλ2λ3c3

)
θ̇2θ̇3

−
(

m3λc3λ2c3 +m4λ2c3 (λ3 −λc4)−mL (λ2λ3c3)
)

θ̇
2
3 . (2.4c)

dL

dθ2
=
(
−m2 (λ2 −λc2)

2 s2c2 + I2As2c2 − I2Ls2c2 −m3λ
2
2 s2c2 +m3λ

2
c3s23c23

+m3λ2λc3s2s23 −m3λ2λc3c2c23 + I3LS23c23 − I3As23c23 +m4 (λ3 −λc4)
2 s23c23

−m4λ
2
2 s2c2 +m4 (λ3 −λc4)λ2s2s23 −m4 (λ3 −λc4)λ2c2c23 + I4Ls23c23

−I4As23c23 +mLλ
2
3 s23c23 −mLλ

2
2 s2c2 +mLλ2λ3s2s23 −mLλ2λ3c2c23

)
θ̇

2
1

+
(

I4As23

)
θ̇1θ̇4 +m2g(λ2 −λc2)c2 +m3g(λ2c2 −λc3s23)

+m4g(λ2c2 − (λ3 −λc4)s23)+mLg(λ2c2 −λ3s23) . (2.4d)

Plugging in Equations 2.4b, 2.4c, and 2.4d, into 2.4a, one obtains:

τ2 =
(

m2 (λ2 −λc2)
2 + I2L +m3λ

2
2 +m3λ

2
c3 −2m3λ2λc3s3 + I3L +m4λ2 +λ3

−λ
2
c4 + I4L +mLλ

2
2 +mLλ

2
3 −2mLλ2λ3s3

)
θ̈2

+
(
{m3λ

2
c3 −m3λc3λ2s3 + I3L +m4 (λ3 −λc4 −λ2s3)(λ3 −λc4)

+I4L −mL
(
λ

2
3 −λ2λ3s3

))
θ̈3

−
(
−m2 (λ2 −λc2)

2 s2c2 + I2As2c2 − I2Ls2c2 −m3λ
2
2 s2c2 +m3λ

2
c3s23c23

+m3λ2λc3s2s23 −m3λ2λc3c2c23 + I3Ls23c23 − I3As23c23 +m4 (λ3 −λc4)
2 s23c23
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−m4λ
2
2 s2c2 +m4 (λ3 −λc4)λ2s2s23 −m4 (λ3 −λc4)λ2c2c23 + I4Ls23c23

−I4As23c23 +mLλ
2
3 s23c23 −mLλ

2
2 s2c2 +mLλ2λ3s2s23 −mLλ2λ3c2c23

)
θ̇

2
1

−
(

m3λc3λ2c3 +m4λ2c3 (λ3 −λc4)−mL (λ2λ3c3)
)

θ̇
2
3 −

(
I4As23

)
θ̇1θ̇4

−
(

2m3λ2λc3c3 +2mLλ2λ3c3

)
θ̇2θ̇3

−g
(

m2 (λ2 −λc2)c2 +m3 (λ2c2 −λc3s23)

+m4 (λ2c2 − (λ3 −λc4)s23)+mL (λ2c2 −λ3s23)
)
. (2.5)

The third joint is the elbow joint, which has a rotation point that is not directly in line with the

l3 arm. There is some additional length from the center-line of link 1 to the rotation axis of the

elbow, denoted l2, in the x1 direction which we can represent by the angle β , as shown in Figure

2.3. The elbow can rotate between a range of −95◦ to +75◦. The torque required by the third joint

is given by

τ3 =
d
dt

(
dL

dθ̇3

)
− dL

dθ3
. (2.6a)

dL

dθ̇3
=
(

m3λ
2
c3 + I3L +m4 (λc4 −λ3)

2 + I4L +mLλ
2
3

)
θ̇3

+
(

m3λ
2
c3 −m3λc3λ2s3 + I3L +m4 (λ3 −λc4 −λ2s3)(λ3 −λc4)

+I4L −mL
(
λ

2
3 −λ2λ3s3

))
θ̇2. (2.6b)

d
dt

(
dL

dθ̇3

)
=
(

m3λ
2
c3 + I3L +m4 (λc4 −λ3)

2 + I4L +mLλ
2
3

)
θ̈3

+
(

m3λ
2
c3 −m3λc3λ2s3 + I3L +m4 (λ3 −λc4 −λ2s3)(λ3 −λc4)

+I4L −mL
(
λ

2
3 −λ2λ3s3

))
θ̈2

+
(

mLλ2λ3c3 −m3λc3λ2c3 −m4λ2 (λ3 −λc4)c3

)
θ̇2θ̇3. (2.6c)
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dL

dθ3
=
(

m3λ
2
c3s23c23 −m3λ2λc3c2c23 + I3Ls23c23 − I3As23c23

+m4 (λ3 −λc4)
2 s23c23 −m4 (λ3 −λc4)λ2c2c23 + I4Ls23c23

−I4As23c23 +mLλ
2
3 s23c23 −mLλ2λ3c2c23

)
θ̇

2
1

−
(

m3λ2λc3c3 +mLλ2λ3c3

)
θ̇

2
2 +

(
I4As23

)
θ̇1θ̇4

−
(

m3λc3λ2c3 +m4λ2c3 (λ3 −λc4)−mL (λ2λ3c3)
)

θ̇2θ̇3

−m3gλc3s23 −m4g(λ3 −λc4)s23 −mLgλ3s23. (2.6d)

Plugging in Equations 2.6b, 2.6c, and 2.6d, into 2.6a, one obtains Equation 2.7,

τ3 =
(

m3λ
2
c3 −m3λc3λ2s3 + I3L +m4 (λ3 −λc4 −λ2s3)(λ3 −λc4)

+I4L −mL
(
λ

2
3 −λ2λ3s3

))
θ̈2

+
(

m3λ
2
c3 + I3L +m4 (λc4 −λ3)

2 + I4L +mLλ
2
3

)
θ̈3

−
(

m3λ
2
c3s23c23 −m3λ2λc3c2c23 + I3Ls23c23 − I3As23c23

+m4 (λ3 −λc4)
2 s23c23 −m4 (λ3 −λc4)λ2c2c23 + I4Ls23c23

−I4As23c23 +mLλ
2
3 s23c23 −mLλ2λ3c2c23

)
θ̇

2
1

+
(

m3λ2λc3c3 +mLλ2λ3c3

)
θ̇

2
2 −

(
I4As23

)
θ̇1θ̇4

+g
(

m3λc3s23 +m4 (λ3 −λc4)s23 +mLλ3s23

)
. (2.7)

These joint torques are mainly used in the simulation model of the Quanser QArm. However,

these equations are also used to build a matrix of chosen parameters that are estimated in the loop.

This process is explained in Section 3.1.
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2.2 Torque to PWM conversion

The Quanser QArm can be manipulated through two distinct control strategies. The first strategy

involves issuing commands in either joint or task space, upon which the internal Proportional

Integral Derivative (PID) controller endeavors to achieve the specified command. The second

strategy involves the transmission of a Pulse Width Modulation (PWM) signal that corresponds to

the voltage output for each individual motor, thereby offering direct control over each joint. Thus,

the second strategy is used for the experimental validation of this thesis.

PWM is a technique used to control analog devices using a digital signal. It works by pulsating

DC current and varying the amount of time that each pulse stays ’on’ to control the amount of

current that flows to a device. This method can generate an analog-like signal from a digital device,

such as the XM540 DC-Motor used in each of the joints of the QArm [3].

In the context of this research, the PWM control mode is utilized for commanding each joint of

the Quanser QArm individually; however, it is important to note that, in our theory, the output of the

adaptive controller is expressed in terms of torque rather than voltage. Consequently, an effective

implementation of the proposed controllers necessitates the derivation of a conversion factor from

torque to PWM voltage.

To this end, the DC motor voltage can be defined as follows:

V = Ri+L
di
dt

−Keω, (2.8)

where i is the current, R is the resistance, L is the inductance, di
dt is the rate of change of current,

Ke is the back electromotive force (EMF) constant, and ω is the angular velocity. The change

in current and the back EMF constant term multiplied by the shaft speed can be assumed to be

negligible when compared to the magnitude of Ri. The torque output of the motor can also be

expressed in terms of the current in the following form:

τ = Kt i, (2.9)
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where Kt is the motor torque constant.

Then, Equation (2.9) can be solved for the current and plugged into (2.8) to get the following

expression:

V =

(
τ

Kt

)
R. (2.10)

From the motor data sheet [3], one can calculate

Kt =
10.6Nm

4.4A
, (2.11)

R =
12
4.4

Ohms. (2.12)

The linear expression was derived for the adaptive controller allows the commanded torque to be

translated into a PWM voltage input that the QArm can comprehend. However, the motor datasheet

reveals a nonlinear relationship between torque and current, as illustrated in Figure 2.4.

In this research, for a more rigorous transformation, the data derived from the graph are

meticulously extracted to construct a second-order polynomial function. This function more

accurately delineates the relationship within the confines specified by the graph. Subsequently, a

mapping is developed based on empirical motor testing, which provides an alternative conversion

from torque to current. For a detailed exposition of these three torque-to-current mappings, refer

to Figure 2.5.

After extensive experimentation, it was observed that the combination of linear and polynomial

mapping yielded the most accurate results for the implementation of the novel adaptive controllers.

It is crucial to underscore that, while the PWM voltage input is conducive to experimentation,

it also harbors potential hazards. This is primarily attributable to the fact that the PWM signal

lacks inherent constraints on the input, thereby posing a risk of saturation. Such saturation can

inflict damage not only on the motors but also on the entire QArm system. To mitigate this risk

in this research, two limiters have been implemented within the Simulink environment. The first
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Figure 2.4 XM540 DC-Motor speed-efficiency-current to torque plot [3].

limiter imposes a cap on the PWM saturation, confining the input signal within the upper and lower

saturation values. This safeguard ensures that, in the event of controller instability leading to an

excessively large output value, this command will never reach the motors. The second limiter is

imposed on the PWM rates, effectively constraining the rising and falling rates of the PWM signal.

Undeniably, these two constraints exert an influence on the system’s response. Initial exper-

imental results were obtained by testing the system with varying values for each limiter. After

extensive experimentation, it was discerned that the optimal balance between system response and

precautionary measures is achieved when the PWM saturation limits are set to ±0.4 and the PWM

rate limits are configured to ±0.5.

In conclusion, the rigorous and meticulous approach is adopted in this study has yielded

significant insights into the behavior of the system under varying conditions. The implementation

of limiters within the Simulink environment has proven to be an effective strategy in mitigating
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Figure 2.5 Torque to PWM mapping in the Simulink environment.

potential risks associated with the PWM voltage input. Furthermore, the extensive experimentation

has led to the identification of optimal values for the PWM saturation and rate limits, striking

a balance between system response and precautionary measures. These findings underscore the

importance of careful parameter tuning in achieving desired system performance and stability.

Future work may explore additional strategies for system optimization and risk mitigation.
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3 Adaptive Control of Robotic Manipulators

In this section, we delineate two mathematical models pertinent to a robotic manipulator. The

initial model is presented devoid of the control effectiveness matrix, thereby providing an insight

into the conventional adaptive controller formulation as typically encountered in the literature.

Subsequently, we exhibit a series of experimental results derived from this standard adaptive

controller formulation, serving to further substantiate and motivate the research conducted in

this thesis. Finally, we introduce the model formulation in the context of the unknown control

effectiveness matrix, which incorporates the novel adaptive controller update laws as proposed in

[5].

3.1 Problem Formulation in the Absence of the Unknown Control Effectiveness Matrix

The following generic dynamic model of an n degree of freedom (DoF) revolute joint, robot

manipulator in the absence of the control effectiveness matrix is given as

M (q) q̈+Vm(q, q̇)q̇+G(q)+Fd q̇ = τ, (3.1)

where q(t), q̇(t), q̈(t) ∈ Rn denote the joint positions, velocities, and accelerations, respectively.

M(q) ∈ Rn×n is the positive definite and symmetric inertia matrix, Vm(q, q̇) ∈ Rn×n, denotes the

centripetal-Coriolis terms, G(q) ∈ Rn denotes the gravitational effects, and Fd ∈ Rn×n denotes the

constant viscous frictional effects.

In order to quantify the control objectives, one can define the joint level tracking error term,

denoted by e(t) ∈ Rn, and the estimation error term, denoted by φ̃(t) ∈ Rp, as follows:

e ≜ qd −q,

φ̃ ≜ φ − φ̂

(3.2)

with φ̂(t) ∈ Rp being the estimation of an unknown dynamic model parameter vector φ ∈ Rp

(details below). In addition, an auxiliary signal, referred to as the filtered tracking error, denoted
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by r(t) ∈ Rn, is also defined in the following form:

r ≜ ė+µe, (3.3)

where µ ∈ Rn×n
+ ∩Dn×n

+ is a constant, positive definite, diagonal control gain matrix. For the

adaptive controller development, the property that the robot dynamics given in (3.1) are linearly

parametrizable [Lewis et al. [4]]is used, in the sense that

M(q)q̈+N(q, q̇) = Y (q, q̇, q̈)φ . (3.4)

Here, Y (q, q̇, q̈)∈Rn×p is the regressor matrix, and φ ∈Rp is the unknown model parameter vector

previously introduced in (3.2). Then, the desired form of the above expression, which is obtained

by setting q → qd, q̇ → q̇d, q̈ → q̈d, results in

Yd(qd, q̇d, q̈d)φ = M(qd)q̈d +Vm(qd, q̇d)q̇d +G(qd)+Fd q̇d︸ ︷︷ ︸
N(qd ,q̇d)

, (3.5)

where Yd(qd, q̇d, q̈d) ∈ Rn×p is the desired version of the regression matrix Y (q, q̇, q̈), with q̇d and

q̈d being desired joint velocity and acceleration signals, respectively.

For this thesis, the unknown model parameter vector, φ ∈ Rp, is defined as:

φ =



m2 m2

I2L I2L

m3 m3

I3L I3L

m4 m4

I4L I4L


︸︷︷︸

θ2

︸︷︷︸
θ3

, (3.6)
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where mass and inertia parameters are selected.

Now the regression matrix Y (q, q̇, q̈) can be built by refactoring Equations (2.5) and (2.7) in

terms of our chosen model parameters. This gives

Y =



θ̈2(λ2 −λc2)
2 −g(λ2 −λc2)cosθ2 0

θ̈2 0

a b

θ̈2 + θ̈3 θ̈2 + θ̈3

c d

θ̈2 + θ̈3 θ̈2 + θ̈3



T

, (3.7)

where θ → q, θ̇ → q̇, θ̈ → q̈ and

a = θ̈2(λ
2
2 +λ

2
c3 −2λ2λc3 sinθ3)+ θ̈3(λ

2
c3 −λc3λ2 sinθ3)

−2θ̇2θ̇3λ2λc3 cosθ3 − θ̇3
2
λc3λ2 cosθ3 −g(λ2 cosθ1 −λc3 sin(θ1 +θ3)), (3.8)

b = θ̈2λ
2
c3 − θ̈2λ2λc3 sinθ3 + θ̈3λ

2
c3 + θ̇2

2
λc3λ2 cosθ3 +gλc3 sin(θ1 +θ3), (3.9)

c = θ̈2(λ2 +λ3 −λc4)
2 + θ̈3(λ3 −λc4 −λ2 sinθ3)(λ3 −λc4)

− θ̇3
2
λ2 cosθ3(λ3 −λc4)−g(λ2 cosθ1 − (λ3 −λc4)sin(θ1 +θ3)), (3.10)

d = θ̈2(−λ2 sinθ3 +λ3 −λc4)(λ3 −λc4)+ θ̈3(−λ3 +λc4)
2 +g(λ3 −λc4)sin(θ1 +θ3). (3.11)

The dynamics of the tracking error are obtained straightforwardly from (3.3) as “ė = r − µe”;

however, for obtaining the dynamics of the filtered tracking error, one can first take the time

derivative of (3.3), then pre-multiply the resulting expression with the inertia matrix to obtain

Mṙ =−Vmr+M(q̈d +µ ė)+Vm(q̇d +µe)+G+Fd q̇− τ, (3.12)

where time derivatives of (3.2) and (3.3) are applied. In an attempt to present the open-loop error

system in an advantageous way, the desired dynamics introduced in (3.5) are added and subtracted
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to the right hand side of (3.12) to yield,

Mṙ =−Vmr+X +Ydφ − τ. (3.13)

Here, X (t) ∈ Rn is an auxiliary term defined as follows:

X ≜ M(q̈d +µ ė)+Vm(q̇d +µe)+G+Fd q̇−Ydφ . (3.14)

Note that, using properties of robot dynamics, an upper bound for X can be obtained as follows

[4]:

∥X ∥≤ ρ1∥e∥+ρ2∥r∥≤ ρ∥z∥, (3.15)

where z(t) = [eT(t),rT(t)]T ∈ R2n denotes the combined error vector, and ρ(∥e∥), ρ1(∥e∥),

ρ2(∥e∥) ∈ R+ are positive bounding functions that are defined as:

ρ1 = ζ1 +ζ2∥e∥, ρ2 = ζ3 +ζ4∥e∥,

ρ = max{ζ1,ζ3}+max{ζ2,ζ4}∥e∥ (3.16)

with ζ1, ζ2, ζ3, ζ4 ∈ R+ being known constant positive bounds that depend on the desired joint

trajectory and physical properties of the robot manipulator. It is emphasized that the upper bound

of Equation (3.15) is standard in relevant literature; see, for example, [40–42].

Observing Equation (3.1), it is evident that the control input, or joint torque, is isolated on

the right-hand side. This isolation implies an assumption that any control input commanded by a

controller is flawlessly received and executed by the robotic manipulator. However, this assumption

does not account for potential sources of uncertainty. These uncertainties could stem from a variety

of factors such as a deficient motor that only delivers a fraction of the commanded voltage, or

unmodeled physical disturbances like an external object impeding the manipulator’s motion. These

uncertainties are currently addressed indirectly through various control structures, as summarized

in Section 1.2.1.
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Nevertheless, there is potential for improvement in this approach. If these actuator deficiencies

could be accurately estimated, and this estimated information is incorporated into the adaptive

controller, it would result in a more precise tracking response of the joint torques. This approach

would allow for a more robust and effective control of the robotic manipulator, even in the presence

of substantial actuator deficiencies. The following sections delve into this proposition in greater

detail, exploring its potential benefits.

3.1.1 Standard Adaptive Controller (SAC) Experimentation

To further motivate the need for the estimation of the unknown parts of the control effectiveness

matrix, an experiment is performed on the Quanser QArm, with a forced actuator deficiency.

This experiment is motivated by the structure of the open-loop error dynamics of Equation (3.13)

which will be fully derived in Section 3.2. For the motivational experimental results, the following

standard adaptive controller input signal is used

τ = Ydφ̂ +Krr+ knρ
2r+ e (3.17)

with Kr ∈ Rn×n
+ ∩Dn×n

+ and kn ∈ R+ being the control gain matrix and damping gain, respectively.

In (3.17), φ̂(t) ∈ Rp, the estimation of the unknown dynamic model parameter vector, is updated

via the below dynamic law
˙̂
φ = ΓY T

d r (3.18)

with Γ ∈ Rp×p
+ ∩Dp×p

+ being the constant, diagonal learning rate matrix.

An actuator deficiency of 80% is enforced by multiplying the commanded τ from the adaptive

controller by 0.2I2. For comparison, a low actuator deficiency of 20% is also used. For both cases,

the adaptation learning rates are set to Γ = 1I6. The control gains are set to be Kr = diag(40,60),

kn = 1, and µ = 3. The desired trajectory is the shoulder joint oscillating 10 degrees and the elbow

joint oscillating 15 degrees with a period of about 6.25 seconds.

At low actuator deficiencies (i.e., 20% in this case), the large control gains appear to be enough

to produce the desired tracking. In Figure 3.1, the desired joint angles are tracking quite well,
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Figure 3.1 Joint angles via a SAC with actuator deficiency (20%).

which leads to the conclusion that a standard adaptive controller is sufficient to compensate for low

actuator deficiencies.

At high actuator deficiencies (i.e., 80% in this case), the standard adaptive controller requires

modification. In Figure 3.2, the tracking performance of both the shoulder and elbow joints in the

robotic arm manipulator is not at a desired level of accuracy. This is evident from the fact that

despite the system’s inherent stability, the error reduction process is slow and gradual.

In Figure 3.2, the black dashed lines, which represent the desired and measured elbow angles

respectively, one can observe a significant initial error at both the peak and trough of the sinusoidal

pattern. This error is particularly pronounced at the start of the experiment. However, as the

experiment progresses, on the elbow joint only, there is a noticeable improvement in tracking at

the peak of the sinusoid. Unfortunately, this improvement is not mirrored at the trough, where a

discrepancy of 0.05 rad or 2.86 degrees persists.

The shoulder joint exhibits a similar pattern. It starts with a substantial error that gradually

diminishes as it approaches the desired joint angle. This slow but steady reduction is attributed to
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Figure 3.2 Joint angles via SAC with actuator deficiency (80%).

the adaptive control system’s ability to learn and adjust its parameters over time; however, the error

convergence could be much improved if the controller had an estimate of the actuator deficiency. In

addition, Figures 3.3, 3.4, and 3.5 respectively show joint angular velocities, angle tracking errors,

and control torques.

Upon initial observation, Figure 3.4 appears to indicate an escalating error for the elbow joint

over the course of the experiment, while the error for the shoulder joint remains relatively constant.

However, a more detailed analysis reveals additional nuances. The error term for both the peak and

trough of the oscillation begins below zero. As the experiment progresses, the error at the trough

of the oscillation remains nearly constant. In contrast, the error at the peak of the oscillation shows

a trend toward zero, indicating an improvement in tracking performance over time.

The shoulder joint exhibits a more subtle change. While there is no significant shift in the

overall error, a closer examination reveals a slight trend towards zero during the transition between

the peak and trough of the oscillation towards the end of the experiment. This suggests that, while

the error may not decrease significantly, the system is spending more time near the desired position.
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Figure 3.3 Angular velocities via SAC with actuator deficiency (80%).

Figure 3.4 Joint error via SAC with actuator deficiency (80%).
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Figure 3.5 Toques via SAC with actuator deficiency (80%).

These observations provide valuable insights into the performance of the standard adaptive

control system in validating robotic arm manipulator movements. The results clearly highlight the

need for improvement.

3.2 Problem Formulation in the Presents of the Unknown Control Effectiveness Matrix

This thesis, which is dependent on theoretical work presented in [5], includes the addition of

an experimental comparison study with various cases such as 20%, 40%, 60%, and 80% actuator

deficiencies. This section summarizes the theoretical results in [5] and how they differ from the

standard mathematical model. In addition, a comprehensive context for a thorough understanding

and appreciation of the experimental results presented in this thesis are given. The problem

formulation includes the utilization of a control effectiveness matrix Λ that premultiplies the

control input τ in order to model actuator deficiency. This allows two novel adaptive controllers to

be designed that differ in how the estimated uncertainty terms are updated in the loop.

The updated dynamic model of an n DoF, revolute joint, robot manipulator is now given in
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the following form in the presence of not only uncertain dynamics but also an unknown control

effectiveness matrix:

M (q) q̈+N (q, q̇) = Λτ, (3.19)

where, again, q(t), q̇(t), q̈(t) ∈ Rn denote the joint positions, velocities, and accelerations, respec-

tively. M(q) ∈ Rn×n is the positive definite and symmetric inertia matrix, and N(q, q̇) represents

all the nonlinear terms:

N (q, q̇)≜Vm(q, q̇)q̇+G(q)+Fd q̇ (3.20)

with Vm(q, q̇)∈Rn×n denoting the Centripetal-Coriolis terms, G(q)∈Rn denoting the gravitational

effects, and Fd ∈ Rn×n denoting the constant viscous frictional effects. In (3.19), the control input

vector is denoted by τ(t) ∈ Rn and the control effectiveness matrix is denoted by Λ ∈ Rn×n.

In accordance with the relevant adaptive control literature, in this work, Λ ≜ In + δΛ where δΛ ∈

Rn×n∩ IDn×n denotes the unknown part of the control effectiveness matrix subject to the assumption

δΛ >−In (Gruenwald et al. [34], Dogan et al. [36, 43]).

In order to further quantify the control objectives, we define a second estimation error term

denoted by δ̃Λ(t) ∈ Rn×n as follows:

δ̃Λ ≜ δΛ − δ̂Λ, (3.21)

where δ̂Λ(t) ∈ Rn×n∩Dn×n is the estimate of the unknown part of the control effectiveness matrix

δΛ.

Several equations are unchanged by the addition of the control effectiveness matrix and have

already been defined in Section 3.1, but are repeated here for clarity. There exist the joint level
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tracking error term e(t) ∈ Rn and the estimation error term φ̃(t) ∈ Rp from Equation (3.2)

e ≜ qd −q,

φ̃ ≜ φ − φ̂ .

(3.22)

The filtered tracking error r(t) ∈ Rn from Equation (3.3)

r ≜ ė+µe. (3.23)

The robot dynamics are given in (3.19) and the definition of the regressor matrix for this linearly

parametrizable [4] system is given by Equation (3.4)

M(q)q̈+N(q, q̇) = Y (q, q̇, q̈)φ . (3.24)

The desired version of the regression matrix Y (q, q̇, q̈), where q̇d and q̈d are desired joint velocity

and acceleration signals, respectively, is given by Equation (3.5):

Yd(qd, q̇d, q̈d)φ = M(qd)q̈d +Vm(qd, q̇d)q̇d +G(qd)+Fd q̇d︸ ︷︷ ︸
N(qd ,q̇d)

. (3.25)

The dynamics of the tracking error are obtained straightforwardly from Equation (3.23) as

“ė = r− µe”; however for obtaining the dynamics of the filtered tracking error, one can take the

time derivative of Equation (3.23), then pre-multiply the resulting expression with the inertia matrix

to obtain

Mṙ =−Vmr+M(q̈d +µ ė)+Vm(q̇d +µe)+G+Fd q̇−Λτ, (3.26)

where time derivatives of Equation (3.22) and Equation (3.23) are applied. In an attempt to present

the open–loop error system in an advantageous way, the desired dynamics introduced in Equation
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(3.25) are added and subtracted to the right hand side of Equation (3.26) to yield

Mṙ =−Vmr+X +Ydφ −Λτ. (3.27)

Here, X (t) ∈ Rn is identical to the auxiliary term defined in Equation (3.14):

X ≜ M(q̈d +µ ė)+Vm(q̇d +µe)+G+Fd q̇−Ydφ . (3.28)

where the bounds X are from Equation (3.15):

∥X ∥≤ ρ1∥e∥+ρ2∥r∥≤ ρ∥z∥, (3.29)

and the positive bounding functions are given in Equation (3.16):

ρ1 = ζ1 +ζ2∥e∥, ρ2 = ζ3 +ζ4∥e∥,

ρ = max{ζ1,ζ3}+max{ζ2,ζ4}∥e∥ (3.30)

where ζ1, ζ2, ζ3, ζ4 ∈ R+ are known constant positive bounds that depend on the desired joint

trajectory and physical properties of the robot manipulator.

At this stage, motivated by the structure of the open-loop error dynamics of Equation (3.27)

and the subsequent stability analysis, the following adaptive controller is proposed:

τ = (I + δ̂Λ)
−1(Ydφ̂ +Krr+ knρ

2r+ e), (3.31)

where Kr ∈ Rn×n
+ ∩Dn×n

+ and kn ∈ R+ are a control gain matrix and damping gain, respectively.

In Equation (3.31), φ̂(t) ∈ Rp, the estimation of the unknown dynamic model parameter vector, is

updated via the below dynamic law:
˙̂
φ = ΓY T

d r, (3.32)
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where Γ ∈Rp×p
+ ∩Dp×p

+ is a constant, diagonal learning rate matrix. Moreover, in Equation (3.31),

δ̂Λ(t) ∈ Rn×n∩Dn×n can be written as δ̂Λ(t) = diag([δ̂λ1(t), δ̂λ2(t), ..., δ̂λn(t)]). In this work, two

novel adaptive update rules are used from [5] to compensate for the uncertainties in the control

effectiveness matrix. The main issue in designing update laws as estimations for the uncertainties

of the control effectiveness matrix is the need to upper and lower bound the estimated values with

known maximum and minimum bounds of δλmaxi
and δλmini

, respectively, for each actuated joint

i = 1, ...,n. To guarantee the inversion of I + δ̂Λ(t), we consider −1 < δ̂λ i,min ≤ δ̂λ i(t)≤ δ̂λ i,max.

In order to meet these strict design criteria, as the first design, the below-given novel adaptive

update law is proposed:
˙̂
δλi =−γi(δ̂λi −δλmaxi

)(δ̂λi −δλmini
)riτi. (3.33)

Here, for each actuated joint i = 1, ...,n, γi ∈ R+ is the learning rate with ri(t) and τi(t) denoting

the ith entry of r(t) and τ(t), respectively.

Secondly, inspired by the recent results in the literature [43], a projection operator-based design

of the form
˙̂
δλi =−γiProj[δ̂λi,τirTbi] (3.34)

is proposed. Here, the projection operator from, for example, [44] or [Exercise 11.3, [45]] is utilized.

Specifically, let Ω =
{

θ ∈ Rn : (θ min
i ≤ θi ≤ θ max

i )i=1,...,n
}
⊂Rn be a convex hypercube with θ min

i

and θ max
i , respectively, denoting the minimum and maximum bounds for the ith component of

the parameter vector θ ∈ Rn. In addition, for a sufficiently small constant ε0 ∈ R+, let Ωε0 ={
θ ∈ Rn : (θ min

i + ε0 ≤ θi ≤ θ max
i − ε0)i=1,2,...,n

}
be another convex hypercube (i.e., Ωε0 ⊂ Ω).

Then, the component-wise projection operator Proj : Rn ×Rn →Rn is defined as Proj(θi,yi) =

(θ max
i −θi)yi/ε0 when θi > θ max

i −ε0 and yi > 0, Proj(θi,yi)= (θi−θ min
i )yi/ε0 when θi < θ min

i +ε0

and yi < 0, and Proj(θi,yi) = yi otherwise, where y ∈ Rn. Finally, the projection operator satisfies

the below property (e.g., see [45]):

(θ −θ
∗)T(Proj(θ ,y)− y)≤ 0, θ

∗ ∈ Ωε0. (3.35)
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Substituting the adaptive control input design in Equation (3.31) into Equation (3.27) leads to

Mṙ =−Vmr+X +Ydφ̃ −Krr− knρ
2r− e− δ̃Λτ, (3.36)

where Λτ = (I + δ̂Λ(t)+ δ̃Λ(t))τ is utilized.

3.2.1 Stability Analysis

The first theorem is introduced for investigating the stability of the controlled system under the

bound-based update law design of Equation (3.33).

Theorem 1 [5]

Consider the n DoF robot manipulator model given by Equation (3.19). Then, the adaptive con-

trol architecture given by Equation (3.31), Equation (3.32), and Equation (3.33) ensures asymptotic

stability of the closed–loop system and tracking error such that ∥e(t)∥→ 0 as t →+∞ provided that

the control gains are chosen to meet the below condition:

min(λmin(Kr),λmin(µ))>
1

4kn
. (3.37)

Proof. To investigate the stability of the equilibrium point of the trajectories of {r(t),e(t),

φ̃(t), δ̃Λ(t)}, the below novel Lyapunov–like function is introduced as:

V1(r,e, φ̃ , δ̃Λ)≜
1
2

rTMr+
1
2

eTe+
1
2

φ̃
T
Γ
−1

φ̃

+
n

∑
i=1

σi

γi
ln

(
δλmaxi

− δ̂λi

∆i

)
− σi +1

γi
ln

(
δ̂λi −δλmini

∆i

)
,

(3.38)

where, for i = 1, . . . ,n, ∆i ∈ R and σi ∈ R are constants defined as:

∆i ≜ δλmaxi
−δλmini

, σi ≜
δλi −δλmaxi

∆i
. (3.39)

After taking the time derivative of V1 of Equation (3.38) and substituting with Equation (3.23),
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Equation (3.32) and Equation (3.36), one can obtain:

V̇1(·) = rT (−Vm(q, q̇)r+X +Ydφ̃ −Krr− knρ
2r− e− δ̃Λτ)︸ ︷︷ ︸

Mṙ

+
1
2

rTṀr+ eT (r−µe)︸ ︷︷ ︸
ė

−φ̃
T
Γ
−1

ΓY T
d r︸ ︷︷ ︸
˙̂
φ

+
n

∑
i=1

σi

γi

− ˙̂
δλi

δλmaxi
− δ̂λi

− σi +1
γi

˙̂
δλi

δ̂λi −δλmini

. (3.40)

After substituting Equation (3.39) for σi in Equation (3.40) and putting the last two terms into a

common denominator, Equation (3.40) simplifies to:

V̇1(·) = rT(−Vm(q, q̇)r+X +Ydφ̃ −Krr− knρ
2r− e− δ̃Λτ)

+
1
2

rTṀr+ eT(r−µe)− φ̃
TY T

d r+
n

∑
i=1

δ̃λi

γi

1

(δ̂λi −δλmaxi
)(δ̂λi −δλmini

)

˙̂
δλi.

(3.41)

Then utilizing the skew–symmetric property of robot dynamics, that is aT(Ṁ(q)− 2Vm(q, q̇))a =

0,∀a ∈Rn with Equation (3.33), and performing cancellations, Equation (3.41) can be rewritten as

follows:

V̇1(·) = rT(X −Krr− knρ
2r− δ̃Λτ)−eT

µe

+
n

∑
i=1

δ̃λi

γi

1

(δ̂λi −δλmaxi
)(δ̂λi −δλmini

)
× [−γi(δ̂λi −δλmaxi

)(δ̂λi −δλmini
)riτi]︸ ︷︷ ︸

˙̂
δλi

= rTX − rTKrr− knρ
2∥r∥2−eT

µe. (3.42)

Using the upper bound for the auxiliary variable given by Equation (3.29) in Equation (3.42) yields

V̇1(·) ≤ ρ∥z∥∥r∥−λmin(Kr)∥r∥2−knρ
2∥r∥2−λmin(µ)∥e∥2. (3.43)

After applying Young’s inequality, ρ∥r∥∥z∥≤ ερ2∥r∥2+ 1
4ε
∥z∥2 with ε = kn, an upper bound for
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Equation (3.43) can be written as:

V̇1(·)≤−κ∥z∥2, (3.44)

where κ ≜ min(λmin(Kr),λmin(µ))− 1
4kn

∈ R+ is a positive constant. Therefore, V̇1 ≤ 0 and all

signals are globally bounded if the control gains satisfies the condition in Equation (3.37). Standard

signal-chasing algorithms for gain tuning can be used to ensure global boundedness of all the signals

under closed-loop operation. Barbalat’s Lemma can then be utilized to prove global asymptotic

convergence of the tracking error to the origin [4].

Next, the stability of the closed–loop system under the projection operator-based design of

Equation (3.33) is investigated via the following theorem.

Theorem 2 [5]

Under the adaptive control architecture given by Equation (3.31), Equation (3.32) and Equation

(3.34), the n DoF robot manipulator dynamic model given by Equation (3.19) is proven to remain

stable and asymptotic stability of the tracking error is ensured in the sense that ∥e(t)∥→ 0 as t →+∞

provided that the control gains are chosen to meet the inequality condition of Equation (3.37).

Proof. The following Lyapunov–like function is utilized when investigating the stability of the

closed–loop system dynamics:

V2(r,e, φ̃ , δ̃Λ) ≜
1
2

rTMr+
1
2

eTe+
1
2

φ̃
T
Γ
−1

φ̃ +
n

∑
i=1

1
γi

δ̃
2
λi
. (3.45)

Taking the time derivative of V2 of Equation (3.45) and substituting for Equation (3.23), Equation

(3.32), Equation (3.34) and Equation (3.36) results in:
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V̇2(·) = rT (−Vm(q, q̇)r+X +Ydφ̃ −Krr− knρ
2r− e− δ̃Λτ)︸ ︷︷ ︸

Mṙ

+
1
2

rTṀr+ eT (r−µe)︸ ︷︷ ︸
ė

−φ̃
T
Γ
−1

ΓY T
d r︸ ︷︷ ︸
˙̂
φ

+γ
−1
i

n

∑
i=1

δ̃λi γiProj[δ̂λi,τirTbi]︸ ︷︷ ︸
− ˙̂

δλi

=
1
2

rTṀr+ rT
(
−Vm(q, q̇)r+X +Ydφ̃ −Krr− knρ

2r− e−
n

∑
i=1

biδ̃λiτi︸ ︷︷ ︸
δ̃Λτ

)
+eT(r−µe)

−φ̃
T
Γ
−1

ΓY T
d r+ γ

−1
i

n

∑
i=1

δ̃λiγiProj[δ̂λi,τirTbi]. (3.46)

Then, utilizing the skew–symmetric property of the robot dynamics, the property of the projection

operator given by Equation (3.35), and cancelling out common terms, the right hand side of

Equation (3.46) can be further simplified as:

V̇2(·)≤ rTX − rTKrr− knρ
2∥r∥2−eT

µe. (3.47)

After making use of the upper bound of the auxiliary variable given by Equation (3.29), the right

hand side of Equation (3.47) is further upper bounded as:

V̇2(·) ≤ ρ∥z∥∥r∥−λmin(Kr)∥r∥2−knρ
2∥r∥2−λmin(µ)∥e∥2. (3.48)

Following similar steps as in the proof of Theorem 1, both global boundedness of all the signals

of the closed–loop system under the proposed adaptive control architecture and global asymptotic

convergence of the tracking error to the origin can be proven.
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4 Simulation Results

To illustrate the performance of the proposed adaptive control architecture with the two con-

troller designs given by Equations (3.31), (3.32), (3.33) and Equations (3.31), (3.32), (3.34),

numerical simulations with a model of a two–link planar robot manipulator are conducted. Specif-

ically, the dynamic model in Equation (3.19) is considered with the following modeling functions

[46]:

M =

p1 +2p3cq2 p2 + p3cq2

p2 + p3cq2 p2



Vm =

−p3sq2 q̇2 −p3sq2(q̇1 + q̇2)

p3sq2 q̇1 0

 ,Fd =

 fd1 0

0 fd2

 ,
in which sq2 = sin(q2), cq2 = cos(q2), p1 = 3.473[kg-m2], p2 = 0.193[kg-m2], p3 = 0.242[kg-m2],

fd1 = 5.3[Nm-sec], and fd2 = 1.1[Nm-sec]. The robot manipulator is considered to be initially at

rest at the joint configuration of q(0) = [0.5,0.5]T rad. The desired joint trajectory is selected as:

qd =

0.7sin(t)(1− exp(−0.3t3))

1.2sin(t)(1− exp(−0.3t3))

 . (4.1)

The control gains are set as Kr = [0.55,0;0,0.6], µ = 1.5I2, ρ = 0.35 and kn = 0.5, while the

adaptation gains are set as Γ = 0.55I5 and γ = 25I2. Actuator deficiency is selected as δλi =−0.75

for both joints while the upper and lower bounds are selected as δλmaxi
=−0.5 and δλmini

=−0.77,

and the projection bounds are selected as δλmaxi
= −0.5 and δλmini

= −0.77. These choices were

made to satisfy the condition in Equation (3.37) and to provide a response that indicated the

problems with the standard adaptive controller.

The results of the numerical simulations are presented in Figures 4.1–4.6. Specifically, Figures

4.1 and 4.2 show the tracking and controller performance of the adaptive controller without any

compensation for the uncertainties in the control effectiveness matrix, where the standard adaptive

control (SAC) architecture τ = Ydφ̂ +Krr+ knρ2r+ e from Equation (3.17) is applied. Actual and
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desired joint positions for the bound-based adaptive control (BAC) architecture and projection-

based adaptive control (PAC) architecture are shown in Figures 4.3, 4.4 and 4.5, 4.6, respectively.

Finally, the square of the integral of the norm of the tracking errors and control input torques are

in Table 4.1. With the utilized parameters given in this section, one can see that the projection

operator-based design for the actuator effectiveness yields a better response with less tracking

error when compared with the bound-based design, where both of them outperformed the standard

adaptive controller in terms of tracking accuracy and control effort.

Table 4.1 Performance measurements comparing the adaptive controllers (75% deficiency).
Standard Bound–based Projection–based∫ tfinal

0 |e1 (t) |2dt 0.7807 0.4767 0.2136∫ tfinal
0 |e2 (t) |2dt 0.2342 0.1292 0.0536∫ tfinal
0 |τ1 (t) |2dt 24.3091 17.997 14.2198∫ tfinal
0 |τ2 (t) |2dt 4.5343 4.1474 3.9878

Figure 4.1 Joint angle via SAC for 75% actuator deficiency.
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Figure 4.2 Torque and estimated parameters via SAC for 75% actuator deficiency.

Figure 4.3 Tracking via BAC for 75% actuator deficiency.
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Figure 4.4 Torque and estimated parameters via BAC for 75% actuator deficiency.

Figure 4.5 Tracking via PAC for 75% actuator deficiency.
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Figure 4.6 Torque and estimated parameters via PAC for 75% actuator deficiency.
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5 Experimental Results and Discussion

In this chapter, the comprehensive results of the conducted experimental validation are pre-

sented. These results provide a detailed examination of the performance of the novel adaptive

controllers under various conditions. They highlight the resilience and effectiveness of the con-

trollers in maintaining control of the robotic arm manipulator subject to of substantial actuator

deficiencies and uncertain dynamical parameters. The results also demonstrate the ability of the

controllers to track desired trajectories satisfactorily and reduce error over time.

5.1 Results

In the forthcoming section, a comprehensive set of data is presented and organized to ensure

maximum clarity. The data are categorized into distinct sections based on the type of information

presented, such as joint angles, estimated terms, joint torques, and more. These sections are further

divided based on the number of actuator deficiencies, facilitating comparative analysis of plots for

the different update laws.

The actuator deficiency is enforced by multiplying the commanded τ from the adaptive controller

by I2+δΛ, where 20%, 40%, 60%, and 80% deficiencies and 40% overdriven cases are considered.

For example, a 60% deficiency corresponds to a δΛ of −0.6 and 40% overdrive corresponds to a δΛ

of 0.4. The adaptation gains for all cases are set to Γ = 1I6 and γ = 0.5I2 for the projection-based

controller and Γ = 3I6 and γ = 0.5I2 for the bound-based controller. These gains were chosen

because the φ̂ for the bound-based controller needed to be larger for the φ̂ to converge by the

final time. The only exception is for the 40% overdriven case where Γ = 3I6 and γ = 5I2 for both

controllers. The ε for the projection operator was set to 0.1 for all cases.

The upper and lower bounds and the projection bounds are selected differently for most cases; see

the caption for exact bounds. Moreover, the control gains for all cases were set to Kr = diag(40,60),

kn = 1, and µ = 3I2. Note that these do meet the stability conditions from Equation (3.37) set by

the stability analysis Section 3.2.1. The desired trajectory was the shoulder joint oscillating 10

degrees and the elbow joint oscillating 15 degrees with a period of about 6.25 seconds.
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5.1.1 Joint Angle Tracking

This section provides a comprehensive presentation of the experimental results related to joint

angle tracking across all cases, utilizing the two distinct controllers that were proposed in Section

3.2, namely the bound-based controller and the projection operator-based controller. The figures

are systematically organized in ascending order of deficiency level, ensuring a logical progression

in the data presentation. The results derived from this section are subsequently analyzed in Section

5.2.2, where pivotal initial conclusions are drawn.

The analysis commences with the 40% overdrive case. Figures 5.1 and 5.2 offer the tracking

results of the bound-based and projection operator-based controllers respectively. Transitioning

to deficiency cases, the 20% deficiency case is considered first. Figures 5.3 and 5.4 respectively

represent the tracking performance of the bound-based and projection operator-based controllers.

The exploration proceeds to the 40% deficiency case. Figures 5.5 and 5.6 respectively illustrate the

tracking results for the bound-based and projection operator-based controllers. The 60% deficiency

case follows, where Figures 5.7 and 5.8 respectively depict the outcomes of the tracking performance

for the bound-based and projection operator-based controllers. The final scenario presented, and

the most challenging, the 80% deficiency case. Figures 5.9 and 5.10 respectively showcase the

tracking results for the bound-based and projection operator-based controllers, providing valuable

insights into their performance under extreme conditions.

The control gains were set to Kr = diag(40,60), kn = 1, and µ = 3I2 and the desired trajectory

was the shoulder joint oscillating 10 degrees and the elbow joint oscillating 15 degrees with a

period of about 6.25 seconds. The bounds are the same for both controllers and were set as follows:

For the 40% overdrive case, the upper and lower bounds are δ̂λmax = 0.6, δ̂λmin = 0.2, respectively.

For the deficiency cases, the lower bound was always set to δ̂λmin =−0.9; however the lower bound

changes as the deficiency increases. Specifically, at 20% deficiency δ̂λmin =−0.1, at 40% deficiency

δ̂λmin = −0.2, and at 60% and 80% deficiencies δ̂λmin = −0.4. Finally, the initial conditions were

set to be inside the bounds; therefore δ̂λ0 = 0.5 for the 40% overdrive case and δ̂λ0 =−0.5 for all

deficiency cases.
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Figure 5.1 Joint angles via BAC with over actuation (40%).

Figure 5.2 Joint angles via PAC with over actuation (40%).
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Figure 5.3 Joint angles via BAC with actuator deficiency (20%).

Figure 5.4 Joint angles via PAC with actuator deficiency (20%).
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Figure 5.5 Joint angles via BAC with actuator deficiency (40%).

Figure 5.6 Joint angles via PAC with actuator deficiency (40%).
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Figure 5.7 Joint angles via BAC with actuator deficiency (60%).

Figure 5.8 Joint angles via PAC with actuator deficiency (60%).
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Figure 5.9 Joint angles via BAC with actuator deficiency (80%).

Figure 5.10 Joint angles via PAC with actuator deficiency (80%).
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5.1.2 Joint Angular Velocities

In this section, a detailed exposition of the experimental outcomes for joint angular velocity

tracking across all test scenarios is provided for the bound-based controller and the projection

operator-based controller. The associated figures are sequenced in the same ascending order of

deficiency level. The results of this section are analyzed in Section 5.2.3.

Firstly, the 40% overdrive scenario, where Figures 5.11 and 5.12 offer a comparison of the

joint angular velocity results of the bound-based and projection operator-based controllers. Then,

the 20% deficiency case joint angular velocity performance of the bound-based and projection

operator-based controllers are represented in Figures 5.13 and 5.14 respectively. Subsequently, the

40% deficiency case is explored, with Figures 5.15 and 5.16 showcasing the joint angular velocity

results for the bound-based and projection operator-based controllers. Next, the 60% deficiency

case, where Figures 5.17 and 5.18 capture the joint angular velocity performance outcomes of the

bound-based and projection operator-based controllers. The section concludes with an examination

of the most challenging scenario, the 80% deficiency case where Figures 5.19 and 5.20 provide

the performance joint angular velocity results for the bound-based and projection operator-based

controllers.

The control gains were set to Kr = diag(40,60), kn = 1, and µ = 3I2 and the desired trajectory

was the shoulder joint oscillating 10 degrees and the elbow joint oscillating 15 degrees with a

period of about 6.25 seconds. The bounds are the same for both controllers but were set differently

for different actuator deficiencies. For the 40% overdrive case, the upper and lower bounds are

δ̂λmax = 0.6, δ̂λmin = 0.2, respectively. For the deficiency cases, the lower bound was always set

to δ̂λmin = −0.9; however the lower bound changes as the deficiency increases. Specifically, at

20% deficiency δ̂λmin = −0.1, at 40% deficiency δ̂λmin = −0.2, and at 60% and 80% deficiencies

δ̂λmin = −0.4. Finally, the initial conditions were set to be inside the bounds; therefore δ̂λ0 = 0.5

for the 40% overdrive case and δ̂λ0 =−0.5 for all deficiency cases.
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Figure 5.11 Angular velocities via BAC with over actuation (40%).

Figure 5.12 Angular velocities via PAC over actuation (40%).
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Figure 5.13 Angular velocities via BAC with actuator deficiency (20%).

Figure 5.14 Angular velocities via PAC with actuator deficiency (20%).
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Figure 5.15 Angular velocities via BAC with actuator deficiency (40%).

Figure 5.16 Angular velocities via PAC with actuator deficiency (40%).
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Figure 5.17 Angular velocities via BAC with actuator deficiency (60%).

Figure 5.18 Angular velocities via PAC with actuator deficiency (60%).
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Figure 5.19 Angular velocities via BAC with actuator deficiency (80%).

Figure 5.20 Angular velocities via PAC with actuator deficiency (80%).
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5.1.3 Joint Errors

In this section, a detailed exposition of the experimental outcomes for joint error tracking

across all test scenarios is provided for the bound-based controller and the projection operator-

based controller. The associated figures are sequenced in the same ascending order of deficiency

level. The results of this section are analyzed in Section 5.2.4 where the difference of the two

controllers are more easily seen.

Firstly, the 40% overdrive scenario is examined, where Figures 5.21 and 5.22 offer a comparison

of the joint error tracking results of the bound-based and projection operator-based controllers.

Then, the performance of the joint error tracking for the bound-based and projection operator-

based controllers for the 20% deficiency case is represented in Figures 5.23 and 5.24 respectively.

Subsequently, the 40% deficiency case is explored, with Figures 5.25 and 5.26 showcasing the

joint error tracking results for the bound-based and projection operator-based controllers. Next,

the 60% deficiency case is discussed, where Figures 5.27 and 5.28 capture the joint error tracking

performance outcomes of the bound-based and projection operator-based controllers. Finally,

Figures 5.29 and 5.30 provide the joint error tracking results for the bound-based and projection

operator-based controllers at an 80% actuator deficiency.

The control gains were set to Kr = diag(40,60), kn = 1, and µ = 3I2 and the desired trajectory

was the shoulder joint oscillating 10 degrees and the elbow joint oscillating 15 degrees with a

period of about 6.25 seconds. The bounds are the same for both controllers but were set differently

for different actuator deficiencies. For the 40% overdrive case, the upper and lower bounds are

δ̂λmax = 0.6, δ̂λmin = 0.2, respectively. For the deficiency cases, the lower bound was always set

to δ̂λmin = −0.9; however the lower bound changes as the deficiency increases. Specifically, at

20% deficiency δ̂λmin = −0.1, at 40% deficiency δ̂λmin = −0.2, and at 60% and 80% deficiencies

δ̂λmin = −0.4. Finally, the initial conditions were set to be inside the bounds; therefore δ̂λ0 = 0.5

for the 40% overdrive case and δ̂λ0 =−0.5 for all deficiency cases.

53



Figure 5.21 Error via BAC with over actuation (40%).

Figure 5.22 Error via PAC with over actuation (40%).
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Figure 5.23 Error via BAC with actuator deficiency (20%).

Figure 5.24 Error via PAC with actuator deficiency (20%).
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Figure 5.25 Error via BAC with actuator deficiency (40%).

Figure 5.26 Error via PAC with actuator deficiency (40%).
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Figure 5.27 Error via BAC with actuator deficiency (60%).

Figure 5.28 Error via PAC with actuator deficiency (60%).
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Figure 5.29 Error via BAC with actuator deficiency (80%).

Figure 5.30 Error via PAC with actuator deficiency (60%).
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5.1.4 Joint Torques

In this section, the analysis of the experimental outcomes for control input, denoted as com-

manded torque, across all test scenarios is presented. This includes data from both the bound-based

and projection operator-based controllers. The related figures are organized in an ascending se-

quence based on deficiency level. The data from this section is further scrutinized in Section 5.2.5,

where the distinctions between the two controllers become more evident.

Beginning with the 40% overdrive scenario. Figures 5.31 and 5.32 offer a comparison of the

joint torques of the bound-based and projection operator-based controllers. This is followed by the

20% deficiency case, where the joint torques of both controllers are depicted in Figures 5.33 and

5.34. Next, the 40% deficiency case, with Figures 5.35 and 5.36 showcasing the joint torques for

both controller types is explored. The results then move to the 60% deficiency case, where Figures

5.37 and 5.38 capture the joint torques results of the bound-based and projection operator-based

controllers. Finally, Figures 5.39 and 5.40 provide the performance outcomes at an 80% actuator

deficiency of the joint torques for both the bound-based and projection operator-based controllers.

The control gains were set to Kr = diag(40,60), kn = 1, and µ = 3I2 and the desired trajectory

was the shoulder joint oscillating 10 degrees and the elbow joint oscillating 15 degrees with a

period of about 6.25 seconds. The bounds are the same for both controllers but were set differently

for different actuator deficiencies. For the 40% overdrive case, the upper and lower bounds are

δ̂λmax = 0.6, δ̂λmin = 0.2, respectively. For the deficiency cases, the lower bound was always set

to δ̂λmin = −0.9; however the lower bound changes as the deficiency increases. Specifically, at

20% deficiency δ̂λmin = −0.1, at 40% deficiency δ̂λmin = −0.2, and at 60% and 80% deficiencies

δ̂λmin = −0.4. Finally, the initial conditions were set to be inside the bounds; therefore δ̂λ0 = 0.5

for the 40% overdrive case and δ̂λ0 =−0.5 for all deficiency cases.

59



Figure 5.31 Toques via BAC with over actuation (40%).

Figure 5.32 Toques via PAC with over actuation (40%).
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Figure 5.33 Toques via BAC with actuator deficiency (20%).

Figure 5.34 Toques via PAC with actuator deficiency (20%).
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Figure 5.35 Toques via BAC with actuator deficiency (40%).

Figure 5.36 Toques via PAC with actuator deficiency (40%).
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Figure 5.37 Toques via BAC with actuator deficiency (60%).

Figure 5.38 Toques via PAC with actuator deficiency (60%).
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Figure 5.39 Toques via BAC with actuator deficiency (80%).

Figure 5.40 Toques via PAC with actuator deficiency (80%).
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5.1.5 Estimated Actuator Deficiencies

This section delivers an in-depth analysis of the experimental outcomes for the estimated

actuator deficiencies, represented as δ̂ , across all scenarios. The data encompasses results from

both the bound-based and projection operator-based controllers. The related figures are sequenced

in ascending order of deficiency level. These results are further dissected in Section 5.2.6.

The analysis commences with the 40% overdrive scenario. Figures 5.41 and 5.42 provide

a comparative study of the estimated actuator deficiencies of the bound-based and projection

operator-based controllers. This is succeeded by the 20% deficiency case, where the estimated

actuator deficiencies of both controllers are illustrated in Figures 5.43 and 5.44. The exploration

continues with the 40% deficiency case, where Figures 5.45 and 5.46 display the estimated actuator

deficiencies results for both controller types. The 60% deficiency case is then discussed, with

Figures 5.47 and 5.48 capturing the estimated actuator deficiencies outcomes of the bound-based

and projection operator-based controllers. Lastly, for the 80% deficiency case, Figures 5.49 and

5.50 estimated actuator deficiencies results for both the bound-based and projection operator-based

controllers respectively.

The control gains were set to Kr = diag(40,60), kn = 1, and µ = 3I2 and the desired trajectory

was the shoulder joint oscillating 10 degrees and the elbow joint oscillating 15 degrees with a

period of about 6.25 seconds. The bounds are the same for both controllers but were set differently

for different actuator deficiencies. For the 40% overdrive case, the upper and lower bounds are

δ̂λmax = 0.6, δ̂λmin = 0.2, respectively. For the deficiency cases, the lower bound was always set

to δ̂λmin = −0.9; however the lower bound changes as the deficiency increases. Specifically, at

20% deficiency δ̂λmin = −0.1, at 40% deficiency δ̂λmin = −0.2, and at 60% and 80% deficiencies

δ̂λmin = −0.4. Finally, the initial conditions were set to be inside the bounds; therefore δ̂λ0 = 0.5

for the 40% overdrive case and δ̂λ0 =−0.5 for all deficiency cases.
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Figure 5.41 Estimated deficiencies via BAC with over actuation (40%).

Figure 5.42 Estimated deficiencies via PAC with over actuation (40%).
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Figure 5.43 Estimated deficiencies via BAC with actuation deficiency (20%).

Figure 5.44 Estimated deficiencies via PAC with actuation deficiency (20%).
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Figure 5.45 Estimated deficiencies via BAC with actuation deficiency (40%).

Figure 5.46 Estimated deficiencies via PAC with actuation deficiency (40%).
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Figure 5.47 Estimated deficiencies via BAC with actuation deficiency (60%).

Figure 5.48 Estimated deficiencies via PAC with actuation deficiency (60%).
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Figure 5.49 Estimated deficiencies via BAC with actuation deficiency (80%).

Figure 5.50 Estimated deficiencies via PAC with actuation deficiency (80%).
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5.1.6 Estimated Model Parameters

This section carefully presents the experimental results of estimated model parameters, denoted

as φ̂ , for all cases using two distinct controllers: the bound-based controller and the projection

operator-based controller. The figures are systematically arranged in an order of increasing defi-

ciency level, ensuring a logical progression in the data presentation. The results of this section are

analyzed in Section 5.2.7 where important conclusions are drawn.

Starting with the 40% overdrive case, Figures 5.51 and 5.52 provide a comparative analysis

of the estimated model parameters of the bound-based and projection operator-based controllers

respectively. Moving on to deficiency cases, the 20% deficiency case, Figures 5.53 and 5.54 respec-

tively represent the estimated model parameters of the bound-based and projection operator-based

controllers. The 40% deficiency case follows next, with Figures 5.55 and 5.56 respectively illus-

trating the estimated model parameters results for the bound-based and projection operator-based

controllers. The 60% deficiency case is then explored where Figures 5.57 and 5.58 respectively

depict the estimated model parameters outcomes for the bound-based and projection operator-based

controllers. Finally, the most challenging scenario, the 80% deficiency case, is presented. Figures

5.59 and 5.60 respectively show the estimated model parameters results for both controllers.

The control gains were set to Kr = diag(40,60), kn = 1, and µ = 3I2 and the desired trajectory

was the shoulder joint oscillating 10 degrees and the elbow joint oscillating 15 degrees with a

period of about 6.25 seconds. The bounds are the same for both controllers but were set differently

for different actuator deficiencies. For the 40% overdrive case, the upper and lower bounds are

δ̂λmax = 0.6, δ̂λmin = 0.2, respectively. For the deficiency cases, the lower bound was always set

to δ̂λmin = −0.9; however the lower bound changes as the deficiency increases. Specifically, at

20% deficiency δ̂λmin = −0.1, at 40% deficiency δ̂λmin = −0.2, and at 60% and 80% deficiencies

δ̂λmin = −0.4. Finally, the initial conditions were set to be inside the bounds; therefore δ̂λ0 = 0.5

for the 40% overdrive case and δ̂λ0 =−0.5 for all deficiency cases.
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Figure 5.51 Estimated model parameters via BAC with over actuation (40%).

Figure 5.52 Estimated model parameters via PAC with over actuation (40%).
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Figure 5.53 Estimated model parameters via BAC with actuation deficiency (20%).

Figure 5.54 Estimated model parameters via PAC with actuation deficiency (20%).
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Figure 5.55 Estimated model parameters via BAC with actuation deficiency (40%).

Figure 5.56 Estimated model parameters via PAC with actuation deficiency (40%).
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Figure 5.57 Estimated model parameters via BAC with actuation deficiency (60%).

Figure 5.58 Estimated model parameters via PAC with actuation deficiency (60%).
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Figure 5.59 Estimated model parameters via BAC with actuation deficiency (80%).

Figure 5.60 Estimated model parameters via PAC with actuation deficiency (80%).
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5.2 Discussion

In the following discussion, a detailed analysis of the data obtained from the various experiments

with robotic manipulators will be given. According to the results, various patterns are explored, and

trends are observed in the estimated model parameters and actuator deficiencies. The discussion

also touches upon the performance of the different adaptive controllers under varying conditions.

Note that for the results below, subscript 1 corresponds to the shoulder joint and subscript 2

corresponds to the elbow joint.

5.2.1 Performance Measurements

Table 5.1 Performance measurements comparing the adaptive controllers (40% overdrive).
40% Overdrive Standard Bound-based Projection-based∫ tfinal

0 |e1(t)|2 dt 0.2398 0.1800 0.2921∫ tfinal
0 |e2(t)|2 dt 0.6679 1.1833 0.9496∫ tfinal
0 |τ1(t)|2 dt 1.755×105 7.237×104 1.311×105∫ tfinal
0 |τ2(t)|2 dt 5.847×105 4.357×105 2.278×105

The performance of different adaptive controllers under a condition of 40% overdrive is given

in Table 5.1. Several key findings emerged. The bound-based controller demonstrated superior

performance for the shoulder joint, achieving the lowest integral of the square of the norm of

the error (0.1800) and the commanded torque (7.237× 104). This suggests that the bound-based

controller is particularly effective in minimizing both error and torque for the shoulder joint under

conditions of overdrive.

However, the performance dynamics changed for the elbow joint. Here, the standard controller

was most effective in minimizing the error (0.6679), while the projection-based controller was

most successful in reducing the commanded torque (2.278× 105). This indicates that the choice

of controller may depend on the specific joint and whether the priority is to minimize error or to

minimize torque. Also, when the total error is compared, the standard adaptive controller shows

better performance than the projection-based controller and the projection-based controller shows

better performance than the bound-based approach in the 40% overdrive case.

The performance of different adaptive controllers under a condition of 20% deficiency is given
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Table 5.2 Performance measurements comparing the adaptive controllers (20% deficiency).
20% Deficiency Standard Bound-based Projection-based∫ tfinal

0 |e1(t)|2 dt 0.3160 0.2602 0.4554∫ tfinal
0 |e2(t)|2 dt 1.2379 1.4588 0.5494∫ tfinal
0 |τ1(t)|2 dt 5.794×104 8.567×104 5.257×106∫ tfinal
0 |τ2(t)|2 dt 1.736×105 2.816×105 1.997×107

in Table 5.2, where the commanded torque is multiplied by a factor of 0.8. The bound-based

controller demonstrated superior performance for the shoulder joint, achieving the lowest integral

of the square of the norm of the error (0.2602). However, it had the highest error for the elbow

joint (1.4588). This suggests that the bound-based controller is particularly effective in minimizing

error for the shoulder joint under conditions of low deficiency, but not for the elbow joint. Also,

when the total error is compared, the projection-based controller shows better performance than the

bound-based controller and the bound-based controller shows better performance than the standard

adaptive controller in a 20% deficiency case.

On the other hand, the standard controller was most effective in minimizing the commanded

torque for the shoulder joint (5.794× 104), while the projection-based controller had the highest

torque (5.257×106). For the elbow joint, the standard controller also had the smallest commanded

torque (1.736×105), and the projection-based controller had the highest torque (1.997×107).

Table 5.3 Performance measurements comparing the adaptive controllers (40% deficiency).
40% Deficiency Standard Bound-based Projection-based∫ tfinal

0 |e1(t)|2 dt 0.6854 0.1944 0.4127∫ tfinal
0 |e2(t)|2 dt 2.0288 1.3446 0.6510∫ tfinal
0 |τ1(t)|2 dt 4.719×104 7.005×104 2.938×106∫ tfinal
0 |τ2(t)|2 dt 8.757×104 1.607×105 1.222×107

In the examination of the performance of different adaptive controllers under a condition of 40%

deficiency given in Table 5.3, where the commanded torque is multiplied by a factor of 0.6, several

key observations can be made. For the shoulder joint, the bound-based controller has the lowest

error (0.1944), followed by the projection-based controller (0.4127), and the standard controller

has the highest error (0.6854). However, for the elbow joint, the projection-based controller has

the lowest error (0.6510), while the standard controller has the highest error (2.0288). Also, when
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the total error is compared, the projection-based controller shows better performance than the

bound-based controller and the bound-based controller shows better performance than the standard

adaptive controller in a 40% deficiency case.

When it comes to the integral of the square of the norm of the commanded torque, the standard

controller has the lowest torque (4.719× 104) for the shoulder joint, while the projection-based

controller has the highest torque (2.938×106). Similarly, for the elbow joint, the standard controller

also has the smallest commanded torque (8.757×104), but the projection-based controller still has

the highest torque (1.222×107).

Table 5.4 Performance measurements comparing the adaptive controllers (60% deficiency).
60% Deficiency Standard Bound-based Projection-based∫ tfinal

0 |e1(t)|2 dt 2.0778 0.2179 0.3513∫ tfinal
0 |e2(t)|2 dt 4.4453 1.6447 0.5764∫ tfinal
0 |τ1(t)|2 dt 3.817×104 5.673×104 1.181×106∫ tfinal
0 |τ2(t)|2 dt 5.094×104 1.271×105 4.889×106

The performance of the different adaptive controllers under a condition of 60% deficiency is

given in Table 5.4, where the commanded torque is multiplied by a factor of 0.4. For the shoulder

joint, the bound-based controller has the lowest error (0.2179), followed by the projection-based

controller (0.3513), and the standard controller has the highest error (2.0778). Similarly, for

the elbow joint, the projection-based controller has the lowest error (0.5764), while the standard

controller has the highest error (4.4453). Also, when the total error is compared, the projection-

based controller shows better performance than the bound-based controller and the bound-based

controller shows better performance than the standard adaptive controller in a 60% deficiency case.

Again it can be seen that the standard controller has the lowest torque (3.817× 104) for the

shoulder joint, while the projection-based controller has the highest torque (1.181×106). Similarly,

for the elbow joint, the standard controller also has the smallest commanded torque (5.094×104),

but the projection-based controller had the highest torque (4.889×106).

In Table 5.5, an examination of the performance of the adaptive controllers under a condition of

80% deficiency is presented, where the commanded torque is multiplied by a factor of 0.2. Several
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Table 5.5 Performance measurements comparing the adaptive controllers (80% deficiency).
80% Deficiency Standard Bound-based Projection-based∫ tfinal

0 |e1(t)|2 dt 11.2912 0.9543 0.2374∫ tfinal
0 |e2(t)|2 dt 15.7847 6.6455 0.5831∫ tfinal
0 |τ1(t)|2 dt 3.102×104 3.633×104 2.623×105∫ tfinal
0 |τ2(t)|2 dt 2.773×104 4.383×104 1.195×106

important observations can be drawn from these results. For the shoulder joint, the projection-

based controller has the lowest error (0.2374), followed by the bound-based controller (0.9543),

and the standard controller has the highest error (11.2912). However, for the elbow joint, the

projection-based controller also has the lowest error (0.5831), while the standard controller has the

highest error (15.7847) When the total error is compared, the projection-based controller shows

better performance than the bound-based controller and the bound-based controller shows better

performance than the standard adaptive controller in an 80% deficiency case.

When it comes to the integral of the square of the norm of the commanded torque, the standard

controller has the lowest torque (3.102×104 for τ1 and 2.773×104 for τ2), while the projection-

based controller has the highest torque (2.623×105 for τ1 and 1.195×106 for τ2). Looking at the

trend of the commanded torque values, it can be seen that the commanded torque values decrease

as the deficiency increases. This is due to the commanded torque from the adaptive controller is

being premultiplied by smaller numbers as deficiency increase resulting in less total commanded

torque across the whole experimentation time.

The analysis of the performance of the different adaptive controllers under varying conditions

of deficiency reveals several key trends. As the deficiency increases, the error for both the shoulder

and elbow joints tends to increase for the standard controller, while, in some cases decreases, for

the bound-based and projection-based controllers. This suggests that the latter two controllers are

more effective in reducing tracking errors under conditions of high deficiency. Interestingly, the

error from the projection-based controller does not seem to fluctuate as much when the deficiency

is increased. This is not the case for the bound-based controller where there is a significant jump

in error between the 60% and 80% cases.
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In terms of the commanded torque, the standard controller consistently has the lowest values

across all levels of deficiency. However, the commanded torque for the bound-based and projection-

based controllers increases as the deficiency increases. This indicates that these controllers require

more control effort to achieve their performance under conditions of high deficiency. As stated

before, the magnitude of the control effort decreases as the deficiency increases; however, for the

over-driven case, it is expected to have the highest magnitude of the commanded torque for all

data sets, but this is not the case. The projection operator for both joints has a lower commanded

torque and the bound-based operator for the shoulder has a lower torque. This could be because

the controller is overcompensating when the deficiency is present but not too high.

In conclusion, the choice of controller may need to be tailored to the specific joint and the

specific performance criteria. If the priority is to minimize error, the bound-based or projection-

based controller may be more suitable. However, if the priority is to minimize torque, the standard

controller may be more appropriate. These findings underscore the importance of a nuanced

approach to the design of adaptive controllers, taking into account the specific requirements and

constraints of each application.

5.2.2 Joint Angle Tracking Discussion

This section presents an in-depth analysis of system responses in relation to desired joint

trajectories. It was observed that the system responses generally tracked the desired joint trajectories

effectively. However, an increase in imposed actuator deficiencies corresponded to an increase in

error for the standard and bound-based cases. Refer to Figures 5.1 - 5.10 and Tables 5.1 - 5.5 for

details.

Several common results were identified across all data in this section. Initially, the conditions

for these experimental tests were not perfectly zero or identical. Despite this, the system’s transient

response was capable of achieving steady-state oscillation by the first full amplitude peak. This

is likely facilitated by a strategic implementation of the desired trajectories, which involved a

multiplication by a rapidly decaying exponential. Also, the learning rate of the estimated actuator

deficiency γ has a large effect on the transient response. In early experimentation, this value was set
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to 25, which would often make the controller immediately unstable due to an aggressive transient

response. The value of 0.5 was found to have the most desirable transient response, while δ̂

converges by the final time.

Furthermore, it was noted that the error was at its peak at the first full amplitude oscillation and

decreased to a smaller error by the end of the test for all cases. Interestingly, when the actuator

deficiency was set to 80%, an overshoot error was observed at the top of the oscillations for both

joints, while at the bottom of the oscillations, an overshoot was observed for the shoulder and

an undershoot for the elbow. This occurred for both controllers and only near the end of the

experiment (see Figure 5.9). This is likely due to the system having a negative ω and a negative θ ,

corresponding to a downward motion of the end-effector. As the angular velocities decrease and

reach 0, the elbow’s joint angle does not get the opportunity to reach its most negative value before

the end-effector starts to move upward.

Lastly, all responses exhibited some inherent oscillatory error, most evident in the error plots in

Section 5.1.3. This is especially evident for the bound-based controller at large actuator deficiencies

(see Figure 5.39). This is likely attributable to aggressive learning rates chosen for Γ and γ . A

reduction in learning rates would likely result in a smoother system response but with increased

error.

5.2.3 Joint Angular Velocities Discussion

The scrutiny of joint angular velocities uncovers a complex landscape, from which it is difficult

to draw conclusions due to the large amount of variation. The angular velocities measured for both

joints show substantial oscillations around the target ω . Refer to Figures 5.11 - 5.20 for details.

However, this pattern is typical in the experimental data derived from robotic manipulators. It is

essential to comprehend that these oscillations are not necessarily indicative of an issue, but rather a

reflection of the aggressive learning rate implemented in the system alongside large stability gains.

Consequently, the manipulator tracks the desired angle in a more abrupt manner rather than a

smooth path. If a smoother tracking response is preferred, further gain scheduling and adjustments

might be warranted.
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An interesting observation to note is that the maximum angular velocity for the elbow joint is

approximately 0.4 rad/s and a minimum of about −0.4 rad/s, with no significant fluctuation across

different deficiency levels. A noticeable difference exists between the two adaptive controllers;

it appears that the projector operator-based controller tends to maintain an ω of zero for longer

durations, most prominently in Figure 5.20 for the measured shoulder angle when the desired

angular velocity is negative. This could be due to the controller reaching the desired joint angle

and subsequently overshooting more frequently with the projection-based operator.

5.2.4 Joint Errors Discussion

Upon analyzing the joint error plots, a stark contrast between the two controllers emerges.

Refer to Figures 5.21 - 5.30 for details. The bound-based controller’s error exhibits substantial

oscillations around zero with some deficiencies, whereas the projection operator-based adaptive

controller maintains a steadier course. Interestingly, as the experiment advances, both controllers

tend to gravitate towards zero error. This trend underscores the notion that the longer the adaptive

controller interacts with the system, the more the error diminishes.

A noteworthy observation arises when comparing the elbow joint error with that of the shoulder

joint across all data-sets, regardless of the level of deficiency or the controller employed. The elbow

joint error consistently leans towards more negative values. Furthermore, when dealing with higher

deficiencies, as depicted in Figures 5.27, 5.28, 5.29, and 5.30, the error does not oscillate around

zero but around a certain negative value. This pattern suggests a longer run time or in-depth gain

tuning might be required for this error to oscillate around zero, or it might indicate that only a near

zero error is achievable for these levels of actuator deficiencies.

5.2.5 Joint Torques Discussion

A compelling observation emerges when analyzing the commanded values of joint torques,

particularly the change in torque magnitude as the deficiency increases. Refer to Figures 5.31 -

5.40 and Tables 5.1 - 5.5 for details. It is evident that the maximum commanded torque to the

elbow joint, following the attainment of steady-state oscillations, is approximately 50 Nm with a

40% deficiency (as seen in Figure 5.36), and reduces to merely 10 Nm with an 80% deficiency (as
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seen in Figure 5.40). This is, of course, also related to the scheduled control gains for a possible

best case. While it is logical for the commanded control torque values to halve with increased

efficiency, this does not account for a nearly fourfold reduction in the requisite torque to track the

desired trajectory. The remarkable aspect here is that, even with a fraction of available torque, the

controller can still drive the error towards zero.

A clear distinction arises when comparing the two update laws; the projection operator tends to

utilize more torque to track desired joint angles. For instance, at a 40% deficiency, the bound-based

controller commands less than half the torque commanded by the projection operator for both joints

(see Figures 5.35 and 5.36). This serves as a good illustration of the trade-offs involved in gain

tuning for improved system response.

5.2.6 Estimated Actuator Deficiencies Discussion

The crux of this thesis lies in the analysis of the behavior of the estimated actuator deficiency,

as it represents the primary addition to the standard adaptive controller framework. As illustrated

in Figures 5.41 - 5.50, there are several recurring patterns across all data sets. Notably, in all cases,

the δ̂ for the elbow appears to converge more rapidly than the δ̂ for the shoulder. Furthermore,

despite the actual estimated deficiency being within the bounds for all experiments, the estimated

actuator deficiency invariably converges to one of the bounds.

The projection-based controller consistently causes the estimated actuator deficiency to con-

verge to the lower bound of the projection operator, typically within 5 seconds of the start time.

This observation may account for the close performance measures of the projection operators, as

referenced in Tables 5.4 and 5.5. The increase in actual deficiency increases the error, but because

the lower bound was set at -0.9 in the 20%, 40%, 60%, and 80% deficiency cases, which is very

close to the actual deficiency in the 80% case, the error is reduced.

Another conclusion that can be drawn for the projection operator is that the δ̂ consistently

exhibits some oscillation after it has converged to the lower bound. This is most evident in Figure

5.42, where it can also be seen that the estimation hits the upper bound before converging to the

lower bound. This is also seen in a much more aggressive manner in the simulation results from
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Figure 4.6. This is because the estimation is hitting the edge of the projection operator bound and

rebounds inside of the selected ε . However, this is not a concern because, due to the nature of the

projection operator, δ̂ is only guaranteed to be bounded and is not guaranteed to converge to the

actual actuator deficiency.

The bound-based controller seems to always converge to the upper bound of the estimated

actuator deficiency. However, the larger the actuator deficiency, the slower the convergence. This

is most clearly shown by Figure 5.49, where the estimated shoulder deficiency does not seem to

reach the upper bound in the 100-second experiment time. There are also small oscillations in the

trajectory around the upper bound which probably correspond to the oscillation of the shoulder.

It also turns out that the bounds of the estimated actuator deficiency, δ̂ , have a large impact on

the tracking error of the system. This means that tighter the bounds result in smaller error of the

system, and the more information that is known about the system, the better response that can be

achieved. If not much in known about the system the bounds will be further apart, which could

lead to a less accurate system response.

In conclusion, the analysis reveals that the projection-based and bound-based controllers exhibit

distinct behaviors in terms of convergence speed and oscillatory behavior in the estimated actuator

deficiency. The bounds of the estimated actuator deficiency, δ̂ , significantly impact the system

error, emphasizing the importance of accurate system knowledge for satisfactory performance.

5.2.7 Estimated Model Parameters Discussion

The analysis of the data uncovers a noteworthy observation: the estimated model parameters

do not converge to their actual representative values. Refer to Figures 5.51 - 5.60 for details.

This phenomenon, while anticipated given the adaptive control architecture, incites an inquiry into

the potential convergence values for the mass and moment of inertia. It is crucial to note that

the theoretical framework only assures the asymptotic convergence of the tracking error, not the

convergence of estimated parameters to their true value.

The estimated model parameters appear to be converging to a common location for each case,

albeit scaled by a certain factor. This is likely attributable to the invariant mathematical expressions
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for the regressor matrix, as delineated in Equation 3.1, across experiments. For high deficiency

cases, the estimated model parameters do not seam to converge; however they are converging slowly.

If the system were to be tuned differently or allowed a longer run time, it would be more clear that

the parameters are converging to constants.

Upon comparing the bound-based controller and the projection operator, a discernible pattern

emerges. The bound-based controller seems to yield more oscillatory results in this dataset, while

the projection operator demonstrates less oscillation.
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6 Conclusion

This thesis presented a comprehensive study on the experimental results of the joint tracking

problem of robotic manipulators with uncertain dynamical parameters and actuator deficiencies.

Two novel adaptive controller formulations were used, tested by simulation, verified by experimen-

tation, and compared. Both controllers demonstrated remarkable resilience, maintaining control of

the robotic arm with up to 80% control input deficiencies.

The analysis of system responses and joint error plots revealed that both controllers tend to

gravitate towards zero error as the experiment advances, underscoring the notion that the longer

the adaptive controller interacts with the system, the more the error diminishes. However, a stark

contrast was observed between the two controllers. The bound-based controller’s error exhibited

substantial oscillations around zero, whereas the projection operator-based adaptive controller

maintained a steadier course.

A compelling observation emerged when analyzing the commanded values of joint torques.

Even with a fraction of available torque, both controllers could still drive the error towards zero.

This underscores the robustness and effectiveness of the proposed adaptive controllers, even under

substantial actuator deficiencies. However, it was noted that if initial conditions deviated signif-

icantly from zero, the transient response failed to find a steady-state solution. This suggests that

further investigations might be warranted to improve system response under such conditions.

The analysis of the estimated actuator deficiency behavior has provided significant insights into

the performance of both the projection-based and bound-based controllers. The speed of conver-

gence and the noise in the estimated actuator deficiency after convergence are key characteristics

that differentiate the two controllers. The projection-based controller consistently converges to

the lower bound, while the bound-based controller tends to converge to the upper bound. The

rate of convergence and the final value of the estimated actuator deficiency are influenced by the

actual actuator deficiency. Furthermore, the bounds of the estimated actuator deficiency, δ̂ , have

a substantial impact on the system error. The closer the bounds, the smaller the system error,

implying that a better understanding of the system can lead to an improved response. Conversely,
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a lack of knowledge about the system can result in wider bounds and potentially a less accurate

system response. This analysis underscores the importance of more accurate system knowledge

and appropriate controller selection in achieving an acceptable system performance. Future work

could focus on output feedback-based controllers, task space controllers, and experimentation on

other robotic platforms.

In conclusion, this work contributes to the field of robotics by proposing and validating two

novel adaptive controller formulations that can effectively handle uncertainties in dynamical pa-

rameters and actuator deficiencies. The findings from this study provide valuable insights for

future research in this area, particularly in terms of enhancing robustness and reducing errors in

robotic manipulator control. Moreover, this work paves the way for numerous potential future

explorations and unresolved issues. These encompass the extension of the results to collaborative

or networked robotic systems, the management of nonlinear and time-dependent uncertainties, the

development of output feedback controllers, and the integration of learning mechanisms. This

research constitutes a foundational step towards further progress in this domain.
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