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Quantifying and Optimizing Failure Tolerance of 
a Class of Parallel Manipulators 

Chinmay S. Ukidve, John E. McInroy and Farhad Jafari 
!"#$%&'#()*+,*-)+.#"/0*12&2.#%3*
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1. Introduction    

For any robotic system, fault tolerance is a desirable property. This work uses a comparative 
approach to investigate fault tolerance and the associated problem of reduced 
manipulability of robots. An important result in combinatorial matrix theory is first 
obtained. Its consequent modifications are then applied to the theory of fault tolerance of 
robotic manipulators. 
It is shown that for a certain class of parallel manipulators, the mean squared relative 
manipulability over all possible cases of a given number of actuator failures is always 
constant irrespective of the geometry of the manipulator. A theorem formulates the value of 
the mean squared relative manipulability. It is shown that this value depends only upon the 
number of simultaneous joint failures, the nominal number of joint degrees of freedom and 
the nominal task degrees of freedom. It is difficult to predict specific failures at the design 
stage and as such failure of any actuator is considered equally likely. In this context, optimal 
fault tolerant manipulability is quantified. The theory is applied to a special class of parallel 
manipulators called Orthogonal Gough-Stewart Platforms (Orthogonal GSPs or OGSPs). A 
class of two-group symmetric OGSPs which inherently provide for optimal fault tolerant 
manipulability under a single failure is developed. 

2. Background 

Robotic manipulators have become popular in numerous applications. They have been 
employed in automation of industrial processes, underwater exploration, space exploration 
and innovative defence technologies. The nature of some of these applications makes human 
presence near manipulators difficult and in many cases, impossible. This is especially true 
for robots employed in remote and hazardous environments. The repair and maintenance 
tasks for such robots are extremely difficult. In such cases, operational reliability is of prime 
importance. Therefore, it is imperative to incorporate failure tolerance in system design. 
Under the occurrence of failures, fault tolerance enables the robotic system to maintain 
critical functioning with a reduced level of performance. 
Current research efforts are focussed on developing techniques for designing fault tolerant 
manipulators and robotic vision systems.  
Redundant manipulators are rapidly becoming a focus of research due to a multitude of 
potential advantages they provide. In serial robots, kinematic redundancy has been 

Source: Parallel Manipulators, Towards New Applications, Book edited by: Huapeng Wu, ISBN 978-3-902613-40-0, pp. 506, April 2008, 
I-Tech Education and Publishing, Vienna, Austria
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employed for obstacle avoidance (Baillieul, 1990), dexterity optimization (Lewis & 
Maciejewski, 1992) and torque minimization (Hollerbach & Suh, 1987). In parallel 
manipulators, singularity avoidance (Kim et al., 2004) and stiffness improvement (Kock & 
Schumacher, 1998) are broad areas where kinematic redundancy has proven useful. Another 
significant attribute of redundancy that has come under recent investigation is fault 
tolerance. 
Kinematic failures commonly occur in manipulators. The effect of such failures on 
manipulator performance depends upon the nature of failure and the nominal kinematic 
design of the manipulator. For instance, loss of an actuator can render a serial manipulator 
completely unmanipulable. On the other hand, parallel manipulators can be designed to 
retain kinematic stability under loss of actuators. Locking of actuators is another commonly 
observed failure phenomenon. In any failure scenario a robotic system loses partial or 
complete manipulability. Fault tolerance and the consequent problem of reduced 
manipulability have been studied by a number of researchers. 
Maciejewski (Maciejewski, 1990) associates the concept of fault tolerance to manipulator 
configuration. Dexterity index is used as a measure of fault tolerance. Optimal fault tolerant 
configurations are defined using this measure. 
Roberts and Maciejewski (Roberts & Maciejewski, 1996) propose a local measure to quantify 
fault tolerance of a manipulator pose in terms of a manipulability index. Their approach 
uses the singular value decomposition of the manipulator Jacobian matrix. They describe a 
direct relation between relative manipulability and the null-space of the Jacobian matrix. 
They propose relative manipulability index as a measure of fault tolerance. 
Paredis, Au and Khosla (Paredis, Au & Khosla, 1994) consider fault tolerance with respect to 
manipulator workspace and reach. They define fault tolerant workspace of a manipulator 
and suggest task based design of manipulators. Their approach uses iterative techniques to 
design manipulators. 
Ting, Tosunoglu and Tesar (Ting, Tosunoglu & Tesar, 1993) explore control algorithms for 
fault tolerant operation of manipulators. 
McInroy, O’Brien and Neat (McInroy, O’Brien & Neat, 1999) propose a fault tolerant 
precision pointing strategy using a class of parallel manipulators called Gough-Stewart 
Platforms (GSPs) (Stewart, 1966). A GSP is used as a pointing platform to reject vibrations 
from a noisy spacecraft bus over all frequencies. At low frequencies two-axis or three-axis 
pointing method is used, while at high frequencies six-axis vibration isolation is employed. 
The benefits of this approach include broadband pointing stability without a high-
bandwidth pointing sensor or destabilizing excitation of the high frequency structural 
modes. To incorporate fault tolerance, they propose a reconfiguration algorithm to compute 
a decoupling matrix which allows motion in ` off degrees of freedom' to compensate for 
failures. 
This work uses a comparative approach to investigate fault tolerance and the associated 
problem of reduced manipulability. Following is a description of the main contributions. 
An important result in combinatorial matrix theory is first obtained. Its consequent 
modifications are then applied to the theory of fault tolerance of robotic manipulators. 
It is shown that for a certain class of parallel manipulators, the mean squared relative 
manipulability over all possible cases of a given number of actuator failures is always 
constant irrespective of the geometry of the manipulators. This work uses the 
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manipulability index suggested by Yoshikawa (Yoshikawa, 1985) and the resulting relative 
manipulability indices proposed by Roberts and Maciejewski (Roberts & Maciejewski, 1996). 
A theorem formulates the value of the mean squared relative manipulability. It is shown 
that this constant depends only upon the number of simultaneous failures, the nominal 
number of joint degrees of freedom and the nominal task degrees of freedom. 
It is difficult to predict specific failures at the design stage and as such failure of any 
actuator is considered equally likely. From this perspective optimal fault tolerant 
manipulability for a given number of faults has been defined by Roberts and Maciejewski in 
(Roberts & Maciejewski, 1996). This work quantifies optimal fault tolerant manipulability 
based only upon the number of simultaneous failures, the nominal number of joint degrees 
of freedom and the nominal task degrees of freedom. 
For parallel manipulators employed in micromanipulation, the workspace is very small. For 
such manipulators, the definition of optimal fault tolerant manipulability for a given 
number of faults carries a different interpretation. Such manipulators can be assumed to 
operate only at a particular pose and therefore the the same definition can be applied to the 
manipulator in general rather than to a specific pose. As an illustration, the concept of 
optimal fault tolerant manipulability is applied to a special class of parallel manipulators 
called Orthogonal Gough-Stewart Platforms (Orthogonal GSPs or OGSPs). This work 
develops a class of two-group symmetric OGSPs (McInroy & Jafari, 2006) which inherently 
provide for optimal fault tolerant manipulability under a single failure. 

3. Quantifying optimal fault tolerant manipulability 

3.1 Manipulability index 

In the robotics standard, the Jacobian matrix mapping joint velocities,!
!"

, to generalized end 

effector velocities, V , is denoted by J . 

  = .V J!
"!

 (1) 

A number of researchers have proposed different measures that quantify the manipulability 
of a manipulator. One such manipulability index, based on a matrix determinant, was 
proposed by Yoshikawa (Yoshikawa, 1985): 

  ( ) = ( ).Tw J det JJ  (2) 

Failures in manipulators can occur in various ways. In this work, only mechanical failures 
that cause a manipulator to lose an actuator are considered. The impact of such failures 
varies with different classes of parallel manipulators. In a wide class of parallel mechanisms, 
under a joint failure, the resulting manipulator Jacobian matrix, referred to as reduced 
Jacobian matrix, is given by the original Jacobian matrix except that the column 
corresponding to the failed joint is removed. Gough Stewart Platforms are a classic example 
of manipulators belonging to this class. On the contrary, in multi-fingered grasps, the 
impact of failures on the kinematic representation is a function of composite manipulability 
Jacobian matrix, described in (Wen & Wilfinger, 1999) and cannot be directly derived by 
elimination of rows or columns.  
The mechanisms treated in this work belong to the former class, which will be characterized 

by "#J . Consider a nominal Jacobian matrix, J , with n  actuators. A reduced Jacobian 

www.intechopen.com



 Parallel Manipulators, Towards New Applications 

 

48 

matrix with i  simultaneous actuator failures will be denoted by J
i

. Note that this J
i

 is not 

unique since there may be multiple ways in which i  struts may fail. In order to identify all 

reduced Jacobian matrices uniquely, a subscript j  will be used. Therefore, 
j
J

1
, 

}{1,2,...,
i

n Cj# , will describe the alternative i  strut failure schemes. This representation will 

be more clear from the following example. 

Suppose J  denotes a manipulator with 3  actuators. Then J
1

 denotes a reduced Jacobian 

matrix with 1  actuator failure. There are 
1

3C  ways in which 1 actuator can fail at a time 

from 3  actuators. Here, 
g

f C  denotes the usual combinatorial notation. Therefore, 
j
J

1
 with 

{1,2,3}#j  completely represents all reduced Jacobian matrices. 

To analyze the post fault performance of a manipulator the relative manipulability index,
ji
r , 

will be used: 

  
( )

= .
( )

T

i j i j

i j T

det J J
r

det JJ
 (3) 

Clearly this index is normalized and the scaled translational and rotational components of 
the manipulator Jacobian matrix do not affect this value. 

3.2 Optimal fault tolerant manipulability 
For serial manipulators, (Roberts & Maciejewski, 1996) define optimally fault tolerant 
configurations have been defined as those J  in which the relative manipulability index 

ji
r  

remains constant over all possible j , for a given i . A rigorous method is provided in 

(Roberts & Maciejewski, 1996) to calculate 
ji
r  over all j  for a given i . However, that does 

not allow direct determination of optimal  
ji
r  over all j  for a given i . The following 

theorem shows that for a given n  and i  the sum of squares of 
ji
r  over all j  is invariant. 

Consequently, a formulation is developed that determines optimal 
ji
r  over all j (Ukidve, 

McInroy & Jafari, 2006). 
!"#$%#&' ()  Let J  be an nm$  ( mn > ) Jacobian matrix representing the operating 

configuration of any manipulator having n  actuators such that "#J . Then the mean 

squared relative manipulability over all possible failures j  given that i  ( i  %  )( mn & ) 

actuators fail at a time is constant and is given by 

  

2 ( )

=1 =1

( )1
= = .

( )

n n T n i
i i
i j i j i j m

n n T n
j j

i i m

C Cr det J J C

C C det JJ C

&

' '  (4) 

*%$$+, Note: Following identities in combinatorics are used in the proof. 

 
!

=
!( )!

f

g

f
C

g f g&
 

( )
=f f

g f g
C C &   

Case 1: )(= mni & .  
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Note 

  
( )

2 2 2

=1 =1 =1

= = = 1.

nn n
n mi m

j j j
j j ji i i

CC C
r r r

&

' ' '  (5) 

This equality follows from the Binet-Cauchy Theorem, because for )(= mni &  

  
=1

( ) = ( ).

n
m

T T

i j i j
j

C
det JJ det J J'  (6) 

Case 2: )(< mni & .  

Let m

k
c R# , denote the thk  column of J  ( 1=k  to n ). Then, 

 
1 2

...
= ,

n
c c c

J

( )
* +
* +
* +
* +
, -

 

and 

  
1 1 2 2

= .T T T T

n n
JJ c c c c c c. . .#  (7) 

Let tmn =)( & .  

By Binet-Cauchy Theorem, 

  
=1

( ) = ( ).

n
m

T T

t j t j
j

C
det JJ det J J'  (8) 

Suppose i  actuators fail at a time from n  actuators )<( ti . This leads to a reduced Jacobian 

matrix 
ji
J  with }{1,2,...,

i

n Cj# . Without loss of generality, we may assume that the actuators 

corresponding to last i  columns fail. This says that all the reduced Jacobian matrices can be 

completely expressed by 
ji
J  with }{1,2,...,

m

in Cj &# . Note that although this loss of generality 

argument is not applicable to the reduced Jacobian matrix, equation (7)  makes it clear that 
the argument is valid for the product of the reduced Jacobian matrix and its transpose. The 
number of actuators remaining is )( in & . The number of ways in which the failures can 

happen at a time are
i

nC . In other words, 
i

nC  = 
)( in

nC
&

 is the number of ways in which )( in &  

un-failed actuators can be chosen from n actuators. So, there will be 
i

nC  such reduced 

Jacobian matrices, 
ji
J , where }{1,2,...,

i

nCj# . 

Apply the Binet-Cauchy Theorem to a representative reduced Jacobian matrix
ji
J , denoted 

by 1

ji
J .  

Then, we have 

                                           
).(=)( 11

)(

1=

11 T

jtjt

m
in

j

T

jiji
JJdet

C
JJdet '

&

                                                  (9) 
Similarly,   

www.intechopen.com



 Parallel Manipulators, Towards New Applications 

 

50 

 

( )

2 2 2 2

=1

( ) = ( ).

n i
m

T T

i j i j t j t j
j

C
det J J det J J

&

'  (10) 

In general,   

 

( )

=1

( ) = ( ).

n i
mn n n n

T Ti i i i

i j i j t j t j
j

C
C C C C

det J J det J J

&

'  (11) 

Note that all of the 
m

in C)( &  terms appearing on the R.H.S. of equation (9) are exactly those 

terms on the R.H.S. of equation (8) which do not have the eliminated i  columns in their sub-

matrices
jt
J . Moreover, each equation from ((9) - (11)) has one term on the L.H.S and 

m

in C)( &  

terms on the R.H.S and there are 
i

mC  such equations. 

Using equations ((9) - (11)) to add all possible 
i

nC  reduced Jacobian matrices 2

ji
J , 3

ji
J , ..., 

i
n

ji

C
J  i.e. taking the summation of all possible 

i

nC  reduced Jacobian matrices,  

1 1 2 2( ) ( ) ( )
n n

T T Ti i

i j i j i j i j i j i j

C C
det J J det J J det J J. . .$  

( ) ( )

1 1 2 2

=1 =1

= ( ) ( )

n i n i
m m

T T

t j t j t j t j
j j

C C
det J J det J J

& &

. .' ' $  

 

( )

=1

( ).

n i
m n n

Ti i

t j t j
j

C
C C

det J J

&

. '$  (12)  

  Now comparing equation (8) with equation(12), each term in the R.H.S. of (12) is a term on 
the R.H.S. of (8). Choose a particular term on the R.H.S. of (8), for example )(

11

T

tt
JJdet  This 

term will occur in only those 
Tp

ji

p

ji
JJdet  1=(p  to )

i

nC  for which p

ji
J  contains exactly those n  

columns in 
1
J

t
. For n  given columns, the number of columns left to choose for

ji
J ; with i  

columns eliminated is )( mn & ; from which we choose the remaining )( imn &&  columns. 

Therefore, the number of occurrences for )(
11

T

tt
JJdet  will be

)(

)(

imn

mn C
&&

& . 

This is true for each term on the R.H.S. of(8). Furthermore, we also know that each term 
from the 

m

in C)( &  terms appearing on the R.H.S. of 
i

mC  equations ((9) - (11)) occurs in the 

R.H.S. of equation (8).  
Dividing equation (12) by (8), we have 

 

1 1 2 2

( )

( )

( ) ( ) ( )
= .

( ) ( ) ( )

n n
T T Ti i

i j i j i j i j i j i j n m

n m iT T T

C C
det J J det J J det J J

C
det JJ det JJ det JJ

&
& &. . .$   (13) 

Therefore,   

 2 ( )

( )
=1 =1

( )
= = .

( )

n n T
i i

i j i j n m

j n m iT
j ji

C C det J J
r C

det JJ

&
& &' '  (14) 

Dividing both sides by 
i

nC  to take the mean and noting that,   
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( )

( )

( )
= ,

nn i

n m m

n m i in

m

C
C C

C

&
&

& &  (15) 

the result follows.   

#   
This proof leads to the definition of optimal fault tolerant manipulability. 
-#+./.0.$/: A manipulator operating about a single point in the workspace is said to be 

optimally fault tolerant for a given number of failures i  if for all }{1,2,...,
i

n Cj#  

  =
i j
r c  (16) 

where c  is a constant. 

 It is clear from Theorem 1 that if post-fault relative manipulability for certain cases of 
failure are higher than the optimal fault tolerant manipulability value, then for other worst 
cases of failure, post-fault relative manipulabilities are extremely low. This has precisely 
been the motivation for developing optimally fault tolerant manipulators and the above 
definition arises as a direct consequence. 

1$%$223%4'5)'A manipulator characterized by "#J  and operating about a single point in the 

workspace is optimally fault tolerant to i  faults if 

  
( )

=
n i

m

i j n

m

C
r

C

&

 (17)  

for all }{1,2,...,
i

n Cj# . 

*%$$+, Equation (16) defines manipulators with optimal fault tolerant manipulability for i  

faults. By Theorem 1, if each 
ji
r  is constant, c  is given by equation (1) 

#   
Roberts and Maciejewski (Roberts & Maciejewski, 1996) present a singular value 
decomposition approach to identify fault tolerant configurations for serial manipulators and 
describes a rigorous method to determine whether a given nominal configuration possesses 
optimal fault tolerant manipulability. The above theorem states a formulation which directly 
gives the value of optimal manipulability under a given number of failures, for any 
manipulator with a given number of actuators. In fact, the theorem proves that irrespective 
of the operating configuration, all manipulators having the same number of actuators, have 
the same value of optimal manipulability under a given number of failures. This new idea 
plays a key role in the design of fault tolerant serial manipulators. The following example 
illustrates this point. 

Suppose a fault tolerant serial manipulator is to be designed such that it has 3  degrees of 

freedom 3)=(m  and it is desired to have an optimal fault tolerant manipulability of 0.5  

0.5)=(
ji
r  under a single-actuator failure 1)=(i . This implies that the manipulator operating 

in the nominal configuration, should be able to sustain the failure of any actuator and retain 

half of its manipulability. Substituting all known values in equation (1), we get 4=n . This 

means that the manipulator has to have 4  actuators in order to have optimal fault tolerant 
manipulability for single failure. 
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Another implication of this theorem is significant in terms of understanding post-fault 

behavior of any manipulator. From equation (14), it is clear that if the value of 
ji
r  is quite 

close to 
)(

)(

imn

mn C
&&

&  for some j  then the reduction in manipulability is far more pronounced if 

a possible failure combination corresponding to some other j  were to occur. Taking this 

into account, it is possible to assemble the actuators in such a way that actuators which are 

more likely to fail (for example, actuators with actuators that are more likely to have 

manufacturing defects) correspond to those j  which give 

 
( )

> .
n i

m

i j n

m

C
r

C

&

 

This idea has a greater impact on the design of parallel manipulators. While actuator failures 

may cause a serial manipulator to stop functioning, actuator failures have a comparatively 

smaller effect on redundant parallel manipulators because they can retain kinematic 

stability. Therefore, the two consequences that can be applied to the design of serial 

manipulators are applicable to parallel manipulators as well.  

The most significant area of investigation where the above results influence parallel 

manipulator design is the choice of geometry. This area will be explored in the Section 5. 
3.3 Examples 
Some specific examples provide more insight to understanding this concept of optimal fault 

tolerant manipulability.  

 

Number of 
Nominal 
Actuators 

n  

Number of 
Failures 

i  

Sum of all 
possible 

2

ji
r  

Optimal Fault 
Tolerant 

Manipulability

7 1 1 0.377 

8 1 2 0.500 

8 2 2 0.189 

9 1 3 0.577 

9 2 3 0.288 

9 3 3 0.109 

Table 1. Optimal Fault-tolerant manipulability of 6-dof redundant manipulators  

It is clear from Table 1 that as the number of failures increases, the optimal fault tolerant 

manipulability decreases drastically, regardless of the geometry. Consider the example of  

any 8-actuator manipulator suffering from 2 simultaneous failures. The sum of squares of 

relative manipulabilities is 2 for 28 failure possibilities. This means that if some post-fault 

relative manipulabilities are more than the optimal fault tolerant manipulability (0.189), 

then the worst case values are far less than 0.189. Therefore, irrespective of the geometry of 

the 8-actuator manipulator, for worst cases of failure the relative manipulabilities will have 

negligible values. Hence, it is important to design manipulators that are optimally fault 

tolerant to a given number of failures. 
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Table 1 also provides another important inference which is significant from the design 

perspective. Any redundant manipulator gives very low optimal fault tolerant 

manipulability values for more than one failures, and these values decrease drastically with 

number of failures. For example, for two failures in an octopod the optimal fault tolerant 

manipulability is 0.189 and, for two and three failures in a nanopod the optimal fault 

tolerant manipulabilities are 0.288 and 0.109 respectively. This means that under the 

hypothesis of equal probability of failure for each actuator, it is not practical to design 

manipulators optimally fault tolerant to more than one fault. 

4. Symmetric orthogonal Gough Stewart platforms 

4.1 Gough Stewart platforms 

A Gough-Stewart Platform (GSP) is a parallel manipulator consisting of a base, a moving 

platform (or payload) and struts. The length of struts is controlled by actuators. The struts 

have spherical joints at the payload end and U joints at the base. To provide six degrees of 

freedom, six struts are commonly used. Figure 1 is a diagrammatic representation of a GSP. 

Payload attachment points and base attachment points are represented by 
i
p  and 

i
q  

( ,6}{1,2,3,4,5#i ) respectively. 

 

 

Fig. 1. Gough-Stewart Platform   

OGSPs are a special class of GSPs that provide kinematic and dynamic decoupled control. 

Therefore, OGSPs are being widely used in commercial, military and space applications. 

Scientists at Northrop Grumman Space Technologies (NGST) are currently experimenting 

with an 8-strut OGSP. More recent applications of OGSPs include laser tracking and 

pointing, ultra-precise manipulation (McInroy & Jafari, 2006) and robotic surgery (Wapler et 

al., 2003). The very nature of these applications makes maintenance or repair of 

manipulators very difficult. Moreover, a single failure may compromise the fulfilment of 

objective or cause costly downtime. As a consequence, it is desirable to design OGSPs which 

can sustain failures, while retaining an acceptable level of manipulability. Figure 2 shows 

one of the flexure jointed hexapods at the University of Wyoming. It has a mutually 

orthogonal geometry. 
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Fig. 2. A Flexure Jointed Hexapod at the University of Wyoming 

Recent research has shown that symmetric groups of struts can be used to generate OGSPs 

having desired properties at their home position (McInroy & Jafari, 2006) and several new 

results have been obtained. 

The following part of this section recapitulates important results from (McInroy & Jafari, 

2006). 

4.2 Kinematics of symmetric OGSPs 

The inverse Jacobian, M , of a GSP maps the generalized velocity of the payload to the 

corresponding joint velocities of each strut ( MV=!
!"

). It has the form:  

 

1 1

=

T T

T T

l l

u v

M

u v

( )
* +
* +
* +, -

" "

% %
" "

 (18) 

where 3, R#
ii
vu
""

, 
iii
upv
"""

$= . 
i
u
"

 is the unit vector along strut i  and 3

R#
i
p
"

 is the moving 

platform attachment point of strut i . Please refer to Figure 1. Note that, even though M  is 

called the inverse Jacobian to comply with the robotics standard, its computation does not 

require inversion, thus it is well defined for all GSP. 

-#+./.0.$/6, Let )(
6

R
$

#
l

MM . Write   

= T TM U V( ), -  
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where U , )(
3

R
l

MV
$

# . We say #M  GSP, M  is a Gough-Stewart Platform, if:    

/ 1][11=)( #UUdiag T  

/ 0=)( VUdiag T  

 We say M  is a Weighted Orthogonal Gough-Stewart Platform, #M  w-OGSP, if #M  GSP 

and:    

/ KMM T  is a diagonal matrix for a diagonal K .   

Where IK =  these matrices become the Orthogonal Gough-Stewart Platforms. 

 

 

Fig. 3. [4 4] cylindrical OGSP with optimal fault tolerant manipulability 

(McInroy & Jafari, 2006) develops properties and designs of symmetrical weighted OGSPs. 

Struts that are geometrically symmetrical are treated together, so the entire OGSP is 

decomposed into m  different groups, with the thi  group having 
i
n  struts. Then   

 0 11 2
= ...

T

m
n n n n
"

 

is a vector of positive integers describing the number of struts in each group. The total 

number of struts in the GSP is then 
j

m

j nl ' 1== . Let 3, R#
ijij
vu
""

 correspond to the thi  strut in 

group j . Let ][=
121

1
2111 m

m
nn
uuuuuU
"

#
""

#
""

 and ][=
121

1
2111 m

m
nn
vvvvvV
"

#
""

#
""

. A GSP can then be found 

for these struts by letting ][= TT VUM . 
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Following is the summary of results in (McInroy & Jafari, 2006). 

*%$7$6.0.$/'8)  Conditions (a) and (b) in the GSP definition are satisfied if   

 = , =

ij ij

ij ij ij x ij yij ij ij ij

ij

S C

u S S v x v y v

C

2 3

2 3

2

( )
* +
* + .
* +
* +
, -

" " " "
 (19) 

where xS
x

sin= , xC
x

cos= , R#
ijijijij
yx ,,,34 , and   

 = , = .

0

ij ij ij

x yij ij ij ij ij

ij

S C C

v C v C S

S

3 2 3

3 2 3

2

( )( )
* +* +
* +&* +
* +* +
* +&* +, - , -

" "
 (20) 

Conversely, if #M  GSP, then M  may be represented by a parameterization given by (19) 

and (20).   

!"#$%#&'9)  Let all groups contain more than two struts, i.e. 2>min jj n . Then #M  w-OGSP 

if   

/ The same angle, 
j

4 , is used for all struts in group j , i.e. 
jij
44 = ,  

/ The same x component of v
"

, 
j
x , is used for all struts in group j , i.e. 

jij
xx = ,  

/ The same y component of v
"

, 
j
y , is used for all struts in group j , i.e. 

jij
yy = ,  

/ The same k , 
j
k , is used for all struts in group j , i.e. 

jij
kk = ,  

/ Struts in a group are rotated about the z-axis equal amounts, i.e. 
j

jij

n

i 1)(2
=

&
.

5
33 , 

/ 0=xA
x

"
 and 0=yA

y

"
,  

where   

1 1 1

2 2 2
= , = , = ,

m m m

x y

x y
x y

x y

2
2

2

2

( ) ( ) ( )
* + * + * +
* + * + * +
* + * + * +
* + * + * +
, - , - , -

"" "

% % %
 

1 1

2 2
= , = ,

m m

k

k
k

k

3
3

3

3

( ) ( )
* + * +
* + * +
* + * +
* + * +
, - , -

" "

% %
 

 
1 1 2 21 2

= [ ],
x m m m
A k n S k n S k n S2 2 2#  (21) 

   
1 1 2 2 2 2 21 2

= [ ].
y m m m
A k n S k n S k n S2 2 2#  (22) 
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R#
jji
k,,34  may be freely chosen. x

"
 and my R#

"
 may be freely chosen to satisfy (F). 

Furthermore, if 2

i
6  denotes the thi  diagonal element of KMM T , then   

 2 2

1 2
=1

21
= = ,

2
26 6 '

!

" " #"
"

$ % &  (23) 

   2 2

3 1
=1

= 2 ,6 6&'
!

" "
"

$ %  (24)   

 2 2 2 2

4 5
=1

21
= = ( ),

2

!

" " " " #"
"

$ % ' ( )26 6 .'  (25) 

   2 2

6
=1

2= .26 '
!

" " " #"
"

$ % ( &  (26)  

In (Aphale, 2006) robust fault tolerance is defined as the property by which the rank of M 

equals 6 or the number of struts remaining after failures, whichever is minimum. Not all 

geometric designs of OGSPs are robustly fault tolerant. In fact, it has been proved that [3 3 2] 

geometry gives the only robustly fault tolerant design for 8- strut (octopod) OGSPs. This 

means that [3 3 2] geometry is the only one wherein, if any two struts fail, the rank of M 

remains 6. While robust fault tolerance guarantees motion in 6 degrees of freedom for a n - 

strut platform under any mn &  failures 6))(( &% nm , experiments made on the University of 

Wyoming octopod clearly show that robustly fault tolerant designs suffer from serious post-

fault stability problems due to poor conditioning. On the other hand, in many cases the 

design specifications may require a single failure tolerant architecture. For instance, in a 

typical case, it would be better to design an 8-strut OGSP which gives an optimal fault 

tolerant manipulability of 0.5 for a single failure, instead of designing a robustly fault 

tolerant 8-strut OGSP. This argument will be clearer from the example explained in the next 

section where a class of symmetric OGSPs having optimal fault tolerant manipulability is 

proposed. 

5. Fault tolerant Gough Stewart platforms 

5.1 Design 

For parallel manipulators, the problem of inverse kinematics is easier to solve. Therefore, in 

most literature on parallel manipulators, the inverse Jacobian, M , is used for study. 

:#&3%;, In this work, it is assumed that the Jacobian relating joint and Cartesian motion is 

constant. This is equivalent to considering that the operation is about a single point, rather 

than across a workspace. The rationale for making this assumption is that there are several 

high precision OGSP applications which demand operation over a very small workspace. 

These include high precision motion control for telescopes, scanning microscopes, 

integrated circuit fabrication, stiffness, precision pointing and vibration isolation. 
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As mentioned in Section 3, [4 4] redundant OGSPs are currently under investigation by a 
number of researchers. This section develops a more general class of symmetric OGSPs with 
optimal fault tolerant manipulability under one fault.  
A key characteristic of symmetric OGSPs is  rotational invariance. Rotational invariance of 
groups of struts can be clearly understood with the help of Figure 3, Figure 4 and Figure 5.  
Figure 3 represents a symmetric 8-strut OGSP, having  M given as, 

0.8660 0.0000 0.5000 0.1369 0.5969 0.2372

0.0000 0.8660 0.5000 0.5969 0.1369 0.2372

0.8660 0.0000 0.5000 0.1369 0.5969 0.2372

0.0000 0.8660 0.5000 0.5969 0.1369 0.2372

0.0000 0.5000 0.8660 1.0338 0.2372 0.1369

0.5000 0

& &

&

& & &

& & & &

& &

& .0000 0.8660 0.2372 1.0338 0.1369

0.0000 0.5000 0.8660 1.0338 0.2372 0.1369

0.5000 0.0000 0.8660 0.2372 1.0338 0.1369

( )
* +
* +
* +
* +
* +
* +
* +

&* +
* +&
* +

&* +
* +
, -

 

It can be clearly seen that a strut failure in group 1 (Figure 4) or a strut failure in group 2 
(Figure 5) causes the same effective change in manipulability. 
 

 

Fig. 4. [4 4] cylindrical OGSP with one failure in group 1.    
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This prominent feature provides symmetric OGSPs with inherent optimal fault tolerant 

manipulability under the occurrence of a failure. Furthermore, for symmetric OGSPs it is 

possible to estimate post-fault reduction in manipulability by knowing the geometry. This is 

explained in the following theorem. 

!"#$%#&' <) For a [p q] (p >  3,q 7  3 or q >  3,p 7  3) geometry, satisfying  (A)- (F) in 

Theorem 4, the relative manipulability after a single failure in group [p] is given by 
j
r

1
 

where 
j
r

1
 is the optimal fault tolerant manipulability under one fault for an OGSP with [p p] 

geometry. For the remaining cases of failure i.e. those corresponding to group [q], the 

relative manipulability is given by 
j
r8

1
 where 

j
r8

1
 is the optimal fault tolerant manipulability 

under one fault for an OGSP with [q q] geometry. 

*%$$+, Consider a manipulator with [p q] (p >  3,q 7  3 or q >  3,p 7  3) geometry. Let 
p

M  

and 
q

M  denote the inverse Jacobian corresponding to each group. Then the composite 

inverse Jacobian matrix M  is given by 

  = .
p

q

M
M

M

( )
* +
, -

 (27) 

Consider the case that a single link in group [p] fails. Then from rank one perturbation of a 

matrix, we have 

  1( ) = ( )(1 ( ) )T T T T

f f
det M M det M M p M M p&8 8 8 8.  (28) 

where 
f
p  represents the row of 

p
M  corresponding to the link failure and M 8  represents the 

inverse Jacobian matrix after failure. Then,   

 
1

( ) 1
= .

( ) (1 ( ) )

T

T T T

f f

det M M

det M M p M M p&

8 8
8 8.

 (29) 

Using the Matrix Inversion Lemma for the expression on the R.H.S. of equation (29) 

  1( )
= 1 ( ( ) ).

( )

T

T T T

f f f fT

det M M
p M M p p p

det M M

&8 8
8 8& .  (30) 

Using the formulation as in equation (7), we have 

 1( )
= 1 ( ( ) ).

( )

T

T T

f fT

det M M
p M M p

det M M

&8 8
&  (31) 

Using conditions  (A)- (F) given in Theorem 4, for a [p q] geometry with equal strut stiffness, 

we have 

 
1 2

= , = ,
i p i q

2 2 2 2  
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1 2
= , = ,

i p i q
x x x x  

 
1 2

= , = ,
i p i q
y y y y  (32)  

and 

  1

2 2 2 2 2 2

1 2 3 4 5 6

1 1 1 1 1 1
( ) = [ ].TM M diag

6 6 6 6 6 6
&  (33) 

Note that 
f
p  also has a trigonometric parametrization given by Proposition 3.  

  = ,

p ij

p ij

p

T

f ij p ij

ij p ij

p

S C

S S

C

p S C C

C C S

S

2 3

2 3

2

3 2 3

3 2 3

2

( )
* +
* +
* +
* +
* +

.* +
* +
& .* +
* +
* +
* +
, -

 (34)  

and substituting equation (32) in equations ((23)-(26)), we get 

  2 2 2 2

1 2

1
= = ( ),

2 p q
pS qS2 26 6 .  (35) 

 2 2

3 1
= ( ) 2 ,p q6 6. &  (36) 

  2 2 2 2 2 2

4 5

2 21
= = ( ( ) ( )),

2
2 26 6 . . .

* * + +* +
* ' ( ) + ' ( )  (37) 

and 

  
2 2 2 2 2

6
= ( ).

p qp q
py S qy S2 26 .  (38) 

Substituting equations ((35)-(38)) into equation(33), we get 1)( &MM T  in terms of design 

parameters. Using this formulation of 1)( &MM T  into equation (31), then substituting equation  

(34) in equation (31) and simplifying the complicated trigonometric expression, we get 

  1( ) 3
= 1 ( ( ) ) = 1 .

( )

T

T T

f fT

det M M
p M M p

det M M p

&8 8
& &  (39) 

It is important to note that this expression does not depend upon q  or the particular 

geometric parameters 
ij
4 , 

ij
x , 

ij
y  and 

ij
3 . 

www.intechopen.com



Quantifying and Optimizing Failure Tolerance of a Class of Parallel Manipulators 

 

61 

Note that the optimal fault tolerant manipulability for any [p p] manipulator is given by 
equation (1) in Theorem 2. Hence, 

  
(2 1)

6

1 2

6

3
= = 1 .

p

j p

C
r

C p

&

&  (40) 

Since the choice of p does not cause any loss of generality, we have 

  
(2 1)

6

1 2

6

3
= = 1 .

q

j q

C
r

C q

&

8 &  (41) 

#   

Results from this Theorem are plotted in Figure 6. Figure 6 depicts the change in values of 
the relative manipulability, for different geometries, under the occurrence of one failure. 
This Theorem proves the independence of the manipulability contributions of each 
symmetric group of a two-group OGSPs which may have different number of struts in each 
group. It is shown that within the group, any failure will give the same manipulability 
reduction even in any two-group OGSPs. Figure 6 depicts the change in relative 
manipulability under on failure, for symmetric OGSPs with different two–group 
geometrical designs.  
 

 
Fig. 5. [4 4] cylindrical OGSP with one failure in group 2.    
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Looking at Figure 6 it is now possible to estimate the level of post fault reduction in 

manipulability of symmetric OGSPs. Corollary 6 proves that all two-group OGSPs ( i.e. with 

[m m] (m >  3) geometries ) possess optimal fault tolerant manipulability. 

1$%$223%4' =)' Any 2s-strut OGSP with [s s] (s >  3) geometry generated by Theorem 4 

possesses optimal fault tolerant manipulability under one fault and its value is given by, 

  
(2 1)

6

1 2

6

=
s

j s

C
r

C

&

 (42) 

 

for all }{1,2,...,
1

2 Cj s# . 

*%$$+, Consider a manipulator with [p q] (p >  3,q 7  3 or q >  3,p 7  3) geometry. Substitute 
q = p = s. Using Theorem 5, 

  
(2 1)

6

1 2

6

=
s

j s

C
r

C

&

 (43) 

for all }{1,2,...,
1

2 Cj s# .   

 #   

 

Fig. 6. Variation of the relative manipulability under a single failure, for various two group 
geometries    
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For the particular case of a symmetric 8-strut OGSP introduced at the beginning of this 

section, 

1
= 0.5

j
r  for all }{1,2,...,8#j . 

 

This inherent property possessed by symmetric OGSPs can be put to a significant advantage 

in design. Therorem 5 and Corollary (6) allow freedom of designing symmetric OGSPs with 

a high value of nominal manipulability. For example, by Corollary (6) it is seen that an 8-

strut OGSP sustains  any single-strut failure while retaining half of its nominal 

manipulability. The optimal fault tolerant manipulability of symmetric OGSPs makes them 

a suitable choice for critical applications where failure tolerance is necessary. 

5.2 Singularities 

While designing OGSPs with optimal fault tolerant manipulability, it is important to 

identify symmetric OGSPs which may be rendered singular under the occurrence of one 

fault. At the onset of singularity, unexpected motions are possible and the manipulator 

cannot be controlled. This is highly undesirable and potentially destructive. The following 

Theorem develops the necessary and sufficient condition to identify optimal fault tolerant 

OGSPs with potential singularity problems. 

 !"#$%#&' >) Let M  be the inverse Jacobian matrix of an OGSP with two groups. Then, 

MM i

T

i
 is singular if and only if the group in which failure occurs has at most 3  struts. 

The following lemma is necessary to prove the Theorem. 

?#&&3'@)'For any nm$  matrix, M , 

  ( ) = ( ).Trank M M rank M  (44)  

Proof of lemma:  Clearly,   

 ( ) ( ).Trank M M rank M%  (45) 

 

Let 0=MxM T  for nx R# . 

Then,   

 
2

, = , = = 0.TM Mx x Mx Mx Mx9 : 9 :  (46) 

Hence, 0=Mx .   

 #   

*%$$+'$+'!"#$%#&,  Suppose that MM i

T

i
 is singular. Then, 

rank ( ) 5T

i i
M M % . 

 
 

Proposition 7  in (Aphale, 2006) determines the rank of M  for an OGSP, having p  groups 

of struts: 
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1

( ) = ( ( ),6)
p

p
rank M min rank M'  (47) 

where 
p

M  denotes the inverse Jacobian matrix of the thp  group. 

In the context of failures, this proposition directly implies 

  
1

( ) = ( ( ),6)
p

p

i f
rank M min rank M'  (48) 

where Mp
f

 denotes the inverse Jacobian matrix of the thp  group having f  strut failures 

within the group. That is, if =' . 

Applying Lemma 8 to equation (48), we have 

  
1

( ) = ( ( ),6).
p

T p T p

i i f f
rank M M min rank M M'  (49) 

 

The nominal OGSP under consideration consists of two groups of struts. Hence, 

  
2

=1

( ) = [ ( ),6]T T

i i f fe e
e

e erank M M min rank M M'  (50) 

 

where 
1 2

=f f i. . Theorem 1  in (Aphale, 2006) establishes that the maximum rank of the 

Jacobian matrix of a group of struts forming an OGSP is 3 . Therefore, MM i

T

i
 is singular if 

the group in which any failure occurs has at most 3  struts. The converse is immediate.   

 #   
:#&3%;,' It is worthwhile to note that unitarily equivalent Jacobian matrices (and inverse 

Jacobian matrices) have the same manipulability, and it may be readily checked that all 

single failure reduced inverse Jacobian matrices of a 2s OGSP with an [s s] geometry 

generated by Theorem 4 are unitarily equivalent. This observation highlights the fact that 

these designs produce manipulators with optimal fault tolerant manipulability. 

5.3 Application example: air borne laser (ABL) 

Currently, feasibility of missile defense using an aircraft equipped with a high energy laser 

is being explored. At the concept level, the system uses a mirror inside the fuselage which 

focusses a beam from a megawatt-class chemical laser. Optic and beam control systems 

keeps the beam locked on a small supersonic target hundreds of kilometers away. It is 

believed that ABL can destroy hostile theater ballistic missiles while they are still in the 

highly vulnerable boost phase of flight before separation of the warheads. ABL can operate 

above the clouds, where it is possible to autonomously detect and track missiles as they are 

launched, using an onboard surveillance system. The defense system acquires the target, 

then accurately points and fires the laser with sufficient energy to destroy the missile. 

Airborne optical or electro-optical systems may be too large for all elements to be mounted 

on a single integrating structure, other than the aircraft fuselage itself. An eight-legged six-

DOF OGSP (Octopod) is a perfect candidate to maintain the required alignment between 
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elements. However the various smaller integrating structures (benches) must still be isolated 

from high-frequency airframe disturbances that could excite resonances outside the 

bandwidth of the alignment control system. The combined active alignment and vibration 

isolation functions must be performed by flight-weight components, which may have to 

operate in a vacuum. The platform used must be able to perform the dual functions of low-

frequency alignment and high-frequency isolation (Keinholz, 1999). 

The manipulability requirements for OGSPs intended for such an application are very 

demanding and Aphale (Aphale, 2006) describes them in detail. It is also shown (Apahle, 

2005) that OGSPs are capable of meeting the manipulability requirements, making them 

suitable for the ABL application. Failure tolerance is imperative for this missile defense 

application. Furthermore, it is difficult to predict specific failures at the design stage and as 

such failure of any actuator is considered equally likely. If an equal reduction of 

manipulability is desired under a failure of  any strut, an OGSP with optimal fault tolerant 

manipulability is an excellent choice. 

6. Conclusions and future work 

6.1 Conclusions 

This work proves that for a certain class of parallel manipulators functioning about a single 

point in its workspace, the mean squared relative manipulability over all possible cases of a 

given number of actuator failures is always constant irrespective of the geometry of the 

manipulator. In this context, optimal fault tolerant manipulability is defined and quantified 

using a simple algebraic formulation. The definition is more suited to parallel manipulators 

since they can retain kinematic stability under failures which constitute loss of actuators.  

For micromanipulation, symmetric OGSPs can be designed to possess optimal 

manipulability under actuator failures. OGSP geometries that may be rendered singular due 

to faults can be identified and avoided. OGSPs with optimal fault tolerant manipulability 

are highly suitable for critical applications since they retain a reasonable and equal fault 

tolerant performance if  any actuator fails. For example, Figure 3 illustrates a cylindrical [4 4] 

OGSP that can be used in aerospace applications with ABL. These OGSPs will provide 

operational reliability critical to the application. 

6.2 Future work 

Currently most OGSPs are seen to have a very small range of motion in the joint space. In 

such scenarios, the assumption that the Jacobian matrix remains constant with respect to 

time, is valid. Recent applications demand OGSPs with a larger range of motion. The 

assumption of the Jacobian being constant does not hold validity in such cases. Investigating 

the fault tolerant characteristics of a manipulator Jacobian which will take into account the 

change with respect to time can be of great practical importance. It has recently been shown 

(Roberts, Yu & Maciejewski, 2007) that, regardless of a manipulator's geometry or the 

amount of kinematic redundancy present in a manipulator, no fully spatial manipulator 

Jacobian can be  equally fault tolerant to three or more joint failures. Due to these constraints 

in generalization, it would be useful to formulate manipulator Jacobian matrices that 

possess equal fault tolerance to specified scenarios involving multiple failures. In particular, 

weights can be assigned to relative manipulability indices corresponding to multiple failure 
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scenarios and optimized values of relative manipulability can be obtained based on the 

result derived in Theorem 1. Exploring the application of design and control techniques 

devised for OGSPs in areas of medical robotics and haptic interfaces can be considered. 

Robotics holds promise in standardized surgical procedures like eye surgery, knee surgery, 

etc. The theory developed thus far can be applied efficiently in medical applications where 

principles of robotics and computer vision combine towards a single objective. Multiple 

finger grasp mechanisms and other parallel manipulators have been considered for such 

applications. In these applications there is a need to withstand failures with almost no 

degradation in performance. It is possible to transfer many theories and techniques related 

to parallel manipulators to the analysis of multiple finger grasps with some modification.  

It would be worthwhile to consider optimizing control for grasps such that fault tolerance 

can be achieved. Internal force calculations have been done for parallel mechanisms like 

multi-finger grasp mechanisms (Kerr & Roth, 1986). Internal force issues in other forms of 

parallel manipulators have also been explored (Lebret, Liu & Lewis, 1993) (Hiller and 

Schneider, 1997). Literature on the internal forces generated in GSPs is limited. OGSPs being 

a very recently defined class haven't been explored with respect to the internal forces they 

generate and need to withstand. With redundancy comes more number of actuators than the 

required minimum and a large number of constraints associated with them. Under failures, 

internal forces will be a major factor in the dynamics and control of OGSPs. Generating 

OGSPs that provide equal tolerance to failures with respect to the dynamic manipulability 

index seems feasible. 

Finally, it is most important to recognize that the main contribution of this work is a 

combinatorial result in linear algebra. Numerous systems in various disciplines can be 

modeled by matrices. For instance, matrices are used to model power transmission and 

distribution systems. In matrix models where failures amount to elimination of rows and 

(or) columns, the theory of fault tolerance developed thus far would be useful and 

worthwhile extending. 
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