542 research outputs found

    Modern Machine Learning Tools for Monitoring and Control of Industrial Processes: A Survey

    Full text link
    Over the last ten years, we have seen a significant increase in industrial data, tremendous improvement in computational power, and major theoretical advances in machine learning. This opens up an opportunity to use modern machine learning tools on large-scale nonlinear monitoring and control problems. This article provides a survey of recent results with applications in the process industry.Comment: IFAC World Congress 202

    모델기반강화학습을이용한공정제어및최적화

    Get PDF
    학위논문(박사)--서울대학교 대학원 :공과대학 화학생물공학부,2020. 2. 이종민.순차적 의사결정 문제는 공정 최적화의 핵심 분야 중 하나이다. 이 문제의 수치적 해법 중 가장 많이 사용되는 것은 순방향으로 작동하는 직접법 (direct optimization) 방법이지만, 몇가지 한계점을 지니고 있다. 최적해는 open-loop의 형태를 지니고 있으며, 불확정성이 존재할때 방법론의 수치적 복잡도가 증가한다는 것이다. 동적 계획법 (dynamic programming) 은 이러한 한계점을 근원적으로 해결할 수 있지만, 그동안 공정 최적화에 적극적으로 고려되지 않았던 이유는 동적 계획법의 결과로 얻어진 편미분 방정식 문제가 유한차원 벡터공간이 아닌 무한차원의 함수공간에서 다루어지기 때문이다. 소위 차원의 저주라고 불리는 이 문제를 해결하기 위한 한가지 방법으로서, 샘플을 이용한 근사적 해법에 초점을 둔 강화학습 방법론이 연구되어 왔다. 본 학위논문에서는 강화학습 방법론 중, 공정 최적화에 적합한 모델 기반 강화학습에 대해 연구하고, 이를 공정 최적화의 대표적인 세가지 순차적 의사결정 문제인 스케줄링, 상위단계 최적화, 하위단계 제어에 적용하는 것을 목표로 한다. 이 문제들은 각각 부분관측 마르코프 결정 과정 (partially observable Markov decision process), 제어-아핀 상태공간 모델 (control-affine state space model), 일반적 상태공간 모델 (general state space model)로 모델링된다. 또한 각 수치적 모델들을 해결하기 위해 point based value iteration (PBVI), globalized dual heuristic programming (GDHP), and differential dynamic programming (DDP)로 불리는 방법들을 도입하였다. 이 세가지 문제와 방법론에서 제시된 특징들을 다음과 같이 요약할 수 있다: 첫번째로, 스케줄링 문제에서 closed-loop 피드백 형태의 해를 제시할 수 있었다. 이는 기존 직접법에서 얻을 수 없었던 형태로서, 강화학습의 강점을 부각할 수 있는 측면이라 생각할 수 있다. 두번째로 고려한 하위단계 제어 문제에서, 동적 계획법의 무한차원 함수공간 최적화 문제를 함수 근사 방법을 통해 유한차원 벡터공간 최적화 문제로 완화할 수 있는 방법을 도입하였다. 특히, 심층 신경망을 이용하여 함수 근사를 하였고, 이때 발생하는 여러가지 장점과 수렴 해석 결과를 본 학위논문에 실었다. 마지막 문제는 상위 단계 동적 최적화 문제이다. 동적 최적화 문제에서 발생하는 제약 조건하에서 강화학습을 수행하기 위해, 원-쌍대 미분동적 계획법 (primal-dual DDP) 방법론을 새로 제안하였다. 앞서 설명한 세가지 문제에 적용된 방법론을 검증하고, 동적 계획법이 직접법에 비견될 수 있는 방법론이라는 주장을 실증하기 위해 여러가지 공정 예제를 실었다.Sequential decision making problem is a crucial technology for plant-wide process optimization. While the dominant numerical method is the forward-in-time direct optimization, it is limited to the open-loop solution and has difficulty in considering the uncertainty. Dynamic programming method complements the limitations, nonetheless associated functional optimization suffers from the curse-of-dimensionality. The sample-based approach for approximating the dynamic programming, referred to as reinforcement learning (RL) can resolve the issue and investigated throughout this thesis. The method that accounts for the system model explicitly is in particular interest. The model-based RL is exploited to solve the three representative sequential decision making problems; scheduling, supervisory optimization, and regulatory control. The problems are formulated with partially observable Markov decision process, control-affine state space model, and general state space model, and associated model-based RL algorithms are point based value iteration (PBVI), globalized dual heuristic programming (GDHP), and differential dynamic programming (DDP), respectively. The contribution for each problem can be written as follows: First, for the scheduling problem, we developed the closed-loop feedback scheme which highlights the strength compared to the direct optimization method. In the second case, the regulatory control problem is tackled by the function approximation method which relaxes the functional optimization to the finite dimensional vector space optimization. Deep neural networks (DNNs) is utilized as the approximator, and the advantages as well as the convergence analysis is performed in the thesis. Finally, for the supervisory optimization problem, we developed the novel constraint RL framework that uses the primal-dual DDP method. Various illustrative examples are demonstrated to validate the developed model-based RL algorithms and to support the thesis statement on which the dynamic programming method can be considered as a complementary method for direct optimization method.1. Introduction 1 1.1 Motivation and previous work 1 1.2 Statement of contributions 9 1.3 Outline of the thesis 11 2. Background and preliminaries 13 2.1 Optimization problem formulation and the principle of optimality 13 2.1.1 Markov decision process 15 2.1.2 State space model 19 2.2 Overview of the developed RL algorithms 28 2.2.1 Point based value iteration 28 2.2.2 Globalized dual heuristic programming 29 2.2.3 Differential dynamic programming 32 3. A POMDP framework for integrated scheduling of infrastructure maintenance and inspection 35 3.1 Introduction 35 3.2 POMDP solution algorithm 38 3.2.1 General point based value iteration 38 3.2.2 GapMin algorithm 46 3.2.3 Receding horizon POMDP 49 3.3 Problem formulation for infrastructure scheduling 54 3.3.1 State 56 3.3.2 Maintenance and inspection actions 57 3.3.3 State transition function 61 3.3.4 Cost function 67 3.3.5 Observation set and observation function 68 3.3.6 State augmentation 69 3.4 Illustrative example and simulation result 69 3.4.1 Structural point for the analysis of a high dimensional belief space 72 3.4.2 Infinite horizon policy under the natural deterioration process 72 3.4.3 Receding horizon POMDP 79 3.4.4 Validation of POMDP policy via Monte Carlo simulation 83 4. A model-based deep reinforcement learning method applied to finite-horizon optimal control of nonlinear control-affine system 88 4.1 Introduction 88 4.2 Function approximation and learning with deep neural networks 91 4.2.1 GDHP with a function approximator 91 4.2.2 Stable learning of DNNs 96 4.2.3 Overall algorithm 103 4.3 Results and discussions 107 4.3.1 Example 1: Semi-batch reactor 107 4.3.2 Example 2: Diffusion-Convection-Reaction (DCR) process 120 5. Convergence analysis of the model-based deep reinforcement learning for optimal control of nonlinear control-affine system 126 5.1 Introduction 126 5.2 Convergence proof of globalized dual heuristic programming (GDHP) 128 5.3 Function approximation with deep neural networks 137 5.3.1 Function approximation and gradient descent learning 137 5.3.2 Forward and backward propagations of DNNs 139 5.4 Convergence analysis in the deep neural networks space 141 5.4.1 Lyapunov analysis of the neural network parameter errors 141 5.4.2 Lyapunov analysis of the closed-loop stability 150 5.4.3 Overall Lyapunov function 152 5.5 Simulation results and discussions 157 5.5.1 System description 158 5.5.2 Algorithmic settings 160 5.5.3 Control result 161 6. Primal-dual differential dynamic programming for constrained dynamic optimization of continuous system 170 6.1 Introduction 170 6.2 Primal-dual differential dynamic programming for constrained dynamic optimization 172 6.2.1 Augmented Lagrangian method 172 6.2.2 Primal-dual differential dynamic programming algorithm 175 6.2.3 Overall algorithm 179 6.3 Results and discussions 179 7. Concluding remarks 186 7.1 Summary of the contributions 187 7.2 Future works 189 Bibliography 192Docto

    Convolutional neural networks for the segmentation of small rodent brain MRI

    Get PDF
    Image segmentation is a common step in the analysis of preclinical brain MRI, often performed manually. This is a time-consuming procedure subject to inter- and intra- rater variability. A possible alternative is the use of automated, registration-based segmentation, which suffers from a bias owed to the limited capacity of registration to adapt to pathological conditions such as Traumatic Brain Injury (TBI). In this work a novel method is developed for the segmentation of small rodent brain MRI based on Convolutional Neural Networks (CNNs). The experiments here presented show how CNNs provide a fast, robust and accurate alternative to both manual and registration-based methods. This is demonstrated by accurately segmenting three large datasets of MRI scans of healthy and Huntington disease model mice, as well as TBI rats. MU-Net and MU-Net-R, the CCNs here presented, achieve human-level accuracy while eliminating intra-rater variability, alleviating the biases of registration-based segmentation, and with an inference time of less than one second per scan. Using these segmentation masks I designed a geometric construction to extract 39 parameters describing the position and orientation of the hippocampus, and later used them to classify epileptic vs. non-epileptic rats with a balanced accuracy of 0.80, five months after TBI. This clinically transferable geometric approach detects subjects at high-risk of post-traumatic epilepsy, paving the way towards subject stratification for antiepileptogenesis studies

    An investigation on automatic systems for fault diagnosis in chemical processes

    Get PDF
    Plant safety is the most important concern of chemical industries. Process faults can cause economic loses as well as human and environmental damages. Most of the operational faults are normally considered in the process design phase by applying methodologies such as Hazard and Operability Analysis (HAZOP). However, it should be expected that failures may occur in an operating plant. For this reason, it is of paramount importance that plant operators can promptly detect and diagnose such faults in order to take the appropriate corrective actions. In addition, preventive maintenance needs to be considered in order to increase plant safety. Fault diagnosis has been faced with both analytic and data-based models and using several techniques and algorithms. However, there is not yet a general fault diagnosis framework that joins detection and diagnosis of faults, either registered or non-registered in records. Even more, less efforts have been focused to automate and implement the reported approaches in real practice. According to this background, this thesis proposes a general framework for data-driven Fault Detection and Diagnosis (FDD), applicable and susceptible to be automated in any industrial scenario in order to hold the plant safety. Thus, the main requirement for constructing this system is the existence of historical process data. In this sense, promising methods imported from the Machine Learning field are introduced as fault diagnosis methods. The learning algorithms, used as diagnosis methods, have proved to be capable to diagnose not only the modeled faults, but also novel faults. Furthermore, Risk-Based Maintenance (RBM) techniques, widely used in petrochemical industry, are proposed to be applied as part of the preventive maintenance in all industry sectors. The proposed FDD system together with an appropriate preventive maintenance program would represent a potential plant safety program to be implemented. Thus, chapter one presents a general introduction to the thesis topic, as well as the motivation and scope. Then, chapter two reviews the state of the art of the related fields. Fault detection and diagnosis methods found in literature are reviewed. In this sense a taxonomy that joins both Artificial Intelligence (AI) and Process Systems Engineering (PSE) classifications is proposed. The fault diagnosis assessment with performance indices is also reviewed. Moreover, it is exposed the state of the art corresponding to Risk Analysis (RA) as a tool for taking corrective actions to faults and the Maintenance Management for the preventive actions. Finally, the benchmark case studies against which FDD research is commonly validated are examined in this chapter. The second part of the thesis, integrated by chapters three to six, addresses the methods applied during the research work. Chapter three deals with the data pre-processing, chapter four with the feature processing stage and chapter five with the diagnosis algorithms. On the other hand, chapter six introduces the Risk-Based Maintenance techniques for addressing the plant preventive maintenance. The third part includes chapter seven, which constitutes the core of the thesis. In this chapter the proposed general FD system is outlined, divided in three steps: diagnosis model construction, model validation and on-line application. This scheme includes a fault detection module and an Anomaly Detection (AD) methodology for the detection of novel faults. Furthermore, several approaches are derived from this general scheme for continuous and batch processes. The fourth part of the thesis presents the validation of the approaches. Specifically, chapter eight presents the validation of the proposed approaches in continuous processes and chapter nine the validation of batch process approaches. Chapter ten raises the AD methodology in real scaled batch processes. First, the methodology is applied to a lab heat exchanger and then it is applied to a Photo-Fenton pilot plant, which corroborates its potential and success in real practice. Finally, the fifth part, including chapter eleven, is dedicated to stress the final conclusions and the main contributions of the thesis. Also, the scientific production achieved during the research period is listed and prospects on further work are envisaged.La seguridad de planta es el problema más inquietante para las industrias químicas. Un fallo en planta puede causar pérdidas económicas y daños humanos y al medio ambiente. La mayoría de los fallos operacionales son previstos en la etapa de diseño de un proceso mediante la aplicación de técnicas de Análisis de Riesgos y de Operabilidad (HAZOP). Sin embargo, existe la probabilidad de que pueda originarse un fallo en una planta en operación. Por esta razón, es de suma importancia que una planta pueda detectar y diagnosticar fallos en el proceso y tomar las medidas correctoras adecuadas para mitigar los efectos del fallo y evitar lamentables consecuencias. Es entonces también importante el mantenimiento preventivo para aumentar la seguridad y prevenir la ocurrencia de fallos. La diagnosis de fallos ha sido abordada tanto con modelos analíticos como con modelos basados en datos y usando varios tipos de técnicas y algoritmos. Sin embargo, hasta ahora no existe la propuesta de un sistema general de seguridad en planta que combine detección y diagnosis de fallos ya sea registrados o no registrados anteriormente. Menos aún se han reportado metodologías que puedan ser automatizadas e implementadas en la práctica real. Con la finalidad de abordar el problema de la seguridad en plantas químicas, esta tesis propone un sistema general para la detección y diagnosis de fallos capaz de implementarse de forma automatizada en cualquier industria. El principal requerimiento para la construcción de este sistema es la existencia de datos históricos de planta sin previo filtrado. En este sentido, diferentes métodos basados en datos son aplicados como métodos de diagnosis de fallos, principalmente aquellos importados del campo de “Aprendizaje Automático”. Estas técnicas de aprendizaje han resultado ser capaces de detectar y diagnosticar no sólo los fallos modelados o “aprendidos”, sino también nuevos fallos no incluidos en los modelos de diagnosis. Aunado a esto, algunas técnicas de mantenimiento basadas en riesgo (RBM) que son ampliamente usadas en la industria petroquímica, son también propuestas para su aplicación en el resto de sectores industriales como parte del mantenimiento preventivo. En conclusión, se propone implementar en un futuro no lejano un programa general de seguridad de planta que incluya el sistema de detección y diagnosis de fallos propuesto junto con un adecuado programa de mantenimiento preventivo. Desglosando el contenido de la tesis, el capítulo uno presenta una introducción general al tema de esta tesis, así como también la motivación generada para su desarrollo y el alcance delimitado. El capítulo dos expone el estado del arte de las áreas relacionadas al tema de tesis. De esta forma, los métodos de detección y diagnosis de fallos encontrados en la literatura son examinados en este capítulo. Asimismo, se propone una taxonomía de los métodos de diagnosis que unifica las clasificaciones propuestas en el área de Inteligencia Artificial y de Ingeniería de procesos. En consecuencia, se examina también la evaluación del performance de los métodos de diagnosis en la literatura. Además, en este capítulo se revisa y reporta el estado del arte correspondiente al “Análisis de Riesgos” y a la “Gestión del Mantenimiento” como técnicas complementarias para la toma de medidas correctoras y preventivas. Por último se abordan los casos de estudio considerados como puntos de referencia en el campo de investigación para la aplicación del sistema propuesto. La tercera parte incluye el capítulo siete, el cual constituye el corazón de la tesis. En este capítulo se presenta el esquema o sistema general de diagnosis de fallos propuesto. El sistema es dividido en tres partes: construcción de los modelos de diagnosis, validación de los modelos y aplicación on-line. Además incluye un modulo de detección de fallos previo a la diagnosis y una metodología de detección de anomalías para la detección de nuevos fallos. Por último, de este sistema se desglosan varias metodologías para procesos continuos y por lote. La cuarta parte de esta tesis presenta la validación de las metodologías propuestas. Específicamente, el capítulo ocho presenta la validación de las metodologías propuestas para su aplicación en procesos continuos y el capítulo nueve presenta la validación de las metodologías correspondientes a los procesos por lote. El capítulo diez valida la metodología de detección de anomalías en procesos por lote reales. Primero es aplicada a un intercambiador de calor escala laboratorio y después su aplicación es escalada a un proceso Foto-Fenton de planta piloto, lo cual corrobora el potencial y éxito de la metodología en la práctica real. Finalmente, la quinta parte de esta tesis, compuesta por el capítulo once, es dedicada a presentar y reafirmar las conclusiones finales y las principales contribuciones de la tesis. Además, se plantean las líneas de investigación futuras y se lista el trabajo desarrollado y presentado durante el periodo de investigación

    Achieving Causal Fairness in Machine Learning

    Get PDF
    Fairness is a social norm and a legal requirement in today\u27s society. Many laws and regulations (e.g., the Equal Credit Opportunity Act of 1974) have been established to prohibit discrimination and enforce fairness on several grounds, such as gender, age, sexual orientation, race, and religion, referred to as sensitive attributes. Nowadays machine learning algorithms are extensively applied to make important decisions in many real-world applications, e.g., employment, admission, and loans. Traditional machine learning algorithms aim to maximize predictive performance, e.g., accuracy. Consequently, certain groups may get unfairly treated when those algorithms are applied for decision-making. Therefore, it is an imperative task to develop fairness-aware machine learning algorithms such that the decisions made by them are not only accurate but also subject to fairness requirements. In the literature, machine learning researchers have proposed association-based fairness notions, e.g., statistical parity, disparate impact, equality of opportunity, etc., and developed respective discrimination mitigation approaches. However, these works did not consider that fairness should be treated as a causal relationship. Although it is well known that association does not imply causation, the gap between association and causation is not paid sufficient attention by the fairness researchers and stakeholders. The goal of this dissertation is to study fairness in machine learning, define appropriate fairness notions, and develop novel discrimination mitigation approaches from a causal perspective. Based on Pearl\u27s structural causal model, we propose to formulate discrimination as causal effects of the sensitive attribute on the decision. We consider different types of causal effects to cope with different situations, including the path-specific effect for direct/indirect discrimination, the counterfactual effect for group/individual discrimination, and the path-specific counterfactual effect for general cases. In the attempt to measure discrimination, the unidentifiable situations pose an inevitable barrier to the accurate causal inference. To address this challenge, we propose novel bounding methods to accurately estimate the strength of unidentifiable fairness notions, including path-specific fairness, counterfactual fairness, and path-specific counterfactual fairness. Based on the estimation of fairness, we develop novel and efficient algorithms for learning fair classification models. Besides classification, we also investigate the discrimination issues in other machine learning scenarios, such as ranked data analysis
    corecore