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Abstract

Model-Based Reinforcement
Learning for Process Control and

Optimization

Jong Woo Kim

School of Chemical and Biological Engineering

The Graduate School

Seoul National University

Sequential decision making problem is a crucial technology for plant-

wide process optimization. While the dominant numerical method is

the forward-in-time direct optimization, it is limited to the open-loop

solution and has difficulty in considering the uncertainty. Dynamic

programming method complements the limitations, nonetheless asso-

ciated functional optimization suffers from the curse-of-dimensionality.

The sample-based approach for approximating the dynamic program-

ming, referred to as reinforcement learning (RL) can resolve the issue

and investigated throughout this thesis. The method that accounts for

the system model explicitly is in particular interest. The model-based

RL is exploited to solve the three representative sequential decision

making problems; scheduling, supervisory optimization, and regula-

tory control. The problems are formulated with partially observable

Markov decision process, control-affine state space model, and gen-

eral state space model, and associated model-based RL algorithms
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are point based value iteration (PBVI), globalized dual heuristic pro-

gramming (GDHP), and differential dynamic programming (DDP),

respectively.

The contribution for each problem can be written as follows:

First, for the scheduling problem, we developed the closed-loop feed-

back scheme which highlights the strength compared to the direct

optimization method. In the second case, the regulatory control prob-

lem is tackled by the function approximation method which relaxes

the functional optimization to the finite dimensional vector space op-

timization. Deep neural networks (DNNs) is utilized as the approxi-

mator, and the advantages as well as the convergence analysis is per-

formed in the thesis. Finally, for the supervisory optimization prob-

lem, we developed the novel constraint RL framework that uses the

primal-dual DDP method. Various illustrative examples are demon-

strated to validate the developed model-based RL algorithms and to

support the thesis statement on which the dynamic programming method

can be considered as a complementary method for direct optimization

method.

Keywords: Reinforcement learning, optimal control, dynamic opti-

mization, scheduling, deep learning, partially observable Markov de-

cision process, differential dynamic programming

Student Number: 2014-21532
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Chapter 1

Introduction

1.1 Motivation and previous work

Plant-wide process operation is generally described as a decision-

making hierarchy consisted with several time-scales and spatial-scales

[1, 2, 3, 4, 5]. While details differ from each other, our three-level de-

scription includes the scheduling for plant-wide level, the supervisory

optimization for process unit level, and the regulatory control prob-

lem for the actuator level (see, Fig. 1.1). This hierarchy separation

is considered to be necessary, for the formulation becomes easily in-

tractable when multiple scales are considered within a single problem

[5].

Considering the process dynamics, all problems can be trans-

lated as a single framework of ‘sequential’ decision making problem.

Finding efficient algorithm is the way to enable the process automa-

tion, and thus regarded as the core topics in modern process systems

engineering (PSE) field [6, 7, 8]. The ultimate goal for the plant-wide

optimization is to develop the methodology that is capable for attain-

ing the optimality in the large-scale hybrid model with constraints

satisfaction, fast online calculation and adaptation, a closed-loop so-

lution, and to possess a robustness against the online disturbance.
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Plant-wide level

Process unit level

Actuator level

Scheduling

Supervisory optimization

Regulatory control

Week – Month

Hour – Day

Sec. – Min.

Figure 1.1: The canonical hierarchy of plant-wide process operation.
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Solution approaches for sequential decision making problem are

generally divided into three major classes by their transcription method,

which are direct method, indirect method, and dynamic programming

method [9]. In direct method, entire state and/or control variables

throughout the horizon are concatenated and considered as a single

vector of decision variable. The system dynamics usually given as

differential algebraic equation (DAE) is discretized temporally and

then considered as equality constraints. The transcription result is a

static nonlinear optimization problem (NLP), to which well known

optimization solvers can be utilized. The indirect approach uses Pon-

tryagin’s maximum principle which is developed by the calculus of

variations. The additional variable called costate is introduced to yield

the adjoint differential equation defined backward-in-time. The multiple-

point boundary value problem (BVP) which is served as the neces-

sary condition of optimality is formulated. Note that the discretization

happens after which the differential equations are obtained. The first

two methods are having the opposite properties in terms of transcrip-

tion results, discretization, and the temporal direction. Direct method

is characterized as forward-in-time and discretize-and-optimize, whereas

indirect method can be viewed as backward-in-time and optimize-

and-discretize.

The third method, dynamic programming method provides the

sufficient condition of the optimality by the verification theorem [10],

hence poses a stronger condition then the other two methods. In dy-

namic programming method, the value function which states the po-

tential function or ’cost-to-go’ of the optimization objective is intro-

duced. Hamilton-Jacobi-Bellman (HJB) which has a partial differen-

tial equation (PDE) form with respect to the value function is derived
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by using the dynamic programming principle. Dynamic program-

ming solves the infinite dimensional functional optimization prob-

lem on the contrary to the finite vector space optimization problem in

the direct method. The numerical method for PDE involves the dis-

cretization in time domain as well as the spatial domain. One can ob-

serve the similarities between the indirect method; backward-in-time,

optimize-and-discretize, and using Hamiltonian terms.

Among the three methods, the dominant in PSE field has been

the direct method approach [8]. This is because the two optimize-

and-discretize methods, i.e., the indirect method and dynamic pro-

gramming method have disadvantages that prevent them from being

adopted in practice. The former is too sensitive to the initial guess

[11] and inefficient in the presence of the inequality constraint [12],

while the latter has the curse-of-dimensionality that comes from the

spatial discretization [13]. On the other hand, discretize-and-optimize

paradigm for the direct method makes itself applicable to the vari-

ous problem settings such as DAE, mixed integer hybrid dynamics

[14], and associated inequality constraints can be easily formulated.

The combination with the powerful large-scale optimizer solvers such

as IPOPT [15] enables the active applications of direct optimization

method to the whole stages of plant-wide optimization hierarchy such

as scheduling, supervisory optimization, and regulatory control [16].

Despite having the success history, there exist several limitations

on the direct optimization method. First problem is that the number

of decision variables is proportional to the horizon. The problem be-

comes insignificant in case of deterministic system due to the devel-

opment of large-scale optimization solver which can deal with mil-

lions of variables [16]. However, in case of stochastic optimization,
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decision variable grows exponentially unlike the deterministic case,

which motivates various relaxation methods [17, 18]. Second prob-

lem is that only the open-loop solution is available in direct optimiza-

tion method [19]. Note that the solution of the dynamic program-

ming method is the policy which essentially makes the closed-loop

by mapping the state to the optimal control. Noticing these limita-

tions, the recent researches on the direct method focus on avoiding the

online reoptimization in the presence of uncertainty or model-plant

mismatch [5]. The list of methodologies utilize the multiparametric

programming [20, 21], modeling the uncertainty [22, 23, 24], reced-

ing horizon methods [25, 26], and the NLP sensitivity approaches

[27, 28, 16].

Based on these observations, the dynamic programming method

has been considered as a complementary method under which the

closed-loop policy can be obtained without being intractable in the

stochastic setting [29, 30, 31, 32]. The principal task for the dynamic

programming is to perform the functional optimization and to over-

come the curse-of-dimensionality. However, the complete solution is

only available in the case where spatial discretization is possible such

as finite set or low-dimensional domain or in the case where the ana-

lytic function form can be obtained such as linear quadratic regulation

problem [13]. Since the HJB equation seldom can be solved exactly,

various approaches to build or implement approximate solutions have

been tried. The approaches try to construct approximate solutions

to the HJB equation via simulation-based learning, as in neurody-

namic programming [33], heuristic dynamic programming [34], and

approximate dynamic programming (ADP) [35]). The fact that opti-

mal control policies are learned iteratively through data connects the
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approach to the machine-learning framework of reinforcement learn-

ing (RL), where an agent also tries to learn optimal decision policies

iteratively by interacting with its environment [36].

The common procedure of RL consisted with three steps, i.e.,

data generation, performance evaluation, and policy improvement.

Hence the algorithms can be classified by how they take each step dif-

ferently, and the success of RL relies on properly confining the search

space to the manifold in the neighborhood of the data appearance

[35]. The recent advances in machine learning community enables

the feature analysis of the raw sensory-level data by using deep neu-

ral networks (DNNs) and the implementation of various information-

theoretic techniques. The resulting deep RL (DRL) shows remarkable

performances in certain applications such as robotics, autonomous

driving, games, etc [37, 38, 39]. The potential advantage of the learn-

ing based approach over the direct optimization approach, apart from

which the ability for the closed-loop solution and the online compu-

tation elimination, is that it is flexible enough to work with varying

levels of system knowledge ranging from a completely known sys-

tem to no system knowledge at all, i.e., having on-line data only (i.e.,

model-free) [34].

Model-free is a characteristic that distinguishes RL from other

optimal control methods. All steps of RL algorithm can be performed

just with the reinforcement signal (i.e., reward or cost) and without

the model knowledge. The only requirement for the system models in

RL framework is a Markov property [40]. Since the model identifica-

tion and parameter estimation are also large fields in PSE, bypassing

these provides a huge advantage for designing the controller [41].

The model-free RL contains a value-based method and a policy
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based-method. The value-based methods rely on the property of con-

traction Bellman operator and solves the fixed point problem for ob-

taining the optimal value function [13]. The particular methods range

from the simple tabular-based temporal difference learning such as

Q-learning and SARSA (see [36]), to the methods with the linear

function-approximated value function such as fitted Q-iteration and

least square methods (e.g., LSTD, LSPE) introduced in [42], and to

the DRL methods represented as deep Q-network (DQN) and its vari-

ants [43, 44, 45, 46]. In contrast to value-based method, the policy-

based method focuses on the parameter optimization of the parametrized

policy function [47]. The optimization is performed by policy or nat-

ural gradient [48, 49], with the expectation-maximization algorithm

[50], or using the information-theoretic approaches [51]. In actor-

critic (AC) method, both value and policy functions are parametrized.

Various benchmark DRL algorithms have been developed within this

category, e,g, DDPG, A3C, ACER, TRPO, SAC, etc [52, 53, 54, 55,

56].

Model-based method, on the other hand, utilizes the model ex-

plicitly. Although the process modeling requires extensive domain

knowledge and the results are inaccurate in most cases, it provides

a theoretical background of optimality under the specific conditions

[57]. Moreover, the amount of data for model-free RL is usually in-

tractable for the direct process application [58, 59, 5, 60]. Hence,

available knowledge on the system dynamics and cost should be fully

used. Fortunately, several system and cost structures allows for the

transformation of HJB equation to more tractable forms. For exam-

ple, when the system dynamics is control-affine and the objective

function is quadratic, the derivatives of model structure and the value
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function are incorporated to yield the explicit form of the control pol-

icy. Several model-based RL algorithms have been developed with

the aim to solve the HJB adaptively, hence referred to as adaptive

DP (ADP) [61, 62, 34, 63]. The model-based local optimal policy

can be parametrized in order to design the end-to-end controller [37].

Another extension is to study the connection between the stochastic

optimal control framework [64, 65, 38].

The pioneer works on the PSE applications of RL was first ap-

peared in [66, 67, 68, 69, 70]. The model-free RL was adopted for

solving the optimal control, dual adaptive control, and the schedul-

ing problems. It was discussed that the value function approxima-

tion can achieve the robust decision with respect to the process noise

and the system drift. The result is extended to the dynamic optimiza-

tion and robust optimal control problem [71, 72, 73]. The recent ap-

plications of RL based process control are yet mainly based on the

linear approximator in either model-based and model-free methods

[74, 75, 76, 77, 78]. Meanwhile, a few DRL applications on PSE are

studied in [79, 41].

From the perspectives of PSE and machine learning fields, RL,

the sample-based approximate solution of dynamic programming, can

be considered as a candidate of the complementary solution for the di-

rect optimization method in PSE field. The model-based RL method

is the scope of the thesis due to the intractable data amount require-

ment for the model-free counterpart. We developed the RL methods

for three sequential decision making problems in Fig. 1.1 in order to

validate the thesis statement.
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1.2 Statement of contributions

The main objective of this thesis is to develop the backward-in-

time value based methods for the three sequential decision-making

problems in process systems engineering; scheduling, supervisory

optimization, and regulatory control. The feedback property which is

obtained as a natural consequence of using value based methods is in-

vestigated. Moreover, the value and the policy function are parametrized

by deep neural networks (DNNs) so that the methods can be ex-

tended to large-scale state space problems. Advantages and conver-

gence analysis of using DNNs parametrization have been performed.

Proposed methods for each problem is validated with illustrative ex-

amples. The summary of the four chapters are below:

• A POMDP framework for integrated scheduling of infrastruc-

ture maintenance and inspection.

• A model-based deep reinforcement learning method applied to

finite-horizon optimal control of nonlinear control-affine sys-

tem.

• Convergence analysis of the model-based deep reinforcement

learning for optimal control of nonlinear control-affine system.

• Primal-dual differential dynamic programming for constrained

dynamic optimization of continuous system.

The first work is the scheduling problem formulated as a par-

tially observable Markov decision process (POMDP) with finite state

space. In POMDP, the Bellman equation is expressed with respect to

the probability distribution of state, belief. As a consequence, even for
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the finite state problem the domain becomes a simplex set, which is an

uncountable set. We exploited the point based value iteration (PBVI)

for the RL algorithm in POMDP case. The receding horizon POMDP

is proposed in order to construct the feedback loop with respect to

the newly obtained observations. The water main system infrastruc-

ture maintenance and inspection problem is illustrated as an example.

Sensor-installation is considered as a part of the integrated schedul-

ing, as an improvement to previous maintenance and inspection-only

scheduling.

The second part is the finite-horizon regulatory tracking control

(FHOC) problem for the nonlinear control-affine system. Proposed

RL algorithm for control-affine system is the globalized dual heuris-

tic programming (GDHP) with the DNNs parametrization. A suit-

able DNNs structure for the GDHP method, which handles certain

features of the FHOC problem, e.g., time-varying value and policy

functions, presence of boundary conditions, is suggested. The gov-

erning equation is modified to a suitable form for the delta-input for-

mulation used to address the time-varying reference tracking require-

ment. In addition, several ways to alleviate difficulties arising in train-

ing DNNs are introduced and adopted. Finally, the overall method is

applied to examples of a nonlinear batch reactor and 1-dimensional

diffusion-convection-reaction process, which have high dimensional

state space. It is shown that use of DNNs is critical in obtaining a

converging policy with satisfactory performance in the presence of

uncertainties.

The third topic is the convergence analysis of the infinite-horizon

regulation control under the GDHP algorithm with DNNs parametriza-

tion. A similar formulation and methodology is taken with that in
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the FHOC problem with slight modifications on time-invariant func-

tion and discount factor. We provided the thorough convergence anal-

ysis of the proposed methods; First, a new convergence result for

the costate iteration in GDHP is provided. Second, the convergence

analysis for DNNs parameters and the closed-loop stability are per-

formed. Finally, the proposed method is applied to the high-dimensional

state-space system governed by PDE heat equation to highlight the

necessity of DNNs as the function approximator.

The final part is on the supervisory optimization problem, whose

formulation is continuous-time control-nonaffine system. In contrast

to the regulatory control problems, the policy function cannot be ex-

pressed as an explicit function form. Instead, only the optimal varia-

tion with respect to the previous iteration is available, which is essen-

tially similar to the Newton’s method for HJB problem. Differential

dynamic programming (DDP) is the particular method that follows

this approach. We considered the constrained optimization problem

with the novel formulation called primal-dual DDP. The min-max op-

eration computing the optimal primal (control) and dual (constraint

Lagrangian) is cast to the HJB equation. Moreover, the primal-dual

augmented Lagrangian method is implemented for enabling the New-

ton update for dual variable as well, which results in the improved

convergence property.

1.3 Outline of the thesis

The remainder of the thesis is organized as follows. In Chapter

2, the background on the formulation of principle of optimality to

the Markov model and the state space model is introduced, and the

11



overview of the RL algorithms for each sequential decision making

problems are provided. In Chapter 3, the POMDP scheduling prob-

lem for integrated infrastructure maintenance and inspection is dis-

cussed. Chapter 4 proposes algorithm of GDHP with DNNs approx-

imation for discrete-time FHOC problem. The convergence analy-

sis for the algorithm developed in Chapter 4 is provided in Chapter

5. The constrained supervisory optimization problem is solved with

primal-dual DDP and the details is given in Chapter 6. Finally, gen-

eral concluding remarks and possible directions for further study are

given in Chapter 7.
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Chapter 2

Background and preliminaries

2.1 Optimization problem formulation and the princi-
ple of optimality

In this section, the optimization problems for scheduling, super-

visory optimization, and regulatory control are formulated. Schedul-

ing problem is modelled with the partially observable Markov deci-

sion process (POMDP), and supervisory and regulatory problems are

described with the state space model. Bellman equations which state

the principle of optimality are developed for each problem.

Note that in spite of the POMDP model and the state space model

are separately described, the two models are fundamentally analo-

gous and only differs in their nomenclature (see Fig. 2.1). Hence-

forth, we distinguish two methods that POMDP for the cases when

the finite state set with unstructured model, while state space model

for the cases when the uncountable state space with the structured

first-principle model is used.
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Figure 2.1: Correspondence between POMDP and state space model.
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2.1.1 Markov decision process

Markov process is a stochastic process that the conditional prob-

ability distribution of the future state depends only on the present

state, not the past history of the process. It is the standard require-

ment for the process model to have a Markov property for developing

various decision-related methods [13]. A sequential decision making

problem that satisfies the Markov property is called Markov decision

process (MDP). The objective of MDP is to find the optimal feed-

back policy that maps the state into the action which optimizes the

objective function defined in either finite or infinite horizon.

The scheduling problem of Chapter 3 particularly concerns the

finite MDP, where the state and action variables is subject to the finite

set. Formally speaking, MDP is described by a tuple< S,A, T,R, γ >.

The nomenclature is given as follows: S = {1, . . . , |S|} is a set of dis-

crete internal states. A = {1, . . . , |A|} is a set of actions that agent

can take. T : S × A × S → [0, 1] is a stochastic state transition

function, and T (s, a, s′) = p(s′|s, a) means the probability of the

successor state being in s′ when the current state is s and the action

a is taken. R : S × A × S → R is a single stage reward function,

when the current state is s and the successor state is s′ with action a

taken. γ ∈ [0, 1) is the discount factor to decrease the utility of later

rewards.

POMDP is an extension of MDP to situations where observa-

tion uncertainty exists. The tuple structure for POMDP is extended to

< S,A,O, T,R,Ω, γ >. Additional features are Ω = {1, . . . , |Ω|},

which is a set of discrete observations revealed to the agent, and an

observation probability functionO : S×A×Ω → [0, 1].O(a, s′, o) =
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p(o|s′, a) means the probability of observing o when successor state

is s′ and action a is taken.

In the finite MDP framework, the well-known solution algorithm

is the value iteration [36]. Denote the optimal policy as π : S → A,

which is a mapping of each state to the corresponding optimal action.

The objective function or the value function is defined as the expected

summation of the reward function R where any control policy π can

achieve starting from state s0.

Vπ(s0) = E

[
∞∑
t=0

γtR(st, π(st))
∣∣∣π, s0] (2.1)

Eq. (2.2) is referred to as the Bellman equation for the infinite horizon

discounted MDP, where R(s, a) is a single stage expected reward.

V ∗(s) = max
a∈A

[R(s, a) + γ
∑
s′∈S

T (s, a, s′)V ∗(s′)] (2.2)

R(s, a) =
∑
s′∈S

T (s, a, s′)R(s, a, s′)

The optimal value function V ∗(s) is the maximal expected total dis-

counted reward. We note that in the infinite horizon formulation, V ∗

is time-invariant and its uniqueness and existence are proven when

0 ≤ γ < 1, and R(s, a) is bounded [40]. Once V ∗ is available, an

optimal policy π∗ can be obtained by solving for a given s using

Eq. (2.2).

In the POMDP framework, the internal state S cannot be ob-

served deterministically. Instead, a belief space B is defined as a

probability distribution over S. The complete system history tuple

from initial time η =< S,Ω, A > should be known to determine bt.
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Thus a belief is expressed as follows:

b = p(s|h), h ∈ η (2.3)

Similar to MDP, the solution of the infinite horizon POMDP is ex-

pressed as an optimal policy which maps beliefs b to optimal actions:

π : B → A. The objective function is the expected summation of the

reward function R where the policy π starts at belief b0:

Vπ(b0) = E

[
∞∑
t=0

γtR(bt, π(bt))|π, b0

]
(2.4)

When action a and observation o are received, the belief can be up-

dated to ba,o by Bayes’ rule,

ba,o(s
′) =

O(a, s′, o)

p(o|b, a)
∑
s∈S

T (s, a, s′)b(s) (2.5)

where the normalization constant p(o|b, a) is defined as

p(o|b, a) =
∑
s′∈S

O(a, s′, o)
∑
s∈S

T (s, a, s′)b(s) (2.6)

Since beliefs actually provide sufficient statistics for history h

[80], the value function for POMDP can be stated as a function of

b only. Moreover, since the belief ba,o only depends on the previous

belief b using Eq. (2.5), POMDP can be considered as an augmented

MDP with continuous state. The Bellman equation for POMDP can

be derived by taking the additional expectation of Eq. (2.2) with re-

spect to the belief b(s). We omitted s′ index of b in Eq. (2.7) since the

17



state dependency of b is trivial.

V ∗(b)

= max
a∈A

[∑
s∈S

b(s)

(
R(s, a)

+ γ
∑
o∈Ω

∑
s′∈S

O(a, s′, o)T (s, a, s′)V ∗(ba,o(s
′))

)]

= max
a∈A

[∑
s∈S

b(s)R(s, a)

+ γ
∑
o∈Ω

∑
s′∈S

O(a, s′, o)
∑
s∈S

b(s)T (s, a, s′)V ∗(ba,o(s
′))

]

= max
a∈A

[
R(b, a) + γ

∑
o∈Ω

p(o|b, a)V ∗(ba,o)

]
(2.7)

R(b, a) =
∑
s∈S

b(s)R(s, a) (2.8)

If the functional operator H is defined as,

(HV )(b) = max
a∈A

[
R(b, a) + γ

∑
o∈Ω

p(o|b, a)V (ba,o)

]
(2.9)

then the Bellman equation can be stated equivalently with a map-

ping through H . Then Eq. (2.7) can be written as V ∗ = HV ∗, and it

is proven that the Bellman operator H for POMDP is a contraction

mapping [81].
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2.1.2 State space model

State space model is used for the development of control-theoretic

RL algorithms, where the first-principle based structured model is

available. We consider three optimization problems whose settings

are differ with respect to the finiteness of the horizon, continuity in

the time domain, and control-affine and nonaffine state space model.

The three problems are the subjects for Chapters 4, 5, and 6, respec-

tively.

2.1.2.1 Finite horizon tracking control of discrete-time
control-affine system

Consider a stochastic nonlinear control-affine system of

dx =
(
f̃(x) + g̃(x)u

)
dt+ dw

y = h(x), x(0) ∼ p(x0), x ∈ Ω (2.10)

where x ∈ RS is the state, u ∈ RA is the control, y ∈ RO is the

output vector, and p(x0) is the probability distribution of initial state.

Ω ⊂ RS denotes the compact state space. f̃(x) ∈ RS , g̃(x) ∈ RS×A,

and h(x) ∈ RO are the smooth nonlinear functions that represent the

system dynamics. The state dynamics is subject to the state transition

uncertainty dw ∈ RS which is independent of both state and control.

For the development and discussion of sampled-data control, it
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is convenient to express Eq. (2.10) in the discrete-time form of

xk+1 = f(xk) + g(xk)uk + wk

yk = h(xk), x0 ∼ p(x0),

x ∈ Ω, k ∈ {0, . . . T − 1} (2.11)

where the subscript k denotes the sample time index and T is the

time horizon. Note that operators f , g, and w denote the explicit in-

tegration of the ODEs for time interval [tk, tk + ∆tk], either analyti-

cally or through their numerical approximations. For example, f and

g may be defined through the Runge-Kutta (RK) integration equa-

tions, which are explicit but nevertheless include some intermediate

variables for the calculation. In the case of w, the Euler-Maruyama

method which is a stochastic version of Euler discretization can be

used [82]. In constant reference tracking problems, it is common that

delta-input ∆uk = uk−uk−1 and the augmented state space formula-

tion. Additionally, to express the time dependency in FHOC problem,

the time variable is augmented as xk = [xk, uk−1, tk] to define the new

state space dynamics of

xk+1︷ ︸︸ ︷
xk+1

uk

tk+1

 =

f(xk)︷ ︸︸ ︷
f(xk) + g(xk)uk−1

uk−1

tk +∆tk

+

g(xk)︷ ︸︸ ︷
g(xk)

I

0

∆uk +

B︷︸︸︷
I

0

0

wk
yk = h(xk, uk−1, tk), x(0) ∼ p(x0), x ∈ Ω (2.12)

to ensure integral action.

Representing the distribution function for the discrete-time state
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transition as p(xk+1|xk,∆uk, wk), the likelihood of the state trajec-

tory x0:T := {x0, x1, . . . , xT} is obtained by the successive multipli-

cation of the probability distributions of the initial state and the state

transitions as

p(x0:T ) = p(x0)
T−1∏
k=0

p(xk+1|xk,∆uk, wk) (2.13)

An objective function of the FHOC problem is defined as

J(x0; ∆u0:T−1) = Ep(x0:T )

[
ϕ(xT ) +

T−1∑
i=0

r(xi,∆ui)

]
(2.14)

where T is the terminal time index, ϕ(xT ) is the terminal cost and

r(xk,∆uk) is the stage-wise cost at time tk. The expectation oper-

ator E[·] is defined with respect to r the state trajectory likelihood

p(x0:T ). The objective function measures the expectation value of the

performance of a trajectory. The stage-wise cost and the terminal cost

functions are positive definite, and quadratic as below:

r(xk,∆uk) := ∥yk − ρk∥2Q + ∥∆uk∥2R, k = 0, · · · , T − 1 (2.15)

ϕ(xT ) := ∥yT − ρT∥2H (2.16)

where ρk = ρ(tk) denotes the reference function for state x̄k, ∥ · ∥
is the weighted Euclidean norm, and Q, R, and H are the positive-

definite weighting matrices.

The time varying ‘cost-to-go’ function V , also referred to as the

21



value function is defined as

V (xk; ∆uk:T−1) := J(xk; ∆uk:T−1)

= Ep(xk:T )

[
ϕ(xT ) +

T−1∑
i=k

r(xi,∆ui)

] (2.17)

which measures the expected value of the objective function J start-

ing from xk at time k. By Bellman’s principle of optimality, the opti-

mal cost-to-go function satisfies the following recursive equation

V ∗(xk) = min
∆uk

Ep(xk+1|xk,∆uk,wk)

[
r(xk,∆uk) + V ∗(xk+1)

]
,

k = 0, · · · , T − 1 (2.18)

where V ∗(·) denotes the optimal value function. Costate function is

defined as the partial derivative of the value function with respect to

the augmented state xk.

λ∗(xk) :=
∂V ∗(xk)

∂xk
(2.19)

The optimality condition expressed in terms of the costate can be

obtained by differentiating both sides of the Bellman equation with

respect to the state xk as in [61]

λ∗(xk) = Ep(xk+1|xk,∆uk,wk)

[
∂r(xk,∆uk)

∂xk
+

(
∂xk+1

∂xk

)T
λ∗(xk+1)

]
(2.20)

With the state independent assumption of the state transition uncer-
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tainty wk,

∂r(xk,∆uk)

∂xk
= 2

(
∂h(xk)

∂xk

)T
Q(yk − ρk) (2.21)

Evaluation of Eqs. (2.20) and (2.21) requires the first-order differen-

tiation of system dynamics functions f(xk), g(xk) and h(xk), which

can be done either analytically or numerically.

The optimal control policy function π∗(xk) is a state feedback

control law that minimizes the objective function. For the control-

affine system with the quadratic cost function, the explicit form of

the optimal control policy function can be obtained by the first-order

optimality condition of Eq. (2.18) as

π∗(xk) = argmin
∆uk

Ep(xk+1|xk,∆uk,wk)

[
r(xk,∆uk) + V ∗(xk+1)

]
= −1

2
R−1gT (xk)Ep(xk+1|xk,∆uk,wk)

[
λ∗(xk+1)

]
(2.22)

Substituting Eq. (2.22) into Eq. (2.18) yields the following discrete-

time version of the Hamilton-Jacobi-Bellman (HJB) equation:

V ∗(xk, k) = Ep(xk+1|xk,∆uk,wk)

[
∥yk − ρk∥2Q+

1

4
λ∗(xk+1)g(xk)R

−1g(xk)
Tλ∗(xk+1) + V ∗(xk+1)

]
(2.23)

V ∗(xT ) = ϕ(xT ), λ∗(xT ) = ∂ϕ(xT )/∂xT (2.24)

whose solution is the optimal value function V ∗.
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2.1.2.2 Infinite horizon regulation control of discrete-
time control-affine system

The second case studies the infinite horizon optimal control (IHOC)

for nonlinear control-affine system defined in the discrete time of

xk+1 = f(xk) + g(xk)uk, x(0) = x0, x ∈ Ω (2.25)

where xk ∈ RS is the state and uk ∈ RA is the control vector. Ω ⊂ RS

denotes the compact set of the state space. f(xk) ∈ RS and g(xk) ∈
RS×A represent the system dynamics and assumed to be C1 functions

in Ω.

An objective function V is defined as the infinite-sum of the

cost function as V (x0;u0:∞) =
∑∞

k=0 γ
kr(xk, uk), where r(xk, uk)

is the cost function that occurs in time step k and γ < 1 is the

discount factor. The cost function has the following quadratic form:

r(xk, uk) = Q
(
xk
)
+uTkRuk, whereQ ∈ R is a positive semi-definite

(PSD) function andR ∈ RA×A is a positive definite matrix. The ‘cost-

to-go’ function, also referred to as the value function is defined as

V (xk;uk:∞) =
∞∑
i=k

γi−kr(xi, ui) (2.26)

which measures the objective value starting from time step k. By

Bellman’s principle of optimality, the optimal value function V ∗ sat-

isfies the following relationship:

V ∗(xk) = min
uk

(
r(xk, uk) + γV ∗(xk+1)

)
(2.27)
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Costate function is defined as a derivative of the value function

with respect to the state, i.e., λ(xk) =
∂V (xk)

∂xk
. The optimality condi-

tion in terms of the costate equation can be obtained by differentiating

both sides of the Bellman equation with respect to the state xk as

λ∗(xk) =
∂r(xk, uk)

∂xk
+

(
γ
∂xk+1

∂xk

)T
λ∗(xk+1) (2.28)

The optimal control policy function π∗(xk) is a state feedback

control which minimizes the objective function. In the control-affine

system with the quadratic cost function, the explicit form of the op-

timal control policy function is obtained by the first order optimality

condition of Eq. (2.27) as

π∗(xk) = argmin
uk

(
r(xk, uk) + γV ∗(xk+1)

)
= −γ

2
R−1gT (xk)λ

∗(xk+1)
(2.29)

Substituting Eq. (2.29) into Eq. (2.27) yields the following Hamilton-

Jacobi-Bellman (HJB) equation of the discrete time version.

V ∗(xk) = Q
(
xk)+

γ2

4
λ∗(xk+1)

Tg(xk)R
−1g(xk)

Tλ∗(xk+1) + γV ∗(xk+1)
(2.30)

2.1.2.3 Constrained dynamic optimization of continuous-
time system

In the final case, we consider the supervisory optimization de-

fined in the continuous-time domain and the state space model and

the cost function not being restricted to the control-affine system and
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quadratic function, respectively. Consider the dynamic optimization

problem with minimizing the following objective function

J(u) = ϕ(x(tf ), tf ) +

∫ tf

t0

L(x(t), u(t), t)dt (2.31)

where x ∈ RS is the state, u ∈ RA denotes the control, tf is terminal

time, L : RS × RA × R → R denotes the path cost function and

ϕ : RS×R → R denotes the terminal cost function. The optimization

problem is subject to the following state space system dynamics with

the initial condition,

ẋ(t) = f(x(t), u(t), t), x0 = x(t0) (2.32)

under the path constraints

gk(x(t), u(t), t) ≤ 0, k = 1, . . . , G (2.33)

and the terminal constraints

hk(x(tf )) ≤ 0, k = 1, . . . , H (2.34)

gk : RS × RA × R → R and hk : RS × R → R denote the path

and terminal constraint functions and G and H denote the number of

path and terminal constraints, respectively. Note that without loss of

generality, only the inequality constraint is considered.

Constrained optimization is solved by the augmentation of the

constraints to the cost function in various ways (e.g., Lagrangian

method, penalty method, and barrier method). We denote the aug-
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mented path and terminal cost functions L̃(x(t), u(t), λ(t), t) = L +

ψ
(
λ, g
)

and ϕ̃(x(tf ), µ, tf ) = ϕ+ψ(µ, h), respectively, where λ(t) ∈
RG

+ and µ ∈ RH
+ denotes the Lagrangian dual variables for path and

terminal constraints, and ψ is an arbitrary augmentation function.

The augmented ‘cost-to-go’ objectives for the unconstrained prob-

lem starting from state x(t) at time t is defined with the augmented

cost functions of

J̃x,t(u, λ, µ) = ϕ̃(x(tf ), µ, tf ) +

∫ tf

t0

L̃(x(t), u(t), λ(t), t)dt (2.35)

This yields the optimization problem V (x(t), t) = minumaxλ,µ J̃x,t(u, λ, µ)

for which the minimum and maximum operators are defined with re-

spect to the primal (control) and the dual (Lagrangian) variables, re-

spectively.

According to the dynamic programming principle, we have a

equation for the value function V , which is referred to as Hamilton-

Jacobi-Bellman (HJB) equation

−∂V (x, t)

∂t
= min

u
max
λ

H(x, u, λ, t) (2.36)

with the boundary condition

V (x, tf ) = max
µ

ϕ̃(x(tf ), µ, tf ) (2.37)

where the Hamiltonian is given as

H(x, u, λ, t) = L̃(x, u, λ, t) +
∂V (x, t)

∂x
· f(x, u, t) (2.38)
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2.2 Overview of the developed RL algorithms

The optimization problems presented in Section 2.1 are the POMDP

in finite countable state set, discrete-time FHOC and IHOC for control-

affine system, and continuous-time supervisory optimization prob-

lems. All problems have different forms of Bellman’s principle of

optimality, given as Eqs. (2.7), (2.23), (2.30), and (2.36), respectively.

Unfortunately, none of which has a tractable method to obtain the so-

lution that satisfies the Bellman equation since the belief domain B

or the state domain Ω are the uncountable set. Note that the exception

cases that allows for the tractable method or the analytic solution of

the Bellman equation are only in the finite state set or in the linear

system. Based on the observation, the approximate solution methods

only search for the subset that the state trajectory lies. The overview

of the sample based methods, also referred to as RL is described in

this section.

2.2.1 Point based value iteration

The RL method for POMDP focuses on the special structure of

POMDP with respect to the belief b. Eq. (2.7) shows that the optimal

value function is a function of the belief b. The belief domainB is the

simplex domain, which makes the exact value iteration intractable.

As an alternative form, the value function can be represented as a
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piecewise linear and convex (PWLC) function [80]:

α(s) = R(s, a) + γ
∑
o∈Ω

∑
s′∈S

O(a, s′, o)T (s, a, s′)V (ba,o(s
′))

(2.39)

V ∗(b) = max
α∈Γ

∑
s∈S

b(s)α(s) (2.40)

α(s) is the gradient of the value function at any belief point and called

‘alphavector’, and Γ is the set of alphavectors. Since the belief space

is infinite, Γ is an infinite set. With this representation, the solution

algorithm for POMDP focuses on the efficient computation of Γ.

Although the alphavector (α) representation in Eq. (2.40) shows

the PWLC structure of the value function for POMDP, the computa-

tion of the alphavector set throughout the whole belief space still re-

mains intractable. An important contribution to state-of-the-art POMDP

research follows by pruning down the infinite alphavector set into

a finite parsimonious subset, maintaining the structure of the value

function. The so-called Point Based Value Iteration (PBVI) algorithm

performs the value iteration only in the finite sets of sampled belief

and alphavector [83]. Detailed implementation of PBVI algorithm is

presented in Section 3.2.1.

2.2.2 Globalized dual heuristic programming

The nonlinear PDE of HJB (Eq. (2.23)) does not yield an analyti-

cal solution in general, except for the linear quadratic optimal control

problem where V ∗(xk) = 1
2
xTkPkxk. The PDE can be transformed

into ODE with respect to Pk, which is the well-known Riccati differ-
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ence equation. However, in the nonlinear system, the PDE cannot be

transformed to an ODE because of the function g(xk), thus motivat-

ing the development of an approximate numerical solution method.

The developed numerical algorithm for solving the HJB equation

involves an successive, iterative evaluation of the value, costate, and

policy functions. The algorithm is not new and is referred to as the

GDHP algorithm in the literature [61]. Instead of solving Eq. (2.23)

directly, the algorithm sequentially updates the individual optimal-

ity conditions with respect to the value, costate, and policy functions

computed by the measurement data (xk,∆uk, rk, xk+1) obtained at

each time step k.

Assume that there exists an admissible control policy µ which

satisfies V (x0;µ) <∞ [61]. The iterative scheme of GDHP is written

as follows: The functions are initialized as

V (0) = 0, λ(0) = 0S, π(0) = µ(xk) (2.41)

where 0n denotes a zero vector with n entries. At time step k and the

iteration step i, state and output of the next time step are computed

with the system dynamics under the policy π(i)(xk) and the additive

state noise wk.

xk+1 = f(xk) + g(xk)π
(i)(xk) +Bwk (2.42)

yk = h(xk) (2.43)

rk =
∥∥yk − ρk

∥∥2
Q
+
∥∥π(i)(xk)

∥∥2
R

(2.44)

A measurement data tuple (xk,∆uk, rk, xk+1) is stored to evaluate

the value, costate, and policy functions in the next iteration step.
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At the ith iteration step, the value and costate functions are up-

dated by using the optimality equations (Eqs. (2.18) and (2.20)), in

which the minimum values of the right-hand-sides are evaluated by

the optimal policy used in the ith iteration, π(i)
k = π(i)(xk) [61].

V (i+1)(xk) = r(xk, π
(i)
k ) + V (i)(xk+1) (2.45)

λ(i+1)(xk) =
∂r(xk, π

(i)
k )

∂xk
+

(
∂xk+1

∂xk

)T
λ(i)(xk+1) (2.46)

Finally, the policy function of the next iteration step is obtained with

the updated costate function.

π(i+1)(xk) = −1

2
R−1gT (xk)λ

(i+1)(xk+1) (2.47)

Note that the expectation with respect to p(xk+1|xk,∆uk, wk) in the

optimality equations of the value, costate, and policy functions are

estimated with a single sampled data in the GDHP algorithm, as in

the Monte-Carlo fashion.

In the case of IHOC problem with discount factor γ, the sequen-

tial updates for value, costate, and policy functions are slightly mod-

ified as:

V (i+1)(xk) = r(xk, π
(i)
k ) + γV (i)(xk+1) (2.48)

λ(i+1)(xk) =
∂r(xk, π

(i)
k )

∂xk
+

(
γ
∂xk+1

∂xk

)T
λ(i)(xk+1) (2.49)

π(i+1)(xk) = −γ
2
R−1gT (xk)λ

(i+1)(xk+1) (2.50)

The above-mentioned iteration scheme is performed until the
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value, costate, and policy functions converge. Since expectations are

computed by the Monte-Carlo method with single sampled data per

iteration, the procedure typically requires large amounts of data for

convergence [36]. In view of this, any model knowledge incorporated

into the iteration procedure (e.g. ∂xk+1

∂xk
and g(xk)) can be helpful. The

iteration period can be set arbitrarily with respect to the time interval,

such that the algorithm can be implemented either on a run-to-run

basis or in batch mode where iteration is performed after data from

several runs are collected. In this study, we perform iteration at every

sample time.

GDHP is in fact a generalized version combining the ideas of

heuristic dynamic programming (HDP) and dual heuristic program-

ming (DHP) [61]. In HDP, only the equations for the value and policy

functions, (Eqs. (2.48) and (2.50)), are used whereas only those for

the costate and policy functions, (Eqs. (2.49) and (2.50)), are em-

ployed in DHP. Since the costate function can be differentiated di-

rectly from the value function in HDP, the system dynamics function

f(xk) is not required. However, errors in the value function can be

amplified through differentiation, which can cause unstable learning

behavior throughout the HDP algorithm.

2.2.3 Differential dynamic programming

Differential dynamic programming (DDP) algorithm is the se-

quential quadratic approximation method for solving the HJB equa-

tion Eq. (2.36). The modifications of the fundamental partial differen-

tial equation (PDE) of HJB are threefold: First, the decision variables

are changed from u and λ to the deviations from their nominal (or
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previous) values, i.e., δu and δλ, second, the objective for min-max

operator becomes the second order Taylor expansion of the Hamilto-

nian H, and finally, the PDE form is transformed to series of ODEs

with respect to value function and its first and second order deriva-

tives. Under which the DDP modifications are taken, the backward

and the forward sweeps are iteratively performed until convergence.

In the backward sweep, given the boundary condition Eq. (2.37),

ODEs are solved backward-in-time, whereas in the forward sweep,

the optimal deviations δx, δu, and δλ are obtained forward-in-time.

The schematic description of the iteration is given in Fig. 2.2.
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Chapter 3

A POMDP framework for integrated scheduling
of infrastructure maintenance and inspection 1

3.1 Introduction

According to the report of the America’s infrastructure grades in

2013 [85], the overall grade of the infrastructure was diagnosed as

D+ (poor) and the required investment in infrastructure upgrades and

maintenance by 2020 was estimated to be $3.6 trillion. Infrastructure

scheduling plays a critical role in ensuring safe operation and eco-

nomic maintenance for chemical processes and process system pe-

ripherals. Infrastructure scheduling includes three major tasks: main-

tenance, inspection, and sensor-installation. Maintenance is done to

improve the overall functionality of the system such as grade and

failure rate. Inspection is carried out to assess the current condition

and gather the information of the system. Sensor-installation allows

inspection using a device rather than human senses. Proper and timely

installation of sensors can enhance the quality of service (QoS) of a
1This chapter is an adapted version of J. W. Kim, G. B. Choi, J. C. Suh, and J. M. Lee,

“Dynamic optimization of maintenance and improvement planning for water main system:
Periodic replacement approach," Korean Journal of Chemical Engineering, vol. 33, no. 1,
pp. 25–32, 2016. [84] and J. W. Kim, G. B. Choi, and J. M. Lee, “A POMDP framework for
integrated scheduling of infrastructure maintenance and inspection," Computers & Chemical
Engineering, vol. 112, pp. 239–252, 2018. [78]
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system by structural health monitoring (SHM) [86, 87].

Infrastructure has two distinguishing characteristics which hin-

der rational decision-making. First, it deteriorates with a low failure

rate whereas serious damage to a wide area is inevitable when it fails.

Second, it is nearly impossible to measure or estimate the system’s

state in real time due to the size and complexity of the system, the

high cost of scheduling actions, and the intrinsic uncertainty of non-

destructive inspection methods.

A scheduling approach based on deterioration model and opti-

mization can be a promising tool to address these two issues, and

thus can lead to economical and sustainable operation. In the case

of the infrastructure network, a prioritization method can be applied

to narrow the scope of the scheduling problem into the single in-

frastructure system [88, 89]. The majority of deterioration models

for infrastructure system consider uncertainties due to the lack of

knowledge about fundamental principles and the limited amount of

available data. Discrete-time states and actions are usually appropri-

ate for stochastic optimization models. The discrete system state is

often designated as a grade or condition of the system, and its valid-

ity is discussed in [90]. For this reason, the infrastructure scheduling

problem can be effectively regarded as a discrete stochastic sequen-

tial decision process. An appropriate framework for this problem is

Markov Decision Process (MDP), whose objective is to calculate an

optimal maintenance schedule within a control horizon [40].

State transition randomness has been successfully modeled in the

MDP framework via probability matrix [91, 92]. However, observa-

tion uncertainty leads to suboptimal solutions to MDP. Moreover, in-

spection and sensor-installation, which are other essential parts of the
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infrastructure scheduling, cannot be considered in the MDP frame-

work which inherently assumes the ‘fully observable state’. However,

Partially Observable MDP (POMDP) formalism, which is a natural

extension of MDP and involves probability of state observation, can

tackle the problem of the uncertainty in observation and allow for

integrating inspection scheduling and sensor-installation.

Several studies of the infrastructure scheduling using POMDP

model have been conducted. Small-scale problems with the number

of states less than 10 are solved with POMDP formulation [93, 94,

95]. Jiang [95] suggested failure criteria by comparing minimum re-

sistance and maximum loading effect on the system. Byon [96] solved

a finite horizon POMDP problem with season-dependent parameters.

The history-dependent and time-variant transition process im-

proves the accuracy of the model because it can take account of main-

tenance records and system’s age. The time-variant transition model

can be obtained by survival analysis with the semi-Markov assump-

tion [97]. History-dependency can be modeled by the state-augmentation

[98] or by the concept of periodic replacement [84]. In [99] a large-

scale POMDP problem is solved for the system having the aforemen-

tioned issues. Whereas the large-scale POMDP could describe more

practical systems, the previous studies could not either consider the

sensor installation or revise the resulting policy when feedback infor-

mation is available.

Water distribution pipe is analyzed as an illustrative example,

and additional analysis using structural point gives an intuitive re-

sult for the value function and system dynamics where the optimal

policy is implemented. Monte Carlo simulation result shows that the

suggested receding horizon POMDP framework for the infrastruc-

37



ture management gives a better result than previous POMDP, MDP,

myopic, and heuristic policies. The suggested POMDP scheduling

framework can be generalized to other systems which require the re-

ceding horizon policy such as chemical process scheduling or exper-

imental design.

3.2 POMDP solution algorithm

3.2.1 General point based value iteration

Figure 3.1 illustrates how PBVI is performed in a simple two

state example. Fig. 3.1(a) shows the exact value function over the en-

tire belief space. It is indicated that {α1, α2, α3} are sufficient subset

of Γ to represent the exact value function. Although Γ is expected to

be an infinite set due to the continuity of the belief space, most of

the alphavectors are redundant for the value function representation

since the value function is PWLC. Given an arbitrary belief subset

{b1, . . . , b7} as in Fig. 3.1(b), Γ is estimated through the calculation

of the gradients of value function at each belief point. As with the

alphavector set reduction, the belief set can be reduced by up to the

same size as the alphavector set (i.e., {b1, b3, b7} or {b1, b2, b5}). The

PBVI solution algorithm aims to obtain the minimum cardinality of

alphavector set and belief set without loss of the value function ap-

proximation performance.
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Generally, the lower bound of the value function V (b) is obtained

at the parsimonious subset of the belief space B̃ ⊂ B with the sub-

set of alphavector Γ̃ ⊂ Γ. Since the alphavector representation is the

PWLC function which evaluates the maximizer of the lower bound

function approximator set. Given belief subset B̃, the alphavector

set Γ̃ is evaluated iteratively similar to the value iteration method of

MDP. Let the alphavector set Γ̃i come from the previous iteration step

i. New alphavector set Γ̃i+1 is calculated by:

αa,o(s) = argmax
α∈Γ̃i

∑
s′∈S

O(a, s′, o)
∑
s∈S

T (s, a, s′)b(s)α(s′), b ∈ B̃

= argmax
α∈Γ̃i

ba,o · α

αa(s) = R(s, a) + γ
∑
o∈Ω

∑
s′∈S

O(a, s′, o)T (s, a, s′)αa,o(s
′)

αb = argmax
αa

∑
s∈S

b(s)αa(s)

Γ̃i+1 = Γ̃i ∪ {αb} (3.1)

The calculation of the lower bound V (b0) and alphavector αb0 at an

arbitrary belief point b0 ∈ B is performed in the same manner with

Eq. (2.40):

V (b0) = max
α∈Γ̃

∑
s∈S

b0(s)α(s) b0 ∈ B

αb0 = argmax
α∈Γ̃

∑
s∈S

b0(s)α(s) (3.2)

To distinguish from the original Bellman operator H , the PBVI Bell-

man operator in Eq. (3.2) is denoted as HPBV I .

The upper bound of the value function V (b) is defined as a func-
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tion that is globally larger than or equal to the exact function. The

tightest upper bound is the minimum among the approximator set.

However, in the PBVI algorithm, the value function evaluation is lim-

ited only at the belief points in the parsimonious belief set B̃. Thus,

the convex hull of the approximators is considered as an interpolation

between the elements of B̃ for the efficient upper bound approxima-

tion. The function Q(s, a) is an immediate and naive approximation

for the upper bound of the value function, which is referred to as the

fast informed bound [81] and calculated as:

Q0(s, a) = max
s∈S

max
a∈A

R(s, a)/(1− γ)

Qi+1(s, a) = R(s, a) + γ
∑
o∈Ω

max
a′∈A

∑
s′∈S

O(a, s′, o)T (s, a, s′)Qi(a
′, s′),

s ∈ S, a ∈ A (3.3)

where Q0(s, a) is the initial guess and Eq. (3.3) is calculated itera-

tively until it converges to Q(s, a). The upper bounds of the value

function at the elements of parsimonious belief set B̃, v(b) are evalu-

ated by:

v(b) = max
a∈A

∑
s∈S

b(s)Q(s, a), b ∈ B̃ (3.4)

Let Υ̃ = {(b, v(b)) : b ∈ B̃} denotes the belief-bound pair set. Then

the convex hull is obtained with Υ̃:

conv(b, v) = {
∑
i

ci(bi, vi(bi)) : ∀ci ≥ 0,
∑
i

ci = 1, (bi, vi(bi)) ∈ Υ̃}

(3.5)

The calculation of the upper bound V (b0) at an arbitrary belief point

b0 is obtained as a projection onto the convex hull (i.e., V (b0) =
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projv conv(b, v)|b=b0) which can be formulated as a linear program-

ming problem:

V (b0) = minci
∑
i

civi(bi)

s.t.
∑
i

cibi = b0∑
i

ci = 1, ∀ci ≥ 0 (3.6)

The lower bound and upper bound approximation and their update

process are illustrated in Figs. 3.2(a), (b), respectively.
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General point-based POMDP solvers involve a two-step approx-

imation scheme consisting of: belief collection step and value itera-

tion step. First, a finite belief subset B̃ is collected. The composition

of the finite belief set is conceptually equivalent to the result of prun-

ing down the belief space of infinite size. However, it is actually per-

formed through the bottom-up collection of belief set. One possible

method to obtain the belief subset B̃ is to construct the reachable be-

lief set generated from the initial belief b0. Given the initial belief b0,

reachable belief set is defined as belief points that are generated by

simulating several actions and observations following the searching

rule. A policy tree in Fig. 3.3 is a visualization of the reachable belief

set B̃ which is spanned from the root node b0. Among the reachable

belief set in policy tree, several beliefs which are expected to provide

the best value function approximation are collected. The objective of

belief collection algorithms is to select trajectory that can approxi-

mate a value function with the least number of beliefs.
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Second, the lower (V ) and upper (V ) bounds of the value func-

tion approximation are improved through the value iteration. With the

collected belief subset B̃ from the belief collection step, procedure

for the value iteration of the lower bound (Eq. (3.1)) and of the upper

bound (Eqs. (3.3)-(3.5)) are performed. These two steps are carried

out until the gap between the lower bound and the upper bound meets

the convergence criterion. Ideally, the gap should be shrunk to zero at

the whole belief space B or at least at the parsimonious belief subset

B̃. But practically, [100] reported that it is sufficient to obtain a good

solution by examining the convergence only at the target belief point

b0 (i.e., V (b0) − V (b0)). V (b0) and V (b0) are evaluated by Eq. (3.2)

and Eq. (3.6), respectively.

The idea of PBVI is to consider the ‘structure-specific’ beliefs

only so that the candidate belief space can be greatly reduced. It

is shown that the reachable belief set is enough to obtain the value

function approximation in the various point-based methods [101, 102,

103, 104, 105]. Searching and collecting rules are important features

in determining the convergence performance of the PBVI algorithm.

3.2.2 GapMin algorithm

Among various point-based methods, we adopt a state-of-the-

art point-based solver called gapMin proposed in [105]. Like most

of the belief collection algorithms of point-based solvers, a heuris-

tic approach for spanning the policy tree is used in gapMin [100].

Assume that the policy tree B̃ spanned from the root node b0 and a

terminal node set B̃τ are given. The algorithm first determines the

spanning node bτ ∈ B̃τ defined as the location to which the policy
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tree spans, and then it spans the tree to acquire a new policy tree B̃′

and a new terminal node set B̃′
τ . Both procedures are performed with

the heuristic of ‘Improve the worst part first’. By giving priority of

the improvement to the belief point that shows the worst approxi-

mation performance, the approximation throughout the belief space

converges quickly.

Spanning node bτ is selected based on the gap between the lower

bound and upper bound of the value function approximation which is

inversely proportional to the approximation performance. The span-

ning node selection rule is then described in Eq. (3.7) where h is the

depth of the belief node in the policy tree.

bτ = argmax
b∈B̃τ

γh(V (b)− V (b)) (3.7)

Successor action aτ for bτ is chosen to yield the greatest one-step

look ahead upper bound:

aτ = argmax
a∈A

R(a, bτ ) + γ
∑
o∈Ω

p(o|bτ , a)V (bτ,a,o) (3.8)

All observations are sampled to be the candidates of the new terminal

node.
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Since the previous spanning node bτ has been spanned to become

an internal node, it is deleted from the updated terminal node set. The

terminal node set is updated to B̃′
τ :

B̃′
τ = (B̃τ − bτ ) ∪ {bτ,aτ ,o : o ∈ Ω} (3.9)

Fig. 3.4 shows the procedure of the policy tree spanning where the

observation set is Ω = {o1, o2}. When new belief set B̃′ is collected

in the collection step, the lower bound and upper bound of the value

function are improved through the value iteration procedure.

The convergence property of the heuristic algorithms for belief

collection is discussed in [102]. They proved that the Bellman op-

erator for the PBVI algorithm HPBV I , which is defined only for the

finite belief set B̃, is the contraction mapping under the norm measur-

ing the density of B̃. The computational complexity of the algorithm

is O
(
|O||S|log(|B̃|+ |A||S|+ |A||V |+ |V |)

)
[100]. Details of the

algorithm are shown in [105].

3.2.3 Receding horizon POMDP
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The solution of a POMDP problem has two challenges for the

application to infrastructure scheduling. First, in the case of the finite

horizon formulation, the computational load for evaluating the value

functions for each decision epoch is high. Moreover, since the infras-

tructure scheduling problem has no terminal or absorbing state, it is

impossible to define the horizon explicitly. Second, as for the infinite

horizon problem, although the infrastructure scheduling problem is

well formulated, inefficiency or even suboptimality arises due to the

algorithmic nature of PBVI. Consider the infinite horizon MDP given

a perfect model. A complete closed-loop feedback rule satisfying the

Bellman’s optimality can be successfully obtained by value or pol-

icy iteration, and the resulting policy is time-invariant. However, in

the case of the infinite horizon POMDP, the resulting policy is time-

variant since the sampled belief space B̃ only covers the adjacent re-

gion of the target belief point. Fig. 3.5 shows the time-variant issue of

the value function approximation for the three-state system. Suppose

that on belief bt−1 at decision epoch t− 1, a well-approximated value

function based on the sampled belief set B̃t−1 is given. At the next

decision epoch, since the new belief bt is located outside the previ-

ous sample belief set B̃t−1, the approximation performance is signifi-

cantly degraded. Thus, when calculating the policy, another feedback

rule for updating the root node regarding the newly obtained belief

should be established.

Receding horizon control (RHC) is a framework that can address

these two issues. Instead of solving an infinite horizon POMDP prob-

lem, RHC recursively solves the optimization and implements the

first action only. The feedback rule for the receding horizon POMDP

is to assign the newly obtained belief to the root node for each sub-
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problem. By reconstructing the policy tree and belief set at each de-

cision epoch, the resulting alphavector can provide a tighter bound

for the current belief (i.e., V (bt)) than using the fixed root node b0.

This can be explained by the contraction property of the PBVI Bell-

man operator HPBV I which holds uniformly for ∀b ∈ B. Consider

the two cases where the value function approximation at current be-

lief point V (b) is directly computed for each of two subsets B̃ and

B̃′ = B̃ \ {b}, respectively. Let two PBVI Bellman operators be

HPBV I and H ′
PBV I . Then HPBV I gives a tighter bound at b, i.e.,

H ′
PBV IV (b) ≤ HPBV IV (b) ≤ V ∗(b).

It does not imply that assigning a different value with the target

belief b to the root node always leads to the suboptimality. Because

the contraction property guarantees the tighter bound only if the two

belief sets B̃ and B̃′ are identical except for the current belief. When

the belief set collected at the previous decision epoch B̃t−1 still pro-

vides a good bound for the current belief bt, the choice of root node

value becomes less significant in terms of the result.

We used the Euclidean distance between the current belief and

the previous belief subset as a criterion to determine whether the root

node should be reassigned or maintained, which is defined as follows:

δ(b, B) = min
bi∈B

∥b− bi∥2, b /∈ B (3.10)

When δ(bt, B̃t−1) > d, where d is a threshold value, the current belief

bt should be assigned to the root node to collect new belief set B̃t,

and vice versa. Fig. 3.5 also illustrates the distance in the three-state

system. Various kinds of heuristic criteria are discussed in [106].
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The proposed framework of receding horizon POMDP can be

carried out in both offline and online environments and consists of

three parts: POMDP solver, planning phase, and execution phase [107].

Descriptions on implementing the scheme is shown in Fig. 3.6.

With the current belief bt, a time-variant infinite horizon policy

at = πt(bt) is obtained through the alphavectors evaluated from the

POMDP solver. Then the root node in PBVI is updated to bt. In the

offline environment the real observation data ot+1 is generated by

Monte Carlo sampling with the basis probability p(ot+1|bt, at) de-

fined in Eq. (2.6). In the online environment, the maintenance, in-

spection, and sensor heterogeneous scheduling at is implemented in

the execution phase. In contrast to the offline phase, the observation

data ot+1 can be obtained directly by inspection action. Finally, belief

at the next decision epoch bt+1 is calculated with the Bayesian state

estimator in Eq. (2.5). We assume that the decision epoch is periodic,

for example, once in a year. Execution phase is performed at the end

of every decision epoch, and planning phase can be performed at any

point between decision epochs.

3.3 Problem formulation for infrastructure schedul-
ing
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This section provides how each part of the infrastructure schedul-

ing problem can be interpreted as a POMDP tuple,< S,A,O, T,R,Ω, γ >.

Fig. 3.7. shows a schematic diagram of the problem formulation.

3.3.1 State

In order to formulate the problem as Markovian, a pertinent set

of features should be selected as the state. We specified the following

three discrete integer variables as the state: grade (sg), nominal age

(sθ) and the sensor-installation status (sx).

The grade (sg) is defined as the qualitative or quantitative mea-

sure of the functionality of a system. The condition rating system is

generally used as a grade classification method and the details are dis-

cussed in [108, 95, 109]. For sg ∈ G = {1, . . . , |G|}, the first grade

denotes a new system and state |G| denotes the failure. We assume

that grade is partially observable and only the belief distribution can

be obtained. The belief distribution can be sharpened by inspection.

Second, the nominal age (sθ) is an index to describe the deterio-

ration rate of the system. Although different systems are in the same

grade, their deterioration rates might be different. Without any action

implemented on the system, i.e., a natural deterioration process, the

real age and the deterioration rate index would be exactly the same.

Once the action is implemented, however, the discrepancy between

the real age and the deterioration rate index occurs. Thus a fictitious

age index called nominal age sθ ∈ Θ = {1, . . . , |Θ|} describing the

deterioration rate of a system is defined. The unit of nominal age is

equal to that of the real age.

Finally, the sensor installation status (sx) is defined for the schedul-
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ing of sensor-installation. sx is a binary variable indicating whether a

sensor is installed or not. It is assumed that a single sensor is installed

per system, only one kind of sensor is available, and the sensor itself

is invulnerable. The detailed explanation and motivation of sensor

scheduling are presented in Sec. 3.3.2.

3.3.2 Maintenance and inspection actions

3.3.2.1 Maintenance actions

Joint action of maintenance, inspection, and sensor-installation is

the action set for the infrastructure scheduling problem. Four main-

tenance actions are considered: No maintenance, patching, rehabil-

itation, and replacement. The maintenance actions affect the state

< sg, sθ, sx > with different mechanisms and are carried out in dif-

ferent ways.

First, no-maintenance lets the system experience the natural de-

terioration process. Both nominal age sθ and real age increase by one

time unit at each decision epoch.

Second, patching is a temporary method to affix part of the sys-

tem. The grade sg is improved even if a small part is patched. How-

ever, the patching action is insufficient to improve the deterioration

rate as well. Hence, nominal age sθ is assumed to be increased by

one as if it were under the natural deterioration process.

Third, rehabilitation is an alternative maintenance action to im-

prove the overall functionality and covers the whole system. As a

consequence, both grade and deterioration rate are improved. The de-

gree of improvement on the deterioration rate is modeled as reducing

the nominal age sθ by three time units [99].
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Finally, system is replaced to a new one through the replacement.

Grade and nominal age are initialized to one and the sensor installa-

tion status become zero (< sg, sθ, sx >=< 1, 1, 0 >).

3.3.2.2 Inspection actions and sensor installation

Three inspection actions are considered in the infrastructure schedul-

ing: No-inspection, sensor-inspection, and excavation-inspection. In

addition, sensor-installation is included in the set of inspection ac-

tions. Inspection actions affect the sensor installation status sx and

the observation probability O.

First, no-inspection does not reveal any information on the cur-

rent state. The observation probability for each grade is uniformly

distributed, except for the failure grade sg = |G|.
Second, sensor-inspection is an indirect inspection method. Phys-

ical data from sensors such as pressure [30], magnetic flux [110], in-

frared thermography [111] and wave frequency [112] etc. are utilized

and further analyzed for the fault detection, location, and grade es-

timation. Various kinds of nondestructive tests yield more accurate

information and is preferable to the bare-eye inspections [113].

Third, additional sensors are installed through sensor-installation

action. The sensor-inspection requires the sensor-installation in ad-

vance, and saves inspection cost in the long term. The effect of sensor-

installation on the system can be describes by sx taking the value of

one.

Finally, excavation-inspection is a direct inspection method in

which an excavation to reveal the buried or hidden system is ac-

companied. The excavation-inspection not only costs more than the
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sensor-inspection, but also its performance is lower than that of sen-

sor inspection because no quantitative analysis using the accumulated

data is performed. Excavation inspection is only performed when

sx = 0.
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Table 3.1: Possible candidates of joint action for maintenance and inspec-
tion.

No-
inspection

Sensor-
inspection

Sensor-
installation

Excavation-
inspection

No-
maintenance

A A A A

Patching A A A A
Rehabilitation A A A A
Replacement A N/A N/A N/A

Note. A = Available. N/A = Not available
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All the combinations of maintenance and inspection actions are

possible except that only the replacement action can be carried out si-

multaneously with no-inspection action. As a result, we specified the

discrete integer action variable a whose cardinality is thirteen (i.e.,

|A| = 13). The possible joint actions are shown in Table 3.1.

3.3.3 State transition function

The state transition function T (·, a, ·) is obtained with the dete-

rioration model and the maintenance model.

3.3.3.1 Deterioration model of water pipe

The pipe would deteriorate naturally if no improvement had been

employed. Physical and statistical models are used for predicting the

grade and deterioration rate of a system under natural deterioration

process. Since the former requires a rigorous understanding of a par-

ticular infrastructure, the latter, represented by survival analysis, has

been widely used [114]. In [97], survival function is represented as

a two-parameter Weibull model which yields a good fitting perfor-

mance [115]. Natural deterioration process is modeled as a semi-

Markov process and series of time-variant deterioration matrices are

derived.

Deterioration matrix can be evaluated by the deterioration model

of water pipe. The basic idea of the deterioration model is to estimate

a survival function or a hazard function for a water pipe. Estimat-

ing those functions is called survival analysis which has been widely

studied. Models developed by Weibull are the most prominent, but

they only considers the two state system (|S| = 2); failure or not.
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[97] generalizes the deterioration model to n state variables, and pro-

vides the methods to evaluate the deterioration matrix.

Let {T1, T2, . . . , T|S|−1} be random variables representing the wait-

ing time in states {1, 2, . . . , |S| − 1}. For example, it takes Ti for the

process to go from state i to i+ 1.

When we define the random variable Ti→k as the sum of waiting times

in states {i, i + 1, . . . , k − 1}, we can obtain the cumulative wait-

ing time between states i and k. In general, summation of two or

more random variables can be calculated analytically by convolution

integral. Probability density function (PDF), survival function (SF)

of Ti→k are denoted as fi→k(Ti→k), Si→k(Ti→k). Then the transition

probability of state i to state i + 1 is the generalization of hazard

function which can be expressed as follows.

Pr[st+1 = i+ 1|st = i] = pt(i+ 1|i, 1)

=
f1→i(t)

S1→i(t)− S1→i−1(t)
(3.11)

for all i = {1, 2, . . . , |S| − 1}

Once the PDF and SF of waiting time Ti(t) are established, every

element of the deterioration matrix can be calculated.

The waiting time Ti of state i follows the Weibull probability

distribution. Weibull model is the special case of the proportional

hazards model whose physical interpretation is explained by [116].

Weibull model has two parameters and takes the following.

SF : Si(t) = Pr[Ti ≥ t] = exp[−(λit)
βi ]

PDF : fi(t) = λiβi(λit)
βi−1 exp[−(λit)

βi ] (3.12)
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Parameters λi and βi can be calculated by regression using the sur-

vival history of water main system of target region (e.g. x% probabil-

ity of being in state i more than t years).

The criteria of classifying the state of water main pipe has been sug-

gested by many researchers [117, 118] and municipal government.

The data on which the time a pipe takes to shift from one state to other

without any action employed would be recorded. Decision maker

uses those historical data to find the parameters of Weibull model

and evaluate the deterioration matrix.

3.3.3.2 Grade transition function

As natural deterioration process goes on, the grade belief con-

verges to [e|G|]i = δ(i, |G|), i ∈ G (i.e., e|G| = [0, 0, . . . , 1]). Since

Weibull model indicates that grade and deterioration rate are non-

decreasing, all the beliefs after a certain time have the same value:

∀ϵ ≥ 0, ∃M ∈ R s.t. t ≥M,
∥∥bt − e|G|

∥∥ < ϵ (3.13)

According to Eq. (3.13), the horizon of model prediction is specified

to be bigger than M . The size of nominal age set, |Θ|, defined in

Sec. 3.3.1 is set to be equal to M . As a result, a series of |Θ| deterio-

ration matrices Td(sθ) are obtained:

[Td(t)]ij = p(s′g = j|sg = i, sθ = t) i, j ∈ G, t ∈ Θ (3.14)

The elements of Td(t) can be further reduced by two assump-

tions. First, it is assumed that [Td(t)]ij = 0 when i < j, meaning that
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improvement does not take place in the natural deterioration process.

Second, [Td(t)]ij = 0 when i + 2 ≤ j, meaning that system dete-

riorates only by one grade at each decision epoch. When |G| = 5,

deterioration matrix is expressed as follows:

Td(t) =



p(1|1, t) p(2|1, t) 0 0 0

0 p(2|2, t) p(3|2, t) 0 0

0 0 p(3|3, t) p(4|3, t) 0

0 0 0 p(4|4, t) p(5|4, t)
0 0 0 0 p(5|5, t)


(3.15)

Maintenance actions improve the state, whereas inspection ac-

tions do not. The effect is also stochastic due to the uncertainty on

materials, equipment, technical skill of individual workers, and am-

bient condition [95]. Hence, the maintenance model is also expressed

as the probability matrix. Maintenance matrix Tm(a) describes the

state transition when action a is taken.

[Tm(a)]ij = p(s′g = j|sg = i, a) i, j ∈ G (3.16)

Maintenance actions are implemented at the end of decision epoch,

and the transition probability with nominal age t and maintenance ac-

tion a is calculated by Chapman-Kolmogorov equation:

p(s′g = j|sg = i, sθ = t, a)

=
∑
k∈G

p(s′′g = j|s′g = k, a)p(s′g = k|sg = i, sθ = t)

=
∑
k∈G

[Tm(a)]kj[Td(t)]ik = [Td(t)Tm(a)]ij (3.17)
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The grade transition function Tg is then simply obtained with multi-

plying deterioration matrix by maintenance matrix:

Tg(sθ, a) = Td(sθ)Tm(a) (3.18)

3.3.3.3 Transition functions for the nominal age and
sensor installation status

Transition functions for the nominal age sθ and sensor installa-

tion status sx are deterministic. Tθ,x denotes the joint transition func-

tion for the augmented state tuple < sθ, sx >. Despite its determinis-

tic nature, the transition function is expressed as a probability matrix

for compatibility with other functions. In Eq. (3.19), fa(·) denotes

the deterministic transition for < sθ, sx >, δ(·) is the Kronecker delta

function.

[Tθ,x(a)]ij = p(< s′θ, s
′
x >= j| < sθ, sx >= i, a) = δ(fa(i), j)

i, j ∈ {0, 1} ×Θ (3.19)

fa(·) for each action is defined in Table 3.2, and the detailed explana-

tion is given in Sec. 3.3.2.
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3.3.4 Cost function

From now on, we use the cost function, C, instead of the re-

ward functionR for the infrastructure scheduling problem. Cost func-

tion includes the cost of action implementation and the state penalty.

Action implementation cost is problem-specific. In the infrastructure

system, the costs for maintenance and inspection generally consist

of earthwork cost, laid-down cost and accessorial cost. Specifically,

each cost consists of material cost, labor cost and public expenditure

[119].

Earthwork cost Ce(a) occurs when excavation takes place, and

is independent of the state. Maintenance cost Cm and inspection cost

Ci are defined as the summation of laid-down cost and accessorial

cost except for earthwork cost Ce, respectively. Maintenance cost

Cm(sg, a) depends on grade sg and inspection cost Ci(sg, sx, a) de-

pends on both grade sg and sensor installation status sx. The depen-

dency on sx represents the constraints, that the sensor-inspection is

impossible when sx = 0, while sensor-installation is impossible when

sx = 1. Costs for infeasible cases are set to be infinite so that they

could be automatically excluded from the value iteration.

State penalty is the cost incurred immediately when a system

occupies a specific state. Agent can give a preference for a certain

state by granting different penalties to the states. In extreme cases, if

an infinite penalty is given to a particular state, it becomes a forbid-

den state to which transition probability from any other state is zero.

The penalty cost in an infrastructure problem can be understood as

a degree of impact caused by structural deterioration. The worse the

grade, the worse the structural deterioration and functionality, and the
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higher the state penalty cost. Specifically, the penalty cost of grade

|G| is equal to the failure cost. Since the POMDP solution is sensitive

to penalty cost, careful tuning is required.

The overall cost function C is defined in Eq. (3.20), and it is

worth noting that the cost function is independent of nominal age sθ.

C(< sg, sθ, sx >, a,< s′g, s
′
θ, s

′
x >)

= Ce(a) + Cm(sg, a) + Ci(sg, sx, a) + γCsp(s
′
g) (3.20)

3.3.5 Observation set and observation function

Among the state tuple < sg, sθ, sx >, sg and sx are revealed

to the agent and included in the observation set. As mentioned in

Sec. 3.3.1, sg is partially observable except for the failure grade whose

observation is always deterministic. sx is fully observable because it

is always known regardless of the inspection method if the exact his-

tory of sensor installation is available. Meanwhile, sθ is unobservable

to any inspection method because deterioration rate can only be esti-

mated indirectly with two adjacent grades. In summary, the observa-

tion setO is represented by a tuple of grade observation og and sensor

installation status observation ox. (i.e. O =< og, ox >)

The observation function depends on the inspection action. The

observation function of grade Og(a) is stochastic, whereas that of the

sensor installation Ox(a) is deterministic. As with Tθ,x, Ox(a) is ex-

pressed as a probability matrix for compatibility with other functions:
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[Og(a)]ij = p(og = j|s′g = i, a) i, j ∈ G

[Ox(a)]ij = p(ox = j|s′x = i, a) = δ(i, j) i, j ∈ {1, 2} (3.21)

3.3.6 State augmentation

T , C, and O are time-variant and history-dependent. State aug-

mentation can make the functions time-invariant and thus compatible

with the infinite horizon formulation. The augmentation encodes the

entire dynamics within the prediction horizon Θ into a single ma-

trix. The augmentation yields a state tuple S =< sg, sθ, sx > and the

observation tuple O =< og, ox >. According to the computational

complexity described in Sec. 3.2.2, considering the sensor installa-

tion with the binary variable sx increases the complexity more than

four times.

3.4 Illustrative example and simulation result

A scheduling problem of a water distribution pipe is analyzed as

an illustrative example. Water distribution system is one of the core

infrastructure facilities, and the systematic scheduling is essential.

Most of the water pipes are buried underground, which hinders the

state estimation. Therefore, this system is chosen as the representative

system that follows the features and difficulties of the infrastructure

scheduling described in Sec. 3.1. In particular, a stainless water pipe

buried under the ground whose diameter is 20mm, one of the stan-

dard size in water main system, is considered. There are five grades
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and Weibull parameters can be estimated through survival analysis.

The parameters avaiable in [97] are used to obtain Td(t) and Tm(a)

are evaluated by referring [99]. The probabilities of observing the

right state, Og(a), of No-inspection, Sensor-inspection, Excavation-

inspection are 0.4, 0.63, and 0.92, respectively. Cost functions are

adapted from the breakdown cost table of water main construction

[119] and summarized in Table 3.3. The sizes of augmented state,

action, and augmented observation set are 1000, 13, and 10, respec-

tively, and the model prediction horizon is one hundred years. The

POMDP solution algorithm gapMin was implemented in MATLAB

R2016a.
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3.4.1 Structural point for the analysis of a high dimen-
sional belief space

The belief domain is a reachable belief set from the initial belief

b0 and it is a sparse subspace of the convex hull of state space. The

sparsity is caused by representing the deterministic transition and ob-

servation function for sθ and sx. Only partially observable state sg can

make non-zero elements in the belief. In order to analyze the high-

dimensional sparse belief space, we first take the non-zero elements

of the belief vector and project it onto a scalar. The value of non-zero

elements of belief depends only on sg, whereas sθ and sx only affect

the index of non-zero elements. Thus, the projection is defined as a

weighted average of sg, with the state penalty cost Csp(sg) being the

weights. Note that the projection has a similarity with the conditional

rating system explained in Sec. 3.3.1. Belief b is projected onto a sin-

gle point in the one dimensional space which is called structural point

SP (b):

SP (b) =
∑
s∈S

Csp(s)b(s) (3.22)

3.4.2 Infinite horizon policy under the natural deteri-
oration process
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Figure 3.8: Convergence of POMDP problem
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To observe the effect of deterioration on the optimal policy, infi-

nite horizon POMDP problems by varying the age of water pipe are

obtained. This problem is the same as the new system goes through

the natural deterioration process during the model prediction horizon

(i.e., one hundred years). The solution to the infinite horizon POMDP

problem is represented as an alphavector set. Fig. 3.8 illustrates the

lower bound and upper bound of the value function approximation

converged by PBVI algorithm, and Table 3.4 shows the detailed result

of PBVI algorithm. The convergence criterion is that the gap is one

hundred times smaller than the absolute value of the upper bound ap-

proximation. The cardinality of the alphavector set |Γ| and the belief-

value pair set |Υ| are 191 and 435, respectively. The algorithm was

terminated after 1129 seconds.
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Table 3.4: Results of POMDP problem by PBVI algorithm

Gap LB UB |Γ| |Υ| Time (s)
10.082 -1523.7 -1513.7 191 435 1129
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Beginning with an age-one-pipe, beliefs under the natural de-

terioration process for one hundred years are obtained. To observe

only the effect of deterioration on the SP (b), we assume that the ob-

servation probability is one. Each belief is projected to SP (b), and

the lower bound approximation of value functions are calculated by

Eqs. (3.2) and (3.1). Fig. 3.9(a) shows the variations in SP (b) over the

age of system. Structural points are monotonically increasing since

the pipe naturally deteriorates. Fig. 3.9(b) shows the lower bound ap-

proximation of value function over SP (b). A piecewise linear, convex

function V (b) retains its shape after the projection.
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Fig. 3.10 shows the optimal action for the system at each age. It

is shown that patching/sensor-installation action is optimal after age

25, patching/excavation-inspection is optimal after age 32, and re-

placement is optimal after age 36. As age increases, more rigorous

maintenance and inspection actions are required. In the area where

the sensor-installation is optimal, the economic advantage caused by

sensor-inspection in the future is greater than the loss caused by in-

stalling the sensor at the current decision epoch. This tendency is

reversed in older ages.

3.4.3 Receding horizon POMDP

Fig. 3.11 shows the result of the finite horizon optimal policy for

control horizon of 120 years following the steps of receding horizon

POMDP explained in Fig. 3.6. The initial belief is assumed to be the

age one pipe with no sensor installed. The most prominent point of

the result is that the replacement action of optimal policy is pseudo-

periodic, since the replacement action initializes sg, sθ, sx to 1, and

the belief at the next decision epoch is identical with the initial be-

lief b0, i.e., bt+1 = b0, at = Replacement. However, in a simulation

environment, the behavior is sampled from p(o|b, a), and hence the

behavior is different every cycle. Under the pseudo-periodic replace-

ment, a complex combination of maintenance and inspection actions

occurs.
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Fig. 3.12 shows the variation of structural points SP (b) under

the optimal policy until the first and second replacements are en-

countered. Until age 21 in the first period and 73 in the second pe-

riod, no action is implemented and the structural points are increas-

ing. Patching/sensor-installation action is implemented on the pipe at

age 21 and 73, respectively. After sensor is installed after 22 years

from replacement actions, sensor-inspection becomes available to the

system. Thus, sensor-inspections such as patching/sensor-inspection

or no-maintenance/sensor-inspection are implemented to obtain the

state information. It is shown that the reliability is underestimated

in situations where no inspection method is implemented in that the

SP (b) value is increased by the inspection methods. Thus, the ‘fully

observable’ assumption of MDP provides more optimistic policy than

that of POMDP, resulting in a higher cost.
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Figure 3.12: Optimal policy of a single period compared with the structural
points. (a) First period and (b) second period
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3.4.4 Validation of POMDP policy via Monte Carlo
simulation

The scheduled policy is then compared with other policies in-

cluding POMDP policy without feedback rule, MDP policy, heuris-

tic policy and myopic policy. In the case of POMDP policy without

feedback, the root node is fixed with the initial belief b0 throughout

the planning horizon. MDP policy is calculated by value iteration in

Eq. (2.2). In MDP framework, only maintenance actions can be con-

sidered. With the assumption of full observability, the state is not ex-

pressed as a probability distribution, and the result can be expressed

as a finite size state-action mapping table shown in Fig. 3.13. The aug-

mented state tuple in MDP is < sg, sθ >, each of which is displayed

on the x-axis and y-axis of the plot. Similar to the result of POMDP

policy in Fig. 3.11, more rigorous maintenance action is required as

pipe becomes less reliable.
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Figure 3.13: MDP policy
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Heuristic policy does not utilize any optimization methodology,

but specifies replacement or inspection periods a priori. Here, we in-

tentionally set the periods to be close to those of POMDP policy so

that more meaningful comparison can be made. As a result, replace-

ment and sensor inspection periods are 40 years and 3 years, respec-

tively, and sensor is installed after 5 years of replacement. Myopic

policy is defined as a policy that replaces the infrastructure only after

a failure occurs.
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The discounted total cost within 120 years is estimated by gen-

erating the random scenario using Monte Carlo sampling. T (s, a, s′)

and p(o|b, a) are used to sample the successor state s′ and observa-

tion o, respectively. An optimal policy is determined with respect to

the belief b for POMDP and observation o for MDP. Each experiment

was repeated 5000 times to reduce the effect of randomness. Fig. 3.14

shows that the receding horizon POMDP policy yields the minimum

cost compared to other policies. The feedback rule for the root node in

receding horizon scheme improves the previous POMDP algorithms.

Under the observation uncertainty, even MDP is a worse choice than

heuristic and myopic policies, which indicates that ‘fully observable’

assumption is in fact unrealistic.
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Chapter 4

A model-based deep reinforcement learning
method applied to finite-horizon optimal control
of nonlinear control-affine system 2

4.1 Introduction

In the optimal control theory, the Hamilton-Jacobi-Bellman (HJB)

equation plays a key role, not only in verifying the optimality of a

given policy, but also in constructing one. The HJB equation is a par-

tial differential equation (PDE) and its solution is referred to as the

value function, which measures the ‘cost-to-go’ of a starting state

[13]. However, since it seldom can be solved exactly for nonlinear

systems, various approaches to build or implement approximate solu-

tions have been tried. When the system dynamics is control-affine and

the cost function quadratic, the HJB equation can be transformed and

decomposed into simpler equations with respect to the value func-

tion, its first-order derivative (called costate function), and the pol-

icy function [62]. Globalized dual heuristic programming (GDHP), a

model-based RL method is based on these surrogate equations, uti-
2This chapter is an adapted version of J. W. Kim, B. J. Park, H. Yoo, J. H. Lee, and J. M.

Lee, “A model-based deep reinforcement learning method applied to finite-horizon optimal
control of nonlinear control-affine system," Journal of Process Control. Under review. [120]
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lizing all such information about the system dynamics and the cost

function [61, 34].

Finite horizon optimal tracking control (FHOC) is the main prob-

lem of interest in this study. RL approaches for FHOC have widely

been studied [121, 122, 123, 124, 125]. The FHOC problem has a

certain feature that distinguishes it from the infinite horizon prob-

lem. The solution involves time-varying value, costate, and policy

functions with terminal boundary conditions. In the case that time-

varying trajectories must be tracked, the usual approach has been to

reformulate the tracking problem as a regulation problem by intro-

ducing the offset dynamics [122, 123, 126]. However, this method

requires the steady-state values of the state and the control input to be

known for each target reference value in order to achieve offset-free

setpoint tracking. Instead, this study adopts state space augmentation

including the integral action and the time variable in order to express

the time dependency and to be free from obtaining such prior infor-

mation [26].

One of the key elements of these learning-based methods is a

function approximator, which is used to represent the value, policy,

or other related function in a parametric form. A popular choice has

been the neural networks given its property as a universal approx-

imator: A neural network with a single hidden layer can represent

any bounded continuous function defined in any compact subset of

the real space [127]. Hence, thus far, most studies have employed a

single-layer neural networks (SNNs) [62, 128, 129, 130]. The learn-

ing method for SNNs can be formulated as a least-squares problem,

by taking advantage of the linearity of the approximator. In the case

of FHOC, in order to construct a time-varying approximator, Cheng
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[131] and Adhyaru [121] used time-varying weights, whereas Hey-

dari [129], Zhao [124], and Mu [125] employed time-varying acti-

vation functions. Both approaches showed good results for obtaining

feedback policies of the FHOC problem in small scale problems for

which the functions to represent are relatively simple.

The latest trend is to explore the potential benefits of deep neural

networks (DNNs) which have multiple hidden layers [132]. Though

SNNs is a universal approximator, it does not scale very well, show-

ing exponential complexity growth for certain types of functions.

Having multiple hidden layers has been shown to result in better

scalability, meaning there is a right choice of depth for each func-

tion from the viewpoint of statistical efficiency. Use of DNNs has

allowed model-free RL methods to be applied successfully to prob-

lems with high-dimensional continuous state and action spaces [43],

and the state-of-the-art deep RL (DRL) has shown some remarkable

performances in certain applications such as robotics, games, space-

crafts, etc. [37, 39, 133]. Motivated by the recent successes, this study

adopts DNNs as function approximators. In the context of the pro-

posed model-based RL method, DNNs will be shown give more ro-

bust approximations in the presence of varying initial state and state

noise, compared to SNNs.

Whether shallow or deep, neural networks always present the

problem of potential overfitting, which can lead to undesirable con-

sequences using a learned policy, because the optimization step in-

volved in RL is based on the function approximators. The DNNs

framework even exacerbate the overfitting issue. Particularly in pro-

cess control, where the envelope of the data distribution is small com-

pared to the dimension of state space due to the correlations and state
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dynamics, overfitting can easily result [134]. Moreover, the amount

of data is small due to the cost and time limitation and the safety

constraints. Hence, rather than the model-free and data-oriented algo-

rithm, available model knowledge on the system dynamics and cost

should be fully used to solve the optimal process control problem.

Apart from the model-based setting, we adopt various machine learn-

ing techniques which decorrelate the data and increase the stability in

learning to alleviate the overfitting issue [43, 135].

4.2 Function approximation and learning with deep
neural networks

4.2.1 GDHP with a function approximator

Value, costate, and policy functions are typically highly complex

nonlinear functions defined in the state space Ω. One of the main diffi-

culties in RL is the type selection and structure design of the function

approximator [136]. This difficult stems from several factors. First,

the optimal value, costate, and policy functions are defined globally

in Ω, not for a local region generated by a single trajectory. Thus the

approximated functions should also be defined over the entire state

space. Second, nonlinearities of the functions depend on the system

dynamics and the cost functions, and thus can be arbitrarily complex.

Finally, the complexity may grow even larger in the stochastic cases

where the optimality equations Eqs. (2.18) - (2.22) contain the expec-

tation operator.

As a universal function approximator, deep neural networks (DNNs)

has received much attention [137]. Reinforcement learning with DNNs,

91



often called deep RL (DRL), is solving the RL problems in a very

high-dimensional state space [43, 135]. The recent success of DNNs

can be attributed to the following: First, DNNs are known to provide

highly scalable structure with respect to the dimension of the func-

tion input, as it can perform automatic feature selections [138]. Sec-

ond, the development of automatic differentiation (AD), pretraining

for good initialization, and GPU-based computing have significantly

lowered the barrier of training DNNs.

The robust interpolation capabilities of DNNs can compensate

for the weakness of the GDHP algorithm in estimating the HJB equa-

tion, which is basically a sample-based and bootstrapping method.

Specifically, the right-hand-sides of the GDHP update rules, i.e., Eqs. (2.48)

- (2.50), contain the recursive function evaluations for each noisy ar-

gument xk+1. Hence, the approximators should represent the value,

costate, and policy functions by interpolating between such noisy,

transient data. Since the overfitting problem is inevitable with any

complex function approximator with a large number of fitting param-

eters, the performance of the learned control policy can degrade sig-

nificantly when the uncertainties encountered on-line are significantly

different from those seen during the offline training. Discussions of

the methods to control the trade-off between generalizability and be-

ing prone to overfitting are presented in the following section. Sec-

tion 4.3 provides the result of DNNs’ approximations, when obtained

using the state-of-the-art DRL stable learning methods, significantly

outperform the SNNs approximation used in the previous studies of

[139], in terms of robustness to stochastic uncertainties.

In the GDHP algorithm, the measurement tuple (xk,∆uk, rk, xk+1),

which is composed of the current augmented state, control, cost, and
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the successor augmented state, is obtained at every time step. The el-

ements of tuple for the terminal time are just the terminal augmented

state and terminal cost as (xT , ϕ). The measurement tuple set are ex-

pressed as

D = {Sn|Sn = (xkn ,∆ukn , rkn , xkn+1) , n ∈ N} (4.1)

DT = {Sn|Sn = (xTn , ϕn) , n ∈ N} (4.2)

where Sn is the nth measurement tuple of the set. The augmented

states within the set D can be alternatively expressed as a compact

matrix form,XD,X+
D ∈ R(S+A+1)×N such thatXD = [xk1 , xk2 , . . . , xkN ]

and X+
D = [xk1+1, xk2+1, . . . , xkN+1], respectively. Denote the func-

tion index set of value, costate, and policy functions as ψ ∈ {V, λ, π}.

DNNs approximations of value, costate, and policy functions are writ-

ten as

ψ̂(XD) = Ŵψ,H+1σψ,H(Ŵψ,Hσψ,H−1(· · · Ŵψ,2σψ,1(Ŵψ,1XD) · · · ))
(4.3)

We assume that the three networks have same number of layers, i.e.,

H , and same widths at each layer. The weight matrices and the non-

linear activation functions of the lth layers of the function ψ̂ are de-

noted as Ŵψ,l and σψ,l(·), respectively.

In accordance with the recursion in Eqs. (2.48) - (2.50), the ‘tar-

gets’ that the current estimates of the value, costate, and policy func-

tions (i.e., ψ̂(xk)) should satisfy regarding the optimality equations,

denoted as τV,k, τλ,k, and τπ,k, respectively, are evaluated each time
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when a single sample (xk,∆uk, rk, xk+1) becomes available [140]:

τV,k = rk + V̂ (xk+1) (4.4)

τλ,k = 2

(
∂h(xk)

∂xk

)T
Q (h(xk)− ρk)

+

(
∂xk+1

∂xk

)T
λ̂(xk+1) (4.5)

τπ,k = −1

2
R−1gT (xk)λ̂(xk+1) (4.6)

In addition to the optimality targets, we used the residuals which mea-

sures the deviation of the definition of costate function in Eq. (2.19),

eV λ,k =
∂V̂ (xk)

∂xk
− λ̂(xk) (4.7)

This equation forces the value and the costate functions to satisfy the

definition explicitly. Note that the previous GDHP algorithms make

the relationship between the value and the costate functions implicitly

by sharing the first layer of their neural networks [61, 140], which

turns out to be impractical in the DNNs case. The targets associated

with the boundary conditions of the value and costate functions τV,T
and τλ,T are also defined as

τV,T = ϕ(xT ) (4.8)

τλ,T =
∂ϕ(xT )

∂xT
(4.9)

When the algorithm proceeds online, the data collection and train-

ing can proceed concurrently. The DNNs weights Ŵψ,l become in-

crementally and adaptively optimized to minimize the residuals by
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gradient based optimization as the measurements are obtained. De-

note the vectors τV , τλ, τπ and eV λ as the stacked vectors of Eqs (4.4)

- (4.7) for the set D, i.e., τV = vec
(
[τV,k1 , τV,k2 , . . . , τV,k|D| ]

)
. Simi-

larly, the vectors τV,T , and τλ,T are the stacked vectors of Eqs. (4.8)

and (4.9) for the set DT .

Then we can define the loss functions with the square of the Eu-

clidean norms as,

LV (D ∪DT ) =

∥V̂ (XD)− τV ∥22 + βV,1∥eV λ∥22 + βV,2∥V̂ (XDT
)− τV,T∥22 (4.10)

Lλ(D ∪DT ) =

∥λ̂(XD)− τλ∥22 + βλ,1∥eV λ∥22 + βλ,2∥λ̂(XDT
)− τλ,T∥22 (4.11)

Lπ(D) = ∥π̂(XD)− τπ∥22 (4.12)

where βV,1, βV,2, βλ,1, and βλ,2 are the scalar weighting factors. The

weights of the DNNs Ŵψ,l are updated by the gradient descent rule

as

vec(Ŵ+
ψ,l) = vec(Ŵψ,l)− ηψ

∂Lψ

∂vec(Ŵψ,l)

l ∈ {1, . . . , H + 1}, ψ ∈ {V, λ, π} (4.13)

where Ŵψ,l and Ŵ+
ψ,l denote the current and updated lth layer of the

DNNs weight estimates of function ψ, respectively, ηψ denotes the

learning rate. The gradient of the networks with respect to the DNNs

weights is calculated by the backpropagation rule.
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4.2.2 Stable learning of DNNs

Employing the gradient descent based optimization in its bare

form can lead to problems since DNNs with a large number of weight

parameters are vulnerable to overfitting and the intrinsically unstable

behavior of bootstrap methods. The state-of-the-art deep RL algo-

rithms have tried to alleviate these issues with some tricks like replay

buffer, target networks, etc.[43, 135, 141]. In addition to those tricks,

we propose pre-training with some known policies and discretization

to prevent the overfitting and to accelerate the training speed.

4.2.2.1 Replay buffer

DNNs have a significantly larger number of weights compared

to other function approximators, which can cause an overfitting prob-

lem. Various regularization techniques such as minibatch training,

weight regularization, and drop-out method are utilized to avoid the

overfitting problem and reduce the generalization error [137]. Espe-

cially, in minibatch training, a batch dataset is divided into different

subsets (i.e., D =
⋃m
i=1Di) and the gradient descent method is ap-

plied to each Di. This method compromises between a batch training

and the single-data training, and concretely, it is more robust than the

single-data training. The gradient learning method using minibatch is

the well-known stochastic gradient descent (SGD) method and is jus-

tified by the Robbins-Monro stochastic approximation method [13].

Replay buffer is a specific batch RL method which stores simu-

lated data [142]. The illustration is provided in Fig. 4.1. At each iter-

ation, minibatches of D and DT are prepared independently by uni-

form sampling from the replay buffer to estimate gradients in Eq. (4.13).
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The rationale for constructing the minibatch data by uniform sam-

pling of the replay buffer is to reduce the correlations between RL

data sets and make them independently and identically distributed

(i.i.d.). First, contrary to the supervised learning where a fixed train-

ing data set are given, time-varying dataset is received in RL. By

uniformly sampling from the replay buffer, overfitting with a recent

data set is prevented, and thus temporal correlation is reduced. Sec-

ond, there also exist correlations within a data set, because it contains

state trajectories generated by a control policy that maps a state to an

action. Decorrelated minibatch data satisfies the i.i.d. condition which

is a crucial assumption made on machine learning training data sets

[43]. Note that the size of D should be calibrated by observing the

trade-off between stability and training speed.
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4.2.2.2 Target network

GDHP uses bootstrapping to estimate the value and costate func-

tions. When computing the residuals in value and costate networks

(Eqs. (4.4) and (4.5)), the weights at time steps k (current) and k + 1

(target) are both used. In the training process, as the values of the

weights for the value, costate, and policy networks change to match

the bootstrapped target values, the target values also vary concur-

rently. For example, the gradient of ∥V̂ (XD) − τV ∥22, the first term

of Eq. (4.10), is

2

(
∂vec(V̂ (XD)− V̂ (X+

D ))

∂vec(ŴV,l)

)T (
V̂ (XD)−RD − V̂ (X+

D )
)

(4.14)

where RD denotes the stacked vector of [rk1 , . . . rk|D| ]. Since XD and

X+
D both consisted of noisy measurements, the gradient Eq. (4.14)

has high variance due to the arithmetic operations of stochastic terms,

which can cause instability.

The target network method alleviates the side-effects from the

bootstrapping method [143] by evaluating the target values τV , τλ and

τπ from the separate networks called target networks. The weights are

set differently in the current and target networks while maintaining

the same network structures. Denote ψ̂′ as the target networks, then
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the modified targets for Eqs. (4.4) - (4.6) are written as

τ ′V,k = rk + V̂ ′(xk+1) (4.15)

τ ′λ,k = 2

(
∂h(xk)

∂xk

)T
Q (h(xk)− ρk)

+

(
∂xk+1

∂xk

)T
λ̂′(xk+1) (4.16)

τ ′π,k = −1

2
R−1gT (xk)λ̂

′(xk+1) (4.17)

In this case, the gradient Eq. (4.14) becomes

2

(
∂vec(V̂ (XD))

∂vec(ŴV,l)

)T (
V̂ (XD)−RD − V̂ ′(X+

D )
)

(4.18)

since the dependency of ŴV,l with respect to the target value func-

tion V̂ ′(X+
D ) is removed, hence the variance of the gradient estimate

becomes smaller. Let Ŵ ′
ψ,l as the weights of the lth layer of target net-

works. Then the learning rule for the target networks is expressed as

a weighted sum of the target and current networks

Ŵ ′+
ψ,l = τŴ+

ψ,l + (1− τ)Ŵ ′
ψ,l, τ ≪ 1 (4.19)

where Ŵ ′+
ψ,l is the updated target network weights, and τ is the weight-

ing factor which indicates how soft the update should be [43]. The

rule intentionally slows down the learning rate by slowing the changes

in the target value, which greatly improves the stability of the learn-

ing.
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4.2.2.3 Pre-training

Eqs. (4.10) - (4.12) show that the value, costate, and policy net-

works are all functions of each other. This cyclic relationship makes

the GDHP method prone to divergence. Consequently, choosing a

good initialization of the policy network and adding exploration are

important for stable learning [144]. Existing control methods such as

the linear quadratic regulator (LQR) or model predictive controller

(MPC) provide good starting suboptimal policies which can be used

for initialization. In the ensuing examples, the LQR integrator (LQI)

is implemented as an initial control policy. Let us denote the initial

policy as l(xk, k). Furthermore, a noise sequence N can be added to

the controller’s output for exploration (i.e., uk = u∗k+N (k)) in order

to explore the vicinity neighborhoods of the suboptimal trajectories.

4.2.2.4 Discretization

Obtaining the discrete-time state space model in Eq. (4.20) in-

volves the numerical integration method. To reduce the numerical

error, rather than using the first-order Euler method (i.e., zero-order

hold(ZOH), a higher-order discretization method is implemented. We

implemented Dormand-Prince (DOPRI5) method which is the most

widely used among Runge-Kutta family [145, 146]. Given the sys-

tem dynamics ẋ = f(t, x, u) with the initial condition, x(t0) = x0,

the explicit Runge-Kutta method is given by

xk+1 = xk + h

s∑
i=1

bipi (4.20)

101



, where

p1 = f(tk, xk, uk),

p2 = f (tk + c2h, xk + h(a21p1), uk) ,

p3 = f (tk + c3h, xk + h(a31p1 + a32p2), uk)

...

pj = f

(
tk + cjh, xk + h

( j−1∑
i=1

ajipi

)
, uk

)
= f(t

(j)
k , x

(j)
k , uk)

...

ps = f

(
tk + cdh, xk + h

(d−1∑
i=1

adipi

)
, uk

)

(4.21)

pj is the jth interpolated function value at an intermediate time and

state points t(j)k and x(j)k , respectively. h denotes the discrete time step

and d denotes the number of discretization stages. Coefficients aij , bi
and ci are given by the Butcher tableau. The DOPRI5 method uses

discretization stages of d = 5. Then the derivative of the successor

state with respect to the current state can be evaluated by the follow-

ing explicit formula:

∂xk+1

∂xk
= I + h

d∑
i=1

bi
∂pi
∂xk

= I + h

d∑
i=1

bi

(
∂f(t

(i)
k , x

(i)
k , uk)

∂x
(i)
k

)T
∂x

(i)
k

∂xk

(4.22)
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, where
∂x

(j)
k

∂xk
= I + h

j−1∑
i=1

(
∂x

(i)
k

∂xk

)T

aji (4.23)

The control derivative is computed in the same way:

∂xk+1

∂uk
= h

d∑
i=1

bi
∂pi(xk)

∂uk

= h
d∑
i=1

bi
∂f(t

(i)
k , x

(i)
k , uk)

∂uk

(4.24)

4.2.3 Overall algorithm

The overall algorithm is summarized in Algorithm 1. Structures

and training schemes of the value, costate, and policy networks with

the target networks incorporated are illustrated in Fig. 4.2. The overall

schematic diagram is illustrated in Fig. 4.3.
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Figure 4.3: A schematic diagram of GDHP algorithm
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Algorithm 1 GDHP
1: procedure GDHP WITH DNNS

Initialize: Initialize critic, costate, and policy networks V̂ , λ̂ and π̂
Initialize critic, costate, and policy target networks V̂ ′, λ̂′, and π̂′

Initialize replay buffer D
Initialize terminal replay buffer DT

Initialize noise process N
Discretize and augment the system dynamics as Eq. (2.25) and obtain
derivatives by Eqs. (4.20), (4.22) and (4.24)

2: for i = 1 to E do
3: for k = 1 to T do
4: if i ≤ Initial policy then
5: ∆uk = l(xk) +N (k)
6: else
7: ∆uk = π̂(i)(xk) +N (k)

8: Get next augmented state xk+1 and stage-wise cost rk with
control input ∆uk by Eqs. (2.25) and (2.15)

9: if k == T then
10: Store (xT , ϕT ) to DT

11: else
12: Store (xk, uk, rk, xk+1) to D
13: Uniform sample of minibatch D̃ from D ∪DT

14: Compute residual functions LV (D̃), Lλ(D̃), and Lπ(D̃) by
Eqs. (4.10)-(4.12)

15: Update the weights Ŵ+
V,l, Ŵ

+
λ,l, and Ŵ+

π,l by Eq. (4.13)
16: Update the weights Ŵ ′+

V,l, Ŵ
′+
λ,l , and Ŵ ′+

π,l by Eq. (4.19)
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4.3 Results and discussions

In this section, numerical results of applying the GDHP algo-

rithm with DNNs on simulated systems are presented. The main ob-

jective for this section is to show that the benefit of using DNNs over

SNNs in the cases where state space dimension is high and initial

states as well as the state transition are subject to stochastic uncer-

tainties.

4.3.1 Example 1: Semi-batch reactor

A benchmark semi-batch reactor presented in [147] is used. In

the reactor, the following parallel second-order reactions occur:

A+B
k1−→ C

B + C
k2−→ D

(4.25)

System equations are derived from mass and energy balances as fol-

lows:

ĊA = −Qf

V
CA − k1(T )CACB

ĊB =
Qf

V
(CBf

− CB)− k1(T )CACB − k2(T )CBCC

ĊC = −Qf

V
CC + k1(T )CACB − k2(T )CBCC

Ṫ =
Qf

V
(Tf − T )− 1

ρCp

(
∆H1k1(T )CACB

+∆H2k2(T )CBCC
)
− UA

ρCpV
(T − TK)

V̇ = Qfr, Qfr =

{
0 if t < 31 min

Qf otherwise

(4.26)
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whereCA,CB, andCC denote the molar concentrations of substances

A, B, and C, and T and V are the temperature and volume of the re-

actor, respectively. The kinetic parameters are functions of the tem-

perature following the Arrhenius law

ki(T ) = ki0 exp

(
− Ei
RT

)
, i ∈ {1, 2} (4.27)

Initial conditions of states are CA0 = 1 mol/L, CB0 = 0 mol/L,

CC0 = 0 mol/L, T0 = 298 K, and V0 = 50 L. The manipulate vari-

ables (MV) are the flow rate of substance B (Qf (t)) and the jacket

temperature (TK(t)). The controlled variables (CV) are the reactor

temperature (T (t)) and product yield (V (t)CC(t)). Other physical pa-

rameters are specified as: Tf = 308 K, CBf
= 0.9 mol/L, UA/ρCp =

3.75 L/min, k10 = 5.0969×1016 L/mol min, k20 = 2.2391×1017 L/mol min,

E1/R = 12305 K, E2/R = 13450 K, ∆H1/ρCp = −28.5 KL/mol,

and ∆H2/ρCp = −20.5 KL/mol. The compact subsets of state, MVs,

and CVs are described in Table 4.1.
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Table 4.1: Minimum and maximum values of the state, MVs, and CVs in
the operating region

Variables Minimum Maximum
CA (mol/L) 0 1
CB (mol/L) 0 1
CC (mol/L) 0 1
T (K) 293.15 323.15
V (L) 50 150
Qf (L/min) 0 1.5
TK (K) 293.15 318.15
V CC (mol) 0 90
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The reactor is operated in the following scheme: While the reac-

tant A is initially charged the temperature is maintained with a room

temperature 298.15 K. After the start-up process until t = 30 min,

the second reactant B is fed and reaction occurs. The temperature is

regulated to 308.15 K until t = 80 min and gradually cooled down

to 303.15 K until the batch terminal time. Finally, the product C is

discharged with the target yield (42 mol). The objective is formally

represented as

J = ∥V (tT )CC(tT )− φ∥2H +
T−1∑
i=0

(
∥T (ti)− ρ(ti)∥2Q + ∥∆ui∥2R

)
(4.28)

where the temperature reference trajectory ρ(t) and the target yield φ

are specified as

ρ(t) =


298.15 K, 0 ≤ t < 3

308.15 K, 30 ≤ t < 80

303.15 K, 98 ≤ t

, φ = 42 mol

We used weight matrices asQ = diag(0.1, 0.1),R = diag(0.01, 0.01),

and H = diag(1, 1), where diag denotes the diagonalization operator.

Sampling time was set as 0.5 minute and the horizon was 100 min-

utes. The state space dynamics is normalized into [-1, 1] by applying

the linear transformation X =
2x− xM − xm
xM − xm

, where X is the nor-

malized state and control values and xM and xm are the maximum

and minimum values for corresponding variables, respectively.
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4.3.1.1 Specification of hyperparameters

Five-layer DNNs were used for the value and costate networks

and four-layer DNNs were used for policy network. The number of

nodes in the value, costate, and policy networks were (S + A + 1,

75, 75, 45, 1), (S + A + 1, 75, 75, 75, S + A + 1), and (S + A + 1,

150, 90, A), respectively, referring the network structure of [135].

Leaky ReLU activation functions were used for hidden layers. The

size of the replay buffer |D| was set to be 10 times of a single episode

length and terminal replay buffer size |DT | was 10. Learning rates

ηV , ηλ, and ηπ were all 10−4. Loss functions weighting factors were

set to be βV,1, βλ,1 = 10−2, and βV,2, βλ,2 = 1. The target network

weighting factor τ was 0.05. We measured the episode loss functions

L(i)
ψ =

∑T−1
k=0 Lψ(D̃k,i), where D̃k,i denotes the sampled minibatch

at time step k and iteration number i, to determine the convergence

criteria: ∥L(i+1)
ψ − L(i)

ψ ∥/∥L(i)
ψ ∥ < 10−5, ψ ∈ {V, λ}.

In order to have an efficient initialization of the DNNs, the lin-

ear quadratic integral control (LQI), which is a variant of LQR for

the tracking problem, was used as the initial policy l(xk). At every

time step, the system dynamics were linearized by computing the dis-

cretized Jacobian with respect to the current state xk, and the LQI gain

was obtained by solving the steady-state Riccati equation. The LQI

controller was employed until episode 25 to update just the value and

costate networks. After that, the policy function resulting from the

iteration with the data from the previous episode was implemented

until convergence.
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4.3.1.2 Tracking results in the deterministic system case

The tracking results for the deterministic system case are dis-

cussed in this section. The trajectories of the states and CVs under

several control polices at different training stages of the algorithm

are presented in Figs. 4.4 and 4.5. In particular, plotted trajectories

are for the 20th, 75th, 120th, and 200th episodes, each of which is

being operated under different conditions, i.e., the LQI policy , in-

termediate GDHP policies yet to converge, and the final converged

policy, respectively. The trajectories of the CVs in Fig. 4.5 indicate

that the final GDHP policy performs quite well in both the track-

ing of the reactor temperature and satisfying the boundary condi-

tion for the product yield, while the LQI policy in episode 25 fails

to do so. Figure. 4.6 shows the log vlau episode loss function of value

and costate networks and the episode cost. The episode loss func-

tions continue to decrease throughout the scenario, except for having

high values right after the control policy being switched from initial

LQI policy to the GDHP policy. Since the episode loss functions LV
and Lλ measures the deviations of optimality equations Eqs. (2.48) -

(2.50), costate function definition Eq. (2.19), and the boundary con-

ditions Eq. (2.24), we can conclude that all deviations become zero.

Figure. 4.6 indicates that the converged GDHP policy shows smaller

episode cost than that of the initial LQI polcy.
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4.3.1.3 Tracking results under state noise

This section addresses the tracking control problem in the pres-

ence of the state noise. We compare the tracking results under four

different policies represented by DNNs or SNNs trained with data

containing Gaussian state noise of N (0, 0.005) and by DNNs and

SNNs trained with data from the deterministic system, respectively.

In the test case, four scenarios with Gaussian noise of variances range

from 0.002 to 0.008 were considered. Note that 20 episodes were

simulated for each of the scenarios. We assume that the system starts

from a fixed initial state and uncertainties arise from the state noise

only. The mean episode costs for the four test cases are illustrated in

Fig. 4.7.
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The control policy from the DNNs trained with the data contain-

ing state noises shows the best performance among the four policies.

Note that in the case with state noise, both of the SNNs policies re-

sult in failures compared to the DNNs case, since the state trajectories

show noisy behavior throughout the entire horizon and require an ap-

proximator with a larger number of parameters. The generalizability

of the DNNs lead to a better feedback policy in the presence of un-

certainty, while SNNs cannot.

4.3.1.4 Tracking results under initial state uncertainty

The model based GDHP algorithm should be able to give a con-

trol policy, that works well with multiple initial states. Let us as-

sume that the initial state p(x0) follows a certain probability distri-

bution, and the initial state realized in the off-line training process

is sampled from this distribution. We assumed that the initial state

is subject to the uniform distribution whose support is 0.3 times of

the minimum and the maximum values of the operating region (Ta-

ble 4.1). After 200 episodes training, the resulting policy was tested

for the scenarios with twenty different initial state conditions which

were randomly generated from the uniform distribution which has

significantly larger supports (i.e., 0.7 times of minimum and maxi-

mum values of the operating regions) than that used in the training

process. Figure 4.8 shows the mean episode costs with respect to four

different policies from the DNNs and SNNs trained with randomly

sampled initial states and DNNs and SNNs with a single fixed initial

state, respectively.
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Figure 4.8: Mean episode costs for episodes with 20 randomly sampled ini-
tial states under policies trained with DNNs and SNNs with random initial
states, and DNNs and SNNs with a deterministic initial state.
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DNNs trained with random initial states show the best result

among the four policies. However, the DNNs trained without the ran-

dom initial states setting showed the worst result. The results indicate

that DNNs are more vulnerable to overfitting than SNNs, hence give

worse performance when trained with a single fixed initial condition

while the initial state in actual on-line varies.

In summary, GDHP with DNNs provide robustness when initial

state uncertainties are modelled and taken into account during the

training process. When the online uncertainty pushes the system out-

side the region experienced offline, the larger parameter space of the

DNNs has problems from overfitting. Thus the suggested algorithm

requires careful generations of simulation data coupled with uncer-

tainty quantifications.

4.3.2 Example 2: Diffusion-Convection-Reaction (DCR)
process

Performance of the GDHP algorithm with DNNs is examined in

the context of a system with high-dimensional state and control space,

such as a spatially distributed parameter system expressed by PDEs.

We use the example of a typical deterministic diffusion-convection-

reaction (DCR) process in one-dimensional rod [148]. Consider an

exothermic reaction A → B, and the temperature is to be controlled

by a distributed actuator along the same geometry. The dimensionless

temperature profile denoted as x(z, t) is described by the following
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PDE:

∂x

∂t
= (1− αdc)

∂

∂z

(
k(z)

∂x

∂z

)
+ αdc

∂x

∂z

+ βT (z)
(
e−γ/(1+x) − e−γ

)
+ βU(u(z, t)− x)

(4.29)

with the Dirichlet boundary conditions and the initial condition of

x(0, t) = 0, x(π, t) = 0, x(z, 0) = 0.5 (4.30)

where z is the one-dimensional spatial coordinate, and u(z, t) denotes

the control input profile. Terms in the PDE denote the diffusion, con-

vection, reaction, and control related terms, respectively. αdc is the

weight between the and convection terms; k(z) expresses the diffu-

sion coefficient; βT (z) is the heat of reaction along the coordinate;

γ is the activation energy, and βU is the heat transfer coefficient.

All parameters have dimensionless values. Specifically, αdc = 0.5,

k(z) = 0.5 + 0.7/(1 + z), βT (z) = 16(cos(z) + 1), γ = 4, and

βU = 1.

The objective is to control the state x̄(z, t), z ∈ [0, π] to the zero

setpoint. The objective is written as:

J =

∫ π

0

(
∥x̄(z, tT )∥2H +

T−1∑
i=0

(
∥x̄(z, ti)∥2Q + ∥∆u(z, ti)∥2R

))
dz

(4.31)

The positive definite control weighting matrices Q and R were set

to be identity matrices with appropriate dimensions. This system has

been examined in [149] where the HDP algorithm was applied to a

reduced-order model, but the control dimension was limited to one.
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For numerical simulations and Jacobian calculation of the PDE,

we applied the finite difference discretization for the spatial derivative

and used the method-of-line for the time derivative. Specifically, the

central difference method was used for the second-order derivative in

the diffusion term, and the upwind difference scheme (UDS) for the

first-order derivative in the convection term. The spatial coordinate z

was discretized into 40 equidistant intervals, and the sampling time

and the horizon were chosen as 0.005 second and 4 seconds, respec-

tively. Since it took too much computation time to solve the Riccati

equation for the system dimensions S = 40, A = 40, and O = 40,

which needed to construct the LQI, the following manually designed

policy was used as the initial policy instead [149]:

u(z, t) =

{
−2, 0.2π ≤ z ≤ 0.4π

0, otherwise

The GDHP algorithm was applied for 200 episodes with the

same algorithmic hyperparameters as the previous example. The state

and control trajectories at episode 10, 30, 35, and 200 are shown in

Figs. 4.9 and 4.10. The plot of the state profile shows a suboptimal

trajectory when the GDHP policy is first implemented at episode 25,

but it quickly stabilized to the zero setpoint by episode 35. Accord-

ing to Fig. 4.11, episode loss functions of value and costate networks

continue to decrease by episode 200. It also indicates the converged

GDHP policy at episode 200 shows improved episode cost than that

of the initial LQI policy. The GDHP algorithm with DNNs is shown

to be effective in handling high-dimensional state space systems in

this example.
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Chapter 5

Convergence analysis of the model-based deep
reinforcement learning for optimal control of
nonlinear control-affine system 3

5.1 Introduction

In the case of control-affine system and quadratic cost function,

the solutions of HJB equation are expressed with respect to the value

function and its first-order derivative (i.e., costate function). The use

of model knowledge not only enables the analysis of the closed-

loop stability [34] but also reduces the amount of samples in the

learning-based algorithm [37]. The model-based methods vary with

the level of incorporating the state-space model, which are heuris-

tic dynamic programming (HDP), dual HDP (DHP), and globalized

DHP (GDHP) [61]. The HDP algorithm approximates the value func-

tion, for which the convergence analysis is studied in [151, 152] and

its optimality bound is provided in [153]. In the case of DHP and

GDHP, where the costate function is approximated, the convergence

is only studied for the linear system [154]. It is also shown that the
3This chapter is an adapted version of J. W. Kim, T. H. Oh, S. H. Song, D. W. Jeong,

and J. M. Lee, “Convergence analysis of the model-based deep reinforcement learning for
optimal control of nonlinear control-affine system," Automatica. Under review. [150]
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GDHP algorithm taking both the value and the costate functions into

account yields the best result among the three methods [61]. Hence,

this study performs the convergence analysis of GDHP algorithm for

the nonlinear control-affine system.

The choice of function approximator is one of the key elements

of the learning-based methods. The value, costate, and policy are ex-

pressed in a parametric form, for which the neural networks (NN) is

the most widely incorporated function. The single-layer NN (SNN)

has been applied in most studies because its linearity brings the sim-

plicity to both the algorithm design and the stability analysis. The NN

parameters are obtained by the least-squares method in the early lit-

erature [152, 155, 156, 157], while gradient descent method is imple-

mented recently [158, 159]. The uniformly ultimately boundedness

(UUB) results with respect to the NN parameters and closed-loop

stability in HDP algorithm are provided [160, 159]. This study pro-

vides an equivalent UUB result for GDHP algorithm combined with

function approximator.

Recently, the development of deep NNs (DNNs) allows for con-

structing the high-dimensional function approximator, which is ap-

plied to the optimal control problem to develop the deep RL (DRL)

algorithm. The success of DRL motivates us to propose a novel algo-

rithm which utilizes the DNNs structure within the GDHP algorithm

and to provide the novel convergence analysis regrading the deep ap-

proximator.

127



5.2 Convergence proof of globalized dual heuristic pro-
gramming (GDHP)

In this section, an iterative algorithm for solving the HJB equa-

tion, referred to as GDHP algorithm, is presented. The value, costate,

and policy functions are sequentially updated to solve Eq. (2.30) nu-

merically as presented in Section 2.2.2.

Lemma 5.1. If V (1)(xk) ≤ V (0)(xk) holds for all xk, the sequence

{V (i)(xk)} is a nonincreasing sequence satisfying that V (i+1)(xk) ≤
V (i)(xk) for all xk.

Proof 5.1. Define a new sequence Z(i)(xk) generated by an arbitrary

control policies µk initialized by Z0(·) = V (0)(·). Then the sequence

satisfies following equation.

Z(i+1)(xk) = r(xk, µk) + γZ(i)
(
f(xk) + g(xk)µk

)
(5.1)

V (0)(xk) ≤ Z(0)(xk) and assume that V (i)(xk) ≤ Z(i)(xk),∀xk.

Then

Z(i+1)(xk) = r(xk, µ(xk)) + γZ(i)
(
f(xk) + g(xk)µk

)
≥ r(xk, µ(xk)) + γV (i)

(
f(xk) + g(xk)µk

)
≥ r(xk, π

(i)
k ) + γV (i)(f(xk) + g(xk)π

(i)
k )

= V (i+1)(xk)

(5.2)

Thus, V (i+1)(xk) ≤ Z(i+1)(xk),∀i is obtained by mathematical in-

duction.

Consider the sequence in which µ(xk) is substituted by π(i−1)
k as,
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Z(i+1)(xk) = r(xk, π
(i−1)
k ) + γZ(i)(xk+1)

Z(1)(xk) = r(xk, π
(0)
k ) + γZ(0)(xk+1)

(5.3)

Then Z(1)(xk) = V (1)(xk) ≤ V (0)(xk) by assumption. Assume that

V (i−1)(xk)− Z(i)(xk) ≥ 0, ∀xk holds, then

V (i)(xk)− Z(i+1)(xk)

= γ
(
V (i−1)(xk+1)− Z(i)(xk+1)

)
≥ 0

(5.4)

we have Z(i+1)(xk) ≤ V (i)(xk),∀i by mathematical induction.

From V (i+1)(xk) ≤ Z(i+1)(xk) and Z(i+1)(xk) ≤ V (i)(xk), the

result, V (i+1)(xk) ≤ V (i)(xk),∀i is satisfied.

The following theorem implies the uniform convergence of the

value function sequence, and provides the upper bound of the subop-

timality at each iteration step.

Theorem 5.1. Assume that the following inequalities hold,

0 ≤ γV ∗(f(xk) + g(xk)uk) ≤ θr(xk, uk) (5.5)

for all xk, where 0 ≤ θ and αV V ∗ ≤ V (0) ≤ βV V
∗ for 0 ≤ αV ≤ 1

and 1 ≤ βV . Then the sequence {V (i)} generated from the GDHP

algorithm satisfies the following inequalities:(
1 +

αV − 1

(1 + θ−1)i

)
V ∗(xk) ≤ V (i)(xk)

≤
(
1 +

βV − 1

(1 + θ−1)i

)
V ∗(xk)

(5.6)
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In addition, the sequence {V (i)} converges to V ∗ uniformly on the

state space Ω.

Proof 5.2. The proof follows the procedure in [153]. First, consider

the lower bound of the inequality by the mathematical induction.

When i = 1,

V (1)(xk) = r(xk, π
(0)
k ) + γV (0)(xk+1)

≥ r(xk, π
(0)
k ) + αV γV

∗(xk+1)

By assumption Eq. (5.5),

αV − 1

1 + θ

(
θr(xk,∆uk)− γV ∗(xk+1)

)
≤ 0

Then, the lower bound inequality holds in i = 1 as,

V (1)(xk) ≥
(
1 + θ

αV − 1

1 + θ

)
r(xk, π

(0)
k )

+

(
αV − αV − 1

1 + θ

)
γV ∗(xk+1)

=

(
1 +

αV − 1

1 + θ−1

)(
r(xk, π

(0)
k ) + γV ∗(xk+1)

)
≥
(
1 +

αV − 1

1 + θ−1

)
V ∗(xk)

(5.7)
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Assume that the lower bound inequality holds for i, then

V (i+1)(xk) = r(xk, π
(i)
k ) + γV (i)(xk+1)

≥ r(xk, π
(i)
k ) +

(
1 +

αV − 1

(1 + θ−1)i

)
γV ∗(xk+1)

=

(
1 +

(αV − 1)θi

(θ + 1)i

)
r(xk, π

(i)
k )

+

(
1 +

αV − 1

(1 + θ−1)i−1
− (αV − 1)θi−1

(θ + 1)i

)
γV ∗(xk+1)

=

(
1 +

(αV − 1)θi

(θ + 1)i

)(
r(xk, π

(i)
k ) + γV ∗(xk+1)

)
≥
(
1 +

αV − 1

(1 + θ−1)i

)
V ∗(xk)

(5.8)

Thus, the lower bound inequality of Eq. (5.6) is proved. Second, the

upper bound can be proved similarly by the mathematical induction.

When i = 1,

V (1)(xk) ≤ Z(1)(xk)

= r(xk, νk) + γZ(0)(xk+1)

= r(xk, νk) + γV (0)(xk+1)

≤ r(xk, νk) + βV γV
∗(xk+1)

(5.9)

where Z(i+1)(xk) = r(xk, νk) + γZ(i)(xk+1) with an arbitrary policy

νk. By assumption Eq. (5.5),

βV − 1

1 + θ

(
θr(xk,∆uk)− γV ∗(xk+1)

)
≥ 0 (5.10)
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, which can be added to Eq. (5.9) as,

V (1)(xk) ≤
(
1 + θ

βV − 1

1 + θ

)
r(xk, νk)

+

(
βV − βV − 1

1 + θ

)
γV ∗(xk+1)

=

(
1 +

βV − 1

1 + θ−1

)(
r(xk, νk) + γV ∗(xk+1)

)
(5.11)

Since above holds for an arbitrary policy νk, it also holds for the op-

timal policy π∗
k as,

V (1)(xk) ≤
(
1 +

βV − 1

1 + θ−1

)(
r(xk, π

∗
k) + γV ∗(xk+1)

)
=

(
1 +

βV − 1

1 + θ−1

)
V ∗(xk)

(5.12)

Assume that the upper bound inequality holds for i, then

V (i+1)(xk) ≤ Z(i+1)(xk)

= r(xk, νk) + γZ(i)(xk+1)

= r(xk, νk) + γV (i)(xk+1)

≤ r(xk, νk) +

(
1 +

βV − 1

(1 + θ−1)i

)
γV ∗(xk+1)

=

(
1 +

(βV − 1)θi

(θ + 1)i

)
r(xk, νk)

+

(
1 +

βV − 1

(1 + θ−1)i−1
− (βV − 1)θi−1

(θ + 1)i

)
γV ∗(xk+1)

=

(
1 +

(βV − 1)θi

(θ + 1)i

)(
r(xk, νk) + γV ∗(xk+1)

)

(5.13)

Since above holds for arbitrary policy νk, it also holds for the optimal
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policy π∗
k as,

V (i+1)(xk) ≤
(
1 +

(βV − 1)θi

(θ + 1)i

)(
r(xk, π

∗
k) + γV ∗(xk+1)

)
=

(
1 +

βV − 1

(1 + θ−1)i

)
V ∗(xk)

(5.14)

The upper bound inequality of the sequence {V (i)} is proved by the

mathematical induction. When i → ∞, the lower bound and upper

bound both converge to V ∗(xk), thus the uniform convergence of the

sequence {V (i)} exists and equal to the optimal value function, i.e.,

V (∞)(xk) = V ∗(xk).

Lemma 5.2. The sequence of the costate functions {λ(i)} defined in

Eq. (2.49) satisfies the following equality.

λ(i+1)(xk)− λ∗(xk) = Λ(xk)
(
λ
(i)
k+1 − λ∗k+1

)
(5.15)

for the function Λ ∈ RS×S defined in Eq. (5.23), where λ
(i)
k+1 =

λ(i)
(
f(xk) + g(xk)π

(i)
k

)
and λ∗k+1 = λ∗

(
f(xk) + g(xk)π

∗
k

)
.

Proof 5.3. By the definition of the costate function update in Eq. (2.49),

λ(i+1)(xk)− λ∗(xk) =
∂

∂xk

(
r(xk, π

(i)
k )− r(xk, π

∗
k)
)

+ γ
∂

∂xk

(
f(xk) + g(xk)π

(i)
k

)T
λ
(i)
k+1

− γ
∂

∂xk

(
f(xk) + g(xk)π

∗
k

)T
λ∗k+1

(5.16)

We now use ∇xk(·) to express the
∂

∂xk
(·). Denote vec(·) the vector-
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ization operation for which the matrix is converted into a column

vector. Then, using the chain rule the above equation is expressed as

λ(i+1)(xk)− λ∗(xk)

= 2
(
∇xkπ

(i)
k

)T
Rπ

(i)
k − 2

(
∇xkπ

∗
k

)T
Rπ∗

k

+ γ
(
∇xkf + (π

(i)T
k ⊗ IS)∇xkvec(g) + g∇xkπ

(i)
k

)T
λ
(i)
k+1

− γ
(
∇xkf + (π∗T

k ⊗ IS)∇xkvec(g) + g∇xkπ
∗
k

)T
λ∗k+1

(5.17)

where In denotes the square identity matrix with the dimension of n.

Since π∗
k and π(i)

k satisfy Eqs. (2.29) and (2.50), respectively, it can be

simplified as

λ(i+1)(xk)− λ∗(xk)

= γ
(
∇xkf

)T (
λ
(i)
k+1 − λ∗k+1

)
+ γ
(
∇xkvec(g)

)T
vec
(
ISλ

(i)
k+1π

(i)T
k − ISλ

∗
k+1π

∗T
k

) (5.18)

with the property of the vec operator, vec(AXB) = (BT⊗A)vec(X).

The second term of the RHS becomes,

vec
(
ISλ

(i)
k+1π

(i)T
k − ISλ

∗
k+1π

∗T
k

)
= vec

((
λ
(i)
k+1 − λ∗k+1

)(
π
(i)
k + π∗

k

)T)
+ Ξ

=
((
π
(i)
k + π∗

k

)
⊗ IS

)(
λ
(i)
k+1 − λ∗k+1

)
+ Ξ

(5.19)
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where Ξ = vec
(
λ∗k+1π

(i)T
k − λ

(i)
k+1π

∗T
k

)
. Then Eq. (5.18) becomes,

λ(i+1)(xk)− λ∗(xk)

= γ
(
∇xkf +

(
(π

(i)T
k + π∗T

k )⊗ IS
)
∇xkvec(g)

)T
×
(
λ
(i)
k+1 − λ∗k+1

)
+ γ∇xkvec(g)

TΞ

(5.20)

We can modify term Ξ to:

Ξ = −γ
2
vec
((
λ∗k+1λ

(i)T
k+1 − λ

(i)
k+1λ

∗T
k+1

)
gR−1

)
= −γ

2
vec
((
λ∗k+1(λ

(i)
k+1 − λ∗k+1)

T

− (λ
(i)
k+1 − λ∗k+1)λ

∗T
k+1

)
gR−1

)
= −γ

2

(
(gR−1)T ⊗ λ∗k+1 − (λ∗Tk+1gR

−1)T ⊗ IS

)
× vec

(
λ
(i)
k+1 − λ∗k+1

)
(5.21)

where the first equality is obtained by Eqs. (2.29) and (2.50) and

the third equality comes from the property of vec(AXB) = (BT ⊗
A)vec(X). Substituting Ξ into Eq. (5.20), we obtain

λ(i+1)(xk)− λ∗(xk) = Λ(xk)
(
λ
(i)
k+1 − λ∗k+1

)
(5.22)

with

Λ = γ

[
∇xkf+

(
π
(i)T
k ⊗IS+

γ

2
gR−1⊗λ∗Tk+1

)
∇xkvec(g)

]T
(5.23)

The next step is to pose a bound condition for which the function
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Λ(xk) becomes a contraction operator.

Theorem 5.2. The costate sequence {λ(i)} converges to λ∗ uniformly

on the state space Ω when ΛM = supxk∈Ω ||Λ(xk)||2 < 1. Moreover,

the policy sequence {π(i)} converges to π∗ uniformly in Ω.

Proof 5.4. The convergence of the sequence {λ(i)} to the optimal

costate function λ∗ can be demonstrated by

∥∥λ(i+1)(xk)− λ∗(xk)
∥∥
2

≤
∥∥Λ(xk)∥∥2∥∥λ(i)(x(i)k+1)− λ∗(x∗k+1)

∥∥
2

≤ ΛiM
∥∥λ(1)(x(1)k+i)− λ∗(x∗k+i)

∥∥
2

(5.24)

According to the assumption ΛM < 1, the costate sequence converges

to the optimal costate function as i → ∞. In the case of the policy

sequence, it satisfies the same equality with Eq. (5.15) as

π(i+1)(xk)− π∗(xk) = Λ
(
π(i)(x

(i)
k+1)− π∗(x∗k+1)

)
(5.25)

Hence {π(i)} converges to the optimal policy function π∗.

Remark 5.1. In the discrete-time linear system xk+1 = Axk +Buk,

the convergence condition can be simply expressed as γ∥A∥2 < 1,

which is analogous to the convergence result presented in [154]. The

condition can also be interpreted as the stability of linear system: the

spectral radius of A is less than one. The second term of Λ(xk) in

Eq. (5.23) addresses the effect of non-zero gradient of g(xk) of non-
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linear control-affine system. Denote the second term as Λc,

Λc =

(
π
(i)T
k ⊗ IS +

γ

2
gR−1 ⊗ λ∗Tk+1

)
∇xkvec(g)

= −γ
2

((
λ
(i)T
k+1gR

−1
)
⊗ IS − gR−1 ⊗ λ∗Tk+1

)
∇xkvec(g)

(5.26)

Then the nonlinearity effect can be measured by the spectral norm of

Λc as

∥∥Λc∥∥2 ≤ γ

2

∥∥∇xkvec(g)
∥∥
2

∥∥gR−1
∥∥
2

∥∥λ(i)k+1 − λ∗k+1

∥∥
2

(5.27)

which becomes zero as i→ ∞.

5.3 Function approximation with deep neural networks

5.3.1 Function approximation and gradient descent learn-
ing

With the same motivation to Chapter 4, DNNs is used as the

function approximator of the value, costate, and policy functions.

Assumption 5.1. Without loss of generality, three networks (i.e., value,

costate, and policy networks) are assumed to have a same number of

layers, denoted as H + 1, and have a same widths at each layer.

Denote a function set of value, costate, and policy as χ ∈ {V, λ, π}.

Following the Assumption 5.1, three networks are defined as

χ(X)

= Wχ,H+1σχ,H(Wχ,Hσχ,H−1(· · ·Wχ,2σχ,1(Wχ,1X) · · · ))
(5.28)
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where χ(X) denote the value (χ = V ), costate (χ = λ), and pol-

icy (χ = π) networks which optimally approximate the correspond-

ing target functions, evaluated at the batch state data X , respectively.

The optimal weight matrices of the lth layer of networks are denoted

as Wχ,l, for which the dimensions are given as: WV,H+1 ∈ R1×dH ,

Wλ,H+1 ∈ RS×dH , Wπ,H+1 ∈ RA×dH , . . ., Wχ,l ∈ Rdl×dl−1 , . . .,

Wχ,1 ∈ Rd1×S , where dl represents the width of lth layer. The batch

state matrix X = [x1, x2, . . . xN ] has dimension RS×N , where N is

the number of data. The element-wise nonlinear activation functions

of the lth layer of networks are denoted as σχ,l.

The DNNs approximation takes place in the other dimensional

space than the original function, thus there exist reconstruction errors

for the networks denoted as ϵχ,

χ(X) = χ(X) + ϵχ (5.29)

The optimal DNNs models (i.e., weight matrices) are unknown, and

the estimated DNNs networks, denoted as χ̂(X) are used during the

learning process. The corresponding approximate weight matrices of

the lth layer at the iteration number i are denoted as Ŵ (i)
χ,l .

The learning procedure aims to make the network sequence (i.e.,

{χ̂(i)}) to be the optimal approximation of the optimal function (i.e.,

χ∗). However, since χ∗ is unknown, it is designed to follow the in-

termediate values of the iteration path of the GDHP algorithm (i.e.,

{χ(i)}). Hence, the following per-sample residuals which measures

the deviations of optimality conditions of GDHP in Eqs. (2.27), (2.28)
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and (2.29) are defined.

e
(i)
V,n = rn + γV̂ (i)(x+n )− V̂ (i)(xn)

e
(i)
λ,n = ∇xnrn + γ

(
∇xnx

+
n

)T
λ̂(i)(x+n )− λ̂(i)(xn)

e(i)π,n = π̂(i)(xn) +
γ

2
R−1gT (xn)λ̂

(i)(x+n )

(5.30)

where (xn, un, rn, x+n ) is the nth data (n ∈ {1, . . . , N}) data of a sam-

ple batch.

The scalar GDHP residual functions are calculated as, Eχ =
1

2
e
(i)T
χ e

(i)
χ , where e(i)χ = vec

(
[e

(i)
χ,1, e

(i)
χ,2, . . . , e

(i)
χ,N ]

)
. The gradient de-

scent method for the value network is expressed as,

vec(Ŵ
(i+1)
χ,l ) = vec(Ŵ

(i)
χ,l )− ηχ

(
∇le

(i)
χ

)T
e(i)χ (5.31)

where ηχ is the learning rate of the networks and ∇le
(i)
χ =

∂e
(i)
χ

∂vec(Ŵ
(i)
χ,l )

.

5.3.2 Forward and backward propagations of DNNs

The training and evaluation of the feed-forward DNNs are per-

formed by forward and backward propagation rule [161]. In the for-

ward propagation step, the vectorized output value of the layer is

transferred from its inner layer as

vec(pχ,l) = vec
(
Ŵ

(i)
χ,lσ(pχ,l−1)

)
= (IN ⊗ Ŵ

(i)
χ,l )σ(vec(pχ,l−1)), l ∈ {2, . . . , H + 1}

vec(pχ,1) = (IN ⊗ Ŵ
(i)
χ,1)vec(X)

(5.32)
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where pχ,l ∈ Rdl×N is the value evaluated at the lth hidden layer. In

the backward propagation step, the gradient of DNNs with respect to

the lth weights is expressed with that of the outer layer (l + 1)th as

δχ,l = δχ,l+1

(
IN ⊗ Ŵ

(i)
χ,l+1

)
∇σ
(
vec(pχ,l)

)
,

δχ,H+1 = INdH+1
, l = {1, . . . , H}

(5.33)

where δχ,l ∈ RNdH+1×Ndl is the accumulated gradient signal evalu-

ated in the lth layer. ∇σ
(
vec(pχ,l)

)
is the diagonal matrix of RNdl×Ndl

whose nth element being ∇σ
(
[vec(pχ,l)]n

)
. The gradient of the NN

output with respect to the vectorized weight is computed as,

∂vec
(
χ̂(i)(X)

)
∂vec(Ŵ

(i)
χ,l )

= δ
(i)
χ,l(X)

(
σ(p

(i)
χ,l−1(X))T ⊗ Idl

)
(5.34)

According to the residuals defined in Eq. (5.30) and the backward

propagation rule, ∇le
(i)
χ ∈ RNdH+1×dldl−1 in Eq. (5.31) becomes

∇le
(i)
V = γδ

(i)
V,l(X

+)
(
σ(p̂

(i)
V,l−1(X

+))T ⊗ Idl
)

− δ
(i)
V,l(X)

(
σ(p̂

(i)
V,l−1(X))T ⊗ Idl

)
∇le

(i)
λ = γ

(
∇XX

+
)T
δ
(i)
λ,l(X

+)
(
σ(p̂

(i)
λ,l−1(X

+))T ⊗ Idl
)

− δ
(i)
λ,l(X)

(
σ(p̂

(i)
λ,l−1(X))T ⊗ Idl

)
∇le

(i)
π = δ

(i)
π,l(X)

(
σ(p̂

(i)
π,l−1(X))T ⊗ Idl

)
+

(
γ

2
R−1gT (X)

)
δ
(i)
π,l(X

+)
(
σ(p̂

(i)
π,l−1(X

+))T ⊗ Idl
)

(5.35)

where ∇XX
+ and R−1gT (X) are diagonal block matrices whose nth

blocks are ∇xnx
+
n and R−1gT (xn), respectively.
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5.4 Convergence analysis in the deep neural networks
space

In this section, the Lyapunov functions of the DNNs weight er-

rors and the closed-loop systems are constructed. The ultimate bound-

edness is obtained as a result.

5.4.1 Lyapunov analysis of the neural network param-
eter errors

Recall that the ultimate goal of the algorithm is to find the op-

timal DNNs weights W ∗
χ,l. The convergence analysis starts from ex-

pressing the residual e(i)χ,n with respect to χ̂(i) − χ∗, which can be

decomposed into three steps as

χ∗ −→
ϵ∗χ

χ∗ −→
GDHP

χ(i) −→
e
(i)
χ

χ̂(i)
(5.36)

where each step refers to the reconstruction error which measures the

irreducible neural network approximation error (Eq. (5.29)), GDHP

iteration error in the value function space (Eqs. (5.6), (5.15), and

(5.25)), and GDHP residual in the neural network space (Eq. (5.30)),

respectively. Three steps of error decomposition is illustrated in Fig. 5.1.
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Figure 5.1: Illustration of three-step decomposition in χ̂(i) − χ∗.
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Note that this decomposition is not considered in the previous

convergence analysis [160, 159, 162]. The designed residual func-

tions make network sequence {χ̂(i)} to follow {χ(i)}, which is the

moving target regression problem. Whereas, previous results assumed

that {χ̂(i)} is directly steered toward χ∗.

The residual e(i)V,n is modified by considering three errors: GDHP

value function iteration rule Eq. (2.48), GDHP iteration error Eq. (5.6),

and the reconstruction error Eq. (5.29) as

e
(i)
V,n = γV̂ (i)(x+n )− γV (i)(x+n )− V̂ (i)(xn) + V (i+1)(xn)

= γV̂ (i)(x+n )− γV ∗(x+n )− V̂ (i)(xn) + V ∗(xn)

−
γα

(i)
V,n

(1 + θ−1)i
V ∗(x+n ) +

α
(i+1)
V,n

(1 + θ−1)i+1
V ∗(xn)

= γV̂ (i)(x+n )− γV
∗
(x+n )− V̂ (i)(xn) + V

∗
(xn) +M

(i)
V,n

(5.37)

where α(i)
V,n is the constant satisfying αV − 1 ≤ α

(i)
V,n ≤ βV − 1 ac-

cording to Eq. (5.6). The overall error term M
(i)
V,n is defined as

M
(i)
V,n =

α
(i+1)
V,n V ∗(xn)− γα

(i)
V,n(1 + θ−1)V ∗(x+n )

(1 + θ−1)i+1

− γϵ+∗
V,n + ϵ∗V,n

(5.38)

The GDHP residuals for costate e(i)λ,n and policy e(i)π,n are evalu-
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ated similarly

e
(i)
λ,n = γ

(
∇xnx

+
n

)T(
λ̂(i)(x+n )− λ

∗
(x+n )

)
− λ̂(i)(xn) + λ

∗
(xn) +M

(i)
λ,n

e(i)π,n = π̂(i)(xn)− π∗(xn)

+
γ

2
R−1gT

(
λ̂(i)(x+n )− λ

∗
(x+n )

)
+M (i)

π,n

(5.39)

According to Theorem 5.2, α(i)
λ,n ∈ RS×1 and α

(i)
π,n ∈ RA,1 satisfy

λ(i)(xn)−λ∗(xn) = ∥Λ∥i2α
(i)
λ,n(xn) and π(i)(xn)−π∗(xn) = ∥Λ∥i2α

(i)
π,n(xn),

respectively. The overall error terms M (i)
λ,n and M (i)

π,n are defined as

M
(i)
λ,n = −γ

(
∇xnx

+
n

)T∥Λ∥i2α(i)
λ,n(x

+
n ) + ∥Λ∥i+1

2 α
(i+1)
λ,n (xn)

− γ
(
∇xnx

+
n

)T
ϵ+∗
λ,n + ϵ∗λ,n

M (i)
π,n = −∥Λ∥i2α(i)

π,n(xn) +
γ

2
R−1gT (xn)∥Λ∥i2α

(i)
λ,n(x

+
n )

− ϵ∗π,n +
γ

2
R−1gT ϵ∗λ,n

(5.40)

The vectorized terms χ̂(i)(X+)−χ∗(X+) in Eqs. (5.37) and (5.39) are

written with respect to the DNNs weight errors W̃ (i)
χ,l . Since Eq. (5.32)

can be rewritten as vec(pχ,l) =
(
σ(pχ,l−1)

T⊗Idl
)
vec(Ŵ

(i)
χ,l ), Eq. (5.41)

holds.

vec
(
χ̂(i)(X+)− χ∗(X+)

)
=
(
σ(p̂

(i)
χ,H)

T ⊗ IdH+1

)
vec(Ŵ

(i)
χ,H+1)

−
(
σ(p̂

(i)
χ,H)

T ⊗ IdH+1

)
vec(W ∗

χ,H+1)

+
(
σ(p̂

(i)
χ,H)

T ⊗ IdH+1

)
vec(W ∗

χ,H+1)

−
(
σ(p∗χ,H)

T ⊗ IdH+1

)
vec(W ∗

χ,H+1)

(5.41)
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Since the activation function σ is the element-wise operation, it is

commutative with the vec operator [163]. Also, the mean value the-

orem for σ can be implemented element-wise to obtain the diago-

nal matrix ξ+χ,H , whose nth element is ∇σ([ξ+χ,H ]n), where [ξ+χ,H ]n ∈
[vec(p∗χ,H)n, vec(p̂

(i)
χ,H)n].

vec
(
χ̂(i)(X+)− χ∗(X+)

)
=
(
σ(p̂

(i)
χ,H)

T ⊗ IdH+1

)
vec(W̃

(i)
χ,H+1)

+ (IN ⊗W ∗
χ,H+1)

(
σ
(
vec(p̂

(i)
χ,H)

)
− σ

(
vec(p∗χ,H)

))
=
(
σ(p̂

(i)
χ,H)

T ⊗ IdH+1

)
vec(W̃

(i)
χ,H+1)

+ (IN ⊗W ∗
χ,H+1)ξ

+
χ,Hvec(p̂

(i)
χ,H − p∗χ,H)

(5.42)

The procedure in Eqs. (5.41) and (5.42) is performed recursively from

the outermost layer throughout the inner layers to yield

vec
(
χ̂(i)(X+)− χ∗(X+)

)
=

H+1∑
m=1

K+
χ,m

(
σ(p̂

(i)
χ,m−1(X

+))T ⊗ Idm
)
vec
(
W̃ (i)
χ,m

) (5.43)

The coefficients K+
χ,m ∈ RNdH+1×Ndm are defined recursively with

respect to K+
χ,m+1 and the ξ+χ,m are acquired from the mean value

theorem.

σ
(
vec(p̂(i)χ,m)

)
− σ

(
vec(p∗χ,m)

)
= ξ+χ,mvec

(
p̂(i)χ,m − p∗χ,m

)
K+
χ,m = K+

χ,m+1(IN ⊗W ∗
χ,m+1)ξ

+
χ,m

K+
χ,H+1 = INdH+1

(5.44)
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Finally, the Lyapunov candidate function of the weight errors W̃ (i)
χ =

Ŵ
(i)
χ − W ∗

χ can be constructed, for the later purpose to check the

convergence of the neural networks. Lemma 5.3 provides an explicit

expression of the total difference.

Lemma 5.3. Define the Lyapunov candidate functions of weight er-

rors as Lχ =
∑H+1

l=1

∥∥∥vec(W̃ (i)
χ,l )
∥∥∥2. Then ∆Lχ are expressed as quadratic

forms with respect to W̃ (i)
χ =

[
vec(W̃

(i)
χ,1)

T , . . . , vec(W̃
(i)
χ,H+1)

T
]T and

M
(i)
χ = vec

(
[M

(i)
χ,1, . . . ,M

(i)
χ,N ]

)
.

Proof 5.5. The weight errors dynamics are expressed as,

vec(W̃
(i+1)
χ,l ) = vec(W̃

(i)
χ,l )− ηχ

(
∇le

(i)
χ

)T
e(i)χ (5.45)

The total differences can be evaluated by substituting the weight error

dynamics as,

∆Lχ =
H+1∑
l=1

(∥∥∥vec(W̃ (i+1)
χ,l )

∥∥∥2 − ∥∥∥vec(W̃ (i)
χ,l )
∥∥∥2)

=
H+1∑
l=1

(
−ηχvec(W̃ (i)

χ,l )
T
(
∇le

(i)
χ

)T
e(i)χ

− ηχe
(i)T
χ ∇le

(i)
χ vec(W̃

(i)
χ,l ) + η2V

∥∥∥(∇le
(i)
χ

)T
e(i)χ

∥∥∥2)
(5.46)

The GDHP residuals e(i)V in Eqs. (5.37) and (5.39) are expressed by

using Eq. (5.43) as

e
(i)
V =

H+1∑
m=1

KV,mvec
(
W̃

(i)
V,m

)
+M

(i)
V (5.47)
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The coefficients KV,m ∈ RNdH+1×dmdm−1 are given as

KV,m = γK+
V,m

(
σ(p̂

(i)
V,m−1(X

+))T ⊗ Idm
)

−K−
V,m

(
σ(p̂

(i)
V,m−1(X))T ⊗ Idm

) (5.48)

where the coefficientsK−
V,m satisfy the equality which is similar to the

definition of K+
V,m in Eqs. (5.43) and (5.44).

vec
(
V̂ (i)(X)− V

∗
(X)

)
=

H+1∑
m=1

K−
V,m

(
σ(p̂

(i)
m−1(X))T ⊗ Idm

)
vec
(
W̃

(i)
V,m

) (5.49)

The GDHP residuals for costate and policy are defined similarly as

e
(i)
λ =

H+1∑
m=1

Kλ,mvec
(
W̃

(i)
λ,m

)
+M

(i)
λ

e(i)π =
H+1∑
m=1

(
Kπ,mvec

(
W̃ (i)
π,m

)
+Kπλ,mvec

(
W̃

(i)
λ,m

))
+M (i)

π

(5.50)

The coefficients Kλ,m, Kπ,m and Kπλ,m ∈ RNdH+1×dmdm−1 are de-

fined as

Kλ,m = γ
(
∇XX

+
)T
K+
λ,m

(
σ(p̂

(i)
λ,m−1(X

+))T ⊗ Idm
)

−K−
λ,m

(
σ(p̂

(i)
λ,m−1(X))T ⊗ Idm

)
Kπ,m = K−

π,m

(
σ(p̂

(i)
π,m−1(X))T ⊗ Idm

)
Kπλ,m =

(
γ

2
R−1gT (X)

)
K+
λ,m

(
σ(p̂

(i)
λ,m−1(X

+))T ⊗ Idm
)

(5.51)

with the coefficients K+
λ,m, K

−
λ,m and K−

π,m ∈ RNdH+1×dmdm−1 are
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defined similar to Eqs. (5.43) and (5.44).

Finally, ∆LV is expressed with the weight error W̃ (i)
V,l by substi-

tuting Eq. (5.47) to Eq. (5.46) as,

∆LV

= −ηV
H+1∑
l=1

H+1∑
m=1

(
vec(W̃

(i)
V,l)

T∇le
(i)T
V KV,mvec(W̃

(i)
V,m)

+ vec(W̃
(i)
V,m)

TKT
V,m∇le

(i)
V vec(W̃

(i)
V,l)

)
− ηV×

H+1∑
l=1

(
vec(W̃

(i)
V,l)

T∇le
(i)T
V M

(i)
V +M

(i)T
V ∇le

(i)
V vec(W̃

(i)
V,l)

)

+ η2V

H+1∑
l=1

∥∥∥∥∥∇le
(i)T
V

(H+1∑
m=1

KV,mvec(W̃
(i)
V,m) +M

(i)
V

)∥∥∥∥∥
2]

(5.52)

Then ∆LV can be written in a compact quadratic form as,

∆LV

= −W̃ (i)T
V AV W̃

(i)
V + W̃

(i)T
V BVM

(i)
V +M

(i)T
V BT

V W̃
(i)
V

+M
(i)T
V CVM

(i)
V

(5.53)

The coefficient matrices are defined as,

[AV ]lm = ηV

(
∇le

(i)T
V KV,m +KT

V,l∇me
(i)
V

)
− η2VK

T
V,lCVKV,m

[BV ]l = −ηV∇le
(i)T
V + η2VK

T
V,lCV

CV =
H+1∑
l=1

∇le
(i)
V ∇le

(i)T
V , l,m ∈ {1, . . . H + 1}

(5.54)
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where the [·]lm refers to the block matrix of location (l,m). Similarly,

∆Lλ is computed as,

∆Lλ

= −W̃ (i)T
λ AλW̃

(i)
λ + W̃

(i)T
λ BλM

(i)
λ +M

(i)T
λ BT

λ W̃
(i)
λ

+M
(i)T
λ CλM

(i)
λ

(5.55)

with the coefficient matrices,

[Aλ]lm = ηλ

(
∇le

(i)T
λ Kλ,m +KT

λ,l∇me
(i)
λ

)
− η2λK

T
λ,lCλKλ,m

[Bλ]l = −ηλ∇le
(i)T
λ + η2λK

T
λ,lCλ

Cλ =
H+1∑
l=1

∇le
(i)
λ ∇le

(i)T
λ , l,m ∈ {1, . . . , H + 1}

(5.56)

Finally, the quadratic form of ∆Lπ is written as

∆Lπ

= −W̃ (i)T
π Aπ,1W̃

(i)
π − W̃ (i)T

π Aπ,2W̃
(i)
λ

− W̃
(i)T
λ ATπ,2W̃

(i)
π − W̃

(i)T
λ Aπ,3W̃

(i)
λ

+ W̃ (i)T
π Bπ,1M

(i)
π +M (i)T

π BT
π,1W̃

(i)
π

+ W̃
(i)T
λ Bπ,2M

(i)
π +M (i)T

π BT
π,2W̃

(i)
λ

+M (i)T
π CπM

(i)
π

(5.57)
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where the coefficient matrices are defined as,

[Aπ,1]lm = ηπ

(
∇le

(i)T
π Kπ,m +KT

π,l∇me
(i)
π

)
− η2πK

T
π,lCπKπ,m

[Aπ,2]lm = ηπ∇le
(i)T
π Kπλ,m − η2πK

T
π,lCπKπλ,m

[Aπ,3]lm = η2πK
T
πλ,lCπKπλ,m

[Bπ,1]l = −ηπ∇le
(i)T
π + η2πK

T
π,lCπ

[Bπ,2]l = η2πK
T
πλ,lCπ

Cπ =
H+1∑
l=1

∇le
(i)
π ∇le

(i)T
π , l,m ∈ {1, . . . , H + 1}

(5.58)

5.4.2 Lyapunov analysis of the closed-loop stability

The state Lyapunov function is defined as the square norm of the

state, Lx = ∥X∥2.

Assumption 5.2. Under the closed-loop dynamics with the optimal

policy π∗(xn), there exists a constant 0 < αxn < 0.5 such that∥∥f(xn) + g(xn)π
∗(xn)

∥∥2 ≤ αxn∥xn∥2 [159].

Lemma 5.4. When the closed-loop dynamics is subject to Assump-

tion 5.2, the total difference of the Lyapunov candidate function ∆Lx
is upper bounded by the quadratic function given in Eq. (5.63).
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Proof 5.6. Total difference ∆Lx is written as

∆Lx = ∥X+∥2 − ∥X∥2

=
N∑
n=1

(∥∥f(xn) + g(xn)π
∗(xn)− g(xn)π

∗(xn)

+ g(xn)π̂
(i)(xn)

∥∥2 − ∥∥xn∥∥2)
≤

N∑
n=1

(
−(1− 2αxn)

∥∥xn∥∥2 + ∥∥g(xn)(π̂(i)(xn)− π∗(xn))
∥∥2)

(5.59)

by using Assumption 5.2. The second term of ∆Lx is modified by fol-

lowing the similar procedure of the value, costate, and policy residual

values as,

e(i)x,n = g(xn)
(
π̂(i)(xn)− π∗(xn)

)
= g(xn)

(
π̂(i)(xn)− π∗(xn)

)
+M (i)

x,n

M (i)
x,n = −g(xn)ϵ∗π,n

(5.60)

The residual value of the state e(i)x := vec
(
[e

(i)
x,1, e

(i)
x,2, . . . , e

(i)
x,N ]
)
, is

given as,

e(i)x =
H+1∑
m=1

Kx,mvec
(
W̃ (i)
π,m

)
+M (i)

x (5.61)

and Kx,m is defined as,

Kx,m = g(X)K−
π,m

(
σ(p̂

(i)
π,m−1(X))T ⊗ Idm

)
(5.62)
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where the coefficient K−
π,m is defined in Eq. (5.51). The upper bound

of the total difference is given in the quadratic form as,

∆Lx ≤ −XTAx,1X + W̃ (i)T
π Ax,2W̃

(i)
π

+ W̃ (i)T
π BxM

(i)
x +M (i)T

x BT
x W̃

(i)
π +M (i)T

x CxM
(i)
x

(5.63)

with the following coefficient matrices

[Ax,1]nn = 1− 2αxn , n ∈ {1, . . . , N}

[Ax,2]lm = KT
x,lKx,m

[Bx]l = KT
x,l

Cx = ISN , l,m ∈ {1, . . . , H + 1}

(5.64)

5.4.3 Overall Lyapunov function

The overall Lyapunov candidate function L is defined as the

summation of the value, costate, policy, and the state Lyapunov can-

didate functions. The quadratic form of ∆L is obtained following

Lemmas 5.3 and 5.4 as

∆L = ∆LV +∆Lλ +∆Lπ +∆Lx

≤ −W TAW +W TBM (i) +M (i)TBTW +M (i)TCM (i)
(5.65)
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where W =
[
W̃

(i)T
V , W̃

(i)T
λ , W̃

(i)T
π , XT

]T and

M (i) =
[
M

(i)T
V ,M

(i)T
λ ,M

(i)T
π ,M

(i)T
x

]T with

A =


AV 0 0 0

0 Aλ + Aπ,3 ATπ,2 0

0 Aπ,2 Aπ,1 − Ax,2 0

0 0 0 Ax,1

 (5.66)

B =


BV 0 0 0

0 Bλ Bπ,2 0

0 0 Bπ,1 Bx

0 0 0 0

 , C =


CV 0 0 0

0 Cλ 0 0

0 0 Cπ 0

0 0 0 Cx


(5.67)

The elements of A, B and C are given in Eqs. (5.54), (5.56), (5.58),

and (5.64). We provide preliminary results in Lemmas 5.5 and 5.6 and

Assumption 5.3 to assure the negative semi-definiteness of Eq. (5.65).

Lemma 5.5. Let square matrices aχ with χ ∈ {V, λ, π} whose block

matrices are given as

[aχ]lm = ∇le
(i)T
χ Kχ,m, l,m ∈ {1, . . . H + 1} (5.68)

where ∇le
(i)T
χ and Kχ,m are given in Eqs. (5.35) and (5.48), respec-

tively. Then aχ ⪰ 0 when W̃ (i)
χ,l = 0 for all l, where X ⪰ 0 means X

is PSD.

Proof 5.7. ∇le
(i)
χ and Kχ,l become identical except for the back-

ward propagation signals from the outer level (δ(i)χ,l and K+
χ,l, respec-

tively). The backward propagation signals are expressed with respect
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to ∇σ(pχ,l) and Ŵ (i)
χ,l+1 in the case of δ(i)χ,l, whereas K+

χ,l is written

with ξ+χ,l and W ∗
χ,l+1. When W̃

(i)
χ,l = 0, two signals become identi-

cal. Hence ∇le
(i)
χ = Kχ,l. Since aχ = ∇e(i)Tχ Kχ, where ∇e(i)χ =

[∇1e
(i)
χ , . . .∇H+1e

(i)
χ ] and Kχ = [Kχ,1, . . . Kχ,H+1], it is PSD.

Remark 5.2. The proof of Lemma 5.5 guarantees the matrix aχ

to be PSD only if the weights are optimal. Since the positive semi-

definiteness is a sufficient condition for the stability of the GDHP

algorithm, the accurate initial estimation of the weights is a critical

stage throughout the learning process. This motivates the pre-training

which assists the initial learning stage for the deep RL problems [37].

Assumption 5.3. System dynamics is assumed to be uniformly up-

per bounded by supxk∈Ω ∥g(xk)∥2 ≤ 1. The optimal policy network

weight is assumed to be ∥W ∗
π∥2 ≤ 1. In addition, the activation func-

tion satisfies the linear growth condition ∥σ(p)∥2 ≤ L1∥p∥2 and Lip-

schitz condition ∥σ(p1)−σ(p2)∥2 ≤ L2∥p1−p2∥2 for all p, p1, p2 ∈ R
with the constants 0 ≤ L1, L2 ≤ 1.

Remark 5.3. Uniform upper bound condition for dynamics g can be

obtained by controlling the sample time ∆t arbitrary small. When the

state space dynamics Eq. (2.25) is generated by the discretization of

the continuous time counterpart (i.e., ẋ = f̄(x) + ḡ(x)u), g = ḡ∆t

holds. Policy network weight condition can be achieved by the nor-

malization of state-space dynamics. Moreover, the linear growth and

Lipschitz conditions are hold when the rectified linear unit (ReLU)

(i.e., f(x) = max(x, 0)) activation function is used with L1, L2 = 1.

Lemma 5.6. Under Assumption 5.2, the condition W̃ (i)
χ,l = 0, χ ∈

{V, λ, π},∀l in Lemma 5.5 and Assumption 5.3, then A defined in
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Eq. (5.66) becomes PSD when the following conditions for the learn-

ing rates are satisfied.

0 ≤ ηV ≤ 2∥aV ∥−1
2

0 ≤ ηλ ≤ 2∥aλ∥−1
2(

1−
√

1− ||Ax,2||2
2

)
∥aπ∥−1

2

≤ ηπ ≤
(
1 +

√
1− ||Ax,2||2

2

)
∥aπ∥−1

2

(5.69)

Proof 5.8. We proceed the proof by showing the definiteness of three

blocks of A: AV , Ã, and Ax,1, where Ã is defined as

Ã =

[
Aλ + Aπ,3 ATπ,2

Aπ,2 Aπ,1 − Ax,2

]
(5.70)

In addition to the definitions of aχ in Eq. (5.68), let aπλ whose block

matrices are defined as [aπλ]lm be ∇le
(i)T
π Kπλ,m. Then the following

relationships hold for matrices AV , Aλ, Aπ,1, Aπ,2, and Aπ,3 as

AV = ηV (aV + aTV )− η2V a
T
V aV

Aλ = ηλ(aλ + aTλ )− η2λa
T
λaλ

Aπ,1 = ηπ(aπ + aTπ )− η2πa
T
πaπ

Aπ,2 = ηπaπλ − η2πa
T
πaπλ

Aπ,3 = η2πa
T
πλaπλ

(5.71)

According to Lemma 5.5, aV is PSD when W̃
(i)
V,l = 0 for all l. We

choose 0 ≤ ηV ≤ 2∥aV ∥−1
2 such that AV ⪰ 0.

In the case of Ã, it is enough to find the condition that (Aπ,1 −
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Ax,2)−Aπ,2(Aλ+Aπ,3)−1ATπ,2 ⪰ 0 by using Schur complement [164].

Similar to AV , we can make Aλ ⪰ 0 if 0 ≤ ηλ ≤ 2∥aλ∥−1
2 , and

(Aπ,1 − Ax,2)− Aπ,2(Aλ + Aπ,3)
−1ATπ,2

⪰ (Aπ,1 − Ax,2)− Aπ,2A
−1
π,3A

T
π,2

= (Aπ,1 − Ax,2)− (I − ηπa
T
π )(I − ηπa

T
π )

T

= 2ηπ(aπ + aTπ )− 2η2πa
T
πaπ − Ax,2 − I

(5.72)

According to the Assumption 5.3 and the definition ofKx,l in Eq. (5.62),

∥Kx,l∥2 ≤ ∥g(X)∥2∥K−
π,l∥2∥σ

(
p̂
(i)
π,l−1

)
∥2 ≤ 1 (5.73)

Thus, Ax,2 = KT
xKx ⪯ I , and Ã ⪰ 0 under which ηπ is given as

(
1−
√

1− ||Ax,2||2
2

)
∥aπ∥−1

2

≤ ηπ ≤
(
1 +

√
1− ||Ax,2||2

2

)
∥aπ∥−1

2

(5.74)

The final block always satisfies Ax,1 ⪰ 0 due to the Assumption 5.2

(i.e., 0 < αxn < 0.5), which concludes the proof.

Theorem 5.3. Under Assumptions 5.1 - 5.3 and the learning rates

ηV , ηλ, and ηπ determined by Lemma 5.6, the value, the costate, and

the policy networks weights and the state are uniformly ultimately

bounded (UUB). Moreover, the ultimate bound converges as i→ ∞.

Proof 5.9. With the learning rates ηV , ηλ, and ηπ, the quadratic form

of Eq. (5.65) satisfies the following inequality,

∆L ≤ −Am∥W∥22 + 2BM∥M (i)∥2∥W∥2 + CM∥M (i)∥22 (5.75)
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where Am = λmin(A), BM = σmax
(
B
)

and CM = λmax(C). There-

fore, if

∥W∥2 > ∥M (i)∥2

[
BM

Am

+

√(
BM

Am

)2

+ CM

]
(5.76)

, then ∆L < 0, which indicates that the value, costate, and policy

networks weights and state are uniformly ultimately bounded (UUB).

Moreover, since M (i) converges to M as i→ ∞.

M =


−ϵ+∗

V + ϵ∗V

−
(
∇XX

+
)T
ϵ+∗
λ + ϵ∗λ

−ϵ+∗
π +

(
1

2
R−1gT (X)

)
ϵ∗λ

−g(X)ϵ∗π

 (5.77)

, and obviously ∥M∥2 < ∥M (i)∥2 by triangular inequality, the ulti-

mate bound of ∥W∥2 also shrinks to ∥M∥2

[
BM

Am

+

√(
BM

Am

)2

+ CM

]
.

Remark 5.4. Note thatM is only a function of the DNNs reconstruc-

tion errors ϵ∗χ, which only depend on the structure of the DNNs, thus

cannot be reduced by the GDHP algorithm. It can be concluded that

the structural design of the DNNs is crucial for both the convergence

of the network weights and the closed-loop stability.

5.5 Simulation results and discussions

In this section, the proposed algorithm is implemented on the

control problem for the nonlinear distributed system which is pre-
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sented in [165]. We show that utilizing the DNNs as a function ap-

proximator successfully solved the system with high-dimensional state,

control, and the output spaces.

5.5.1 System description

Temperature control with a two-dimensional rectangular geom-

etry is presented as a benchmark problem. The rectangular domain

is Ω = {(x, y) | 0 ≤ x ≤ xmax, 0 ≤ y ≤ ymax} where xmax = 1.6 and

ymax = 3.2. The control boundaries are given as ∂Ω1 = {(x, y) | y = 0}
and ∂Ω2 = {(x, y) | x = 0}, which are located on the bottom and

the left, respectively. The temperature T (x, y, t) in domain Ω is con-

trolled by the heat source located on the control boundaries ∂Ω1 and

∂Ω2, while the top and the right boundaries are insulated.

The problem concerns the specific domain of interest given by

Ωc = {(x, y) | xc ≤ x ≤ xmax, yc ≤ y ≤ ymax} where xc = 1.2 and

yc = 2.4. The objective is to control the output which is defined as

the average temperature value of the sub-domain

z(t) =
1

|Ωc|

∫ xmax

xc

∫ ymax

yc

T (x, y, t)dxdy (5.78)

to the reference point. The geometry is illustrated in Fig. 5.2.
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𝜕Ω1

𝜕Ω2

Figure 5.2: Description of the temperature control system domain.

159



The system in the domain (x, y, t) ∈ Ω× [0, tmax] is governed by

the heat equation given as

∂T

∂t
=
λ

c

(
∂2T

∂x2
+
∂2T

∂y2

)
+ S(T ),

S(T ) = SM exp

(
− β1
β2 + T

) (5.79)

where λ = 0.5 is the heat conduction coefficient and c = 0.5 is the

heat capacity. It is assumed that there exists an internal heat source

S(T ), with the constants β1 = 0.2, β2 = 1.0, and SM = 0.1. The

initial condition is given as T (x, y, 0) = 0. The boundary conditions

on which the controllers are located are

T (x, 0, t)− λ
∂T

∂y
= u1(x, t), x ∈ ∂Ω1

T (0, y, t)− λ
∂T

∂x
= u2(y, t), y ∈ ∂Ω2

(5.80)

where u1 and u2 refer to controls. The boundary conditions regarding

the insulation are

∂T

∂x
(xmax, y, t) = 0

∂T

∂y
(x, ymax, t) = 0

(5.81)

All the physical properties are dimensionless.

5.5.2 Algorithmic settings

The governing equation is discretized with the finite difference

method for the spatial derivative to get the ODE. The domain is dis-
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cretized by 16×16 grids which yields the system dimensions S = 256

and A = 32. The system was simulated with a sample time of 0.005.

The initial policy is

u1(x, t) =

{
u(t), 0 ≤ x ≤ 0.4(
1− (x− 0.2)/1.2

)
u(t), 0.4 ≤ x ≤ 1.6

u2(y, t) =

{
u(t), 0 ≤ x ≤ 0.8(
1− (y − 0.4)/2.4

)
u(t), 0.8 ≤ x ≤ 3.2

u(t) =

{
5t, 0 ≤ t ≤ 0.5

1, 0.5 ≤ t ≤ 2.0

The initial controller is employed until episode 30, after which the

DNNs policy network is implemented until the final episode, 500.

Five-layer DNNs were used for the value and costate networks

and four-layer DNNs were used for policy network. The number of

nodes in the value, costate, and policy networks were (S, 256, 128,

64, 1), (S, 256, 128, 128, S), and (S, 256, 128,A), respectively. ReLU

activation functions were used and the last layer of policy function

was set to be tanh function to constrain the policy value between

[−1, 1]. Learning rates were set to be ηV = 10−3, ηλ = 10−3 and

ηπ = 10−4, respectively.

5.5.3 Control result

With the algorithmic settings, the GDHP algorithm was applied

to the system for 500 episodes. We observe the results in episodes 20,

80, 150 and 500, which are the initial policy, early, middle, and the

last stages of the GDHP learning process, respectively.
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State trajectories of the episodes is illustrated in Fig. 5.3. Each

row stands for the the temporal evolution of the two-dimensional

snapshot within the episode. According to the geometry description

in Fig. 5.2, the north-east part is the target sub-domain Ωc. The result

shows that the sub-domain temperature is controlled to the reference

point of 0.15 as the episode proceeds.
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Figures 5.4 and 5.5 show the surface plot of control trajectories

u1(x, t) and u2(y, t) in episodes 20, 80, 150, and 500, respectively.

The control values of episode 80 and 150 are shown to be not con-

verged, while they are stabilized in episode 500.
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The output function in Eq. (5.78) is expressed in Fig. 5.6 with

the reference point. This figure clearly demonstrates that the control

objective is satisfied with the proposed algorithm. In addition, the

value network in Fig. 5.7 validates that the DNNs successfully ap-

proximates the high-dimensional functions.
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Figure 5.6: Output trajectories in episodes 0, 80, 150, and 500. Circle mark
denotes the reference point.
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Figure 5.7: Value network in episodes 0, 80, 150, and 500.
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Chapter 6

Primal-dual differential dynamic programming
for constrained dynamic optimization of
continuous system

6.1 Introduction

Dynamic optimization (DO) is an important formulation for en-

gineering discipline, where a variety of numerical methods have been

developed [9]. The methods can be classified into direct and indi-

rect method by the static optimization transcription technique [166].

Transcription result of the direct method is a static nonlinear pro-

gramming (NLP), which explicitly considers the system dynamics,

thus can be understood as forward method. On the other hand, the

indirect method yield the boundary value problem (BVP), based on

the Pontryagin’s maximum principle, and the transcription direction

is backward [11].

This study focuses on the differential dynamic programming (DDP)

method, the third class of numerical method which is a hybrid forward-

backward method that considers both the optimality condition ex-

pressed by Hamilton-Jacobi-Bellman (HJB) equation and the system

dynamics [167]. In DDP framework, the long-horizon DO problem is
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decomposed into a single-horizon NLP sub-problem. Therefore, the

algorithmic complexity is just linear with respect to the horizon and

shows a quadratic convergence property [168, 169]. The asymptotic

convergence is equivalent result to that of the Newton optimization

method, nonetheless, they do not necessarily yield the same search

directions in the initial stage [170].

An important extension of the DDP method is the connection

with the recently developed reinforcement learning (RL) methods

[171, 172, 173, 174]. This is because the solution of the HJB equa-

tion is the value function, which can be utilized for the model-based

framework in RL problems.

In the viewpoint of constrained DO, well-established NLP meth-

ods such as barrier method and penalty method can be directly im-

plemented to the sub-problem. The terminal constraint problem was

considered in [175] and the path constrained DDP problem was ad-

dressed in [176] and [177]. The general-purpose DDP framework was

developed by [178] associated with various stability training meth-

ods including trust region method. Aforementioned studies use pro-

jected gradient methods thus limited to the constraint having control

variable as arguments. The generalized class of constraint (i.e., state

variable-only constraint) was solved by [179], [180], and [181] us-

ing the augmented Lagrangian method, however the Lagrangian is

updated in first-order.

In this study, we tackle the constrained DO problem by the primal-

dual value function formalism. The advantages of the proposed method

are twofold: the general constraint can be considered and the second-

order Newton’s method for dual Lagrangian variable can be incorpo-

rated.
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6.2 Primal-dual differential dynamic programming for
constrained dynamic optimization

6.2.1 Augmented Lagrangian method

Among the constraint augmentation method, the augmented La-

grangian (AL) method and the interior-point method are the most

frequently considered recently. For example, interior point optimiza-

tion (IPOPT) provides an excellent framework to compute the central

path, by adopting the backtracking line-filter search method to pre-

vent the ill-condition in computing the barrier function [15]. Another

important class is AL method. In dynamic optimization problem,

trial-and-error based line search method cannot be directly adopted

since the objective for each trial point cannot be evaluated immedi-

ately. This leads to the frequent constraint violation during the itera-

tion, which causes ill-conditioning in computing the log barrier func-

tion at its derivatives. Another advantage of AL method is that the

inequality constraints can be augmented without introducing slack

variable, hence reducing computational complexity [180]. Moreover,

it is known to have better parallel scalability potential and have good

warm-starting capabilities [182]. From this point of view, augmented

Lagrangian method has been mainly considered in DDP framework

[176, 179, 178, 180].

Consider the static optimization problem defined by

min
x

L(x)

s.t. gk(x) ≤ 0, k = 1, . . . , G
(6.1)

The basic form of AL method uses augmented objective as the La-
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grange function plus the quadratic penalty function, i.e., L + λTg +
1
2
c∥g∥22. Here c > 0 denotes the penalty parameter. In the case of in-

equality constraints, the Rockafellar formulation introduces a slack

variable z > 0 to transform to the following optimization problem in

which only equality constraint exists [183].

min
x,z>0

L+ λT (g + z) +
1

2
c∥g + z∥22 (6.2)

Since minimization of z can be explicitly performed, the minimizer

is substituted to yield the following augmentation function:

L̃ = L+
1

2c

G∑
k=1

(
max

[
λk + cgk, 0

]2 − λ2k

)
(6.3)

The solution essentially shifts the kth inequality constraint boundary

from zero to −λk
c

. For the active inequality constraint, the augmen-

tation function equivalent to that of the equality constraint is used,

whereas −λ
2
k

2c
for the inactive inequality constraint [184, 185].

Based on the result in Eq. (6.3), the augmentation function for

the original problem Eqs. (2.31) - (2.34) is written as

L̃(x(t), u(t), λ(t), c(t), t) = L(x(t), u(t), t)

+
1

2c(t)

G∑
k=1

(
max

[
λk(t) + c(t)gk(x, u, t), 0

]2 − λ2k(t)
)

(6.4)

ϕ̃(x(tf ), µ, c(tf ), tf ) = ϕ(x(tf ), tf )

+
1

2c(tf )

H∑
k=1

(
max

[
µk + c(tf )hk(x), 0

]2 − µ2
k

)
(6.5)
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where c(t) > 0 now becomes a time-varying penalty parameter. In

the case of equality constaints, the max operator is omitted. The path

cost augmentation function can be written in the alternative form:

ψk(λk, gk, c) =


0 if gk ≤ −λk

c

λk(t)gk +
1

2
c(t)g2k +

1

2c(t)
λ2k(t) otherwise

(6.6)

whereψ(λ, g, c) =
∑G

k=1 ψk(λk, gk, c) and analogously, terminal aug-

mentation function is ψ(µ, h, c) =
∑H

k=1 ψk(µk, hk, c).

The unconstrained objective provides the approximate optimizer

by regarding the c as a hyperparameter, in which the exact optimizer

is recovered as c → ∞ [186]. The augmentation function is second

order differentiable with respect to x, u, and λ thus can be imple-

mented in DDP algorithm. The augmented Lagrangian method in-

herits the properties of both the Lagrangian method and the penalty

method, and complements the issues of both methods. The pure penalty

method requires the penalty parameter c to be infinity in order to ob-

tain the feasibility, while using of the KKT condition of Lagrangian

method relax the problem. Moreover, the KKT condition has numer-

ical problem when the objective is nonconvex, which can be resolved

by the penalty parameter c, which forces the Hessian of the aug-

mented objective J̃ to be positive definite.
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6.2.2 Primal-dual differential dynamic programming
algorithm

DDP algorithm uses quadratic expansions of the functions around

the previous trajectory
(
x̄(t), ū(t), λ̄(t)

)
. In accordance, the ‘bar’ no-

tation is used for an arbitrary function F (x) being evaluated at the

nominal condition x̄ as F̄ (x̄).

By taking the expansion of the both sides of Eq. (2.36), we can

obtain the relationships of not only the value function V itself, but

also the first and second order derivatives of value function [174].

Using the total derivative rule ∂(·)/∂t = d(·)/dt − ∂(·)/∂x · f̄ for

functions V̄ , V̄x, and V̄xx, following equation is obtained:

∂V (x, t)

∂t
≈ d

dt

(
V̄ + V̄ T

x δx+
1

2
δxT V̄xxδx

)
− V̄ T

x f̄ − δxT V̄xxf̄ − V

(6.7)

V denotes the third order derivative:

V =
1

2

S∑
i=1

δxT V̄ (i)
xxxf̄

(i)δx (6.8)

where V̄ (i)
xxx is the Hessian of the ith element of V̄x and f̄ (i) denotes the

ith element of f̄ . The second order expansion of the right hand side of
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Eq. (2.36) can be done using the expansions of ¯̃L, V̄x, and f as

¯̃L+ V̄ T
x f̄

≈ ¯̃L+


¯̃Lx
¯̃Lu
¯̃Lλ


T 

δx

δu

δλ

+
1

2


δx

δu

δλ


T 

¯̃Lxx
¯̃Lxu

¯̃Lxλ
¯̃Lux

¯̃Luu
¯̃Luλ

¯̃Lλx
¯̃Lλu

¯̃Lλλ



δx

δu

δλ


+ V̄ T

x f̄ + V̄ T
x f̄xδx+ V̄ T

x f̄uδu

+ δxT V̄xxf̄ + δxT V̄xxf̄xδx+ δxT V̄xxf̄uδu+ V (6.9)

Finally, Taylor expansions of both hand sides Eqs. (6.7) - (6.9) are

equated as

d

dt

(
V̄ + V̄ T

x δx+
1

2
δxT V̄xxδx

)

= min
δu

max
δλ

 ¯̃L+


H̄x

H̄u

H̄λ


T 

δx

δu

δλ

+
1

2


δx

δu

δλ


T 

H̄xx H̄xu H̄xλ

H̄ux H̄uu H̄uλ

H̄λx H̄λu H̄λλ



δx

δu

δλ




(6.10)

where the derivatives of Hamiltonian H̄ become the coefficients for
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the Jacobian and the Hessian in the min-max objective.

H̄x =
¯̃Lx + f̄Tx V̄x (6.11)

H̄u =
¯̃Lu + f̄Tu V̄x (6.12)

H̄λ =
¯̃Lλ (6.13)

H̄xx =
¯̃Lxx + V̄xxf̄x + f̄Tx V̄xx +

S∑
i=1

V̄ (i)
x f̄ (i)

xx (6.14)

H̄xu =
¯̃Lxu + V̄xxf̄u +

S∑
i=1

V̄ (i)
x f̄ (i)

xu (6.15)

H̄xλ =
¯̃Lxλ (6.16)

H̄uu =
¯̃Luu +

S∑
i=1

V̄ (i)
x f̄ (i)

uu (6.17)

H̄uλ =
¯̃Luλ (6.18)

H̄λλ =
¯̃Lλλ (6.19)

The right hand side of Eq. (6.10) takes quadratic form, for which

the explicit minimizer δu∗ can be obtained as

[
H̄uu H̄uλ

H̄λu H̄λλ

][
δu∗(t)

δλ∗(t)

]
= −

[
H̄u + H̄uxδx

H̄λ + H̄λxδx

]
(6.20)

The result of the linear equation is the optimizer of the min-max ob-

jective, which is written as

δu∗(t) = lu +Kxuδx, δλ∗(t) = lλ +Kxλδx (6.21)

Finally, the backward ODEs for V̄ and its first and second order
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derivatives are obtained by substituting δu∗ and δλ∗ into Eq. (6.10)

and comparing the coefficients as

−dV̄
dt

= ¯̃L+ lT H̄v +
1

2
lT H̄M l (6.22)

−dV̄x
dt

= H̄x +KT
x H̄v + H̄T

vxl +KT
x H̄M l (6.23)

−dV̄xx
dt

= H̄xx +KT
x H̄vx + H̄T

vxKx +KT
x H̄MKx (6.24)

where

l = [lu; lv], Kx = [Kxu;Kxv] (6.25)

H̄v = [H̄u; H̄λ], H̄vx = [H̄ux; H̄λx], H̄M =

[
H̄uu H̄uλ

H̄λu H̄λλ

]
(6.26)

where ; denotes the vertical concatenation of two vectors. The back-

ward ODEs are subject to the following terminal boundary conditions

V̄ (x, tf ) =
¯̃ϕ∗(x̄(tf ), tf ) (6.27)

V̄x(x, tf ) =
¯̃ϕ∗
x(x̄(tf ), tf ) (6.28)

V̄xx(x, tf ) =
¯̃ϕ∗
xx(x̄(tf ), tf ) (6.29)

where
˜̄ϕ∗(x̄(tf ), tf ) = max

µ

˜̄ϕ(x̄(tf ), µ, tf ) (6.30)
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6.2.3 Overall algorithm

The overall constrained DDP algorithm is consisted with two

stages: backward sweep and forward sweep.

The backward sweep aims to compute the Hamiltonians and the

Lagrangian variable update. The backward ODEs with respect to the

value function V and its derivative (Eqs. (6.22)-(6.26)) are solved

from their terminal boundary conditions Eqs. (6.27)-(6.29). During

solving the ODEs, the Hamiltonian H̄ and its derivatives (Eqs. (6.11)-

(6.19)), and the feedforward feedback gains l and Kx (Eq. (6.25))

are obtained. The second order update of Lagrangian variable is then

computed. In the forward sweep, the control variable is updated. The

backward-forward scheme is repeated until the convergence criteria

is satisfied. The overall scheme is summarized in Algorithm 2.

6.3 Results and discussions

A constrained optimal control problem of Van der Pol oscillator

is demonstrated with the proposed DDP algorithm. The state-space

model and the initial condition of the oscillator can be written as

ẋ1 = x2

ẋ2 = −x1 + x2(1.4− 0.14x22) + 4u

x1(0) = −5, x2(0) = −5 (6.31)
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Algorithm 2 DDP
1: procedure CONSTRAINED DDP

Initialize: Initial guess of control ū and corresponding state trajectory
x̄. Initial guess of Lagrangian λ̄, penalty parameter c0

2: while Not converged do
3: Backward sweep
4: for k = tf to t0 do
5: Compute Hamiltonian H̄ and its derivatives Eqs. (6.11)-

(6.19)
6: Compute feedforward and feedback gains l and Kx by

Eq. (6.25)
7: Solve backward ODEs of V and its derivatives with

Eqs. (6.22)-(6.26)
8: Forward sweep
9: for k = t0 to tf do

10: Perform the forward operation of the system dynamics to
obtain δx

11: Second order updates of control and Lagrangian variables
δu and δλ with Eq. (6.21)

12: Increase penalty parameter c = γc, γ > 1
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The objective is to control the position coordinate x1(t) to zero within

the horizon tf = 4.5

J(u) =

∫ 4.5

0

(x21(t) + u2(t))dt (6.32)

The system is subject to the path constraint

−1 ≤ u(t) +
x1(t)

6
≤ 0, ∀t ∈ [0, 4.5] (6.33)
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After implementing the initial PID controller, proposed DDP al-

gorithm is adopted for 20 episodes. Figure 6.1 shows the state and

control trajectories under the policies computed in episodes 1, 2, 5,

and 20. Compared to the initial PID controller in the first episode,

the final policy yields a better control result. Two path constraints

Eq. (6.33) and corresponding Lagrangian variables are illustrated in

Fig. 6.2. It indicates that the path constraints are satisfied as episodes

proceed, while the infeasibility occurs in the initial controller. In ad-

dition, proposed Lagrangian update rule satisfies the complementary

slackness condition. We selected four monitoring statistics as episode

cost, feasibility index, |Vl|, and |Hu|. As episode proceeds, the episode

cost should decrease and the last three statistics should be converged

within small tolerance values. Figure 6.3 show that the proposed al-

gorithm provides proper convergence criteria.
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Chapter 7

Concluding remarks

Sequential decision making problem is a crucial technology for

plant-wide process optimization. While the dominant numerical method

is the forward-in-time direct optimization, it is limited to the open-

loop solution and has difficulty in considering the uncertainty. Dy-

namic programming method complements the limitations, nonethe-

less associated functional optimization suffers from the curse of di-

mensionality. The sample-based approach for approximating the dy-

namic programming, referred to as reinforcement learning (RL) can

resolve the issue and investigated throughout this thesis. The method

that accounts for the system model explicitly is in particular interest.

The model-based RL is exploited to solve the three representative

sequential decision making problems; scheduling, supervisory opti-

mization, and regulatory control. The problems are formulated with

partially observable Markov decision process, control-affine state space

model, and general state space model, and associated model-based

RL algorithms are point based value iteration (PBVI), globalized dual

heuristic programming (GDHP), and differential dynamic program-

ming (DDP), respectively.

The special features in each problems can be written as follows:

First, for the scheduling problem, we developed the closed-loop feed-
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back scheme which highlights the strength compared to the direct

optimization method. In the second case, the regulatory control prob-

lem is tackled by the function approximation method which relaxes

the functional optimization to the finite dimensional vector space op-

timization. Deep neural networks (DNNs) is utilized as the approxi-

mator, and the advantages as well as the convergence analysis is per-

formed in the thesis. Finally, for the supervisory optimization prob-

lem, we developed the novel constraint RL framework that uses the

primal-dual DDP method. Various illustrative examples are demon-

strated to support the validity of the thesis statement.

7.1 Summary of the contributions

In this thesis, model-based RL algorithm is studied for solv-

ing the three representative sequential decision making problems;

scheduling, supervisory optimization, and regulatory control. Point

based value iteration (PBVI), globalized dual heuristic programming

(GDHP), and differential dynamic programming (DDP) are the par-

ticular algorithms for POMDP, control-affine state space model, and

general state space model.

The first part is about the infrastructure scheduling framework

where maintenance, inspection, and sensor-installation are concerend.

Inspection schedule is formulated by modeling the observation uncer-

tainty of the system. Moreover, the sensor-installation is optimized

by concerning the various costs of inspection methods and the in-

stallation cost. The complex heterogeneous schedule is successfully

obtained by exploiting the feature of POMDP which is an effective

framework for the discrete stochastic sequential decision process. Al-
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though the infinite horizon POMDP yields the belief-action mapping

via alphavectors, it still depends on the root node of the policy tree.

The fixed root node causes an inaccuracy to the value function ap-

proximation since PBVI algorithm relies on the heuristic belief col-

lection. The receding horizon scheme is suggested to alleviate the de-

pendency problem, based on the infinite horizon result and the offline

and online methods for collecting the observation.

In the second part, the GDHP algorithm is formulated for the

FHOC problem. To ensure good representation of the involved func-

tions in high dimensional state space systems, we adopted DNNs.

Various tricks to ensure stable learning, e.g., the replay buffer, the

target network, pre-training, and higher-order discretization methods

were utilized. The use of DNNs were shown to give improved robust-

ness with respect to various stochastic uncertainties, such as those

in the initial state and state transitions, especially in the context of

a high dimensional dissipative PDE system. We also performed the

convergence analysis of the GDHP algorithm with DNNs, by tak-

ing the three steps. First, the condition for which the costate itera-

tion operator to be contraction was derived. Second, the moving tar-

get regression problem was considered by the three-steps decompo-

sition. Finally, the UUB of DNNs weights and closed-loop stability

were proven. Temperature control example shows that the proposed

method enables us to obtain the optimal policy for the system with

state dimension 256.

The last part of the thesis concerns the constrained dynamic op-

timization problem with primal-dual DDP framework. The game-

theoretic saddle point problem is exploited to formulate the min-max

operation for the primal-dual DDP. Based on the DDP formulation,
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the primal-dual augmented Lagrangian method is combined as a cost

augmentation method. In addition, the trust region method and mo-

mentum based line search methods are utilized to enhance the effi-

ciency of the Newton step.

7.2 Future works

The three problems are restricted to the simplified settings such

as considering a single hierarchy, deterministic case, perfect model,

compact domain optimization, etc. In fact, the real world problems

have all kinds of difficulties in a single case. For instance, the plant-

wide optimization should involve the multiple hierarchies of time and

spatial scales, uncertainties from noise and imperfect model knowl-

edge, decision variables in hybrid discrete and continuous domains.

Hence, the future research direction should focus on the complex for-

mulation, the integrated hierarchies, and also exploring the connec-

tion with other fields of computational sciences, which is also ad-

dressed in numerous review papers [5, 8, 16, 31, 57, 187].

The first possible extension is to the stochastic formulation, which

is related to the theories of stochastic differential equation, stochas-

tic filtering, and the stochastic optimal control [188]. Although basic

numerical experiments about the robustness on using DNNs in the

presence of the uncertainties of the initial state and state transition

are performed in Chapter 4, we should implement the stochastic the-

ories as it has been done in the model predictive control [23, 189]

and optimal control [64, 65, 172, 190, 191]. It is based on the solu-

tion methods for stochastic version of HJB or the approximation of

the probability distribution such as Gaussian or the polynomial chaos
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expansion. Equipped with this theory, then the conventional control-

loop structure that includes state estimation and/or on-line identifica-

tion can be coupled with the approach.

The second direction is related to the variations in the system

dynamics. Current implementations only consider the ODE or the

discretized PDE for the system model with the decision variables

contained in the compact set or finite set. However, many PSE prob-

lems are modelled as a differential algebraic equation (DAE) with

the million dimension of mixed integer decision variables [12], and

the direct optimization methods are successfully utilized for solv-

ing general problem settings [8, 16]. In order to develop DP based

method as one of the candidate algorithm for generic optimization

problem compared to other commercial softwares, it should be tested

onto the same problem classes. Some possible modifications for ac-

celerating the performance are from the ideas of direct optimization

and DRL methods. The examples that enhance the direct optimiza-

tion solver are the multiple shooting method and the line search fil-

ter method. Methodologies in DRL facilitates the efficient machine

learning algorithms as well as well-designed DNNs structures suit-

able for the large-scale problems. Moreover, the new optimality con-

ditions of DAE and mixed-integer programming for DP based solver

should be explored [192].

The integration of the PSE hierarchies should be considered as

a future research topic. Integrations of planning, scheduling, super-

visory optimization, and regulatory control is an active research area

[5, 193, 194]. While the integration requires the closed-loop solu-

tion to respond to the feedback signals from either higher or lower

layers, the DP based solver can potentially advantageous to this sit-
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uation. We suggest the hierarchical DP formulation that contains the

different time-scales within a single problem, where the numerical

ill-conditioning issue risen from the long-horizon can be tackled with

the similar method that have been taken in multiple-shooting DP al-

gorithm.

In the viewpoint of RL fields, as explained in Chapter 1, there

are two classes of algorithms which are model-based and model-free.

Since either of the methods have disadvantages when used alone due

to the model-plant mismatch and the data inefficiency, recent RL re-

searches try to find the combination between the two methods. Some

results learn model and policy simultaneously [195, 196], control the

rolling horizon by evaluating the value function accuracy obtained

from model with plant data [197, 198], or find the explicit method to

compensate the model-plant mismatch to the estimated value function

[199]. These researches can be jointly implemented with the offset-

free tracking method in MPC, so that the mismatch could be reduced

and to take the advantages of both model-based and model-free RL

algorithms.
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초록

순차적 의사결정 문제는 공정 최적화의 핵심 분야 중 하나이

다.이문제의수치적해법중가장많이사용되는것은순방향으로

작동하는 직접법 (direct optimization) 방법이지만, 몇가지 한계점

을 지니고 있다. 최적해는 open-loop의 형태를 지니고 있으며, 불

확정성이존재할때방법론의수치적복잡도가증가한다는것이다.

동적 계획법 (dynamic programming) 은 이러한 한계점을 근원적

으로 해결할 수 있지만, 그동안 공정 최적화에 적극적으로 고려

되지 않았던 이유는 동적 계획법의 결과로 얻어진 편미분 방정식

문제가 유한차원 벡터공간이 아닌 무한차원의 함수공간에서 다루

어지기 때문이다. 소위 차원의 저주라고 불리는 이 문제를 해결하

기 위한 한가지 방법으로서, 샘플을 이용한 근사적 해법에 초점을

둔 강화학습 방법론이 연구되어 왔다. 본 학위논문에서는 강화학

습 방법론 중, 공정 최적화에 적합한 모델 기반 강화학습에 대해

연구하고, 이를 공정 최적화의 대표적인 세가지 순차적 의사결정

문제인 스케줄링, 상위단계 최적화, 하위단계 제어에 적용하는 것

을 목표로 한다. 이 문제들은 각각 부분관측 마르코프 결정 과정

(partially observable Markov decision process), 제어-아핀 상태공

간 모델 (control-affine state space model), 일반적 상태공간 모델

(general state space model)로모델링된다.또한각수치적모델들을

해결하기 위해 point based value iteration (PBVI), globalized dual

heuristic programming (GDHP), and differential dynamic program-

ming (DDP)로불리는방법들을도입하였다.

이세가지문제와방법론에서제시된특징들을다음과같이요

약할 수 있다: 첫번째로, 스케줄링 문제에서 closed-loop 피드백 형

태의해를제시할수있었다.이는기존직접법에서얻을수없었던
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형태로서, 강화학습의 강점을 부각할 수 있는 측면이라 생각할 수

있다. 두번째로 고려한 하위단계 제어 문제에서, 동적 계획법의 무

한차원 함수공간 최적화 문제를 함수 근사 방법을 통해 유한차원

벡터공간 최적화 문제로 완화할 수 있는 방법을 도입하였다. 특히,

심층신경망을이용하여함수근사를하였고,이때발생하는여러가

지장점과수렴해석결과를본학위논문에실었다.마지막문제는

상위 단계 동적 최적화 문제이다. 동적 최적화 문제에서 발생하는

제약 조건하에서 강화학습을 수행하기 위해, 원-쌍대 미분동적 계

획법 (primal-dual DDP)방법론을새로제안하였다.앞서설명한세

가지 문제에 적용된 방법론을 검증하고, 동적 계획법이 직접법에

비견될수있는방법론이라는주장을실증하기위해여러가지공정

예제를실었다.

주요어 : 강화학습,최적제어,동적최적화,스케줄링,딥러닝,부

분관측마르코프의사결정,미분동적계획법

학번 : 2014-21532
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