
A Feasibility Study of Elementary
Reinforcement Learning-Based

Process Control
by

Edward Hendrik Bras

Thesis presented in partial fulfilment

of the requirements for the Degree

of

MASTER OF ENGINEERING

(CHEMICAL ENGINEERING)

in the Faculty of Engineering

at Stellenbosch University

Supervisor

Prof. T.M. Louw
Process Engineering

Stellenbosch University

Co-Supervisor(s)

Prof. S.M. Bradshaw
Process Engineering

Stellenbosch University

April 2022

ii

DECLARATION

By submitting this thesis electronically, I declare that the entirety of the work contained therein is

my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise

stated), that reproduction and publication thereof by Stellenbosch University will not infringe any

third party rights and that I have not previously in its entirety or in part submitted it for obtaining

any qualification.

Date: April 2022

Copyright © 2022 Stellenbosch University

All rights reserved

Stellenbosch University https://scholar.sun.ac.za

iii

Plagiaatverklaring / Plagiarism Declaration

1. Plagiaat is die oorneem en gebruik van die idees, materiaal en ander intellektuele eiendom van ander

persone asof dit jou eie werk is.

Plagiarism is using ideas, material and other intellectual property of another’s work and presenting

it as my own.

2. Ek erken dat die pleeg van plagiaat 'n strafbare oortreding is aangesien dit ‘n vorm van diefstal is.

I agree that plagiarism is a punishable offence because it constitutes theft.

3. Ek verstaan ook dat direkte vertalings plagiaat is.

I also understand that direct translations are plagiarism.

4. Dienooreenkomstig is alle aanhalings en bydraes vanuit enige bron (ingesluit die internet) volledig

verwys (erken). Ek erken dat die woordelikse aanhaal van teks sonder aanhalingstekens (selfs al

word die bron volledig erken) plagiaat is.

Accordingly, all quotations and contributions from any source whatsoever (including the internet)

have been cited fully. I understand that the reproduction of text without quotation marks (even when

the source is cited) is plagiarism.

5. Ek verklaar dat die werk in hierdie skryfstuk vervat, behalwe waar anders aangedui, my eie

oorspronklike werk is en dat ek dit nie vantevore in die geheel, of gedeeltelik, ingehandig het om

enige kwaifikasie te verwerf nie.

I declare that the work contained in this thesis/dissertation, except where otherwise stated, is my

original work, and that I have not previously in its entirety, or in part, submitted this

thesis/dissertation to obtain any qualification.

April 2022

Stellenbosch University https://scholar.sun.ac.za

iv

ABSTRACT

The classical control paradigm is widely used in industry, has well-understood theoretical guarantees, and

forms part of the foundational knowledge of chemical engineers. Challenging non-linear dynamics prevent

its successful application in certain cases, while classical controllers cannot automatically accommodate

changing closed-loop dynamics. Advances in computational capabilities have led to a significant research

interest in the application of Reinforcement Learning (RL) to control processes. In RL, a computational

agent interacts with an environment to maximise the cumulative scalar rewards received. It may be viewed

as an alternative paradigm for control, as is done in this thesis, or as an approach to potentially enhancing

the performance of classical controllers.

This simulation-based study’s purpose is to investigate the feasibility of elementary RL techniques to

automatically determine the final element adjustments in a single-loop RL-based control scheme. It places

into context what the strengths and limitations are of using elementary RL to control processes and

highlights nuances of RL-based control without trying to outperform classical control.

The control of a self-regulatory water tank model and the Van de Vusse reaction scheme model (used for

benchmarking and requires advanced control solutions) were studied by applying two algorithms – Q-

learning and SARSA – in a control scheme synthesized purely for theoretical study. Subsequently, these

algorithms and the One-Step Actor-Critic algorithm were applied to the control of particle size in a

qualitatively accurate grinding circuit model. All simulations leveraged the simplest possible RL design

to allow interpretable and clear accounts of how these systems behave.

The results show that the use of elementary RL techniques to obtain interpretable RL-based controllers for

simulation-based study worked well for the water tank and Van de Vusse reaction scheme models. This

was not the case for the grinding circuit case study. Replacing the classical control paradigm is not likely

using elementary RL. Significant safety concerns arise since large amounts of operational data may be

required and insufficient training in certain regions of the state-action space leads to unpredictable control

behaviour. The strengths and weaknesses of the algorithms studied were investigated. It is unlikely that a

reduction of control loop specific tuning parameters in comparison to classical control will be realised in

practical control problems by applying RL-based control. Where applicable, classical control

outperformed the elementary RL-based controllers which stresses that algorithmic adjustments are

required, as is recognised in state-of-the-art RL-based control approaches.

To conclude, the most practically feasible RL-based control solutions are likely to lie in the enhancement

of existing control solutions by incorporating RL principles. The studied elementary RL-based control

methods are not feasible for practical robust control. The control engineer must not be removed completely

from the loop, and existing domain knowledge must be reconciled with computational thinking instead.

Stellenbosch University https://scholar.sun.ac.za

v

OPSOMMING

Die klassieke beheerparadigma word algemeen gebruik in industrie, het welbegrepe teoretiese waarborge,

en vorm deel van die fundamentele kennis van chemiese ingenieurswese. Uitdagende nie-liniêre dinamika

voorkom sy suksesvolle toepassing in sekere gevalle, terwyl klassieke beheerders nie outomaties

veranderende geslote-lus dinamika kan akkommodeer nie. Vooruitgang in rekenvermoë het gelei tot ’n

beduidende navorsingbelangstelling in die toepassing van versterkingsleer (RL) om prosesse te beheer. In

RL reageer ŉ rekenagent met ’n omgewing om die kumulatiewe skalaarbelongings ontvang, te maksimeer.

Dit mag gesien word as ’n alternatiewe paradigma vir beheer, soos dit gedoen word in hierdie tesis, of as

’n benadering om die doeltreffendheid van klassieke beheerders potensieel te vergroot.

Hierdie simulasiegebaseerde studie se doel is om die uitvoerbaarheid van elementêre RL-tegnieke te

ondersoek om outomaties die finale elementwysigings in ’n enkellus RL-gebaseerde beheerskema te

bepaal. Dit plaas wat die sterkpunte en beperkinge is van die gebruik van elementêre RL om prosesse te

beheer, in konteks, beklemtoon nuanse van RL-gebaseerde beheer sonder om die klassieke beheer te

probeer oortref.

Die beheer van ’n self-regulerende watertenkmodel en die Van de Vusse-reaksieskemamodel (gebruik vir

normstelling en vereis gevorderde beheeroplossings) is bestudeer deur twee algoritmes toe te pas – Q-leer

en SARSA – in ’n beheerskema gesintetiseer uitsluitlik vir teoretiese studie. Vervolgens, is hierdie

algoritmes en die “One-Step Actor-Critic”-algoritme toegepas op die beheer van partikelgrootte in ’n

kwalitatiewe akkurate slypkringmodel. Alle simulasies het die eenvoudigste moontlike RL-ontwerp

gebruik om interpreteerbare en duidelike rekenskap te gee van hoe hierdie sisteme hul gedra.

Die resultate het getoon dat die gebruik van elementêre RL-tegnieke om interpreteerbare RL-gebaseerde

beheerders te verkry vir simulasiegebaseerde studie goed gewerk het vir die watertenk- en Van der Vusse-

reaksieskemamodelle. Dit was nie die geval vir die slypkringgevallestudie nie. Om die klassieke

beheerparadigma te vervang deur elementêre RL te gebruik, is nie waarskynlik nie. Beduidende

veiligheidskommer kom voor aangesien groot hoeveelhede bedryfsdata vereis mag word en onvoldoende

opleiding in sekere streke van die staataksiespasie na onvoorspelbare beheergedrag lei. Die sterkpunte en

swakpunte van die algoritmes bestudeer is ondersoek. Dit is onwaarskynlik dat ’n reduksie van beheerlus

spesifieke instemmingparameters, in vergelyking met klassieke beheer, gerealiseer sal word in praktiese

beheerprobleme deur RL-gebaseerde beheer toe te pas. Waar toepaslik, het die klassieke beheer die

elementêre RL-gebaseerde beheerders oortref, wat beklemtoon dat die algoritmiese wysigings vereis word,

soos dit erken word in hipermoderne RL-gebaseerde beheerbenaderings.

Ter slotte, die mees praktiese uitvoerbare RL-gebaseerde beheeroplossings lê waarskynlik in die vergroting

van bestaande beheeroplossings deur RL-beginsels te inkorporeer. Die bestudeerde RL-gebaseerde

beheermetodes is nie uitvoerbaar vir praktiese robuste beheer nie. Die beheeringenieur moet nie heeltemal

verwyder word uit die lus nie, en bestaande domeinkennis moet eerder met rekendenke versoen word.

Stellenbosch University https://scholar.sun.ac.za

vi

ACKNOWLEDGEMENTS

The author would like to express his great appreciation to this project’s contributors:

- My supervisors, Prof. Tobi Louw and Prof. Steven Bradshaw, for your guidance, advice, support,

patience, constructive criticism, facilitation of my development as a postgraduate student, and

believing in me throughout.

- Stellenbosch University’s Department of Process Engineering and the Ernst and Ethel Eriksen

Trust for financial assistance.

- Prof. Chris Aldrich for shedding further light on practical points regarding reinforcement learning

for process control and the importance of relating results to a well-understood reference for

context.

- Dr JP Barnard and Mr Gerhard van Wageningen for their assistance with the use of Stellenbosch

University’s high performance computing resources.

- My parents, Zelna and Johan, for their unwavering support and accommodation during all my

endeavours. Also, for putting up with my reinforcement learning monologues during lockdown.

- My family for their support and motivation.

- My friends, Jason Pantony, Daneel Basson, Tristan Arendse, and Fabian Ferreira for providing

support and combatting Covid-19 isolation throughout the pandemic.

- All academic contributors to the reinforcement learning field who have allowed me to appreciate,

to an unprecedented extent, the wonders of mathematical modelling and computational thinking.

- Our Border Collie Dalmation mix, Benjamin, for reminding me that not all behaviours can be

approximated computationally.

Stellenbosch University https://scholar.sun.ac.za

vii

Contents
CHAPTER 1 INTRODUCTION .. 1

1.1 THE REINFORCEMENT LEARNING–BASED PROCESS CONTROL PROBLEM ... 2

1.2 OUTCOMES OF THIS WORK ... 3

1.3 SCOPE ... 4

1.4 THESIS CONTRIBUTIONS ... 5

1.5 THESIS OUTLINE ... 5

CHAPTER 2 THEORETICAL FRAMEWORK .. 7

2.1 OVERVIEW OF THE RL-BASED CONTROL PROCESS ... 7

2.2 PRELIMINARY RL TERMINOLOGY .. 8

2.3 FORMULISING AN RL AGENT’S OBJECTIVE.. 9

2.4 THE BELLMAN EQUATION WRITTEN FOR THE OPTIMAL VALUE FUNCTIONS 10

2.5 REPRESENTING FUTURE REWARDS .. 12

2.6 THE POLICY IMPROVEMENT THEOREM .. 13

2.7 POLICY ITERATION, VALUE ITERATION, AND GENERALIZED POLICY ITERATION 14

2.8 VALUE-BASED RL CONTROL ALGORITHMS... 15

2.8.1 SARSA ... 15

2.8.2 Q-learning and Off-Policy Convergence ... 18

2.8.3 Graphical Overview of the SARSA Agent .. 19

2.9 POLICY GRADIENT AND ACTOR-CRITIC RL CONTROL .. 20

2.9.1 Problem Context .. 20

2.9.2 Stochastic Gradient Ascent and the Policy Gradient Theorem .. 20

2.9.3 The Eligibility Vector .. 22

2.9.4 The Baseline Function ... 22

2.9.5 The One-Step Actor-Critic Algorithm ... 23

2.9.6 Function Approximation and Generalization ... 26

2.9.7 Dimensionality of the Action Space .. 28

2.9.8 Graphical Overview of the One-Step Actor-Critic Agent .. 29

2.10 PRACTICALITIES OF APPROXIMATING A STOCHASTIC OPTIMAL POLICY ... 30

2.11 UNDERSTANDING AN OPTIMAL POLICY IN RL-BASED PROCESS CONTROL 31

2.12 MODEL-BASED RL CONTROL ... 31

2.13 ACCOUNTING FOR THE BIAS-VARIANCE TRADE-OFF .. 31

2.14 CHALLENGES POSED BY STATIONARY RL ENVIRONMENTS .. 33

2.14.1 The MDP Assumption ... 33

Stellenbosch University https://scholar.sun.ac.za

viii

2.14.2 Reward Function Design and Assignment of Rewards.. 33

2.14.3 The Dimensionality of the State-Action Space .. 33

2.14.4 RL Environment Stochasticity and Its Dependence on Industry ... 34

2.15 CHAPTER SUMMARY .. 34

CHAPTER 3 LITERATURE REVIEW .. 35

3.1 PARALLELS BETWEEN RL-BASED CONTROL AND CLASSICAL PROCESS CONTROL 35

3.2 MODEL-FREE, VALUE-BASED APPLICATIONS .. 37

3.2.1 Elementary Application ... 37

3.2.2 State-of-the-Art .. 41

3.3 MODEL-FREE POLICY GRADIENT AND ACTOR-CRITIC APPLICATIONS .. 43

3.4 MODEL-FREE, BAYESIAN RL ... 44

3.5 THE IMPORTANCE OF REAL-WORLD DATA .. 45

3.6 OVERVIEW OF LITERATURE INCLUDED IN THE REVIEW... 47

3.7 PLACING RL-BASED PROCESS CONTROL IN CONTEXT .. 49

3.8 SUMMARY ... 49

CHAPTER 4 CASE STUDIES ... 51

4.1 CASE STUDY 1: SELF-REGULATORY WATER TANK ... 51

4.1.1 System Description and Model Summary ... 51

4.1.2 System Inputs ... 53

4.1.3 Classical Controller for the System ... 54

4.2 CASE STUDY 2: VAN DE VUSSE REACTION SCHEME .. 54

4.2.1 System Description and Model Summary ... 54

4.2.2 System Inputs ... 58

4.2.3 Classical Controller for the System ... 59

4.3 CASE STUDY 3: GRINDING CIRCUIT ... 59

4.3.1 System Description and Model Summary ... 59

4.3.2 System Inputs ... 69

4.3.3 Control Problem Development and Classical Controllers for the System 69

4.4 NUMERICAL IMPLEMENTATION .. 74

CHAPTER 5 RL METHODOLOGY .. 75

5.1 THE CONTROL SCHEME USED FOR STUDY ... 75

5.2 EXPLORATION SCHEDULE AND ALLOCATION OF TRAINING SCHEMES, SERIAL AND PARALLEL

COMPUTATION .. 77

Stellenbosch University https://scholar.sun.ac.za

ix

5.3 SARSA AGENT ... 78

5.3.1 Value-Based Control Mechanics and Tuning Simplification – Case Study 1 (Water Tank

Model) .. 78

5.3.2 RL Benchmarking Simulations .. 79

5.3.3 Investigating State-Action Space Discretization .. 81

5.3.4 Value-Based Hyperparameter Characterization ... 83

5.3.5 Tabular SARSA Applied to the PSE-MFS Control Loop (Grinding Circuit Model) 83

5.4 Q-LEARNING AGENT .. 85

5.5 ONE-STEP ACTOR-CRITIC AGENT (GRINDING CIRCUIT MODEL) ... 86

5.6 NUMERICAL IMPLEMENTATION .. 88

5.7 FEASIBILITY CRITERIA USED TO EVALUATE ELEMENTARY RL-BASED PROCESS CONTROL 89

CHAPTER 6 RESULTS AND DISCUSSION ... 91

6.1 GENERAL CONSIDERATIONS ... 91

6.2 CASE STUDY 1 – SELF-REGULATORY WATER TANK ... 91

6.2.1 The Mechanics of Value-Based Process Control and Tuning Simplification 91

6.2.2 Q-Learning ... 98

6.3 CASE STUDY 2 – VAN DE VUSSE REACTION SCHEME .. 102

6.3.1 Benchmarking Simulations Using SARSA .. 102

6.3.2 Investigating the Influence of Finer Discretization of the State-Action Space 106

6.3.3 RL Hyperparameter Properties for SARSA ... 108

6.4 CASE STUDY 3 – GRINDING CIRCUIT .. 109

6.4.1 Placing the Results in Context ... 109

6.4.2 PID Controller MFS Adjustments.. 109

6.4.3 Process Operating Window .. 111

6.4.4 Application of SARSA-Based Controller to the PSE-MFS Control Loop 111

6.4.5 Application of Q-learning to the PSE-MFS Control Loop .. 116

6.4.6 Application of Actor-Critic-Based Controller to the PSE-MFS Control Loop 118

6.5 PLACING OPERATIONAL/PLANT HOURS IN PERSPECTIVE .. 120

6.6 COMPARISON OF STUDIED RL AGENTS .. 123

6.7 SELECTION OF FILTER TIME CONSTANT FOR CASE STUDY 3 (THE GRINDING CIRCUIT MODEL) 124

CHAPTER 7 CONCLUSIONS AND RECOMMENDATIONS ... 127

7.1 ANSWERING THE KEY QUESTIONS ... 127

Stellenbosch University https://scholar.sun.ac.za

x

7.2 ADDRESSING THE AIM OF THE PROJECT ... 129

7.2.1 Memory Usage and Time for Code Execution .. 129

7.2.2 Control Performance .. 133

7.2.3 Ease of RL Agent Tuning .. 134

7.2.4 Safety of Exploration ... 134

7.2.5 Whether Controller Operation is Interpretable to a Human ... 135

7.2.6 Process Modelling Requirement .. 135

7.2.7 Conclusion Regarding Feasibility .. 135

7.3 ADDRESSING THE OBJECTIVES ... 135

7.4 CONTRIBUTIONS TO THE FIELD .. 136

7.5 CODE USED FOR THE FEASIBILITY STUDY ... 136

7.6 PRACTICAL LIMITATIONS OF THE RL METHODOLOGY .. 136

7.7 RECOMMENDATIONS .. 137

7.7.1 Quantification of Action-Value Function Coverage in Tabular RL Methods 137

7.7.2 Investigating the Influence of Including Historical Information in the Observed State 138

7.7.3 Elementary RL Agent Learning Behaviours for Simulated MIMO Control 138

7.7.4 Development of a ‘Mixture RL’ Controller for Process Control Systems 139

LITERATURE CITED .. 140

APPENDIX A – WORKED EXAMPLE: LEVEL CONTROL OF A SELF-REGULATORY

MIXING TANK .. 144

APPENDIX B – ANALYTICAL EXPRESSION FOR THE ELIGIBILITY VECTOR 162

APPENDIX C – SHOUKAT CHOUDHURY ET AL. (2005) STICTION MODEL 164

APPENDIX D – LEARNING CURVE CONSTRUCTION FROM EPISODE INSTANCES 167

APPENDIX E – FACTOR SCREENING EXPERIMENTAL DESIGN RAW DATA PROCESSING

FOR HYPERVOLUME CHARACTERIZATION ... 169

APPENDIX F – NUMBERS OF PARAMETERS FOR SECTION 6.5 .. 173

Stellenbosch University https://scholar.sun.ac.za

xi

Nomenclature

Greek Symbols

𝛼 step size hyperparameter

𝜀 the probability of taking a random action

𝜂(𝑺′)
the average number of time steps spent in the next

observed state, 𝑺′, per episode

𝛾 discount factor

𝝓(𝑺), 𝝓(𝑺, 𝑨)
basis function vector that takes the currently

observed state 𝑺 as input (left), or the currently

observed state 𝑺 and action 𝑨 as inputs (right)

𝜇(𝑺)
the fraction of time spent in each available

observed state comprising the state space’s

approximation, 𝑺 ∈ 𝒮

𝜇 sampling mean (normal distribution)

∇ a gradient with respect to a parameter vector

𝜋 a policy (maps the observed state to an action)

𝜌 liquid density

𝜎 standard deviation of a distribution

𝜽 parameter vector for the actor

𝜏 time constant

𝜐 rock fraction in the ore (grinding circuit model)

Stellenbosch University https://scholar.sun.ac.za

xii

 Other Symbols

𝑨 agent action (more than one component)

𝒜 action space

𝐴𝑅 , 𝐴𝑡𝑎𝑛𝑘
surface area of reactor (left), or cross-sectional

area of the tank (right)

𝑏(𝑺) baseline function

𝐶 concentration

ℭ
a constant used to decay the probability of

selecting a random action

𝐶𝑝 liquid heat capacity

𝑐𝑣 valve discharge coefficient

𝐸(𝑡) error signal of control system at current time 𝑡

𝐹𝑖𝑛 inlet volumetric flow rate (water tank model)

𝐺 discounted return

𝑔 gravitational acceleration

𝐺𝑑(𝑠)
disturbance transfer function in the Laplace

domain

𝐺𝑝(𝑠) process transfer function in the Laplace domain

𝐻 height of liquid in the tank (water tank model)

∆𝐻
reaction enthalpy change (Van de Vusse reaction

scheme model)

ℎ(𝑺, 𝑨, 𝜽) preference function

J parameter for slip jump

𝐽(𝜽)
scalar performance objective for policy gradient

and actor-critic control algorithms

𝓀

lumped parameter proportional to the product of

fraction valve opening and valve discharge

coefficient

𝐾𝑐 controller gain

𝑘1, 𝑘2, 𝑘3 specific reaction rates for reactions 1, 2, and 3

𝐾𝑃𝐺 the average length of an episode

𝑀𝑇
arithmetic mean of the Bellman targets observed

at the current state-action coordinate (𝑺, 𝑨)

𝑚𝐶 coolant mass

𝑚̇ mass flow rate

𝑛(𝒮), 𝑛(𝒜)
cardinality of the state space (left), or cardinality

of the action space (right)

𝓃
indicates Bellman target comprising more than

two successive time steps’ data

Stellenbosch University https://scholar.sun.ac.za

xiii

𝒪(𝑁)
scaling complexity of code when evaluating 𝑁

parameters

𝑃𝑚𝑖𝑙𝑙 mill power draw

𝑄𝜋(𝑺, 𝑨) action-value function for policy 𝜋

𝑅 scalar reward obtained by the agent

S parameter for deadband plus stickband

𝑺 observed state

𝒮 state space

𝑇 discrete time step in a Markov Decision Process

𝓉

Bellman target for the action-value function,

where the target is written using two successive

discrete time steps

𝒯
outlet temperature of the process stream (Van de

Vusse reaction scheme model)

∆𝑇 sampling period

𝒯𝐶
outlet temperature of coolant (Van de Vusse

reaction scheme model)

𝑢(𝑡)
control signal generated by a control law written

for analogue control

𝑈
heat transfer coefficient between reactor and

coolant (Van de Vusse reaction scheme model)

𝑉 volumetric flow rate (grinding circuit model)

𝑉̇
volumetric flow rate (Van de Vusse reaction

scheme model)

𝑉𝜋(𝑺) state-value function for policy 𝜋

𝑉𝑅
reactor volume (Van de Vusse reaction scheme

model)

𝑣𝑚𝑖𝑙𝑙 volume of the mill (grinding circuit model)

𝒘 critic parameter vector

𝑥 fraction valve opening

𝑿(𝑺,𝑨) basis function vector for the actor

𝒳𝑖(𝑺, 𝑨) an individual element of 𝑿(𝑺, 𝑨)

Stellenbosch University https://scholar.sun.ac.za

xiv

Acronyms

A2C Advantage Actor-Critic

BC steel ball consumption

CFF cyclone feed flow

CSTH Continuously Strirred Tank Heater

𝐶𝑉 controlled variable

DDPG Deep Deterministic Policy Gradient

DP Dynamic Programming

DQN Deep Q-Network

DS-d Direct Synthesis for Disturbances

𝐷𝑉 disturbance variable

FOPTD First-Order-Plus-Time-Delay

FP fines production

GP Gaussian Process

GPI Generalised Policy Iteration

GPPSTD
Gaussian Process Posterior Sampling Temporal

Difference

GPTD Gaussian Process Temporal Difference

HVAC Heating, Ventilation, and Air Conditioning

IAE integral of the absolute error

IMC Internal Model Controller

ITAE integral of time multiplied with the absolute error

MDP Markov Decision Process

MFB mill feed balls

MFLC Model-Free Learning Control

MFS mill feed solids

MFW mill feed water

MIMO multiple-input, multiple-output

MSE Mean Squared Error

𝑀𝑉 manipulated variable

MW molecular weight

NFQCA Neural Fitted Q-Iteration with Continuous Actions

pdf probability density function

PI Proportional-Integral

PID Proportional-Integral-Derivative

PILCO probabilistic inference for learning control

Stellenbosch University https://scholar.sun.ac.za

xv

pmf probability mass function

PSE particle size estimate

RBF Radial Basis Function

RC rock consumption

RL Reinforcement Learning

SAG semi-autogenous grinding

SANE Symbiotic, Adaptive Neuro-Evolution

SARSA State-Action-Reward-State-Action

SFW sump feed water

SISO single-input, single-output

𝑆𝑃 set point

𝑆𝑉𝑂𝐿 sump volume

TD temporal difference

𝑇𝐷(0)
an algorithm that applies the principles of the

SARSA algorithm to approximate the state-value

function

TV total MV variation (final element)

VSD variable speed drive

Stellenbosch University https://scholar.sun.ac.za

1

CHAPTER 1

INTRODUCTION

The formulation of control laws for industrial servo (tracking of set point) and regulator (disturbance

attenuation) problems is often based on the well-established classical framework. This foundation for

control design has led to a stark contrast between control algorithms that are considered to be

predominantly theoretical and those that are implemented by industrial practitioners. This is illustrated

well by the ubiquity of the Proportional-Integral-Derivative (PID) and the Proportional-Integral (PI)

control algorithms in industrial applications despite more advanced controllers developed in the academic

literature. Model Predictive Control (MPC) is also widely implemented.

The identification of control objectives and available process handles, mapping of process variables to the

Laplace domain (analytically or empirically), and subsequent control law tuning and implementation are

steps that are often used when designing and deploying feedback controllers. These design steps have been

covered extensively by Marlin (2000) and Skogestad and Poslethwaite (2005). Generally applicable

controller design specifications that may be extracted from classical control theory have been summarized

by Hafner and Riedmiller (2011). These are the necessity of nonlinear control laws, control law precision,

coping with the effects of external variables, regulating long-term process dynamics, satisfactory servo

problem behaviour, and robustness to model uncertainty or time-varying dynamics.

In chemical engineering, dynamic models of processes are useful tools when evaluating the theoretical and

practical feasibilities of proposed control solutions. These dynamic process models combine fundamental

laws of nature with assumptions that may be justified from an engineering perspective to approximate the

time-dependent cause-effect relationships between the inputs and outputs of a chemical process.

Mathematically, these are often developed using a combination of differential and algebraic equations

and/or empirical modelling with time as the independent variable (McAvoy et al., 1972; Marlin, 2000;

Le Roux et al., 2013; Felder et al., 2017).

Adaptive control is attractive to deal with issues arising from phenomena such as altered closed loop

dynamics with root causes which may be challenging to find (Olsson and Åström, 2001; Shoukat

Choudhury et al., 2005; Wakefield et al., 2018), difficulty in tuning many control loops (Marlin, 2000;

Skogestad and Poslethwaite, 2005; Shipman and Coetzee, 2019), and challenging dynamics such as non-

linearity (Wright and Kravaris, 2001; Hermansson and Syafiie, 2015) and inverse response (Marlin, 2000),

within a unified framework.

This thesis uses the above framework as a starting point to conduct a simulation-based feasibility study of

elementary, Reinforcement Learning – based control. The model-free Reinforcement Learning solution

methodology was followed systematically to identify potential issues and nuances in the application of

Reinforcement Learning to process control problems.

Stellenbosch University https://scholar.sun.ac.za

2

1.1 The Reinforcement Learning–Based Process Control Problem

Reinforcement Learning (RL) is a technique whereby a computational agent interacts with its environment

(the RL environment) to maximize the expected value of a discounted return. This interaction process is

known as training the RL agent. The agent is a probabilistic model for sequential decision making and is

most often realised through the design, and updates to the parameters of, its RL representation. This

representation can be anything from a discretized table to a deep neural network (Sutton and Barto, 2018).

Mathematically, the vast majority of RL algorithms are founded on a discrete-time Markov Decision

Process (MDP) (Section 2.14.1) approximation of the Dynamic Programming (DP) framework described

by Bellman (1972). The agent’s parameters become more suitable to solving a problem through

experience. Its decision making is inherently non-linear and adaptive. These properties, accompanied by

the availability of enhanced computational resources, allow for its application to both servo and regulator

process control problems. This has resulted in an accompanying substantial research interest within the

process control community.

Practical application using a purely online RL agent training approach without obtaining a first-guess

policy offline will compromise the seven major categories of control objectives described by

Marlin (2000). These are safety, environmental protection, protection of equipment, smoothness of

production and operation of a plant, quality of the product, profit maximization, and monitoring and fault

diagnosis. If an offline estimate of the RL agent’s parameters is not generated, the RL agent will select

random final element adjustments until it has gained sufficient experience. Therefore, generating an offline

estimate of the RL agent’s parameters must be investigated.

Elementary RL refers to the foundations of the field, and are the building blocks used as starting points for

the development of state-of-the-art control approaches. The use of elementary RL algorithms is not

consistent with the current trend in literature, which is to leverage modern computational capabilities to

build highly adaptive RL representations and to study the best performance of the resulting agents. This

involves advances in the RL field where the elementary building blocks are used and adapted to

accommodate these RL representations. This thesis takes the stance that the following aspects of RL-based

controller design must be prioritised:

1. How the steps in classical control design (identification of control objectives and available handles,

mathematical modelling and transformation, control algorithm implementation) may be reconciled

with the RL viewpoint.

2. Investigating the core limitations of elementary RL algorithms to establishing a reasonable and

physically realisable adaptive control framework. This includes identification of subtleties arising

and the practical limitations thereof. This is useful for stakeholders without a machine learning

background and may hold implications for state-of-the-art applications that inherently rely on the

foundations of RL.

Stellenbosch University https://scholar.sun.ac.za

3

1.2 Outcomes of this Work

The classical control paradigm motivates approaching the vast majority of process control problems, which

are defined in the time domain, by first approximating a suitable linearized model of the process. This

reduced complexity model is then mapped to the Laplace domain, where analytical and empirical

procedures may be applied to solve pertinent tuning and stability problems. To investigate the feasibility

of elementary RL-based control, the problem may be viewed in a similar light.

In RL, there are functions known as value functions and policies, which are used to transform time domain

control data to domains for sequential decision making. The design of RL representations (Section 1.1)

allows one to determine the degree of time domain complexity retained during data transformation. The

RL algorithms relevant to this study are the State-Action-Reward-State-Action (SARSA), Q-learning, and

One-Step Actor-Critic algorithms.

The aim of the study is to evaluate the feasibility of applying elementary RL techniques to automatically

determine the optimal control actions for process control systems.

The objectives of this simulation-based study are as follows:

1. Synthesize a purely RL-based control methodology for single-input, single-output (SISO)

problems that enables the testing of elementary RL techniques on simplified RL environments.

2. Investigate control behaviour as well as the effect of parameter selection and state-action space

discretization fineness for tabular SARSA by studying a self-regulatory water tank (Case Study 1)

and the control of desired product concentration in the Van de Vusse reaction scheme

(Case Study 2).

3. Evaluate the feasibility of tabular Q-learning, tabular SARSA, and One-Step Actor-Critic agents

for the control of product particle size in a ball mill grinding circuit (Case Study 3).

Objective 1 is aimed at establishing a synthesized controller that is used for investigation throughout the

thesis. To validate the methodology used for control, the controller must adhere to two criteria. Firstly,

application to a case study representing an easily controlled process must allow for a full description of the

mechanism by which qualitatively reasonable control performance may be achieved. Secondly,

application to an appropriate benchmark process must yield satisfactory results. The results of other

researchers should be replicated to the extent possible. This validation forms the first part of objective 2.

Objective 2 further aims to better understand which parameters (including both tuning parameters and RL

hyperparameters) need to be tuned specifically for the process being controlled and the effects of state-

action discretization used in the synthesized controller.

Objective 3 exposes the synthesized controller to a simulated system representative of a robust control

problem often encountered in the mineral processing industry. The term “robust” is used in its capacity to

describe uncertainty about the nominal plant model (Skogestad and Poslethwaite, 2005). In addition to

Stellenbosch University https://scholar.sun.ac.za

4

SARSA, Q-learning (for training on historical data) and One-Step Actor-Critic algorithms are also applied

to this problem. As a well-understood quantitative reference, all three control laws generated by the

elementary RL agents are compared to a continuous PID algorithm. This aids with obtaining a well-

rounded understanding of the elementary aspects of RL-based process control, formalising qualitative

comparisons between the studied RL agents, placing in perspective the challenges that prevent industrial

RL-based control at present, and proposing directions for future research efforts.

To achieve the objectives, the following questions must be answered:

1. What are the limits of tabular Q-learning and tabular SARSA in RL-based process control?

2. What are the limits of One-Step Actor-Critic in RL-based process control?

3. Can control problem complexity be practically reduced for an RL agent by simplifying the RL

environment, e.g. by discretizing the state-action space?

1.3 Scope

At this stage, it is essential to clearly define what is considered relevant to the application of elementary

RL in this thesis. The study does not attempt to outperform classical control for the grinding circuit model

that serves as case study, to develop a new practical control approach, or to extensively explore the

application of the possible algorithmic adjustments to the most elementary RL algorithms. Rather, the

study will explore the properties of the most interpretable and simplest RL agents when applied to process

control problems to provide an account of the feasibility, nuances, and challenges of elementary RL-based

process control.

The properties of SARSA are particularly amenable to mathematical manipulation and this algorithm

naturally forms a central part of the aim, objectives, and key questions. Therefore, the focus on the One-

Step Actor-Critic algorithm is markedly less than the focus on SARSA. Both algorithms play important

roles in the grinding circuit simulation study conducted.

The deep learning paradigm applied to Actor-Critic algorithms has enjoyed much attention in the field of

RL-based process control (Chapter 3). Significantly less attention has been paid to the elementary

algorithms of RL. In the opinion of the author, this may mostly be attributed to known algorithmic

deficiencies of the latter and the attention drawn to deep learning methods owing to the advances in

computing capabilities coupled with their ability to cope with very complex and high-dimensional

problems in an efficient manner. While these are valid reasons for pursuing state-of-the-art methods, a

significant gap in the literature is brought about by the shortage of texts that focus on gradually building

up complexity, and providing a well-rounded understanding of the nuances of RL-based process control

that arise at the field’s foundations. Such research provides both a framework where impediments to

industrial implementation may be identified and a point of departure from which new research directions

may be identified.

Stellenbosch University https://scholar.sun.ac.za

5

In this thesis, discrete action selections are made available to SARSA, Q-learning, and One-Step Actor-

Critic agents. In addition to the points mentioned above, the path of increased resistance from the

perspective of the RL-based control research community is also purposefully chosen so that algorithms are

studied that improve interpretability for wider adoption. The word interpretable is used in its capacity to

describe a control solution for which the output may be predicted by the designer through the use of logical

statements and domain knowledge (Zhang et al., 2021). Low interpretability of state-of-the-art approaches

contributes to industrial scepticism regarding RL-based control. Despite the study of interpretable RL

agents, the envisaged interactions between production engineers and these elementary RL-based

controllers remain challenging since the behaviour of such controllers are not always easily predictable

and these interactions require significant field-specific knowledge.

1.4 Thesis Contributions

Through the application of systematic model-free RL solution methodology to selected simulated process

control case studies, this thesis contributes the following to the field of RL-based process control:

1. Synthesis and validation of a reasonable model-free RL control design for SISO control loop

pairing. Reasonability is defined for this thesis as the property of being suitable for the study of

the behaviour of an RL agent, irrespective of the complexity of the agent, when applied to the

control of a simulated process.

2. Characterization of tuning parameters, RL hyperparameters, and RL representation design for a

tabular SARSA agent. A SARSA agent interacting with a discretized state-action space has unique

theoretical properties that are worth exploring. Doing so provides a clear relation of what is purely

theoretically achievable versus what is practically achievable with RL-based controller tuning.

3. Critical assessment of the ability of a tabular SARSA agent to achieve physically realisable

feedback control and the implications of using Q-learning for training on historical data. In the

presence of instrumentation constraints in real industrial processes, it is vital to consider the extent

to which algorithmic deficiencies are detrimental to such a controller.

4. Drawing qualitative comparisons between SARSA, Q-learning, and One-Step Actor-Critic agents.

This requires a clear understanding of the qualitative properties of the learning processes of each

agent, which are also investigated.

5. Using the lessons learned by studying elementary RL-based control to make recommendations for

future research.

1.5 Thesis Outline

Chapter 2 describes the necessary theoretical framework for the work presented. Subsequently, Chapter 3

reviews pertinent literature which lays the foundation for the methodology used to achieve the aim and

Stellenbosch University https://scholar.sun.ac.za

6

objectives of the study (Chapter 4 and Chapter 5). Chapter 6 conveys the results of the analyses and the

critical assessment thereof. The culmination of the arguments and findings of this thesis is conveyed in

Chapter 7 which also relates the author’s recommendations for future work in the field.

Stellenbosch University https://scholar.sun.ac.za

7

CHAPTER 2

THEORETICAL FRAMEWORK

Of particular relevance to the current chapter are the algorithmic principles of value-based, Policy Gradient,

and Actor-Critic control methods. In RL-based control, we are interested in identifying the parameters

that best describe the action-value function for value-based RL (SARSA and Q-learning), or in directly

parameterizing the optimal policy- and critic functions for Actor-Critic RL (One-Step Actor-Critic).

Appendix A provides a worked example where SARSA is applied to the control of liquid level in a mixing

tank. The author recommends working through the material in Appendix A after reading Section 2.3 to

provide a practical example and after reading this chapter to reconcile theory with the example.

2.1 Overview of the RL-Based Control Process

A generic illustration of RL-based control where an agent only selects one action at each time step is given

in Figure 1. The process may be described as an RL agent interacting with an RL environment and occurs

during the progression of discrete time steps. At each discrete time step, the agent applies an action to the

RL environment which then undergoes a state transition and gives the agent a scalar reward. This

establishes a causality between the agent’s action selections and the responses of the RL environment.

Figure 1: Generic flow diagram depicting agent-environment interaction for RL-based control

The agent’s only goal is to maximise the cumulative rewards received from the RL environment by

adjusting the parameters of its RL representation. By doing so, a policy is learned which dictates how each

observed state (input) is mapped to the next selected action (output).

RL Environment

“Agent”- maths
• Value-based
• Policy Gradient
• Actor-Critic

State

Action

Reward
Scalar

Policy: maps input to action

Stellenbosch University https://scholar.sun.ac.za

8

The agent is mathematically formulated so that its behaviour improves during the interaction and may

establish a policy in one of three ways. The first is through learning a unique value function (value-based),

the second by maximizing a scalar performance objective in the parameter space (Policy Gradient), and

the third combines these two approaches to improve the learning properties of the second approach (Actor-

Critic).

As will be seen during the literature review of Chapter 3, there are primarily three avenues of researching

the RL-based controller problem. The first requires the agent to select the actions to control the plant when

presented with the measurements provided by the available instrumentation (all sources of raw operational

information provided), the second requires the agent to automatically tune classical controllers to enable

control, and the third involves reducing the problem size through simplification. The third avenue is

selected in this study.

Aspects such as operational data requirement and ease of tuning cannot easily be improved practically by

applying deep learning techniques with potentially excessive numbers of parameters or providing all

available plant measurements to the agent.

In the deep learning paradigm, a particular concern preventing industrial RL-based control is the

interpretability of deep neural networks (Zhang et al., 2021). This further motivates the study of alternative

approaches to deep neural networks to represent the required policies and value functions for process

control problems. Applying elementary RL to process control problems is a natural step in the search for

more interpretable RL-based process control solutions.

2.2 Preliminary RL Terminology

Unless stated otherwise, these definitions may be found in the work of Sutton and Barto (2018).

With the exception of the RL agent, all exogenous inputs, disturbances, and signal processing that are

relevant to the process control problem constitute the RL environment. Update rules adjust the parameters

that make up the model used for sequential decision making and are derived so as to always improve the

agent’s solution to the control problem as training progresses. The process control problem as a whole is

formulated as an MDP (Section 2.14.1) with each discrete time step denoted by 𝑇. At each time step 𝑇,

the agent is allowed to apply an action (𝑨) to the RL environment. The agent then moves from the current

state (𝑺) which is observed at time step 𝑇 to the next state (𝑺′) at time step 𝑇 + 1. All references to states

refer to the observed states that are actually available to the agent.

Based on the new state 𝑺′, a scalar signal known as the reward (𝑅) is provided to the agent. The reward

is used to perform the algorithmic update(s) that adjusts the probability of selecting the same action at the

previous state 𝑺. Through this stochastic and iterative interaction process, a parameter search is

instantiated.

Stellenbosch University https://scholar.sun.ac.za

9

For process control problems, the final element adjustments applied to the process are determined by the

actions selected by the RL agent. In general, 𝑨 may be a scalar or a vector depending on the number of

process inputs that must be manipulated by the agent at each time step 𝑇. Similarly, 𝑺 and 𝑺′ may be either

scalars or vectors and must be defined to inform the agent of its position in the process operating window

relative to where it needs to be to solve the process control problem. The state space is denoted by 𝒮 and

the action space by 𝒜. The state-action space comprises the state space augmented to include information

about the action space. These spaces refer to the vector spaces underlying the available states and actions,

and are modelled either as discretized or continuous when defining possible values of 𝑺 and 𝑨

(Deisenroth et al., 2020).

An agent may be trained using an on-policy or an off-policy algorithm. An on-policy algorithm interacts

directly with the RL environment, while an off-policy algorithm adjusts RL representation parameters using

historical data. On-policy training is therefore online, while off-policy training is offline.

Exploration-exploitation refers to the need for any computational agent to maintain a balance between

encountering new regions of the state-action space that have unknown consequences and utilising

knowledge already gained. The agent achieves sequential decision making through the application of

exploration-exploitation rules to the RL representation. This statistical model which maps the currently

observed state 𝑺 to the appropriate action 𝑨 to take is the policy, 𝜋(𝑺) → 𝑨. An RL agent has a stationary

policy 𝜋 if update rules are not applied to it, or if the parameters of the RL representation have already

converged (Engel, 2011). The term “exploration strategy” refers to the approach used to ensure that

exploration and exploitation are balanced.

Using a table as an RL representation implies that the states and actions are discrete. Depending on the

numbers of components defining the states and actions (i.e., depending on whether 𝑺 and 𝑨 are scalars or

vectors), such a table may take the form of a hypervolume. A hypervolume as RL representation is

therefore simply a table in higher dimensions.

Each RL problem has underlying value functions, and the RL representation constrains to what extent the

required optimal value function may be learned after sufficient training. The underlying value-functions

are known as the state-value function and the action-value function. The state-value function contains the

values associated with each possible observed state, while the action-value function contains the values

associated with taking each available action at each possible observed state. The values provided by these

functions are the relative potentials for increased reward yield. During an RL agent’s training, each value

function instance depends on the corresponding instance of the policy.

2.3 Formulising an RL Agent’s Objective

Irrespective of the type of RL agent used, the agent must maximise the cumulative rewards received during

its interaction with the RL environment. The discounted return, denoted by 𝐺, is used to help the RL agent

reach increased rewards. It is sampled at every time step of the MDP and is defined in the time domain by

Stellenbosch University https://scholar.sun.ac.za

10

Equation [1], where 𝑡 = 𝑖∆𝑇 for 𝑖 ∈ ℕ and sampling period ∆𝑇 (Sutton and Barto, 2018). The time step

of sampling is shown in the subscript of 𝐺 in Equation [1]. The sampling period between measurements,

∆𝑇, is the actual time in the RL environment associated with a transition between two successive time steps

in the MDP.

 𝐺𝑡 =̇ ∑ 𝛾𝑖−1𝑅𝑡+(𝑖−1)∆𝑇
∞
𝑖=1 [1]

When indicating the time at which a reward 𝑅 is received, the convention used in this thesis is that each

reward’s subscript denotes the time at which it was received by the RL agent, which corresponds to the

time at which the RL agent leaves the current time step. Therefore, 𝑅𝑡 in Equation [1] denotes the scalar

reward received by the RL agent when 𝑖 = 1. Equation [1] can be rewritten in terms of the discrete time

steps of an MDP, as shown in Equation [2]. The sampling period ∆𝑇 is the same between successive time

steps in Equation [2] (a transition from 𝑇 to 𝑇 + 1), and any one of the discrete time steps of the MDP

may be referred to as an instance of 𝑇. The reward 𝑅 obtained at the MDP time step associated with the

instance of 𝑇 may be denoted by 𝑅𝑇.

 𝐺𝑇 =̇ 𝑅𝑇 + 𝛾𝑅𝑇+1 + 𝛾2𝑅𝑇+2 +⋯ [2]

The hyperparameter 𝛾 ∈ [0,1] is known as the discount factor (Sutton and Barto, 2018). The properties

of the value functions (Section 2.5) rely on contraction mapping theory which also ensures that the value

functions are unique for each policy (Hunter and Nachtergaele, 2005; Szepesvári, 2010;

Sutton and Barto, 2018). As 𝛾 → 0, the agent prioritizes immediate rewards. Long-term rewards are

prioritised if 𝛾 → 1. The agent’s policy 𝜋 determines the actions applied to the RL environment which, in

turn, affect the rewards obtained during agent-RL environment interaction (Sutton and Barto, 2018).

Any RL-based control solution therefore relies on the designer to decide when certain rewards are provided

to the agent based on the observed state 𝑺 (reward function), which RL agent is applied, and how the policy

𝜋 must be instantiated using the RL representation(s). The outcome of these design decisions must be that

the problem is solved by the agent to the satisfaction of the designer. To solve the control problem, the

agent must be provided with sufficient and appropriate operational data.

These design attributes indicate an opportunity, albeit limited, to inject domain knowledge in an RL-based

controller even in the model-free context. Importantly, model-free methods do not facilitate the

incorporation of such knowledge in the update rules applied during the parameter search of a given agent

type. Rather, the RL representation’s design before training, the definitions of 𝑺 and 𝑨, and the reward

function allow for some extent of domain knowledge to be incorporated in the design.

2.4 The Bellman Equation Written for the Optimal Value Functions

The starting point for RL-based control is the Bellman equation for the true, optimal state-value function

which is central to the DP methods described by Bellman (1972). Jaakkola et al. (1994) summarise the

qualitative motivation for the Bellman equation. Assume, for now, that the probabilistic model 𝑃𝑟(𝑺′, 𝑺, 𝑨)

Stellenbosch University https://scholar.sun.ac.za

11

describing the transition from 𝑺 at 𝑇 to 𝑺′ at 𝑇 + 1 as a consequence of each available action in the action

space, 𝑨 ∈ 𝒜, is known. If both the action space 𝒜 and the state space 𝒮 are modelled using discretized

actions and states (to prevent intractable computation), Bellman’s equation for optimal state-value relates

the reward received from the RL environment to the optimal state-value function (𝑉𝜋
∗(𝑺)) evaluated at the

current state 𝑺 and is given in a very accessible form by Jaakkola et al. (1994).

This form is shown in Equation [3] and is evaluated for a stationary policy 𝜋. Such a policy does not

necessarily imply the optimal policy 𝜋∗, merely that the policy evaluated must not change with time. Such

a policy could be obtained by evaluating a classical control law with constant tuning parameters provided

that the incorporation of historical information through the integral mode is not perceived as a non-

stationary policy when each state and action is mapped to the discretized state-action space of the RL

representation, stopping the training process of an RL agent, or evaluating the optimal policy 𝜋∗.

 𝑉𝜋
∗(𝑺) = max

𝑨 ∈ 𝒜
[𝑅𝑇 + 𝛾∑ 𝑃𝑟(𝑺′, 𝑺, 𝑨)𝑺′∈ 𝒮 𝑉𝜋

∗(𝑺′)] [3]

The second term in the operand of Equation [3] is the expected discounted return when following the

stationary policy after the current time step. The random variable 𝑺′~𝑃𝑟(𝑺′, 𝑺, 𝑨) is the input to the

optimal state-value function at the next state, 𝑉𝜋
∗(𝑺′), and selecting the maximum numerical value of the

operand across all available actions at each time step 𝑇 in Equation [3] ensures that the entries of 𝑉𝜋
∗(𝑺)

correspond to the maximum accumulation of rewards.

The contribution of the most recent agent action to the discounted return 𝐺 is largely captured by the reward

which is added in the operand, while the second term is discounted through multiplication with 𝛾. Hence,

consistency with Equations [1] and [2] is ensured – only time steps 𝑇 and 𝑇 + 1 under stationary policy

𝜋 are relevant in Equation [3] and this requires the incorporation of 𝛾1. While the stationary policy is not

necessarily discretized, the evaluation of 𝑉𝜋
∗(𝑺) is defined in terms of the discretized state-action space to

ensure computationally tractable summation in Equation [3].

The Bellman equation applied to the optimal action-value function for policy 𝜋, 𝑄𝜋
∗(𝑺, 𝑨), is defined as the

operand of Equation [3] (Jaakkola et al., 1994; Sutton and Barto, 2018). This is shown in Equation [4].

It can be observed that information regarding the action 𝑨 selected by the agent is explicitly incorporated

in the definition, making it suitable for solving value-based control problems. By substituting

Equation [4] into Equation [3], Equation [5] is obtained (Jaakkola et al., 1994). Equation [4] and

Equation [5] clarify that the properties of state-value functions arising from contraction mapping theory

directly extend to action-value functions.

 𝑄𝜋
∗(𝑺, 𝑨) = 𝑅𝑇 + 𝛾∑ 𝑃𝑟(𝑺′, 𝑺, 𝑨)𝑺′∈ 𝒮 𝑉𝜋

∗(𝑺′) [4]

 𝑉𝜋
∗(𝑺) = max

𝑨 ∈ 𝒜
[𝑄∗(𝑺, 𝑨)] [5]

Stellenbosch University https://scholar.sun.ac.za

12

In process control problems, irrespective of the RL representation’s design, solving Equation [4] quickly

increases computational expense to an unreasonable extent owing to the number of possible states

comprising the state space 𝒮. This computational intractability, and the unreasonable assumption of

obtaining a suitable probabilistic model 𝑃𝑟(𝑺′, 𝑺, 𝑨) beforehand, are two key motives for approaching the

solution of the Bellman equations using stochastic algorithms that are executed iteratively. Such stochastic

approximation to DP principles is what gives rise to RL algorithms. The optimal value functions exist, are

unique, and convergence is guaranteed after deriving a suitable RL update rule(s) (Engel, 2005;

Hunter and Nachtergaele, 2005; Szepesvári, 2010).

2.5 Representing Future Rewards

While Equations [4] and [5] describe the optimal value functions corresponding to the optimal policy 𝜋∗

(or another stationary policy), value functions exist for any given non-stationary policy 𝜋. Equation [6]

– as described by Sutton and Barto (2018) – shows that the action-value function (𝑄𝜋(𝑺, 𝑨)) for policy 𝜋

is the expected value of the discounted return sampled at time step 𝑇 (Equation [2]) conditioned to the

current state-action coordinate (𝑺, 𝑨) for the policy instance 𝜋. The state and action are sampled at MDP

time step 𝑇, and are denoted by 𝑺𝑇 and 𝑨𝑇, respectively. The value-based agent approximates the action-

value function numerically, and thereby tries to maximise the cumulative rewards it receives. In the tabular

case, the RL agent stores the estimated discrete action-value function in a table format (𝑄̃𝜋(𝑺, 𝑨)).

 𝑄𝜋(𝑺, 𝑨) =̇ 𝔼𝜋[𝐺𝑇|𝑺𝑇 = 𝑺, 𝑨𝑇 = 𝑨] ∀ 𝑺 ∈ 𝒮 𝑎𝑛𝑑 𝑨 ∈ 𝒜 [6]

The uniqueness of the action-value function ensures that, for a given exploration strategy, the action-value

function 𝑄𝜋(𝑺, 𝑨) for the optimal policy 𝜋∗ is associated with a maximization of cumulative rewards across

the state-action space, and is therefore the optimal action-value function 𝑄𝜋
∗(𝑺, 𝑨). Different

discretizations of a tabular RL representation provide different resolutions to the optimal action-value

function 𝑄𝜋
∗ (𝑺, 𝑨). This is because, when the RL agent’s parameters converge, the attributes of the unique

𝑄𝜋
∗(𝑺, 𝑨) for optimal policy 𝜋∗ are captured to an extent dependent upon the RL representation design

used.

Recall from Section 2.4 that the action-value function differs from the state-value function by augmenting

the state space to include information about the different actions available to the agent. The state-value

function is defined as shown in Equation [7]. For model-free, value-based control, 𝑄𝜋(𝑺, 𝑨) must be

used. Both value functions are used to represent future rewards that are associated with following a policy

𝜋.

 𝑉𝜋(𝑺) =̇ 𝔼𝜋[𝐺𝑇|𝑺𝑇 = 𝑺] ∀ 𝑺 ∈ 𝒮 [7]

During training, the RL agent seeks to update the policy 𝜋 towards the optimal policy 𝜋∗ as the

approximated value function is updated. The optimal policy 𝜋∗ ultimately learned by a value-based agent

is the one obtained by using the approximation of the unique optimal action-value function 𝑄𝜋
∗ (𝑺, 𝑨) as a

Stellenbosch University https://scholar.sun.ac.za

13

map from the current state-action coordinate to the most beneficial action to apply to the RL environment.

This is achieved by applying an exploration strategy (which is also essential during agent training) to the

approximation 𝑄̃𝜋(𝑺, 𝑨). The optimal policy 𝜋∗ obtained in this fashion is characteristic of value-based

RL control methods.

The statistical conditioning of Equation [6] implies that the expected numerical values of 𝐺 are dependent

on the state-action coordinates encountered. Consequently, the frequencies with which these coordinates

within the process operating window are experienced during training, and the RL representation’s design,

have very significant impacts on the range of the state-action space for which the agent can make sensible

decisions. The fraction of the state-action space for which the RL representation has fully converged may

be referred to as the coverage of the value-based algorithm.

Formally, the RL representation of a value-based method is the data transformation applied to each instance

of (𝑺, 𝑨) to obtain an appropriate real, scalar approximation to Equation [6] or Equation [7].

Equation [6] and Equation [7] are not solved analytically at any point.

Recall from Section 2.4 that a stochastic approximation approach is sought in RL as 𝑃𝑟(𝑺′, 𝑺, 𝑨) is not

known. This problem is addressed in RL by iteratively solving the DP problem posed by the Bellman

equations for the optimal value functions, Equations [4] and [5], by sampling a target function at each

discrete time step 𝑇. The target function is an approximation of 𝐺 (Equation [2]) and is generated using

available information. Equations [6] and [7] make this approach possible.

2.6 The Policy Improvement Theorem

The policy improvement theorem described by Sutton and Barto (2018) is of interest when studying value-

based RL control. When we consider a deterministic policy 𝜋 at time step 𝑇 and its updated version 𝜋′ at

time step 𝑇 + 1, the policy improvement theorem states that 𝜋′ will be associated with a larger state-value

evaluated at the currently observed state 𝑺 (𝑉𝜋(𝑺) ≤ 𝑉𝜋′(𝑺)). This implies that 𝜋′ is a better policy for

sequential decision making when interacting with the RL environment, and that it aids with the

maximisation of the cumulative rewards received by the RL agent. If the value functions – state-value

function 𝑉𝜋(𝑺) and action-value function 𝑄𝜋(𝑺, 𝑨) – were considered for the same deterministic policy 𝜋,

they would be related through Equation [8] with 𝜋(𝑺) → 𝑨.

 𝑉𝜋(𝑺) = 𝑄𝜋(𝑺, 𝜋(𝑺)) [8]

For RL-based control, the implication of the theorem is that improving the approximation to the unique

𝑄𝜋
∗(𝑺, 𝑨) is guaranteed to improve the agent’s behaviour for a tabular RL representation. The policy

improvement theorem may readily be illustrated by using recursive substitutions of Equation [10] into

the inequality shown in Equation [9]. This is true irrespective of the reward function used since it is the

relative magnitudes of the rewards obtained that are important to the RL agent. The policy improvement

theorem does not, strictly speaking, hold true when an RL representation other than a table is used. This

Stellenbosch University https://scholar.sun.ac.za

14

is because the specific form of the policy 𝜋 becomes dependent on the design of the RL representation –

the designer may unknowingly prevent certain regions of 𝑄𝜋
∗(𝑺, 𝑨) to be approximated

(Sutton and Barto, 2018). The summation 𝑅𝑇 + 𝛾𝑉𝜋(𝑺′) in Equation [10] is an approximation of the

discounted return sampled at time step 𝑇 (𝐺𝑇 in Equation [2]).

 𝑉𝜋(𝑺) ≤ 𝑄𝜋(𝑺, 𝜋
′(𝑺)) [9]

 𝑄𝜋(𝑺, 𝑨) = 𝔼𝜋[𝑅𝑇 + 𝛾𝑉𝜋(𝑺
′)|𝑺𝑇 = 𝑺, 𝑨𝑇 = 𝜋′(𝑺)] [10]

2.7 Policy Iteration, Value Iteration, and Generalized Policy Iteration

The fact that 𝐺 may be computed recursively, accompanied by 𝑉𝜋
∗(𝑺) as a 𝛾-contraction, allows for iterative

approximation of 𝑉𝜋(𝑺) or 𝑄̃𝜋(𝑺, 𝑨) to be used in prediction or control problems, respectively

(Jaakkola et al., 1994; Szepesvári, 2010; Sutton and Barto, 2018). The prediction problem refers to

computing an approximate state-value function for a stationary policy 𝜋, while the control problem refers

to approximating the optimal policy 𝜋∗. In DP, where knowledge of 𝑃𝑟(𝑺′, 𝑺, 𝑨) is required, there are two

key approaches to leveraging recursive computation to approximate the optimal policy 𝜋∗

(Sutton and Barto, 2018). The RL environment needs to be modelled as finite to ensure computational

tractability in DP – 𝒮, 𝒜, and 𝑃𝑟(𝑺′, 𝑺, 𝑨) of the RL environment all need to be represented as finite for

DP methods.

The first DP approach is policy iteration which entails generating successive improved instances of 𝑉𝜋(𝑺)

and 𝜋 by repeatedly applying policy evaluation and policy improvement steps, both of which directly rely

on knowing 𝑃𝑟(𝑺′, 𝑺, 𝑨). Policy evaluation updates 𝑉𝜋(𝑺) to correspond to 𝜋, while policy improvement

updates 𝜋 to 𝜋′ using the current state-value estimate 𝑉𝜋(𝑺). After this, policy evaluation is applied again

to estimate 𝑉𝜋′(𝑺), after which policy improvement is applied again. This process is continued until the

optimal policy 𝜋∗ and its corresponding value function 𝑉𝜋
∗(𝑺) are approximated. Starting each policy

evaluation step with the newest 𝑉𝜋(𝑺) helps with preventing excessive computational complexity if the

changes in the state-value functions during successive policy evaluation steps are little.

The parameters used to describe 𝑉𝜋(𝑺) need not converge during each policy evaluation step to ensure

ultimately finding the optimal value function 𝑉𝜋
∗(𝑺) and the corresponding optimal policy 𝜋∗. This leads

to the second DP approach to control, value iteration. This approach alleviates the use of multiple sweeps

through the state space 𝒮 by truncating policy evaluation. This is achieved by applying Equation [3] as

an update rule and only performing one sweep through 𝒮 per policy evaluation step, and therefore only

one parameter adjustment per possible instance of 𝑺 (Jaakkola et al., 1994; Sutton and Barto, 2018).

In contrast to DP approaches to control, RL control methods establish decision making without knowledge

of 𝑃𝑟(𝑺′, 𝑺, 𝑨) through Generalized Policy Iteration (GPI), and can deal with both finite and non-finite

MDPs. At each time step 𝑇 of an RL control problem (or at the end of each instance of a fixed batch of

training steps for an RL agent based on the principles of Monte Carlo analysis), 𝑄̃𝜋(𝑺, 𝑨) is altered to better

Stellenbosch University https://scholar.sun.ac.za

15

approximate the true action-value function, 𝑄𝜋(𝑺, 𝑨), at the current policy 𝜋. After this, 𝜋 is improved

with regard to the updated 𝑄̃𝜋(𝑺, 𝑨). Note that, for a fixed exploration strategy and a value-based RL

agent, the update to 𝑄̃𝜋(𝑺, 𝑨) implicitly ensures that the current policy 𝜋 is more suited to the current

𝑄̃𝜋(𝑺, 𝑨). This is because 𝜋 is instantiated by applying an exploration strategy to 𝑄̃𝜋(𝑺, 𝑨) in value-based

control. When both 𝑄̃𝜋(𝑺, 𝑨) and 𝜋 do not change during sequential updates, the optimal action-value

function 𝑄𝜋
∗ (𝑺, 𝑨) has been approximated within the constraints of the RL representation design used and

the coverage permitted by the training of the agent.

2.8 Value-Based RL Control Algorithms

2.8.1 SARSA

A numerical approximation of the optimal action-value function 𝑄𝜋
∗(𝑺, 𝑨) may be obtained through the

application of SARSA as an on-policy, value-based RL control method. This RL algorithm illustrates the

principles of value-based RL control well at an elementary level.

The training process follows the episodic viewpoint of RL agent training, where a fixed number of

transitions from 𝑇 to 𝑇 + 1 are predefined as an episode. Each episode starts with 𝑇 = 1. The key

properties of the episodic viewpoint for value-based control are that it is not assumed beforehand that

returns may be identified and averaged for each individual state, and that it is assumed that the RL problem

is finite in the number of MDP time steps (Sutton and Barto, 2018). The interaction between the agent and

the RL environment therefore consists of a number of episodes, and each episode consists of a number of

steps. A SARSA agent solves the RL control problem using the method described below

(Poole and Mackworth, 2010; Sutton and Barto, 2018).

Let 𝓉 denote the Bellman target, Equation [11], updated at time step 𝑇. The Bellman target 𝓉 is a biased

estimate of the discounted return 𝐺, Equation [2], and is updated based on the scalar action-value sample

𝑄𝑇+1. The target considered is known as a one-step return, since only two adjacent MDP time steps are

used to calculate the target value at each instance of 𝑇 and 𝑇 + 1. The Bellman target is not stationary and

this is a characteristic of RL problems – each GPI iteration changes the target’s numerical value during the

agent’s interaction with the RL environment. For sufficiently large 𝑇, we may use the arithmetic mean of

all available 𝓉 observed at the state-action coordinate (𝑺, 𝑨) as an unbiased estimator of 𝐺 at the current

time step. This mean is given by Equation [12], and the initial manipulations are given by Equations [13]

through [16]. Each subscript in Equations [11] through [16] may be converted to the time domain by

multiplying it with ∆𝑇.

 𝓉(𝑺, 𝑨) = 𝑅𝑇 + 𝛾𝑄𝑇+1 [11]

 𝑀𝑇(𝑺, 𝑨) =
(𝓉1(𝑺,𝑨)+𝓉2(𝑺,𝑨)+⋯+𝓉𝑇(𝑺,𝑨))

𝑇
 [12]

 𝑇𝑀𝑇(𝑺, 𝑨) = ∑ 𝑅𝑖
𝑇
𝑖=1 + 𝛾∑ 𝑄𝑖+1

𝑇
𝑖=1 [13]

Stellenbosch University https://scholar.sun.ac.za

16

 𝑇𝑀𝑇(𝑺, 𝑨) = (𝑅𝑇 + 𝛾𝑄𝑇+1) + (∑ 𝑅𝑖
𝑇−1
𝑖=1 + 𝛾∑ 𝑄𝑖+1

𝑇−1
𝑖=1) [14]

 𝑇𝑀𝑇(𝑺, 𝑨) = (𝑅𝑇 + 𝛾𝑄𝑇+1) + (𝑇 − 1)𝑀𝑇−1(𝑺, 𝑨) [15]

 𝑀𝑇(𝑺, 𝑨) = (
𝑅𝑇+𝛾𝑄𝑇+1

𝑇
) + (1 −

1

𝑇
)𝑀𝑇−1(𝑺, 𝑨) [16]

By letting 𝛼𝑇 =
1

𝑇
 and rearranging, we may write Equations [17] and [18].

 𝑀𝑇(𝑺, 𝑨) = 𝛼𝑇(𝑅𝑇 + 𝛾𝑄𝑇+1) + (1 − 𝛼𝑇)𝑀𝑇−1(𝑺, 𝑨) [17]

 𝑀𝑇(𝑺, 𝑨) = 𝑀𝑇−1(𝑺, 𝑨) + 𝛼𝑇([𝑅𝑇 + 𝛾𝑄𝑇+1] − 𝑀𝑇−1(𝑺, 𝑨)) [18]

It should be realised that 𝑀𝑇(𝑺, 𝑨) is updated recursively, which implies that it may be interpreted as an

update rule and may be written in terms of the average corresponding to the (𝑺, 𝑨) coordinate encountered

during time step 𝑇. Further, 𝑄𝑇+1 = 𝑄(𝑺′, 𝑨′) for table entry of the RL representation 𝑄(𝑺′, 𝑨′) observed

at the next state-action pair (𝑺′, 𝑨′) since the Bellman target 𝓉 bases its biased estimate of the return 𝐺 on

the immediate reward and the action-value sample at the next MDP time step (weighted by the discount

factor 𝛾).

Herewith, the update rule used in the SARSA algorithm reported by Sutton and Barto (2018), is

obtained – Equation [19]. Since 𝛼𝑇 decreases as 𝑇 increases, updates occurring later during a training

episode carry less weight. It is, however, logical that the importance of information obtained later during

an episode does not diminish naturally.

 𝑄(𝑺, 𝑨) ← 𝑄(𝑺, 𝑨) + 𝛼𝑇[𝑅𝑇 + 𝛾𝑄(𝑺′, 𝑨′) − 𝑄(𝑺, 𝑨)] [19]

Therefore, 𝛼𝑇 is replaced by a constant 𝛼, which changes the update rule of Equation [19] to that of

Equation [20]. The result of this is that the true average 𝑀𝑇(𝑺, 𝑨) is not approximated across the state-

action space. This does not compromise the RL agent’s training, since changes in the training process

generating the value estimates are still tracked (Poole and Mackworth, 2010). Further, any scaled instance

of the numerical approximation to 𝑄𝜋
∗ (𝑺, 𝑨) is sufficient to solve an RL control problem provided that

suitable training data is used.

 𝑄(𝑺, 𝑨) ← 𝑄(𝑺, 𝑨) + 𝛼[𝑅𝑇 + 𝛾𝑄(𝑺′, 𝑨′) − 𝑄(𝑺, 𝑨)] [20]

The update rule of SARSA is an instance of stochastic semi-gradient descent of the Mean Squared

Error (MSE) objective function written in terms of the difference between 𝓉 and 𝑄(𝑺, 𝑨)

(Poole and Mackworth, 2010; Sutton and Barto, 2018; Theodoridis, 2020).

Equation [20] is written under the assumption that each coordinate of the discretized state-action space

has a discrete, independent entry 𝑄(𝑺, 𝑨). For a tabular method, the values of 𝑄(𝑺, 𝑨) ∀ 𝑺 ∈ 𝒮, 𝑨 ∈ 𝒜

comprise the parameter vector 𝒘𝑞 of the approximated action-value function 𝑄̃𝜋(𝑺, 𝑨). The scalar output

Stellenbosch University https://scholar.sun.ac.za

17

of the approximation 𝑄̃𝜋(𝑺, 𝑨) may be expressed in linear form as 𝒘𝑞
𝑇𝝓𝑞(𝑺, 𝑨), where 𝝓𝑞(𝑺, 𝑨) is a vector

that only contains a numerical value of one at the current state-action coordinate, with all the other entries

equal to zero. The symbol 𝑇 in the exponent of a mathematical expression refers to the transpose operation.

While the linear form helps with understanding the general expression of 𝑄̃𝜋(𝑺, 𝑨), only the table entries

𝑄(𝑺, 𝑨) ∀ 𝑺 ∈ 𝒮, 𝑨 ∈ 𝒜 are of interest when applying tabular SARSA. Conceptually, the table entries

correspond to the entries of 𝒘𝑞.

Table 1 shows the steps used to implement SARSA. At each state 𝑺 encountered, a SARSA agent has to

consider the output of the approximated action-value function 𝑄̃𝜋(𝑺, 𝑨) for each available 𝑨 ∈ 𝒜 and

determine the action selection that is associated with the maximum approximated action-value at the

present time step 𝑇. This is known as the greedy action. An agent following the 𝜀-greedy exploration

strategy selects a random action with probability 𝜀, otherwise it selects the greedy action

(Sutton and Barto, 2018).

Table 1: Pseudocode for the SARSA algorithm used to update 𝑄̃𝜋(𝑺, 𝑨) with fixed episode lengths

(Sutton and Barto, 2018)

1. 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 ℎ𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 {𝛼, 𝜀, 𝛾}

2. 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑇𝑎𝑏𝑢𝑙𝑎𝑟 𝐴𝑐𝑡𝑖𝑜𝑛 − 𝑉𝑎𝑙𝑢𝑒 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑄̃𝜋(𝑺, 𝑨) = 0 ∀ 𝑺 ∈ 𝒮, 𝑨 ∈ 𝒜

3. 𝑓𝑜𝑟 𝐸𝑝𝑖𝑠𝑜𝑑𝑒 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 = 1 𝑡𝑜 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐸𝑝𝑖𝑠𝑜𝑑𝑒𝑠

a. 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑆𝑡𝑎𝑡𝑒 𝑺

b. 𝑆𝑒𝑙𝑒𝑐𝑡 𝐴𝑐𝑡𝑖𝑜𝑛 𝑨 𝑈𝑠𝑖𝑛𝑔 𝜋 (𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦 𝐴𝑝𝑝𝑙𝑖𝑒𝑑 𝑡𝑜 𝑄̃𝜋(𝑺, 𝑨))

c. 𝑓𝑜𝑟 𝑠𝑡𝑒𝑝𝐶𝑛𝑡𝑟 = 1 𝑡𝑜 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑡𝑒𝑝𝑠

i. 𝐴𝑝𝑝𝑙𝑦 𝑨 𝑡𝑜 𝑅𝐿 𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡; 𝑂𝑏𝑡𝑎𝑖𝑛 𝑅𝑒𝑤𝑎𝑟𝑑 𝑅 𝑎𝑛𝑑 𝑺′

ii. 𝑆𝑒𝑙𝑒𝑐𝑡 𝑨′ 𝑈𝑠𝑖𝑛𝑔 𝜋

iii. 𝑈𝑝𝑑𝑎𝑡𝑒 𝑄̃𝜋(𝑺, 𝑨) 𝑢𝑠𝑖𝑛𝑔 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 [20]

iv. 𝑺 ← 𝑺′; 𝑨 ← 𝑨′

d. end

4. end

Stellenbosch University https://scholar.sun.ac.za

18

In Equation [20], the term in brackets is known as the temporal difference (TD). Updating the estimate

at (𝑺, 𝑨) based on information at (𝑺′, 𝑨′) is an application of bootstrapping

(James et al., 2013; Sutton and Barto, 2018). Since 𝑺′, and therefore 𝑨′, cannot be known at time step 𝑇

before 𝑇 + 1 has been experienced, the agent must always trail behind true process time when trained

online.

The one-step return may be generalised to 𝓃-step returns where 𝐺 is written out further before adding

𝛾𝓃𝑄(𝑺𝑇+𝓷, 𝑨𝑇+𝓷) to the Bellman target. As 𝓃 → ∞, Monte Carlo control methods are achieved. In

Monte Carlo methods, the full return is therefore used as an unbiased Bellman target, and many episodes

are utilised to ensure that the estimated value of 𝐺 is accurate from the perspective of resampling statistics

(Simon, 1997; Sutton and Barto, 2018).

The use of one-step returns and a tabular RL representation have the advantages of providing control

approaches that are easily interpretable, having a lower operational data requirement than methods using

𝓃-step backups with large 𝓃, and avoiding unnecessary complexity for a feasibility study. The sampling

period ∆𝑇 determines both the time interval between updating agent action selections and the bootstrapping

interval when using one-step returns (Sutton and Barto, 2018).

2.8.2 Q-learning and Off-Policy Convergence

A SARSA agent must interact directly with the RL environment to adjust its estimates of the optimal

parameters in the RL representation. The initialisation of the policy 𝜋 will result in random action

selections at each time step initially. As training progresses, the action selections will become more

appropriate to solving the problem as experience is gained by the agent. Watkins (1989) developed Q-

learning, the counterpart of SARSA aimed at developing an initial guess of the optimal RL representation

parameter values based on historical data generated by a behavioural policy 𝜋𝑏. Exactly the same

theoretical framework for value-based RL control given in Section 2.8.1 is applicable to this algorithm,

and the corresponding update rule is shown in Equation [21].

 𝑄(𝑺, 𝑨) ← 𝑄(𝑺, 𝑨) + 𝛼 (𝑅𝑇 + 𝛾 max
𝒂 ∈ 𝒜

𝑄(𝑺′, 𝒂) − 𝑄(𝑺, 𝑨)) [21]

Note that the only difference between Equation [20] and Equation [21] is that the Bellman target is

expressed in terms of the maximum action-value at 𝑇 + 1 for Q-learning (the action-value corresponding

to a greedy policy 𝜋 at the next state 𝑺′). This makes sense intuitively since, at each 𝑇, driving the policy 𝜋

towards making action selections made by the behavioural policy 𝜋𝑏 which provides a feasible solution is

expected to provide a good initial estimate of behaviour that will solve the control problem.

The use of function approximation (Section 2.9.6), as opposed to tabular methods, is known to render Q-

learning’s convergence properties unreliable without certain algorithmic adjustments

(Precup et al., 2001; Sutton and Barto, 2018). This unreliability of function approximation for Q-learning

is illustrated in the counterexample of (Baird, 1995). Mnih et al. (2015) state that the unreliability persists

Stellenbosch University https://scholar.sun.ac.za

19

in the case of nonlinear function approximation for 𝑄̃𝜋(𝑺, 𝑨) as a result of data observation sequence

correlations, the sensitivity of the policy 𝜋 and consequently operational data distribution to 𝑄̃𝜋(𝑺, 𝑨), as

well as the correlations existing between the entries of the RL representation and the greedy Bellman target.

Guidelines for preventing unintended divergence while executing value-based prediction owing to RL

representation design are summarised by Sutton and Barto (2018) and are assumed to be applicable to

value-based control as a first approximation. Unstable training may, according to these guidelines, be

avoided if only two of the following three aspects are present in the design: function approximation,

bootstrapping, and off-policy training.

2.8.3 Graphical Overview of the SARSA Agent

The policy 𝜋 maps the inputs provided to the agent at the current time step 𝑇 to the action deemed

appropriate by the agent based on the knowledge it has gained thus far (Sutton and Barto, 2018). For the

SARSA agent, the relationship between the descriptive terms of the algorithms is given in Figure 2. Recall

that for SARSA, the RL representation is a table (or, more generally, a discrete hypervolume) with scalar

weights that indicate how beneficial each available action is at the current state (“current state” indicated

by the horizontal box in Figure 2, where each row of the table is a possible state). The larger the weight,

the more beneficial the action associated with that column is considered.

Figure 2: Relationship between SARSA agent, RL representation, policy, and exploration strategy

The table in Figure 2 therefore provides a “map” that contains the cumulative knowledge of the RL agent.

To gain new knowledge, the agent must find a balance between taking the actions deemed most beneficial

and exploring the application of different actions. This is done in a probabilistic fashion and is the

𝑄 𝑆1, 𝐴1 𝑄 𝑆1, 𝐴2 𝑄 𝑆1, 𝐴3 𝑄 𝑆1, 𝐴

𝑄 𝑆2, 𝐴1 𝑄 𝑆2, 𝐴2 𝑄 𝑆2, 𝐴3 𝑄 𝑆2, 𝐴

𝑄 𝑆3, 𝐴1 𝑄 𝑆3, 𝐴2 𝑄 𝑆3, 𝐴3 𝑄 𝑆3, 𝐴

𝑄 𝑆 , 𝐴1 𝑄 𝑆 , 𝐴2 𝑄 𝑆 , 𝐴3 𝑄 𝑆 , 𝐴

𝑄 𝑆 , 𝐴1 𝑄 𝑆 , 𝐴2 𝑄 𝑆 , 𝐴3 𝑄 𝑆 , 𝐴

SARSA Agent

States

Actions
Exploit
current
knowledge

Explore to
obtain new
knowledge

Policy

RL Representation

Update the Representation

Exp
lo

ratio
n

 Strate
gy

Stellenbosch University https://scholar.sun.ac.za

20

exploration strategy. Without exploration during training, the process becomes trivial as the agent will

always select the action corresponding to the largest parameter value in the relevant row of the table

(assuming that non-zero rewards were already received by the agent). The table coupled with the

exploration strategy constitutes the policy 𝜋.

2.9 Policy Gradient and Actor-Critic RL Control

This section is a concise statement of theory described by Sutton and Barto (2018).

2.9.1 Problem Context

Policy Gradient theory forms the basis of any Actor-Critic approach. Recall from Section 2.3 that, in

Policy Gradient and Actor-Critic RL control methods, the goal is still to maximize the expectation of the

discounted return. The parameters of a model-free RL method reside in the 𝑛(𝒮) × 𝑛(𝒜) – dimensional

space, where 𝑛(𝒮) and 𝑛(𝒜) are the cardinalities of the state space 𝒮 and the action space 𝒜, respectively.

As the discretization of these spaces become finer in a tabular method, the parameter space becomes

greater. In Policy Gradient and Actor-Critic methods, the dimensionality of the parameter vector(s) is

fixed despite the fact that the cardinality of the state-action space may become infinite. In these methods,

the entries of a parameter vector defined in the 𝓅-dimensional parameter space, 𝜽 ∈ ℝ𝓅, are updated

which enables the agent to select actions without directly consulting an approximation to 𝑄𝜋(𝑺, 𝑨) or 𝑉𝜋(𝑺)

across the entire state space 𝒮.

The vector 𝜽 parameterizes a probability distribution describing the probability of selecting an action when

the agent observes the current state 𝑺, as shown in Equation [22]. This is the parameterized policy 𝜋𝜽.

The agent selects an action using Equation [23], meaning that the action at time step 𝑇 is sampled from

the probability distribution describing 𝜋. The conditional probabilities of Equation [22] and

Equation [23] express that the probability of selecting an action at time step 𝑇 is dependent on the state 𝑺

and the instance of 𝜽 available at 𝑇. Recall that the value functions are unique for a given policy 𝜋. The

optimal value functions are unique for an RL problem, while the optimal policy 𝜋∗ is not necessarily (even

though the discounted returns across the state-action space will be equal for the different optimal policies).

The optimal policy may be understood conceptually in process control problems, Section 2.11.

 𝜋(𝑨|𝑺, 𝜽) = 𝑃𝑟[𝑨𝑇 = 𝑨|𝑺𝑇 = 𝑺, 𝜽𝑇 = 𝜽] [22]

 𝑨𝑇 ~ 𝜋(𝑨|𝑺, 𝜽) [23]

2.9.2 Stochastic Gradient Ascent and the Policy Gradient Theorem

To obtain suitable entries for the elements of 𝜽 given a selected parametric function which is used to

estimate an optimal policy 𝜋∗, the stochastic gradient ascent algorithm shown in Equation [24] is applied

as an update rule. The function 𝐽(𝜽) is a scalar performance objective that measures the suitability of the

current estimate of 𝜽 and needs to be maximised. The gradient of 𝐽(𝜽) in the parameter space is ∇𝜽𝐽(𝜽).

Stellenbosch University https://scholar.sun.ac.za

21

When applying the episodic approach to RL agent training, 𝐽(𝜽) is defined as the state-value of the non-

random starting state of each episode, 𝑺0, for parameterized policy 𝜋𝜽, Equation [25].

 𝜽 ← 𝜽 + 𝛼𝜽∇𝜽𝐽(𝜽) [24]

 𝐽(𝜽) =̇ 𝑉𝜋𝜽(𝑺0) [25]

Note that the term policy 𝜋 is still used generically in this thesis rather than specifying 𝜋𝜽 or 𝜋(𝑨|𝑺, 𝜽) for

Policy Gradient and Actor-Critic control policies since the term describes the map from state to action

learned by an RL agent by adjusting the parameters of its RL representation(s), 𝜋(𝑨|𝑺). By maximising

this performance objective 𝐽(𝜽) through the adjustment of the entries in the vector 𝜽 during interaction of

the agent with the RL environment, we are ensuring that an optimal policy is approximated during training.

While the use of the starting state 𝑺0 might seem arbitrary, it is chosen because it is often the only state

one has control over (for example an initial steady state condition of a plant).

The derivative of 𝜋 with respect to 𝜽 must be finite and real. An often-used parameterization is the soft-

max/Boltzmann distribution of Equation [26], where the normalization in the denominator ensures that a

true probability distribution is achieved and that each individual probability lies between zero and one.

The function ℎ(𝑺, 𝑨, 𝜽), as defined in Equation [27], is a preference function that is expressed similarly

to the linear form 𝒘𝑇𝝓(𝑺,𝑨) in value-based methods (Section 2.8.1). An increased preference results in

an increased probability of selecting 𝑨 again when the same state is encountered later during the training

process. By sampling an action from Equation [26] when required, exploration is ensured.

 𝜋(𝑨|𝑺, 𝜽) = 𝜋 =
exp(ℎ(𝑺,𝑨,𝜽))

∑ exp(ℎ(𝑺,𝒃,𝜽))𝒃
 ∈ [0,1] 𝑎𝑛𝑑 𝒃 𝜖 𝒜 [26]

 ℎ(𝑺, 𝑨, 𝜽) = 𝜽𝑇𝑿(𝑺, 𝑨) [27]

In Equation [27], 𝑿(𝑺,𝑨) refers to a vector in which each entry contains a function evaluated at the

coordinate (𝑺, 𝑨) within the state-action space. As ℎ(𝑺, 𝑨, 𝜽) becomes sufficiently large, the policy

becomes deterministic. This means that an output of 𝜋(𝑨|𝑺, 𝜽) → 1 is obtained if 𝑨 is the action which

the agent becomes very confident in applying to the RL environment given the currently observed state 𝑺.

At each 𝑇, the update rule used for the actor must ensure that the adjustment of the elements in 𝜽 causes

improved decision making by the RL agent. The appropriate direction for adjusting 𝜽 in the

𝓅 – dimensional parameter space is ∇𝜽𝐽(𝜽). The theoretical expression for the policy gradient ∇𝜽𝐽(𝜽) is

shown in Equation [28] with 𝐾𝑃𝐺 equal to the average length of an episode and the fraction of time spent

in each 𝑺 ∈ 𝒮 is given by 𝜇(𝑺) (this is unknown). The derivation of Equation [28] is shown by

Sutton and Barto (2018). Insufficient information of the training process is available to solve

Equation [28] analytically at each time step since this requires information on the frequencies with which

the states will be visited during training. A sample gradient for ∇𝜽𝐽(𝜽) must therefore be derived and

subsequently used to execute Equation [24] at each time step 𝑇.

Stellenbosch University https://scholar.sun.ac.za

22

 ∇𝜽𝐽(𝜽) = 𝐾𝑃𝐺 ∑ 𝜇(𝑺)𝑺 ∈ 𝒮 ∑ 𝑄𝜋𝜽(𝑺, 𝑨)∇𝜽𝜋𝜽(𝑨|𝑺, 𝜽)𝑨 ∈ 𝒜 [28]

The expected value of the sample gradient must be proportional to the actual policy gradient ∇𝜽𝐽(𝜽)

described by Equation [28]. Equation [28] is sufficient to derive such a sample gradient, since the

constant 𝐾𝑃𝐺 may be absorbed into the step size hyperparameter 𝛼𝜽 of Equation [24] when writing the

update rule for 𝜋. The summation across 𝑨 ∈ 𝒜 in Equation [28] may be viewed as a discrete

approximation to the action-value of an event associated with adjusting 𝜽 using the gradient of 𝜋. The on-

policy distribution 𝜇(𝑺) describes the probabilities with which states will be experienced if training occurs

online. We can then write ∇𝜽𝐽(𝜽) as Equation [29] after sampling 𝑺𝑇, the state at time step 𝑇. The

operand of Equation [29] may also be written as an expectation with respect to the instance of the policy 𝜋.

Firstly, 1 =
𝜋(𝑨|𝑺𝑇,𝜽)

𝜋(𝑨|𝑺𝑇,𝜽)
 is multiplied in the operand, followed by sampling 𝑨𝑇 which is, for on-policy training,

experienced according to 𝜋(𝑨|𝑺𝑇 , 𝜽). The result is Equation [30], which may be simplified to

Equation [31] by using Equations [2] and [6] to write Equation [30] in terms of the discounted return

sampled at time step 𝑇, denoted by 𝐺𝑇 (Equation [2]).

 ∇𝜽𝐽(𝜽) ∝ 𝔼𝜋[∑ 𝑄𝜋(𝑺𝑇 = 𝑺, 𝑨)∇𝜽𝜋(𝑨|𝑺, 𝜽)𝑨 ∈ 𝒜] [29]

 ∇𝜽𝐽(𝜽) ∝ 𝔼𝜋 [∑ (
𝜋(𝑨|𝑺𝑇,𝜽)𝑄𝜋(𝑺𝑇=𝑺,𝑨)

𝜋(𝑨|𝑺𝑇,𝜽)
)∇𝜽𝜋(𝑨|𝑺, 𝜽)𝑨 ∈ 𝒜]

 = 𝔼𝜋 [𝑄𝜋(𝑺𝑇 = 𝑺, 𝑨𝑇 = 𝑨)
∇𝜽𝜋(𝑨𝑇|𝑺𝑇,𝜽)

𝜋(𝑨𝑇|𝑺𝑇,𝜽)
] [30]

 ∇𝜽𝐽(𝜽) ∝ 𝔼𝜋 [𝐺𝑇
∇𝜽𝜋(𝑨𝑇|𝑺𝑇,𝜽)

𝜋(𝑨𝑇|𝑺𝑇,𝜽)
] [31]

2.9.3 The Eligibility Vector

The vector
∇𝜽𝜋(𝑨𝑇|𝑺𝑇,𝜽)

𝜋(𝑨𝑇|𝑺𝑇,𝜽)
 of Equation [31], which is written in terms of the sampled action 𝑨𝑇 = 𝑨 and state

𝑺𝑇 = 𝑺, is the direction in ℝ𝓅 that increases the probability of selecting the same action 𝑨 during future

visits to the same observed state 𝑺. The inverse proportionality of ∇𝜽𝐽(𝜽) to 𝜋(𝑨𝑇|𝑺𝑇 , 𝜽) prevents

Equation [31] from being biased with respect to more frequently experienced actions. Appendix B

describes how an analytical expression for
∇𝜽𝜋(𝑨𝑇|𝑺𝑇,𝜽)

𝜋(𝑨𝑇|𝑺𝑇,𝜽)
 is obtained for the parametrized policy form of

Equation [26].

2.9.4 The Baseline Function

In Policy Gradient methods a function of state, 𝑏(𝑺), may be subtracted from 𝑄𝜋(𝑺, 𝑨) in Equation [28].

This function is often referred to as a baseline. The form of 𝑏(𝑺) must be only a function of 𝑺 to ensure

that the expected value of training is not dependent on the choice of 𝑏(𝑺). The simplification of the

resulting expression is related in Equations [32] through [34]. Since

∇𝜽(∑ 𝜋(𝑨|𝑺, 𝜽)𝑨 ∈ 𝒜) = ∇𝛉(1) = 0, Equation [32] is equivalent to Equation [28]. This, in turn,

Stellenbosch University https://scholar.sun.ac.za

23

implies that the expectation with respect to the current policy 𝜋 in Equation [31] is not influenced by the

subtraction of a baseline.

 ∇𝜽𝐽(𝜽) = 𝐾𝑃𝐺 ∑ 𝜇(𝑺)𝑺 ∈ 𝒮 ∑ (𝑄𝜋(𝑺, 𝑨) − 𝑏(𝑺))∇𝜽𝜋(𝑨|𝑺, 𝜽)𝑨 ∈ 𝒜 [32]

 ∇𝛉𝐽(𝜽) = (𝐾𝑃𝐺 ∑ 𝜇(𝑺)𝑺 ∈ 𝒮)[∑ (𝑄𝜋(𝑺, 𝑨)∇𝜽𝜋(𝑨|𝑺, 𝜽))𝑨 ∈ 𝒜 − 𝑏(𝑺)∇𝜽∑ (𝜋(𝑨|𝑺, 𝜽))𝑨 ∈ 𝒜] [33]

 ∇𝛉𝐽(𝜽) = (𝐾𝑃𝐺 ∑ 𝜇(𝑺)𝑺 𝜖 𝒮)[∑ (𝑄𝜋(𝑺, 𝑨)∇𝜽𝜋(𝑨|𝑺, 𝜽))𝑨 ∈ 𝒜] [34]

Theodoridis (2020) highlights that the variance in the updates used in a stochastic approximation

algorithm, and therefore also the speed of parameter convergence, are disadvantaged by the use of an

observation set to approximate targets and parameter space gradients. Sutton and Barto (2018) indicate

that subtracting a baseline aids with reducing this effect.

Qualitatively, the role 𝑏(𝑺) would play in an update rule may be understood. The target remains a

numerical point estimate of discounted return (Equation [2]), and the direction of parameter adjustment

remains
∇𝜽𝜋(𝑨𝑇|𝑺𝑇,𝜽)

𝜋(𝑨𝑇|𝑺𝑇,𝜽)
. The function 𝑏(𝑺) serves as a way of providing the agent with information regarding

which updates are more worthwhile in terms of optimising the expected value of the discounted return. If

the action selection 𝑨𝑇 = 𝑨 at 𝑇 results in low discounted return yield in comparison to other known

selections, an adjustment to 𝜽 that increases the probability of repeating the selection 𝑨𝑇 = 𝑨 at 𝑺𝑇 = 𝑺 is

likely to be less beneficial than a different selection. In this sense, 𝑏(𝑺) may be used to increase algorithm

efficiency by providing “critique” to the agent.

It is important to understand that the equivalence of Equations [28] and [32] implies that the expected

value of ∇𝜽𝐽(𝜽), and therefore the expected value of the sample gradient, are not affected by the subtraction

of 𝑏(𝑺). The trajectory that the entries comprising 𝜽 follow during training is. A specific choice of 𝑏(𝑺)

is known as a critic, as clarified in Section 2.9.5. The “critique” provided by a critic is known to enable

significant reduction in the variance present in the updates to the components of 𝜽 when compared to an

agent that only differs by not incorporating a baseline function 𝑏(𝑺).

2.9.5 The One-Step Actor-Critic Algorithm

The state-value function 𝑉𝜋(𝑺) is a natural choice for a baseline 𝑏(𝑺). As is the case with SARSA, a one-

step return (only information at 𝑇 and 𝑇 + 1 used in the update rule(s)) may be used during algorithmic

updates instead of a numerical approximation to the full discounted return. To learn 𝑉𝜋𝜽(𝑺), the expression

𝒘𝑇𝝓(𝑺) for the approximated state-value (𝑉̃𝜋𝜽(𝑺)) may be used (also see Section 2.8.1), and the state-

value form of the Bellman target may be used for this RL prediction problem. The vector 𝒘 contains the

parameters relevant to the RL representation for the value function. The vector 𝝓(𝑺) contains basis

functions used in function approximation, Section 2.9.6. The RL prediction counterpart to SARSA is an

algorithm known as 𝑇𝐷(0), and the resulting update rule is used to update the parameter vector 𝒘 of 𝑉̃𝜋𝜽(𝑺)

Stellenbosch University https://scholar.sun.ac.za

24

is given in Equation [35]. The derivation of Section 2.8.1 may be used to understand Equation [35].

The gradient in the parameter space of 𝒘 is ∇𝒘(𝒘
𝑇𝝓(𝑺)) = 𝝓(𝑺). The only differences between 𝑇𝐷(0)

and tabular SARSA (Section 2.8.1) are that function approximation (Section 2.9.6) is used, and that the

action space is not accounted for in the RL representation.

 𝒘 ← 𝒘+ 𝛼𝒘(𝑅𝑇 + 𝛾𝒘𝑇𝝓(𝑺′) − 𝒘𝑇𝝓(𝑺))𝝓(𝑺) [35]

The Bellman target written in terms of state value may be used to replace 𝐺𝑇 in Equation [31] when

calculating the sample gradient for ∇𝜽𝐽(𝜽). Substituting the resulting sample gradient into Equation [24]

yields Equation [36]. In Equation [36], the discount factor 𝛾 must be equal to unity since it does not

incorporate the effect of 𝛾 < 1 on the frequencies with which certain states are visited by the RL agent

(Sutton and Barto, 2018).

 𝜽 ← 𝜽 + 𝛼𝜽(𝛾)(𝑅𝑇 + 𝛾𝒘𝑇𝝓(𝑺′) − 𝒘𝑇𝝓(𝑺))
∇𝜽𝜋(𝑨𝑇|𝑺𝑇,𝜽)

𝜋(𝑨𝑇|𝑺𝑇,𝜽)
 𝑖𝑓 𝛾 = 1 [36]

Recall from Section 2.9.2 that 𝐾𝑃𝐺 is the average length of an episode. From the proof of the policy

gradient theorem presented by Sutton and Barto (2018), it is known that 𝐾𝑃𝐺 = ∑ 𝜂(𝑺′)𝑺′∈ 𝒮 . The symbol

𝜂(𝑺′) denotes the average number of time steps spent in 𝑺′ per episode. Further, this can be expanded as

shown in Equation [37], where 𝑃𝑟(𝑺′ = 𝑺0) is the probability that an episode starts in state 𝑺′. This may

be simplified by realising that 𝑃𝑟(𝑺′ = 𝑺0) = 0 as we require a non-random starting state – each episode

starts in 𝑺0 and therefore the probability of starting in 𝑺′ is zero.

 𝐾𝑃𝐺 = ∑ 𝜂(𝑺′)𝑺′∈ 𝒮 = ∑ [𝑃𝑟(𝑺′ = 𝑺0) + ∑ 𝜂(𝑺)𝑺 ∈ 𝒮 ∑ 𝜋(𝑨|𝑺)𝑨 ∈ 𝒜 𝑃𝑟(𝑺′, 𝑺, 𝑨)]𝑺′∈ 𝒮 𝑖𝑓 𝛾 = 1

 [37]

To generalize Equation [37] to the case where 0 < 𝛾 < 1, it needs to be realised that the frequencies with

which instances of 𝑺′ are encountered during training depend on their importance with regard to the

accumulation of reward, and therefore the discount factor 𝛾. From the definition of the discounted return,

Equation [2], it is known that each possible instance of 𝑺′ that follows the starting state is associated with

the reward received multiplied with 𝛾𝑇−1. Later steps in an episode contribute less to the approximation

of 𝐽(𝜽∗) = 𝑉𝜋𝜽
∗ (𝑺0), where 𝜽∗ is the optimal actor parameter vector and 𝑉𝜋𝜽

∗ (𝑺0) is the optimal state value

evaluated at the starting state of each episode 𝑺0, and this relative importance is expressed through

discounting. The result is shown in Equation [38] for 0 < 𝛾 < 1 and 𝛾𝑇−1 therefore needs to be

incorporated in the sample gradient, and consequently in the update rule of the actor, Equation [36].

Generalizing Equation [36] in this way leads to Equation [39] as the update rule for the actor.

 𝐾𝑃𝐺 = ∑ 𝜂(𝑺′)𝑺′∈ 𝒮 = 𝛾𝑇−1∑ [0 + ∑ 𝜂(𝑺)𝑺 ∈ 𝒮 ∑ 𝜋(𝑨|𝑺)𝑨 ∈ 𝒜 𝑃𝑟(𝑺′, 𝑺, 𝑨)]𝑺′∈ 𝒮 [38]

 𝜽 ← 𝜽 + 𝛼𝜽𝛾
𝑇−1(𝑅𝑇 + 𝛾𝒘𝑇𝝓(𝑺′) − 𝒘𝑇𝝓(𝑺))

∇𝜽𝜋(𝑨𝑇|𝑺𝑇,𝜽)

𝜋(𝑨𝑇|𝑺𝑇,𝜽)
 𝑖𝑓 0 < 𝛾 < 1 [39]

Stellenbosch University https://scholar.sun.ac.za

25

It is important to realise that any RL algorithm relies on the properties of value functions. This is because

the definition of 𝐽(𝜽) only ensures that increased cumulative reward is pursued by the agent as it maximises

𝐽(𝜽) because of the existence and uniqueness of the state-value function for the optimal policy, 𝑉𝜋𝜽
∗ (𝑺).

More specifically, 𝑉𝜋𝜽
∗ (𝑺0) must be fixed by the uniqueness of 𝑉𝜋

∗(𝑺) for the performance objective 𝐽(𝜽)

to work. When ascending the sample gradient does not change the approximation to the policy 𝜋, then the

optimal policy 𝜋∗ has been approximated.

It should be noted that the policy parameter vector 𝜽 still exists without the value function. The Bellman

target 𝑅𝑇 + 𝛾𝒘𝑇𝝓(𝑺′) influences asymptotic performance by introducing bias through bootstrapping.

This bias is known to often benefit learning through update variance reduction and to promote learning

acceleration as was the case with SARSA. The bootstrapping property is required for a choice of 𝑏(𝑺) to

be deemed a critic. Table 2 provides pseudocode for the One-Step Actor-Critic algorithm that includes the

appropriate analytical eligibility vector form from Appendix B.

Stellenbosch University https://scholar.sun.ac.za

26

Table 2: Pseudocode for the One-Step Actor-Critic algorithm used to update 𝑉̃𝜋(𝑺) and 𝜋(𝑨|𝑺, 𝜽), the

numerical approximations to 𝑉𝜋(𝑺) and parametric policy 𝜋 with fixed episode lengths (on-policy)

(Sutton and Barto, 2018)

1. 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 ℎ𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑎𝑛𝑑 𝑅𝐿 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 {𝛼𝜽, 𝛼𝒘, 𝛾, 𝜽,𝒘}

2. 𝐼𝑛𝑝𝑢𝑡: 𝜋(𝑨|𝑺, 𝜽) =
exp(ℎ(𝑺,𝑨,𝜽))

∑ exp(ℎ(𝑺,𝒃,𝜽))𝒃
 𝑤𝑖𝑡ℎ ℎ(𝑺, 𝑨, 𝜽) = 𝜽𝑇𝑿(𝑺, 𝑨)

3. 𝐼𝑛𝑝𝑢𝑡: 𝑉̃𝜋 = 𝒘𝑇𝝓(𝑺)

4. 𝑓𝑜𝑟 𝐸𝑝𝑖𝑠𝑜𝑑𝑒 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 = 1 𝑡𝑜 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐸𝑝𝑖𝑠𝑜𝑑𝑒𝑠

a. 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑺 𝑖𝑛 𝑎𝑐𝑐𝑜𝑟𝑑𝑎𝑛𝑐𝑒 𝑤𝑖𝑡ℎ 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 [25]

b. 𝐼 ← 1

c. 𝑓𝑜𝑟 𝑠𝑡𝑒𝑝𝐶𝑛𝑡𝑟 = 1 𝑡𝑜 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑡𝑒𝑝𝑠

i. 𝑆𝑒𝑙𝑒𝑐𝑡 𝑨𝑇 ~ 𝜋(𝑨|𝑺, 𝜽)

ii. 𝐴𝑝𝑝𝑙𝑦 𝑨𝑇 = 𝑨 𝑡𝑜 𝑅𝐿 𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡; 𝑂𝑏𝑡𝑎𝑖𝑛 𝑅𝑒𝑤𝑎𝑟𝑑 𝑅 𝑎𝑛𝑑 𝑺′

iii. 𝛿 ← 𝑅 + 𝛾𝒘𝑇𝝓(𝑺′) − 𝒘𝑇𝝓(𝑺)

iv. 𝒘 ← 𝒘+ 𝛼𝒘𝛿∇𝒘(𝒘
𝑇𝝓(𝑺))

v. 𝜽 ← 𝜽 + 𝛼𝜽𝐼𝛿

[

 𝑋1(𝑺, 𝑨) −

∑ [exp(𝜽𝑇𝑿(𝑺,𝒃))𝒳1(𝑺,𝒃)]𝒃

∑ exp(𝜽𝑇𝑿(𝑺,𝒃))𝑏

⋮

𝑋𝓅(𝑺, 𝑨) −
∑ [exp(𝜽𝑇𝑿(𝑺,𝒃))𝒳𝓅(𝑺,𝒃)]𝒃

∑ exp(𝜽𝑇𝑿(𝑺,𝒃))𝑏]

vi. 𝐼 ← 𝛾𝐼

vii. 𝑺 ← 𝑺′

d. end

5. end

2.9.6 Function Approximation and Generalization

Fasshauer (2007) explains the use of radial basis function (RBF) interpolation as a method of

approximating functions across a real domain. A least squares solution is determined to reconstruct a test

Stellenbosch University https://scholar.sun.ac.za

27

function after interpolation by multiplication of an interpolation matrix with a vector of parameters. The

interpolation matrix contains the values of the basis functions evaluated at the data points in the columns.

After matrix multiplication is performed, the interpolated function has been constructed.

Both the approximations to the state-value function 𝑉̃𝜋(𝑺) and the action-value function 𝑄̃𝜋(𝑺, 𝑨) may be

written in the linear form described in Sections 2.8.1 and 2.9.5. This is shown in Equations [40] and

[41]. By letting each entry in the column vector 𝝓(𝑺) or 𝝓(𝑺, 𝑨) be the output of a function that maps

from 𝑺 or (𝑺, 𝑨) to ℝ1, one allows an interdependence of the different elements of the parameter vector 𝒘

which needs to be determined for each type of problem (prediction or control problem, Section 2.7). The

vectors 𝝓(𝑺) and 𝝓(𝑺, 𝑨) are basis function vectors. This approach to generating an RL representation is

known as function approximation.

 𝑉̃𝜋(𝑺) = 𝒘𝑇𝝓(𝑺) [40]

 𝑄̃𝜋(𝑺, 𝑨) = 𝒘𝑇𝝓(𝑺,𝑨) [41]

An often used form for each element in a basis function vector is the RBF form described by Sutton and

Barto (2018). By applying this form, Equation [42] may be used to express each entry 𝒳𝑖(𝑺, 𝑨) in the

column vector 𝑿(𝑺,𝑨) of Equation [27] for the preference function ℎ(𝑺, 𝑨, 𝜽) = 𝜽𝑇𝑿(𝑺, 𝑨) =

∑ 𝜃𝑖𝒳𝑖(𝑺, 𝑨)𝑖 for Actor-Critic control. The column vector containing 𝒳𝑖(𝑺, 𝑨) for 𝑖 ∈ 1,2,…𝓅 is

therefore the basis function vector for the actor, 𝑿(𝑺, 𝑨). Equation [42] contains a term for every state

component comprising 𝑺, and a term for every action component comprising 𝑨. Each constant 𝒄 is specific

to the basis function 𝒳𝑖(𝑺, 𝑨), while the scale variable 𝜎 may be kept constant.

 𝒳𝑖(𝑺, 𝑨) =̇ exp(−(
|𝑺−𝒄𝑺,𝑖|

2
+|𝑨−𝒄𝑨,𝑖|

2

2𝜎2
)) [42]

For 𝑉̃𝜋(𝑺), each element of 𝝓(𝑺) is parameterized as in Equation [42], the only difference being that

actions are not appended. Each element 𝜃𝑖 in 𝜽 is associated with an 𝒳𝑖(𝑺, 𝑨), while each element 𝑤𝑖 in

𝒘 is associated with a 𝜙𝑖(𝑺) when implementing the algorithm given in Table 2.

Figure 3 and Figure 4 show an example of an RBF in ℝ2. Each RBF has a perceptive field and the larger

the overlap between the fields of the RBFs used, the stronger the interdependence between those

parameters. This leads to generalization across the state space or state-action space and enhanced coverage

during training. Generalization therefore describes the behaviour of an RL representation where different

elements of the parameter vector are updated differently depending on their positions within the state space

(RL prediction) or the state-action space (RL control).

Stellenbosch University https://scholar.sun.ac.za

28

Figure 3: Example of an RBF in ℝ2 with 𝜎2 = 0.1

Figure 4: Top view of the RBF shown in Figure 3

2.9.7 Dimensionality of the Action Space

The actions available to a One-Step Actor-Critic agent may be discrete or continuous. In the discrete case,

for each instance of 𝑺, the agent is provided with a probability mass function (pmf) given by 𝜋(𝑨|𝑺, 𝜽).

The actions available to the RL agent are defined by the designer as discrete selections and comprise the

discretized action space 𝒜. Each action selection may have an identifying number and the respective

numbers should be scaled consistently with the components of the state 𝑺 to prevent unintended distortion

of the RBFs’ shapes when applying the update rules given by Equations [35] and [36]. Each number

that the RL agent may select as an action must map to a corresponding input applied to the RL environment.

Stellenbosch University https://scholar.sun.ac.za

29

Generalization using the RBFs placed in the state-action space allows enhanced coverage over tabular

methods to be achieved while at the same time benefitting from the policy gradient theorem and the direct

learning of an optimal policy 𝜋∗. While discretized actions would not achieve the best possible

performance during training for problems that have continuous action spaces, it is natural to consider the

discretized case when targeting efficiency in the use of operational hours and considering only a small

increase in RL representation complexity in comparison to tabular methods.

It is worth noting that an Actor-Critic algorithm may be adapted to naturally accommodate large action

spaces and even continuous action spaces, by applying function approximation to learn the parameters of

a probability density function (pdf). The parameter vector 𝜽 is then again used with a basis function vector

that contain basis functions placed in the state space. The parameters describing the pdf are expressed in

terms of 𝜽 (Sutton and Barto, 2018). In Chapter 3 this will be observed to be a significant driving force in

the development of state-of-the-art RL algorithms that utilise sophisticated function approximation such

as deep neural networks.

2.9.8 Graphical Overview of the One-Step Actor-Critic Agent

In contrast to SARSA, the One-Step Actor-Critic agent’s RL representation consists of a probability

distribution that is created for the current state. By sampling from the probability distribution, exploration

is automatically ensured. This is because sampling from a distribution inherently has an extent of

randomness associated with it. The probability mass function shown in Figure 5 is described by the

parameter vector 𝜽. The parameter vector 𝒘 associated with 𝑉̃𝜋(𝑺) captures the cumulative knowledge of

the agent regarding how beneficial the states of the RL environment are, while 𝜽 captures the policy of the

agent based on cumulative knowledge.

Stellenbosch University https://scholar.sun.ac.za

30

Figure 5: Relationship between Actor-Critic Agent, actor’s RL representation, policy, and exploration

strategy

2.10 Practicalities of Approximating a Stochastic Optimal Policy

Any on-policy RL agent starts training by selecting actions randomly. Recall that exploration ensures that

the agent experiences new state-action coordinates where it does not yet have a notion of what the potential

is for obtaining increased rewards. For value-based control (SARSA), Equation [26] may be rewritten in

terms of the action-value function’s table entries, as shown in Equation [43] (Tan, 1993). The temperature

parameter may be used to adjust the degree of determinism in the action selections. At each 𝑺, 𝜋 is a pmf

– a vector containing the probability masses of each action. The most likely actions are then sampled from

this vector to select the next action. Using Equation [43] with a value-based method after approximating

𝑄𝜋
∗(𝑺, 𝑨), the designer may obtain different stochastic policies by adjusting the “temperature” parameter.

 𝜋(𝑨|𝑺) =
exp(

𝑄(𝑺,𝑨)

𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒
)

∑ exp(
𝑄(𝑺,𝒃)

𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒
)𝒃

 𝑤ℎ𝑒𝑟𝑒 𝜋 ∈ [0,1] 𝑎𝑛𝑑 𝒃 ∈ 𝒜 [43]

If an 𝜀-greedy exploration strategy is applied after the parameters of the RL representation (the table entries

of SARSA) have converged, a deterministic policy is obtained. Importantly, the designer decides whether

a deterministic (𝜀-greedy) or stochastic (Boltzmann, Equation [43]) policy is appropriate.

In contrast, an Actor-Critic RL agent automatically adjusts the entries of the actor’s parameter vector 𝜽

which determine the degree to which the learned policy 𝜋 is deterministic. This is possible because

adjusting the entries of 𝜽 drives the preference function ℎ(𝑺, 𝑨, 𝜽), Equation [27], to larger values in

appropriate regions of the state-action space. The preference function ℎ(𝑺, 𝑨, 𝜽) is free of the constraints

Actor-Critic Agent

Actions available

Sample
from
probability
distribution

Policy (Actor)

Actor’s RL representation maps from state to probability distribution

Update the Actor and Critic

…

Exp
lo

ratio
n

 Strate
gy

At Current State

RL representations expressed in terms of 𝜽 and 𝒘

Stellenbosch University https://scholar.sun.ac.za

31

of the optimal action-value function across the state-action space, 𝑄𝜋
∗(𝑺, 𝑨), since the performance

objective 𝐽(𝜽) only depends on the optimal state-value at the starting state of an episode, 𝑉𝜋
∗(𝑺0).

2.11 Understanding an Optimal Policy in RL-Based Process Control

In the field of RL-based process control, a process with fixed physical properties and design will have one

unique optimal policy 𝜋∗ that results in the best possible control behaviour given the available

instrumentation and equipment. The design of an RL-based control approach simply aims to approximate

this optimal policy in the presence of limited information provided by the available instrumentation. Since

the RL algorithms are based on different principles (value-based, Policy Gradient, or Actor-Critic) and

different RL representations and reward functions may be designed, different approximations to the

underlying optimal policy are obtained during training.

2.12 Model-Based RL Control

In a typical industrial control setting, each transition from 𝑺 to 𝑺′ is associated with uncertainty. This

uncertainty results mainly from the limited plant information that can be gathered using the available

instrumentation, and the presence of noise in plant measurements. Recall from Section 2.4 that such

probabilistic information is contained in the unknown state-transition probabilities 𝑃𝑟(𝑺′, 𝑺, 𝑨).

The model 𝑃𝑟(𝑺′, 𝑺, 𝑨) therefore contains the probabilities of moving to each possible instance of 𝑺′ within

the RL representation from the state-action coordinate encountered at 𝑇. Such a model may be used to

characterise the RL problem, inform the sequential assignment of discounted returns to agent behaviours,

and improve the decision making performed (Jaakkola et al., 1994; Potapov and Ali, 2003). RL

approaches that develop an approximation to 𝑃𝑟(𝑺′, 𝑺, 𝑨) are known as model-based methods. There are

challenges specific to model-based methods, such as computational complexity and the dependence of

achievable agent behaviour on the accuracy of 𝑃𝑟(𝑺′, 𝑺, 𝑨).

In contrast, model-free methods do not approximate 𝑃𝑟(𝑺′, 𝑺, 𝑨) as a statistical model for the RL

environment, and decision making is therefore based solely on experience. The agent remains a statistical

model for sequential decision making irrespective of whether model-based or model-free RL is studied,

but is referred to as an agent to avoid ambiguity in the use of the word “model”.

2.13 Accounting for the Bias-Variance Trade-Off

Sections 2.8 and 2.9 clarified that RL control may be viewed as a regression problem where semi-gradient

descent and/or gradient ascent are used to minimize a cost function 𝐽(𝒘) in the case of value-based

methods, or maximise a performance objective 𝐽(𝜽) in the case of Policy Gradient and Actor-Critic

methods. An often-encountered concern in regression problems is the possibility of fitting the parameter

vector to an instance of noise provided by the training data. As we increase the number of parameters to

be trained, the degrees of freedom of our approximator increases at the expense of a larger risk of fitting

Stellenbosch University https://scholar.sun.ac.za

32

the parameters to noise present in the data (Bishop, 2006; James et al., 2013). In this section, 𝑄̃𝜋(𝑺, 𝑨) is

used as an example.

Bishop (2006) shows that the mean-squared error expected loss function 𝐽(𝒘) can be decomposed as

illustrated qualitatively in Equation [44] by taking the expectation of the squared error between the

unknown underlying value function and the approximation 𝑄̃𝜋(𝑺, 𝑨) with respect to the observed data set

(instead of with respect to the policy 𝜋).

 𝐽(𝒘) = (𝑏𝑖𝑎𝑠)2 + 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 + 𝑛𝑜𝑖𝑠𝑒 [44]

The bias in Equation [44] refers to the difference between the expected prediction provided by 𝑄̃𝜋(𝑺, 𝑨)

and the true underlying value function for policy 𝜋. The variance expresses how sensitive the values of 𝒘

are to the sampled data set. The series of (𝑺, 𝑨, 𝑅, 𝑺′) tuples are a stochastic process defined by

𝑃𝑟(𝑺′, 𝑅𝑇|𝑺, 𝑨) such that 𝐺𝑇 is the sampled return from the stochastic process

∑ 𝛾(𝑖−1)𝑅𝑖∆𝑇𝑃𝑟(𝑺
′, 𝑅𝑇|𝑺, 𝑨)𝑃𝑟(𝑨|𝑺)𝑃𝑟(𝑺)

𝑇
𝑖=1 defined in the time domain for each episode. This

stochastic process is defined in terms of the full return (Equation [2]), and therefore the factor 𝛾𝑇−1 is

required for MDP time step 𝑇 (similar to Equation [39] of Section 2.9.5) rather than 𝛾1.

The probabilities comprising the stochastic processes are the true and unknown state-transition

probabilities of the RL environment relevant to the state-action coordinates, 𝑃𝑟(𝑺′, 𝑅𝑇|𝑺, 𝑨), the action

probabilities conditioned to the corresponding instances of 𝑺, 𝑃𝑟(𝑨|𝑺), which would be instantiated by the

different policies generated during training, and the probability of encountering the respective states during

training, 𝑃𝑟(𝑺). The variance around the expectation of the Bellman target used to sample 𝐺𝑇 results from

process stochasticity, is unmodelled, and constitutes the noise. In a deterministic system, the noise would

be zero.

There remains a trade-off between bias and variance. This means that as an RL representation is equipped

with a larger parameter space with 𝒹 dimensions, 𝒘 ∈ ℝ𝒹, it can fit better to data and thus has a larger

probability of having high variance. This increases the risk of fitting the parameters to training data noise

(James et al., 2013). As the size of the parameter space is decreased, there is a greater risk of the RL

representation becoming biased.

The size of the parameter space for SARSA application may be selected to ensure that the parameter space

is much smaller than the state-action space through discretization. It should be kept in mind that the true

state-action space of a process control problem is, in reality, often continuous. In addition, many different

data points are experienced during agent training, and a discretized action space may be used. The actor

and critic basis function models described in this chapter have predefined shapes and positions. Overfitting

may therefore reasonably be assumed not to be a concern for the theory described in this chapter, and it is

much more likely in deep neural networks (Sutton and Barto, 2018). For these reasons, regularisation

techniques described by Bishop (2006) and James et al. (2013) are not incorporated for the RL

representations considered.

Stellenbosch University https://scholar.sun.ac.za

33

2.14 Challenges Posed by Stationary RL Environments

2.14.1 The MDP Assumption

Section 1.1 mentioned that the vast majority of RL algorithms are based on the MDP mathematical

formulation. The Markov property is an assumption with regard to the definition of 𝑺. The probability of

each instance of state 𝑺′ and reward 𝑅 at time step 𝑇 + 1 is assumed to depend only on the values of 𝑺 and

𝑨 at 𝑇 (Engel, 2005; Szepesvári, 2010; Sutton and Barto, 2018).

Any process can be transformed to an MDP by introducing additional state components in the definition

of 𝑺. If excessive information is included in 𝑺, the RL agent will still be able to learn a suitable optimal

policy, but the operational data requirement is more likely to become unrealistic. If insufficient

information is incorporated in 𝑺 to satisfy the assumption of a Markovian environment, the MDP is

partially observable and including an extent of historical information in the components of 𝑺 may improve

the control behaviour learnt (Moerland et al., 2021). For an extent of historical information included in 𝑺,

the optimal definition of the state space 𝒮 for a particular process lies between the extremes of including

many state components and including insufficient state components. An RL environment that is not truly

Markovian may still be modelled as such to varying degrees of success.

2.14.2 Reward Function Design and Assignment of Rewards

There are no fixed rules with regard to how the goals envisaged by the designer should be translated to a

state-dependent reward function. The rewards may be sparse or continuous (Shipman and Coetzee, 2019).

Further, associating a reward received with the correct change(s) in action may pose a considerable

challenge. Adjustment of the sampling period ∆𝑇 is a straightforward initial approach to addressing this

problem.

2.14.3 The Dimensionality of the State-Action Space

In process control problems, the operating window is a connected set. Final element adjustments are often

continuous, that is 𝒜 is continuous. This does not mean that the designer must always model 𝒮 and 𝒜 as

continuous when designing the RL representation. In general, there are two ways to deal with these vector

spaces. The first is described by Potapov and Ali (2003) as aggregation, where 𝒮 and 𝒜 are mapped to

discretized states and actions, thereby establishing a tabular approach. Fully continuous or intermediate

application may be achieved through the use of function approximation, which was discussed in

Section 2.9.7. As such, continuous modelling of 𝒮 may be combined with continuous modelling of 𝒜.

Alternatively, both vector spaces may be modelled as discrete, or only 𝒜 may be modelled as discrete.

Another important consideration is the curse of dimensionality. Lillicrap et al. (2016) summarise this

concept as the exponential increase in the size of the modelled action space 𝒜 as the degrees of freedom

in a system are increased. In a seven degree of freedom system, with each degree of freedom allowing for

Stellenbosch University https://scholar.sun.ac.za

34

three discretized actions, the size of the discretized action space 𝒜 is 37. As we increase the fineness of

𝒜’s discretization, the size increases severely.

This has led to alternative approaches to dealing with large action spaces rather than applying algorithms

such as Deep Q-Network (DQN) with discretized actions – Chapter 3. Exploration of large action spaces

with a DQN agent is difficult. It is important, however, that Lillicrap et al. (2016) focused on application

to problems where it is considered vital not to discard any information about the structure of 𝒜. Therefore,

concerns about the curse of dimensionality may potentially be relaxed when targeting simplification of the

problem and efficiency in the use of plant hours during training.

2.14.4 RL Environment Stochasticity and Its Dependence on Industry

Recall from Section 2.10 that an agent’s policy 𝜋 may be deterministic or stochastic

(Engel, 2005; Sutton and Barto, 2018). For a deterministic policy, the RL representation and the

exploration strategy are designed so that, at a particular state 𝑺, the selection of the action 𝑨 is always the

same. The only exception occurs if the agent selects an action with the purpose of exploring (for example,

𝜀-greedy).

A deterministic RL environment has a sparse matrix comprising 𝑃𝑟(𝑺′, 𝑺, 𝑨), where having a particular

action 𝑨 applied to it at state 𝑺 inevitably leads to the same next state 𝑺′ at 𝑇 + 1. This is often not the

case in chemical processes, with the mineral processing industry being a very good example. This is

because an insufficient set of sensors is typically available to provide complete information to the agent

about the achieved state (Whitehead and Lin, 1995). This has an influence on the extent to which the MDP

assumption of Section 2.14.1 is only an approximation as opposed to a strictly valid assumption. Industrial

processes are therefore typically partially observable. As a result, the optimal policy 𝜋∗ that would provide

the best solution to a process control problem is a stochastic policy.

2.15 Chapter Summary

Chapter 2 provided the reader with the necessary theoretical background to understand the RL algorithms

studied in this thesis. An in-depth focus on the underlying theory is aligned well with the aim and

objectives of the study. While the algorithms may be argued to be relatively “simple” by experienced RL

practitioners, readily accessing the necessary roots of the algorithms without significant background in

machine learning is a considerable challenge to the wider community of stakeholders in its own right.

The author used this chapter to lay some of the foundations for the methodology followed to conduct the

feasibility study. This methodology is described in Chapter 4 and Chapter 5. The theory of this chapter

was aimed at addressing two key problems. The first is that of estimating suitable instances of the table

entries for SARSA, Q-learning, and suitable entries for the critic’s parameter vector 𝒘 in the case of a One-

Step Actor-Critic agent. The second problem is estimating a suitable parameter vector 𝜽 for the actor of a

One-Step Actor-Critic agent.

Stellenbosch University https://scholar.sun.ac.za

35

CHAPTER 3

LITERATURE REVIEW

As will be seen in this chapter, it is evident that the majority of the RL-based control methods found in

literature were applied in the context of simulation studies. Hoskins and Himmelblau (1992) applied

principles of RL to control long before the advent of deep learning in RL-based process control. It is

observed that deep learning has enjoyed much attention in state-of-the-art RL-based process control

research in recent years, and to a much smaller extent the building blocks of the field. All three branches

of RL control (value-based, Section 2.8, Policy Gradient, and Actor-Critic, Section 2.9) are represented,

and there is relatively little focus on methods that utilise a probabilistic model of the RL environment

(model-based methods, Section 2.12).

The prevailing theme in RL-based process control research is applying available computational resources

to improve asymptotic performance of the trained policy 𝜋. The literature selected for review aims to

contrast the use of elementary and state-of-the-art RL-based control methods. The former refers to the use

of RL representations that do not apply deep learning and aligns with the aim and objectives of this thesis

(Section 1.2), while the latter refers to the use of deep neural network-based function approximation.

Interestingly, application of model-based approaches to process control problems may involve work on

adaptations to MPC through the use of the probabilistic model of the RL environment in certain locations

of the state space 𝒮 (Lee, 2004; Lee and Lee, 2005).

3.1 Parallels Between RL-Based Control and Classical Process Control

Consider the often-encountered simplified time-domain block diagram of a SISO control system depicted

in Figure 6. The continuous feedback controller utilises the error signal (𝐸(𝑡)) calculated as the difference

between the set point (𝑆𝑃(𝑡)) and the output of the sensor measuring the controlled variable (𝐶𝑉𝑚(𝑡)). A

control law is applied to the error signal after which the dynamics of the final element determines the

manipulated variable (𝑀𝑉(𝑡)) adjustments made as an input to the process. The control law output is

denoted by 𝑢(𝑡). In the interest of more concise notation, the ‘(𝑡)’ will be omitted when referring in the

text to control laws that operate in continuous time, with the exception of 𝐸(𝑡) and 𝑢(𝑡). The objective of

the control system is to maintain the actual 𝐶𝑉 close to 𝑆𝑃. This includes finding an adequate trade-off

between minimising the deviation of 𝐶𝑉 from 𝑆𝑃 during transient responses, limiting excessive or

physically unrealisable 𝑀𝑉 adjustment, and ensuring zero offset at steady-state.

Stellenbosch University https://scholar.sun.ac.za

36

Figure 6: Classical feedback controller time domain block diagram, adapted from Marlin (2000)

In classical feedback control, the problem is typically approached by using linearization or empirical

modelling, and Laplace domain modelling to determine an appropriate set of tuning constants. These

tuning constants are applied to a fixed mathematical expression that maps 𝐸(𝑡) data to control signals that

are subject to final element dynamics before being applied to the process. For a fixed process description,

the tuning constants are typically determined to favour the type of control problem.

Skogestad and Poslethwaite (2005) describe a regulator control problem as compensating for the effects of

uncontrolled exogenous input perturbations, the disturbance variables (𝐷𝑉). The servo problem describes

the achievement of appropriate 𝑀𝑉 behaviour to ensure that the 𝐶𝑉 follows changes to the 𝑆𝑃. A classical

control law is the PID control algorithm, which is shown in recommended form in Equation [45]

(Marlin, 2000). PI control is obtained by omitting the third term in the parentheses. The ‘𝑏𝑖𝑎𝑠’ is the

value of 𝑢(𝑡) required when 𝐸(𝑡) = 0 to maintain the initial steady state of the process.

 𝑢(𝑡) = 𝐾𝑐 (𝐸(𝑡) +
1

𝜏𝐼
∫ 𝐸(𝑡)
𝑡

0
𝑑𝑡 − 𝜏𝑑

𝑑𝐶𝑉(𝑡)

𝑑𝑡
) + 𝑏𝑖𝑎𝑠 [45]

An RL-based controller, as shown in Figure 7, determines 𝑢(𝑖(∆𝑇)) for 𝑖 ∈ ℕ and time domain sampling

period ∆𝑇 through its policy 𝜋. The agent algorithm receives information regarding the RL environment,

which is the measured state information. In contrast to Equation [45], the agent’s control law is expressed

in terms of the parameters of an RL representation. Iterative training of the agent requires the identification

of appropriate measurements to represent the essential characteristics of the RL environment, which

includes the process.

Process
+
-

𝑆𝑃 𝑡
𝐸 𝑡 𝐶𝑉 𝑡

Controller

𝐷𝑉 𝑡

𝑀𝑉 𝑡

𝐶𝑉𝑚 𝑡

Final Element
Dynamics

𝑢 𝑡

Sensor
Dynamics

Stellenbosch University https://scholar.sun.ac.za

37

Figure 7: Generic agent that represents the control law in an RL-based controller design

3.2 Model-Free, Value-Based Applications

Value-based RL control, Section 2.8, allows the studying of tabular RL representations and the influences

of hyperparameters at their highest levels. Recall from Section 2.5 that different approaches to modelling

the state-action space may be used to approximate the same optimal action-value function 𝑄𝜋
∗(𝑺, 𝑨) at

different resolutions, once the RL representation’s parameters have converged. The use of a discretized

state-action space clearly constitutes a low-dimensional viewpoint, but holds merit in terms of

understanding the interaction of RL agents with RL environments of interest to chemical process control.

It also aids in the training of interpretable RL representations.

Since elementary RL is applied in this work, the review of Section 3.2.1 is the most extensive. The

literature reviewed in this chapter is used to identify themes relevant to the feasibility study conducted.

These themes are summarised in Section 3.8.

3.2.1 Elementary Application

Syafiie et al. (2008) approach SISO, RL-based control with a tabular RL representation and Q-learning in

their Model-Free Learning Control (MFLC) approach. The authors select 0 < 𝛼 ≤ 1, with 𝛼 = 0.1 being

typical and state that this range avoids oscillatory behaviour during value updates. The discount factor 𝛾

is set close to one with representative examples of 𝛾 = 0.9 for buffer tank control and 𝛾 = 0.98 for

laboratory scale pH control in their study. The use of 𝛾 close to one while showing cognisance of its

theoretical constraints is intuitive, since an RL agent must incorporate the long-term dynamic effects of its

+
-

𝑆𝑃 𝑇

𝐶𝑉𝑚 𝑇

RL Algorithm

Policy update

𝑢 𝑇 = 𝐴 𝑇

Measured state information

Stellenbosch University https://scholar.sun.ac.za

38

behaviour while making decisions which are relevant to a process control problem

(Hafner and Riedmiller, 2011).

In MFLC, RL representation design is approached from a minimalistic point of view. Since the available

handles to be used as actions are fewer for process control problems than is the case with many other RL

applications such as those found in robotics, the curse of dimensionality described by Lillicrap et al. (2016)

is argued by the authors not to prevent the application of tabular RL representations. The feedback control

error is discretized, which is also the only component comprising the scalar state, 𝑆. It is stated by

Syafiie et al. (2008) that, without compromising generality, the goal state in MFLC is assumed to be at the

centre of the symmetrically discretized states. The authors state that the fineness of the state discretization

establishes a trade-off between improved efficiency in the agent’s use of operating hours and the

description of all the characteristics of the action-value function of a particular control problem. This

trade-off is incorporated through the selection of a parameter for the equal number of symmetrically

discretized states available for the positive and negative feedback control errors, respectively. The goal

state contains 𝐸(𝑇) = 0.

Reward functions typically used in MFLC may be binary with a positive reward of +1 if 𝑆′ is in a

predefined goal state and a penalty of −1 if 𝑆′ is outside the goal band (Syafiie et al., 2008). Alternatively,

a penalty of −1 is used at intermediate values of 𝑆′ and a large penalty of −10 might be used if the feedback

control error is excessively large in its magnitude. A reward of +10 may in this case be received if 𝑆′ is

within the goal band. Syafiie et al. (2008) hereby manage to illustrate that the control objectives of a

particular process control problem need not be communicated explicitly in the reward function when

designing RL-based controllers. The rewards can communicate to the agent that it must ensure 𝐶𝑉 is

maintained close to 𝑆𝑃 irrespective of whether a servo or regulator problem is encountered. The relative

magnitudes of penalties and rewards need to be sensible to enable efficient learning.

In the work of Syafiie et al. (2008), the action space 𝒜 is represented by a discrete set of scalar actions

that depend on the instance of 𝑆 encountered. The sampling period ∆𝑇 is implemented by setting the

control law output at 𝑇, 𝑢(𝑇), equal to 𝑢(𝑇 − 1) + 𝑘(𝑎𝑤 − 𝐴) for action selection 𝐴. This form for the

control law output is very close to a discrete time approximation of a continuous low-pass filter where the

filter time constant multiplied with the derivative of the filtered output with respect to time is set equal to

the filtered output subtracted from the unfiltered output. The parameter 𝑘 is used to adjust how aggressive

the controller is, while 𝑎𝑤 is called the wait action. The wait action is the action corresponding to

maintaining the previous control signal as (𝑎𝑤 − 𝐴) = 0 if 𝐴 = 𝑎𝑤. A more aggressive controller implies

that the action selection frequencies of the agent have a more immediate effect on the current control law

output 𝑢(𝑇). When 𝑆 is within the goal band, 𝑎𝑤 is provided to the agent as a way of forcing the agent to

adjust its policy 𝜋 to establish zero steady-state offset within the control tolerance and the incremental

change in the control law’s output.

Stellenbosch University https://scholar.sun.ac.za

39

The significance of the expression for 𝑢(𝑇) used by Syafiie et al. (2008) is twofold. Firstly, the authors

illustrate that the agent’s discrete action selections may be processed in the RL environment to achieve

intermediate selections. Secondly, the process time represented by a transition from 𝑇 to 𝑇 + 1, the

sampling period ∆𝑇, does provide an additional handle in RL-based control design. This handle provides

an interesting approach which may presumably allow the designer to reduce operational data requirement

at the expense of a “coarser” control law, in addition to the primary goal envisaged by the

authors – manipulating how aggressive the controller is.

Syafiie et al. (2008) have shown that reasonable feedback control may be achieved through the use of

value-based RL control methods with tabular RL representations. An 𝜀-greedy exploration strategy was

used with 𝜀 = 0.10. Sutton and Barto (2018) indicate that Q-learning is an off-policy algorithm, which

implies that it is suitable for training on historical data (or to a less practical extent training in parallel to

an existing control law). The Q-learning update rule, Equation [21], is very intuitive and is equivalent to

SARSA if a greedy policy is followed by the SARSA agent.

The use of 𝐸(𝑇) as the scalar state 𝑆 in MFLC is likely inspired by the use of 𝐸(𝑡) in classical PI/PID

control. From a machine learning perspective, the definition of scalar components contained in a vector 𝑺

comprising the state space 𝒮 must be made in a manner which improves the accuracy of the MDP model’s

description of the RL environment. The use of 𝐸(𝑡) is a reasonable first approach to understand the

behaviour of a tabular RL agent applied to the control of certain processes.

Brujeni et al. (2010) applied SARSA with a k-nearest neighbour generalisation technique for continuous

state space 𝒮 modelling in combination with quadratic function approximation to the tuning of a PI

controller (in an RL-based adaptive control scheme reminiscent of gain scheduling), and compared the

resulting PI controller to the control performance achieved using an Internal Model Controller (IMC). The

process studied was a Continuous Stirred Tank Heater (CSTH) which is known to be controlled well by PI

and PID controllers.

Their training scheme is comprised of two stages. Firstly, an empirically identified Laplace domain model

is used as the RL environment in on-policy training. Secondly, the first-guess policy is refined by allowing

the RL agent to interact with the experimental setup while adhering to physical constraints with regard to

final element adjustment. Servo and regulator problem behaviours were illustrated by the authors. The

feedback control error defined the state 𝑆, and the components of the action 𝑨 were defined as the

proportional and integral gains. A penalty of −(𝐸(𝑇))
2
 was used during training.

An 𝜀-greedy exploration strategy was used throughout, with 𝜀 decaying from unity in a
1

𝑇
 fashion. The

discrete action sets for the RL-based and IMC controllers were the same – illustrating that controllers need

to be limited to the same extent for sensible comparison. A step size 𝛼 = 0.25 was used throughout.

Different 𝑆𝑃 values changing within a fixed symmetric range were used during each episode of training.

After obtaining an initial estimate of a suitable policy 𝜋, it was refined through training on laboratory

Stellenbosch University https://scholar.sun.ac.za

40

equipment with the same training scheme. The presence of a sufficiently quantitatively accurate process

model renders potential concerns regarding operational data requirement irrelevant.

Interestingly, the use of RL to establish an alternative controller tuning paradigm was pointed out by

Brujeni et al. (2010) as an approach that would have a less severe impact on process performance during

the application of exploratory actions to the RL environment. Presumably, this is because including a PI

control law in the RL environment serves a dimensionality reduction role, the problem faced by the RL

algorithm is then significantly simplified, and unintended behaviour that is not safe may be removed by

adjusting the ranges of the tuning constants that the RL agent may apply to the RL environment. By

training the RL agent initially on an empirically identified first-order-plus-time-delay (FOPTD) model of

the process, the authors are stressing that domain knowledge must be leveraged even when applying model-

free RL control methods. This specific example limits the agent to simulated experience, but is

considerably better than training the agent from scratch provided that a suitably accurate model is available.

Brujeni et al. (2010) illustrated in their simulation results that a PI controller tuned using RL approximates

the aggressive IMC controller tuning when trained sufficiently. This is significant as the ability to

understand RL-based control from the perspective of another control method is a step towards the

development of RL-based controllers that are more easily accessible outside the machine learning

community, and display improved interpretability. The focus on 𝑆𝑃 adjustment during agent training

illustrates that, as a minimum, adaptive RL-based control needs to be exposed to perturbations in its

definition of the state space during training. The initial plant-model mismatch when connecting the first

estimate of the policy 𝜋 to the real-world system caused oscillations about the desired 𝑆𝑃.

Ramanathan et al. (2018) applied Q-learning on-policy (in the same vein as the work of

Syafiie et al. (2008)) to the control of level in a conical tank with a constant 𝑆𝑃. Such process control

problems display significantly non-linear dynamics which are caused by the time-varying cross-sectional

area and the requirement to achieve precise control. A discretized state-action space was used, and the

action-value table was trained initially on a model of the process to prevent damage to the experimental

setup when connecting the RL agent to the experimental feedback control loop. Approaches to the control

of conical tanks often entail linearized modelling of system parameters, fuzzy control, or neural networks.

The authors assumed that an MDP sequential decision making framework is adequate for the process for

their definition of the state-action space. The outlet valve is kept at a constant setting during training, while

discrete inlet valve openings are available to the agent as actions.

The authors continue to emphasize the importance of preventing the use of an excess of parameters that

need to be tuned and set 𝛾 = 0.99 for Q-learning. It is important to realise that long-term rewards must be

prioritised, and the use of 𝛾 = 1 does not compromise the properties of the value functions provided that

termination of each episode is ensured when following each policy 𝜋 instantiated during RL agent training

(Jaakkola et al., 1994; Sutton and Barto, 2018). While this may in general be achieved by defining a fixed

state that terminates a training episode, it may also be ensured by predefining the length of a training

Stellenbosch University https://scholar.sun.ac.za

41

episode. The definition of 𝑆 as the position of liquid in the tank is only feasible for a constant 𝑆𝑃

application as was the case in their work, since error signal feedback is required for control to work.

The authors’ graphical depiction of how scalar states are mapped to scalar actions for the trained agent

illustrates how the agent selects discrete actions at frequencies that bound the optimal selections within the

constraints of its discretization. If the conical tank’s height is significantly above 𝑆𝑃, the inlet valve must

be closed frequently, and vice versa. Between these extremes the agent is uncertain as to what constitutes

ideal behaviour and it bounds the ideal final element adjustment by selecting actions across the range of

available actions. The reward function used by Ramanathan et al. (2018) was the negative of the absolute

value of the error signal.

Testing for disturbance attenuation involved changing the inlet flow rate or removing liquid while the

constant 𝑆𝑃 was maintained. A trade-off between discretization fineness, performance, and operational

data requirement was noted by the authors. The authors manage to illustrate that even a minimalistic state

space definition with discretized state-action space modelling and deterministic policy can show a level of

robustness to 𝑆𝑃 and 𝐷𝑉 changes. The authors mention that including more actions and training at

different outlet flow rates may help with improving robustness while allowing for a larger operational data

requirement.

The trained agent consistently achieves heights that oscillate about the desired 𝑆𝑃. This is a result of direct

application of a discretized state-action space when interacting with the conical tank system, potentially

accompanied by plant-model mismatch.

3.2.2 State-of-the-Art

Hafner and Riedmiller (2011) developed the Neural Fitted Q-Iteration with Continuous Actions

(NFQCA) algorithm that extends concepts of value-based RL control to a continuously modelled action

space 𝒜. The greedy Bellman target is used, while a neural network RL representation is used for the

critic. A continuous penalty function is applied and is an extension of the use of a binary reward function.

In the continuous penalty function, the error signal 𝐸(𝑇) is scaled using a hyperparameter, after which a

binary cost is multiplied with the square of the hyperbolic tangent applied to the scaled 𝐸(𝑇). A dataset

for batch learning, 𝒟, is created online and contains entries consisting of (𝑺, 𝑨, 𝑺′) tuples obtained during

transitions from 𝑇 to 𝑇 + 1. Two phases alternate during training of the RL agent. Firstly, the recent

policy is used to control the process and expand 𝒟. This is followed by updates to the critic and actor.

The NFQCA algorithm applies a fitted Actor-Critic method since the policy network of the actor is used

to facilitate Q-learning rather than apply a Policy Gradient method. The most recent instance of the neural

network representation of the policy 𝜋 is assumed to provide the greedy action at time step 𝑇. This provides

a promising framework for value-based control in continuous state-action spaces where finding the greedy

action may not be possible without intractable computational expense. Learning is performed with

different initial input values to aid in the prevention of local minima when applying the non-linear

Stellenbosch University https://scholar.sun.ac.za

42

parametric function approximation, and computational efficiency is promoted by the approach to Bellman

target evaluation (Hafner and Riedmiller, 2011).

The authors applied NFQCA to the control of a Heating, Ventilation, and Air Conditioning (HVAC) task

which was represented by a non-linear process model. The coupled dynamics of each unit of the process

makes this a difficult task for classical control owing to the necessity of variable gains. The authors

successfully trained the agent within 163 interaction trajectories and a total of 32 600 MDP steps. Every

200 steps were considered as a batch of data to include in 𝒟. The agent’s state 𝑺 consisted of seven

components (boiler feed water flow rate, temperature of inlet boiler water, outlet and inlet air temperatures,

temperature of outlet boiler water, air inlet flowrate, and error signal 𝐸(𝑇)). Valve state was provided to

the agent as action, and deep neural networks were applied to represent both 𝑄̃𝜋(𝑺, 𝐴) and 𝜋.

Mnih et al. (2015) tackle the problem of learning off-policy from sensory inputs without pre-identified,

task-specific characteristics/features of the state-space, and a discrete action space. Their algorithm was

tested in a benchmark game theory RL environment. Their 𝜀-greedy Deep Q-Network (DQN) algorithm

addresses the off-policy instability issues of Q-learning, Section 2.8.2, by introducing experience replay

for value-based control to the RL field, and defining separate target and behavioural policies. Experience

replay is instantiated through the generation of a buffer of previous training data tuples. From the replay

buffer, a random minibatch of (𝑺, 𝑨, 𝑅, 𝑺′) tuples are sampled at each training step, and gradient descent

updates based on Q-learning are performed on the behavioural parameter vector.

In DQN, the target network is only updated periodically by setting its parameters equal to the parameters

of the current convolutional network representing 𝑄̃𝜋(𝑺, 𝑨). Correlations in observation sequences are

removed and those arising from the sensitivity of 𝜋 to 𝑄̃𝜋(𝑺, 𝑨) are smoothed by the random sampling

from the replay buffer. Sampling from a replay buffer removes the assumption that network training

samples are independently and identically distributed, and improves algorithm computational efficiency.

The data distribution assumption does not hold during exploration (Lillicrap et al., 2016), and therefore a

solution was sought during the development of DQN (Mnih et al., 2015). The slower updating of the target

network reduces correlations between the target and the action-values.

Hessel et al. (2018) highlight their concern about the limitations of 𝜀-greedy exploration in the DQN

algorithm. Their predominant concern is that it is difficult to learn alternative policies that accommodate

rewards only far in the future. More specifically, the concern was exemplified by a game studied by

Mnih et al. (2015) that required many actions before obtaining the first reward. Various different

extensions to DQN were proposed in the approach of Hessel et al. (2018).

It is worth pointing out that DQN was initially designed and tested on RL environments where perceptive

pixels were provided as input without clear definition of RL environment characteristics by the designer.

That is, the score in a game, sensory input, and available actions were provided along with the scalar

penalty signal.

Stellenbosch University https://scholar.sun.ac.za

43

3.3 Model-Free Policy Gradient and Actor-Critic Applications

The success of DQN inspired the extension of some of its principles to a Policy Gradient method for MDPs

that are assumed to have a fully observable state. This is not a limitation, but refers to the use of a

deterministic policy with noise added for the purpose of exploration. This led to the development of the

Deep Deterministic Policy Gradient (DDPG) algorithm by Lillicrap et al. (2016). The techniques of target

and behavioural networks, and replay buffer sampling (using a uniform distribution in DDPG) are

incorporated in the algorithm in addition to batch normalization. Direct application of DQN to continuous

action spaces is not feasible as the evaluation of the greedy Bellman target becomes intractable.

Lillicrap et al. (2016) state that components of the state-action space can have ranges that differ

significantly owing to the use of different units. This is an impediment to proper generalization and

parameter learning owing to the distortion of basis functions. The basis functions can be scaled manually.

An additional problem in the training of neural networks is a shift in the training data population

distribution (and indirectly of the data sent to the different network layers) known as covariance shift

(Ma et al., 2019). To address the scaling problem while minimizing covariance shift, Lillicrap et al. (2016)

introduce batch normalization where each dimension of the minibatch data sample is normalized to have

unit mean and variance. A soft-max parametric policy 𝜋 neural network and a separate 𝑄̃𝜋(𝑺, 𝑨) neural

network are trained. Both networks’ targets are updated at much slower rates than the behavioural

networks to ensure training stability.

Ma et al. (2019) applied DDPG to the control of a simulated multi-input nonlinear semi-batch

polymerization process with large time-delay. The authors stress that the application of RL methods to

process control problems required problem-specific design specifications. Average molecular weight

(MW) is the 𝐶𝑉 of the process, and the MDP assumption is inadequate to achieve acceptable performance

for this specific control problem if the definition of the state space 𝒮 does not incorporate historical

information. Therefore, the first component of 𝑺 is defined to include historical MW measurements.

Corresponding MW targets constitute the second component of 𝑺. Policy gradients are implemented

through an inverting gradient method that removes the necessity of saturating action selections when

continuous actions outside of the available range are selected during training. Each action 𝑨 sampled from

the continuously modelled action space 𝒜 consists of two components, namely the initiator and monomer

flow rates.

The authors define their reward function as a piecewise continuous function that is a reward linear in time

if the MW is within the tolerance range. Otherwise, a squared penalty in terms of MW deviation is added

to a linear time-dependent penalty. Their intention was clearly to communicate control objectives such as

control within a tolerance band with a continuous reward function that prevents reward sparsity and causes

more severe reinforcement signals to occur as 𝑇 increases. The authors define the sampling period ∆𝑇 as

2.5 𝑚𝑖𝑛 with the goal of incorporating the sampling delay present in the measurement of the 𝐶𝑉.

Stellenbosch University https://scholar.sun.ac.za

44

Shipman and Coetzee (2019) used Advantage Actor-Critic (A2C) as an on-policy method to tune a

classical PI controller for a stochastic instance of a discrete first-order dynamic model. The process

model’s gain and time constant were kept within predefined ranges. This algorithm’s state-value target is

expressed using the same principles as those in the One-Step Actor Critic algorithm of Section 2.9.5

(Mnih et al., 2016). The authors used a continuous saturating reward function scaled to lie between zero

and one. In the work of Shipman and Coetzee (2019), the reward function was developed to encode

concepts of squared-error deviation from 𝑆𝑃 and penalizing excessive 𝑀𝑉 manipulation (excluding

proportional mode responses to 𝐷𝑉 and 𝑆𝑃 changes). The discrete action space modelling of A2C was

modified to accommodate continuous actions by representing the probability distribution used to select

each action by a mean value and a variance (pdf) rather than generating discrete action probabilities (pmf).

The policy gradient ∇𝜽𝐽(𝜽) was approximated using the method of Mnih et al. (2016) and was

accompanied by regularization to prevent overfitting, Section 2.13.

The training scheme included random changes of plant dynamics and either exposing the agent to the full

complexity for which it was trained or a gradual increase in task complexity. The state definition included

the noisy 𝐶𝑉 measurement of the SISO process, the 𝑆𝑃, the control law signal 𝑢(𝑇), and tuning constants.

The MDP time steps of the agent are purposefully scaled with respect to the true process, presumably to

improve the ease with which the agent observes the causal relationship between its actions and the rewards

received.

A total of 100 × 106 training time steps were used in all the training schemes of

Shipman and Coetzee (2019). The sampling period ∆𝑇 for the agent was defined as 60 seconds. The sense

of the controller is assumed known in the controller gain ranges provided to the agent. The agent time

steps of 60 seconds is very large in comparison to the time constant 𝜏𝑝 of the model studied which has

ranges of 0.5 to 15.5, 10 to 45, and 1 to 4 seconds during training.

Marlin (2000) states that, for a FOPTD model, the time required to reach 63.2 % of the final 𝐶𝑉 value for

a step change in the input is the process time constant 𝜏𝑝. This implies that the agent was only fully

exposed to the RL-environment’s dynamics for an unknown fraction of the training time steps, while the

remainder of the agent’s training comprised of steady-state optimization of the process. This does not

compromise the value of the results generated by Shipman and Coetzee (2019) in any way. The

observation made helps to identify an important aspect of RL-based control, namely that the sampling

period ∆𝑇 should be selected in a way that ensures that the RL agent is sufficiently exposed to the dynamics

of the process that it needs to control.

3.4 Model-Free, Bayesian RL

An alternative function approximation paradigm was proposed by Engel (2005) through the application of

Gaussian Processes (GPs) coupled with 𝜀-greedy exploration to establish a SARSA variant where the

approximation 𝑄̃𝜋(𝑺, 𝑨) is determined online based on Bayes’ rule. Variants of this concept are coined

Stellenbosch University https://scholar.sun.ac.za

45

Gaussian Process Temporal Difference (GPTD) learning methods, and may be implemented with a

parameter vector 𝒘. Stochastic and deterministic GPTD implementations have been developed.

Ghavamzadeh et al. (2015) have surveyed model-free applications of value-based, Policy Gradient, and

Actor-Critic methods that use Bayesian inference. GPTD was adapted with posterior sampling by

Fan et al. (2018) to yield Gaussian Process Posterior Sampling Temporal Difference (GPPSTD).

Deisenroth and Rasmussen (2011) developed the probabilistic inference for learning control (PILCO)

model-based RL control algorithm that promotes efficiency during training for different control tasks by

calculating analytic policy gradients through GP function approximation.

The small extent to which Bayesian, model-free RL methods have been applied to process control problems

is noteworthy. This may be attributed in part to the ability of frequentist Actor-Critic parametric function

approximators to incorporate agent uncertainty naturally despite not applying Bayesian principles. The

selection of a prior distribution 𝑝(𝒘) relies on a coupling of domain knowledge and statistical intuition

with no “routine” procedure that may be used for standardising the approach. Different designers will

make significantly different assumptions regarding the data distribution of RL agent training and such

assumptions would further rely on the specific process considered.

Evaluation of 𝒘 in the GPTD methods of Engel (2005) may potentially require the inversion of matrices

that may be ill-conditioned despite approaching the control problem using a low-dimensional state-space.

It is an important realization that the number of state components (the number of components comprising

𝑺) is typically low. The concerns reiterated by Lillicrap et al. (2016) in the context of the PILCO algorithm,

namely that it is impractical for high-dimensional problems, is only considered relevant in the process

control setting if one agent with one GP function approximator is used to manipulate the final elements of

many control loops on a large plant. This is substantiated by the success of applying tabular methods to

certain SISO control problems, Section 3.2.1. Employing one agent to manipulate the final elements of

many control loops would cause the number of components contained in 𝑺 to increase significantly.

3.5 The Importance of Real-World Data

The use of dynamic process models is invaluable when conducting theoretical feasibility studies of new

process control developments. The results of such work must be viewed conservatively since the extensive

success of RL applied to problems posed by games (see, for example, Mnih et al. (2015)) may, in part, be

attributed to the ability of the computational agent to discern “fixed” rules that are prevalent in such RL

environments.

Engel (2005) emphasizes that both intrinsic and extrinsic uncertainty exists in an RL control problem.

Uncertainty results from the mismatch between the RL design choices and their suitability to the process

being controlled. Intrinsic uncertainty depends on whether the RL environment’s state transitions are

occurring randomly. In contrast, extrinsic uncertainty results from the subjective nature of RL

representation design, the definition of states and actions and the reward function, and the RL algorithm

Stellenbosch University https://scholar.sun.ac.za

46

applied. Recall from Sections 2.14.1 and 2.14.4 that partial observability arises when a stochastic problem

behaviour is induced by insufficient information contained in the definition of 𝑺

(Sutton and Barto, 2018; Moerland et al., 2021).

Unfortunately, the use of dynamic process models as opposed to real-world data results in a significant

bias with respect to uncertainty. The presence of covariance shift, Section 3.3, is likely also more prevalent

when deep neural networks are used. Intrinsic uncertainty cannot be reduced, while the external

uncertainty exacerbated by a limited operational data set can (Moerland et al., 2021).

This does not mean by any means that simulation-based study does not allow for a sensible feasibility

study. It is essential to consider the operational data requirement for simulated systems with the

assumption that, for many processes, this requirement would be further increased owing to further design

uncertainty. New theoretical developments in RL-based process control also cannot be safely applied

directly to real-world systems that pose a safety or economic risk.

Stellenbosch University https://scholar.sun.ac.za

47

3.6 Overview of Literature Included in the Review

Table 3 provides a high-level overview of the literature reviewed in this chapter. The entries of Table 3 follow the review of the chapter chronologically, where

multiple-input, multiple-output (MIMO) control problems are indicated in brackets in the relevant cells.

Table 3: Characteristics of RL-based control approaches found in literature

Author Tabular?
Value-

based?

Policy

Gradient?

Actor-

Critic?

Bayesian

RL?

Model-

based RL?

SISO

Problem for

Agent?

Applied to

Chemical

Engineering?

Real world

data?

Syafiie et al.

(2008)
Yes Yes No No No No Yes Yes Yes

Brujeni et al.

(2010)
Yes Yes No No No No Yes Yes Yes

Ramanathan et

al. (2018)
Yes Yes No No No No Yes Yes Yes

Hafner and

Riedmiller

(2011)

No

Yes (fitted

Actor-Critic,

Section 3.2.2)

No No No No Yes Yes No

Mnih et al.

(2015)
No Yes No No No No N/A No N/A

Hessel et al.

(2018)
No Yes No No No No N/A No N/A

Lillicrap et al.

(2016)
No No Yes No No No N/A No N/A

Ma et al. (2019) No No Yes No No No No (MIMO) Yes No

Shipman and

Coetzee (2019)
No No No Yes No No Yes Yes No

Engel (2005) No Yes No No Yes No N/A No N/A

Stellenbosch University https://scholar.sun.ac.za

48

Author Tabular?
Value-

based?

Policy

Gradient?

Actor-

Critic?

Bayesian

RL?

Model-

based RL?

SISO

Problem for

Agent?

Applied to

Chemical

Engineering?

Real world

data?

Ghavamzadeh

et al. (2015)
No Yes Yes Yes Yes Yes N/A No N/A

Fan et al.

(2018)
No Yes No No Yes No N/A No N/A

Deisenroth and

Rasmussen

(2011)

No No Yes No Yes Yes N/A No N/A

(Lee, 2004; Lee

and Lee, 2005)

Yes (different

discretization

strategies

considered)

Yes (focus on

approximate

DP and Q-

learning)

N/A N/A No No Yes Yes No

Stellenbosch University https://scholar.sun.ac.za

49

3.7 Placing RL-Based Process Control in Context

This thesis is concerned with investigating elementary RL methods applied to single loop base layer

control. The author would, however, like to encourage the reader to consult literature that clarifies the

appropriate positioning of RL in process control. Two papers are highlighted in this section.

A recent review that includes a comparison of RL-based control with traditional optimal control methods,

a summary of important developments in deep RL, current shortcomings of such methods, advantages and

disadvantages, and other RL-based control approaches are given by Nian et al. (2020). Further, this paper

provides detailed examples of applying Q-learning to track the 𝑆𝑃 output pressure of a pumping system

by adjusting the rotations per minute of the pump’s impeller. A particularly interesting field of application

pointed out by Nian et al. (2020) is sequential anomaly detection via RL, where loss incidents on a plant

are detected in advance to achieve proactive risk management. This may potentially help with planning

and scheduling activities on a plant.

Shin et al. (2019) compare RL with MPC as an instance of mathematical programming and, alongside this

comparison, suggest the use of RL and mathematical programming that use a receding horizon in a

complementary fashion. Analogously, considering the incorporation of model-based RL techniques in RL-

based control approaches may be beneficial.

3.8 Summary

Chapter 3 aimed to establish more thoroughly the niche of this thesis. Selected elementary, value-based

control methods that have found application to process control problems were discussed. The review of

state-of-the-art value-based, Policy Gradient, Actor-Critic algorithms, and the Bayesian viewpoint may

seem excessive owing to the exclusivity with which elementary algorithmic principles have been applied

in this work. This was, however, necessary to draw out commonly occurring themes, to form an opinion

on the approach to a feasibility study, and identify gaps in the existing literature which are visited in the

recommendations of Section 7.7.

The common themes identified include prioritizing the leveraging of computational resources to train

sophisticated deep learning function approximators, and the explicit communication of control objectives

through various continuous reward functions. The agent is required to approximate the optimal policy 𝜋∗

without first considering what the minimum and most general definition of 𝑺 is and where domain

knowledge may be injected into the system to inform RL representation design. It is argued in this thesis

that, to evaluate the present industrial feasibility of RL-based control, one has to formalise these concepts

as simply and generally as possible and evaluate whether an agent can be trained within conservative

operational data constraints. If reasonable operational data requirement cannot be achieved for the most

elementary on-policy algorithm (SARSA, Table 1) when applied simply to challenging process control

problems, state-of-the-art algorithms’ operational data requirement should be critically assessed if the

Stellenbosch University https://scholar.sun.ac.za

50

number of parameters is much larger in the deep learning function approximation used, Section 6.5.

Operational data requirement accompanies other feasibility criteria presented in Section 5.7.

The proposed RL methodology of Chapter 5 draws significantly on lessons learned by studying the work

of Syafiie et al. (2008), Brujeni et al. (2010), Lillicrap et al. (2016), Ramanathan et al. (2018), Sutton and

Barto (2018), Ma et al. (2019), and Shipman and Coetzee (2019). Overall, it is the opinion of the author

that the intersection of elementary RL and process control has not received sufficient attention. There thus

exists gaps in the literature in terms of identifying impediments to industrial RL-based control that emerge

at this level. This is understandable given the recent advances in computational power and data science

which motivate making the study of asymptotically achievable control performance a priority.

Stellenbosch University https://scholar.sun.ac.za

51

CHAPTER 4

CASE STUDIES

This chapter describes the simulated self-regulatory water tank model (Section 4.1), Van de Vusse reaction

scheme model (Section 4.2), and grinding circuit model (Section 4.3) used to conduct the feasibility study

of RL-based process control.

The contribution of including Case Study 1 is its simplicity from a process control perspective. The

dynamics are approximated well by a FOPTD model and the system has an operating window that is very

intuitive. This ensures that any potential complexity is prevalent only in the control design. Control

concepts may therefore be tested without the engineer being concerned about nuances caused by the

operating window’s shape, or process dynamics that may result in instability when applying classical

feedback control (Marlin, 2000).

The reactor simulated in Case Study 2 has dynamics and stability properties that prevent the successful

application of classical PI and PID control. It is the prevalence of significant uncertainty about a nominal

process model that poses a practical challenge to control in the mineral processing industry. Case Study 3

is a simulated investigation of a robust control problem.

4.1 Case Study 1: Self-Regulatory Water Tank

4.1.1 System Description and Model Summary

A model was derived for the level control problem depicted in Figure 8 by writing an overall material

balance, as shown in Equation [46]. In the level control problem, the height of liquid in a tank needs to

be maintained at the desired value (𝑆𝑃) while being subjected to changes in the flow rate of liquid entering

the system (𝐷𝑉). This is achieved by manipulating the degree to which the valve is open (𝑀𝑉).

Stellenbosch University https://scholar.sun.ac.za

52

Figure 8: Illustration of simulated process used for Case Study 1

𝑑𝑚𝑡𝑎𝑛𝑘

𝑑𝑡
= 𝑚̇𝑖𝑛 − 𝑚̇𝑜𝑢𝑡 [46]

With the exception of 𝑚̇𝑜𝑢𝑡, Equation [46] may be rewritten in terms of liquid density (𝜌𝑙), the volumetric

inlet flow rate of water (𝐹𝑖𝑛), and the cross-sectional area of the water tank (𝐴𝑡𝑎𝑛𝑘), yielding

Equation [47]. To obtain an expression for 𝑚̇𝑜𝑢𝑡, it is assumed that turbulent flow conditions occur while

water flows through the valve and that an orifice or nozzle discharge coefficient is applicable.

Green and Perry (2008) state that the outlet mass flow rate may then be expressed in terms of the valve

discharge coefficient, the liquid density, and the static pressure loss across the valve. In the water tank

model, the characteristic valve discharge coefficient and the fraction of valve opening are represented by

a lumped parameter 𝓀. Substituting this outflow term into Equation [47] yields Equation [48].

 𝐴𝑡𝑎𝑛𝑘 (
𝑑𝐻

𝑑𝑡
) 𝜌𝑙 = (𝜌𝑙𝐹𝑖𝑛) − 𝑚̇𝑜𝑢𝑡 [47]

 𝐴𝑡𝑎𝑛𝑘 (
𝑑𝐻

𝑑𝑡
) 𝜌𝑙 = (𝜌𝑙𝐹𝑖𝑛) − 𝓀√𝜌𝑙(𝑃1 − 𝑃2) [48]

Lastly, the pressure drop term in Equation [48] is approximated by expressing hydrostatic pressure in

terms of fluid properties and incorporating a pressure loss parameter ℓ. There are thus two model

parameters, 𝓀 and ℓ, which may be used as handles to fit the model to a particular process, keeping in

mind that simplified pressure drop modelling is used and that valve characteristics were assumed when

writing the outflow term. The final model is given in Equation [49], where 𝑥 is the fraction valve opening

and 𝑐𝑣 is the valve discharge coefficient. The value of 𝑐𝑣 was selected so that a sensible range of valve

openings are considered during Case Study 1. Note that the pressures before and after the valve (𝑃1 and

𝑃2) and 𝜌𝑙 are not part of Equation [49].

 𝐴𝑡𝑎𝑛𝑘 (
𝑑𝐻

𝑑𝑡
) = (𝐹𝑖𝑛) − 𝑐𝑣𝑥√𝐻 𝑤ℎ𝑒𝑟𝑒 𝑥 ∈ [0,1] 𝑎𝑛𝑑 𝓀̃ =

𝓀

𝑥
=

𝑐𝑣

√𝑔(1−ℓ)
 [49]

𝐴𝑡𝑎𝑛𝑘; 𝐻; 𝜌𝑙

𝐹𝑖𝑛

𝓀; ℓ

𝑃1 𝑃2

Stellenbosch University https://scholar.sun.ac.za

53

Table 4 provides a summary of the variables of the water tank model. Table 5 summarises the parameters

and Table 6 provides the steady state of the model.

Table 4: Summary of the variables in the water tank model

State variables Disturbance

variable (𝑫𝑽)

Controlled

variables (𝑪𝑽)

Manipulated

variables (𝑴𝑽)

Measured

variables

𝐻 𝐹𝑖𝑛 𝐻 𝓀 𝐻

𝐷𝑒𝑔𝑟𝑒𝑒𝑠 𝑜𝑓 𝑓𝑟𝑒𝑒𝑑𝑜𝑚 = 1 − 1 = 0

Table 5: Parameter list for the water tank model

Parameter Parameter name
Numerical

value
Unit

𝐴𝑡𝑎𝑛𝑘 Cross-sectional area of the water tank 1.8 𝑚2

𝑔 Gravitational acceleration 9.81
𝑚

𝑠2

ℓ Pressure loss parameter 0.5 −

Table 6: Steady state of the water tank model

State variable Name of variable Steady state Unit

𝐹𝑖𝑛 Inlet volumetric flow rate 31.67 × 10−
𝑚3

𝑠

𝐻 Height of the liquid in the tank 1.5 𝑚

𝓀
Lumped parameter proportional to the product of

fraction valve opening and valve discharge coefficient
1.17 × 10−3 𝑚2

𝑐𝑣 Valve discharge coefficient 0.01
𝑚2.

𝑠

𝑥 Fraction valve opening 0.259 −

4.1.2 System Inputs

The input to the water tank model consisted of the inlet flow rate 𝐹𝑖𝑛, which was kept at a constant setting

of 190
𝐿

𝑚𝑖𝑛
 (31.67 × 10−

𝑚3

𝑠
). Recall from Section 2.8.1 that training was implemented using episodes,

where each episode is a predefined number of time steps and its use is motivated by underlying assumptions

Stellenbosch University https://scholar.sun.ac.za

54

regarding the nature of the state-action space, the MDP, and the performance objective used to adjust RL

representation parameters in the case of Policy Gradient and Actor-Critic methods. Each episode started

with 𝐻 = 1.4 𝑚, and a constant 𝑆𝑃 of 1 𝑚 or 2 𝑚 was maintained for the duration of an episode. The 𝑆𝑃

was obtained by sampling one of the two integers with equal probability.

4.1.3 Classical Controller for the System

A PI controller was tuned and applied to control the height of liquid in the water tank. The FOPTD tuning

correlations given by Marlin (2000) were used. The tuning constants used are shown in Table 7, where

the constants are expressed for the process transfer function
𝐻(𝑠)

𝓀(𝑠)
.

Table 7: PI controller tuning settings for the model of Case Study 1

Controller parameter Numerical value

𝐾𝐶 −3.84
𝑚

𝑚2

𝜏𝐼 600 𝑠

𝑏𝑖𝑎𝑠 1.17 × 10−3 𝑚2

4.2 Case Study 2: Van de Vusse Reaction Scheme

4.2.1 System Description and Model Summary

The second simulated case study is the Van de Vusse reaction scheme. The reactor in which the reactions

occur is illustrated in Figure 9. Four compounds are present in the reactor. The desired product,

cyclopentenol (𝐵), is produced by an electrophilic hydration process with an acid catalyst. The reagent is

cyclopentadiene (𝐴), and two unwanted side reactions occur. The first is the conversion of 𝐵 to

cyclopentanediol (𝐶), while the second is a parallel conversion of 𝐴 to dicyclopentadiene (𝐷). The reaction

scheme is given in Equations [50] and [51] (Chen et al., 1995).

Stellenbosch University https://scholar.sun.ac.za

55

Figure 9: Illustration of the reactor used for Case Study 2, redrawn from Chen et al. (1995)

 𝐴
𝑘1
→𝐵

𝑘2
→ 𝐶 [50]

 2𝐴
𝑘3
→𝐷 [51]

The process model is shown in Equations [52] through [55] and consists of mole balances performed on

the reagent (𝐴) which is fed to the reactor at inlet temperature 𝒯0, and the desired product (𝐵), accompanied

by energy balances for the process fluid in the reactor and for the coolant. Heat may be removed from the

coolant by an external heat exchanger (𝑄̇𝐶) in addition to the heat transfer between the process fluid and

the coolant in Equation [55]. The heat removal rate 𝑄̇𝐶 is maintained at a constant value of −1 113.5
𝑘𝐽

ℎ

(Chen et al., 1995). The temperature-dependent reaction rates are assumed to follow the Arrhenius law, as

shown for reaction 𝑖 in Equation [56].

𝑑𝐶𝐴

𝑑𝑡
=

𝑉̇

𝑉𝑅
(𝐶𝐴0 − 𝐶𝐴) − 𝑘1(𝒯)𝐶𝐴 − 𝑘3(𝒯)𝐶𝐴

2 [52]

𝑑𝐶𝐵

𝑑𝑡
= −

𝑉̇

𝑉𝑅
𝐶𝐵 + 𝑘1(𝒯)𝐶𝐴 − 𝑘2(𝒯)𝐶𝐵 [53]

𝑑𝒯

𝑑𝑡
=

𝑉̇

𝑉𝑅
(𝒯0 − 𝒯) −

1

𝜌𝐶𝑝
(𝑘1(𝒯)𝐶𝐴∆𝐻𝑟𝐴𝐵 + 𝑘2(𝒯)𝐶𝐵∆𝐻𝑟𝐵𝐶 + 𝑘3(𝒯)𝐶𝐴

2∆𝐻𝑟𝐴𝐷) +
𝑈𝐴

𝜌𝐶𝑝𝑉𝑅
(𝒯𝐶 −𝒯) [54]

𝑑𝒯𝐶

𝑑𝑡
=

1

𝑚𝐶𝐶𝑝𝐶
(𝑄̇𝐶 + 𝑈𝐴(𝒯 − 𝒯𝐶)) [55]

 𝑘𝑖(𝒯) = 𝑘𝑖0 exp (
𝐸𝑖

𝒯(°𝐶) + 273.1
) [56]

𝑉̇, 𝐴

𝐴𝑅;𝑉𝑅; 𝑚𝐶; 𝒯𝐶

𝑄̇𝑐

𝑉̇; 𝐴; 𝐵; 𝐶; 𝐷

𝒯

Stellenbosch University https://scholar.sun.ac.za

56

The problem of interest in this work is the control of the concentration of compound 𝐵 by adjusting only

the normalized inlet flow rate (
𝑉̇

𝑉𝑅
). The motivation behind this selection is twofold. Firstly, only adjusting

normalized flow rate is known to accentuate the challenging properties of the problem (Chen et al., 1995).

Secondly, single control loop pairing allows all focus to be placed on the performance of the control laws

studied.

Table 8 summarises the key variables of the Van de Vusse reaction scheme model, while Table 9 and Table

10 provide the parameter values used and the corresponding steady state for the state variables of the model,

respectively. As shown in Table 8, 𝒯0 was provided as a measured variable, in contrast to the benchmark

rules prescribed by Chen et al. (1995). This is purposefully done so that information regarding the 𝐷𝑉 is

available during the simulations.

Table 8: Summary of the key variables in the Van de Vusse reaction scheme model

State

variables

Constant

external

variables (𝑬𝑽)

Disturbance

variables (𝑫𝑽)

Controlled

variables

(𝑪𝑽)

Manipulated

variables (𝑴𝑽)

Measured

variables

𝐶𝐴 𝐶𝐴0 𝒯0 𝐶𝐵
𝑉̇

𝑉𝑅
 𝐶𝐵

𝐶𝐵 𝒯0

𝒯

𝒯𝐶

𝐷𝑒𝑔𝑟𝑒𝑒𝑠 𝑜𝑓 𝑓𝑟𝑒𝑒𝑑𝑜𝑚 = 7 − 7 = 0

Table 9: Nominal parameter list for the Van de Vusse reaction scheme model (Chen et al., 1995)

Parameter Parameter name
Numerical

value
Unit

𝑘10 Specific reaction rate for 𝐴 → 𝐵 1.287 × 1012
1

ℎ

𝑘20 Specific reaction rate for 𝐵 → 𝐶 1.287 × 1012
1

ℎ

𝑘30 Specific reaction rate for 2𝐴 → 𝐷 9.043 × 109
1

𝑚𝑜𝑙 𝐴. ℎ

𝐸1 Activation energy for 𝐴 → 𝐵 −9 758.3 𝐾

Stellenbosch University https://scholar.sun.ac.za

57

Parameter Parameter name
Numerical

value
Unit

𝐸2 Activation energy for 𝐵 → 𝐶 −9 758.3 𝐾

𝐸3 Activation energy for 2𝐴 → 𝐷 −8 560 𝐾

∆𝐻𝑅𝐴𝐵 Reaction enthalpy for 𝐴 → 𝐵 4.2
𝑘𝐽

𝑚𝑜𝑙 𝐴

∆𝐻𝑅𝐵𝐶 Reaction enthalpy for 𝐵 → 𝐶 −11
𝑘𝐽

𝑚𝑜𝑙 𝐵

∆𝐻𝑅𝐴𝐷 Reaction enthalpy for 2𝐴 → 𝐷 −41.85
𝑘𝐽

𝑚𝑜𝑙 𝐴

𝜌 Density of process fluid 0.9342
𝑘𝑔

𝐿

𝐶𝑝 Heat capacity of process fluid 3.01
𝑘𝐽

𝑘𝑔. 𝐾

𝑈 Cooling jacket heat transfer coefficient 4 032
𝑘𝐽

ℎ.𝑚2. 𝐾

𝐴𝑅 Cooling jacket surface area 0.215 𝑚2

𝑉𝑅 Volume of reactor 10 𝐿

𝑚𝐶 Mass of coolant 5 𝑘𝑔

𝐶𝑝𝐶 Heat capacity of coolant 2
𝑘𝐽

𝑘𝑔. 𝐾

Stellenbosch University https://scholar.sun.ac.za

58

Table 10: Steady state of the Van de Vusse reaction scheme model

State

variable
Name of variable Steady state Unit

𝐶𝐴 Concentration of compound 𝐴 2.14
𝑚𝑜𝑙

𝐿

𝐶𝐵 Concentration of compound 𝐵 1.09
𝑚𝑜𝑙

𝐿

𝒯 Temperature of the process fluid 114.2 °𝐶

𝒯𝐶 Temperature of the coolant 112.9 °𝐶

𝑉̇

𝑉𝑅
 Inlet flow rate divided by reactor volume 14.19

1

ℎ

4.2.2 System Inputs

Two schemes were used to change the inputs to the Van de Vusse reaction scheme model. In the first, the

𝑆𝑃s were sampled according to the logic described in Section 4.1.2, with 𝑆𝑃 values of 0.95
𝑚𝑜𝑙

𝐿
 and

1.09
𝑚𝑜𝑙

𝐿
 . The 𝐷𝑉s were changed with normally distributed periods between step changes, and each new

𝐷𝑉 value was sampled from a normal distribution. The mean and standard deviation of the normal

distribution used for 𝐷𝑉 sampling during each training episode are shown in Table 11. In Table 11, the

last two rows show the mean and standard deviation used for the sampling of the time steps at which the

𝐷𝑉 changes occur. The unit “steps” in this table refers to a multiple of the process time associated with

each of the MDP time steps, i.e. with each transition from 𝑇 to 𝑇 + 1. In the second scheme, 𝑆𝑃s, 𝐷𝑉s,

and the times of these step changes were sampled from uniform distributions on bounded intervals given

in Section 5.3.3 during each episode.

Table 11: Number of MDP steps and parameters describing the normal distribution used for 𝐷𝑉 and time

step sampling for the Van de Vusse reaction scheme model

Parameter Numerical value

Number of steps 400

𝜇𝐷𝑉 2 °𝐶

𝜎𝐷𝑉 3 °𝐶

𝜇𝑇 120 𝑠𝑡𝑒𝑝𝑠

𝜎𝑇 0.5 𝑠𝑡𝑒𝑝𝑠

Stellenbosch University https://scholar.sun.ac.za

59

Instrument lag was simulated by letting 𝒯0(𝑇 + 1) = 𝒯0(𝑇) and 𝑆𝑃(𝑇 + 1) = 𝑆𝑃(𝑇), while the only state

component for which information regarding 𝑇 + 1 was made available during an update at time step 𝑇 is

𝐸(𝑇 + 1).

4.2.3 Classical Controller for the System

The reactor is required to operate close to the point of optimal yield of compound 𝐵, as described by

Chen et al. (1995). At this operating point, classical control of the reactor through PI/PID control becomes

infeasible. The reactor displays non-minimum phase dynamics, meaning that the 𝐶𝑉 (𝐶𝐵) initially follows

a trajectory in the opposite direction to its final steady state change. The controller’s sense would therefore

need to change in ways that aren’t known beforehand. Intuitively, one might want to detune the controller

by reducing the gain and increasing the sampling period between control actions for digital control in an

attempt to prevent inducing an unstable control response. This is not feasible owing to the reaction

scheme’s stability properties and dynamics that change vastly depending on the 𝑆𝑃 and 𝐷𝑉 behaviours

applied.

4.3 Case Study 3: Grinding Circuit

4.3.1 System Description and Model Summary

Semi-autogenous grinding mills (SAG mills) are often-used comminution units that are applied as part of

a grinding circuit. The overall goal of such a circuit is the reduction of the particle size of incoming ore in

accordance with design specifications of downstream classification and beneficiation equipment. The

circuit must therefore allow liberation of the minerals of interest at sufficient capacity (Atkins et al., 1974).

Changes in 𝑆𝑃 are typically of small magnitudes since the design specifications of downstream unit

operations do not change frequently.

In practice, grinding circuit operation constitutes a significant portion of overall metal production costs

(Rajamani and Herbst, 1991). The costs are driven to a large extent by the consumption of energy and

steel grinding media in the mill (Wills and Finch, 2016). Rajamani and Herbst (1991) identify the

important 𝐷𝑉s for a grinding circuit as ore hardness variation, variations in feed particle size, and changes

in the rate of the ore feed. Ore feed rate is typically manipulated and regulating the inlet water flow rate

is not a major challenge.

Le Roux et al. (2013) validated the qualitative behaviour of a SAG mill grinding circuit model. A flow

diagram for the process is shown in Figure 10. The detailed particle size distribution of the cyclone

overflow (or any of the other streams) is not modelled. Rather, a coarse distribution of particle sizes is

modelled in terms of five states – rocks (ore too large to leave the SAG mill), solids (particles that can

leave the SAG mill), fines (in-specification particles), water, and steel balls (grinding medium). The solids

are further categorized as coarse particles which are out of specification and fine particles that are in

specification.

Stellenbosch University https://scholar.sun.ac.za

60

Figure 10: Flow diagram of the grinding circuit model used for Case Study 3, redrawn from

Le Roux et al. (2013)

The grinding circuit model cannot be used as an accurate tool for process design or predictive maintenance.

One of its main strengths lies in its suitability for the testing of control engineering concepts and the

feasibility study of proposed controllers in the mineral processing industries.

The 𝐶𝑉 indicating whether particle size is reduced sufficiently is the particle size estimate (PSE) which

represents the mass fraction of the solid material constituted of fines in the cyclone overflow. Symbols

that are of particular interest in this study are the mass fraction of incoming ore that is categorized as

rock (𝜐), the rock abrasion factor that is used to model ore hardness (𝜙𝑟), and the power consumption per

tonne of fines produced (𝜙𝑓). In this study, particle size analysers are placed on the mill feed solids (MFS)

and cyclone overflow streams. These instruments measure 𝜐 and PSE, respectively. A PI controller is

used to control the level of slurry in the sump by adjusting the cyclone feed flow (CFF) which is the slurry

stream pumped from the sump to the cyclone.

Figure 10 shows the control loop pairings selected with the symbol AC denoting a control calculation

based on the PSE measurement, and the symbol LC indicating a level control calculation based on a level

measurement. The symbol AI is added on the MFS stream to show that 𝜐 is available to be used in a

control law calculation. The measurement taken in the MFS stream is purposefully assumed to provide 𝜐

rather than the fraction of material specifically above the desired particle size (this includes coarse material

which is categorised as part of solids). This adds to the modelled uncertainty regarding how measurements

of the input to the overall circuit relate to the PSE output. In Figure 10, level control incorporates a signal

sent to a variable speed drive (VSD) of a positive displacement pump.

Mill

Sump

Pump

Cyclone

Mill Feed Solids (MFS)

Mill Feed Water (MFW)

Mill Feed Balls (MFB)

Sump Feed Water (SFW)

Cyclone Overflow (where
Particle Size Estimate (PSE) is
measured)

Cyclone Feed
Flow (CFF)

AC

AI

LC

VSD

Stellenbosch University https://scholar.sun.ac.za

61

The convention used for the model subscripts is explained in Table 12, and the model equations obtained

from Le Roux et al. (2013) are provided in Equations [57] through [102]. Table 13 provides a concise

description of the model equations, and how they describe the modules in Figure 10 as denoted by the

abbreviations in Table 12.

Table 12: Convention used for subscripts in the grinding circuit model (Le Roux et al., 2013)

Letter position in subscript Description

First 𝑓 = 𝑓𝑒𝑒𝑑𝑒𝑟; 𝑚 = 𝑚𝑖𝑙𝑙; 𝑠 = 𝑠𝑢𝑚𝑝; 𝑐 = 𝑐𝑦𝑐𝑙𝑜𝑛𝑒

Second
𝑤 = 𝑤𝑎𝑡𝑒𝑟; 𝑠 = 𝑠𝑜𝑙𝑖𝑑𝑠; 𝑐 = 𝑐𝑜𝑎𝑟𝑠𝑒; 𝑓 = 𝑓𝑖𝑛𝑒𝑠;

𝑟 = 𝑟𝑜𝑐𝑘𝑠; 𝑏 = 𝑏𝑎𝑙𝑙𝑠

Third 𝑖 = 𝑖𝑛𝑓𝑙𝑜𝑤; 𝑜 = 𝑜𝑢𝑡𝑓𝑙𝑜𝑤; 𝑢 = 𝑢𝑛𝑑𝑒𝑟𝑓𝑙𝑜𝑤

Stellenbosch University https://scholar.sun.ac.za

62

Table 13: Grinding circuit model equations obtained from Le Roux et al. (2013)

Equation Number Description
Module

(Table 12)

Equations for state variables

𝑑𝑋𝑚𝑤

𝑑𝑡
= 𝑉𝑚𝑤𝑖 − 𝑉𝑚𝑤𝑜 = (𝑉𝑓𝑤𝑜 + 𝑉𝑐𝑤𝑢) − 𝑉𝑚𝑤𝑜 [57]

mill water mass balance 𝑚

𝑑𝑋𝑚𝑠

𝑑𝑡
= 𝑉𝑚𝑠𝑖 − 𝑉𝑚𝑠𝑜 + 𝑅𝐶(𝑡) = (𝑉𝑓𝑠𝑜 + 𝑉𝑐𝑠𝑢) − 𝑉𝑚𝑠𝑜 + 𝑅𝐶 [58] mill solids mass balance 𝑚

𝑑𝑋𝑚𝑓

𝑑𝑡
= 𝑉𝑚𝑓𝑖 − 𝑉𝑚𝑓𝑜 + 𝐹𝑃 = (𝑉𝑓𝑓𝑜 + 𝑉𝑐𝑓𝑢) − 𝑉𝑚𝑓𝑜 + 𝐹𝑃 [59] mill fines mass balance 𝑚

𝑑𝑋𝑚𝑟

𝑑𝑡
= 𝑉𝑚𝑟𝑖 − 𝑅𝐶 = 𝑉𝑓𝑟𝑜 − 𝑅𝐶 [60] mill rocks mass balance 𝑚

𝑑𝑋𝑚𝑏

𝑑𝑡
= 𝑉𝑚𝑏𝑖 − 𝐵𝐶 = 𝑉𝑓𝑏𝑜 − 𝐵𝐶 [61] mill balls mass balance 𝑚

𝑑𝑋𝑠𝑤

𝑑𝑡
= 𝑉𝑠𝑤𝑖 − 𝑉𝑠𝑤𝑜 = 𝑉𝑚𝑤𝑜 − 𝑉𝑠𝑤𝑜 + 𝑆𝐹𝑊 [62] sump water mass balance 𝑠

𝑑𝑋𝑠𝑠

𝑑𝑡
= 𝑉𝑠𝑠𝑖 − 𝑉𝑠𝑠𝑜 = 𝑉𝑚𝑠𝑜 − 𝑉𝑠𝑠𝑜 [63] sump solids mass balance 𝑠

𝑑𝑋𝑠𝑓

𝑑𝑡
= 𝑉𝑠𝑓𝑖 − 𝑉𝑠𝑓𝑜 = 𝑉𝑚𝑓𝑜 − 𝑉𝑠𝑓𝑜 [64] sump fines mass balance 𝑠

Additional equations for combined feeder and SAG mill model

𝑉𝑓𝑤𝑜 = 𝑀𝐼𝑊 [65] feeder outlet water flow rate 𝑓

𝑉𝑓𝑠𝑜 =
𝑀𝐹𝑆

𝐷𝑆
(1 − 𝜐) [66] feeder outlet solids flow rate 𝑓

Stellenbosch University https://scholar.sun.ac.za

63

𝑉𝑓𝑓𝑜 =
𝑀𝐹𝑆

𝐷𝑆
𝛼𝑓 [67] feeder outlet fines flow rate 𝑓

𝑉𝑓𝑟𝑜 =
𝑀𝐹𝑆

𝐷𝑆
𝜐 [68] feeder outlet rocks flow rate 𝑓

𝑉𝑓𝑏𝑜 =
𝑀𝐹𝐵

𝐷𝐵
 [69] feeder outlet balls flowrate 𝑓

𝜑 = {max [0; 1 − ((
1

𝜀𝑆𝑉
) − 1) (

𝑋𝑚𝑠

𝑋𝑚𝑤
)]}

0.

 [70] rheology factor calculation 𝑚

𝑉𝑚𝑤𝑜 = 𝑉𝑉𝜑𝑋𝑚𝑤 (
𝑋𝑚𝑤

𝑋𝑚𝑠+𝑋𝑚𝑤
) [71] mill outlet water flow rate 𝑚

𝑉𝑚𝑠𝑜 = 𝑉𝑉𝜑𝑋𝑚𝑤 (
𝑋𝑚𝑠

𝑋𝑚𝑠+𝑋𝑚𝑤
) [72] mill outlet solids flow rate 𝑚

𝑉𝑚𝑓𝑜 = 𝑉𝑉𝜑𝑋𝑚𝑤 (
𝑋𝑚𝑓

𝑋𝑚𝑠+𝑋𝑚𝑤
) [73] mill outlet fines flow rate 𝑚

𝐿𝑂𝐴𝐷 = 𝑋𝑚𝑤 + 𝑋𝑚𝑟 + 𝑋𝑚𝑠 + 𝑋𝑚𝑏 [74] mill volumetric loading 𝑚

𝑍𝑟 = (
𝜑

𝜑𝑃𝑚𝑎𝑥

) − 1 [75] slurry rheology effect on mill

power draw
𝑚

𝑍𝜒 = (
𝐿𝑂𝐴𝐷

𝑣𝑚𝑖𝑙𝑙𝑣𝑃𝑚𝑎𝑥

) − 1 [76] total charge effect on mill

power draw
𝑚

𝑃𝑚𝑖𝑙𝑙 = 𝑃𝑚𝑎𝑥{1 − 𝛿𝑃𝑉𝑍𝜒
2 − 2𝜒𝑝𝛿𝑃𝑉𝛿𝑃𝑆𝑍𝜒𝑍𝑟 − 𝛿𝑃𝑆𝑍𝑟

2}𝛼𝑠𝑝𝑒𝑒𝑑
𝛼𝑝 [77] mill power draw 𝑚

𝑅𝐶 =
𝑃𝑚𝑖𝑙𝑙𝜑

𝐷𝑆𝜙𝑟
(

𝑋𝑚𝑟

𝑋𝑚𝑟+𝑋𝑚𝑠
) [78] rock consumption 𝑚

𝐹𝑃 =
𝑃𝑚𝑖𝑙𝑙

𝐷𝑆{𝜙𝑓[1+𝛼𝜙𝑓(
𝐿𝑂𝐴𝐷

𝑣𝑚𝑖𝑙𝑙
−𝑣𝑃𝑚𝑎𝑥)]}

 [79] fines production 𝑚

Stellenbosch University https://scholar.sun.ac.za

64

𝐵𝐶 =
𝑃𝑚𝑖𝑙𝑙𝜑

𝜙𝑏
(

𝑋𝑚𝑏

𝐷𝑆(𝑋𝑚𝑟+𝑋𝑚𝑠)+𝐷𝐵𝑋𝑚𝑏
) [80] ball consumption 𝑚

Additional equations for sump

𝑆𝑉𝑂𝐿 = 𝑋𝑠𝑤 + 𝑋𝑠𝑠 [81] sump volumetric loading 𝑠

𝐸(𝑡)𝑠𝑢𝑚𝑝 = 𝑉𝑆𝑃 − 𝑉 = (𝐻𝑆𝑃 + 𝑝𝑢𝑚𝑝 𝑖𝑛𝑙𝑒𝑡 𝑐𝑒𝑛𝑡𝑟𝑒 𝑙𝑖𝑛𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛)(𝑙)(𝑏) − 𝑆𝑉𝑂𝐿 [82] error signal for sump loading

control
𝑠

𝐶𝐹𝐹 = 𝐶𝐹𝐹0 + 𝐾𝑐 (𝐸(𝑡)𝑠𝑢𝑚𝑝 +
1

𝑇𝐼
∫𝐸(𝑡)𝑠𝑢𝑚𝑝 𝑑𝑡) [83] PI control for CFF adjustment 𝑠

𝑉𝑠𝑤𝑜 = 𝐶𝐹𝐹 (
𝑋𝑠𝑤

𝑆𝑉𝑂𝐿
) [84] sump water outlet flow rate 𝑠

𝑉𝑠𝑠𝑜 = 𝐶𝐹𝐹 (
𝑋𝑠𝑠

𝑆𝑉𝑂𝐿
) [85] sump solids outlet flow rate 𝑠

𝑉𝑠𝑓𝑜 = 𝐶𝐹𝐹 (
𝑋𝑠𝑓

𝑆𝑉𝑂𝐿
) [86] sump fines outlet flow rate 𝑠

Cyclone equations

𝑉𝑐𝑠𝑖 = 𝑉𝑠𝑠𝑜 [87] cyclone solids inlet flow rate 𝑐

𝑉𝑐𝑓𝑖 = 𝑉𝑠𝑓𝑜 [88] cyclone fines inlet flow rate 𝑐

𝑉𝑐𝑤𝑖 = 𝑉𝑠𝑤𝑜 [89] cyclone water inlet flow rate 𝑐

𝑉𝑐𝑐𝑖 = 𝑉𝑐𝑠𝑖 − 𝑉𝑐𝑓𝑖 [90] cyclone coarse material inlet

flow rate
𝑐

𝐹𝑖 =
𝑉𝑐𝑠𝑖

𝐶𝐹𝐹
 [91] cyclone solids fraction in feed 𝑐

Stellenbosch University https://scholar.sun.ac.za

65

𝑃𝑖 =
𝑉𝑐𝑓𝑖

𝑉𝑐𝑠𝑖
 [92] cyclone fraction fines in feed

solids
𝑐

𝑉𝑐𝑐𝑢 = 𝑉𝑐𝑐𝑖 (1 − 𝐶1 exp (
−𝐶𝐹𝐹

𝜀𝐶
)) (1 − (

𝐹𝑖

𝐶2
)
𝐶3
) (1 − 𝑃𝑖

𝐶4) [93] cyclone coarse material flow

rate in the underflow
𝑐

𝐹𝑢 = 0.6 − (0.6 − 𝐹𝑖) exp (−
𝑉𝑐𝑐𝑢

(𝛼𝑆𝑈𝜀𝐶)
) [94] cyclone fraction of solids in

the underflow volume
𝑐

𝑉𝑐𝑤𝑢 =
𝑉𝑐𝑤𝑖(𝑉𝑐𝑐𝑢−𝐹𝑢𝑉𝑐𝑐𝑢)

(𝐹𝑢𝑉𝑐𝑤𝑖+𝐹𝑢𝑉𝑐𝑓𝑖−𝑉𝑐𝑓𝑖)
 [95] cyclone underflow water flow

rate
𝑐

𝑉𝑐𝑓𝑢 =
𝑉𝑐𝑓𝑖(𝑉𝑐𝑐𝑢−𝐹𝑢𝑉𝑐𝑐𝑢)

(𝐹𝑢𝑉𝑐𝑤𝑖+𝐹𝑢𝑉𝑐𝑓𝑖−𝑉𝑐𝑓𝑖)
 [96] cyclone underflow fines flow

rate
𝑐

𝑉𝑐𝑠𝑢 = 𝑉𝑐𝑐𝑢 + 𝑉𝑐𝑓𝑢 [97] cyclone underflow solids

flow rate
𝑐

𝑉𝑐𝑓𝑜 = 𝑉𝑐𝑓𝑖 − 𝑉𝑐𝑓𝑢 [98] cyclone overflow fines flow

rate
𝑐

𝑉𝑐𝑐𝑜 = 𝑉𝑐𝑐𝑖 − 𝑉𝑐𝑐𝑢 [99] cyclone overflow coarse

material flow rate
𝑐

𝑉𝑐𝑠𝑜 = 𝑉𝑐𝑠𝑖 − 𝑉𝑐𝑠𝑢 [100] cyclone overflow solids flow

rate
𝑐

𝑉𝑐𝑤𝑜 = 𝑉𝑐𝑤𝑖 − 𝑉𝑐𝑤𝑢 [101] cyclone overflow water flow

rate
𝑐

𝑃𝑆𝐸 =
𝑉𝑐𝑓𝑜

𝑉𝑐𝑐𝑜+𝑉𝑐𝑓𝑜
 [102] particle size estimate 𝑐

Stellenbosch University https://scholar.sun.ac.za

66

Table 14 summarises the key variables of the grinding circuit model with the control problem formulation

used in this thesis. Table 15 and Table 16 provide the parameter lists for the combined feeder and mill

module, and the cyclone module, respectively.

Table 14: Summary of the key variables in the grinding circuit model

State

variables

Constant

external

variables

(𝑬𝑽)

Changing

external

variable

(𝑬𝑽(𝒕))

Disturbance

variable

(𝑫𝑽)

Controlled

variables

(𝑪𝑽)

Manipulated

variables

(𝑴𝑽)

Measured

variables

𝑋𝑚𝑤 𝑀𝐼𝑊 𝑀𝐹𝐵 𝜐 𝐻𝑠𝑢𝑚𝑝 𝐶𝐹𝐹 𝜐

𝑋𝑚𝑠 𝑆𝐹𝑊 𝑀𝐹𝑆 𝜙𝑓 𝑃𝑆𝐸 𝑀𝐹𝑆 𝑃𝑆𝐸

𝑋𝑚𝑓 𝜙𝑟

𝑋𝑚𝑟

𝑋𝑚𝑏

𝑋𝑠𝑤

𝑋𝑠𝑠

𝑋𝑠𝑓

𝐷𝑒𝑔𝑟𝑒𝑒𝑠 𝑜𝑓 𝑓𝑟𝑒𝑒𝑑𝑜𝑚 = 46 − 46 = 0

Table 15: Parameter list for combined feeder and mill module, obtained from Le Roux et al. (2013)

Parameter Parameter name
Numerical

value
Unit

𝛼𝑓 Fines fraction in the ore 0.055 −

𝜐 Rock fraction in the ore 0.465 −

𝛼𝑃
Fraction power reduction per fraction reduction from

critical mill speed
1 −

𝛼𝑠𝑝𝑒𝑒𝑑 Fraction of the critical mill speed 0.712 −

𝛼𝜙𝑓

Fractional change in power per tonne of fines

produced per change of fractional mill filling
0.01 −

𝛿𝑃𝑠
Power-change parameter related to the fraction of

solids in the mill
0.5 −

𝛿𝑃𝑣
Power-change parameter related to the volume filled

in the mill
0.5 −

𝐷𝐵 Steel ball density 7.85
𝑡

𝑚3

𝐷𝑆 Feed ore density 3.2
𝑡

𝑚3

𝜀𝑆𝑉
Maximum volume fraction of slurry comprised of

solid material for a stationary slurry
0.6 −

Stellenbosch University https://scholar.sun.ac.za

67

Parameter Parameter name
Numerical

value
Unit

𝜙𝑏 Abrasion factor of steel 90
𝑘𝑊ℎ

𝑡

𝜙𝑓 Power requirement per tonne of fines produced 29.6
𝑘𝑊ℎ

𝑡

𝜙𝑟 Rock abrasion factor 6.03
𝑘𝑊ℎ

𝑡

𝜑𝑃𝑚𝑎𝑥
 Maximum mill power draw rheology factor 0.57 −

𝑃𝑚𝑎𝑥 Mill motor power draw maximum 1 662 𝑘𝑊

𝑣𝑚𝑖𝑙𝑙 Volume of the mill 59.12 𝑚3

𝑣𝑃𝑚𝑎𝑥

Fraction of mill volume filled for maximum power

draw
0.34 −

𝑉𝑉
Volumetric flow per driving force for flow (pressure

applied to the slurry to discharge from the mill)
84 −

𝜒𝑃 Maximum power draw cross-term 0 −

Table 16: Parameter list for cyclone module, obtained from Le Roux et al. (2013)

Parameter Parameter name
Numerical

value
Unit

𝛼𝑆𝑈 Parameter pertaining to underflow solids fraction 0.87 −

𝐶1 Constant 0.6 −

𝐶2 Constant 0.7 −

𝐶3 Constant 4 −

𝐶 Constant 4 −

𝜀𝐶

Parameter pertaining to the split of coarse

material between the overflow and underflow

streams

129
𝑚3

ℎ

A noteworthy property of the grinding circuit model as described by Le Roux et al. (2013) is that it targets

qualitative modelling accuracy with a concurrent compromise signified markedly by excessively large steel

ball consumption rates. In addition, the model parameters fitted to plant survey data by

Le Roux et al. (2013) work well near the steady state operating points that the authors considered. The

empirical equations used to model steel ball consumption in the mill with their proposed continuous flow

rates of mill feed balls (MFB) to the mill limits the numerically feasible modelled operating window

significantly. The consequence of this is that cognisance must be shown of the operating window when

working with the model.

Stellenbosch University https://scholar.sun.ac.za

68

Green and Perry (2008) do state that grinding circuits can become unstable by overloading the SAG mill,

but since the continuous MFB stream behaviour proposed by Le Roux et al. (2013) is not aimed at being

practically representative, a more realistic pulse function for the MFB stream is considered appropriate.

Potentially increased PSE fluctuations would contribute to a greater challenge being posed to the control

laws studied. In this thesis, the MFB stream of the grinding circuit model is modelled using 8
𝑡

ℎ
 peaks in

the intervals (0; 5), (20; 25), (40; 45), (60; 65), and (80; 85). In between, the MFB stream was equal

to 0
𝑡

ℎ
.

The cyclone in Figure 10 has significantly faster dynamics than the rest of the grinding circuit. As a

consequence of this, cyclones in grinding circuits are typically modelled using algebraic equations

(Rajamani and Herbst, 1991; Le Roux et al., 2013). This results in a numerically challenging dependence

of the mill input on the cyclone underflow stream – the input to the mill at the current time 𝑡 is dependent

on the underflow of the cyclone. The underflow of the cyclone is, in turn, dependent on the output of the

SAG mill. To address this numerical problem, the grinding circuit model equations for the SAG mill and

the sump are written as delay differential equations with constant lags.

The delay equations rely on the delayed variables being differentiated with respect to time in the model.

Since the cyclone equations are algebraic, the delay equations need to be applied to the other units in the

grinding circuit. The physical principle leveraged to this end is the incompressibility of liquid water. This

gives rise to Equations [103] through [107] for the SAG mill. The same equations are applied to the

sump, with the respective concentrations and flow rates changed to those of the sump. The lags used for

the state variables and their initial steady state values are given in Table 17. The steady state inlet flow

rates are given in Table 18. Calculations for the sump must use the delayed flow rates from the mill, while

the mill equations rely on the outputs of the equations describing the cyclone underflow, which must be

calculated using the delayed outputs from the sump.

 𝐶𝑚𝑠,𝑑𝑒𝑙𝑎𝑦𝑒𝑑 =
𝑉𝑚𝑠𝑜,𝑑𝑒𝑙𝑎𝑦𝑒𝑑

(𝑉𝑚𝑠𝑜,𝑑𝑒𝑙𝑎𝑦𝑒𝑑 + 𝑉𝑚𝑤𝑜,𝑑𝑒𝑙𝑎𝑦𝑒𝑑)
 [103]

 𝐶𝑚𝑓,𝑑𝑒𝑙𝑎𝑦𝑒𝑑 =
𝑉𝑚𝑓𝑜,𝑑𝑒𝑙𝑎𝑦𝑒𝑑

(𝑉𝑚𝑠𝑜,𝑑𝑒𝑙𝑎𝑦𝑒𝑑 + 𝑉𝑚𝑤𝑜,𝑑𝑒𝑙𝑎𝑦𝑒𝑑)
 [104]

 𝑉𝑚𝑠𝑜,𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 = 𝐶𝑚𝑠,𝑑𝑒𝑙𝑎𝑦𝑒𝑑(𝑉𝑚𝑠𝑜 + 𝑉𝑚𝑤𝑜) [105]

 𝑉𝑚𝑓𝑜,𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 = 𝐶𝑚𝑓,𝑑𝑒𝑙𝑎𝑦𝑒𝑑(𝑉𝑚𝑠𝑜 + 𝑉𝑚𝑤𝑜) [106]

 𝑉𝑚𝑤𝑜,𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 = (𝑉𝑚𝑠𝑜 + 𝑉𝑚𝑤𝑜)(1 − 𝐶𝑚𝑠,𝑑𝑒𝑙𝑎𝑦𝑒𝑑) [107]

Stellenbosch University https://scholar.sun.ac.za

69

Table 17: Initial steady state values and lags used when simulating the grinding circuit model

State variable Variable name Steady state (m3) Lag (h)

𝑋𝑚𝑤 mill water 4.789 30/3600

𝑋𝑚𝑠 mill solids 4.844 30/3600

𝑋𝑚𝑓 mill fines 1.002 30/3600

𝑋𝑚𝑟 mill rocks 1.797 30/3600

𝑋𝑚𝑏 mill balls 8.488 30/3600

𝑋𝑠𝑤 sump water 4.118 0.1

𝑋𝑠𝑠 sump solids 1.866 0.1

𝑋𝑠𝑓 sump fines 0.3864 0.1

Table 18: Inlet flow rates at the initial steady state of the grinding circuit model

Model input Variable name Steady state Unit

MFS mill feed solids 65.2 𝑡/ℎ

𝑉𝑓𝑤𝑜 (MFW)
mill feed water – the flow rate of water out of mill

feeder
4.64 𝑚3/ℎ

MFB mill feed balls 5.69 𝑡/ℎ

SFW sump feed water 140.5 𝑚3/ℎ

The steady state coordinate of the grinding circuit model is independent of the delays used, as delays do

not affect the steady state of a model. The adjusted flow rate calculations given by Equations [105]

through [107] have a slight effect on the steady state values of the state variables. The steady state values

reported in Table 17 were found by evaluating the model when all time derivatives are set equal to zero.

This required the use of a steady state material balance for the sump, Equation [108]. A CFF value of

370.2
𝑚3

ℎ
 was used (Le Roux et al., 2013).

 𝑆𝐹𝑊 = 𝐶𝐹𝐹 − 𝑉𝑠𝑤𝑖 − 𝑉𝑠𝑠𝑖 [108]

4.3.2 System Inputs

The 𝐷𝑉s 𝜐, 𝜙𝑟, the 𝑆𝑃 for PSE, and the times for all these step changes during each episode were sampled

from bounded uniform distributions. The bounds are provided in Section 5.3.5. The changes in 𝜙𝑓 were

implemented as step changes with magnitudes and times corresponding to the input changes described by

Le Roux et al. (2013).

4.3.3 Control Problem Development and Classical Controllers for the System

It is known from literature that sump control is critical, and that a PID controller can exert sufficient control

(Atkins et al., 1974; Barker and Hulbert, 1983; Conradie and Aldrich, 2001). The PSE measurement

Stellenbosch University https://scholar.sun.ac.za

70

provided by a particle size analyser was used as a representative characteristic of the entire particle size

distribution of the cyclone overflow. Therefore, it was assumed that the fraction of ore in one particle size

range is related to the fraction of ore in another particle size range in a constant manner

(Atkins et al., 1974).

The relatively faster dynamics of the cyclone prevent high frequency upsets in CFF from being properly

attenuated by a control system. A sufficiently consistent CFF ensures smooth flow and prevents spigot

overloading. In Case Study 3, flow measurements are assumed to be available immediately – the time

constant of the measurement equipment will be sufficiently small to prevent significant change in CFF

between two measurements.

The sump is an integrator system and should act as a buffer between the mill and the cyclone

(Marlin, 2000). Typically, averaging level control is employed since the most important control objective

of the sump is to prevent product quality fluctuations caused by inconsistent CFF.

Based on typical qualitative dynamic characteristics of the grinding circuit shown in Figure 10 and by

following similar work in literature, MFS was paired with PSE, and MFW was paired with sump level

(Atkins et al., 1974; Barker and Hulbert, 1983; Rajamani and Herbst, 1991; Conradie and Aldrich, 2001).

RL-based control was implemented to control the PSE-MFS control loop, while PI control was used for

the sump. This allowed applying RL-based control to a SISO control problem while still limiting

transmission interaction between the control loops used to control the grinding circuit. A SISO application

of RL-based control was studied for the grinding circuit model to maintain a stationary RL environment –

the true value associated with each action remains constant (Sutton and Barto, 2018).

Based on the qualitative traits of the system which aided in selecting control loop pairing, it was expected

that the specific tuning constants used for sump control do not affect the PSE measurements obtained

significantly. This expectation was validated in Figure 11 where the PSE profiles (expressed as

percentages) obtained by simulating the grinding circuit model in MATLAB for different sets of PI

controller tuning constants for the sump is shown. The 𝐶𝑉 is the height of slurry in the sump, 𝐻𝑠𝑢𝑚𝑝, and

the 𝑀𝑉 is CFF. Figure 11 also illustrates that the use of sump volume in the sump control calculations,

Equations [82] and [83], does not influence the results significantly. The changes in model inputs during

the generation of Figure 11 were implemented as step changes and had the same magnitudes as those

reported by Le Roux et al. (2013) with constant 𝜙𝑓.

Stellenbosch University https://scholar.sun.ac.za

71

Figure 11: PSE profiles obtained from the grinding circuit model for various PI controller tuning

parameters and constant 𝜙𝑓

For comparison to RL-based control, a PID controller was also applied to the PSE-MFS control loop. A

step change in the MFS stream from 65.2
𝑡

ℎ
 to 46.7

𝑡

ℎ
 was applied to the grinding circuit model while all

other model inputs and parameters were maintained at their initial steady state values. The Laplace domain

approximation to the grinding circuit model’s response is shown in Equation [109]. It was observed that

𝜏1 and 𝜏2 in the denominator have a significant impact on both the initial slope and the shape of the

response, while 𝜏3 in the numerator mostly has an effect on the fine-tuning of the transfer function model’s

output. The numerical values selected for 𝜏1, 𝜏2, and 𝜏3 were 3, 10, and 21, respectively. Figure 12 shows

the grinding circuit model output (solid line) and the Laplace domain model output (dashed line).

 𝐺𝑝(𝑠) =

(−0. 2
% 𝑃𝑆𝐸
𝑡
ℎ
𝑀𝐹𝑆

)(21𝑠+1)

(3𝑠+1)(10𝑠+1)
 [109]

Stellenbosch University https://scholar.sun.ac.za

72

Figure 12: PSE responses to MFS step change from 65.2
𝑡

ℎ
 to 46.7

𝑡

ℎ
, the solid line is the output from the

non-linear grinding circuit model, while the dashed line is the Laplace domain model output

Two key considerations when selecting a PID tuning method were the availability of a handle that allows

the author to target robust performance and that suitable assumptions are made in the tuning method with

regard to 𝐷𝑉 and 𝑆𝑃 changes. The recommended PID control law form of Equation [45] was used. The

Direct Synthesis for Disturbances (DS-d) tuning method of Chen and Seborg (2002) was applied. This

tuning method provides a closed-loop time constant 𝜏𝑐 that targets 𝑆𝑃 tracking and 𝐷𝑉 attenuation at the

cost of system robustness as it is decreased (Chen and Seborg, 2002).

In this thesis, 𝜏𝑐 = 12.5 ℎ was used as a reasonable closed-loop time constant that ensures that sufficient

robust performance is achieved to enable justifiable comparability between control laws without resulting

in excessive oscillatory behaviour in the simulations. Fairly large controller gain magnitude and some

oscillatory behaviours were allowed – these do not compromise the validity of the comparisons made.

Reset windup was prevented by not integrating the error in Equation [45] when the MFS final element

was saturated. Saturation was used to ensure that the limits on the 𝑀𝑉 that ensure that the operational data

used for agent training lies within the process operating window (Section 5.3.5) applies to the PID

controller as well.

The assumption is made that the disturbance and process transfer functions are equal, 𝐺𝑑(𝑠) = 𝐺𝑝(𝑠), and

the desired response to disturbances is used in the analytical design equation that Chen and Seborg (2002)

derived for tuning. In the grinding circuit model, 𝜐 and 𝜙𝑟 are exogenous inputs that enter the grinding

circuit as properties of the MFS stream and would therefore have qualitatively similar disturbance transfer

functions to the process transfer function 𝐺𝑝(𝑠). Approximate models are sufficient near the point of

linearization (Marlin, 2000; Skogestad and Poslethwaite, 2005). The tuning constants determined by

Stellenbosch University https://scholar.sun.ac.za

73

applying the DS-d tuning method were 𝐾𝑐 = −15
(
𝑡

ℎ
)

% 𝑃𝑆𝐸
, 𝜏𝐼 = 19.6 ℎ, and 𝜏𝑑 = 5 ℎ

(Chen and Seborg, 2002). Subsequently, the gain was detuned to 𝐾𝑐 = −10
(
𝑡

ℎ
)

% 𝑃𝑆𝐸
.

Two properties of the RL agents studied ensure that it is reasonable to compare the PID and RL-based

controllers. Firstly, from the RL agent’s perspective, training is aimed solely at maximising cumulative

reward irrespective of whether 𝑆𝑃 or 𝐷𝑉 changes occur. Secondly, by discretizing the state-action space

(SARSA) and the action space (One-Step Actor-Critic) coarsely in this study, the agent is approaching the

control problem from a low-dimensional perspective which contributes to an inherent extent of robustness

at the expense of 𝑀𝑉 adjustments which are typically excessive.

For each execution of the update rule, the agent has 𝜐(𝑇 + 1) = 𝜐(𝑇) and 𝑆𝑃(𝑇 + 1) = 𝑆𝑃(𝑇), while the

only state component for which information regarding 𝑇 + 1 is made available during an update at time

step 𝑇 is 𝐸(𝑇 + 1). The PID control law was implemented with discrete time steps of 0.01 ℎ which allows

for the use of a continuous control law since the dynamic responses of the grinding circuit take much

longer, Figure 12. No instrument lag was incorporated for the PID controller as the goal of simulating

instrument lag was to contribute to representing intrinsic uncertainty sensibly when training an RL agent

for the control of the PSE-MFS control loop.

Future information would not be available in practice, and therefore the RL agent’s current MDP time

step 𝑇 would typically trail behind the time of the process being controlled with one sampling period ∆𝑇

in the time domain. The greatest source of partial observability is instrumentation limitation.

Valve stiction modelling was incorporated to evaluate how an RL agent would respond to changing

closed – loop dynamics that are usually challenging for PI/PID controllers. The two parameter, data-driven

model of Shoukat Choudhury et al. (2005) was implemented. The model has a parameter for deadband

plus stickband (S) and a parameter for slip jump (J). Both of these parameters are expressed as percentages

of the available 𝑀𝑉 range. The model uses binary decision making rather than numerically challenging

differential equations, has been formulated in a framework where stiction has been clearly defined, and the

model’s ability to approximate first-principles modelling results has been validated by

Shoukat Choudhury et al. (2005). Further, the stiction model does not rely on physical valve

characteristics.

Code that may be used to validate the stiction model implementation used in this thesis through simulation

of the undershoot case of stiction (S > J) is given in Appendix C. For the stiction model, the 𝑀𝑉 range for

application to the PSE-MFS control loop was 0
𝑡

ℎ
 to 100

𝑡

ℎ
. This prevented unintended valve saturation.

Parameter values (J and S) were maintained constant when training further the initial RL agent policies to

test for stiction compensation capability.

Stellenbosch University https://scholar.sun.ac.za

74

The integral of the absolute error (IAE), the integrated product of time and absolute error (ITAE), and the

total 𝑀𝑉 variation until the end of a predefined number of time steps (TV, Equation [110]) were used as

quantitative controller performance measures (Marlin, 2000; Chen and Seborg, 2002).

 𝑇𝑉 = ∑ |𝑀𝑉[(𝑖 + 1)∆𝑇] − 𝑀𝑉[𝑖∆𝑇]|𝑒𝑛𝑑
𝑖=1 [110]

4.4 Numerical Implementation

All simulations were implemented using MATLAB R2020a. The built-in numerical integrator “ode45”

was used to solve the self-regulatory water tank model (Section 4.1), while “ode23s” was used to solve the

Van de Vusse reaction scheme model equations (Section 4.2). The grinding circuit model equations

(Section 4.3) were solved by using the built-in numerical integrator “dde23” with constant lags and a

history function specifying the initial steady state values of the state variables.

Stellenbosch University https://scholar.sun.ac.za

75

CHAPTER 5

RL METHODOLOGY

An RL-based control scheme reminiscent of the work of Syafiie et al. (2008), Brujeni et al. (2010), and

Ramanathan et al. (2018) was used to conduct the feasibility study of RL-based process control. This

control scheme is described in Section 5.1. Section 5.2 describes the schedule used for the probability of

taking a random action, 𝜀, and the allocation of training schemes and parallel computing resources.

Tabular SARSA (Section 2.8.1) was used as the RL agent to study the mechanisms by which the studied

control scheme needs to be tuned, zero steady-state offset achieved (Sections 5.3.1 and 5.3.2), and whether

controller performance is sensitive to how finely the state-action space is discretized (Section 5.3.3). The

effects of the hyperparameters 𝛼 and 𝛾 of SARSA have on learning were investigated using the Van de

Vusse reaction scheme model (Section 5.3.4). Q-learning was used to investigate how initial estimates of

the parameters of the RL representation used for SARSA (the entries of the tabular approximate action-

value function 𝑄̃𝜋(𝑺, 𝑨)) may be obtained in an off-policy manner (Section 5.4).

The implementation of a SARSA agent and a One-Step Actor-Critic agent (Section 2.9.5) to the grinding

circuit model (Section 4.3) are described in Sections 5.3.5 and 5.5, respectively. The RL methodology

facilitates critical analysis of the current feasibility of elementary model-free RL-based control in the

chemical and mineral processing industries.

5.1 The Control Scheme Used for Study

Figure 13 illustrates the proposed control scheme used for study. The observed state is defined as having

components [𝐸(𝑇) 𝐷𝑉(𝑇) 𝑆𝑃(𝑇)]𝑇 (Francis and Wonham, 1976; Bertsekas and Tsitsiklis, 1996). Based

on the work of Syafiie et al. (2008), the author recommends the use of 10 intervals of equal width for each

state component if the RL representation used involves the discretization of the state space, as a first

approximation. For both SARSA and Actor-Critic agents, the action available at each time step 𝑇, 𝑨,

comprised a discrete set of final element settings. Each action therefore had only one component and may

be denoted by a scalar 𝐴.

Stellenbosch University https://scholar.sun.ac.za

76

Figure 13: Time domain block diagram of the control scheme studied (RL environment is everything

excluding the RL agent)

Feedback must be provided to the agent through the incorporation of the error signal 𝐸(𝑇) in the reward

function. A binary reward function with a reward width ±𝛽 was used. This means that, if |𝐸(𝑇)| < 𝛽,

𝑅 = 1, otherwise 𝑅 = 0. Care was taken to discretize the error signal 𝐸(𝑇) symmetrically when defining

the state space 𝒮 for RL-based control. Half of the reward width, 𝛽, may be set equal either to the control

tolerance or measurement instrumentation noise, provided that sufficient range is present in the actions

available to the agent – this is illustrated in Section 6.2.1.

Intermediate 𝑀𝑉 adjustments were applied to the process by sending the agent’s discrete action selections

to a low-pass filter, Equation [111] (Syafiie et al., 2008). This simplifies the action space for the RL

agent as it only needs to deal with discrete action selections. The frequencies with which it makes its

action selections result in a larger set of filtered actions being applied to the RL environment. This

introduces a second tuning constant in addition to 𝛽 – the filter time constant 𝜏𝑓. The filter also enables

the agent to maintain a constant 𝑀𝑉 intermediate to the discrete action selections so that the desired value

of the 𝐶𝑉 may be realised.

 𝐴𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑(𝑇) = exp (
−1

𝜏𝑓
)𝐴𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑(𝑇 − 1) + (1 − exp (

−1

𝜏𝑓
))𝐴(𝑇) [111]

To select a reasonable value for 𝜏𝑓, final element adjustment must be taken into account – it provides a

handle for trading off 𝑀𝑉 adjustments and 𝐶𝑉 variations. In addition, it must be considered whether a

large number of discrete action selections and a smaller value for 𝜏𝑓 is feasible within the number of

operational hours available for training. The type of RL agent is also an important consideration, as will

Low-Pass
Filter

Process
+
-

𝑆𝑃 𝑇

𝐸 𝑇

Discrete
Action
Selections

𝐶𝑉 𝑇

𝐷𝑉 𝑇

RL agent

Stellenbosch University https://scholar.sun.ac.za

77

be clarified in Section 6.7. From an RL perspective, it does not make sense to train an agent off-policy on

a different RL environment than the one on which it will be deployed for online training, and therefore the

value of 𝜏𝑓 should be fixed before training to prevent possibly degrading agent performance

unintentionally. If a control law is required that does not attempt to maintain tightly the 𝐶𝑉 at 𝑆𝑃,

increasing 𝛽 (and possibly 𝜏𝑓) is suitable. The sampling period ∆𝑇 used must enable the agent to easily

discern the causal relationship between the 𝑀𝑉 and the 𝐶𝑉 in the 𝐶𝑉-𝑀𝑉 pairing during the process’s

transient response to a change in input. This aids in simplifying the control problem for the RL agent.

It is important to realise that applying an RL agent to a control problem requires an interface between the

RL agent and the RL environment. For a tabular SARSA agent, Section 2.8.1, this means that each state

component must be mapped to a coded state component. Therefore, based on predefined ranges, the

measurement obtained for each component is mapped to integer values used to represent states in the

tabular RL representation. Each action component available to the RL agent is also denoted by an integer

number, which is subsequently mapped to the corresponding 𝑀𝑉 value sent to the low-pass filter. The

interface required for the One-Step Actor-Critic agent (Section 2.9.5) was described in Section 2.9.7.

In the RL-based control simulations conducted, all 𝐶𝑉 measurements were provided to the controllers as

noise-free data. Since the state-action space was discretized coarsely when applying SARSA, the signal

to noise ratio will be sufficiently large when mapping inputs and outputs relevant to the process to

discretized states and actions to prevent significant changes in the coded states and actions corresponding

to the plant measurements. In contrast, PID control and Actor-Critic control operate in the continuously

modelled state space 𝒮, and therefore noise would affect these controllers. Introducing bias during the

comparison of different controllers by including instrumentation noise was not desired.

5.2 Exploration Schedule and Allocation of Training Schemes, Serial and Parallel

Computation

The simulation work described in Sections 5.3.1 and 5.3.2 involved the application of SARSA agents with

an 𝜀-greedy exploration strategy where a large probability of taking a random action, 𝜀, was defined

initially. The initial value of 𝜀 during each episode was 𝜀0. At each time step 𝑇 a coefficient just below

unity (ℭ) is multiplied with the previous value of 𝜀. Therefore, the probability of a random action is

expressed as shown in Equation [112] for each episode. This promoted state excitation and therefore

facilitated achieving sufficient coverage of the state-action space during the serial computations performed.

In Section 5.3.2, 𝜀 was only decayed at the end of an episode.

 𝜀(𝑇) = ℭ𝑇−1𝜀0 [112]

No terminal state was used since fixed episode length implies that each episode ends with a probability of

one. As an example, a training episode of 100 MDP time steps involves 99 transitions from 𝑇 to 𝑇 + 1,

since the first training step has 𝑇 = 1.

Stellenbosch University https://scholar.sun.ac.za

78

The first training scheme of Section 4.2.2 applies to Section 5.3.2 and the second training scheme of

Section 4.2.2 applies to Sections 5.3.3 through 5.3.5. The other training details were provided in Sections

4.1.2 and 4.3.2. Serial computation is applicable to Sections 5.3.1, 5.3.2, Q-learning applied to

Case Study 1 (water tank model), and Section 5.5. The other sections of the RL methodology used parallel

computation, Section 5.6, with 𝜀 = 0.1. All process models were used in their non-linear forms, as given

in Chapter 4.

5.3 SARSA Agent

5.3.1 Value-Based Control Mechanics and Tuning Simplification – Case Study 1 (Water Tank Model)

To study the water tank model, Section 4.1, the observed state 𝑆 only contained the discretized error signal

𝐸(𝑇). This has the benefits of validating that an extent of robust decision making may be obtained even

though the state space is incompletely defined, being easily relatable to other elementary RL-based control

applications discussed in Chapter 3, and allows readily observing the agent’s learning curve. When more

than one action is greedy at the state for which an action must be selected at the current time step 𝑇, tie-

breaking is performed by selecting a random action from the available discrete action selections.

The use of RL-based control inevitably increases the number of parameters that must be set externally by

the designer. This only makes tuning challenging for the parameters that need to be tailored manually to

the control loop under consideration. These parameters that need to be considered may be categorised as

tuning parameters (𝛽 and 𝜏𝑓 in the control scheme studied), and RL hyperparameters (described in Chapter

2).

It was therefore necessary to consider the effect that the tuning constants 𝛽 and 𝜏𝑓 have on qualitative

control behaviours obtained for the water tank problem. To do so, the water tank model was studied at

different levels of discretization of the state-action space, as is described in Section 6.2.1.

A SARSA agent and a binary reward structure with 𝛽 = 0.5 𝑚 about 𝑆𝑃 were used. During training, a

total of 3 000 episodes were used with 1 200 steps per episode. The agent was applied to learn a satisfactory

policy 𝜋 by training with inputs to the water tank model as described in Section 4.1.2. Because the number

of episodes is much smaller than the total number of steps, resetting the starting state at the start of each

episode is not practically unreasonable. A summary of the hyperparameters and tuning parameters used

are given in Table 19.

Stellenbosch University https://scholar.sun.ac.za

79

Table 19: All hyperparameter and tuning parameter values used to study the water tank control problem

Parameter
Numerical

Value
Description

ℭ 0.99
a constant used to decay the probability of taking a random

action

𝜀0 0.8 initial probability of taking a random action

𝜀 during testing

of policy
10−

probability of taking a random action used during the testing of

the RL agent after initial training

𝛼 0.7 step size hyperparameter

𝛾 0.7 discount factor

𝛽 0.5 𝑚 or 0.2 𝑚 reward function width specification (half of total width)

𝜏𝑓 20 𝑚𝑖𝑛 time constant used for the low-pass filter of Equation [111]

∆𝑇 1 𝑚𝑖𝑛 sampling period

5.3.2 RL Benchmarking Simulations

The work of Chen et al. (1995) was consulted so that the Van de Vusse reaction scheme model

(Section 4.2) can, to an extent, enable benchmarking in this thesis. The results generated for the Van de

Vusse reaction scheme, accompanied by qualitative comparison to Chen et al. (1995), are sufficient. It is

important to note that the incorporation of the inlet temperature 𝒯0 in the state of the RL-based controller

by coarsely discretizing it as a state component, accompanied by small changes in 𝑆𝑃 for servo problem

simulation, and a different set of 𝐷𝑉 values from those used by Chen et al. (1995) prevent direct

quantitative comparison to literature. “Relaxing” the rules of the benchmark problem in this way to suit

the intended application is not detrimental to the project as a whole. The coarse discretization of 𝐷𝑉 and

𝑆𝑃 used in this section are revised when investigating discretization coarseness and during Case Study 3

(the grinding circuit model).

The sampling period ∆𝑇 was selected to ensure that the agent may only apply an action after

approximately 40 seconds of simulated time passed since its previous action during its interaction with the

RL environment. This ensured that the agent was exposed to the process dynamics resulting from its

discrete action selections and that the same assumption was made as Chen et al. (1995) with regard to time

steps between 𝑀𝑉 adjustments. Presumably, their assumption was aimed at incorporating the influence of

measurement delay in their MPC study. In on-policy RL-based control, a time delay in sensor

measurement would not only affect the control output, but also the frequency with which operational data

may be provided to the agent during training, and therefore operational data requirement. The SARSA

update rule, Equation [20], was executed for each transition of 𝑇 to 𝑇 + 1 at the same sampling period

with which the actions are applied to the RL environment (also refer to the end of Section 2.8.1).

Stellenbosch University https://scholar.sun.ac.za

80

The hyperparameters, 𝑆𝑃 sampling vector, and discretization settings used for each component of 𝑺 are

given in Table 20. The unit “steps” in this table refers to the process time associated with each of the MDP

time steps, i.e. with each transition from 𝑇 to 𝑇 + 1, since a numerator of one is used in the exponentiated

factor of Equation [111]. Two instances of 𝜀0 were stored in a vector, one for each coded state component

interval of the 𝐷𝑉 discretization. At the end of each episode, Equation [112] was executed for the

corresponding entry of 𝐷𝑉 discretization. This prevented 𝜀 from too quickly reaching an unreasonably

small value. Instrument lag was simulated as described in Section 4.2.2.

Table 20: Hyperparameters, tuning parameters, 𝑆𝑃 sampling vector, and discretization settings for SARSA

agent training during the benchmarking simulations

Training setting Value Description

Number of episodes 2 000 -

Number of steps per

episode
400 -

𝑡𝑖𝑚𝑒𝐼𝑓𝑆𝑒𝑐𝑜𝑛𝑑𝑠 2 500 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 simulated time per episode (in seconds)

𝑑𝑒𝑠𝑖𝑟𝑒𝑑𝑇𝑟𝑢𝑒𝑇𝑖𝑚𝑒 40 𝑠𝑒𝑐𝑜𝑛𝑑𝑠

desired simulated time between

adjustments to the action applied to the RL

environment (in seconds)

ℭ 0.99
a constant used to decay the probability of

taking a random action

𝜀0 [0.8,0.8]𝑇
initial probability of taking a random

action

𝜀 during testing of policy 10−

probability of taking a random action used

during the testing of the RL agent after

initial training

𝛼 0.5 step size hyperparameter

𝛾 0.99 discount factor

𝛽 0.02
𝑚𝑜𝑙

𝐿

reward function width specification (half

of total width)

𝜏𝑓 20 𝑠𝑡𝑒𝑝𝑠
time constant used for the low-pass filter of

Equation [111]

∆𝑇 43.75 seconds sampling period

𝐸(𝑇) discretization

9 intervals of equal width

from −0.05
𝑚𝑜𝑙

𝐿
 to

+0.05
𝑚𝑜𝑙

𝐿
, with two

coarser state components

from −0.6
𝑚𝑜𝑙

𝐿
 to

−0.05
𝑚𝑜𝑙

𝐿
 and from

+0.05
𝑚𝑜𝑙

𝐿
 to +0.6

𝑚𝑜𝑙

𝐿

-

Stellenbosch University https://scholar.sun.ac.za

81

Training setting Value Description

𝐷𝑉(𝑇)
Two intervals: one from

50°𝐶 to 107.5°𝐶, and one

from 107.5°𝐶 to 150°𝐶

-

𝐴 discretization
Discretized from 3

1

ℎ
 to 35

1

ℎ

in increments of 10 %
-

5.3.3 Investigating State-Action Space Discretization

To find out how discretization affects performance if hyperparameter and tuning parameter values remain

fixed, qualitative factor screening was used. Case Study 2 (the Van de Vusse reaction scheme) was studied

and a 2 factorial experiment was designed by following the single replicate methodology of Daniel (1959)

as described by Montgomery (2013). The response variable was the IAE point estimator generated by

calculating the arithmetic mean IAE of 100 generated control problems. In this investigation, each

pseudorandom control problem is defined as having 10 𝑆𝑃 settings and 10 𝐷𝑉 settings which are sampled

from uniform distributions on bounded intervals. The study of a SISO control loop pairing ensures that all

interactions are a result of how the state-action space is discretized.

The factors used are given in Table 21. Boundary states refer to very coarse intervals of the state

component’s discretization that prevents failure of RL environment state mapping to the discretized state-

action space defined for the RL representation. The two coarsely defined intervals for error signal 𝐸(𝑇)

in Table 20 were examples of boundary states. Instrument lag was simulated as described in Section 4.2.2.

Table 21: Definitions of design factors used for the investigation of state-action space discretization

Factor name
Description of design

factor

Range of design factor

(excluding boundary

states)

Corresponding

component of classical

feedback control loop

(Marlin, 2000)

A
𝐶𝐵 error signal

discretization, 𝐸(𝑇) [−0.05
𝑚𝑜𝑙

𝐿
, 0.05

𝑚𝑜𝑙

𝐿
]

Feedback control error

𝐸(𝑡)

B
Inlet temperature (𝒯0)

discretization
[100°𝐶, 115°𝐶] 𝐷𝑉

C 𝑆𝑃 discretization for 𝐶𝐵 [0.95
𝑚𝑜𝑙

𝐿
, 1.11

𝑚𝑜𝑙

𝐿
] 𝑆𝑃

D
Discrete action selections

available to the agent
[3 ℎ−1, 35 ℎ−1] 𝑀𝑉

All hyperparameters and other training settings remained constant throughout. These are summarized in

Table 22. A single replicate of the factorial experiment was comprised of two batches. Each batch consists

of 11 500 episodes with 400 steps per episode. A total of 23 000 training episodes were therefore used for

each of the 16 levels of the 2 factorial experiment.

Stellenbosch University https://scholar.sun.ac.za

82

Table 22: Training settings used for the investigation of state-action space discretization

Training setting Value

Number of episodes per batch 11500

Number of steps per episode 400

Number of batches per level 2

𝛼 0.5

𝛽 0.02
𝑚𝑜𝑙

𝐿

𝜀 0.1

𝛾 0.99

𝜏𝑓 20 𝑠𝑡𝑒𝑝𝑠

During training at each level of the factor screening comparable performance needed to be achieved.

Comparable performance does not imply complete coverage of the discretized state-action space, but rather

that the main and interaction effects may be observed. The effects of limited coverage are lumped as part

of the discretization effect. This is because the net effect of increasing the state-action space discretization

is of interest when providing the agent with sufficient data to achieve a reasonable coverage.

To decide on the discretization settings to use, the control study of Syafiie et al. (2008) was consulted. To

ensure that the observations do not result purely from training process noise, the high and low factor

settings are selected far apart. Specifically, the ability of the agent to effectively use its discretization in

the dimension at the low level is removed. This is achieved by defining the low and high levels of a state

component’s discretization as one state interval with two boundary states and 10 state intervals with two

coarse boundary states, respectively. The state intervals are defined within the ranges given in Table 21,

and each state component’s intervals have uniform width. Importantly, a state component at the low setting

(coarse discretization) still contains three coarsely defined intervals. The low and high settings for the

number of discrete actions available to the agent were five and 25, respectively.

Since there is significant uncertainty associated with the experimental design, a significance level of 0.10

was chosen for statistical analysis. The uncertainty includes the different and unknown coverages

instantiated for the different experimental runs.

In addition to consideration of the memory requirement for the variables generated while executing the

implementation code, learning curves were generated using the proposed algorithm given in Appendix D.

The parameters of the algorithm are the fixed episode length, 𝐸𝑝, and the window size 𝑊. The window

size 𝑊 refers to a predefined number of training episodes for which the rewards obtained are summed

independently. The rewards obtained in successive windows gives an indication of how the agent’s

learning process progresses. These were set to 𝐸𝑝 = 20 and 𝑊 = 500 for 11 500 episodes. All

Stellenbosch University https://scholar.sun.ac.za

83

hyperparameters and tuning parameters (except 𝜀 = 0.001) are kept at the same settings as during agent

training (Table 22). The two extremes of discretization are considered again, with curves generated for

the {𝐿, 𝐿, 𝐿, 𝐿} and {𝐻,𝐻,𝐻,𝐻} cases. The learning curves generated are not monotonic owing to the

stochastic manner in which inputs to the training process were changed at each time step.

In the {𝐿, 𝐿, 𝐿, 𝐿} case, the agent reached its first learning curve peak after approximately 3 windows (1500

episodes). In comparison to this, approximately 11 windows (5500 episodes) were required to reach a

similar position in the {𝐻,𝐻,𝐻,𝐻} case. It is argued that it is likely that comparable performance is

achieved if the number of episodes used in one replicate is more than
11

3
 times the number of episodes

required to reach the first learning curve peak in the {𝐻,𝐻,𝐻,𝐻} case. This rule of thumb represents an

extreme case comparison for the number of coordinates within the action-value hypervolume. To validate

that sufficient operational data was provided to the agent to observe the effects of discretization, the results

must reflect that a finely discretized state-action space improves the achievable control performance.

5.3.4 Value-Based Hyperparameter Characterization

If a tabular RL representation is used for value-based methods, the convergence properties associated with

𝛼 are independent of the instance of discretization applied. This may be shown by applying principles of

stochastic approximation (Theodoridis, 2020).

Equation [113] for constant 𝛼 was derived in Section 2.8.1. It illustrates that the SARSA update rule is a

weighted average of previous knowledge, 𝑀𝑇−1(𝑺, 𝑨), and the newest information which is represented

by the most recent Bellman target 𝓉. If 𝛼 = 0, there is no update to the entries of the RL representation,

if 𝛼 = 1, previous knowledge is discarded.

 𝑀𝑇(𝑺, 𝑨) = 𝛼𝓉 + (1 − 𝛼)𝑀𝑇−1(𝑺, 𝑨) [113]

After conducting preliminary experiments with the Van de Vusse reaction scheme model (Case Study 2)

that involved varying 𝛾 for 𝛼 = 1, and subsequently varying the value of 𝛼 for the selected value of 𝛾,

nominal values of 𝛾 = 0.99 and 𝛼 = 0.7 were selected for Case Study 3 (the grinding circuit model). The

numerical results for these experiments are presented in Section 6.3.3.

5.3.5 Tabular SARSA Applied to the PSE-MFS Control Loop (Grinding Circuit Model)

The SARSA agents were trained using 𝛽 = 0.02, where PSE is expressed as a mass fraction. The

components of the observed state provided to the agent, 𝑺, were 𝐸(𝑇), 𝜐, and the 𝑆𝑃 for PSE. The available

MFS values were not included as a state component to maintain a clear separation between cause and

effect, simulate a constraint in the available instrumentation, and to prevent an excessive increase in the

number of entries in the action-value hypervolume. The 𝐷𝑉s 𝜙𝑟 and 𝜙𝑓 were purposefully not included

as state components. Rock hardness (modelled using 𝜙𝑟) is not assumed to be practically measurable. The

power consumption per tonne of fines produced 𝜙𝑓 needs to be changed according to the predefined

Stellenbosch University https://scholar.sun.ac.za

84

schedule given by Le Roux et al. (2013) to maintain the qualitative integrity of the grinding circuit model’s

behaviour. Including 𝜙𝑓 as a state component could therefore bias the RL agent’s learned behaviour.

Instrument lag was simulated as explained in Section 4.3.3. Initially, a SARSA agent was provided with

20 000 episodes with 100 MDP time steps per episode for training. Each transition from 𝑇 to 𝑇 + 1, (∆𝑇),

was set independently to 1 h. This selection of ∆𝑇 is sufficiently small in comparison to the process time

constant to expose the agent to the dynamics of the process.

The MFS range was limited so that operational data used for training corresponded to realisable state-

action coordinates in the steady state of the grinding circuit model. A representative control problem was

studied (after training in the case of the SARSA controller) which required the tracking of the 𝑆𝑃 of the

PSE in the presence of 𝜐, 𝜙𝑟, and 𝜙𝑓 changes. During this test 𝜐, 𝜙𝑟, and 𝜙𝑓 were changed as shown in

Figure 14. After initial SARSA agent training, an additional 176 episodes (approximately 2 years of on-

policy training data) were used to further train the SARSA agent in the presence of stiction. All control

performance measures include the initial plant-agent mismatch caused by the initial grinding circuit

model’s steady state value of 𝑀𝐹𝑆 = 65.2
𝑡

ℎ
 being outside of the 𝑀𝑉 range provided, and the mismatch

between the learned behaviour of the agent with tabular RL representation and the steady-state operating

condition of the plant.

Figure 14: Changes in the 𝐷𝑉s 𝜐, 𝜙𝑟, and 𝜙𝑓 for the representative control problem

A constant input period of 10 ℎ was recommended by Le Roux et al. (2013) to allow model transients to

subside for their proposed changes in 𝜙𝑓. The selection of 𝜏𝑓 is best understood when considering

simulation results and detailed discussion is therefore deferred to Section 6.7.

Stellenbosch University https://scholar.sun.ac.za

85

Table 23 and Table 24 provide a summary of the hyperparameters, tuning constants, and state component

bounds used. In Table 24, each component of 𝑺 is discretized with arbitrarily coarse boundary states

located at both sides of a more finely discretized region. Symmetric error signal 𝐸(𝑇) discretization must

be used. During training 10 𝑆𝑃s and 10 𝐷𝑉s were sampled for each episode (Section 4.3.2). Table 25

provides the sampling ranges used. Actions were discretized from 33
𝑡

ℎ
 to 60

𝑡

ℎ
 in increments of 20%.

Table 23: Hyperparameter and tuning settings for comparison of PID and SARSA controllers

Training setting Value

𝜀 during training 0.1

𝜀 during testing of policy 10−

𝛼 0.7

𝛾 0.99

PID gain (detuned) −10 (𝑡 / ℎ)/(% 𝑃𝑆𝐸)

PID integral time 19.6 ℎ

PID derivative time 4.97 ℎ

time steps for PID execution 0.01 ℎ

Table 24: Discretization settings of discretized state components

Training setting Value

𝐸(𝑇)
4 intervals of equal width from −0.1 to +0.1 with two coarser state

components from −1 to −0.1 and from +0.1 to +1

𝜐 20 intervals of equal width from 0.315 to 0.565

𝑃𝑆𝐸 𝑆𝑃 8 intervals from 0.596 to 0.66, and 1 interval from 0.58 to 0.596

Table 25: Ranges for 𝑆𝑃 and 𝐷𝑉 sampling during SARSA agent training

𝑺𝑷 or 𝑫𝑽 Lower bound Upper bound

PSE SP 0.58 (−) 0.66 (−)

𝜐 0.315 (−) 0.565 (−)

𝜙𝑟 5 (𝑘𝑊ℎ/𝑡) 7 (𝑘𝑊ℎ/𝑡)

5.4 Q-Learning Agent

Two cases were considered for off-policy training of a tabular Q-learning agent, namely obtaining initial

policy estimates for the level control of the water tank model (Case Study 1) and for the PSE-MFS loop of

the grinding circuit model (Case Study 3).

Stellenbosch University https://scholar.sun.ac.za

86

In the simulation work conducted, the agent was connected in parallel to the classical controller (the

behavioural policy 𝜋𝑏). In reality, historical plant data would need to be pre-processed and used during

training. A sampling period ∆𝑇 of one minute was applied when training a Q-learning agent on the water

tank model, and the integral mode of the PI controller was updated as shown in Equation [114] (after

initialization at 𝑇 = 1 𝑚𝑖𝑛) (Gilat and Subramaniam, 2014).

 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑚𝑜𝑑𝑒 ← 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑚𝑜𝑑𝑒 + [𝐸(𝑇 − 1)(∆𝑇) + 0.5(𝐸(𝑇) − 𝐸(𝑇 − 1))(∆𝑇)] [114]

In all other cases where integrals had to be approximated, the differential with respect to time was included

as a state variable sent to the built-in numerical integrator used.

5.5 One-Step Actor-Critic Agent (Grinding Circuit Model)

Bertsekas and Tsitsiklis (1996) describe the use of a regular grid for basis function placement.

Shipman and Coetzee (2019) illustrate the scaling of components comprising the action space to be in the

range of [−1,1] to prevent incorporating unintended distorting of the basis functions used. Both of these

concepts were incorporated in the One-Step Actor-Critic implementation of this thesis.

The state components obtained from the RL environment at each instance of 𝑇 were scaled to a range of

[−1,1], while the action selections required the scaling of the number of discrete actions available to the

same range. The bounds of Table 24 and Table 25 were used. Instrument lag was simulated as explained

in Section 4.3.3. The other training specifications (excluding hyperparameter and RBF variance selection)

were identical to those used for the training of SARSA agents for the PSE-MFS control loop

(Section 5.3.5).

Step sizes of 𝛼𝒘 = 0.7 and 𝛼𝜽 = 0.05 were used. The latter was determined through trial and error, while

𝛼𝒘 was assumed based on the results presented in Section 6.3.3 despite the use of function approximation.

While the use of Robbins-Monro convergence conditions for 𝛼 would guarantee convergence, parameter

convergence would likely be slowed down excessively (Robbins and Monro, 1951; Dvoretzky, 1956;

Sutton and Barto, 2018; Theodoridis, 2020). In contrast to initialization using zeros for all table entries in

SARSA, random numbers sampled from the uniform distribution over [0, 0.01] were used to initialize both

𝒘 and 𝜽 for the One-Step Actor-Critic algorithm. This was merely done to have some small initial degree

of differentiation between the individual actions’ selection probabilities, but is a fairly trivial aspect.

The manual selection of RBF variances (𝜎2 in Equation [42]) was based on the link between interpolation

and the use of parametric models in machine learning. Hastie et al. (2020) highlight that attention has been

drawn to interpolators in the machine learning literature. This may mainly be attributed to observations

that state-of-the-art neural networks adjust their parameters to optimise a scalar performance objective and

may be considered to have attributes similar to interpolators. By studying the work of Bishop (2006) and

Sutton and Barto (2018), it may readily be observed that neural networks are non-linear parametric models

Stellenbosch University https://scholar.sun.ac.za

87

that build on concepts developed for the linear parametric basis function modelling principles applied to

the actor and critic RL representations in this thesis.

It is therefore assumed that the qualitative effect of RBF shape in a generic interpolation problem are, to

an extent, applicable to the One-Step Actor-Critic algorithm. A minimum error is often reached at some

point before excessive RBF width is achieved (Mongillo, 2011).

Fasshauer (2007) explains that an excessively large value of 𝜎2 causes the rows and columns of an

interpolation matrix (contains the basis functions that need to be scaled using a weight vector) to become

more alike which raises the condition number of the interpolation matrix. This is not a concern in RL.

This is because no system of linear equations is solved using an interpolation matrix. Stochastically

ascending (Policy Gradient and Actor-Critic) or descending (Value-based) methods can only be incapable

of capturing the contours of the optimal policy 𝜋∗ or the optimal value function 𝑄𝜋
∗ (𝑺, 𝐴) if the RBFs are

defined with excessively large perceptive fields.

Different methods have been proposed in literature for the selection of uniform 𝜎2 for RBF models. Such

selection algorithms and correlations often require knowledge of the number and distribution of data points

and leverages cross validation to assess the performance of interpolants (Rippa, 1999; Fasshauer, 2007).

In RL, the direct use of quantitative selection methods are not feasible because the operational training

data cannot be visualized, are non-stationary, and depend on the RL problem formulation and control

design (Sutton and Barto, 2018).

The variances 𝜎2 of both the actor and the critic basis functions were assumed to be uniform and equal

to 0.1. This value of 𝜎2 was considered reasonable on a scale of [−1,1] for each state component and the

actions, and Figure 3 of Chapter 2 was specifically created with 𝜎2 = 0.1 to aid in conceptualising this

selection. Only approximate instances of 𝒘 and 𝜽 need to be learned. To validate that sensible learning

behaviour was achieved, the progression of control performance measures as more training episodes are

provided to the RL agent was used as a type of “cross validation” for the numerical experiments conducted.

This progression is considered for a fixed control problem after training using pseudorandom inputs to the

plant.

To select an action at each time step 𝑇, a pseudorandom number between zero and unity was sampled from

a uniform distribution. The sampled number was then compared to each element of the probability mass

function 𝜋(𝐴|𝑺, 𝜽). An action was considered likely if the sampled number is lower than the probability

mass associated with that action for the current instances of 𝑺 and 𝜽, with the most likely action selected

at 𝑇. If none or more than one discrete selection of 𝐴 is likely at 𝑇, tie-breaking is implemented by selecting

a random action from the discrete set of available actions. A total of 20 000 episodes with 100 steps per

episode were used.

The basis function placement method may be approached through the application of a numerical pattern

that ensures that the regular grid starts in each direction at −1 and ends at +1. For the actor, five basis

Stellenbosch University https://scholar.sun.ac.za

88

functions were placed in each of the dimensions of the state space, as well as for the one-dimensional

action space. This resulted in 625 entries for 𝜽, each entry corresponding to a basis function placed in the

region of the state-action space in which operational data is known to be generated. The critic had 4 basis

functions in each dimension of the state space, resulting in 64 basis functions for the critic.

5.6 Numerical Implementation

Results that required parallel code execution (see Section 5.2 for allocation) were generated by training the

RL agents in parallel using the Stellenbosch University High Performance Computing cluster:

http://www.sun.ac.za/hpc. The training of these value-based RL agents was performed using many

independent training episodes executed in parallel. The approximation 𝑄̃𝜋(𝑺, 𝑨) was obtained by summing

across the parallel episodes.

The action corresponding to the maximum action-value at the current state is all that must be known to

obtain the resulting policy 𝜋 for an 𝜀-greedy exploration strategy. The pseudorandom 𝐷𝑉 and 𝑆𝑃 changes

during training ensured that sufficient state excitation occurred to allow an appropriate approximation

𝑄̃𝜋(𝑺, 𝑨) to be obtained. This should be contrasted to the One-Step Actor-Critic algorithm. The decision

making process depends on the relative magnitudes of the actor’s parameters which are contained in the

vector 𝜽. Each RBF has a perceptive field that causes a great dependence on the history of updates to the

parameter vectors. Without modification of the algorithm to accommodate centralization of the parallel

agent training instances, the One-Step Actor-Critic algorithm must be executed using serial computation.

Wall time is the actual time that passes during the execution of code. Speed-up is defined as the wall time

of a reference number of cores divided by the wall time for running a fixed and representative problem on

more than one core Lin and Snyder (2008). The resultant scaling behaviour for execution on a single

computational node of the Stellenbosch University High Performance Computing cluster is shown in

Figure 15. From Figure 15, 16 MATLAB workers were selected for parallel computation.

Stellenbosch University https://scholar.sun.ac.za

http://www.sun.ac.za/hpc

89

Figure 15: Speed-up versus number of MATLAB workers for the scaling test performed on the

Stellenbosch University High Performance Computing cluster: http://www.sun.ac.za/hpc

5.7 Feasibility Criteria Used to Evaluate Elementary RL-Based Process Control

Recall from Section 5.1 that the control problem to be solved by the RL agent is simplified by providing

the it with a discrete set of actions and then filtering these discrete action selections through the use of a

low-pass filter. From Section 2.11, the optimal policy 𝜋∗ is unique for a fixed process design and set of

process parameters. By filtering the action selections in the control scheme of this study, a different

optimal policy is sought by the RL agent. Since the agent does not operate directly in the state-action space

of the process being controlled, this policy will be suboptimal to the policy targeted by an RL agent directly

operating in the state-action space.

Feasibility was evaluated for this simplified problem since a number of the same strengths and weaknesses

of the studied RL-based controllers may be assumed applicable to the more complex RL-based controller

problem approached by state-of-the-art methodologies. Hence, the simplified control problem provides a

Stellenbosch University https://scholar.sun.ac.za

http://www.sun.ac.za/hpc

90

reference point for the evaluation of feasibility as it portrays an extreme of operation in terms of RL

environment simplicity.

The following criteria were used to evaluate the feasibilities of SARSA, Q-learning, and One-Step Actor-

Critic RL agents in this study and combines aspects of classical control with criteria from RL

(Marlin, 2000; Skogestad and Poslethwaite, 2005; Sutton and Barto, 2018):

1. Memory usage and time for code execution

2. Control performance

3. Ease of RL agent tuning

4. Safety of exploration

5. Whether controller operation is interpretable to a human

6. Process modelling requirement

Stellenbosch University https://scholar.sun.ac.za

91

CHAPTER 6

RESULTS AND DISCUSSION

6.1 General Considerations

In the space of RL-based process control using synthetic data, it is important to conceptually validate the

consistency of results with theory from classical control and RL. Secondly, results of the simulation work

conducted may be compared qualitatively to results of related work reported in literature. Quantitative

comparisons are limited to controllers implemented in this thesis. This is because some benchmark rules

for the Van de Vusse reaction scheme (Case Study 2) are relaxed (Section 5.3.2), and the coarse state-

action space discretization studied targets small 𝑆𝑃 changes (Section 6.2.1 and Section 6.3.1). Thirdly,

reasonable performance for an elementary control problem (self-regulatory water tank (Case Study 1))

must be obtained since Chapter 2 and Chapter 3 illustrate that this is possible.

6.2 Case Study 1 – Self-Regulatory Water Tank

6.2.1 The Mechanics of Value-Based Process Control and Tuning Simplification

Table 26 provides the discretization specifications for the error signal 𝐸(𝑇) which comprised the agent’s

state, and the discrete actions (values of the fraction valve opening 𝑥) available for runs with 𝛽 = 0.5 𝑚.

Equation [115] depicts the binary reward function used for training. The second term in Equation [115]

is required as no negative rewards were provided to the RL agents and the sign operator comprising the

first term provides a value of +1 if |𝐸(𝑇)| < 𝛽 and −1 if |𝐸(𝑇)| > 𝛽. The selection of 𝛽 = 0.5 𝑚 is very

large in comparison to the 𝑆𝑃 liquid levels (1 𝑚, 1.4 𝑚, and 2 𝑚) considered in the simulations.

Table 26: Discretization settings for 𝛽 = 0.5 𝑚 runs

Case 𝑺 discretization 𝑨 discretization

Low discretization state space, Low

discretization action space (𝐿𝑑𝑆𝐿𝑑𝐴)

2 intervals of equal width from

−2.14 𝑚 to +2.14 𝑚 with two

boundary states

3 actions, namely

3.69 × 10−3, 0.37, and

0.738

Low discretization state space, Fine

discretization action space (𝐿𝑑𝑆𝐻𝑑𝐴)

2 intervals of equal width from

−2.14 𝑚 to +2.14 𝑚 with two

boundary states

10 evenly spaced actions

from 3.69 × 10−3 to

0.738

Fine discretization state space, Fine

discretization action space (𝐻𝑑𝑆𝐻𝑑𝐴)

10 intervals of equal width from

−2.14 𝑚 to +2.14 𝑚 with two

boundary states

10 evenly spaced actions

from 3.69 × 10−3 to

0.738

Fine discretization state space, Low

discretization action space (𝐻𝑑𝑆𝐿𝑑𝐴)

10 intervals of equal width from

−2.14 𝑚 to +2.14 𝑚 with two

boundary states

3 actions, namely

3.69 × 10−3, 0.37, and

0.738

Stellenbosch University https://scholar.sun.ac.za

92

Case 𝑺 discretization 𝑨 discretization

𝐴𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐
13 intervals of equal width from

−7 𝑚 to +15 𝑚

10 evenly spaced actions

from 3.69 × 10−3 to

0.738

 𝑅(𝑇) = 𝑠𝑖𝑔𝑛(𝛽 − |𝐸(𝑇)|) + 1(|𝐸(𝑇)| > 𝛽) [115]

Figure 16 displays the learning curves of the agents trained in accordance with Table 26. Instead of

counting all the rewards obtained by the agent in successive instances of a fixed window size of episodes,

the total rewards obtained at the corresponding episode is plotted against the episode number. The action-

value tables generated by the 𝐿𝑑𝑆𝐿𝑑𝐴 and 𝐻𝑑𝑆𝐻𝑑𝐴 runs of Table 26 are given in Figure 17 and Figure 18,

respectively. Figure 19 and Figure 20 relate qualitative height trajectories instantiated in the water tank

model by applying a step change in 𝐹𝑖𝑛 from the training value of 190
𝐿

𝑚𝑖𝑛
 to 200

𝐿

𝑚𝑖𝑛
 at the start of the

test run of the trained SARSA agent. During the test run, the RL agent’s update rule was executed for each

time step, as was done for all test runs reported in this chapter. In Figure 20, 𝑆𝑃 is not reached since the

number of discrete states available to the agent are sufficient to allow it to realise that the level of liquid in

the tank need only be within ±𝛽 of the 𝑆𝑃 height. Since 𝛽 = 0.5 𝑚 in Figure 20, the height remains within

the range [0.9 𝑚, 1.9 𝑚] for the 𝑆𝑃 of 1.4 𝑚.

Figure 16: Learning curves for concept validation runs, discretization cases correspond to Table 26

Stellenbosch University https://scholar.sun.ac.za

93

Figure 17: Action-value table after training for 𝐿𝑑𝑆𝐿𝑑𝐴 case of Table 26 (units consistent with RL

environment)

Figure 18: Action-value table after training for 𝐻𝑑𝑆𝐻𝑑𝐴 case of Table 26 – the top and bottom rows are

boundary states which are specifically chosen to capture outliers during training (units consistent with RL

environment)

Stellenbosch University https://scholar.sun.ac.za

94

Figure 19: Height trajectories for trained agents with 𝐿𝑑𝑆 state discretization of Table 26 (𝜀 = 10− ; 𝑆𝑃 =

1.4 𝑚; 𝐷𝑉 = 200
𝐿

𝑚𝑖𝑛
)

Figure 20: Height trajectories for trained agents with 𝐻𝑑𝑆 state discretization of Table 26 (𝜀 = 10− ; 𝑆𝑃 =

1.4 𝑚; 𝐷𝑉 = 200
𝐿

𝑚𝑖𝑛
)

The learning curves of Figure 16 may readily be interpreted. The 𝐿𝑑𝑆𝐿𝑑𝐴 and 𝐿𝑑𝑆𝐻𝑑𝐴 cases take the

longest to achieve a consistently high density of data points near the upper limit of +1 200 rewards per

episode (equal to the number of time steps per episode used during training). This is because the excursions

in 𝐶𝑉 resulting from exploration are typically larger for the coarsely discretized error signal 𝐸(𝑇) – the

agent has to train until the policy reflects that the use of two extremes of action selection are required to

prevent the 𝐶𝑉 from moving outside the desired bounds. The 𝐻𝑑𝑆𝐿𝑑𝐴 and 𝐻𝑑𝑆𝐻𝑑𝐴 cases achieve high

Stellenbosch University https://scholar.sun.ac.za

95

reward densities close to +1 200 much quicker as the agent is provided with many state transitions that

provide a positive reward for the large value of 𝛽.

In the limit of extremely coarse discretization (𝐿𝑑𝑆𝐿𝑑𝐴), the agent’s policy 𝜋 simplifies to bang-bang

control logic. This is evidenced in Figure 17 which shows that, of the two discrete states visited during

training, the negative state component (lower row with non-zero entries) has a maximum action-value in

the rightmost column. This means that the agent opens the valve a lot (large value for 𝑥 in Equation [49]).

Conversely, when a positive error signal 𝐸(𝑇) is encountered (meaning that the liquid level is below 𝑆𝑃),

the agent closes the valve by selecting the lowest available value of 𝑥. After applying the action selections

filtered through the use of Equation [111] to the self-regulatory water tank model, low-amplitude

oscillations in the 𝐶𝑉 about the 𝑆𝑃 are caused, as shown in Figure 19.

Such an extremely coarse discretization is not sensible practically. This is because the agent loses its

ability to adapt effectively to changes in the RL environment and low-amplitude 𝐶𝑉 oscillations cannot be

avoided. The bang-bang control logic is the optimal policy for this level of discretization irrespective of

whether control loop dynamics are altered. This stems from the fact that action selections at the extremes

of the action space’s range have the largest magnitude effect on the 𝐶𝑉 in the steady state.

Despite the practical limitation mentioned above, an important theoretical observation may be made by

comparing the qualitative results of the 𝐿𝑑𝑆𝐿𝑑𝐴, 𝐿𝑑𝑆𝐻𝑑𝐴, and asymmetric cases in Figure 19. Even though

the agent is provided with the same range of actions to apply to the RL environment, the trained policy

fails to ensure that the 𝐶𝑉 oscillates about the 𝑆𝑃 in the asymmetric case. The agent’s inability to enable

zero steady state offset in Figure 19 could only stem from the asymmetric discretization of 𝐸(𝑇). This

implies that the entries of the action-value function were biased statistically in the sense described by

Devore (2017) by the asymmetric discretization of the state space.

In Figure 19, the qualitative results for the 𝐻𝑑𝑆𝐻𝑑𝐴 and 𝐻𝑑𝑆𝐿𝑑𝐴 cases indicate that the 𝐶𝑉 is successfully

maintained within the ±0.5 𝑚 band around the 𝑆𝑃 of 1.4 𝑚. Figure 18 shows that this is achieved without

bang-bang control logic – the maximum action-values at the discretized states are distributed across the

available columns of the table. Such a policy could potentially be of practical significance for averaging

level control for a self-regulatory inventory system.

Table 27 provides the details for runs conducted with 𝛽 = 0.2 𝑚 and involve a much finer discretization

of 𝐸(𝑇). Since a key idea in the studied control scheme is to leverage the low-pass filter’s effect to allow

for a coarse discretization of the action space, a maximum of 10 discrete action selections are provided to

the agent in Case Study 1 for both sets of runs. Figure 21 displays the learning curves for the runs of Table

27.

Stellenbosch University https://scholar.sun.ac.za

96

Table 27: Discretization settings for 𝛽 = 0.2 𝑚 runs

Case 𝑺 discretization 𝑨 discretization

Low discretization state space, Fine

discretization action space (𝐿𝑑𝑆𝐻𝑑𝐴)

10 intervals of equal width

from −2.14 𝑚 to + 2.14 𝑚

with two boundary states

10 evenly spaced actions

from 3.69 × 10−3 to 0.738

Fine discretization state space, Fine

discretization action space (𝐻𝑑𝑆𝐻𝑑𝐴)

100 intervals of equal width

from −2.14 𝑚 to + 2.14 𝑚

with two boundary states

10 evenly spaced actions

from 3.69 × 10−3 to 0.738

Figure 21: Learning curves for the discretization cases given in Table 27, generated in the same manner

as Figure 16

A similar learning curve trend is observed in Figure 21 where the 𝐻𝑑𝑆𝐻𝑑𝐴 case of Table 27 displays a

much larger initial learning rate (steeper gradient of the learning curve), and a quicker achievement of the

plateau of the learning curve. This illustrates that, when allowing for a fairly coarse action discretization,

the number of episodes required to achieve 𝐶𝑉 values within the bounds specified by 𝛽 is decreased by

using a finer discretization of 𝐸(𝑇). It should be noted that this observation is made for a value of 2𝛽

equal to 40 % of the range of 𝑆𝑃 values used during agent training. Most often, the value of 2𝛽 would

constitute a much smaller fraction of the 𝑆𝑃 range under consideration.

For the smaller reward width associated with 𝛽 = 0.2 𝑚, the action-value table of the 𝐿𝑆𝐻𝐴 case of Table

27 also results in a bang-bang control logic irrespective of more states being experienced by the agent than

was the case in Figure 17. This shows that, for 𝛽 = 0.2 𝑚, the discretization of 𝐸(𝑇) is too coarse to

leverage the effect of the low-pass filter properly. For a large value of 𝛽, the threshold of 𝐸(𝑇)

discretization fineness where the control scheme will start benefiting from the low-pass filter without

resorting to bang-bang control will be lower, as evidenced by the results of the runs of Table 26.

Stellenbosch University https://scholar.sun.ac.za

97

Upon increasing the fineness of the discretization as per Table 27 (𝐻𝑑𝑆𝐻𝑑𝐴 case), three regions may be

identified in the action-value table. A central region exists where the approximated action-values are

relatively high and bands are formed on either side of this central region where there are relatively large

action-values which are distributed sparsely in the table. The remainder of the action-value table is the

third region and only has zero-valued entries (these entries were also initialized with zeros).

Figure 22 shows four cross sections of the action-value table obtained for the 𝐻𝑑𝑆𝐻𝑑𝐴 case of Table 27.

The state-action coordinates of the innermost band of the action-value table have the largest number of

visits during training once the first positive rewards were obtained within the ±𝛽 range. This is shown by

the action-values across the available actions being the largest for state 50 and state 53. The agent’s more

pronounced differences in action-values across the available actions for state 47 and state 56 indicate that

the discounted rewards propagate from the centre of the discretized state-action space to peripheral state-

action coordinates, thereby informing the agent regarding what corrective action would be beneficial

should it encounter a coordinate slightly outside the central region of frequent visits.

Figure 22: Cross sections of the action-value table for the 𝐻𝑑𝑆𝐻𝑑𝐴 case of Table 27 (units consistent with

RL environment)

When viewed together with the relatively steep initial gradient of the 𝐻𝑑𝑆𝐻𝑑𝐴 entry of Figure 21 and the

quick achievement of the maximum positive reward per episode, it may be inferred that 𝐸(𝑇) values in the

remainder of the action-value table were not encountered often. This illustrates that the RL agent’s control

behaviour for a discretized state-action space will be most satisfactory for small magnitude 𝑆𝑃 changes if

the state-action space is discretized coarsely – the central state-action coordinates will be the quickest to

converge to their optimal values. Therefore, the shape of the optimal action-value function 𝑄̃𝜋(𝑺, 𝐴) will

be learned the quickest for states within the region where |𝐸(𝑇)| < 𝛽.

Stellenbosch University https://scholar.sun.ac.za

98

The results of this section illustrate that the proposed control scheme studied (Section 5.1) enables the

achievement of sensible simulated non-linear control for the feasibility study of an RL-based controller

applied to a self-regulatory SISO control problem. This is consistent with the findings of

Syafiie et al. (2008), Brujeni et al. (2010), and Ramanathan et al. (2018) in their studies of value-based RL

controllers for SISO control systems (Chapter 3).

Since the same maximum rewards per episode were achieved in all the runs discussed in this section

(Figure 16 and Figure 21), and positive rewards were only provided to the agent if 𝐶𝑉 was within the

desired region about 𝑆𝑃 (Equation [115]), it may be inferred that maintaining 𝐶𝑉 sufficiently close to 𝑆𝑃

is not very sensitive to the selection of 𝛽. The value of 𝛽 may therefore be selected according to a fixed

rule, and may be set equal to measurement noise or control tolerance. In contrast, 𝜏𝑓 will have a very

significant influence on controller performance, as it influences the frequencies with which final element

adjustments may be applied to the plant.

6.2.2 Q-Learning

To investigate the behaviour of Q-learning as a potential off-policy method for developing a first

approximation policy for a SARSA agent, the self-regulatory water tank model was controlled using the

PI controller described in Section 4.1.3 as behavioural policy 𝜋𝑏. The controller’s integral time was de-

tuned in an attempt to promote increased coverage of the state-action space. Decreasing the magnitude of

the controller gain would have had a larger impact in this regard, but it was assumed that this typically

cannot be justified for industrial application.

During training, it was assumed that the water tank’s inlet flowrate varies according to two scenarios, as

shown in Equations [116] and [117]. Equation [116] represents an almost symmetric 𝐷𝑉 range about

the initial steady-state conditions of 𝐻 = 1.5 𝑚, 𝐹𝑖𝑛 = 190
𝐿

𝑚𝑖𝑛
 and 𝑥 = 0.259, while Equation [117]

places significantly more weight on large 𝐷𝑉 values. At the start of each episode, a 𝐷𝑉 value from the

relevant range was sampled for use in the training scheme of Section 4.1.2. The Q-learning agent has

𝛽 = 0.2 𝑚 and was trained for a total of 3 000 episodes with 1 200 steps per episode, as was the case in

Section 6.2.1. A 𝑆𝑃 of 1.5 𝑚 was used throughout training.

 𝑖𝑛𝑙𝑒𝑡 𝑓𝑙𝑜𝑤𝑟𝑎𝑡𝑒𝑠 (
𝐿

𝑚𝑖𝑛
) = [50: 10: 350] [116]

 𝑖𝑛𝑙𝑒𝑡 𝑓𝑙𝑜𝑤𝑟𝑎𝑡𝑒𝑠 (
𝐿

𝑚𝑖𝑛
) = [50: 10: 500] [117]

The resulting action-value tables corresponding to the 𝐿𝑑𝑆𝐻𝑑𝐴 and the 𝐻𝑑𝑆𝐻𝑑𝐴 discretization cases

denoted in Table 27 and 𝐷𝑉s sampled according to Equation [116] are shown in Figure 23 and Figure 24.

Figure 25 displays the action-value table resulting from application of the 𝐷𝑉 range shown in

Equation [117] with the 𝐻𝑆𝐻𝐴 discretization case of Table 27. Only the distribution of the non-zero

entries across the discretized state-action space is of interest in this section.

Stellenbosch University https://scholar.sun.ac.za

99

Figure 23: Action-value table of the Q-learning agent trained using the 𝐿𝑑𝑆𝐻𝑑𝐴 case of Table 27 and

inlet flowrates sampled from Equation [116]

Figure 24: Action-value table of the Q-learning agent trained using the 𝐻𝑑𝑆𝐻𝑑𝐴 case of Table 27 and

inlet flowrates sampled from Equation [116]

H
ei

g
h
t

d
ec

re
as

in
g

b
el

o
w
𝑆
𝑃

H
ei

g
h
t

in
cr

ea
si

n
g

ab
o
v

e
𝑆
𝑃

0

Stellenbosch University https://scholar.sun.ac.za

100

Figure 25: Action-value table of the Q-learning agent trained using the 𝐻𝑑𝑆𝐻𝑑𝐴 case of Table 27 and inlet

flowrates sampled from Equation [117]

Figure 23 shows non-zero action-values that are arranged symmetrically within the discretized state-action

space. Five out of six entries for both the relevant states (the rows in the table) have numerical values that

are equal to one decimal place and are larger than the remaining entry at that state. This shows that the

state discretization is too coarse for the agent to discern meaningful control behaviour from the PI controller

which is capable of making adjustments of small magnitude to the final element.

Figure 24 conveys that the largest action-values are situated towards the right below the discretized state

containing 𝐸(𝑇) = 0 𝑚 (indicated by 0 at the relevant state), while the opposite is true above this state.

This indicates that the agent successfully discerned the logic of opening the valve more if the current level

is above 𝑆𝑃 and closing the valve more if the level is below 𝑆𝑃.

The SARSA agents of Section 6.2.1 were also able to learn this logic. The way in which this is achieved

with online training is different to off-policy training using Q-learning. Specifically, the SARSA agent

visits the discretized states, and starts by filling in positive action-values in the region of ±𝛽. This is

possible only because the agent explores the RL environment while learning during trial and error. In

contrast, the Q-learning agent only experiences the state-action coordinates brought about by the

behavioural policy 𝜋𝑏 and is directly taught that a level above 𝑆𝑃 requires opening the valve more, while

a level below 𝑆𝑃 requires closing the valve more.

The process gain 𝐾𝑝 is insensitive to the coordinate considered within the process operating window. Many

processes do not display this property and therefore necessitate careful consideration when defining the

state space 𝒮 even when defining coarsely discretized states. In Figure 24, the central row in the region of

H
ei

g
h
t

d
ec

re
as

in
g

b
el

o
w
𝑆
𝑃

0

H
ei

g
h
t

in
cr

ea
si

n
g

ab
o
v

e
𝑆
𝑃

Stellenbosch University https://scholar.sun.ac.za

101

non-zero action-value entries has a numerical value of 4.5 for all columns. This indicates that the

achievement of zero steady state offset purely by training on the PI control data poses a challenge resulting

from the nuances in the PI controller’s 𝑀𝑉 adjustments near 𝑆𝑃 not being captured in the RL

representation.

The behavioural policy 𝜋𝑏 (the PI controller) is different from the target policy 𝜋 which is learnt by the

Q-learning agent. Therefore, an asymmetric action-value table may be obtained even though the PI

controller does not show preference to certain final element adjustments purely because an error signal

𝐸(𝑇) is positive or negative. The symmetry or asymmetry in the Q-learning agent’s action-value table is

purely driven by the examples provided by the PI controller which, in turn, are a result of the 𝐷𝑉 ranges

encountered. This is illustrated well by the shapes of Figure 24 and Figure 25. The action-value table of

Figure 25 contains many more states associated with negative 𝐸(𝑇) values for which the agent learnt that

opening the valve more is beneficial. This is aligned with the use of larger inlet flow rates in

Equation [117].

A potential practical concern is the coverage of the action-value table depicted in Figure 24 as evidenced

by the non-zero entries only being present for six valve openings and a limited number of rows. It is fair

to expect that a significant number of states won’t be visited if the existing control is good. In industrial

processes, it is often the case that process operation is, as far as possible, maintained within an optimal

region and deviation from this region or the exploration of other regions need to be motivated. If an on-

policy agent such as SARSA encounters insufficiently explored state-action coordinates, erratic behaviour

will result. Further, while limited instrumentation leads to partial observability and changes in or

replacement of process equipment cause changes in the RL environment.

Heuristically Accelerated Reinforcement Learning (HARL) (see, for example, Bianchi et al. (2012))

provides a promising approach to deal with this limitation in certain cases, where PI/PID control may

provide guidelines regarding suitable heuristics. In such approaches, the learned policy 𝜋 is changed

through mathematical combination with heuristics obtained from domain knowledge. The Q-learning

algorithm therefore shows promise for estimating action-values for simple, self-regulatory SISO control

problems.

Importantly, the RL environment studied for Q-learning was not the same as was the case with the SARSA

agent in Section 6.2.1. This is because actions selected by the PI controller were not filtered before

recording the actions as the behavioural policy 𝜋𝑏 actions for training. As will be clarified in Section 6.7,

a significantly large filter time constant 𝜏𝑓 is required if a relatively low number of discrete action

selections are made available to the RL agent. Filtering the PI controller’s actions for prolonged periods

of time will unnecessarily degrade control performance. In this thesis, the filter was omitted for Q-learning

as it was of interest to see whether a reasonable first guess policy 𝜋 may be obtained when mapping the

continuous adjustments of an analogue controller to a discretized state-action space.

Stellenbosch University https://scholar.sun.ac.za

102

The action-value table will not differ significantly between the two RL environments for a state-action

space that is coarsely discretized in such a way that the low-pass filter does not change to which coded

states the states of the RL environment map, or if the filter time constant 𝜏𝑓 is small. A small 𝜏𝑓 does not

align with the use of coarse discretization, as mentioned above. This is a practical limitation of the

methodology used, but is appropriate for the feasibility study conducted.

6.3 Case Study 2 – Van de Vusse Reaction Scheme

6.3.1 Benchmarking Simulations Using SARSA

The steady state operating window for the Van de Vusse reaction scheme model is shown in the contour

plot of Figure 26. The bounds for the inlet temperature 𝒯0 and
𝑉̇

𝑉𝑅
 (the inverse of the residence time)

correspond to the bounds prescribed for the SISO control problem described by Chen et al. (1995).

Figure 26: Operating window for the Van der Vusse reaction scheme model displaying lines of constant

𝐶𝐵 (
𝑚𝑜𝑙

𝐿
) for 𝑄̇𝐶 = −1113.5

𝑘𝐽

ℎ

Figure 26 shows that larger values for 𝐶𝐵 may be achieved at lower values of 𝒯0 for lower inverse residence

time values and vice versa. The production of compound 𝐵 is exothermic. Therefore, at a lower value

of 𝒯0, consumption of the reagent is promoted and the yield is larger for reduced inverse residence time.

Excessive inlet flow rate would result in insufficient residence time. At large values of 𝒯0, larger inlet flow

rate is required since larger reagent concentration is needed in the reactor to achieve the same 𝐶𝐵.

An important observation is made when considering an isotherm drawn at a level of 𝒯0 = 105 °𝐶 across

all the values of inverse residence time within the operating window. The shape of this exemplar isotherm

is asymmetric and it contains two instances of every 𝐶𝐵 value within the range of flow rates available. This

characteristic is prevalent for a wide range of isotherms within the operating window.

Stellenbosch University https://scholar.sun.ac.za

103

This poses a significant challenge to a PI/PID controller, since the classical control law will not be able to

select appropriate 𝑀𝑉 adjustments if different actions are required for the same error signal 𝐸(𝑇). From

Section 6.2.1, it is known that a tabular SARSA agent’s discounted return propagates through the state-

action coordinates, originating within 𝐸(𝑇) = ±𝛽. For a finely discretized state-action space, a SARSA

agent will be able to learn that, even though the state 𝑺 is the same, a different action 𝐴 is required to obtain

more cumulative rewards.

In the simulations conducted, only coarse discretization of the state components is applied. As a result,

small changes in 𝑆𝑃 are required for the agent to select appropriate actions. This is not a limitation of RL-

based control, but rather a characteristic of how the feasibility study was approached. In practice, 𝑆𝑃

values are set externally and typically do not need to change with large magnitudes in short periods of

time.

The specifications in Table 20 (Section 5.3.2) show that the training conducted to establish a benchmark

for nonlinear control involved 0.16 steps per second and 7 MDP time steps between successive action

selections (desired sampling period ∆𝑇 converted to the rounded number of MDP time steps). The latter

corresponds to a sampling period ∆𝑇 of 43.75 seconds.

After training, 𝑆𝑃 tracking and 𝐷𝑉 attenuation behaviours were tested by setting the simulated time of the

model to 4 000 seconds with 200 MDP steps per episode, and thereby allowing the agent to select an

action at a sampling period ∆𝑇 of 20 seconds. More frequent actions were taken by the agent for the same

value of 𝜏𝑓 and this does not compromise the appropriateness of the policy 𝜋 generated during training.

This is because the logic learned by the agent remains unchanged and the merit of tailoring the sampling

period ∆𝑇 to a particular process is illustrated. For a large sampling period ∆𝑇, the agent would possibly

achieve |𝐸(𝑇)| ≤ 𝛽 for considerable time periods for certain 𝑆𝑃 and 𝐷𝑉 changes. The coarse

discretization of the state-action space, large sampling period ∆𝑇, and the dynamic properties of the Van

de Vusse reaction scheme model (Section 4.1.1) do, however, not reliably guarantee satisfactory 𝑆𝑃

tracking and 𝐷𝑉 attenuation.

The 𝑆𝑃 tracking results for ∆𝑇 = 20 seconds are shown in Figure 27, while the unfiltered action selections

and the output of the low-pass filter (filtered actions) are given in Figure 28. Figure 29 and Figure 30 show

the qualitative results generated for 𝐷𝑉 attenuation where changes in 𝒯0 were introduced using step changes

(∆𝑇 = 20 seconds). From Figure 27 and Figure 29 it may be observed that there is an initial mismatch

between the agent’s action selections and the initial input corresponding to the starting value of 𝐶𝐵 at steady

state. The initial steady state coordinate of the model requires a specific output from the agent. The studied

control scheme incorporates agent training without modification to reduce this effect.

Stellenbosch University https://scholar.sun.ac.za

104

Figure 27: 𝑆𝑃 tracking behaviour for baselining simulations

Figure 28: 𝑆𝑃 tracking action selections for baselining simulations

Stellenbosch University https://scholar.sun.ac.za

105

Figure 29: 𝐷𝑉 attenuation behaviour for baselining simulations, 𝐶𝐵 and 𝑆𝑃 on left scale

Figure 30: 𝐷𝑉 attenuation action selections for baselining simulations

Possible approaches to reducing this effect could be to model both the state space 𝒮 and the action space

𝒜 as continuums, to increase the rate of action selection significantly (subject to available

instrumentation), or to decrease 𝜏𝑓 before training provided that sufficient actions are available without a

large 𝜏𝑓. These approaches assume that the initial steady state of the process may be achieved given the

bounds in states and actions given to the RL agent – an exception is shown in Section 6.4.

The various action selections that are maintained constant for significant periods of time in Figure 28 and

Figure 30 show that that the agent’s policy did not merely simplify to a bang-bang control logic which

would involve only the application of two different action selections. It may therefore be inferred that, for

the value of 𝛽 = 0.02
𝑚𝑜𝑙

𝐿
 used, the discretization of the components of 𝑺 were overall sufficiently fine to

Stellenbosch University https://scholar.sun.ac.za

106

prevent the generation of a bang-bang control law. Further, not all state-action coordinates lie within the

area associated with adequate coverage despite on-policy training being used. This is evidenced by the

dispersed, low-density selection of actions within the first 0.2 ℎ in Figure 30.

The 𝐷𝑉 attenuation behaviour shown in Figure 29 illustrates that the trained agent was able to maintain

the values of 𝐶𝐵 close to 𝑆𝑃 to a noteworthy degree despite changes in 𝒯0 across the range relevant to the

operating window of Figure 26. The ability of the agent to return the value of 𝐶𝐵 to 𝑆𝑃 after the sudden

decrease from 𝒯0 from 115 °𝐶 to 100 °𝐶 is worth pointing out. Chen et al. (1995) highlight that

maintaining the 𝐶𝐵 = 1.09
𝑚𝑜𝑙

𝐿
 operating point with a control tolerance of 0.02

𝑚𝑜𝑙

𝐿
 is very difficult during

such a decrease in temperature. This effect is dynamic and therefore cannot be inferred by studying the

steady-state operating window of Figure 26. The last 𝐶𝐵 data point in Figure 29 has a numerical value of

1.086
𝑚𝑜𝑙

𝐿
 which represents an offset smaller in magnitude than the final steady state value achieved for an

analogous step decrease in 𝒯0 employed by Chen et al. (1995). It should be noted, however, that their

control law was not allowed to use information about 𝒯0 at all.

Qualitative assessment of the results presented in this section with reference to the results reported by

Chen et al. (1995) do show that a reasonable controller was successfully synthesized and the studied

control scheme is concluded to be suitable to the achievement of the aim and objectives of this thesis.

6.3.2 Investigating the Influence of Finer Discretization of the State-Action Space

The experimental data and the intermediate results of data processing are provided in Appendix E, where

the levels of the different factors defined in Section 5.3.3 were coded using −1 and +1 for low and high

factor levels and used in subsequent calculations. This is necessary to ensure that unintended effects of

using unscaled variables are not incorporated. A sampling period ∆𝑇 of 40 seconds was used throughout.

The effects of the significant factors are shown in Figure 31. The boxplots were generated by considering

all the IAE response data relevant to each of the factor levels reported on the x-axis. The number of data

points for the A- and A+ boxes was therefore 800, while the rest of the boxes describe 400 data points

each. Figure 31 shows a statistically significant effect of increasing IAE as the error signal 𝐸(𝑇) is

discretized more finely. This is consistent with the expectation created by the results of Section 6.2.1, as

a coarse discretization for 𝐸(𝑇) promotes more aggressive action by the agent. As 𝐸(𝑇) is discretized

more finely, the agent is more equipped to maintain 𝐶𝐵 within the ±𝛽 tolerance band of ±0.02
𝑚𝑜𝑙

𝐿
. If

low IAE is targeted, it may be worth considering discretizing 𝐸(𝑇) less finely than the other components

of 𝑺, as is done in this thesis when studying the grinding circuit model (Case Study 3).

Stellenbosch University https://scholar.sun.ac.za

107

Figure 31: Boxplots summarising the main effect of factor A (𝐸(𝑇) discretization) and the interaction

effects of factors B (𝐷𝑉) and C (𝑆𝑃), a ‘+’ sign indicates the fine discretization of a factor, a ‘-’ sign

indicates the coarse discretization of a factor, and a red ‘+’ in the graph indicates an outlier

Since 𝐷𝑉 and 𝑆𝑃 are involved in significant interactions, it is necessary to consider the interaction effects

shown in Figure 31 as the representative description of the experimental effects regarding these two factors.

Despite the smaller interquartile range for the A- box in comparison to the A+ box, the number of outliers

that show significantly larger IAE responses are much larger for the former. This is evidenced by the

number of red crosses above the maxima of the respective box plots. Hence, the aggressive control action

displayed when discretizing 𝐸(𝑇) coarsely contributes to a greater number of data points having

unexpectedly large IAE values. For the interaction of 𝐷𝑉 and 𝑆𝑃, B-C- and B-C+ have the largest numbers

of outliers. The different relative numbers of outliers, the positions of the minima and maxima, as well as

the interquartile ranges when comparing the B+C- and B-C+ boxes show that the effects of 𝐷𝑉 and 𝑆𝑃

discretization are different. In this case study, the B+C- case is associated with a wider distribution of

IAEs, but fewer outliers, while the opposite is true for the B-C+ case.

It is observed that increasing the discretization of either 𝐷𝑉 or 𝑆𝑃 at a constant discretization level for the

other factor results in a decrease in IAE relative to the B-C- case. This is consistent with our intuition. At

a fine discretization of 𝑆𝑃, the effect of 𝐷𝑉 discretization on the IAE response is very small – the

interquartile ranges and notches (calculated at a 0.05 significance level) of the B-C+ and the B+C+ boxes

overlap significantly. Conversely, when the 𝑆𝑃 is discretized coarsely, the fineness of the 𝐷𝑉

discretization has a very large effect on the IAE response – B+C- box lies lower than the B-C- box.

Therefore, discretizing all components of 𝑺 finely does not necessarily contribute to the decrease of IAE.

There are two possible reasons for this experimental result. Firstly, coverage could be limiting, where a

large number of entries in the action-value hypervolume are not experienced sufficiently during training.

Secondly, either discretizing 𝑆𝑃 or 𝐷𝑉 finely is sufficient to produce a SARSA controller that achieves the

Stellenbosch University https://scholar.sun.ac.za

108

±𝛽 band which is satisfactory from the agent’s perspective for the binary reward function used and the RL

environment studied. Interestingly, no outliers were obtained for the B+C+ case, which indicates the

greatest consistency in the IAE responses obtained.

The results of this section illustrate that modelling each component of the observed state 𝑺 as a continuum

(which motivates the use of a vast number of parameters and/or function approximation), would not

necessarily constitute the optimal approach in terms of controller performance for a specific reward

function and control problem. This is not intuitive, as conceptually one would likely expect that the

modelling of the state-action space as a continuum would always yield the best trained policy 𝜋 for any

control problem. This section stresses that finely discretized state components need to enable effective

leveraging of the reward function to prevent incorporating an excessive number of parameters in the RL

representation during the design of an RL-based controller. Further, the number of parameters to learn,

the controller performance obtained, and the frequency with which outliers are encountered need to be

considered when designing an RL-based controller.

The discretization of the available actions (factor D) does not contribute significantly to the reduction of

IAE, as evidenced by a P-value of 0.27 > 0.10 for this factor. This illustrates that it is the range of action

selections available to the agent that is important if one only includes deviation from 𝑆𝑃 in the reward

function.

6.3.3 RL Hyperparameter Properties for SARSA

Figure 32 shows average IAE values and their corresponding 95% confidence intervals, calculated as

described by Devore (2017), for 𝛾 and 𝛼, respectively. A sampling period ∆𝑇 of 40 seconds was used

throughout.

Figure 32: IAE responses with 95 % confidence intervals obtained at different values of 𝛾 with 𝛼 = 1

(top panel), and at different values of 𝛼 at 𝛾 = 0.99 (bottom panel)

Stellenbosch University https://scholar.sun.ac.za

109

From Figure 32, it is observed that the average IAE decreases slightly as 𝛾 is increased towards unity. This

is aligned with the author’s expectation – maintaining 𝐶𝑉 in the vicinity of 𝑆𝑃 for long time periods is

required in a control problem.

The IAE’s are not very sensitive to the value of 𝛾 chosen as indicated by the range of IAE points generated

for the values of 𝛾 considered. The confidence intervals also show that the bounds within which the true

population means of the IAE values will lie with 95% confidence for a very large number of replicates are

approximately equal in size. This is a reflection of the fact that SARSA’s convergence properties are not

affected by the specific value of 𝛾, provided that 0 < 𝛾 ≤ 1.

From Figure 32, for values of 𝛼 > 1, the IAE increases rapidly in comparison to 0 < 𝛼 < 1. The

uncertainty in the resulting policy 𝜋 increases significantly then, as shown by the noteworthy increase in

the confidence intervals’ sizes for 𝛼 > 1. This confirms that there is no justification for using 𝛼 > 1 when

applying tabular SARSA, and that the learned behaviour is insensitive to the value of 0 < 𝛼 < 1 selected.

6.4 Case Study 3 – Grinding Circuit

6.4.1 Placing the Results in Context

In this study, tabular RL methods were tested in simulations with the ideal result being that such methods

would result in an interpretable controller with moderate operational data requirements in comparison to

deep learning methods applied to large control problems (Section 6.5). For Case Study 1 (water tank

model, Section 6.2) and Case Study 2 (Van de Vusse reaction scheme, Section 6.3) this worked well

(subject to the practical limitations of the RL methodology used), but not for Case Study 3 (grinding circuit

model). For the results of Case Study 3, the PID controller outperformed all elementary RL-based control

methods applied. The value of the results presented in this section lies in highlighting nuances regarding

how elementary RL agents learn in process control systems requiring significantly robust control and

certain challenges that may prevent successful industrial application of RL-based control at present.

6.4.2 PID Controller MFS Adjustments

First, the performance of the PID controller, both with and without stiction, was evaluated. This aided in

the selection of parameters for the stiction model (S and J in Section 4.3.3) as a sensible degree of degrading

controller performance had to be simulated. Figure 33 shows two superimposed outputs of the PID

controller without stiction and with stiction. These outputs correspond to the grinding circuit PID control

output data presented in Section 6.4.4.

Stellenbosch University https://scholar.sun.ac.za

110

Figure 33: The 𝑀𝑉 adjustments of the PID controller without and with stiction (J = 2 % and S = 4 % of

the MFS range 0
𝑡

ℎ
 to 100

𝑡

ℎ
, respectively)

Firstly, the oscillations in PID controller output (from approximately 95 h to 100 h, for example) are known

as limit cycles and have the effects of causing excessive wear in the final element and low-amplitude

variations in the 𝐶𝑉. In reality, stiction would increase over significant time periods and the classical PID

controller with predefined tuning parameters cannot automatically adapt to these parameters.

Stellenbosch University https://scholar.sun.ac.za

111

6.4.3 Process Operating Window

Figure 34 illustrates the operating window created by numerically solving the grinding circuit model using

a simulated time period of 100 h at each level of (𝑀𝐹𝑆;𝜙𝑟; 𝜐) with changing 𝜙𝑓 implemented as step

changes with magnitudes and times corresponding to the work of Le Roux et al. (2013).

Figure 34: Operating window under consideration for grinding circuit study – the contours represent lines

of constant PSE (-)

The PSE contours shift in the direction of decreasing MFS as the ore rock fraction 𝜐 is increased. This

makes sense as an increased rock fraction 𝜐 causes an increase in the solids loading of the SAG mill and a

coarser classification in the cyclone – MFS needs to be reduced to achieve a similar PSE under these

conditions. Each contour of constant PSE has a positive gradient. The reduced values of 𝜙𝑟 result in an

increase in rock consumption (RC, Equation [78]). This increase results in a larger conversion of material

from the “rock” state to the “solids” state in the grinding circuit model. Subsequently, the effect of reducing

𝜙𝑟 is similar to increasing MFS, resulting in the requirement that the MFS input should be reduced to

compensate for this effect.

6.4.4 Application of SARSA-Based Controller to the PSE-MFS Control Loop

Before discussing the characteristics of the SARSA-based controller studied, it must be stressed that

qualitative characteristics of the control responses generated do not represent satisfactory control

performance. For the lower value of 𝜏𝑓 used, 𝑀𝑉 adjustments were excessive, resulting in underdamped

PSE responses that aided in achieving smaller IAE values. For the larger setting of 𝜏𝑓, the successive 𝑀𝑉

adjustments applied to the process were not sufficient to maintain the resulting PSE values within the ±𝛽

tolerance band around 𝑆𝑃.

Stellenbosch University https://scholar.sun.ac.za

112

Recall from Section 6.4.1 that the aims of the results were to understand the learning processes of

elementary RL agents and to highlight challenges that may prevent successful industrial RL-based control

at present. A summary of the control performance measures is shown in Table 28, while PSE behaviours

generated without and with stiction are presented in Figure 35 and Figure 36, respectively. Figure 37

displays the unfiltered and filtered actions corresponding to the PSE outputs in Figure 35 for 𝜏𝑓 = 5 ℎ.

Table 28: Control problem cases and measures for comparison of PID to SARSA-based control

(corresponds to input perturbations of Figure 14 (Section 5.3.5) and 𝑆𝑃 changes of Figure 35 and Figure

36)

Controller S (%) J (%)
𝝉𝒇

(𝒉)
𝑰𝑨𝑬
(−)

𝑰𝑻𝑨𝑬
(𝒉)

𝑻𝑽

(
𝒕

𝒉
)

SARSA 0 0 5 2.80 102.7 103.1

SARSA 0 0 0.5 2.1 80.5 210.6

PID 0 0 - 1.7 63.8 223

PID 4 2 - 1.62 64.7 252.8

SARSA 4 2 5 3.8 135.7 16.7

SARSA (adjusted) 4 2 5 2.9 104.1 11.7

Figure 35: SARSA (𝜏𝑓 = 5 ℎ) and SARSA (𝜏𝑓 = 0.5 ℎ) control behaviour in accordance with Table 28

Stellenbosch University https://scholar.sun.ac.za

113

Figure 36: PID, SARSA and SARSA trained for 176 additional episodes in the presence of stiction in

accordance with Table 28

Figure 37: 𝑀𝑉 behaviour for SARSA with 𝜏𝑓 = 5 ℎ in accordance with Figure 35

The data presented qualitatively in Figure 35 through Figure 37 illustrate SARSA-based control’s

capability of establishing a policy that exhibits some degree of robustness and was observed in Sections 6.2

and 6.3 as well as in literature (Syafiie et al., 2008; Brujeni et al., 2010; Ramanathan et al., 2018).

Specifically, this is shown by the ability of the SARSA policies to keep PSE close to 𝑆𝑃 after 10 ℎ for the

test control problem of Figure 14 (Section 5.3.5). This is partly a result of the filtering of the discrete

action selections. The selection of 𝜏𝑓 for study is discussed in Section 6.7 as it relies on an understanding

of the results for the different RL agents in this chapter.

Stellenbosch University https://scholar.sun.ac.za

114

Significant robustness limitations are observed between 50 ℎ and 70 ℎ on the x-axis of Figure 35 and

Figure 36 and are largely a result of the concurrent changes in 𝜙𝑟 and 𝜙𝑓 in a relatively short time period.

This shows that a robustness limit is applicable when applying SARSA as the RL-agent.

A large initial change is observed in all PSE response figures – the initial steady state MFS value of 65.2
𝑡

ℎ

does not lie within the steady state operating window given in Figure 34 and is therefore excluded in the

𝑀𝑉 range available to the agent. This is a result of the changes to the parameter 𝜙𝑓. The control

performance measures presented in Table 28 consistently include the influences of these initial

mismatches.

Decreases in IAE and ITAE with concurrent TV increases are observed in the first two rows of Table 28

as 𝜏𝑓 is decreased. The agent is consistently outperformed by the PID controller in terms of the overall

reduction in the error signal as evidenced by the lower IAE and ITAE values in row three of Table 28.

Figure 38 was generated by introducing the 𝜐, 𝜙𝑟, and 𝜙𝑓 changes of Figure 14 (Section 5.3.5). Each

integer value on the x-axis of Figure 38 is associated with a recorded data point on the y-axis. It should be

emphasized that the first data point in Figure 38 corresponds to 100 episodes of training. When initialising

𝑄̃𝜋(𝑺, 𝐴) = 𝟎, the values of the control performance measures were 3.4, 180.4 ℎ, and 72.2
𝑡

ℎ
 for IAE,

ITAE and TV, respectively. Therefore, Figure 38 shows that the steepest ITAE decrease with 𝜏𝑓 = 5 ℎ

occurs in the first 100 episodes (1.1 years). A more stable policy 𝜋 for the fixed control problem is achieved

after 3 500 episodes (40 years) and after 14 000 episodes (160 years), respectively. Similar observations

are supported in terms of operational data requirement when considering the variances of all three control

performance measures. The recording of the measures also involved running the SARSA update rule in

between the addition of the experience of each 100 episodes of training.

Stellenbosch University https://scholar.sun.ac.za

115

Figure 38: Progression of control performance measures for SARSA (𝜏𝑓 = 5 ℎ) (corresponds to input

perturbations of Figure 14 (Section 5.3.5) and SP changes of Figure 35 and Figure 36)

Despite how quickly the initial improvement of SARSA’s policy occurs when considering the ITAE

response, the rest of the control performance progression indicate that it is only a certain portion of

𝑄̃𝜋(𝑺, 𝐴) that has achieved a well-established policy. This is evidenced by variations in IAE, ITAE, and

TV along the entire x-axis of Figure 38 without clear stabilisation of the controller performance measures.

It is important to realise that Figure 38 was generated for a single exemplar control problem, while the

Policy Improvement theorem (Section 2.6) is applicable to the RL problem as a whole. Therefore,

improvements to the overall policy do not imply that the control performance measure progression for the

exemplar control problem will be monotonic.

While the TV values are increasing with concurrent decreases in IAE and ITAE during the final portion of

the response, the trend will likely not be maintained until 𝑄̃𝜋(𝑺, 𝐴) converges. One can also not predict

when 𝑄̃𝜋(𝑺, 𝐴) will be fully converged, but the training is still limited to 20 000 episodes since the entire

training period is already representative of an unrealistically large requirement for the number of

operational hours used during training. The results show that the SARSA agent has an unrealistically large

operational data requirement.

On a practical level, the cost of efficient use of plant operating hours is to allow more time to pass between

the generation of operational data points. This also simplifies the control problem for the RL agent.

Decreasing the sampling period ∆𝑇 will result in the availability of more operational data points within the

same time period of operation, likely accompanied by a greater operational data requirement since a smaller

fraction of the process dynamic response occurs between MDP time steps.

Table 28 shows that the TV values of SARSA are much lower with stiction and this is a result of the filtered

action selections often not having sufficient amplitudes to overcome stiction. Adjusted SARSA’s policy

Stellenbosch University https://scholar.sun.ac.za

116

comprises the originally generated SARSA agent policy after training with a further 176 episodes (2 years)

in the presence of stiction. Adjusted SARSA’s lower values for IAE, ITAE, and TV in comparison to the

initially trained SARSA agent’s measures shows that the RL-based controller is, in a sense, capable of

leveraging the stiction to maximise the cumulative rewards it receives. The ability of SARSA to

compensate for stiction is considered promising as it typically becomes more severe over long periods of

time.

In the presence of stiction, a significant increase in excessive final element adjustment is observed for the

classical PID controller (TV value in the fourth row of Table 28). Stiction causes low-amplitude

oscillations in the corresponding PSE output of Figure 36 as a result of the limit cycling shown in Figure

33.

Coverage is also a problem, as is evidenced by the non-zero entries of 𝑄̃𝜋(𝑺, 𝐴) at the end of the 20 000

episodes only numbering 2 319 (59 %) for the 𝜏𝑓 = 5 ℎ run, 2 397 (61 %) for the 𝜏𝑓 = 0.5 ℎ run, and 2 444

(62 %) for the adapted SARSA run. The total number of discrete entries in 𝑄̃𝜋(𝑺, 𝐴) (including the

boundary states) was 3 960. The coverage limitations arising in discretized state-action spaces is a key

driving force in the study of function approximating agents.

While coverage could be enhanced by the use of function approximation, the large variance in the control

performance measures are a result of the large variances in the parameter estimates of stochastic

approximation algorithms which are enhanced by the action selections being very sensitive to the position

of the maximum action-value for each state observed (Sutton and Barto, 2018; Theodoridis, 2020).

6.4.5 Application of Q-learning to the PSE-MFS Control Loop

The progression of the control performance measures is shown in Figure 39. Stiction was not included

during the training of the Q-learning agent. Recall from Section 6.2.2 that the filter time constant was not

incorporated when studying Q-learning and the implications thereof.

Stellenbosch University https://scholar.sun.ac.za

117

Figure 39: Progression of control performance measures for Q-learning (𝜏𝑓 = 5 ℎ when providing the

policies to a SARSA agent) tested on the example control problem

The control performance measures reported were generated by connecting the policy generated using

Q-learning online as the first estimate of a SARSA policy and running the example control problem used

in Section 6.4.4 after each multiple of 102 training episodes are added to 𝑄̃𝜋(𝑺, 𝐴). The training consisted

of 3 000 episodes, where each episode consisted of 10 000 steps with a sampling period of ∆𝑇 = 0.01 ℎ

since this is the sampling period at which the PID control calculations were performed. The PID controller

was not saturated when used as 𝜋𝑏, but the data pertaining to the action selections were saturated to the

range of the available final element adjustments when mapping the training data to the appropriate state-

action coordinate of the Q-learning agent.

The statistics reported in Figure 39 show a significant improvement in comparison to the statistics reported

for SARSA in Table 28. A 0.225 decrease in IAE, a 12.76 ℎ reduction in ITAE, and a 61.29
𝑡

ℎ
 reduction

in TV were achieved in comparison to the SARSA results with 𝜏𝑓 = 5 ℎ. The performance obtained for

the RL representation design used was still worse than the PID controller results – IAE was 0.875 larger,

ITAE was 26.14 ℎ larger. The final element adjustments were much lower – TV was 181.19
𝑡

ℎ
 lower for

Q-learning.

As the PID controller responds deterministically and immediately to the error signal sent to it, the agent is

capable of benefiting from the steps provided to it at a sampling period of ∆𝑇 = 0.01 ℎ. Figure 39

illustrates well the potential problem arising from coverage limitations, since the agent’s policy converged

within the first 800 episodes (9.13 years). This is only possible if a certain fraction of the action-value

hypervolume was experienced far more often during training. Out of the 3 960 entries in 𝑄̃𝜋(𝑺, 𝐴), only

965 (24 %) had non-zero entries at the end of training which shows quantitatively that coverage is

constrained by the examples provided by the PID controller.

Stellenbosch University https://scholar.sun.ac.za

118

6.4.6 Application of Actor-Critic-Based Controller to the PSE-MFS Control Loop

Actions were discretized from 33
𝑡

ℎ
 to 60

𝑡

ℎ
 in increments of 10%. The control performance measure

progression results are shown in Figure 40, where this figure was generated in the same way as Figure 38.

The vertical dashed lines in Figure 40 correspond to five phases of the RL agent’s training – an initial

improvement in behaviour, reaching best controller performance with large variance in TV values, and

three phases associated with reducing variance in the control performance measures and the stabilisation

of the actor’s parameter vector 𝜽.

Figure 40: Progression of control performance measures for One-Step Actor-Critic (𝜏𝑓 = 5 ℎ) (black

circles at data points) and SARSA (grey ‘+’ markers corresponding to data points of Figure 38) – the

boundaries of five regions of policy determinism are indicated using vertical dashed lines

Since linear regression problems were set up for the One-Step Actor-Critic and SARSA agents, the number

(and arrangement) of parameters used constrains the ability of each agent to deal with the control problem.

Therefore, the fact that the SARSA agent’s control performance measures are “better” merely indicates

that insufficient parameters were provided to the One-Step Actor-Critic agent to capture all the contours

of the optimal policy 𝜋∗ during training despite its increased coverage arising from the use of function

approximation (Section 2.9.6).

As such, the monotonic decrease in both ITAE and IAE may be contrasted to the SARSA agent that shows

a significant decrease in ITAE within the first 100 episodes, followed by unpredictable changes in the

control performance measures (Section 6.4.4). The initial IAE and ITAE values in Figure 40 differ

considerably since the Actor-Critic agent’s learning is much more gradual. This is a result of modelling

the state space as continuous, the differences between the learning rates of the two agents, and the different

types of policy parameterization.

Stellenbosch University https://scholar.sun.ac.za

119

Figure 40 shows that IAE and ITAE both show monotonic response shapes with a significantly smaller

extent of variance in the control performance measures as training progresses than is the case with SARSA.

The TV values show a significantly more gradual increase than is the case with SARSA. After

approximately 2 000 training episodes (22.8 years), a pronounced variance is observed in the TV values.

This is followed by a reduction in the variance of TV values between just over 5 000 episodes (57 years)

and 16 000 episodes (182 years). The TV values stabilise by 18 500 episodes (211 years).

There are two properties of the One-Step Actor-Critic agent that allows for a control performance measure

trajectory that may more easily be modelled. Firstly, 𝜋(𝐴|𝑺, 𝜽) follows a soft-max distribution and

therefore is not prone to abrupt changes in policy that temporarily decrease performance in regions of the

state-action space as is the case with SARSA which relies on the discrete action-values. Secondly, the

critic aids in the reduction of the variance of the parameter estimates about the values corresponding to the

optimal parameter vector 𝜽∗ (Sutton and Barto, 2018; Theodoridis, 2020).

During training, the inputs to the grinding circuit model and the 𝑆𝑃 were changed in a pseudorandom

fashion as described in Section 4.3.2. Therefore, a learning curve summarising the rewards obtained by

the agent during its training will not necessarily have a clearly discernible monotonic shape. It is assumed

that a fixed starting state 𝑺0 was present in the vast majority of the training episodes, as is required for the

One-Step Actor-Critic agent (Section 2.9).

Figure 41 shows the rewards summed for each test on the exemplar control problem as training progressed,

with the One-Step Actor-Critic agent’s graph shown in the top panel – these curves are also not monotonic.

The trajectories of the rewards obtained by the agent do not correspond qualitatively to the control

performance measure behaviours reported in Figure 38 and Figure 40.

Figure 41: Progression of summed rewards for the exemplar control problem – each circle corresponds to

a data point

Stellenbosch University https://scholar.sun.ac.za

120

For the One-Step Actor-Critic agent, there is an initial increase of summed rewards obtained for the test

control problem as training progresses. This continues until training episode 4 600, before a sudden drop

occurs in the summed rewards. After this sudden drop, the trajectory of summed rewards shows a variance

about some unknown mean value without a discernible trend during the progression of the control

performance measures. The sudden drop in rewards is a result of the preference function ℎ(𝑺, 𝐴, 𝜽) being

driven towards much larger values in certain regions of the state-action space.

Interestingly, the control performance measures do not show the same behaviour as the rewards – the IAE

and ITAE essentially maintain their minimum values obtained during the period of stochastic action

selections (second phase in Figure 40). This illustrates that classical control performance measures are not

unique to a particular instance of the parameter vector 𝜽 as the optimal parameter vector 𝜽∗ for the reward

function used did not need to be learned before achieving the best control performance in terms of 𝐶𝑉

deviation.

The communication of insufficient control objectives for continuous state space modelling can, however,

lead to unintended control behaviour. The stabilisation of the data points in Figure 40 and the drop in

rewards correspond to a bang-bang control logic that was learnt by the RL agent. The One-Step Actor-

Critic agent leant that, for a binary reward function, using the two action selections at the extremes of the

available range is the most effective for maintaining the 𝐶𝑉 in the vicinity of the 𝑆𝑃 for the binary reward

function used. Improving the policy across the entire state-action space may result in a decrease in the rate

at which rewards are received when considering a specific control problem, as is evident in Figure 41.

In contrast, the reward progression in the bottom panel of Figure 41 shows that a qualitatively unpredictable

pattern is displayed by the tabular SARSA agent. The total number of parameters used for the One-Step

Actor-Critic agent (625 + 64 = 689) is much less than the 3 960 (including the boundary states) available

to the SARSA agent. Therefore, the quicker convergence of the One-Step Actor-Critic agent cannot solely

be attributed to the use of the critic and is likely largely influenced by the number of parameters in the RL

representation.

The One-Step Actor-Critic agent was not able to overcome stiction within the same constraints used for

the SARSA agent in Section 6.4.4. Stiction compensation for the One-Step Actor-Critic agent is therefore

limited to slowly changing closed-loop dynamics.

6.5 Placing Operational/Plant Hours in Perspective

Table 29 summarises the numbers of parameters used in various RL-based process control studies. The

number of MDP steps are not indicated for evolutionary RL since the number of parameters is adjusted by

the RL agent. Appendix F provides sample calculations for determining the numbers of parameters used

in RL representations of the works cited.

Stellenbosch University https://scholar.sun.ac.za

121

Table 29: Summary of numbers of parameters used in various works

Work

Chemical

Engineering

Problem

RL Algorithmic

Principle

Total Number of

Parameters

Parameter Ratio

(Case Study 3

/cited work)

Actor Critic
Total number of

MDP steps used

(Shipman

and Coetzee,

2019)

Tuning a PI

controller for a

stochastic instance

of a FOPTD

model.

Actor-Critic (A2C) 42 851

0.092

(SARSA)

0.016

(Actor-Critic)

21 410 21 441 1 × 108

(Ma et al.,

2019)

Control of a batch

polymerization

reaction’s product

quality.

Actor-Critic (DDPG) 352 204

0.011 (SARSA)

0.002

(Actor-Critic)

218 402 133 802
95 200

(Increase in MW)

(Conradie,

2000)

Control of the

Agrawal

bioreactor.

Evolutionary RL

(SANE)
97

40.82 (SARSA)

7.10 (Actor-Critic)
N/A N/A N/A

Van de Vusse

reactor control

(MIMO).

Evolutionary RL

(SANE)
106

37.36 (SARSA)

6.5 (Actor-Critic)
N/A N/A N/A

Multi Effect Batch

Distillation

Column control.

Evolutionary RL

(SANE)
106

37.36 (SARSA)

6.5 (Actor-Critic)
N/A N/A N/A

(Conradie

and Aldrich,

2001)

Control of PSE in a

pilot plant scale

grinding circuit

model developed

in the first part of

the study by

Rajamani and

Herbst (1991).

Evolutionary RL

(SANE)
149

26.6 (SARSA)

4.62 (Actor-Critic)
N/A N/A N/A

Stellenbosch University https://scholar.sun.ac.za

122

Work

Chemical

Engineering

Problem

RL Algorithmic

Principle

Total Number of

Parameters

Parameter Ratio

(Case Study 3

/cited work)

Actor Critic
Total number of

MDP steps used

This work

Control of PSE in

the grinding circuit

model described by

Le Roux et al.

(2013) (Sections

6.4.4 and 6.4.6).

Value-based

(SARSA)
3 960

1 (SARSA)

5.75 (Actor-Critic)
N/A N/A 2 × 106

Actor-Critic (One-

Step Actor-Critic)
689

0.17 (SARSA)

1 (Actor-Critic)
625 64 2 × 106

Van de Vusse

reactor control

(SISO) (Section

6.3.1).

Value-based

(SARSA)
220

18 (SARSA)

3.13 (Actor-Critic)
N/A N/A 8 × 10

Stellenbosch University https://scholar.sun.ac.za

123

The number of episodes in the work of Ma et al. (2019) is counter-intuitive considering that the number of

parameters in their work is by far the most. This may be attributed to their judicious use of domain

knowledge through simplification of the control problem by including historical information and target

MW values in their definition of the observed state 𝑺, and training the RL agent on target trajectories for

increasing and decreasing 𝑆𝑃 for 𝑀𝑊.

Contrasting this to the larger number of MDP steps used by Shipman and Coetzee (2019), the size of the

control problem to be solved significantly influences operational data requirement. The size is influenced

by whether a single set of physical properties describe the plant and the number of components defining

the state 𝑺 observed by the agent. The sampling period ∆𝑇 selection needs to be viewed together with the

typical time duration of a process’s dynamic response. In general, it is known that deep neural networks

require large amounts of data despite their improved efficiency over linear parametric function

approximators. Table 29 illustrates that each RL design much be viewed together with the process to which

it is applied, as these influence operational data requirement significantly.

6.6 Comparison of Studied RL Agents

Table 30 compares the RL agents studied to summarise the findings in this thesis and to aid in the

understanding of the strengths and weaknesses of the RL agents.

Table 30: Comparison of studied tabular RL agents (SARSA and Q-learning) and One-Step Actor-Critic

agent

Tabular SARSA (and Q-

learning)
One-Step Actor-Critic

Less than two parameters to

tune for the specific process to

be controlled?

Yes No

Agent decides degree of

determinism?
No Yes

Can first guess of parameters

be obtained off-policy?
Yes (Q-learning)

No (need algorithmic

adjustments, see literature

review – Chapter 3)

Progression of control

performance measures for a

fixed control problem

Large variance in progression,

slow learning, sensitive to

greedy action locations.

Monotonic progression of

measures, variances in

parameters reduce as agent

becomes more confident in its

action selections.

Type of process (criteria for

application)

Sufficient instrumentation with

challenging dynamics; self-

regulatory SISO problems with

slowly changing closed-loop

dynamics; processes with

quantitatively accurate models

Processes with greater

uncertainty in measurements;

processes with quantitatively

accurate models; processes

where SARSA is appropriate

Stellenbosch University https://scholar.sun.ac.za

124

Tabular SARSA (and Q-

learning)
One-Step Actor-Critic

Key limitations

Limit to robustness afforded by

state-action space

discretization; large operational

data requirement; potential

coverage limitations; stability

challenges when using Q-

learning with function

approximation; potential for

excessive final element

adjustment; limited handles to

enable safe exploration; noisy

updates to parameters; degree

of determinism in the policy 𝜋

must be selected manually

Large operational data

requirement; lower

interpretability; challenging

tuning; limited handles to

enable safe exploration; needs

algorithmic adjustments for

offline parameter estimation

and training using parallel

computing

6.7 Selection of Filter Time Constant for Case Study 3 (The Grinding Circuit Model)

The MFS adjustments shown for the SARSA agent with 𝜏𝑓 = 5 ℎ in Figure 37 illustrated that the agent

can access final element settings intermediate to the discrete actions made available to it since the selections

are filtered using Equation [111] before being applied to the plant. The control problem is simplified as

the agent does not have to learn the individual intermediate actions which are in reality infinite in number.

This results in the control scheme studied (Section 5.1) being sensible for a feasibility study.

Figure 42 was generated for the SARSA agent with 𝜏𝑓 = 0.5 ℎ from Section 6.4.4. The blue squares are

the unfiltered actions, while the black dots are filtered. Some intermediate actions are realised through

filtering, but drastic and rapid changes in 𝑀𝑉 are caused, there are many intermediate actions that are not

accessed at all, and the use of a filter is now questionable for the studied control scheme of Section 5.1.

The filter is not used in the way that is described by Marlin (2000) and with different objectives – the best

value for 𝜏𝑓 would depend on the number of actions available. Since only a few discrete action selections

were made available in each of the simulations conducted, large values of 𝜏𝑓 were appropriate.

Stellenbosch University https://scholar.sun.ac.za

125

Figure 42: 𝑀𝑉 behaviour for SARSA with 𝜏𝑓 = 0.5 ℎ corresponding to results reported in Section 6.4.4

(blue squares are the unfiltered actions)

The 𝑀𝑉 behaviours for 𝜏𝑓 = 5 ℎ (Figure 37) and 𝜏𝑓 = 0.5 ℎ (Figure 42) also illustrate that the two SARSA

agents approximated the optimal policy differently – the agent therefore adjusts its action selections based

on the filter time constant 𝜏𝑓. If we make 𝜏𝑓 larger, the agent reduces the frequencies with which it selects

different actions, and increases the magnitudes of the changes between successive action selections.

RL agents start learning with a random policy. For SARSA, a deterministic or stochastic policy is selected

by the designer. In contrast, an Actor-Critic agent will also start off randomly, but it then adjusts the degree

of determinism in its decision making as appropriate by driving the preference function ℎ(𝑺, 𝐴, 𝜽) towards

larger values in appropriate regions of the state-action space.

Let us first consider what happens when we filter the action selections of a SARSA agent that is only

starting to learn. Figure 43 for 𝜏𝑓 = 5 hours was generated by training a SARSA agent for one episode,

and plotting the unfiltered (blue squares) and filtered (black circles) action selections. For coarse action

space discretization (only a few actions available), the filtered actions do not jump around as much as the

blue squares. Between 20 and 40 hours, the action is maintained constant since certain actions are

considered greedy during the first episode of training. These learning properties will not be achieved for

𝜏𝑓 = 0.5 ℎ.

Stellenbosch University https://scholar.sun.ac.za

126

Figure 43: 𝑀𝑉 behaviour for SARSA with 𝜏𝑓 = 5 ℎ after training for only one episode on the PSE-MFS

control loop (blue squares are the unfiltered actions)

Now we can consider what happens if we train an Actor-Critic agent with the two filter time constants

based on Section 6.4.6. The agent will start off randomly, and through the preference function ℎ(𝑺, 𝐴, 𝜽)

will gradually approach more deterministic decision making as it continues training.

If 𝜏𝑓 = 5 hours, the agent can access the intermediate actions after filtering, and the actions applied to the

plant do not jump around as much. This allows the Actor-Critic agent to “evolve” its policy during training.

If we were to use 𝜏𝑓 = 0.5 hours with only a few discrete actions available, the Actor-Critic agent would

realise that the “safest” way of behaving with limited information is maintaining seemingly random

decisions rather than becoming more confident in certain selections.

In literature, there are two main ways to apply an Actor-Critic agent to address this problem

(Sutton and Barto, 2018). Firstly, we could provide many actions to the agent. Secondly, we could express

the parameters of a pdf in terms of 𝜽. State-of-the-art RL approaches to process control can perform much

better than the results presented in Case Study 3. For this feasibility study it was of interest to see what

happens if one trains a One-Step Actor-Critic agent with a binary reward function, and allow it to access

many actions through the low pass filter. This inherently requires a large 𝜏𝑓.

Stellenbosch University https://scholar.sun.ac.za

127

CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

Recall from Chapter 1 that this thesis aims to provide an account of the feasibility, nuances, and challenges

of elementary RL-based process control through simulation-based study. An RL-based control scheme

that allows one to study interpretable and simple RL control designs was used to conduct the study. The

controllers studied did not outperform PI/PID controllers where these may successfully be applied.

Process control is a field where a notable contrast exists between theoretical controllers and those that may

be applied safely and economically in industry. RL-based process control is still a fairly nascent

technology that is a good example of this. The SARSA, Q-learning, and One-Step Actor-Critic agents

were studied. These algorithms form the basis for more advanced, state-of-the-art approaches.

7.1 Answering the Key Questions

What are the limits of tabular Q-learning and tabular SARSA in RL-based process control?

The results of training a tabular SARSA agent with a binary reward function on the self-regulatory water

tank model (Case Study 1 – Section 6.2) and the mixing tank model (example problem in Appendix A)

showed that it is theoretically possible to train a tabular agent so that the resulting policy is capable of

achieving |𝐸(𝑇)| < 𝛽 for a considerable region of the state-action space.

Section 6.2 indicated that, when synthetic data provides sufficient quantitative accuracy to allow the use

of a SARSA agent during training, tabular SARSA-based control may be reasonably applied to a self-

regulatory process for which the process gain does not vary depending on the location within the operating

window. While self-regulatory processes pose a sufficiently common control problem, the availability of

a mathematical model suitable for the adequate pretraining of a SARSA agent for industrial application is

not considered likely. Further, regions of the state-action space will be encountered where exploration is

not yet sufficient, resulting in erratic control behaviour in those regions.

This necessitated investigation of Q-learning and the presence of potential coverage limitations in the

resulting pre-trained policy were found (Section 6.2.2 and Section 6.4.5). The example control behaviour

provided by the behavioural policy 𝜋𝑏 may be used effectively in the specific region of the state-action

space where examples are provided often. Heuristics are expected to aid in overcoming this problem

(Section 6.2.2).

In contrast to the results for Case Study 1 (water tank, Section 6.2) and Case Study 2 (Van de Vusse

reaction scheme, Section 6.3), Case Study 3 (grinding circuit, Section 6.4) delivered the most

unsatisfactory control performance. This indicates that a simplistic RL-based control approach may be

severely limited in its ability to deal with significant partial observability (Section 2.14.1 and 2.14.4) in a

robust control problem of a process with non-linear dynamics. The approach to simulating such control

Stellenbosch University https://scholar.sun.ac.za

128

challenges was described in Section 4.3.3. This illustrates that limitation in the available instrumentation

is a significant challenge.

Therefore, a tabular RL-based controller may be reasonably applied to simulated self-regulatory process

control problems where partial observability is not a severe problem, but the application in industry is met

with considerable practical impediments resulting from coverage limitations, robustness requirements, the

need for exploration before sensible decisions can be made across the state-action space, and large

operational data requirement.

What are the limits of One-Step Actor-Critic in RL-based process control?

In Chapter 2 and Section 5.6, it was seen that the One-Step Actor-Critic algorithm requires on-policy

training accompanied with the application of serial computation. From Section 5.6 and the results of

Section 6.4.6, the One-Step Actor-Critic algorithm does not have heuristics or rules that may be applied to

tune 𝛼𝒘 for the critic or 𝛼𝜽 for the actor. An excessively small or excessively large value of 𝛼𝒘 may result

in the critic being unable to adjust the magnitudes of the adjustments to the parameter vector 𝜽 properly

since the temporal difference in terms of state-value is multiplied with 𝛼𝜽 in the actor’s update rule.

An excessively large value of 𝛼𝜽 may cause the preference function, ℎ(𝑺, 𝐴, 𝜽), to be driven quickly to

excessively large values across certain regions of the state-action space during training. This may cause

the policy 𝜋 of the RL agent to behave deterministically when it is not yet appropriate. If 𝛼𝜽 is too small,

the agent’s ability to adapt to changes in its RL environment within a reasonable number of training steps

is compromised. Recall from Section 5.5 that ensuring convergence through the application of Robbins-

Monro convergence criteria will likely result in excessively slow learning rates.

While the progressions of control performance measures were found to be monotonic in Section 6.4.6, this

is of little practical use. The speed of this progression for a fixed control problem cannot be predicted for

an arbitrary RL environment, function approximator, and value of 𝛼𝜽. Therefore, the number of training

steps required before the RL agent has reached its maximum state-action space coverage for the RL

representation design used and hyperparameter selection for a specific application cannot be predicted

beforehand. The operational data requirement for the training of the One-Step Actor Critic agent in

Section 6.4.6 is too large to be feasible.

Can control problem complexity be practically reduced for an RL agent by simplifying the RL environment,

e.g. by discretizing the state-action space?

Discretizing the state-action space for SARSA and Q-learning and the filtering of the RL agent’s discrete

action selections in the control scheme studied simplifies the control problem for the agent. Since all case

studies considered have continuous operating windows, the best achievable control behaviour for a selected

reward function requires decision making directly in the continuous state-action space. As illustrated in

Section 6.7, this control scheme requires the use of a large filter time constant 𝜏𝑓 for the RL agent. The

agent is capable of adjusting the frequencies and magnitudes of its changes in the selected discrete actions

Stellenbosch University https://scholar.sun.ac.za

129

to accommodate the filter, but is still restricted to a predefined set of available actions. As a result, the

dynamics of the low-pass filter and the discretized state-action space likely result in constraining the RL

agent to solving a problem for which the optimal policy 𝜋∗ approximated is suboptimal to the optimal

policy 𝜋∗ that could have been learned in the continuous state-action space. Further, from Section 6.2.2,

different RL environments emerge for off-policy and on-policy training owing to the absence of filtered

historical data in practice.

As a result, it may be concluded that the simplification of the problem to be learned by the RL agent by

simplifying the RL environment needs to be done within the context of other control theory. Chapter 3

showed that a common choice is utilising RL as a method of automatically tuning a PI or PID controller.

7.2 Addressing the Aim of the Project

Recall from Chapter 1 the aim of this thesis:

To evaluate the feasibility of applying elementary RL techniques to automatically determine the optimal

control actions for process control systems.

The feasibilities of the SARSA, Q-learning, and One-Step Actor-Critic agents were evaluated using the

criteria from Section 5.7. The control scheme studied, Section 5.1, simplifies the RL-based control

problem targeted through the filtering of discrete action selections, sampling period ∆𝑇 selection, and the

use of a binary reward function. Hence, the operational data requirement for the stabilisation of RL

representation parameters is most likely an underestimation of the requirement when omitting the low-pass

filter and using an elaborate reward function for the same sampling period ∆𝑇. Recall from Section 6.5

that operational data requirement is not only influenced by the number of parameters to be learned, but

also by the agent applied, the RL representation’s design, and the specific RL environment to which it is

applied.

7.2.1 Memory Usage and Time for Code Execution

Representative approximate wall times for the three case studies are provided in Table 31 since this is

dependent on which other tasks are run if a regular computer were used for serial computation. In cases

where large computational tasks have been parallelised and executed as described in Section 5.6, the

corresponding entry using one worker was approximated.

Stellenbosch University https://scholar.sun.ac.za

130

Table 31: Approximate wall times for the training of RL agents as described in Chapter 5 and Chapter 6

(wall times projected to equivalent wall times for serial execution are indicated in italics)

 Approximate wall time1

Case Study Algorithm Sections
Serial

(one worker)

Parallel

(16 workers)

1

(water tank)
SARSA

5.3.1 and

6.2.1
20 to 40 min N/A

Q-learning 5.4 and 6.2.2 20 to 40 min N/A

2

(Van de Vusse

reaction scheme)

SARSA

(factorial experiment)
5.3.3 and

6.3.2
5.7 hours/batch 45 min/batch

3

(grinding circuit)
SARSA

5.3.5 and

6.4.4
22.8 hours 3 hours

Q-learning 5.4 and 6.4.5 7.6 days 24 hours

One-Step Actor-Critic 5.5 and 6.4.6 4 days N/A

Simulations performed for SARSA and Q-learning agents using serial computation were not mapped to

approximate wall times for parallel execution since scaling behaviour needs to be assessed for

computational problems of similar magnitudes. For One-Step Actor-Critic, serial computation is required

(Section 5.6).

For Case Study 1 (water tank), serial computations for SARSA and Q-learning do not produce wall times

that would prevent the study of these methods on a regular computer – approximate wall times of

20 minutes to 40 minutes recorded in Table 31. Similarly, for Case Study 2 (the Van de Vusse reaction

scheme), wall times would not prevent the training of a SARSA agent on a regular computer. For the

factorial experiment used to investigate discretization fineness (Sections 5.3.3 and 6.3.2), the large number

of time steps allowed for training per batch (defined in Section 5.3.3) requires the use of high-performance

computing. From Table 31, each parallel training batch maps to a wall time for serial execution in the

range of approximately 5.7 hours. The 2 factorial experiment required 32 batches in total, clearly showing

that execution on a regular computer would not be reasonable.

The projected wall times for serial training of SARSA for the PSE-MFS control loop (Section 5.3.5 and

Section 6.4.4) show that the use of a regular computer is in theory possible. This result should be viewed

together with how the memory usage scales for SARSA. For Q-learning, the PID execution time of 0.01 ℎ

1 For wall times in italics: These projected values were calculated using a speed-up conversion factor derived from

the linear portion of Figure 15 in Section 5.6.

Stellenbosch University https://scholar.sun.ac.za

131

for the behavioural policy 𝜋𝑏 resulted a large number of function evaluations during training, thereby

causing wall times that may not be reasonable for a regular computer. Again, scaling of memory usage

must be kept in mind. The wall time of four days for the One-Step Actor-Critic algorithm are much larger

than the projected wall times for serial execution obtained for SARSA. This shows that it is not only the

number of episodes and the numerical complexity of the RL environment that contribute to the wall time,

but also the scaling behaviour of the agent in terms of time.

For a SARSA or Q-learning agent with 𝑁 discrete intervals in each dimension of a state-action space where

𝑺 ∈ ℝ3 and 𝐴 ∈ ℝ1, each update of the approximated action-value function 𝑄̃𝜋(𝑺, 𝐴) requires working

with one scalar entry at each instance of 𝑇. This 𝒪(1) complexity in time is applicable irrespective of the

number of discretized states and actions as well as the number of components comprising each. In terms

of memory usage, however, 𝒪(𝑁) complexity is obtained for these agents (Sutton and Barto, 2018). This

places a limit on the number of episodes and the fineness of discretization that can be studied on a regular

computer.

Consider the case where there are 𝑁 elements in both the critic and actor parameter vectors of a One-Step

Actor-Critic agent. At each instance of 𝑇, 2𝑁 elements need to be evaluated during the updates to the

critic and actor parameters. Therefore, the complexity of the calculation scales according to 𝒪(2𝑁)

(Sutton and Barto, 2018). This contributes to the relatively large wall time observed for the One-Step

Actor-Critic algorithm in Table 31, while storage of the parameter vectors in memory is typically not a

problem.

The simulated operational data requirements for the training of the RL agents in the different case studies

are presented in Figure 44 and Figure 45. In these figures, the number of steps reported for SARSA and

Q-learning in Case Study 1 (water tank) and Case Study 3 (grinding circuit), respectively, were truncated

to the point where the approximated action-value function 𝑄̃𝜋(𝑺, 𝐴) stabilised. To do so, the learning

curves given for SARSA applied to the water tank model in Figure 16 and Figure 21 of Section 6.2.1 as

well as the control performance measure progression for Q-learning applied to the grinding circuit model,

Figure 39 of Section 6.4.5, were consulted. In Case Study 3, 𝑄̃𝜋(𝑺, 𝐴) did not stabilise after initial

improvement during the number of training episodes allowed for SARSA. The small sampling period of

the behavioural policy 𝜋𝑏 resulted in many time steps for the Q-learning agent in Case Study 3, but is

associated with an operational data requirement similar to that of SARSA in Case Study 1. For the One-

Step Actor-Critic agent, “Improvement end” refers to the end of the initial improvement in control

performance measures observed in Figure 40 of Section 6.4.6.

Stellenbosch University https://scholar.sun.ac.za

132

Figure 44: Total numbers of discrete time steps for training SARSA, Q-learning (not applied to

Case Study 2), and One-Step Actor-Critic RL (only applied to Case Study 3): sampling period ∆𝑇 was

1 𝑚𝑖𝑛, 43.75 𝑠, and 1 ℎ for Case Studies 1 (water tank with 𝛽 = 0.2 𝑚), 2 (Van de Vusse reaction

scheme), and 3 (grinding circuit) with the exception of ∆𝑇 = 0.01 ℎ for Q-learning applied to Case Study 3

Figure 45: Operational data requirements for training SARSA, Q-learning (not applied to Case Study 2),

and One-Step Actor-Critic (only applied to Case Study 3): sampling period ∆𝑇 was 1 𝑚𝑖𝑛, 43.75 𝑠, and

1 ℎ for Case Studies 1 (water tank with 𝛽 = 0.2 𝑚), 2 (Van de Vusse reaction scheme), and 3 (grinding

circuit) with the exception of ∆𝑇 = 0.01 ℎ for Q-learning applied to Case Study 3

At first glance, the operational data requirements for the SARSA agents trained for the first two case studies

may seem reasonable. The requirements are, however, still deemed too large when considering that the

Stellenbosch University https://scholar.sun.ac.za

133

quality of a first guess policy obtained through Q-learning is dependent on the likely limited state-action

space coverage allowed for by the behavioural policy 𝜋𝑏 (Section 6.2.2).

All the other entries for on-policy RL agents (SARSA and One-Step Actor-Critic) in Figure 44 and Figure

45 represent physically unrealisable operational data requirements. Case study 3 (grinding circuit)

represents the most practically representative simulated control problem for the studied RL agents. The

significant increase in the operational data requirements accompanying this problem indicate that the

increase in problem complexity owing to the presence of partial observability without the incorporation of

historical information in the observed state 𝑺 has a marked impact on how quickly an RL agent’s

parameters stabilise.

It may be concluded that the operational data requirements for the elementary RL algorithms studied are

too great to be feasible for industrial use. The algorithms may be feasible in the case of certain laboratory

scale RL experiments, especially if a quantitatively accurate model for the process exists

(Syafiie et al., 2008; Brujeni et al., 2010; Ramanathan et al., 2018) – Chapter 3.

7.2.2 Control Performance

Independent of the RL agent studied, if state-action coordinates are encountered that are not associated

with sufficient coverage, erratic control behaviour will result. The mixing tank example in Appendix A

provides a clear graphical illustration of such a case where random action selections result. Different

degrees of coverage can achieve any behaviour between the extremes of random actions and the best

decision making that can be learned by the RL agent. The occurrence of failure modes and the degree of

failure cannot readily be predicted beforehand irrespective of whether the most commonly encountered

𝐷𝑉 values are known.

The study of the grinding circuit model showed that 2 years’ worth of synthetic data was sufficient to adapt

the policy of the SARSA agent to compensate for a “worst-case” stiction scenario (Section 6.4.4). The

One-Step Actor-Critic agent was not able to compensate for stiction within the same number of operational

hours. This emphasizes that there exist practical challenges when applying One-Step Actor-Critic agents

(Section 6.4.6). The typically low values of 𝛼𝜽, and the benefits of operating in the region of a stochastic

policy with optimal control statistic measures when using a binary reward function prevent quickly

compensating for significant stiction.

An Actor-Critic agent requires a large number of actions to enable the agent to become more confident in

the appropriate action selections. More thought also needs to put into the design of a suitable reward

function as the state space 𝒮 is inherently modelled as continuous. Feedback loop dynamics will typically

change very slowly which could potentially allow sensible application of One-Step Actor-Critic agents to

compensate for such effects.

In classical control, the final value theorem provides a method that may be applied to illustrate analytically

that the integral mode of PI/PID control ensures that zero steady-state offset is eventually achieved in

Stellenbosch University https://scholar.sun.ac.za

134

response to 𝑆𝑃 or 𝐷𝑉 changes. In contrast, closed-loop tracking in RL is dependent on the designer’s

knowledge of the RL environment.

Specifically, the reward function and defined observed state must enable closed-loop tracking by fully

constraining the RL environment. Since measurements are often unavailable, decision making must allow

for the presence of a stochastic optimal policy 𝜋∗ that needs to be approximated and is of learned

independent of the action-value function. If an RL agent were allowed to directly adjust the final element,

there would be no limit to the speed with which the RL agent responds to a 𝐶𝑉 measurement once it is

available.

Assuming that a sufficient range in action selections are available to the RL agent, it would be able to adapt

automatically to any noise present in the 𝐶𝑉 measurements provided to it. In the case of a One-Step Actor-

Critic agent, this is subject to the limitations discussed earlier in this section regarding adaptation to altered

closed-loop dynamics. For SARSA, if the signal to noise ratio is sufficiently large, the mapping of plant

measurements to observed state 𝑺 will not be affected.

7.2.3 Ease of RL Agent Tuning

For the specific cases of tabular SARSA and tabular Q-learning agents, the step size hyperparameter 𝛼 and

discount factor 𝛾 can be selected independently of the instance of discretization and the RL environment

studied – Sections 5.3.4 and 6.3.3. For One-Step Actor-Critic, the step-size hyperparameters 𝛼𝜽 and 𝛼𝒘

need to be selected using a trial-and-error procedure.

Irrespective of the RL agent studied, design of the reward function may hold significant complexity,

especially when modelling the state space 𝒮 as a continuum, as is the case with One-Step Actor-Critic.

This is because the reward function is the only available handle for the communication of control objectives

in the context of model-free RL.

In contrast to elementary RL-based controllers, classical control has well-established tuning methodologies

applicable to different processes (Marlin, 2000; Skogestad and Poslethwaite, 2005).

7.2.4 Safety of Exploration

If an RL agent is trained on-policy without sufficient coverage obtained beforehand using historical data,

any of the available states may be encountered. This was shown by testing for the overflow condition in

the mixing tank example of Appendix A, but is also evident from the theory presented in Chapter 2 and

the necessity of boundary states when applying state-action space discretization for SARSA and Q-learning

(Chapter 5). A model of the RL environment would be required to promote safe exploration in certain

regions of the process operating window.

Stellenbosch University https://scholar.sun.ac.za

135

7.2.5 Whether Controller Operation is Interpretable to a Human

For a tabular RL representation, irrespective of the number of components comprising 𝑺 and 𝐴, RL agent

behaviour may easily be conceptualised and predicted to a large degree of accuracy when presented with

𝑄̃𝜋(𝑺, 𝐴) and the current observed state 𝑺. In contrast, a linear basis function RL representation, as was

used for the One-Step Actor-Critic agent, is difficult to conceptualize since each learned parameter is

associated with a basis function that has a perceptive field. The output for a particular measurement in the

infinite number of possible instances of 𝑺 may potentially be calculated manually to a reasonable accuracy,

but is not considered readily interpretable since the contours of the optimal policy 𝜋∗ cannot be

conceptualised more than one state or action component is applicable to the problem under consideration.

7.2.6 Process Modelling Requirement

Model-free RL does not require a model of the RL environment to approximate the optimal policy 𝜋∗ and

such techniques learn purely through experience. This allows a better approximation to the optimal

policy 𝜋∗ to be obtained since the approximation is not dependent on the accuracy of a model of the RL

environment (Moerland et al., 2021). No linear model of the process is required either.

7.2.7 Conclusion Regarding Feasibility

From the evaluation of the feasibility criteria in Sections 7.2.1 through 7.2.6, it is concluded that elementary

RL is not feasible for determining the optimal actions in industrial process control. This confirms the

appropriateness of the prevalent RL-based control research directions observed in state-of-the-art

methods – Chapter 3.

7.3 Addressing the Objectives

Recall from Section 1.2 that the objectives included synthesis of an RL-based SISO control methodology

for feasibility study, validation of the control methodology, investigation of discretization coarseness and

hyperparameter tuning, and evaluation of the feasibility of tabular SARSA, tabular Q-learning, and One-

Step Actor-Critic RL agents in terms of feasibility criteria applied in the context of a ball mill grinding

circuit simulation.

A non-linear control synthesis with a binary reward function was proposed for feasibility study and

understanding the learning behaviours of RL agents irrespective of their relative complexities

(Section 5.1). The RL methodology was validated qualitatively by applying a tabular SARSA agent to a

self-regulatory water tank control problem (Case Study 1) – Section 6.2.1. Further, control of the Van de

Vusse reaction scheme (Case Study 2) was studied to this end (Section 6.3.1).

The IAE responses in a 2 factorial experiment applied to Case Study 2 (the Van de Vusse reaction scheme)

indicated that the error signal 𝐸(𝑇) may be discretized coarsely to reduce IAE at the expense of more

pronounced final element adjustments. The responses indicated little benefit of discretizing both 𝑆𝑃 and

𝐷𝑉 finely. Section 6.3.2 therefore showed that a finely discretized state-action space needs to enable

Stellenbosch University https://scholar.sun.ac.za

136

effective leveraging of the reward function used. If this is not done, an excessive number of parameters

may be defined in the RL representation, thereby likely increasing the operational data requirement

associated with RL agent training.

RL hyperparameters were investigated (Sections 5.3.4 and 6.3.3). RL-based control was applied to the

PSE-MFS control loop of a qualitatively accurate grinding circuit model (Sections 5.3.5, 5.4, 5.5, and 6.4).

Based on the lessons learnt by studying the grinding circuit model, practical limitations could be

incorporated in the comparison of the RL agents (Section 6.6). The set of feasibility criteria identified in

Section 5.7 were used to assess the feasibilities of the studied RL agents (Section 7.2).

7.4 Contributions to the Field

This thesis contributes to the field of RL-based process control by critically assessing the feasibility of

elementary model-free RL-based control and identifying impediments to the industrial adoption of RL that

originate at the foundations of the field. A simplified RL environment was used to understand the

behaviour of the elementary RL agents applied to simulated control problems (Section 5.1). Further, the

thesis illustrates nuances of designing and implementing RL-based control solutions, some of its practical

limitations (Sections 6.2, 6.3, and 6.4), and provides stakeholders with a reference to the field of RL-based

process control that focuses extensively on the elementary principles of model-free RL-based control.

7.5 Code Used for the Feasibility Study

MATLAB code used during the feasibility study is available at:

https://github.com/Stellenbosch-University-Process-Eng/Feasibility-of-elementary-RL-for-process-control

Code that may be used to simulate the Van de Vusse reaction scheme model (Section 4.2) and the grinding

circuit model (Section 4.3) are provided. Further, the code used to apply SARSA and Q-learning to the

water tank model (Section 6.2), to investigate SARSA application to the Van de Vusse reaction scheme

(Section 6.3), and to apply PID control, SARSA, and One-Step Actor-Critic agents to the grinding circuit

model (Section 6.4) are also provided.

7.6 Practical Limitations of the RL Methodology

While the control scheme studied (Section 5.1) was suitable for a feasibility study, a few practical

limitations need to be highlighted.

Safe exploration is most naturally investigated in the context of model-based RL (see, for example,

(Berkenkamp et al., 2017)). Model-free RL only provides the reward function and parameterization of the

learned policy 𝜋 as handles to maintain 𝐶𝑉 within a specified region (omitting from consideration non-RL

interventions in the control approach). Any practical approach to safe exploration requires the designer to

Stellenbosch University https://scholar.sun.ac.za

https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2FStellenbosch-University-Process-Eng%2FFeasibility-of-elementary-RL-for-process-control&data=04%7C01%7C%7C209bbdb14e4f449fa4e008d9a5ae4918%7Ca6fa3b030a3c42588433a120dffcd348%7C0%7C0%7C637722990226164611%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=d1xQ33Wa50RX%2FSzDWqivmPaMeDw4IKtKGMS9ORAV6sA%3D&reserved=0

137

be very confident that the uncertainty arising from limited instrumentation could be accounted for reliably,

sustainably, and within a reasonable operational data requirement.

For a fixed value of 𝜏𝑓, excessive final element adjustment arises as a result of leveraging only a few

actions and not penalizing the agent for excessive 𝑀𝑉 adjustments through the reward function design.

Increasing 𝜏𝑓 in the studied control scheme does reduce the extent of excessive final element adjustment,

but is limited depending on how coarsely the action space is discretized. In addition to difficulties with

coverage in tabular SARSA and Q-learning, the studied method requires the use of different RL

environments for Q-learning and SARSA (Section 6.2.2). Recall from Section 5.7 that including the low-

pass filter also degrades the optimal policy 𝜋∗ targeted in the applications considered.

RL-based control is focused on performance optimization by the RL agent’s search for greater cumulative

rewards during training. Process control is, however, oriented towards ensuring the stability of a controller,

which would require consideration of the learning process rather than the achievable performance alone in

the case of an RL-based control approach. No clear stability criterion currently exists for RL-based control

(Buşoniu et al., 2018).

While an RL agent would likely adapt its action selections to account for dead time in a process, the

presence of large dead times may have a significant influence on operational data requirements before a

policy 𝜋 is reached that would ensure stability when closing the loop using the RL agent. When insufficient

state components can be measured to fully describe the RL environment, historical information may also

need to be incorporated to ensure that the problem is adequately approximated by the assumption of a

Markovian RL environment (Moerland et al., 2021).

7.7 Recommendations

In the author’s opinion, RL should not be approached as a completely separate paradigm to process control,

but rather as a way to establish a complementary relationship between computational thinking and well-

established control approaches. Based on the RL methodology of Chapter 5 and the results presented in

Chapter 6, this section describes shortly recommendations for future work that aims to further investigate

elementary RL principles with the ideal result being that such work forms a point of departure to better

understand aspects of state-of-the-art approaches.

7.7.1 Quantification of Action-Value Function Coverage in Tabular RL Methods

When applying any RL-based control approach, there is a certain fraction of the state-action space for

which the agent has learned optimal control behaviour provided that sufficient training has occurred. This

fraction is unknown when working with RL agents which greatly increases practical difficulties in process

control systems where erratic control behaviour must always be avoided.

From the results presented in Section 6.2 it is known that the state-action coordinates closest to 𝐸(𝑇) = 0

have the largest number of visits during the training of an RL agent. Further, from Section 6.3.2 it is known

Stellenbosch University https://scholar.sun.ac.za

138

that increasing the discretization of the components comprising the observed state 𝑺 increases the

consistency with which controller performance lies within the interquartile range associated with the

population distribution of IAEs, but may not necessarily significantly improve controller performance for

a given reward function. Learning curve shapes may be difficult to observe if stochastic process inputs are

used during RL agent training. The coverages required to achieve stable control is naturally also unknown.

This accentuates the need for an increased focus on quantifying the progression of training for process

control applications in addition to the stability of the resulting controllers, as has been noted in literature

(Buşoniu et al., 2018). The observations from Chapter 6 mentioned above may potentially aid in providing

a point of departure to quantify coverage for tabular methods.

7.7.2 Investigating the Influence of Including Historical Information in the Observed State

From Section 2.14.1, the sequential decision making modelled using an MDP in RL relies on the

assumption that the presently observed state 𝑺 and the action taken 𝑨 fully constrain the state transition

that occurs between time steps 𝑇 and 𝑇 + 1. Owing to the prevalence partial observability in process

control systems, this assumption is unlikely to hold true unless historical information is included in the

observed state 𝑺 (Conradie, 2000; Ma et al., 2019).

Chapter 3 and Chapter 6 have shown that this does not prevent successful application of RL-based control

to simulated process control systems. To potentially enhance the training processes of RL-based

controllers, the effects of including historical data points must be investigated. The MDP assumption

(Section 2.14.1) will likely hold when sufficient historical information is included in 𝑺. Two approaches

are to modify the definition of 𝑺 and to incorporate eligibility traces that scale the different adjustments to

the RL representation’s parameters based on visitation frequencies within the state-action space

(Sutton and Barto, 2018). The simulation results generated by Ma et al. (2019), the operational data

requirement observed for their work in Section 6.5, and the infeasible practical control behaviours observed

in this study motivate this recommendation.

7.7.3 Elementary RL Agent Learning Behaviours for Simulated MIMO Control

In this thesis, each case study involved the application of an RL agent as the controller in one control loop.

If more than one agent-based control loop were implemented, each RL agent would see the others as part

of its RL environment. The RL environment for each agent would not be stationary

(Sutton and Barto, 2018)

In RL, a curriculum refers to non-stationarity in the RL environment purposefully introduced by the

investigator to allow behaviours to be learned that would not have been learned otherwise. While

plantwide RL-based control is much further from successful application, the hypothesis of curricula being

instantiated automatically through the interacting learning processes of more than one agent, as described

by Leibo et al. (2019), may be worth investigating. Competition and exploration in the changing RL

environments are likely to arise naturally between the different RL agents as each agent only wants to

Stellenbosch University https://scholar.sun.ac.za

139

maximize the cumulative rewards it receives. This may potentially contribute to the learning of different

types of control actions for simple reward functions.

7.7.4 Development of a ‘Mixture RL’ Controller for Process Control Systems

The integration of system identification, classical process control and RL is a developing field of research.

The application of model-free and model-based RL in a complementary fashion in this context may be

referred to as “Mixture RL” (Moerland et al., 2021).

Future research could be aimed at developing an RL-based controller that combines global, model-free RL

(provides better asymptotic performance) with forward-model-based RL principles for local decision

making (planning) and state-action space coverage specifically for application to chemical and mineral

processing plants. Such a controller should likely incorporate principles of classical control to enhance

safety and feasibility. The global RL agent could aim to obtain a higher-level overview of the required

policy 𝜋 across the state-action space, while the planning method corrects local mistakes arising from

coverage limitations.

A balance must be found between learning, planning, and data collection using an increased number of

hyperparameters. To do so, data-efficient mixture approaches with local planning and global model-free

function approximation to achieve reasonable control performance with significant interpretability,

transfer, stability, and safety within operational data constraints may potentially be applied

(Moerland et al., 2021). Integration of process control knowledge and principles from the model-based

RL paradigm may form an ideal candidate for achieving more accessible and industrially feasible learning

control without necessarily resorting to deep learning methods.

Stellenbosch University https://scholar.sun.ac.za

140

LITERATURE CITED

Atkins, A. R. et al. (1974) ‘The control of milling circuits.’, Journal of The South African Institute of

Mining and Metallurgy, 74(11), pp. 388–395.

Baird, L. C. (1995) ‘Residual algorithms: Reinforcement Learning with function approximation’, in

Proceedings of the 12th International Conference on Machine Learning (ICML 1995). Morgan Kaufmann

Publishers, Inc., pp. 30–37.

Barker, I. J. and Hulbert, D. G. (1983) ‘Dynamic Behaviour in the Control of Milling Circuits’, IFAC

Proceedings Volumes, 16(15), pp. 139–152. doi: 10.1016/s1474-6670(17)64264-2.

Bellman, R. (1972) Dynamic Programming. New Jersey: Princeton University Press.

Berkenkamp, F. et al. (2017) ‘Safe model-based reinforcement learning with stability guarantees’, in

Proceedings of Neural Information Processing Systems (NIPS), pp. 908–918.

Bertsekas, D. P. and Tsitsiklis, J. N. (1996) Neuro-Dynamic Programming. Belmont, M.A.: Athena

Scientific.

Bianchi, R. A. C., Ribeiro, C. H. C. and Costa, A. H. R. (2012) ‘Heuristically accelerated reinforcement

learning: Theoretical and experimental results’, Frontiers in Artificial Intelligence and Applications,

242(January), pp. 169–174. doi: 10.3233/978-1-61499-098-7-169.

Bishop, C. M. (2006) Pattern Recognition and Machine Learning. 1st edn. Edited by M. Jordan, J.

Kleinberg, and B. Schölkopf. New York: Springer.

Brujeni, L. A., Lee, J. M. and Shah, S. L. (2010) ‘Dynamic tuning of PI-controllers based on model-free

reinforcement learning methods’, ICCAS 2010 - International Conference on Control, Automation and

Systems, pp. 453–458. doi: 10.1109/iccas.2010.5669655.

Buşoniu, L. et al. (2018) ‘Reinforcement learning for control: Performance, stability, and deep

approximators’, Annual Reviews in Control, 46, pp. 8–28. doi: 10.1016/j.arcontrol.2018.09.005.

Chen, D. and Seborg, D. E. (2002) ‘PI/PID controller design based on direct synthesis and disturbance

rejection’, Industrial and Engineering Chemistry Research, 41(19), pp. 4807–4822. doi:

10.1021/ie010756m.

Chen, H., Kremling, A. and Allgöwer, F. (1995) ‘Nonlinear Predictive Control of a Benchmark CSTR’, in

Proceedings of the 3rd European Control Conference ECC’95. Rome, Italy, pp. 3247–3252.

Conradie, A. V. E. (2000) Neurocontroller Development for Nonlinear Processes Using Evolutionary

Reinforcement Learning. Stellenbosch University.

Conradie, A. V. E. and Aldrich, C. (2001) ‘Neurocontrol of a Ball Mill Grinding Circuit Using

Evolutionary Reinforcement Learning’, 14(10), pp. 1277–1294. doi: 10.1145/3205651.3207865.

Daniel, C. (1959) ‘Use of Half-Normal Plots in Interpreting Factorial Two-Level Experiments’,

Technometrics, 1, pp. 311–342.

Deisenroth, M. P., Faisal, A. A. and Ong, C. S. (2020) Mathematics for Machine Learning. 1st edn. Edited

by L. Cowles. Cambridge: Cambridge University Press. Available at:

http://www.maa.org/external_archive/QL/pgs75_89.pdf.

Deisenroth, M. P. and Rasmussen, C. E. (2011) ‘PILCO: A model-based and data-efficient approach to

policy search’, in Proceedings of the 28th International Conference on Machine Learning, ICML 2011.

Bellevue, W.A., pp. 465–472.

Devore, J. L. (2017) Probability and Statistics for Engineering and the Sciences. 9th edn. Cengage

Learning.

Dvoretzky, A. (1956) ‘On Stochastic Approximation’, in Neyman, J. (ed.) Proceedings of the Berkeley

Symposium on Mathematical Statistics and Probability. University of California Press, pp. 39–55. doi:

10.2307/2980937.

Stellenbosch University https://scholar.sun.ac.za

141

Engel, Y. (2005) Algorithms and Representations for Reinforcement Learning. Senate of the Hebrew

University. Available at: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.124.6809.

Engel, Y. (2011) ‘Gaussian Process Reinforcement Learning’, in Sammut, C. and Geoffrey, I. W. (eds)

Encyclopedia of Machine Learning. Springer, pp. 439–445.

Fan, Y., Chen, L. and Wang, Y. (2018) ‘Efficient Model-Free Reinforcement Learning Using Gaussian

Process’. Available at: http://arxiv.org/abs/1812.04359.

Fasshauer, G. E. (2007) Meshfree Approximation Methods with MATLAB. Edited by J. Duan. New Jersey:

World Scientific. Available at:

http://bookzz.org/book/2472384/30c5e2%5Cnpapers3://publication/uuid/06E018CF-3ABE-48BF-B43A-

0EAF18B299ED.

Felder, R. M., Rousseau, R. W. and Bullard, L. G. (2017) Felder’s Elementary Principles of Chemical

Processes. 4th edn. Hoboken: John Wiley & Sons, Inc.

Francis, B. A. and Wonham, W. M. (1976) ‘The internal model principle of control theory’, Automatica,

12(5), pp. 457–465. doi: 10.1016/0005-1098(76)90006-6.

Gilat, A. and Subramaniam, V. (2014) Numerical Methods for Engineers and Scientists. 3rd edn. Hoboken:

Wiley.

Green, D. W. and Perry, R. H. (2008) Perry’s Chemical Engineers’ Handbook. 8th edn. New York:

McGraw-Hill.

Hafner, R. and Riedmiller, M. (2011) ‘Reinforcement learning in feedback control : Challenges and

benchmarks from technical process control’, Machine Learning, 84(1–2), pp. 137–169. doi:

10.1007/s10994-011-5235-x.

Hastie, T. et al. (2020) ‘Surprises in High-Dimensional Ridgeless Least Squares Interpolation’. Available

at: http://arxiv.org/abs/1903.08560.

Hermansson, A. W. and Syafiie, S. (2015) ‘Model predictive control of pH neutralization processes: A

review’, Control Engineering Practice, 45, pp. 98–109. doi: 10.1016/j.conengprac.2015.09.005.

Hessel, M. et al. (2018) ‘Rainbow: Combining improvements in deep reinforcement learning’, in 32nd

AAAI Conference on Artificial Intelligence, AAAI 2018, pp. 3215–3222.

Hoskins, J. C. and Himmelblau, D. M. (1992) ‘Process control via artificial neural networks and

reinforcement learning’, Computers and Chemical Engineering, 16(4), pp. 241–251. doi: 10.1016/0098-

1354(92)80045-B.

Hunter, J. K. and Nachtergaele, B. (2005) Applied Analysis. New Jersey: World Scientific.

Jaakkola, T., Jordan, M. I. and Singh, S. P. (1994) ‘On the Convergence of Stochastic Iterative Dynamic

Programming Algorithms’, Neural Computation, 6, pp. 1185–1201. doi: 10.1007/978-1-4842-3721-2_2.

James, G. et al. (2013) Springer Texts in Statistics: An Introduction to Statistical Learning - with

Applications in R. Edited by G. Casella, S. Fienberg, and I. Olkin. Springer.

Lee, J. M. (2004) A Study on Architecture, Algorithms, and Applications of Approximate Dynamic

Programming Based Approach to Optimal Control. Georgia Institute of Technology.

Lee, J. M. and Lee, J. H. (2005) ‘Approximate dynamic programming-based approaches for input-output

data-driven control of nonlinear processes’, Automatica, 41(7), pp. 1281–1288. doi:

10.1016/j.automatica.2005.02.006.

Leibo, J. Z. et al. (2019) ‘Autocurricula and the Emergence of Innovation from Social Interaction: A

Manifesto for Multi-Agent Intelligence Research’, (2016). Available at: http://arxiv.org/abs/1903.00742.

Lillicrap, T. P. et al. (2016) ‘Continuous control with deep reinforcement learning’, in 4th International

Conference on Learning Representations, ICLR 2016 - Conference Track Proceedings.

Lin, C. and Snyder, L. (2008) Principles of Parallel Programming. 1st edn. Edited by M. Hirsch et al.

Boston: Addison-Wesley. doi: 10.1201/9780429439780-9.

Stellenbosch University https://scholar.sun.ac.za

142

Ma, Y. et al. (2019) ‘Continuous control of a polymerization system with deep reinforcement learning’,

Journal of Process Control, 75, pp. 40–47. doi: 10.1016/j.jprocont.2018.11.004.

Marlin, T. E. (2000) Process Control: Designing Processes and Control Systems for Dynamic

Performance. 2nd edn. McGraw-Hill.

McAvoy, T. J., Hsu, E. and Lowenthal, S. (1972) ‘Dynamics of pH in Controlled Stirred Tank Reactor’,

Industrial and Engineering Chemistry Process Design and Development, 11(1), pp. 68–70. doi:

10.1021/i260041a013.

Mnih, V. et al. (2015) ‘Human-level control through deep reinforcement learning’, Nature, 518(7540), pp.

529–533. doi: 10.1038/nature14236.

Mnih, V. et al. (2016) ‘Asynchronous Methods for Deep Reinforcement Learning’, in Proceedings of the

33rd International Conference on Machine Learning. New York: JMLR W&CP.

Moerland, T. M., Broekens, J. and Jonker, C. M. (2021) ‘Model-based reinforcement learning: A survey’,

arXiv:2006.167v3[cs.LG].

Mongillo, M. (2011) ‘Choosing Basis Functions and Shape Parameters for Radial Basis Function

Methods’, SIAM Undergraduate Research Online, 4, pp. 190–209. doi: 10.1137/11s010840.

Montgomery, D. C. (2013) Design and Analysis of Experiments. 8th edn. New Jersey: John Wiley & Sons,

Inc.

Nian, R., Liu, J. and Huang, B. (2020) ‘A review On reinforcement learning: Introduction and applications

in industrial process control’, Computers and Chemical Engineering, 139, p. 106886. doi:

10.1016/j.compchemeng.2020.106886.

Olsson, H. and Åström, K. J. (2001) ‘Friction generated limit cycles’, IEEE Transactions on Control

Systems Technology, 9(4), pp. 629–636. doi: 10.1109/87.930974.

Poole, D. L. and Mackworth, A. K. (2010) Artificial Intelligence: Foundations of Computational Agents.

1st edn. Cambridge: Cambridge University Press.

Potapov, A. and Ali, M. K. (2003) ‘Convergence of reinforcement learning algorithms and acceleration of

learning’, Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 67(2). doi:

10.1103/PhysRevE.67.026706.

Precup, D., Sutton, R. S. and Dasgupta, S. (2001) ‘Off-policy temporal-difference learning with function

approximation’, in Proceedings of the 18th International Conference on Machine Learning. Available at:

http://www.incompleteideas.net/sutton/papers/PSD-01-retypeset.pdf.

Rajamani, R.K. and Herbst, J. A. (1991) ‘Optimal control of a ball mill grinding circuit-II. Feedback and

optimal control’, Chemical Engineering Science, 46(3), pp. 871–879. doi: 10.1016/0009-2509(91)80194-

4.

Rajamani, R. K. and Herbst, J. A. (1991) ‘Optimal Control of A Ball Mill Grinding Circuit - I. Grinding

Circuit Modeling and Dynamic Simulation’, Chemical Engineering Science, 46(3), pp. 861–870.

Ramanathan, P., Mangla, K. K. and Satpathy, S. (2018) ‘Smart controller for conical tank system using

reinforcement learning algorithm’, Measurement: Journal of the International Measurement

Confederation, 116, pp. 422–428. doi: 10.1016/j.measurement.2017.11.007.

Rippa, S. (1999) ‘An alternative procedure for selecting a good value for the parameter c in RBF-

interpolation’, Advances in Computational Mathematics, 11, pp. 193–210. doi: 10.1007/s10444-010-9146-

3.

Robbins, H. and Monro, S. (1951) ‘A Stochastic Approximation Method’, Annals of Mathematical

Statistics, 22, pp. 400–407.

Le Roux, J. D. et al. (2013) ‘Analysis and validation of a run-of-mine ore grinding mill circuit model for

process control’, Minerals Engineering, 43–44, pp. 121–134. doi: 10.1016/j.mineng.2012.10.009.

Shin, J. et al. (2019) ‘Reinforcement Learning – Overview of recent progress and implications for process

control’, Computers and Chemical Engineering, 127, pp. 282–294. doi:

Stellenbosch University https://scholar.sun.ac.za

143

10.1016/j.compchemeng.2019.05.029.

Shipman, W. J. and Coetzee, L. C. (2019) ‘Reinforcement Learning and Deep Neural Networks for PI

Controller Tuning’, IFAC-PapersOnLine, 52(14), pp. 111–116. doi: 10.1016/j.ifacol.2019.09.173.

Shoukat Choudhury, M. A. A., Thornhill, N. F. and Shah, S. L. (2005) ‘Modelling valve stiction’, Control

Engineering Practice, 13(5), pp. 641–658. doi: 10.1016/j.conengprac.2004.05.005.

Simon, J. L. (1997) Resampling: The new Statistics. Resampling Stats.

Skogestad, S. and Poslethwaite, I. (2005) Multivariable Feedback Control: Analysis and Design. 2nd edn.

Chichester: John Wiley & Sons, Inc.

Sutton, R. S. and Barto, A. G. (2018) Reinforcement Learning: An Introduction. 2nd edn. Cambridge,

M.A.: The MIT Press.

Syafiie, S., Tadeo, F. and Martinez, E. (2008) ‘Model-Free Learning Control of Chemical Processes’,

Reinforcement Learning. doi: 10.5772/5287.

Szepesvári, C. (2010) ‘Algorithms for reinforcement learning’, in Synthesis Lectures on Artificial

Intelligence and Machine Learning. Morgan & Claypool, pp. 1–89. doi:

10.2200/S00268ED1V01Y201005AIM009.

Tan, M. (1993) ‘Multi-Agent Reinforcement Learning: Independent vs. Cooperative Agents’, in Machine

Learning: Proceedings of the Tenth International Conference. San Mateo, C.A.: Morgan Kaufmann

Publishers, Inc., pp. 330–337.

Theodoridis, S. (2020) Machine Learning: A Bayesian and Optimization Perspective. 2nd edn. London:

Elsevier.

Wakefield, B. J. et al. (2018) ‘Monitoring of a simulated milling circuit: Fault diagnosis and economic

impact’, Minerals Engineering, 120, pp. 132–151. doi: 10.1016/j.mineng.2018.02.007.

Watkins, C. J. C. H. (1989) Learning from delayed rewards. King’s College. doi: 10.1016/0921-

8890(95)00026-C.

Whitehead, S. D. and Lin, L. (1995) ‘Reinforcement learning of non-Markov decision processes’, Artificial

Intelligence, 73, pp. 271–306.

Wills, B. A. and Finch, J. A. (2016) Wills’ Mineral Processing Technology - An Introduction to the

Practical Aspects of Ore Treatment and Mineral Recovery. 8th edn. Amsterdam: Elsevier.

Wright, R. A. and Kravaris, C. (2001) ‘On-line identification and nonlinear control of an industrial pH

process’, Journal of Process Control, 11(4), pp. 361–374. doi: 10.1016/S0959-1524(00)00003-2.

Zhang, Y. et al. (2021) ‘A Survey on Neural Network Interpretability’, IEEE Transactions on Emerging

Topics in Computational Intelligence. Available at: https://www.acm.org/media-

center/2019/march/turing-award-2018 (Accessed: 7 September 2021).

Stellenbosch University https://scholar.sun.ac.za

144

APPENDIX A – WORKED EXAMPLE: LEVEL

CONTROL OF A SELF-REGULATORY MIXING

TANK

This appendix serves as supplementary material to Chapter 2 which, on its own, may be challenging to

work through owing to the abstract nature of the concepts underlying RL-based control. To use this

appendix optimally, the author proposes referring to it as both a practical example after reading Section 2.3

and as a method of making the theory more tangible by reconciling theoretical understanding with

application after reading Chapter 2. The code used to generate the results presented in this appendix is

available online at:

https://github.com/Stellenbosch-University-Process-Eng/Feasibility-of-elementary-RL-for-process-control

Figure 46 depicts a self-regulatory mixing tank that may be modelled as in Case Study 1 which involved

the investigation of level control for a self-regulatory water tank. The model is replicated in

Equation [118], where the cross-sectional area of the mixing tank studied is 𝐴𝑡𝑎𝑛𝑘 = 1.8 𝑚2 and the

initial steady state of the model is given in Table 32. The pressure loss parameter (ℓ) and the pressures 𝑃1

and 𝑃2 are not incorporated in the model structure since an appropriate value of 𝑐𝑣 has been selected.

Liquid density 𝜌𝑙 does not appear in the model seeing it cancels out when writing the material balance for

the mixing tank. In this example, we are concerned with keeping the level of process liquid in the mixer

within the range of 1 𝑚 and 2 𝑚 in the presence of disturbances in the inlet flow rate 𝐹𝑖𝑛.

Figure 46: Illustration of the mixing tank which may be modelled using Equation [118]

𝐴𝑡𝑎𝑛𝑘; 𝐻; 𝜌𝑙

𝐹𝑖𝑛

𝑥; ℓ

𝑃1 𝑃2

Stellenbosch University https://scholar.sun.ac.za

https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2FStellenbosch-University-Process-Eng%2FFeasibility-of-elementary-RL-for-process-control&data=04%7C01%7C%7C209bbdb14e4f449fa4e008d9a5ae4918%7Ca6fa3b030a3c42588433a120dffcd348%7C0%7C0%7C637722990226164611%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=d1xQ33Wa50RX%2FSzDWqivmPaMeDw4IKtKGMS9ORAV6sA%3D&reserved=0

145

 𝐴𝑡𝑎𝑛𝑘 (
𝑑𝐻

𝑑𝑡
) = (𝐹𝑖𝑛) − 𝑐𝑣𝑥√𝐻 𝑤ℎ𝑒𝑟𝑒 𝑥 ∈ [0,1] [118]

Table 32: Steady state of the mixing tank model

State variable Name of variable Steady state Unit

𝐹𝑖𝑛 Inlet volumetric flow rate 31.67 × 10−
𝑚3

𝑠

𝐻 Height of the liquid in the tank 1.5 𝑚

𝑐𝑣 Valve discharge coefficient 0.01
𝑚2.

𝑠

𝑥 Fraction valve opening 0.259 −

This control problem is of practical relevance since it may help attenuate feed composition disturbances to

the unit receiving the process fluid from the outlet of the mixing tank. The tank therefore has to reduce

the magnitudes and frequencies of such disturbances through its averaging effect, and we thus only need

the liquid level within the tank to be sufficient to prevent overflow or drying of the tank (Marlin, 2000).

This appendix applies a value-based agent known as the State-Action-Reward-State-Action (SARSA)

algorithm, as described by Sutton and Barto (2018), to this control problem.

To approach this example problem, we can refer to the simplified time domain block diagram shown in

Figure 47, where the effects of final element dynamics and sensor noise on the control law input and output

are not considered. As a result, the simplification 𝑢(𝑡) = 𝑀𝑉(𝑡) may be made, where 𝑢(𝑡) is the control

law output and 𝑀𝑉(𝑡) is the final element value actually applied to the process. If we were to apply a

PI/PID controller, it would obtain an error measurement 𝐸(𝑡) at each instance of time 𝑡 and provide a

desired final element adjustment 𝑀𝑉(𝑡). This error is calculated by subtracting the controlled variable

𝐶𝑉(𝑡) from the set point 𝑆𝑃(𝑡), and the inlet flow rate affects the process as a disturbance variable 𝐷𝑉(𝑡).

Stellenbosch University https://scholar.sun.ac.za

146

Figure 47: Simplified time domain block diagram of the feedback control system considered in the mixing

tank example

The RL agent has a mathematical formulation and interacts with the RL environment (everything excluding

the RL agent) during a number of discrete time steps, where each step is denoted by 𝑇. After each selection

and application of an action, 𝐴, the RL environment transitions from state 𝑺 observed at time step 𝑇 to

state 𝑺′ observed at time step 𝑇 + 1. As the RL environment leaves state 𝑺, a reward 𝑅𝑇 is provided to the

agent as feedback to indicate how beneficial the transition from 𝑺 to 𝑺′ is. During interaction with the RL

environment, the agent’s update is thus calculated with the newest measurement available on the plant

corresponding to time step 𝑇 + 1 for the RL agent. A policy 𝜋 is the decision making unit of the agent.

The observed state 𝑺 is its input and it provides as output the selected action 𝐴. Ultimately, we want to

approximate the optimal policy 𝜋∗ which is unique to the process being controlled assuming the process

design and physical parameters remain unchanged (Sutton and Barto, 2018).

The sampled times relevant to SARSA are shown in Figure 48, where the first plant measurement used in

the RL agent’s update is denoted by 𝑡 in continuous time and 𝑇 in terms of the discrete time steps of the

RL agent. Based on the speed of the dynamic response of the process, indicated by the time constant 𝜏𝑝

for the mixing tank (Marlin, 2000), a sampling period ∆𝑇 needs to be selected. Its value must ensure that

the RL agent is exposed to the process dynamics to prevent steady-state optimization. As ∆𝑇 is decreased,

more operational data points become available in the same operating period, but the RL agent experiences

the effects of its actions to a smaller extent during ∆𝑇.

Process
+
-

𝑆𝑃 𝑡 𝐸 𝑡 𝐶𝑉 𝑡
Controller

𝐷𝑉 𝑡

𝑀𝑉 𝑡 = 𝑢 𝑡

Stellenbosch University https://scholar.sun.ac.za

147

Figure 48: Sampling of times when applying SARSA to the mixing tank problem (offline training by

application of Q-learning would occur before online training illustrated in this appendix)

The large grey block in Figure 48 shows qualitatively the time that has actually passed on the plant when

performing a training update by using a moving window of discrete time points. The first measurement at

time step 𝑡 is taken after the start of training and is indicated by the thin dashed line connecting the two

grey blocks in Figure 48. The RL agent’s parameter update can only be performed when the times 𝑇 and

𝑇 + 1 which comprise this window have physically occurred on the plant, and start-up may be problematic

seeing as the RL agent may not have been trained on start-up conditions. Note that the action 𝐴 (small

grey block in Figure 48) is applied from 𝑇 to 𝑇 + 1 and that the next action 𝐴′ is selected based on the

agent’s experience up until time step 𝑇 applied to the next state 𝑺′ encountered at time 𝑇 + 1.

The discrete time interaction process between RL agent and RL environment is set within the context of a

Markov Decision Process (MDP), where the key assumption made is that the probability of observing 𝑺′

at time 𝑇 + 1 and the associated reward is only dependent on 𝑺 and 𝐴 at time 𝑇. This assumption is valid

if the state 𝑺 that constrains the process outputs at each time step 𝑇 is fully known. Where all components

of the state 𝑺 cannot be measured historical information needs to be included in 𝑺 to obtain the best

approximation of the optimal policy 𝜋∗ for the RL-based control design (Sutton and Barto, 2018;

Moerland et al., 2021).

As a first step towards designing an RL-based controller for this problem, we can map the terminology in

Figure 47 to the analogous terminology for RL-based control. This is shown in Table 33.

𝜏𝑝

𝑡 𝑡 + ∆𝑇 𝑡 + 2∆𝑇 𝑡 + 3∆𝑇 𝑡 + 4∆𝑇 …𝑡 + 5∆𝑇

∆𝑇Decision

Future𝑺 𝑎𝑡 𝑇 𝑺′𝑎𝑡 𝑇 + 1

…

Past

Moving window: used for current update

Continuous time

Time passed on plant

Start-up
Start of
training

𝐴

Stellenbosch University https://scholar.sun.ac.za

148

Table 33: Classical control terminology mapped to analogous RL-based control terminology (Marlin, 2000; Sutton and Barto, 2018)

Term used in classical control Analogous RL-based control term Description of RL-based control term

Feedback error 𝐸(𝑡) Component of the observed state 𝑺

An available measurement that may take on a value

from a process-specific set of values and is one of the

measurements comprising the state that describes the

outputs of a process.

Control law Policy 𝜋

The decision making unit of the agent which takes the

observed state 𝑺 as input and provides the selected

action 𝐴 as output.

Control law output 𝑢(𝑡) Action 𝐴

Since the controller in its entirety is replaced with an

RL-based controller and no final element dynamics

are modelled in this example, the action 𝐴 is the valve

position 𝑥.

 Addressing control objectives through

controller design and tuning
Reward function design

The RL agent’s only goal is to maximise the

cumulative scalar rewards it receives during

interaction with the RL environment. By aligning

reward function form with the control objectives, the

agent can learn behaviour showing cognisance of

these objectives.

Modelling of process behaviour in the

Laplace domain (analytical/empirical)

Mapping plant measurements to the approximated action-

value function, 𝑄̃𝜋(𝑺, 𝐴), or parameterized policy

𝜋(𝐴|𝑺, 𝜽) for policy parameter vector 𝜽.

The approximated action-value function, 𝑄̃𝜋(𝑺, 𝐴),
contains numerically estimated expected values of the

discounted return 𝐺𝑇 when following the current

policy 𝜋 from the current state-action coordinate
(𝑺, 𝐴).

Stellenbosch University https://scholar.sun.ac.za

149

Term used in classical control Analogous RL-based control term Description of RL-based control term

This allows a value-based agent to locate at each 𝑇

the action corresponding to the greatest cumulative

rewards in the future based on the knowledge it has

already gained (the greedy action). Exploration is

required to gain knowledge at other state-action

coordinates.

By reading off values from 𝑄̃𝜋(𝑺, 𝐴) and exploring

the possible state-action coordinates in a probabilistic

fashion, a value-based RL agent instantiates a policy.

A value function is unique for a given policy, and the

RL agent seeks to update the policy as it updates its

approximation to the value function.

For Policy Gradient and Actor-Critic control

methods, generating 𝑄̃𝜋(𝑺, 𝐴) across the state-action

space is not required since the policy is a

parameterized probability distribution. The gradient

of the policy is sampled using the policy gradient

theorem.

Stellenbosch University https://scholar.sun.ac.za

150

Secondly, we need to decide what components to include in the observed state 𝑺 since we already know

that the action applied to the RL environment is simply the fraction valve opening, 𝑥 – no other process

handle is available to affect changes in the 𝐶𝑉 (the height of liquid 𝐻). To define the measurements that

need to be included as components of 𝑺, we need to consider why only feedback error, 𝐸(𝑡), is sufficient

for a PI/PID controller. For a PI/PID controller, the integral mode ensures steady-state offset and may be

shown by applying the final value theorem to a closed-loop system for which PI/PID control suffices

(Marlin, 2000).

In contrast to this, an RL agent needs to select appropriate actions directly in the state-action space purely

based on experience. Therefore, we need to provide the agent with information about where the liquid

level is (𝐻) relative to where it needs to be (𝑆𝑃). Further, the agent needs to know how sensitive the liquid

height is to selected value of 𝑥 depending on the inlet flow rate 𝐹𝑖𝑛 encountered. The required information

can be communicated through the use of three components in 𝑺, potentially [𝐸(𝑇), 𝐹𝑖𝑛, 𝑆𝑃]
𝑇, [𝐻, 𝐹𝑖𝑛, 𝑆𝑃]

𝑇,

or [𝐸(𝑇), 𝐹𝑖𝑛, 𝐻]
𝑇, where 𝑇 in the superscript refers to the transpose operation so that column vectors are

defined.

Including all the unique components in these vectors in a single vector, [𝐻, 𝐸(𝑇), 𝐹𝑖𝑛, 𝑆𝑃]
𝑇 is not

efficient – the state-action space in which the learning problem is set becomes much larger by including a

fourth dimension, and the agent would need to unnecessarily learn within this space that 𝐻 and 𝐸(𝑇), 𝐻

and 𝑆𝑃, or 𝑆𝑃 and 𝐸(𝑇) would fully constrain both where the liquid level is and where it should be.

Similarly, including 𝐴 as a component of 𝑺 would require the agent to learn the cause-effect relationship

between 𝑀𝑉 and 𝐶𝑉 that we already know exists beforehand. It is assumed that the necessary

instrumentation is installed for the mixing tank example.

Having said this, in Case Study 1 the RL agent was purposefully provided with only 𝐸(𝑇) comprising the

scalar-valued observed state 𝑆 so that the mechanics of value-based control may be investigated without

the complications of interpreting an approximated action-value function 𝑄̃𝜋(𝑺, 𝐴) that considers 𝐹𝑖𝑛, 𝑆𝑃,

and 𝐻 as additional state components. For a coarsely discretized state space, the agent will still be able to

make sensible decisions while being constrained to the resolution with which the state-action space is

modelled. A coarsely discretized state-action space places a restriction on the control behaviour that can

be learned by an RL agent.

A binary reward function, as shown in Figure 49, was used to train the SARSA agent. The reward function

only communicates to the agent that it is important to keep the liquid height within a 𝛽 = 0.5 𝑚 tolerance

band at both sides of the 𝑆𝑃 by providing a reward of one inside the band and zero outside the band.

Clearly, the prevention of excessive final element adjustment is not taught to the agent during training

since the reward function of Figure 48 only communicates the importance of achieving 𝐶𝑉 values

sufficiently close to 𝑆𝑃, and nothing regarding how the set of available actions should be applied to achieve

this result.

Stellenbosch University https://scholar.sun.ac.za

151

Figure 49: Reward function used when training the SARSA agent to control the liquid level in the mixing

tank

Table 34 summarises the state discretization used. The plant measurements 𝐸(𝑇), 𝐹𝑖𝑛, and 𝑆𝑃 comprise

the state components and are mapped to coded state components for the RL agent. The three columns

containing coded values, along with the coded actions, form the basis for constructing the action-value

hypervolume. This hypervolume is a table in ℝ , where each scalar entry in the table is a parameter that

needs to be adjusted to learn beneficial behaviour. The table of learned parameters is the approximated

action-value function 𝑄̃𝜋(𝑺, 𝐴). Instrument lag was simulated by letting 𝐹𝑖𝑛(𝑇 + 1) = 𝐹𝑖𝑛(𝑇) and

𝑆𝑃(𝑇 + 1) = 𝑆𝑃(𝑇), while the only state component for which information regarding 𝑇 + 1 was made

available during an update at time step 𝑇 is 𝐸(𝑇 + 1).

Table 34: Definitions of state components (measured online) and their coded counterparts (as “seen” by

the SARSA agent) for the mixing tank example

𝑬(𝑻) (𝒎)
Coded

𝑬(𝑻) (−)
𝑭𝒊𝒏 (𝒎

𝟑/𝒎𝒊𝒏)
Coded
𝑭𝒊𝒏 (−)

𝑺𝑷 (𝒎) Coded 𝑺𝑷 (−)

-20 0.04 0.4

 1 (Boundary) 1 1

-2 0.1 0.5

 2 2 2

-1.6 0.11 0.6

 3 3 3

-1.2 0.12 0.7

 4 4 4

-0.8 0.13 0.8

0

1

𝛽

𝑅𝑇

𝐸 𝑇 = 0 𝑚

𝐸 𝑇 = +0.5 𝑚𝐸 𝑇 = −0.5 𝑚

Stellenbosch University https://scholar.sun.ac.za

152

𝑬(𝑻) (𝒎)
Coded

𝑬(𝑻) (−)
𝑭𝒊𝒏 (𝒎

𝟑/𝒎𝒊𝒏)
Coded
𝑭𝒊𝒏 (−)

𝑺𝑷 (𝒎) Coded 𝑺𝑷 (−)

 5 5 5

-0.4 0.14 0.9

 6 6 6

0 0.15 1

 7 7 7

0.4 0.16 1.1

 8 8 8

0.8 0.17 1.2

 9 9 9

1.2 0.18 1.3

 10 10 10

1.6 0.19 1.4

 11 11 11

2 0.2 1.5

 12 (Boundary) 12 12

20 0.21 2

The boundary states for the feedback error 𝐸(𝑇) capture extremes in liquid height that may be obtained

when the SARSA agent learns online purely through interaction without an initial estimate of appropriate

entries in 𝑄̃𝜋(𝑺, 𝐴). In the mixing tank model, Equation [118], no limit is placed on the liquid height that

may be achieved. As a result, there are a few instances of unrealistic liquid heights which were encountered

during the training of the RL agent. Specifically, 0.47 % of the total number of time steps used for training

was associated with an overflow condition, where such a condition was specified as 𝐻 ≥ 3 𝑚. This

stresses the fact that extremes of operation may be encountered during online learning. The low occurrence

of the overflow condition does show that including a liquid level saturation condition in Equation [118]

would have resulted in the generation of a similar 𝑄̃𝜋(𝑺, 𝐴) during agent training. The bold numbers in

Table 34 indicate the coded state components that we know, from our knowledge of the process, will be

encountered often. For 𝐹𝑖𝑛 and 𝑆𝑃, which are exogenous inputs to the control system, the boundary states

were not encountered in this example.

The overflow condition would be much more problematic if the mixing tank was modelled as an Integrator

system. That is, if the liquid in the outlet was pumped so that the rate of change in the mixing tank’s liquid

height (
𝑑𝐻

𝑑𝑡
) becomes independent of the liquid height 𝐻 (not self-regulatory), exploration would be prone

to inducing problematic extremes in the liquid level.

From this it can be seen that the curse of dimensionality quickly becomes problematic in the tabular case

if an excess number of components are included in 𝑺 since this increases the number of degrees of freedom

associated with each action 𝐴, and the agent needs to deal with this excessive state-action space through

the gaining of experience. Ten evenly spaced actions between 𝑥 = 0.01 and 𝑥 = 0.892 were provided to

Stellenbosch University https://scholar.sun.ac.za

153

the agent, where coded 𝐴 = 1 corresponds to 𝑥 = 0.01. These actions were selected by the agent as coded

actions, which are then mapped to the corresponding value of 𝑥 before being applied to the mixing tank.

The MATLAB code used to discretize the components of 𝑺 as shown in Table 34 and the discrete actions

are given in Table 35. Note that the discrete actions, “dActions”, contains one final entry 𝑥 = 0.99 that is

not provided to the agent.

Table 35: MATLAB code excerpt used to create the discretized components of 𝑺 and the discrete actions

%% discretize states and actions
%% max number of states in one dimension = 10; minimum 1
%% fill in (number of states + 1) and (number of actions + 1) below
numError_intervals = 11;
numInletFin_intervals = 11;
numSP_intervals = 11;
numAction_intervals = 11;

%% define lower bounds for discretizations
errorLow = -2;
inletFlowRateLow = 40*(1/1000);
SPLow = 0.4;

%% define “padding” for discretization
numSP_padding = SPLow.*ones((13 – (2 + numSP_intervals)),1)’;
error_padding = errorLow.*ones((13 – (2 + numError_intervals)),1)’;
inletFlowrate_padding = inletFlowRateLow.*ones((13 –

(2 + numInletFin_intervals)),1)’;

dActions = linspace(0.01,0.99,numAction_intervals)’;

%% discretize states
% control error
fineRes = linspace(-2,2,numError_intervals);
dStates = [-20,error_padding,fineRes,20]’;

% inlet flow rate
fineInletFlowrateRes =

linspace(100*(1/1000),200*(1/1000),numInletFin_intervals);
dStates(1:1:end,2) =

[40*(1/1000),inletFlowrate_padding,fineInletFlowrateRes,210*(1/1000)]’;

% height SP
fineHSPRes = linspace(0.50,1.5,numSP_intervals);
dStates(1:1:end,3) = [0.4,numSP_padding,fineHSPRes,2]’;

%% create Q-table
% create action-value hypervolume
Reps.action_value = zeros([(size(dStates,1)-1),(size(dStates,1)-1),

(size(dStates,1)-1),...
 (size(dActions,1)-1)],’double’);

Stellenbosch University https://scholar.sun.ac.za

154

Table 36 provides a MATLAB code excerpt that was used to define the reward function (two options are

predefined and may be selected by changing the “binReward” flag as described in the implementation

code. The variable “rlEnv.Terminal” is used to define a stopping condition should it be required that the

agent should not train for all the steps predefined for an episode. In all the simulation work of this thesis,

such a terminal state is not used, and it is thus set to a numerical value never achieved.

Table 36: MATLAB code excerpt used to create the reward function and to simulate the RL environment,

the interaction with which is assumed to be modelled well as a Markov Decision Process

% function to create the parameters for the RL environment's model
function rlEnv = createRewardShape(beta)
 rlEnv.continuousReward = @(controlError) exp((-1*controlError^2)/0.01);
 rlEnv.binReward = @(controlError) -1 + 1*(controlError < beta) +

1*(controlError > -beta);
 rlEnv.Terminal = -1000;

end

% function to simulate the MDP
function [nxtH] =

simulateMDP(currentTimeStamp,prevModelStates,action_1,disturbanceValue,p)
 MDPstart = currentTimeStamp;
 MDPstop = currentTimeStamp + 1;
 tspan = linspace(MDPstart, MDPstop, 10);
 p.Fin = p.FinSS + disturbanceValue;
 p.x = action_1;
 [~, HOutput] = ode45(@ (t, H) tankModel(t,H,p), tspan,

prevModelStates);
 nxtH = HOutput(end,1);

end

Now that we have decided on the discretization of states and actions, created the discretized hypervolume

which will represent 𝑄̃𝜋(𝑺, 𝐴), and defined the RL environment and reward function, we can start the

training process for the SARSA agent. As described in Section 5.1, a low-pass filter is incorporated to

filter the SARSA agent’s discrete action selections. This simplifies the simulated control problem for the

RL agent, but results in a different and degraded optimal policy 𝜋∗ being targeted than is the case in state-

of-the-art methods.

It should be noted that obtaining an offline first guess of good numerical entries in 𝑄̃𝜋(𝑺, 𝐴) before online

training requires training on a different RL environment. This is because historical plant data typically

will not describe control data degraded owing to the incorporation of such a filter. This is a practical

limitation of the methodology used as it is not would not make sense to train off-policy and on-policy using

different RL environments.

Stellenbosch University https://scholar.sun.ac.za

155

During the training process of an online RL agent like SARSA, an update rule is applied to the entry of

𝑄̃𝜋(𝑺, 𝐴) corresponding to the current 𝑺 and 𝐴 (the state-action coordinate). This update rule is simply a

recursive calculation which is applied to a state-action coordinate as it is encountered. The update rule for

SARSA is given in Equation [119] for a current state-action coordinate relevant to the mixing tank, where

𝑄(𝑺, 𝐴) is the hypervolume entry, 𝛼 ∈ (0,1) is a hyperparameter that determines the size of each

adjustment (a step size), 𝑅𝑇 is the reward obtained when the RL environment reaches the next state 𝑺′ at

which time step, 𝑇 + 1, the next action 𝐴′ is applied to the RL environment, and 𝛾 ∈ [0,1] determines

whether the agent prioritizes future (𝛾 closer to one) or immediate (𝛾 closer to zero) rewards. Equation

[119] is a weighted average between the target value [𝑅𝑇 + 𝛾𝑄(𝑺′, 𝐴′)] and the current table entry

𝑄(𝑺, 𝐴). The weighting factor is 𝛼.

 𝑄(𝑺, 𝐴) ← 𝑄(𝑺, 𝐴) + 𝛼[𝑅𝑇 + 𝛾𝑄(𝑺′, 𝐴′) − 𝑄(𝑺, 𝐴)] [119]

An episode is a predefined number of training steps that occurs before the state is reset and the training

process is continued. Each episode consists of a number of time steps with 𝑇 = 1 being the first time step.

In this example, each episode starts with state components corresponding to the initial steady-state

condition of the mixing tank, i.e., 𝑆𝑃 = 1.5 𝑚, 𝐹𝑖𝑛 = 0.19
𝑚3

𝑚𝑖𝑛
, and 𝐻 = 1.5 𝑚. From Table 34, this

corresponds to coded 𝑺 = [𝑐𝑜𝑑𝑒𝑑 𝐸(𝑇), 𝑐𝑜𝑑𝑒𝑑 𝐹𝑖𝑛, 𝑐𝑜𝑑𝑒𝑑 𝑆𝑃]
𝑇 = [6, 10, 11]𝑇.

Since 𝑄̃𝜋(𝑺, 𝐴) is initialized with zero entries, 𝑄̃𝜋(𝑺, 𝐴) = 𝟎, the first step of training (𝑇 = 1 for episode

one) does not have a unique greedy action. Tie-breaking is performed whereby an action 𝐴 from the set

of available actions is selected at random if more than one action 𝐴 is greedy at observed state 𝑺. The RL

agent now applies action 𝐴 to the RL environment which causes a transition from 𝑺 to 𝑺′. The online

measurements provided by the instrumentation installed for the mixing tank show that 𝑺′ =

[0.12 𝑚, 0.19
𝑚3

𝑚𝑖𝑛
, 1.5 𝑚]

𝑇

. This means that the application of the selected coded 𝐴 = 8 resulted in

𝐸(𝑇) = 0.12 𝑚, and therefore the liquid height reduced to 𝐻 = 1.38 𝑚. Since this is within a 𝛽 = 0.5 𝑚

distance from 𝑆𝑃 = 1.5 𝑚, 𝑅𝑇 = 1 is provided to the SARSA agent. By applying Table 34, coded 𝑺′ =

[7, 10, 11]𝑇. We have now completed the (𝑺′, 𝐴, 𝑅𝑇 , 𝑺
′, 𝐴′) tuple as 𝐴′ will also be random during this

first step of training. We can therefore perform an update to the hypervolume entry 𝑄(𝑺, 𝐴) by applying

Equation [119]. This is shown in Equation [120].

 𝑄(𝑺, 𝐴) ← 0 + 𝛼[1 + 𝛾(0) − 0] [120]

After the first training step, 𝑄(𝑺, 𝐴) contains a non-zero entry 𝛼. The greedy action corresponding to 𝑺

after one time step of experience is coded 𝐴 = 8. This numerical value remains unchanged in the

approximator 𝑄̃𝜋(𝑺, 𝐴) until the same state-action coordinate is encountered again, in which case the

previous value is adjusted by adding 𝛼[𝑅𝑇 + 𝛾𝑄(𝑺′, 𝐴′) − 𝑄(𝑺, 𝐴)] (Equation [119]). At each new

instance of 𝑇, 𝑺′ and 𝐴′ of the previous time step become 𝑺 and 𝐴 of this new time step. The time steps

increase by one after each interaction, therefore the example update of Equation [120] is associated with

Stellenbosch University https://scholar.sun.ac.za

156

𝑇 = 1, while the next interaction would be associated with 𝑇 = 2, etc. The probability of selecting a

random action for the purpose of exploration is a hyperparameter 𝜀 ∈ (0,1). If a greedy action is present

at 𝑇, this action is selected with probability (1 − 𝜀) in which case the agent would be exploiting knowledge

already gained. In this example, with probability 𝜀 = 0.1, a random action would be selected so that new

knowledge may be gained (exploration). MATLAB code that was used to find the greedy action in this 𝜀-

greedy exploration strategy is shown in Table 37.

Table 37: MATLAB code excerpt used to select a discrete action (the vector “par.epsilonVec” is used to

store the predefined probability of a random action, but only one constant probability 0.1 is used in this

example)

% function to select action
function Action_1 =

selectAction(Reps,par,state_1,state_2,state_3,numberOfActions)
 t = rand(1);
 if t <= par.epsilonVec(state_3,1)
 % take random action
 Action_1 = randi(numberOfActions);

 elseif t > par.epsilonVec(state_3,1)
 % take greedy action
 vec = Reps.action_value(state_1,state_2,state_3,:);
 index = find(ismember(vec(:),max(vec(:))));
 [~,~,~,Action_1] = ind2sub(size(vec(:,:,:,:)), index);

 end

 % tie breaking
 if size(Action_1,1) > 1
 Action_1 = randi(numberOfActions);
 end

end

Interaction steps like the one described above continue until a predefined stopping condition is

encountered. The stopping condition used is a fixed number of training episodes and a fixed number of

time steps per episode. During each training episode, 10 𝑆𝑃 values and 10 𝐷𝑉 values were sampled from

bounded uniform distributions, where the bounds were [0.5 𝑚, 1.5 𝑚] and [0.1
𝑚3

𝑚𝑖𝑛
, 0.2

𝑚3

𝑚𝑖𝑛
], respectively.

This promotes the realisation of many state-action coordinates across the operating range during training.

The times of these changes were also sampled from a bounded uniform distribution. Potential instances

of small decreases in the numbers of 𝑆𝑃 and 𝐷𝑉 values selected during an episode as a result of duplicate

time step sampling would not compromise the training process. MATLAB code used to sample 𝐷𝑉 and

𝑆𝑃 values at the start of each training episode is shown in Table 38.

Stellenbosch University https://scholar.sun.ac.za

157

Table 38: MATLAB code excerpt used to sample 𝐷𝑉s and 𝑆𝑃s for a training episode (“rv” contains the

ranges of the 𝐷𝑉s and 𝑆𝑃s

% function to create vector of sampled DVs, SPs and times for these changes
% SPs and DVs sampled using scaled uniform distributions.
function [SP_times,SP_steps,DV_times,DV_steps] =

generateEpRVSamples(rv,upperTimeBound)
 %% generate SP sampling data
 SP_times = sort(ceil(1 + upperTimeBound*rand(1,rv.numSP)));
 for SP_cntr = 1:1:(rv.numSP)

SP_steps(SP_cntr) = rv.lower_SP + (rv.upper_SP - rv.lower_SP)*rand(1,1);

 end

 %% generate DV sampling data
 DV_times = sort(ceil(1 + upperTimeBound*rand(1,rv.numDV)));
 for DV_cntr = 1:1:(rv.numDV)

DV_steps(DV_cntr) = rv.lower_DV + (rv.upper_DV - rv.lower_DV)*rand(1,1);

 end

end

The tuning and hyperparameter settings used for RL agent training are given in Table 39 where 𝜏𝑓 is the

filter time constant (see Section 5.1 for the filter form used). The sampling period is the actual process

time that passes as the training process progresses from time step 𝑇 to time step 𝑇 + 1.

Table 39: Tuning and hyperparameters for the mixing tank example

Parameter
Numerical

Value
Description

𝜀 0.1 probability of taking a random action

𝛼 0.7 step size hyperparameter

𝛾 0.99 discount factor

𝛽 0.5 𝑚 reward function width specification

𝜏𝑓 20 𝑚𝑖𝑛 time constant used for the low-pass filter of Section 5.1

∆𝑇 1 𝑚𝑖𝑛 sampling period

The SARSA agent was trained to control liquid level in the mixing tank for 3 000 episodes with 1 200

steps per episode (1 199 transitions from 𝑇 to 𝑇 + 1). Including the 𝑇 = 1 steps in the count,

approximately 10 years of operational data was used during training. The wall time using serial

computation for training was approximately 2 000 seconds (33.33 min), which is largely driven by the low

computational expense associated with solving the mixing tank model (Equation [118]). After training,

Stellenbosch University https://scholar.sun.ac.za

158

6 672 of the entries in 𝑄̃𝜋(𝑺, 𝐴) had non-zero numerical values. The bold coded state components of Table

34 show that 10 entries are likely to be experienced often during training. Hence, 66.72 % of the non-

boundary state entries of 𝑄̃𝜋(𝑺, 𝐴) have non-zero values. Importantly, the discount factor 𝛾 causes non-

zero values to propagate throughout 𝑄̃𝜋(𝑺, 𝐴) and not just at state-transitions directly producing increased

rewards as the training process progresses.

After training, the approximated action-value function 𝑄̃𝜋(𝑺, 𝐴), which initially contains its 6 672 non-

zero entries obtained from training, was used with the same hyperparameters as reported in Table 39 to

attenuate for a step decrease in 𝐹𝑖𝑛 by adjusting the valve fraction open, 𝑥. Two cases were simulated.

These are a success case where the RL agent was able to maintain the liquid height within the desired range

despite the step change in 𝐹𝑖𝑛 and a failure case where the RL agent did not manage to do this. The 𝑆𝑃,

𝐹𝑖𝑛, and rewards obtained are given in Figure 50 and Figure 52 for the success and failure case,

respectively. The discrete 𝑥 settings selected by the agent and the 𝑀𝑉 values applied to the process after

being sent through the low-pass filter, as well as the behaviour of liquid height within the mixing tank are

given for the success and failure cases in Figure 51 and Figure 53, respectively.

Figure 50: Liquid level 𝑆𝑃 (left panel), 𝐹𝑖𝑛 step change (central panel), and rewards obtained (right panel)

for success case

Stellenbosch University https://scholar.sun.ac.za

159

Figure 51: Fraction valve opening 𝑥 before and after undergoing low-pass filter calculation (left panel)

and liquid level progression (right panel) for success case – vertical lines indicate time of step change in

𝐹𝑖𝑛

Figure 52: Liquid level 𝑆𝑃 (left panel), 𝐹𝑖𝑛 step change (central panel), and rewards obtained (right panel)

for failure case

Stellenbosch University https://scholar.sun.ac.za

160

Figure 53: Fraction valve opening 𝑥 before and after undergoing low-pass filter calculation (left panel)

and liquid level progression (right panel) for failure case – vertical lines indicate time of step change in 𝐹𝑖𝑛

For the success case, it is observed that there is initially an overflow condition present in the mixing tank,

since the simulated liquid height rises in excess of 5 𝑚. This is a result of the RL agent not learning how

to match the initial steady state of the plant before making sensible adjustments to 𝑥 and such cases are

expected to make up a significant proportion of the overflow cases recorded during training. The RL agent

intentionally decreases 𝑥 when the inlet flow rate is decreased and its capacity to do so stems from the

value of 𝐹𝑖𝑛 achieved after the step input being encountered owing to the sampling range of

[0.1
𝑚3

𝑚𝑖𝑛
, 0.2

𝑚3

𝑚𝑖𝑛
] containing 𝐹𝑖𝑛 = 0.11

𝑚3

𝑚𝑖𝑛
 – the coverage of the encountered states was sufficient during

training.

For the failure case, there is one key difference in the data reported in Figure 53. The step change in 𝐹𝑖𝑛

was not incorporated during the state component discretization of Table 34. Since the tabular SARSA

agent never experienced such a state component, the slice of 𝑄̃𝜋(𝑺, 𝐴) associated with 𝐹𝑖𝑛 = 0.045
𝑚3

𝑚𝑖𝑛

still mostly contains zero-valued entries. Hence, the RL agent’s decision making becomes random just

after the step change in 𝐹𝑖𝑛 – this is evident just to the right of the vertical dashed line in the left panel of

Figure 53. The coverage of the encountered states was insufficient during training.

One method of improving the coverage of the states and actions during training is to replace the use of

discrete scalar entries in a tabular approximator 𝑄̃𝜋(𝑺, 𝐴) with a linear basis function model. This is applied

to the One-Step Actor-Critic algorithm in this thesis to represent the required value function and policy.

The principle is to have a vector containing parameters that are adjusted during each step of training. Each

entry in this vector is a scalar weight that is multiplied with a function that maps the state-action coordinate

encountered to ℝ1. For basis functions 𝒳1(𝑺, 𝐴) through 𝒳 (𝑺, 𝐴), Equation [121] shows the output at

time step 𝑇 for such an approximator with parameter vector 𝜽 containing only elements 𝜃1 through 𝜃 . In

Stellenbosch University https://scholar.sun.ac.za

161

contrast to tabular methods, each state does not require a new parameter to be added to the set of parameters

that must be learned by the RL agent. This is because each basis function 𝒳(𝑺, 𝐴) has a perceptive field

in the state-action space. Updates to parameters in one region of the state-action space therefore generalize

to other regions of the state-action space (Sutton and Barto, 2018).

 𝑜𝑢𝑡𝑝𝑢𝑡 = 𝜃1𝒳1(𝑺, 𝐴) + 𝜃2𝒳2(𝑺, 𝐴) + 𝜃3𝒳3(𝑺, 𝐴) + 𝜃 𝒳 (𝑺, 𝐴) + 𝜃 𝒳 (𝑺, 𝐴) [121]

Stellenbosch University https://scholar.sun.ac.za

162

APPENDIX B – ANALYTICAL EXPRESSION FOR

THE ELIGIBILITY VECTOR

The goal of this appendix is to clarify how
∇𝜽𝜋(𝑨𝑇|𝑺𝑇,𝜽)

𝜋(𝑨𝑇|𝑺𝑇,𝜽)
 is simplified to obtain an analytical direction for

Actor-Critic updates.

Let 𝑥 and 𝑦 denote scalars in ℝ1 related through Equation [122] and a function applied to a vector denote

the function applied to each element within the vector. Equations [123] through [128] may then be used

to express the derivative of a natural logarithm with respect to 𝑥.

 𝑦 = ln(𝑥) [122]

 𝑥 = exp(𝑦) [123]

𝑑

𝑑𝑥
(𝑥) =

𝑑

𝑑𝑥
(exp(𝑦)) [124]

 1 = exp(𝑦)
𝑑𝑦

𝑑𝑥
 [125]

𝑑𝑦

𝑑𝑥
=

1

exp(𝑦)
 [126]

𝑑𝑦

𝑑𝑥
=

1

exp(ln(𝑥))
 [127]

𝑑

𝑑𝑥
ln(𝑥) =

1

𝑥
 [128]

The scalar 𝑥 may be replaced by a function 𝑓 of a vector 𝒙, which gives rise to Equation [129].

Importantly, the output of 𝑓 must be a scalar. Substituting 𝜽 ∈ ℝ𝓅 for 𝒙 and 𝜋(𝑨𝑇|𝑺𝑇 , 𝜽) for 𝑓, Equation

[130] is obtained. After substituting Equation [26], Equation [131] is obtained. Each element of

Equation [131] has the same form and hence simplifying the eligibility vector now reduces to obtaining

a simplified expression for
𝜕 ln(

exp(ℎ(𝑺,𝑨,𝜽))

∑ exp(ℎ(𝑺,𝒃,𝜽))𝒃
)

𝜕𝜃
. The final steps in the simplification are shown in Equations

[132] through [134] for the 𝑖𝑡ℎ element of
∇𝜽𝜋(𝑨𝑇|𝑺𝑇,𝜽)

𝜋(𝑨𝑇|𝑺𝑇,𝜽)
.

 ∇𝒙 ln(𝑓(𝒙)) =
𝟏

𝑓(𝒙)
∇𝒙𝑓(𝒙) [129]

 ∇𝜽 ln(𝜋(𝑨𝑇|𝑺𝑇 , 𝜽)) =
∇𝜽𝜋(𝑨𝑇|𝑺𝑇,𝜽)

𝜋(𝑨𝑇|𝑺𝑇,𝜽)
 [130]

Stellenbosch University https://scholar.sun.ac.za

163

∇𝜽𝜋(𝑨𝑇|𝑺𝑇,𝜽)

𝜋(𝑨𝑇|𝑺𝑇,𝜽)
= ∇𝜽 ln (

exp(ℎ(𝑺,𝑨,𝜽))

∑ exp(ℎ(𝑺,𝒃,𝜽))𝒃
) =

[

 𝜕 ln(

exp(ℎ(𝑺,𝑨,𝜽))

∑ exp(ℎ(𝑺,𝒃,𝜽))𝒃
)

𝜕𝜃1

𝜕 ln(
exp(ℎ(𝑺,𝑨,𝜽))

∑ exp(ℎ(𝑺,𝒃,𝜽))𝒃
)

𝜕𝜃2

⋮

𝜕 ln(
exp(ℎ(𝑺,𝑨,𝜽))

∑ exp(ℎ(𝑺,𝒃,𝜽))𝒃
)

𝜕𝜃𝓅]

 [131]

𝜕 ln(

exp(ℎ(𝑺,𝑨,𝜽))

∑ exp(ℎ(𝑺,𝒃,𝜽))𝒃
)

𝜕𝜃𝑖
=

1

exp(ℎ(𝑺,𝑨,𝜽))

∑ exp(ℎ(𝑺,𝑨,𝜽))𝒃

(
[
𝜕exp(ℎ(𝑺,𝑨,𝜽))

𝜕𝜃𝑖
]∑ exp(ℎ(𝑺,𝒃,𝜽))𝑏 −exp(ℎ(𝑺,𝑨,𝜽))∑

𝜕exp(ℎ(𝑺,𝒃,𝜽))

𝜕𝜃𝑖
𝒃

(∑ exp(ℎ(𝑺,𝒃,𝜽))𝒃)
2) [132]

𝜕 ln(

exp(ℎ(𝑺,𝑨,𝜽))

∑ exp(ℎ(𝑺,𝒃,𝜽))𝒃
)

𝜕𝜃𝑖
 =

1

exp(𝜽𝑇𝑿(𝑺,𝑨))

∑ exp(𝜽𝑇𝑿(𝑺,𝒃))𝒃

(
exp(𝜽𝑇𝑿(𝑺,𝑨))𝒳𝑖(𝑺,𝑨)

∑ exp(𝜽𝑇𝑿(𝑺,𝒃))𝒃

−
exp(𝜽𝑇𝑿(𝑺,𝑨))∑ [exp(𝜽𝑇𝑿(𝑺,𝒃))𝒳𝑖(𝑺,𝒃)]𝒃

(∑ exp(ℎ(𝑺,𝒃,𝜽))𝒃)
2) [133]

𝜕 ln(

exp(ℎ(𝑺,𝑨,𝜽))

∑ exp(ℎ(𝑺,𝒃,𝜽))𝒃
)

𝜕𝜃𝑖
= [𝑋𝑖(𝑺, 𝑨) −

∑ [exp(𝜽𝑇𝑿(𝑺,𝒃))𝒳𝑖(𝑺,𝒃)]𝑏

∑ exp(𝜽𝑇𝑿(𝑺,𝒃))𝒃

] [134]

Stellenbosch University https://scholar.sun.ac.za

164

APPENDIX C – SHOUKAT CHOUDHURY ET AL.

(2005) STICTION MODEL

The code given below must be run as a MATLAB script:
%% short description
% script used to validate the implementation of the data-driven stiction
% model of Choudhury et.al. as described in:
% "Modelling valve stiction" by M.A.A. Shoukat Choudhury, N.F. Thornhill
% and S.L. Shah

clc

clear
%% create sine wave
f = @(x) (50*sin((3*2*pi/200)*x) + 100)/200; % normalized sine wave of

similar frequency to article (range 0.25 to 0.75)
time_To_Simulate = 200; % number of wave steps to simulate
%% specify larger bounds to prevent valve saturation...
MV_low_bound = 0;
MV_high_bound = 1;
%% model parameters
S = 20; % deadband plus stick band parameter
J = 10; % slip jump parameter

for currentTimeStamp = 1:1:time_To_Simulate
 %% stiction calculation starts
 %% initialize actions in MV units
 if currentTimeStamp == 1
 crntAction = f(currentTimeStamp);
 nxtAction = crntAction;

 elseif currentTimeStamp > 1
 crntAction = f(currentTimeStamp - 1);
 nxtAction = f(currentTimeStamp);

 end
 %% stiction model applied to valve output

 if currentTimeStamp == 1
 xss = 0; % initialize memory variable for output signal when valve

becomes stuck
 % previous output as a % of the final element range

 MV_output_previous = ((crntAction - MV_low_bound)/

(MV_high_bound - MV_low_bound))*100;%crntAction;
 MV_incoming_present = crntAction; % initialize present MV signal
 MV_incoming_previous = crntAction;% initialize previous MV signal
 vnew_prev = 0; % initialize previous local gradient of control signal
 I = 0; % initialize flag for valve stuck during trajectory
 else

 MV_output_previous = MV_output; % previous output as a % of the final

element range
 MV_incoming_present = nxtAction;% present MV signal
 MV_incoming_previous = crntAction;% previous MV signal
 vnew_prev = vnew; % previous local gradient of control signal

 end
 %% stiction calculation, MV_output is a % of MV range
 [MV_output,I,xss,vnew,MV_Percentage_present] = stictionModel(J,S,xss,...

Stellenbosch University https://scholar.sun.ac.za

165

 MV_output_previous,I,...
 MV_incoming_present,...
 MV_incoming_previous,...
 MV_low_bound,MV_high_bound,...
 vnew_prev);
 controlLawSignal(currentTimeStamp) = f(currentTimeStamp);
 % convert MV_output at current timestamp to actual MV value
 crntAction = (MV_output/100)*(MV_high_bound - MV_low_bound)+

MV_low_bound; % output after stiction model at current timestamp
 % apply stiction model output as current action
 finalElementAdjustment(currentTimeStamp) = crntAction;

end

subplot(2,1,1)
plot(controlLawSignal,'LineWidth',1); hold on
plot(finalElementAdjustment,'LineWidth',2);
legend('control law signal','valve adjustment')
xlabel('time (s)')
ylabel('normalized amplitudes of signals')

subplot(2,1,2)
plot(controlLawSignal,finalElementAdjustment,'k-','LineWidth',2); hold on
xlabel('control law signal'); ylabel('valve adjustment'); grid on
axis square

%% function to model valve stiction
function[MV_output,I,xss,vnew,MV_Percentage_present] = stictionModel(J,S,...
 xss,MV_output_previous,...
 I,MV_incoming_present,...
 MV_incoming_previous,...
 MV_low_bound,...
 MV_high_bound,vnew_prev)

%% saturated condition and scaling of present MV input signal
if MV_incoming_present <= MV_low_bound
 MV_Percentage_present = 0;
 MV_output = 0;

elseif MV_incoming_present >= MV_high_bound
 MV_Percentage_present = 100;
 MV_output = 100;

elseif (MV_incoming_present < MV_high_bound) && (MV_low_bound <

MV_incoming_present)
 MV_Percentage_present = ((MV_incoming_present -

MV_low_bound)/(MV_high_bound - MV_low_bound))*100;

end

%% scaling of previous MV input signal
if MV_incoming_previous <= MV_low_bound
 MV_Percentage_previous = 0;

elseif MV_incoming_previous >= MV_high_bound
 MV_Percentage_previous = 100;

elseif (MV_incoming_previous < MV_high_bound) && (MV_low_bound <

MV_incoming_previous)

Stellenbosch University https://scholar.sun.ac.za

166

 MV_Percentage_previous = ((MV_incoming_previous -

MV_low_bound)/(MV_high_bound - MV_low_bound))*100;

end

vnew = (MV_Percentage_present - MV_Percentage_previous)/(1); % gradient of

incoming control signal (consistently i.t.o. MDP time)
%%
if MV_Percentage_present > 0 && MV_Percentage_present < 100
 vold = vnew_prev;
 vnew = (MV_Percentage_present - MV_Percentage_previous)/(1); % gradient

of incoming control signal (consistently i.t.o. MDP time)
 if sign(vnew) == sign(vold)
 if I ~= 1 % if not stuck during valve transient behaviour
 % absolute difference between current signal and previous stuck

signal
 DIFF = abs(MV_Percentage_present - xss);
 if DIFF > S
 % adjust output from valve if DFF is greater than
 % (dead-band and stick band), i.e. valve is at
 % beginning of trajectory
 MV_output = MV_Percentage_present - sign(vnew)*((S - J)/2);
 else
 % keep output at stuck value
 MV_output = MV_output_previous;
 end
 elseif I == 1 % if in stuck condition during moving phase
 DIFF = abs(MV_Percentage_present - xss);
 if DIFF > J % if DIFF is greater than slip jump
 I = 0; % remove flag for being stuck during moving phase
 % adjust MV_output
 MV_output = MV_Percentage_present - sign(vnew)*((S - J)/2);
 else
 % keep input at the same value
 MV_output = MV_output_previous;
 end
 end
 elseif sign(vnew) ~= sign(vold) % if direction of valve movement changes
 if sign(vnew) == 0 % if valve reaches a stop position during a

transient
 I = 1; % indicate this stop condition with flag
 xss = MV_Percentage_previous;%MV_incoming_previous; % update

memory variable for previous stuck position
 MV_output = MV_output_previous; % keep MV output signal constant
 else
 % do the same for a stuck position not reached during the
 % valve's moving phase
 xss = MV_Percentage_previous;%MV_incoming_previous;
 MV_output = MV_output_previous;
 end
 end

end % end check for final element saturation

end % end stiction function

Stellenbosch University https://scholar.sun.ac.za

167

APPENDIX D – LEARNING CURVE

CONSTRUCTION FROM EPISODE INSTANCES

As described by Sutton and Barto (2018) and Poole and Mackworth (2010), the extents and rates of

convergence of different RL algorithms may be compared through the construction of learning curves.

The first learning curve type is a plot of the rewards obtained for a pre-defined window length as a function

of the number of training episodes. For a fixed terminal state, such a learning curve will reach a plateau

when the optimal performance for the particular agent design has been achieved. Alternatively, the total

accumulated reward may be drawn. When the agent reaches its best performance, the curve will achieve

a constant slope which will be directly proportional to the plateau reached in the window-based learning

curve and is more prone to accuracy problems when comparing agents.

When a stochastic training scheme is used for parallel training, it becomes important to consider how the

extent of convergence may be compared for difference instances of state-action space discretization. This

task may be quite difficult if a limited number of operational hours are available for training and the RL

environment behaviour is stochastic.

Recall from Section 5.3.3 that the parameters of the algorithm used to generate learning curves in this

scenario are the fixed episode length, 𝐸𝑝, and the window size 𝑊. Let the number of episodes for which

policy instances have been generated be denoted as 𝑁𝑒𝑝 for a fixed window size 𝑊 and fixed episode

length 𝐸𝑝. The value selected for 𝑁𝑒𝑝 must be significantly smaller than the length of 𝐸𝑝. This ensures

that the policy represented by each episode instance does not change significantly during learning curve

construction. The algorithm used for learning curve construction is shown in the pseudocode of Table 40.

In Table 40, 𝑄̃𝜋(𝑺, 𝑨)𝑒𝑝𝑐𝑛𝑡𝑟 refers to the approximated action-value function generated specifically during

the newest episode of training.

Stellenbosch University https://scholar.sun.ac.za

168

Table 40: Pseudocode for learning curve construction from parallel episode instances for observed state 𝑺

and action 𝑨

1. # 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑐𝑢𝑟𝑣𝑒 𝑒𝑛𝑡𝑟𝑖𝑒𝑠 = (
𝑁𝑒𝑝

𝑊
)

2. 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑄̃𝜋(𝑺, 𝑨) ← 𝟎

3. 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝐸𝑝 ≪ 𝑁𝑒𝑝

4. 𝑓𝑜𝑟 𝑐𝑛𝑡𝑟 = 1: 1:𝑁𝑒𝑝

i. 𝑄̃𝜋(𝑺, 𝑨) ← 𝑄̃𝜋(𝑺, 𝑨) + 𝑄̃𝜋(𝑺, 𝑨)𝑒𝑝𝑐𝑛𝑡𝑟

ii. 𝑓𝑜𝑟 𝑖𝑛𝑛𝑒𝑟 = 1: 1: 𝐸𝑝

a. Run training function

b. Obtain updated 𝑄̃𝜋(𝑺, 𝑨) through serial SARSA execution

iii. 𝑒𝑛𝑑

iv. 𝑖𝑓 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑜𝑓 𝑊 𝑖𝑠 𝑟𝑒𝑎𝑐ℎ𝑒𝑑

a. Sum all rewards for the current window instance

v. 𝑒𝑛𝑑

5. 𝑒𝑛𝑑

Stellenbosch University https://scholar.sun.ac.za

169

APPENDIX E – FACTOR SCREENING EXPERIMENTAL DESIGN RAW DATA

PROCESSING FOR HYPERVOLUME CHARACTERIZATION

Table 41: Experimental design and raw IAE data generated during 2 factorial experiment

A B C D A B C D AB BC AC DC BD AD ABC BCD ABD ACD ABCD
Average

IAE

L L L L -1 -1 -1 -1 1 1 1 1 1 1 -1 -1 -1 -1 1 0.072 1)

H L L L 1 -1 -1 -1 -1 1 -1 1 1 -1 1 -1 1 1 -1 0.069 a

L H L L -1 1 -1 -1 -1 -1 1 1 -1 1 1 1 1 -1 -1 0.048 b

H H L L 1 1 -1 -1 1 -1 -1 1 -1 -1 -1 1 -1 1 1 0.060 ab

L L H L -1 -1 1 -1 1 -1 -1 -1 1 1 1 1 -1 1 -1 0.055 c

H L H L 1 -1 1 -1 -1 -1 1 -1 1 -1 -1 1 1 -1 1 0.056 ac

L H H L -1 1 1 -1 -1 1 -1 -1 -1 1 -1 -1 1 1 1 0.045 bc

H H H L 1 1 1 -1 1 1 1 -1 -1 -1 1 -1 -1 -1 -1 0.057 abc

L L L H -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 1 -1 0.056 d

H L L H 1 -1 -1 1 -1 1 -1 -1 -1 1 1 1 -1 -1 1 0.084 ad

L H L H -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 -1 1 1 0.041 bd

H H L H 1 1 -1 1 1 -1 -1 -1 1 1 -1 -1 1 -1 -1 0.059 abd

L L H H -1 -1 1 1 1 -1 -1 1 -1 -1 1 -1 1 -1 1 0.048 cd

H L H H 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 -1 1 -1 0.052 acd

L H H H -1 1 1 1 -1 1 -1 1 1 -1 -1 1 -1 -1 -1 0.045 bcd

H H H H 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.052 abcd

Stellenbosch University https://scholar.sun.ac.za

170

Table 42: Sum of squares and effect calculation results for action-value hypervolume discretization – 2

factorial experiment

Number of replicates Effect coefficient SS coefficient

1 0.125 0.0625

Interaction term Effect estimate Sum of squares % Contribution to sum of squares

A 0.010 0.0004 21.54

B -0.011 0.0005 24.27

C -0.010 0.0004 21.27

D -0.003 0.00004 2.28

AB 0.002 0.00002 1.03

AC -0.004 0.0001 2.72

AD 0.004 0.0001 3.91

BC 0.008 0.0002 12.83

BD 0.000 0.000000001 0.00

CD -0.001 0.000004 0.22

ABC 0.001 0.000005 0.25

ABD -0.004 0.0001 3.31

ACD -0.005 0.0001 4.93

BCD 0.001 0.00001 0.45

ABCD 0.002 0.00002 0.99

Stellenbosch University https://scholar.sun.ac.za

171

Table 43: Data for normal probability plot for the 2 factorial experiment

 Effect estimate Number of observations z dist. p z value

B -0.011 1 0.03 -1.83

C -0.010 2 0.10 -1.28

ACD -0.005 3 0.17 -0.97

ABD -0.004 4 0.23 -0.73

AC -0.004 5 0.30 -0.52

D -0.003 6 0.37 -0.34

CD -0.001 7 0.43 -0.17

BD 0.000 8 0.50 0.00

ABC 0.001 9 0.57 0.17

BCD 0.001 10 0.63 0.34

ABCD 0.002 11 0.70 0.52

AB 0.002 12 0.77 0.73

AD 0.004 13 0.83 0.97

BC 0.008 14 0.90 1.28

A 0.010 15 0.97 1.83

Figure 54: Normal probability plot for the 2 factorial experiment

Stellenbosch University https://scholar.sun.ac.za

172

Table 44: ANOVA table for the 2 factorial experiment

Source of variation SS DOF Mean square F statistic P-value

A 0.00040 1 0.0004 46.3 0.09

B 0.00045 1 0.00045 52.2 0.09

C 0.00039 1 0.00039 45.7 0.09

D 0.00004 1 0.00004 4.9 0.27

AB 0.00002 1 0.00002 2.2 0.38

AC 0.00005 1 0.00005 5.9 0.25

AD 0.00007 1 0.00007 8.4 0.21

BC 0.00024 1 0.00024 27.6 0.12

BD 0.00000 1 0.00000 0.0 0.99

CD 0.00000 1 0.00000 0.5 0.62

ABC 0.00000 1 0.00000 0.5 0.60

ABD 0.00006 1 0.00006 7.1 0.23

ACD 0.00009 1 0.00009 10.6 0.19

BCD 0.00001 1 0.00001 1.0 0.51

ABCD 0.00002 1 0.00002 2.1 0.38

Error (SSBD+SSCD+SSABC) 0.00001 1 0.00001

Total SS 15

Stellenbosch University https://scholar.sun.ac.za

173

APPENDIX F – NUMBERS OF PARAMETERS FOR

SECTION 6.5

The works cited in Section 6.5 either have neural networks that are specified as having densely connected

layers or as feedforward neural networks that are fully connected. Both of these terminologies enable the

determination of the number of parameters. The number of connections between neurons (nodes)

represents the weights while each neuron after the input layer is also associated with a bias parameter. The

same calculation procedure was therefore applicable to the deep RL representations as well as the grinding

circuit case study where SANE was applied (Conradie and Aldrich, 2001; Ma et al., 2019;

Shipman and Coetzee, 2019). An example calculation is shown for the DDPG implementation of

Ma et al. (2019) in Table 45. The calculations for the actor and critic networks are identical. The total

numbers of parameters for the actor and critic networks are determined by summing the number of neurons

in the hidden layers and output layer (these are the biases) and adding the calculated number of weights.

Table 45: Example calculation of the number of parameters in the RL representation of Ma et al. (2019)

Actor

fully connected (feedforward) Input layer

First

Hidden

Layer

Second

Hidden

Layer Output

Neurons 142 400 400 2

Weights 56800 160000 800

 Calculations (400)(142) (400)(400) (2)(400)

Total

Actor 218402

Critic

fully connected (feedforward) Input layer

First

Hidden

Layer

Second

Hidden

Layer Output

Neurons 142 300 300 2

Weights 42600 90000 600

Total

Critic 133802

 Total 352204

In the entries of Table 29 corresponding to the work of Conradie (2000), the maximum number of neurons

allowed in the hidden layer for SANE was stated to have 80 connections (weights). It was assumed that

the output layer was densely connected. To determine the number of parameters used for the training of

SARSA agents in this thesis, the details of Table 20 and Table 24 were used for the Van de Vusse reaction

Stellenbosch University https://scholar.sun.ac.za

174

and the grinding circuit, respectively. The number of parameters counted from these details are shown in

Table 46 and Table 47.

Table 46: Calculation of the number of parameters used to represent 𝑄̃𝜋(𝑺, 𝐴) for the Van de Vusse

reaction scheme simulations described in Sections 5.3.2 and 6.3.1

𝐸(𝑇) 11

𝑆𝑃(𝑇) 1

𝐷𝑉(𝑇) 2

𝐴 10

Total (product of the four rows above) 220

Table 47: Calculation of the number of parameters used to represent 𝑄̃𝜋(𝑺, 𝐴) when applying SARSA to

the grinding circuit model

𝐸(𝑇) 6

𝑆𝑃(𝑇) 12

𝐷𝑉(𝑇) 11

𝐴 5

Total (product of the four rows above) 3 960

Stellenbosch University https://scholar.sun.ac.za

