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ABSTRACT

Fairness is a social norm and a legal requirement in today’s society. Many laws and

regulations (e.g., the Equal Credit Opportunity Act of 1974) have been established to prohibit

discrimination and enforce fairness on several grounds, such as gender, age, sexual orientation,

race, and religion, referred to as sensitive attributes. Nowadays machine learning algorithms

are extensively applied to make important decisions in many real-world applications, e.g.,

employment, admission, and loans. Traditional machine learning algorithms aim to maximize

predictive performance, e.g., accuracy. Consequently, certain groups may get unfairly treated

when those algorithms are applied for decision-making. Therefore, it is an imperative task to

develop fairness-aware machine learning algorithms such that the decisions made by them are

not only accurate but also subject to fairness requirements. In the literature, machine learning

researchers have proposed association-based fairness notions, e.g., statistical parity, disparate

impact, equality of opportunity, etc., and developed respective discrimination mitigation

approaches. However, these works did not consider that fairness should be treated as a causal

relationship. Although it is well known that association does not imply causation, the gap

between association and causation is not paid sufficient attention by the fairness researchers

and stakeholders.

The goal of this dissertation is to study fairness in machine learning, define appropriate

fairness notions, and develop novel discrimination mitigation approaches from a causal

perspective. Based on Pearl’s structural causal model, we propose to formulate discrimination

as causal effects of the sensitive attribute on the decision. We consider different types of causal

effects to cope with different situations, including the path-specific effect for direct/indirect

discrimination, the counterfactual effect for group/individual discrimination, and the path-

specific counterfactual effect for general cases. In the attempt to measure discrimination, the

unidentifiable situations pose an inevitable barrier to the accurate causal inference. To address

this challenge, we propose novel bounding methods to accurately estimate the strength of

unidentifiable fairness notions, including path-specific fairness, counterfactual fairness, and



path-specific counterfactual fairness. Based on the estimation of fairness, we develop novel

and efficient algorithms for learning fair classification models. Besides classification, we also

investigate the discrimination issues in other machine learning scenarios, such as ranked data

analysis.
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1 Introduction

This chapter introduces the motivation as well as necessary background and summarizes

the contributions of this research. The structure of this dissertation is provided at the end of

this chapter.

1.1 Motivation

Discrimination refers to an act of making unjustified distinctions among individuals

based on their membership or perceived membership, in a certain group, and often occurs

when the group is treated less favorably than others. A large number of laws and regulations

have been established to prohibit discrimination in many countries and regions. For example,

in the USA, the Civil Rights Act of 1964 prohibits employment discrimination based on

race, color, religion, sex, or national origin. In the European Union, Council Directive

76/207/EEC implements the principle of equal treatment for men and women as regards

access to employment, vocational training and promotion, and working conditions. Although

anti-discrimination laws and regulations have been established, anti-discrimination is still

an active research topic across multiple disciplines, e.g., social sciences, psychology, and

economics, due to the challenges in detecting and eliminating discrimination.

Machine learning has drawn tremendous attention in recent years due to its powerful

and effective abilities to tackle some of the world’s most challenging problems. Various machine

learning algorithms have been designed and deployed to make important decisions in many

real-world applications, e.g., employment, admission to universities, and loans from banks.

However, traditional machine learning algorithms aim to maximize predictive performance,

e.g., accuracy, with regard to the historical training data. Consequently, the resultant models

may make unfair and undesired predictions, e.g., some individuals are unfavorably treated

due to some sensitive information. An established example of machine learning discrimination

is Correctional Offender Management Profiling for Alternative Sanctions (COMPAS) [1], a

1



commercial software that assesses the risk of recidivism. The risk scores produced by this

software have been used in many U.S. courts to make important decisions, e.g., whether an

offender is set free or not. However, discrimination against the African-Americans has been

identified in COMPAS as the blacks are more likely to be assessed as higher risk than the

whites. Discrimination and bias caused by machine learning algorithms may cause severe

damage to the unfavorable groups, even perpetuate and aggravate existing prejudices and

social inequalities. Therefore, it is imperative to develop fairness-aware machine learning

algorithms so that the decisions made by those algorithms achieve fairness and high predictive

performance simultaneously.

1.2 Background

In the following, we give some necessary background on fairness-aware machine learning,

including several key definitions and categorizations of discrimination.

A protected or sensitive attribute is the one that is potentially used to unfairly treat

individuals. The protected attribute is defined in laws, e.g., race, sex, sexual orientation, age,

physical or mental disability, etc. Among groups specified by the values of the protected

attribute, a group of people is considered as a protected group if they are qualified for special

protection by laws or policies. For instance, females are considered as a protected group in

employment. Usually, a protected group is also known as an unfavorable group. Apart from

the protected group, the rest is considered as an unprotected group or a favorable group. A

decision attribute is the one that machine learning models attempt to predict. In the field of

fairness-aware machine learning, researchers focus on the classification task where the decision

attribute is usually assumed to be binary: the positive value corresponding to a beneficial

decision and a negative value corresponding to a detrimental decision. For example, being

admitted is considered positive and being rejected is negative in the example of admission to

universities. With the exception of the protected attribute and the decision attribute, the

rest attributes are known as non-protected, non-sensitive, or other attributes.

2



Discrimination has been studied from different perspectives in many fields. Several

categorizations of fairness notions have been proposed. Discrimination is legally divided into

direct and indirect discrimination from the perspective of the way discrimination occurs.

Direct discrimination occurs when individuals receive less favorable treatment explicitly based

on the sensitive attribute. An example of direct discrimination is that a qualified female

applicant is rejected solely due to her gender. Indirect discrimination refers to the situation

where the treatment is based on apparently neutral non-sensitive attributes but still results in

unjustified distinctions against individuals from the protected group. A well-known example

of indirect discrimination is redlining, where the residential ZIP code of an individual is used

for making decisions such as granting a loan. Although the ZIP code is apparently a neutral

attribute, it correlates with race due to the racial composition of residential areas. Thus, the

use of the ZIP code may indirectly lead to racial discrimination. From the perspective of levels

of granularity in studying, discrimination can be divided into system-level, group-level, and

individual-level. System-level discrimination refers to the average unjustified distinction across

the whole system. An example of system-level discrimination is that all female applications

to a university are unequally treated. Group-level discrimination deals with discrimination

that occurs within one particular group specified by the non-protected attributes, e.g., the

applicants to a particular major. Individual-level discrimination deals with discrimination

against one particular individual. Of course, discrimination can be described as a combination

from two perspectives, e.g., direct discrimination at the system level.

1.3 Research Challenges

Fairness-aware machine learning has been actively investigated in the past few years.

The research community has developed various approaches for unveiling discrimination by

analyzing historical data as well as predictions, and ensuring fairness by modifying the

biased data, vulnerable models, or the unfair predictions. Many fairness notions have been

proposed to quantify the strength of unfairness by inspecting the inequality of the decisions
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among the different demographic groups. Most of these notions are based on association or

correlation. However, discrimination is causal, which means that to prove discrimination one

needs to derive a causal relationship rather than an association relationship. Although it

is well-known that association does not mean causation, the gap between association and

causation is not paid enough attention by the fairness-aware machine learning researchers.

Due to this gap, most existing fairness notions fail to accurately detect the existence of

discrimination. Further, the developed mitigation algorithms based on inappropriate notions

cannot successfully eliminate discrimination from the machine learning pipelines. What is

worse, these mitigation algorithms result in plenty of data utility loss and predictive errors.

We present several crucial challenges which motive us to conduct research in the

fairness-aware machine learning field.

First, most existing works in the field of fairness-aware machine learning rely on

correlation/association-based definitions of discrimination. Fairness cannot be well assessed

based on the simple concepts of correlation or association. An empirical counterexample is

Simpson’s paradox, where the statistical conclusions drawn from the sub-groups disagree

with that from the whole population. Usually, discrimination claims require plaintiffs to

demonstrate a causal connection between the challenged decision and a sensitive characteristic.

In order to prove the existence of discrimination or not, it is necessary to examine the causal

relationship between the sensitive attribute and the decision rather than the associated

relationship. Second, discrimination can be classified into many types, such as system-

/group-/individual-level discrimination and direct/indirect discrimination. Existing works

usually tackle one or two types of discrimination. In many practical situations, several

types of discrimination may simultaneously exist. Thus, it is necessary to develop a unified

framework that is able to deal with all types of discrimination. Third, unidentification

is a key challenge in causal inference, which means a causal quantify is impossible to be

uniquely quantified in theory. It also poses a crucial barrier when researchers apply causal

fairness notions into practice. Researchers make do with some intuitive and simplified
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assumptions to avoid unidentifiable situations. Consequently, these assumptions significantly

reduce the performance of machine learning algorithms. It deserves further investigation

on the unidentification of causal fairness notions. Fourth, most existing works focus on the

classification task and utilize statistical parity as the fairness metric. Ranked data analysis

is another important task where the decisions are a series of unique, concatenating integers

that cannot be treated as normal categorical random variables. The causality-based fairness

notions and approaches developed for classification cannot be readily adapted to ranked

data. Measuring causality-based fairness in the ranked data is an open problem. Last but

not least, it has been studied that the fairness constraints are incorporated with machine

learning procedures, e.g., training of classification models. Usually, the fairness constraints

are non-convex, making the training computationally difficult. More important, there is a

lack of theoretical fairness guarantee in the obtained models.

1.4 Contributions

Inspired by the above challenges, the goal of this dissertation is to formulate appropriate

fairness notions and develop novel discrimination mitigation approaches from a causality

perspective. We leverage the structural causal model, a graphical equation-based mathematical

language that describes the causal mechanisms of a system. Within the structural causal

model, we formulate various kinds of discrimination as causal effects of the sensitive attribute

on the decision, e.g., the path-specific effect and the path-specific counterfactual effect. Then,

we target the unidentification problem and develop bounding methods to make accurate

fairness judgment. We further develop novel and efficient mitigation algorithms based on the

causal fairness notions and bounding methods. Besides that, we investigate the discrimination

issues in many other machine learning scenarios, e.g., ranked data analysis and empirical risk

minimization classification.

The overall contributions of this dissertation are summarized as follows.

In the fields of law and social science, discrimination is divided into direct and indirect

5



discrimination. Direct discrimination occurs when individuals receive less favorable treatment

explicitly based on the sensitive attribute. Indirect discrimination refers to the situation

where the treatment is based on apparently neutral non-sensitive attributes but still results

in unjustified distinctions against individuals from the sensitive group. Besides two types of

discrimination, some effects between two variables can be reasonably justified and should

not be considered as discrimination (e.g., the difference in the average income of females and

males caused by their different working hours per week). Previous methods cannot explicitly

and correctly identify the three different effects when measuring and removing discrimination.

They either incorrectly measure them or crudely consider all connections between the sensitive

attribute and the decision as discrimination. Facilitated by the causal modeling, we leverage

the path-specific effect [2, 3] to capture the three effects as the causal effects of the sensitive

attribute on the decision that are transmitted along different causal paths in the causal graph.

For certain situations where indirect discrimination cannot be exactly measured due to the

unidentifiability of some path-specific effects, we develop an upper bound and a lower bound

of indirect discrimination. Based on that, we develop effective algorithms for discovering

direct and indirect discrimination as well as algorithms for precisely removing both types of

discrimination while retaining good data utility. The early versions of this work have been

published in IJCAI 2017 [4] and TKDE 2019 [5].

Existing causal-based fair machine learning methods focus on the classification prob-

lems. Ranked data analysis is another important machine learning task where the decisions

are a series of unique, concatenating integers that cannot be treated as normal categorical

random variables. Thus, existing methods developed for classification cannot be directly

applied to handle the ranked data. Besides, existing methods in fairness-aware ranking are

mainly based on statistical parity that cannot accurately measure the discriminatory effects

since discrimination is causal. To address these limitations, we propose to map the rank

decision to a continuous score variable that represents the qualification of the candidates.

Then, we build a causal graph that consists of both the discrete profile attributes and the
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continuous score. The path-specific effect technique [4] is extended to the mixed-variable

causal graph to identify both direct and indirect discrimination. The relationship between the

path-specific effects for the ranked data and those for the binary classification is theoretically

analyzed. Finally, algorithms for discovering and removing discrimination from ranked data

are developed. This work has been published in KDD 2018 [6].

As discussed in Chapter 1.2, discrimination can be divided into system-level, group-

level, and individual-level. In the study of path-specific fairness, we investigate the causal

fairness at the system-level where the discrimination is formulated as the aggregated causal

effect across all individuals. At the group/individual level, fairness means an individual is

equally treated even if it had been from another sensitive group, e.g., a specific male is equally

treated if he had been a female. Thus, counterfactual fairness [7] has been defined to capture

the group/individual-level discrimination, through evaluating counterfactual effect within

a particular group or individual specified by the observation of a set of profile attributes.

However, an inherent challenge in the counterfactual fairness is unidentifiability, i.e., the

counterfactual quantity cannot be uniquely computed from observed distributions. Existing

methods in [7] simply omit some attributes when building the predictive model or postulate the

distributions of variables or the causal mechanisms, which may violate the underlying causal

model and degrade the prediction performance. To alleviate the challenge of unidentification

in counterfactual fairness, we first develop a graphical criterion for determining whether the

counterfactual effect is identifiable. For the unidentifiable situations, we derive the lower and

upper bounds for the counterfactual quantities and design a fairness criterion based on the

bounds. Finally, we develop a post-processing method to reconstruct arbitrary classifiers in

order to achieve counterfactual fairness. We formulate the reconstruction problem as a linear

constrained optimization problem with the bounded counterfactual fairness criterion as the

constraints. This work has appeared in IJCAI 2019 [8].

Various fairness notions have been proposed recently, e.g., path-specific fairness [4, 5],

counterfactual fairness [7], on the basis of causality. However, one common challenge of all
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causality-based fairness notions is unidentifiability, which is a critical barrier to applying

these notions to real-world situations. In the previous study, we develop methods to bound

the path-specific and counterfactual fairness. Nevertheless, the tightness of these methods

is not analyzed. In addition, it is not clear whether these methods can be applied to other

unidentifiable situations, and more importantly, a combination of multiple unidentifiable

situations. Motivated by these challenges, we develop a unified framework for handling

various causality-based fairness notions. We first propose a general representation of all

types of causal effects, i.e., the path-specific counterfactual effect, based on which we define a

unified fairness notion that covers most previous causality-based fairness notions, namely

the path-specific counterfactual fairness (PC fairness). Then, we develop a constrained

optimization problem for bounding the PC fairness, which is motivated by the method in [9]

for bounding confounded causal effects. The key idea is to parameterize the causal model using

so-called response-function variables, whose distribution captures all randomness encoded in

the causal model, so that we can explicitly traverse all possible causal models to find the

tightest possible bounds. In the experiments, we evaluate the proposed method and compare

it with previous bounding methods using both synthetic and real-world datasets. The results

show that our method is capable of bounding causal effects under any unidentifiable situation

or combinations. This work has been published in NeurIPS 2019 [10].

Fair classification is receiving increasing attention in the machine learning field. Several

recent works have proposed to formulate the fairness-aware classification as constrained

optimization problems. Generally, they aim to minimize the empirical risk function subject

to certain fairness constraints, e.g., demographic parity (i.e., the proportion difference of

the positive predictions between the favorable group and non-favorable group is less than

a threshold). However, most quantitative fairness metrics, such as demographic parity

and mistreatment parity, are non-convex due to the use of the indicator function, thus

making the optimization problem intractable. A widely-used strategy to achieve convexity

in optimization is to adopt surrogate functions for both loss function and constraints. One
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challenge is that, when surrogate functions are used to convert non-convex functions to convex

functions, estimation errors must exist due to the difference between the surrogate function

and the original non-convex function. Thus, satisfying the fairness constraints represented

by surrogate functions does not sufficiently guarantee achieving the real fairness. Hence,

how to perform fairness-aware classification via constrained optimization remains an open

problem. We design a general framework for fairness-aware classification which addresses the

gap incurred by the estimation errors due to the surrogate functions. Within the framework,

we first present a constraint-free criterion (derived from the training data) which ensures that

any classifier learned from the data will guarantee to be fair in terms of the specified fairness

metric. Thus, when the criterion is satisfied, there is no need to add any fairness constraint

into the empirical risk minimization for learning fair classifiers. When the criterion is not

satisfied, we formulate various commonly-used fairness metrics (risk difference, risk ratio, and

equal odds) as convex constraints that are then directly incorporated into classic classification

models. Thanks to the convexity of constraints and the objective function, the constrained

optimization problem can be efficiently solved. To connect the surrogated fairness constraints

to the original non-convex fairness metric, we further derive the lower and upper bounds of

the real fairness measure based on the surrogate function, and develop the refined fairness

constraints. This means that, if the refined constraints are satisfied, then it is guaranteed

that the real fairness measure is also bounded within the given interval. The bounds work

for any surrogate function that is convex and differentiable at zero with the derivative larger

than zero. This work has been published in The Web Conference 2019 (formerly known as

WWW) [11].

1.5 Organization

The remainder of this dissertation is organized as follows. In Chapter 2, we discuss

related work in a wide scope of fairness-aware machine learning to provide a general review

of research achievements in this research field. We introduce the preliminary background
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for causal inference in Chapter 3 which is fundamental and necessary for all the proposed

research. The extra highly related work and preliminaries are given at the beginning of each

research chapter, as necessary.

We present the main body of this dissertation in Chapter 4 - Chapter 8. In Chapter 4,

we introduce methods for identifying the direct/indirect discrimination by leveraging the

path-specific effect and present our efficient mitigation algorithm to achieve both direct and

indirect fairness. Chapter 5 elaborates on the extension of the path-specific effect to ranked

data and the connection between fairness-aware classification and fairness-aware ranking.

Chapter 6 introduces the bounding method to unidentifiable counterfactual fairness and

a theoretical sound algorithm to build a counterfactually fair classifier. Chapter 7 shows

a unified framework for the path-specific counterfactual fairness and develops a general

bounding method for unidentifiable situations. In Chapter 8, we study the convexity and

bounding problem of training a classifier with the fairness constraints.

We conclude this dissertation with a discussion of future work in Chapter 9.
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2 Related Work

There are two tasks in fairness-aware machine learning: (1) discrimination discovery is

the task of unveiling discriminatory practices by analyzing historical datasets or predictions

made by predictive models, (2) discrimination prevention aims to remove discrimination by

modifying biased data, tweaking predictive model, or manipulating predictions. This chapter

reviews the literature, including research works presented in this dissertation, from these

two aspects. Some literature particularly related to a specific chapter is discussed in the

corresponding chapter. A summary of this review is given at the end of this chapter.

2.1 Discrimination Discovery

How to discover discrimination from data has been studied and many techniques have

been proposed in the literature. Among them a widely adopted concept is called statistical

parity, which means that the demographics of a set of individuals receiving positive (or

negative) decisions are identical to the demographics of the population as a whole. Based

on statistical parity, the classic statistical metrics of discrimination consider the difference

among the proportion of having positive decision for the non-protected group (p1), that

for the protected group p2, and that for the whole population (p). According to how the

difference is measured, these metrics can be distinguished into p1 − p2 (a.k.a. risk difference),

p1
p2

(a.k.a. risk ratio), 1−p1
1−p2 (a.k.a. relative chance), p1(1−p2)

p2(1−p1)
(a.k.a. odds ratio), p1 − p (a.k.a.

extended risk difference), p1
p

(a.k.a. extended risk ratio), 1−p1
1−p (a.k.a. extended change), etc.

Fairness notions based on statistical parity are commonly used and compatible with many

laws and regulations for anti-discrimination. For instance, the U.S. legislation for employment

discrimination sets the risk ratio threshold as 1.25 (known as the four-fifths rule). The idea

of statistical parity can be naturally extended to group levels, e.g., the risk difference of

admission between male and female for individuals applying for the computer science major.

Inspired by the statistical parity, Hardt et al. [12], Zafar et al. [13], and Corbett-Davis
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et al. [14] proposed equality of opportunity, mistreatment parity, and predictive equality. These

notions are designed for predictive models, e.g., a classifier. The general idea is the accuracy

of predictions among different demographic groups is equal or similar. Technically, equal

opportunity is satisfied if the true positive rates are the same for favorable and unfavorable

groups. More strictly, equal odds require that both the true positive rates and false positive

rates are respectively the same for favorable and unfavorable groups. Further, Kleinberg

et al. [15] showed that equalized odds and calibration, where a algorithm makes the positive

prediction associated with a probability p for a group, then the fraction of positive decisions

among this group should be p, cannot be satisfied at the same time except in special cases

where the classifier is perfect or the sensitive attribute is independent of the decision attribute.

Individual fairness means the similar individual should be treated similarly [16]. Luong

et al. [17] exploited the idea of situation testing to discover individual-level discrimination.

For each member of the protected group with a negative decision outcome, testers with

similar characteristics are found from a historical dataset. When there are significantly

different decision outcomes between the testers of the protected group and the testers of the

non-protected group, the negative decision can be considered as discrimination. Conditional

discrimination, i.e., part of discrimination may be explained by other legally grounded

attributes, was studied by Zliobaite et al. [18]. The task was to evaluate to which extent the

discrimination apparent for a group is explainable on a legal ground. The metric is still based

on the difference of the positive decision proportions for the protected and non-protected

groups.

Data mining techniques have been also studied for measuring discrimination. Pedreschi

et al. and Ruggieri et al. extracted from the dataset classification rules which represent

certain discrimination patterns [19–21]. If the presence of the protected attribute increases the

confidence of a classification rule, it indicates possible discrimination in the dataset. Based on

that, Mancuhan and Clifton [22] further proposed to use Bayesian networks to compute the

confidence of the classification rules for detecting discrimination. Hajian and Domingo [23]
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quantified the direct and indirect discrimination using extend lift (elift) over association

rules. Direct discrimination is identified if the elift of the sensitive attribute and the context

attribute to the decision attribute is larger than a threshold. Indirect discrimination exists if

the elift of two context attributes that are strongly correlated with the sensitive attribute to

the decision attribute is significant.

Most existing research is often limited to examining the single relationship between one

decision attribute and one protected attribute and does not sufficiently incorporate the effects

caused by other non-protected attributes. Wu and Wu [24] developed a unified framework

that aims to capture and measure discrimination between multiple decision attributes and

protected attributes in addition to a set of non-protected attributes. The proposed approach

is based on loglinear modeling. The coefficient values of the fitted loglinear model provide

quantitative evidence of discrimination in decision making. The conditional independence

graph derived from the fitted graphical loglinear model can be used to effectively capture the

existence of discrimination patterns based on Markov properties.

All of the above works are mainly based on correlation or association. Recently,

several studies have been devoted to analyzing discrimination from the causal perspective.

Bonchi et al. [25] developed a framework based on the Suppes-Bayes causal network and

several random-walk-based methods to detect different types of discrimination. However, it

is unclear how the number of random walks is related to practical discrimination metrics.

In addition, the construction of the Suppes-Bayes causal network is impractical with the

large number of attribute-value pairs. Studies in [26–28] are built on causal modeling and

the associated causal graph, but cannot deal with indirect discrimination. Leveraging the

path-specific effect [2], Zhang et al. [4, 5], Nabi et al. [29], and Zhang and Bareinboim [30]

developed causal fairness notions to quantifying direct and indirect discrimination. Kilbertus

et al. [31] proposed similar discrimination criteria that also consider indirect discrimination.

However, it is simplified in order to avoid the complexity in measuring path-specific effects

and the proposed discrimination criteria can only qualitatively determine the existence of
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the discrimination, but cannot quantitatively measure the amount of discriminatory effects.

Huang et al. [32] utilized causal modeling and developed equality of effort to capture the

difference of effort to achieve the same outcome. Huang et al. [33] studied the multi-cause

discrimination where several protected attributes and redlining attributes are presented in a

causal model. Khademi et al. [34] introduced two fairness definitions, fair on average effect

(FACE) and fair on average causal effect on the treated (FACT), based on the potential

outcome framework. Kusner et al. [7] initiated the idea of counterfactual fairness which is

designed to evaluate the fairness at the group level and the individual level. Counterfactual

fairness means the decision toward a individual in the actual world is identical to that in a

counterfactual world where the individual had belonged to a different demographic group.

Nevertheless, there is a crucial challenge in the quantification of counterfactual fairness posed

by unidentification. To address the challenge of unidentification, Wu et al. [8] developed

bounding method to estimate the strength of counterfactual fairness. Similarly, Kilbertus

et al. [35] studied the unidentification challenge in the unmeasured confounding situations and

designed tools to assess the sensitivity of counterfactual fairness. To unify the path-specific

fairness and counterfactual fairness, Wu et al. [10] proposed Path-specific Counterfactual

fairness (PC fairness) and developed a general method to deal with the unidentification of

PC fairness under complicated circumstances, e.g., hidden confounders, “kite” structures, “w”

structures, etc.

2.2 Discrimination Removal

Discrimination removal is also an important task. Existing methods for discrimination

removal are categorized into three types: pre-processing, in-processing, and post-processing.

Pre-processing methods [18, 23, 24, 36, 37] modify the historical data to remove dis-

criminatory patterns. For example, [18,36] developed several methods for modifying data,

including massaging, which changes the labels of some individuals in the dataset to remove

discrimination, reweighting, which assigns weights to individuals to balance the dataset,
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and sampling, which changes the sample sizes of different subgroups to make the dataset

discrimination-free. Feldman et al. [37] studied how to remove indirect discrimination from

data. The authors proposed to modify all the non-sensitive attributes to ensure that the

sensitive attribute cannot be predicted from the non-sensitive attributes. As a result, indirect

discrimination is removed since the decision, which is determined by the non-sensitive at-

tributes, cannot be used to predict the sensitive attribute. Wu and Wu [24] leveraged loglinear

modeling to capture and measure discrimination, and developed a method for discrimination

prevention by modifying significant coefficients of the fitted loglinear model and generate

unbiased datasets.

Learning fair representation [16,38–40] is also one of pre-processing methods. Zemel

et al. [16] formulated learning fair representation as an optimization problem where the

objective function is a combination of the construction error, statistical disparity, and the

prediction error. The obtained representation encodes the original data as well as possible

and obfuscates the sensitive information. Edwards and Storkey [38] designed an adversarial

approach where an adversary tries to recover the sensitive attribute from the representation

and the encoder tries to make the sensitive attribute impossible to recover. Through the

adversarial training, the encoder can provide discrimination-free representation. Zhang

et al. [40] developed an adversarial framework where an adversary attempts to model the

sensitive attribute solely from the predictions rather than the representation.

In-processing methods [11, 13, 14, 41–45] tweak the predictive models. Researchers

have developed tweaking methods for the widely used data mining models, e.g., the decision

tree classifier [44], the naive Bayes classifier [41], and the logistic regression classifier [42]. For

example, Kamiran et al. [44] developed a strategy for relabeling the leaf nodes of a decision

tree to make it discrimination-free. Calders and Verwer [41] presented three approaches for

the naive Bayes classifier: (1) modifying the conditional probability distribution, (2) training

different models for different groups, (3) adding a latent variable to the Bayesian model.

Kamishima et al. [45] added a regularization term to probabilistic discriminative models, e.g.,
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the logistic regression classifier. Recently, researchers [11,13,43,46] have formulated the in-

processing fairness-aware classification as constrained optimization problem. Dwork et al. [46]

addressed the problem through constructing a predictive model that achieves both statistical

parity and individual fairness, i.e., similar individuals should be treated similarly. Zafar

et al. [13] added fairness constraints into the classification so that the classifier learned reduces

discrimination. Wu et al. [11] formulated the fairness requirements as convex constraints and

provided theoretical guarantees for the obtained classifiers.

Post-processing methods manipulate the predictions produced by predictive models.

Technically, the pre-processing methods are applicable in the post-processing phase, e.g.,

massaging, reweighting, and sampling. Moreover, researchers have developed specific methods

for post-processing. Kamiran et al. [47] manipulated the predictions for the individuals

that are close to the decision boundary. Thus, they developed two methods, Reject Option

based Classifier (ROC) for probabilistic classifiers and Discrimination-Aware Ensemble (DAE)

for ensemble classifiers. Hardt et al. [12] derived a general post-processing method for any

arbitrary classifier. They formulated a mapping function from the predictions made by

a classifier to a new prediction. The fairness requirements are formulated as constraints

attached into the mapping function. The resultant optimization is linear and can be solved

efficiently.

Recently, learning fair generative models [48–50] becomes a topical research trend.

Instead of modifying the training data to remove discriminatory effect, Xu et al. [48] designed

a generative model, FairGAN, which can directly generate fair data. The generative model

able to generate high quality synthetic data that are similar to real data and prevent the

discrimination in the generated data. In the latest version, FairGAN+ [50] contains an

extra classifier to simultaneously achieve fair data generation and accurate classification.

Xu et al. [51] designed a causal fairness-aware generative adversarial networks (CFGAN) to

generate a distribution similar to the given real data as well as subject to various causal

fairness criteria.
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2.3 Summary

A large amount of discrimination discovery notions and approaches have been developed

in the past several years, mostly based on association or correlation. These notions are

designed to capture numerous kinds of discrimination, e.g., direct discrimination and indirect

discrimination, from various aspects, e.g., system-level, group-level, and individual-level.

Based on the notions, enormous discrimination mitigation algorithms have been designed.

These algorithms attempt to preserve the data utility or predictive performance as well as

achieve fairness with regard to the specified fairness notions.

However, there is a huge gap between association and causation which is not paid

enough attention by the research community. Without the support of causation, it is difficult

to derive accurate discrimination quantification. Based on the inappropriate quantification,

the developed removal approaches may aggravate existing discrimination or suffer from crucial

utility loss and predictive errors.
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3 Preliminaries

In this chapter, we present the essential notations and fundamental background for

the whole dissertation. We start with the notations of describing data and distributions.

Then we continue with the necessary fairness notions based on association. Last, we present

the structural causal model and intervention which are necessary for causal effect estimation

and our proposed frameworks.

3.1 Data and Attributes

We consider a dataset D with finite samples that are randomly extracted from a

joint distribution P . In this dataset, each column represents an attribute, corresponding to

a variable in this joint distribution. Throughout this manuscript, we use “attribute” and

“variable” interchangeably. We denote an attribute by an uppercase alphabet, e.g., X; denote

a subset of attributes by a bold uppercase alphabet, e.g., X. Commonly, an upper letter with

i in the subscript is referred to as the i-th variable in a variable set. We denote a domain

value of attribute X by a lowercase alphabet, e.g., x; denote a value assignment of attributes

X by a bold lowercase alphabet, e.g., x. When there are multiple values used for one variable,

the numeric subscript is adopted, e.g., xi and xj represent two arbitrary values of X.

3.2 Association-based Fairness Notions

Association-based notions have been widely adopted into measuring the strength of

discrimination and making the judgment of fairness. Technically, these notions measure the

association between the sensitive attribute and the decision attribute. In this chapter, the

sensitive attribute is denoted by S and the decision attribute is denoted by Y . For the sake

of simplicity, S and Y are binary, i.e., s+ and s− representing the unprotected/favorable

group (e.g., male) and protected/unfavorable group (e.g., female), y+ and y− representing

the positive decision (e.g., being admitted) and the negative decision (e.g., being rejected).
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In this dissertation, we involve two common association-based notions: demographic

parity and equality of opportunity. These two fairness notions are described as follows.

3.2.1 Demographic Parity

The main idea of demographic parity [18,19,43,52] is the proportions of receiving a

positive decision are similar among the demographic groups. To measure the strength of

disparity, risk difference and risk ratio are the most common metrics. The proportion p1 of

receiving a positive decision for the favorable group is denoted by a conditional probability:

p1 = P (Y = y + |S = s+).

Similarly, the proportion p2 for the unfavorable group is defined as:

p2 = P (Y = y + |S = s−).

Thus, risk difference RD is defined as the difference of two proportions:

RD = p1 − p2.

If risk difference is small, e.g., close to zero, it implies fairness.

Similarly, risk ratio RR is the ratio of two proportions:

RR =
p1

p2

.

If risk ratio is approximate to 1, it implies fairness.

3.2.2 Equality of Opportunity

Equality of opportunity [13] a criterion for measuring discrimination in supervised

learning. In supervised machine learning, predictions Ŷ are made by predictive functions.
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Equality of opportunity means the parity of true positive rate for all demographic groups.

In a binary classification model, equality of opportunity is satisfied if the following equation

holds:

P (Ŷ = y+|S = s+, Y = y+) = P (Ŷ = y+|S = s−, Y = y+).

A more rigorous criterion, equality of odds, requires the parity of both true positive

rate and false positive rate for all demographic groups:

P (Ŷ = y+|S = s+, Y = y) = P (Ŷ = y+|S = s−, Y = y), y ∈ {y+, y−}.

The association-based notions have been well studied and plenty of notions have been

proposed. Due to the space limitation, we only introduce the necessary notions in this chapter.

A detailed discussion and comparison can be found in the tutorial [53].

3.3 Structural Causal Model

In order to investigate the causality problems, Judea Pearl [54] has mathematically

developed the concept of the Structural Causal Model (SCM), which describes the mechanism

by which the variables are determined.

Definition 1 (Structural Causal Model (SCM ) [54]). A structural causal model M is

represented by a tuple 〈U,V,F, P (U)〉 where

• U is a set of exogenous variables that are determined by factors outside the model. A

joint probability distribution P (U) is defined over the variables in U.

• V is a set of endogenous variables that are determined by variables in U ∪ mathbfV .

• F is a set of structural equations from U ∪V to V. Specifically, for each V ∈ V, there

is a function fV ∈ F mapping from U∪ (V\V ) to V , i.e., v = fV (paV , uV ), where paV

is a realization of a set of endogenous variables PaV ∈ V \ V that directly determines

V , and uV is a realization of a set of exogenous variables that directly determines V .
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Figure 3.1: Causal graphs of a Marko-
vian model.
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Figure 3.2: Causal graphs of a semi-
Markovian model.

If all exogenous variables in U are mutually independent, then the causal model is

called a Markovian model. If any pair of exogenous variables in U is not independent, the

causal model is called a semi-Markovian model.

Each causal model M is associated with a graphical causal model, referred to as a

causal graph G = 〈V , E〉, where V is a set of nodes and E is a set of edges. Each node in

V corresponds to a variable in V ∪ U. Each edges in E is directed, denoted by a single

arrowhead arc →, and points from each member of PaX toward X to represent the direct

causal relationship from this member of PaX toward X. In many applications, the exogenous

variables U (including the outgoing arrows) are omitted from the causal graph, resulting a

simple causal graph. In the graphs of Markovian models, e.g., Figure 3.1a, the omission is

made without any other changes. A simplified causal graph is shown in Figure 3.1b. However,

if any pair of exogenous variables is correlated, a bi-directed edges, denoted by a dotted

arc with two arrowheads L9999K, is drawn between them to represent the existence of a

common cause (a.k.a a con-founder). Thus, in the graphs of semi-Markovian models, e.g.,

Figure 3.2a, the omission is made and a bi-directed edge is added as shown in Figure 3.2b. In

the rest of this dissertation, a causal graph refers to the one where the exogenous variables

are omitted. In this setting, the nodes V in a causal graph and variables V in data D are

used interchangeably. The causal graph associated with a Markovian model is a Directed

Acyclic Graph (DAG). The causal graph with a semi-Markovian model is an acyclic graph

with dotted bi-directed edges.

Standard terminologies in the graph theory are applicable in the causal graph, e.g.,
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parent, child, etc. For a node X, we also use the symbol PaX to denote its parental nodes and

use ChX to denote its children. A path in a graph is a sequence of edges which concatenates

a sequence of nodes. A directed path is one where all edges are directed in the same direction.

A causal path from X to Y is a directed path which starts from X and ends with Y .

In the Markovian model, the directed acyclic causal graph allows one efficiently

decomposes the joint distributions P (x) into conditional probabilities using the factorization

formula [55]

P (x) =
∏
xi∈x

P (xi | paXi), (3.1)

where P (xi | paXi) is the conditional probability associated with Xi.

3.3.1 Intervention and Causal Inference

In the causal model, the do-operator [54] simulates the physical interventions that force

some variables X to take certain constants x. Formally, the intervention that sets the values

of X to x is denoted by do(X = x). The intervention do(X = x) manipulates the structural

causal model and the graphical causal model (a.k.a the causal graph). In the structural causal

modelM, this intervention substitutes the original equation X = f(PaX , UX) with X = x for

every X ∈ X. The causal model after performing do(x) is referred to as a sub-model, denoted

by Mx. The causal graph Gx associated with Mx is a variant of G where this intervention

deletes all the incoming edges to the nodes X and sets X to x. For any endogenous variables

Y ∈ V\X which are affected by this intervention, their post-interventional variants in

sub-model Mx are denoted by Yx. The distribution of Yx is called the post-intervention

distribution of Y under do(x), denoted by P (Y = y | do(X = x)), P (y | do(x)) or simply

P (yx).

Causal inference is a process of estimating the causal quantities, e.g., the post-

interventional distribution P (y | do(x)), from purely observational data and the causal graph.

For instance, the post-interventional distribution P (y | do(x)) for any Markovian model can
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be expressed as a truncated factorization formula [54]

P (y | do(x)) =
∏
Y ∈Y

P (y | paY )δX=x, (3.2)

where δX=x means assigning variables in X involved in the term ahead with the corresponding

values in x. Specifically, the post-intervention distribution of a single variable Y given an

intervention on a single variable X is given by

P (y | do(x)) =
∑
v′

∏
V ∈V\{X}

P (v | paV )δX=x, (3.3)

where the summation is a marginalization that traverses all value combinations of V′ =

V\{X, Y }.

The truncated factorization formula enables the estimation of post-interventional

distributions from the observational data in Markovian models. Yet a more challenging

problem lies in the semi-Markovian model where the bi-directed edges imply the existence of

hidden con-founders and the post-interventional quantities are not unique. It is referred to as

identification whether a causal quantity can be uniquely estimated from the observational

data.

3.3.2 Identification of Causal Quantities

Identification is essential for causal inference as it determines whether a causal quantity,

e.g., P (y | do(x)), is consistently derived from the observed data without specifying the whole

causal model M.

The definition of identifiability is given as follows.

Definition 2 (Identifiability [54]). Let Q(·) be any computable quantity of a class of models.

Q is identifiable if, for any pair of models M1 and M2 from this class, Q(M1) = Q(M2)

whenever PM1(v) = PM1(v).
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In the context of causal inference, Q is an arbitrary causal quantity, e.g., the post-

interventional distribution P (y | do(x)). According to Definition 2, a causal quantity is

identifiable if the estimation is unique given the observational data which are compatible

with many potential contradictory causal models. In other words, an unidentifiable quantity

would obtain two or more contradictory values given the observational data and the causal

graph and in theory, it is impossible to distinguish which one is true. This definition of

identifiability is applicable to other types of quantities, e.g., path-specific quantities and

counterfactual quantities.

3.3.3 Total Causal Effect

The ultimate task of causal inference is to uncover the cause-effect relationships

between variables. Thanks to the do-operator, the total causal effect of X on Y is defined in

Definition 3 [54]. Note that in this definition, the effect of the intervention is transmitted

along all causal paths from the cause X to the effect Y .

Definition 3 (Total causal effect). The total causal effect TE (x2, x1) measures the effect of

the change of X from x1 to x2 on Y = y transmitted along all causal paths from X to Y . It

is given by

TE (x2, x1) = P (y | do(x2))− P (y | do(x1)) .

In the total causal effect, the interventions are performed for all individuals and all

variables, thus the effect is aggregated over the whole populations and transmitted via all

causal paths. By specifying individuals and causal paths on which the interventions are

performed, the customized effects can be defined and evaluated, e.g., the path-specific effect

and the counterfactual effect. Since the path-specific effect and the counterfactual effect are

only related to partial chapters, we introduce them in the corresponding chapters.
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4 Discrimination Discovery and Removal from Classification Data

4.1 Introduction

In the legal and social science fields, discrimination is divided into direct and indirect

discrimination. Many approaches have been proposed to deal with both direct and indirect

discrimination but significant issues exist. Technically, the difference in decisions across the

protected and non-protected groups is a combined (not necessarily linear) effect of direct

discrimination, indirect discrimination, and explainable effect that should not be considered

as discrimination (e.g., the difference in average income of females and males caused by

their different working hours per week). However, existing methods cannot explicitly and

correctly identify the three different effects when measuring discrimination. For example,

the classic metrics risk difference, risk ratio, relative chance, odds ratio, etc. [56] treat all

the difference in decisions as discrimination. Conditional discrimination [18] realized the

explainable effect but failed to correctly measure it. They also failed to distinguish the effects

of direct and indirect discrimination. For discrimination removal, a general requirement is

to preserve the data utility, i.e., how the distorted data is close to the original one, while

achieving non-discrimination. As we shall show in the experiments, a crude method that

totally removes all connections between the sensitive attribute and decision (e.g., in [37]) can

eliminate discrimination but may suffer significant utility loss. To maximize the data utility,

it is necessary to first accurately measure the discriminatory effects.

The causal modeling-based discrimination detection has been proposed most recently

[26–28] for improving the correlation based approaches. However, these work also do not

tackle indirect discrimination. In this chapter, we develop a framework for discovering and

removing both direct and indirect discrimination based on the causal model. A causal

model [54] is a structural equation-based mathematical object that describes the causal

mechanisms of a system. Each causal model is associated with a causal graph for friendly
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Figure 4.1: The toy model.

causal inference, where causal effects are carried by the causal paths that trace arrows pointing

from the cause to the effect. Using the causal model, direct and indirect discrimination

can be respectively captured by the causal effects of the sensitive attribute on the decision

transmitted along different causal paths. To be specific, direct discrimination is modeled as

the causal effect transmitted along the direct path from the sensitive attribute to the decision.

Indirect discrimination, on the other hand, is modeled as the causal effect transmitted along

other causal paths that contain any unjustified attribute.

For example, consider a toy model of a loan application system shown in Figure

4.1. Assume that we treat Race as the sensitive attribute, Loan as the decision, and

ZipCode as the unjustified attribute that triggers redlining. Direct discrimination is then

transmitted along path Race→ Loan, and indirect discrimination is transmitted along path

Race → ZipCode → Loan. Assume that the use of Income can be objectively justified

as it is reasonable to deny a loan if the applicant has low income. In this case, path

Race → Income → Loan is explainable, which means that part of the difference in loan

issuance across different race groups can be explained by the fact that some race groups in

the dataset tend to be under-paid.

As shown above, measuring discrimination based on the causal graph requires to

measure the causal effect transmitted along certain causal paths. To this end, we employ the

technique of the path-specific effect [2,3]. We define direct/indirect discrimination as different

path-specific effects, and attempt to compute them using the observational data. In theory,

the path-specific effect is not always able to be computed from the observational data. This

situation is referred to as the unidentifiability of the path-specific effect. We show that direct
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discrimination is always identifiable, but indirect discrimination is not identifiable in some

cases. For the unidentifiable situation, we provide an upper bound and a lower bound to the

effect of indirect discrimination, which is achieved by representing the unidentifiable effect as

the expression of counterfactual statements and then scaling up and down specific components

of the expression. Based on the theoretical results, we propose effective algorithms that can

deal with both identifiable and unidentifiable situations, including algorithms for discovering

direct/indirect discrimination, as well as algorithms for precisely removing both types of

discrimination while retaining good data utility. The experiments using real datasets show

that our approaches are effective in discovering and removing discrimination, ensuring that

all types of discrimination are removed while only small utility loss is incurred.

The rest of the chapter is organized as follows. Section 4.2 summarizes the related

work. Section 4.4 proposes the criteria and algorithms for discovering and removing both

direct and indirect discrimination based on the path-specific effect. Section 4.5 deals with the

situation where the indirect discrimination cannot be exactly measured from the observational

data according to the unidentifiability of the path-specific effect. The experimental setup

and results are discussed in Section 4.6. Finally, Section 4.7 concludes the chapter.

4.2 Related Work

Discrimination discovery has been widely studied and many techniques have been

proposed in the literature. A general discussion about the literature is given in Chapter 2. In

this section, we focus on direct discrimination, indirect discrimination, and explainable effect.

In 2011, Zliobaite et al. [18] proposed “conditional discrimination”, i.e., part of

discrimination may be explained by other legally grounded attributes. The task was to

evaluate to which extent the discrimination apparent for a group is explainable on a legal

ground. The metric is based on the difference of the positive decision proportions for the

protected and non-protected groups. Hajian and Domingo [23] quantified the direct and

indirect discrimination using extend lift (elift) over association rules. Direct discrimination
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is identified if the elift of the sensitive attribute and the context attribute to the decision

attribute is larger than a threshold. Indirect discrimination exists if the elift of two context

attributes that are strongly correlated with the sensitive attributes to the decision attribute

is significant. Feldman et al. [37] studied how to remove indirect discrimination from data.

The authors modify all the non-sensitive attributes to ensure that the sensitive attribute

cannot be predicted from the non-sensitive attributes. As a result, indirect discrimination is

removed since the decision, which is determined by the non-sensitive attributes, cannot be

used to predict the sensitive attribute.

All of the above works are mainly based on correlation or association. Recently, several

studies have been devoted to analyzing discrimination from the causal perspective. Bonchi

et al. [25] proposed a framework based on the Suppes-Bayes causal network and developed

several random-walk-based methods to detect different types of discrimination. However, it

is unclear how the number of random walks is related to practical discrimination metrics.

In addition, the construction of the Suppes-Bayes causal network is impractical with the

large number of attribute-value pairs. Studies in [26–28] are built on causal modeling and the

associated causal graph, but cannot deal with indirect discrimination. The causal model [54] is

a mathematical object that describes the causal mechanisms of a system as a set of structural

equations. With well-established conceptual and algorithmic tools, the causal model provides

a general, formal, yet friendly calculus of causal effects. In this chapter, we adopt the causal

model for the quantitative measuring of both direct/indirect discrimination. Specifically,

we focus on the technique of path-specific effect [2] that measures the causal effect that is

transmitted along certain paths in the causal graph. A recent work [31] proposes similar

discrimination criteria that also consider indirect discrimination. However, they are more

simplified in order to avoid the complexity in measuring path-specific effects. In addition, [31]

suffers inherent limitations: (1) its proposed discrimination criteria can only qualitatively

determine the existence of the discrimination, but cannot quantitatively measure the amount

of discriminatory effects as we do; (2) its proposed algorithms for avoiding discrimination
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proposed only work under the linearity assumptions about the underlying causal model while

our methods make no assumption.

For the unidentifiability of the path-specific effect, a recent work [29] proposes three

principled approaches: (1) obtaining the data on exogenous variables U; (2) considering an

identifiable path-specific effect that includes the paths of interest and some other paths; and

(3) deriving bounds for unidentifiable path-specific effects, which is claimed to be an open

problem in general. In this chapter, we deal with this issue by adopting the third approach.

4.3 Preliminaries

In Chapter 3, the causal model, the causal graph, intervention, and the total causal

effect have been introduced. In this chapter, it is further assumed that the causal model is a

Markovian model, which means that all exogenous variables in U are mutually independent.

The total causal effect measures the aggregated causal effect between two attributes

over all individuals through all causal paths. The path-specific effect is an extension to the

total causal effect in the sense that the effect of the intervention is transmitted only along a

subset of causal paths from X to Y [2]. Denote a subset of causal paths by π. The π-specific

effect considers a counterfactual situation where the effect of X on Y with the intervention

is transmitted along π, while the effect of X on Y without the intervention is transmitted

along paths not in π, i.e., π̄. We denote by P (y | do(x2|π, x1|π̄)) the distribution of Y after

an intervention of changing X from x1 to x2 with the effect transmitted along π. Then, the

π-specific effect of X on Y is described as follows.

Definition 4 (Path-specific effect). Given a path set π, the π-specific effect PSEπ(x2, x1)

measures the effect of the change of X from x1 to x2 on Y = y transmitted along π. It is

given by

PSEπ(x2, x1) = P (y | do(x2|π, x1|π̄))− P (y | do(x1)) .

The identifiability of path-specific effect PSEπ(x2, x1), i.e., whether it can be computed
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Figure 4.3: The recanting witness criterion satisfied.

from the observational data, depends on the identifiability of P (y | do(x2|π, x1|π̄)). The

authors in [2] have given the necessary and sufficient condition for P (y | do(x2|π, x1|π̄)) to be

identifiable, known as the recanting witness criterion.

Definition 5 (Recanting witness criterion). Given a path set π pointing from X to Y , let W

be a node in G such that: 1) there exists a path from X to W which is a segment of a path

in π; 2) there exists a path from W to Y which is a segment of a path in π; 3) there exists

another path from W to Y which is not a segment of any path in π. Then, the recanting

witness criterion for the π-specific effect is satisfied with W as a witness.

The graphical pattern of the recanting witness criterion is known as the “kite” pattern,

as shown in Figure 4.2. Figure 4.3 shows an example where π = {(X,W,Z, Y )}. It is easy to

see that the recanting witness criterion is satisfied with W as the witness.

Theorem 1 (Identifiability of Path-specific Effect). For path-specific effect PSEπ(x2, x1),

P (y | do(x2|π, x1|π̄)) can be computed from the observational data if and only if the recanting

witness criterion for the π-specific effect is not satisfied.

If the recanting witness criterion is not satisfied, P (y | do(x2|π, x1|π̄)) can be computed

as shown in Theorem 2 [3].

Theorem 2. For the path-specific effect PSEπ(x2, x1), if the recanting witness criterion is

not satisfied, then P (y | do(x2|π, x1|π̄)) can be computed in following steps. Firstly, express

P (y | do(x1)) as the truncated factorization formula according to Eq. (3.3). Secondly, divide

the children of X other than Y into two sets Sπ and S̄π, i.e., ChX\{Y } = Sπ ∪ S̄π. Let Sπ

contain X’s each child S where edge X → S is a segment of a path in π; let S̄π contain X’s

each child S where either S is not included in any path from C to E, or edge X → S is a
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segment of a path not in π. Finally, replace values x1 with x2 for the terms corresponding to

nodes in Sπ, and keep values x1 unchanged for the terms corresponding to nodes in S̄π.

Note that the above computation requires Sπ ∩ S̄π = ∅. Theorem 1 is reflected here in

the sense that: Sπ ∩ S̄π = ∅ if and only if the recanting witness criterion for the π-specific

effect is not satisfied.

4.4 Discrimination Discovery and Removal

4.4.1 Modeling Direct/Indirect Discrimination as Path-Specific Effects

Consider a historical dataset D that contains a group of tuples, each of which describes

the profile of an individual. Each tuple is specified by a set of attributes V, including the

sensitive attributes, the decision, and the non-sensitive attributes. Among the non-sensitive

attributes, assume there is a set of attributes that cannot be objectively justified if used in

the decision making process, which we refer to as the redlining attributes denoted by R. We

denote the sensitive attribute by C associated with two domain values c− (e.g., female) and

c+ (e.g., male); denote the decision by E associated with two domain values e− (i.e., negative

decision) and e+ (i.e., positive decision). For simplifying representation, we also make two

reasonable assumptions: (1) C has no parent in the causal graph G; (2) E has no child in

the causal graph G. The first one is due to the fact that the sensitive attribute is usually an

inherent nature of an individual, and second one is because that the decision E is usually

the output of a decision-making system. We assume that a causal graph G can be built to

correctly represent the causal structure of dataset D. Many algorithms have been proposed

to learn the causal graph from data [57–60].

We consider discrimination is the causal effect of the sensitive attribute C on the

decision attribute E. As we have discussed, the total causal effect of C on E is a combination

of direct/indirect discriminatory effects and the explainable effects. To distinguish the

different effects, we model them as the causal effects transmitted along different paths. For
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direct discrimination, we consider the causal effect transmitted along the direct edge from C

to E, i.e., C → E. Define πd as the path set that contains only C → E. Then, the above

causal effect that is caused by the change of C from c− to c+ is given by the πd-specific

effect PSEπd(c
+, c−). For a better understanding, the physical meaning of PSEπd(c

+, c−) can

be explained as the expected change in decisions of individuals from protected group c−, if

the decision makers are told that these individuals were from the other group c+. When

applied to the example in Figure 4.1, it means the expected change in loan approval of the

disadvantage group (e.g., black), if the bank was instructed to treat these applicants as from

the advantage group (e.g., white). We can see that the πd-specific effect perfectly follows

the definition of direct discrimination in law and hence is an appropriate measure for direct

discrimination.

Similarly, for indirect discrimination, we consider the causal effect transmitted along

the indirect paths from C to E that contain the redlining attributes. Given the set of redlining

attributes R, we define πi as the path set that contains all the causal paths from C to E

which pass through R, i.e., each of the paths includes at least one node in R. Thus, the

above causal effect is given by the πi-specific effect PSEπi(c
+, c−). The physical meaning of

PSEπi(c
+, c−) is the expected change in decisions of individuals from protected group c−, if

the values of the redlining attributes in the profiles of these individuals were changed as if

they were from the other group c+. When applied to the example in Figure 4.1, it means

the expected change in loan approval of the disadvantage group if they had the same racial

makeups shown in the ZIP code as the advantage group. As can be seen, the πi-specific effect

also follows the definition of indirect discrimination and is appropriate for measuring indirect

discrimination.

Therefore, we have the following claim.

Claim 1. The effect of direct discrimination is captured by the πd-specific effect PSEπd(c
+, c−),

and the effect of indirect discrimination is captured by the πi-specific effect PSEπi(c
+, c−).

Based on the above path-specific effect metrics, we propose the criterion for identifying
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direct and indirect discrimination. We define that direct discrimination against protected

group c− exists if PSEπd(c
+, c−) > τ , where τ > 0 is a user-defined threshold for discrimination

depending on the law. For instance, the 1975 British legislation for sex discrimination sets

τ = 0.05, namely a 5% difference. Similarly, given the redlining attributes R, we define that

indirect discrimination against protected group c− exists if PSEπi(c
+, c−) > τ . To avoid

reverse discrimination, we do not specify which group is the protected group. As a result, we

give the following criterion.

Theorem 3. Given the sensitive attribute C, the decision E, and redlining attributes R,

direct discrimination exists if either PSEπd(c
+, c−) > τ or PSEπd(c

−, c+) > τ holds, and

indirect discrimination exists if either PSEπi(c
+, c−) > τ or PSEπi(c

−, c+) > τ holds.

The following theorem shows how to compute PSEπd(c
+, c−) and PSEπi(c

+, c−) from

the observational data by using Theorem 2.

Theorem 4. The πd-specific effect PSEπd(c
+, c−) is given by

PSEπd(c
+, c−) =

∑
Q

(
P (e+|c+,q)P (q|c−)

)
− P (e+|c−), (4.1)

where Q is the parents of E except C, i.e., Q = PaE\{C}. For the πi-specific effect

PSEπi(c
+, c−), divide C’s children other than E into Sπi and S̄πi whose definitions are the

same as those in Theorem 2. If Sπi ∩ S̄πi = ∅, then PSEπi(c
+, c−) is given by

PSEπi(c
+, c−) =

∑
v′

(
P (e+|c−,q)

∏
G∈Sπi

P (g|c+,paG\{C})

×
∏

H∈S̄πi\{E}
P (h|c−,paH\{C})

∏
O∈V\ChC

P (o|paO)

)
− P (e+|c−),

(4.2)

where V′ = V\{C,E}. It can be simplified to

PSEπi(c
+, c−) =

∑
q

(
P (e+|c−,q)P (q|c+)

)
− P (e+|c−), (4.3)
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if πi contains all causal paths from C to E except direct edge C → E.

Proof. According to the definition of PSEπd(c
+, c−), we have

PSEπd(c
+, c−) = P (e+ | do(c+|πd , c−|π̄d))− P (e+ | do(c−)).

Since C has no parent, it is straightforward that P (e+ | do(c−)) = P (e+|c−). For P (e+ |

do(c+|πd , c−|π̄d)), following Theorem 2, we express P (e+|c−) as the truncated factorization

formula, given by

P (e+|c−) =
∑
v′

(
P (e+|c−,q)

∏
V ∈V′

P (v | paV )

)
, (4.4)

where V′ = V\{C,E}. It can be shown that
∏

V ∈V′ P (v | paV ) = P (v′|c−). In fact, if we

sort all nodes in V′ according to the topological ordering as {V1, · · · , Vj, · · · }, we can see that

all parents of each node Vj are before it in the ordering. In addition, since C has no parent,

it must be Vj’s non-descendant; since E has no child, it cannot be Vj’s parent. Thus, based

on the local Markov condition, we have P (vj | paVj ) = P (vj | c−, v1, · · · , vj−1). According to

the chain rule we obtain P (v′|c−). Therefore, it follows that

P (e+|c−) =
∑
q

(
P (e+|c−,q)P (q|c−)

)
.

Then, we divide the children of C into Sπd and S̄πd , and replace c− with c+ for the

terms corresponding to nodes in Sπd . Note that Sπd contains only one node E. As a result,

we have

P (e+ | do(c+|πd , c−|π̄i)) =
∑
q

(
P (e+|c+,q)P (q|c−)

)
,

which leads to Eq. (4.1).
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For the indirect discrimination, by definition we have

PSEπi(c
+, c−) = P (e+ | do(c+|πi , c−|π̄i))− P (e+|do(c−)).

To compute the first term, we also express P (e+|c−) as Eq. (4.4), and divide the children of

C into Sπi and S̄πi . Then, node set V′ can be divided into three disjoint subsets: Sπi , S̄πi

and V′\ChC . We replace c− with c+ only for the terms corresponding to nodes in Sπi . As a

result, we obtain Eq. (4.2).

If πi contains all causal paths from C to E except C → E, it means that Sπi =

ChC\{E} and S̄πi = ∅. Note that

∏
G∈ChC\{E}

P (g | c+,paG\{C})
∏

O∈V′\ChC

P (o | paO) =
∏
V ∈V′

P (v | paV ),

which can be similarly shown to equal to P (v′|c+). As a result we obtain Eq. (4.3).

Theorem 4 shows that PSEπd(c
+, c−) can always be computed from the observational

data but PSEπi(c
+, c−) may not1. This is because the recanting witness criterion for the

πd-specific effect is guaranteed to be not satisfied, but the recanting witness criterion for the

πi-specific effect might be satisfied. The situation where PSEπi(c
+, c−) cannot be computed

is referred to as the unidentifiable situation. How to deal with the unidentifiable situation

will be discussed later in the next section.

The following two propositions further show two properties of the path-specific effect

metrics.

Proposition 1. If path set π contains all causal paths from C to E, then we have

PSEπ(c+, c−) = TE (c+, c−) = P (e+|c+)− P (e+|c−).

1Note that Eq. (4.3) can still be computed from the observational data since S̄πi
= ∅ when πi contains all

causal paths from C to E except C → E.
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The proof can be directly obtained from Definition 4, Definition 3 and Eq. (3.3).

P (e+|c+) − P (e+|c−) is known as the risk difference [56] widely used for discrimination

measurement in the anti-discrimination literature. Therefore, the path-specific effect metrics

can be considered as a significant extension to the risk difference for explicitly distinguishing

the discriminatory effects of direct and indirect discrimination from the total causal effect.

Proposition 2. For any path sets πd and πi, we do not necessarily have PSEπd(c
+, c−) +

PSEπi(c
+, c−) = PSEπd∪πi(c

+, c−).

The proof can be obtained from Definition 4 and Theorem 2. In fact, as shown in [61],

the above equality holds if all functions in F of the causal model are linear, and πi contains all

causal paths from C to E other than C → E. Thus, Proposition 2 implies that if the causal

relationship is not linear, then a linear connection between direct and indirect discrimination

also does not exist.

4.4.2 Discovery Algorithm

We propose a Path-Specific based Discrimination Discovery (PSE-DD) algorithm

based on Theorem 3. It first builds the causal graph from the historical dataset, and then

computes PSEπd(·) and PSEπi(·) according to Eq. (4.1) and (4.2). The procedure of the

algorithm is shown in Algorithm 1.

The complexity of line 6 depends on how to identify Sπi and S̄πi . A straightforward

method is to find all paths in πi, and for C’s each child S check whether C → S is contained

in any path in πi. However, finding all paths between two nodes in a DAG has an exponential

complexity. In our algorithm, we examine the existence of a path from S to E passing

through R. It can be easily observed that, a node S belongs to Sπi if and only if there exists

a path from S to E passing through R (a path from S to E passing through R also includes

the path where S itself belongs to R). Similarly, S belongs to S̄πi if and only if there does

not exist a path from S to E passing through R. The subroutine of finding Sπi and S̄πi is

presented in Algorithm 2, which checks whether there exists a node R ∈ R so that R is S’s
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Algorithm 1: PSE-DD

Input : A historical dataset D, the sensitive attribute C, the decision attribute
E, redlining attributes R, a threshold τ .

Output : Direct/indirect discrimination judged, judgei.
1 G = buildCausalNetwork(D);
2 judged = judgei = false;
3 Compute PSEπd(·) according to Eq. (4.1);
4 if PSEπd(c

+, c−) > τ ‖ PSEπd(c
−, c+) > τ then

5 judged = true;

6 Call subroutine [Sπi ,S̄πi ] = DivideChildren(G, C, E,R);
7 if Sπi ∩ S̄πi 6= ∅ then
8 judgei = unknown;
9 return [judged, judgei];

10 Compute PSEπi(·) according to Eq. (4.2);
11 if PSEπi(c

+, c−) > τ ‖ PSEπi(c
−, c+) > τ then

12 judgei = true;

13 return [judged, judgei];

descendant and E is R’s descendant. Since the descendants of all the nodes involved in the

algorithm can be obtained by traversing the network starting from C within the time of

O(|E|), the computational complexity of the subroutine is given by O(|V|2 + |E|).

Algorithm 2: subroutine DivideChildren

Input : The causal graph G, the sensitive attribute C, the decision attribute E,
redlining attributes R.

Output : Sπi and S̄πi .
1 Sπi = ∅, S̄πi = ∅;
2 foreach S ∈ ChC\{E} do
3 foreach R ∈ R do
4 if R ∈ DeS ∪ {S} && E ∈ DeR then
5 Sπi = Sπi ∪ {S};
6 else
7 S̄πi = S̄πi ∪ {S};

8 return [Sπi,S̄πi ];

The computational complexity of PSE-DD also depends on the complexities of building

the causal graph and computing the path-specific effect according to Eq. (4.1) or (4.2). Many

researches have been devoted to improving the performance of network construction [60,62,63]
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and probabilistic inference in causal graphs [64, 65]. The complexity analysis can be found in

these related literature.

4.4.3 Removal Algorithm

When direct or indirect discrimination is discovered for a dataset, the discriminatory

effects need to be removed before the dataset is released for predictive analysis. A naive

approach would be simply deleting the sensitive attribute from the dataset, which often

incurs significant utility loss. In addition, this approach can eliminate direct discrimination,

but indirect discrimination still presents.

We propose a Path-Specific Effect based Discrimination Removal (PSE-DR) algorithm

to remove both direct and indirect discrimination. The general idea is to modify the causal

graph and then use it to generate a new dataset. Specifically, we modify the CPT of E, i.e.,

P (e|paE), to obtain a new CPT P ′(e|paE), so that the direct and indirect discriminatory

effects are below the threshold τ . To maximize the utility of the modified dataset, we minimize

the Euclidean distance between the joint distribution of the original causal graph (denoted by

P (v)) and the joint distribution of the modified causal graph (denoted by P ′(v)). As a result,

we obtain the following quadratic programming problem with P ′(e|paE) as the variables.

minimize
∑
v

(
P ′(v)− P (v)

)2

subject to PSEπd(c
+, c−) ≤ τ, PSEπd(c

−, c+) ≤ τ,

PSEπi(c
+, c−) ≤ τ, PSEπi(c

−, c+) ≤ τ,

∀paE, P ′(e+ | paE) + P ′(e− | paE) = 1,

∀paE, e, P ′(e | paE) ≥ 0,

where P ′(v) and P (v) are computed according to Eq. (3.1) using P ′(e|paE) and P (e|paE)

respectively, and PSEπd(·) and PSEπi(·) are computed according to Eq. (4.1) and (4.2)

respectively using P ′(e|paE). The optimal solution is obtained by solving the quadratic
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programming problem. After that, the joint distribution of the modified causal graph is

computed using Eq. (3.1), and the new dataset is generated based on the joint distribution.

The procedure of PSE-DR is shown in Algorithm 3

Algorithm 3: PSE-DR

Input : The historical dataset D, the sensitive attribute C, the decision
attribute E, redlining attributes R, a threshold τ .

Output : Modified dataset D∗.
1 [judged, judgei] = PSE-DD(D, C, E,R, τ);
2 if [judged, judgei] == [false, false] then
3 return D;

4 G = buildCausalNetwork(D);
5 if judgei == unknown then
6 Call subroutine GraphPreprocess ;

7 Obtain the modified CPT of E by solving the quadratic programming problem;
8 Calculate P ∗(v) according to Eq. (3.1) using the modified CPTs;
9 Generate D∗ based on P ∗(v);

10 return D∗;

As stated in Theorems 1 and 4, when the recanting witness criterion is satisfied,

the πi-specific effect cannot be estimated from the observational data. However, the “kite”

pattern implies potential indirect discrimination as there exist causal paths from C to E

passing through the redlining attributes. Although the indirect discriminatory effect cannot

be accurately measured, from a practical perspective, it is still meaningful to ensure non-

discrimination while preserving reasonable data utility. As a straightforward method, we can

first modify the causal graph to remove the “kite” pattern, and then obtain the modified

CPT of E by solving the quadratic programming problem similar to the identifiable situation.

To remove the “kite” pattern, for each node S ∈ Sπi ∩ S̄πi , we cut off all the causal paths

from S to E that pass through R, so that S would not belong to Sπi any more. Then, we

must have Sπi ∩ S̄πi = ∅ after the modification. When cutting off the paths, we focus on the

edge from E’s each parent Q, i.e., Q→ E. If there exists a path from S to Q passing through

R, then edge Q→ E is removed from the network. The pseudo-code of this procedure called

GraphPreprocess is shown below, which is added as a subroutine in line 5 of PSE-DR.
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Algorithm 4: subroutine GraphPreprocess

Input : The causal graph G, the sensitive attribute C, the decision attribute E,
redlining attributes R.

1 foreach S ∈ Sπi ∩ S̄πi do
2 foreach Q ∈ PaE do
3 foreach R ∈ R do
4 if R ∈ DeS && Q ∈ DeR then
5 Remove edge Q→ E from G;
6 Break;

The computational complexity of PSE-DR depends on the complexity of solving

the quadratic programming problem. It can be easily shown that, the coefficients of the

quadratic terms in the objective function form a positive definite matrix. According to [66],

the quadratic programming can be solved in polynomial time. Finally, it is also worth noting

that our approach can be easily extended to handle the situation where either direct or

indirect discrimination needs to be removed.

4.5 Dealing with Unidentifiable Situation

Under the unidentifiable situation where the recanting witness criterion is satisfied,

PSE-DD and PSE-DR provide workable but crude solutions to the discrimination discovery

and removal. In this section, we develop the refined discrimination discovery and removal

algorithms by deriving upper and lower bounds for the unidentifiable indirect discrimination.

Compared to the presence of the “kite” pattern, the bounds can be used as better indicators

for discovering indirect discrimination, i.e., the upper bound smaller than τ indicates no

indirect discrimination, while the lower bound larger than τ indicates its existence. We also

prove that the refined removal algorithm is at least as good as PSE-DR in term of preserving

the data utility. We start by giving several necessary preliminaries in addition to those

presented in Section 4.3.
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4.5.1 Preliminaries

In Section 4.3, we have shown that variables Y under an intervention do(x) is still a

set of random variables, whose distribution P (y | do(x)) is different from the observational

distribution of Y. We denote Y under intervention do(x) by Yx, i.e., we define

P (yx) , P (Yx = y) , P (y | do(x)).

We can interpret Yx as a counterfactual statement, which represents “the value that Y would

have obtained, had X been x”. From the definition of the causal model we can observe that,

if all the exogenous variables U are given, then Yx are no longer random variables but are

fixed values. We denote the Yx under the context of U = u by Yx(u). In the following we

present several properties regarding the counterfactual statement, which are proved to be

held in the context of Markovian model [54].

Property 1. For any variable Y , YPaY is independent of the counterfactual statements of

all Y ’s non-descendants.

Property 2. For any variable Y , we have

P (ypaY ) = P (y | paY ).

Property 3. For any set of endogenous variables Y and any set of endogenous variables X

disjoint of {Y,PaY}, we have

P (ypaY,x) = P (ypaY
).

Property 4. For any three sets of endogenous variables X,Y,Z,

Zx(u) = z =⇒ Yx(u) = Yx,z(u).
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Property 1 reflects the local Markov condition. Property 2 renders every parent set

PaY exogenous relative to its child Y . Property 3 reflects the insensitivity of Y to any

intervention once its direct causes are held constant. Property 4 states that, if we know the

values that Z would have in certain situation, then the values of any other variables Y are

equivalent to that if we perform an intervention to force Z to z.

Next, we introduce an essential concept regarding to the unidentifiability of the path-

specific effect by using the notion of counterfactual statement. Straightforwardly, by Yx(u)

and P (u), we can represent P (yx) as

P (yx) =
∑

u:Yx(u)=y

P (u). (4.5)

In the same way, we can define the joint distribution of multiple counterfactual statements

(which cannot be defined by using the do-operator), i.e., P (Yx = y,Yx′ = y′) or P (yx,y
′
x′),

which represents the probability to “Y would be y if X = x and Y would be y′ if X = x′”,

given as

P (yx,y
′
x′) =

∑
{u:Yx(u)=y,Yx′ (u)=y′}

P (u).

When x 6= x′, Yx and Yx′ cannot be measured simultaneously. In fact, it is known that

P (yx,y
′
x′) is unidentifiable from the observational data even in the Markovian model [67].

We will show that the unidentifiability of the P (yx,y
′
x′) is the source of the unidentifiability

of the path-specific effect satisfying the recanting witness criterion. However, P (yx,y
′
x′) is

certainly bounded by the following condition:

∑
y′

P (yx,y
′
x′) = P (yx). (4.6)

4.5.2 Bounding Indirect Discrimination

Recalling the definition of the path-specific effect (Definition 4), in the πi-specific

effect, P (e+ | do(c+|πi , c−|π̄i)) represents the probability of E = e+ after the intervention of
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changing C from c− to c+ with the effect transmitted along πi. By using the notation of the

counterfactual statement, we can similarly denote the value of E after the intervention by

Ec+ . However, keep in mind that different from the original counterfactual statement, here

for Ec+ the effect of the intervention on C is transmitted only along πi.

For any variable Y other than C,E, we can also denote their values that would be

obtained after the intervention as counterfactual statement Yc+ . Similar to E, the value of

Yc+ depends on whether it belongs to a path in πi. If Y belongs to any path in πi, then the

value of Yc+ will be affected by the intervention. If Y does not belong to any path in πi, then

the value of Yc+ will not be affected by the intervention and remain the same as if C = c−.

Based on the causal effect transmission, to obtain Yc+ , we need to know the value of Y ’s each

ancestor W affected by the intervention if there exists a path from W to Y that is a segment

of a path in πi; or we need to know the value of W not affected by the intervention if there

exists a path from W to Y that is not a segment of any path in πi. As can be seen, if W has

two emanating edges where one belongs to a path in πi and the other one does not belong to

any path in πi, we need to simultaneously know the value of W affected by the intervention

as well as the one not affected by the intervention. To distinguish these two counterfactual

situations, we denote the former by Wc+ and the latter by Wc− . According to the definition

of the recanting witness criterion (Definition 5), it can be easily shown that W is a node

where both Wc+ and Wc− are needed if and only if W is a witness for the recanting witness

criterion. Here we call such node W a witness variable/node.

The above analysis shows that, for each witness variable W , we need to consider two

sets of realizations, one obtained by Wc+ (denoted as w+), and the other obtained by Wc−

(denoted as w−). For each variable Y that is not a witness variable, we only consider one set

of realizations obtained by Yc+ .

In the following, we derive a general expression of SEπi(c
+, c−) and then develop its

upper and lower bounds when subject to the recanting witness criterion. We first provide a

property and a proposition that are needed for the derivation.
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Similar to Property 4, in the path-specific effect, if we know the two realizations that

witness variables W would have in both counterfactual situations, then the values of any

other variable Y are equivalent to that if we perform an intervention to force W to these

realizations. Thus, we obtain the following property that is directly extended from Property

4.

Property 5. For endogenous variables X, Y,W , assume that W is a witness variable, x, x′

are two realizations of X, and w,w′ are two realizations of W . For any π-specific effect of X

we have

Wx(u) = w, Wx′(u) = w′ =⇒ Yx(u) = Yx,w∗(u),

where w∗ means that its value is specified by w if there exists a path from W to Y that is a

segment of a path in π, and specified by w′ otherwise.

Based on Properties 3, 4 and 5, we can prove the following proposition.

Proposition 3. In πi-specific effect PSEπi(c
+, c−), for any endogenous variable Y , use pa+

Y

to denote the realization of Y ’s parents meaning that if PaY contains any witness node W or

C, its value is specified by w+ or c+ if edge W → Y belongs to a path in πi, and specified

by w− or c− otherwise; and use pa−Y to denote the realization of Y ’s parents meaning that

if PaY contains any witness node W or C, its value is specified by w− or c−. If Y is not a

witness variable, we have

P (yc+ , · · · ) =


P (ypa+

Y
, · · · ) if Y belongs to any path in πi,

P (ypa−Y
, · · · ) otherwise,

(4.7)

and if Y is a witness variable, we have

P (yc+ , · · · ) = P (ypa+
Y
, · · · ) and P (yc− , · · · ) = P (ypa−Y

, · · · ), (4.8)

where · · · represents all other variables.
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Proof. To prove Eq. (4.7), denote Y ’s parents by Z, i.e., X = PaY . Assume that X contains

no witness node or C. Then P (yc+ , · · · ) can be written as P (yc+ ,xc+ , · · · ). According to Eq.

(4.5), we have

P (yc+ ,xc+ , · · · ) =
∑

{u:Yc+ (u)=y,Xc+ (u)=x,··· }
P (u).

Based on Property 4, we have

Xc+(u) = x =⇒ Yc+(u) = Yc+,x(u).

Since X = PaY , according to Property 3 we have

Yc+,x(u) = Yx(u).

Therefore, it follows that

P (yc+ ,xc+ , · · · ) =
∑

{u:Yx(u)=y,Xc+ (u)=x,··· }
P (u) = P (yx,xc+ , · · · ),

which can be re-written as P (ypa+
Y
, · · · ) according to the definition of pa+

Y .

Assume that X contains any witness node W or C. Then by applying Property 5, we

can similarly obtain P (yc+ , · · · ) = P (yx∗ , · · · ), where x∗ means that if any witness node W

or C connects Y with a segment of a path in πi then its value is specified by w+ or c+, and

specified by w− or c− otherwise. According to the definition of pa+
Y and pa−Y , P (yx∗ , · · · ) can

be re-written as P (ypa+
Y
, · · · ) if Y belongs to any path in πi, and P (ypa−Y

, · · · ) otherwise.

If Y is a witness node, then the first case and second case of Eq. (4.8) can be proved

similarly to the first case and second case of Eq. (4.7) respectively.

For ease of representation, we divide all nodes on the causal paths from C to E (except

C and E) into three disjoint subsets: the subset of witness nodes (denoted by W), the subset

of nodes not in W that belong to paths in πi (denoted by A), and the subset of nodes not in

45



C W E

A1

B

A2

πi = {(C,A2, E),
Wc+

Wc−
(C,W,A1, E)}

Figure 4.4: πi-specific effect satisfying recanting witness criterion.

W that do not belong to any path in πi (denoted by B)2. An example is shown in Figure 4.4

where W = {W}, A = {A1, A2}, and B = {B}. The notations on the edges represent the

specification of the values of each node’s parents.

In Theorem 5 we give the general expression of PSEπi(c
+, c−). Since by definition we

have PSEπi(c
+, c−) = P (e+ | do(c+|πi , c−|π̄i))−P (e+|c−) where the second term is trivial, we

focus on the general expression of P (e+ | do(c+|πi , c−|π̄i)).

Theorem 5. When subject to the recanting witness criterion, P (e+ | do(c+|πi , c−|π̄i)) is given

by

P (e+ | do(c+|πi , c−|π̄i))

=
∑

a,b,w+,w−

P (e+|c−,q)
∏
A∈A

P (a|pa+
A)
∏
B∈B

P (b|pa−B)
∏
W∈W

P (w+

pa+
W

, w−
pa−W

).
(4.9)

Proof. For simplicity and without loss of generality, assume that all nodes are along the

causal paths from C to E. We can re-write distribution P (e+ | do(c+|πi , c−|π̄i)) as the sum of

the joint distribution as follows.

P (e+ | do(c+|πi , c−|π̄i)) , P (Ec+ = e+)

=
∑

a,b,w+,w−

P (Ec+ = e+,Ac+ = a,Bc+ = b,Wc+ = w+,Wc− = w−)

,
∑

a,b,w+,w−

P (e+
c+ , ac+ , · · ·︸ ︷︷ ︸

A∈A

, bc+ , · · ·︸ ︷︷ ︸
B∈B

, w+
c+ , w

−
c− , · · ·︸ ︷︷ ︸

W∈W

).

2Redlining attributes can be contained in W and A but cannot be contained in B.
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By using Proposition 3, it follows that

P (e+|do(c+|πi , c−|π̄i)) =
∑

a,b,w+,w−

P (e+
c−,q, apa+

A
, · · ·︸ ︷︷ ︸

A∈A

, bpa−B
, · · ·︸ ︷︷ ︸

B∈B

, w+

pa+
W

, w−
pa−W

, · · ·︸ ︷︷ ︸
W∈W

).

According to Property 1, the counterfactual statement of each variable is independent of all

its non-descendants. Thus, we have

P (e+ | do(c+|πi , c−|π̄i)) =
∑

a,b,w+,w−

P (e+
c−,q)

∏
A∈A

P (apa+
A

)
∏
B∈B

P (bpa−B
)
∏
W∈W

P (w+

pa+
W

, w−
pa−W

).

According to Property 2, it follows that

P (e+ | do(c+|πi , c−|π̄i))∑
a,b,w+,w−

P (e+|c−,q)
∏
A∈A

P (a|pa+
A)
∏
B∈B

P (b|pa−B)
∏
W∈W

P (w+

pa+
W

, w−
pa−W

).
(4.10)

Hence the theorem is proven.

We can see that Eq. (4.10) contains the joint distribution of counterfactual state-

ments P (w+

pa+
W

, w−
pa−W

) which is unidentifiable from the observational data, making P (e+ |

do(c+|πi , c−|π̄i)) and hence the πi-specific effect PSEπi(c
+, c−) unidentifiable.

Next, we show how to bound P (e+ | do(c+|πi , c−|π̄i)) by scaling up and down certain

terms in Eq. (4.10) and then eliminating P (w+

pa+
W

, w−
pa−W

) using Eq. (4.6). For ease of

representation, we further divide A into two disjoint subsets: (1) the set of nodes that are

involved in the “kite” pattern, i.e., it is contained in a path in πi that also contains any

node in W, denoted by A1; (2) the complementary set, i.e., those not involved in the “kite”

pattern, denoted by A2. Then, we give the upper and lower bounds of P (e+ | do(c+|πi , c−|π̄i))

as shown in Theorem 6.
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Theorem 6. The upper bound of P (e+ | do(c+|πi , c−|π̄i)) is given by

∑
a2,b,w−

max
a1,w+

{P (e+|c−,q)}
∏
A∈A2

P (a|pa+
A)
∏
B∈B

P (b|pa−B)
∏
W∈W

P (w−|pa−W ), (4.11)

and the lower bound of P (e+ | do(c+|πi , c−|π̄i)) is given by

∑
a2,b,w−

min
a1,w+

{P (e+|c−,q)}
∏
A∈A2

P (a|pa+
A)
∏
B∈B

P (b|pa−B)
∏
W∈W

P (w−|pa−W ). (4.12)

Proof. It is straightforward that

P (e+|c−,q) ≤ max
a1,w+

{P (e+|c−,q)}.

Thus, from Eq. (4.9) we have

P (e+ | do(c+|πi , c−|π̄i)) ≤
∑

a1,a2,b,w+,w−

max
a1,w+

{P (e+|c−,q)}
∏
A∈A1

P (a|pa+
A)

∏
A∈A2

P (a|pa+
A)
∏
B∈B

P (b|pa−B)
∏
W∈W

P (w+

pa+
W

, w−
pa−W

).

We can identify three properties for any node A ∈ A1: (1) A cannot be the parent of

any node A′ in A2. If not so, we have a path that contains C,A,A′, E and any node W ∈W.

This path must belong to πi, otherwise A is contained in both a path in πi and a path not in

π1, making A a witness node. Thus, A′ is also involved in the “kite” pattern. (2) A cannot

be the parent of any node in B. Otherwise, A belongs to a path in πi and also a path not in

πi, making A a witness node. (3) A cannot be the parent of any node in W, otherwise A

also becomes a witness node. Based on the three properties, the RHS of above inequality
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equals to

∑
a2,b,w+,w−

 max
a1,w+

{P (e+|c−,q)}
∏

A∈A2

P (a|pa+
A)
∏
B∈B

P (b|pa−B)∏
W∈W

P (w+

pa+
W

, w−
pa−W

)
∑
a1

∏
A∈A1

P (a|pa+
A)


=

∑
a2,b,w+,w−

max
a1,w+

{P (e+|c−,q)}
∏
A∈A2

P (a|pa+
A)
∏
B∈B

P (b|pa−B)
∏
W∈W

P (w+

pa+
W

, w−
pa−W

).

Then, we can similarly identify two properties for any node W ∈W and its realization

w+: (1) w+ cannot be involved in pa+
A for any A ∈ A2, otherwise there exists a path in πi

that contains W,A, making A be involved in the “kite” pattern; (2) w+ cannot be involved

in pa−B for any B ∈ B, which is by the definition of B. Thus, the above expression further

becomes

∑
a2,b,w−

max
a1,w+

{P (e+|c−,q)}
∏
A∈A2

P (a|pa+
A)
∏
B∈B

P (b|pa−B)
∑
w+

∏
W∈W

P (w+

pa+
W

, w−
pa−W

)

=
∑

a2,b,w−

max
a1,w+

{P (e+|c−,q)}
∏
A∈A2

P (a|pa+
A)
∏
B∈B

P (b|pa−B)
∏
W∈W

P (w−|pa−W ).

By using P (e+|c−,q) ≥ mina1,w+{P (e+|c−,q)}, similarly we can prove the lower bound.

From Theorem 6 we can directly obtain the upper bound ub(PSEπi(c
+, c−)) and lower

bound lb(PSEπi(c
+, c−)) of PSEπi(c

+, c−).

4.5.3 Algorithms for Unidentifiable Situation

Based on the derived bounds of the indirect discrimination, we can refine the proposed

discovery algorithm PSE-DD to better deal with the unidentifiable situation, as shown

in PSE-DD∗ (Algorithm 5). On the other hand, we can also refine the proposed removal

algorithm PSE-DR by replacing SEπi(c
+, c−) and SEπi(c

−, c+) in the constraints of the

quadratic programming with ub(SEπi(c
+, c−)) and ub(SEπi(c

−, c+)). We refer to this new

quadratic programming as the adjusted quadratic programming problem. The refined removal
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Algorithm PSE-DR∗ is shown in Algorithm 6.

Algorithm 5: PSE-DD∗

Input : The historical dataset D, the sensitive attribute C, the decision
attribute E, redlining attributes R, a threshold τ .

Output : Direct/indirect discrimination judged, judgei.
1 G = buildCausalNetwork(D);
2 judged = judgei = false;
3 Compute SEπd(·) according to Eq. (4.1);
4 if SEπd(c

+, c−) > τ ‖ SEπd(c
−, c+) > τ then

5 judged = true;

6 Call subroutine [Sπi ,S̄πi ] = DivideChildren(G, C, E,R);
7 if Sπi ∩ S̄πi 6= ∅ then
8 Compute ub(SEπi(c

+, c−)), lb(SEπi(c
+, c−)), lb(SEπi(c

−, c+)),
ub(SEπi(c

−, c+)) according to Eq. (4.11), (4.12);
9 if ub(SEπi(c

+, c−)) ≤ τ & ub(SEπi(c
−, c+)) ≤ τ then

10 judgei = false;
11 else if lb(SEπi(c

+, c−)) > τ ‖ lb(SEπi(c
−, c+)) > τ then

12 judgei = true;
13 else
14 judgei = unknown;

15 return [judged, judgei];

16 Compute SEπi(·) according to Eq. (4.2);
17 if SEπi(c

+, c−) > τ ‖ SEπi(c
−, c+) > τ then

18 judgei = true;

19 return [judged, judgei];

The following proposition shows that, the adjusted quadratic programming will at

least produce an equivalently good solution as the quadratic programming after performing

subroutine GraphPreprocess. This implies that PSE-DR∗ performs at least as good as PSE-DR

in term of the data utility preserving. Our experiments in Section 4.6 show that PSE-DR∗

outperforms PSE-DR in the practical situations.

Proposition 4. The modified CPT of E obtained from the quadratic programming after

performing GraphPreprocess is a feasible solution of the adjusted quadratic programming

problem.

Proof. Firstly consider algorithm PSE-DR. Denote by G ′ the causal graph obtained after the
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Algorithm 6: PSE-DR∗

Input : The historical dataset D, the sensitive attribute C, the decision
attribute E, redlining attributes R, a threshold τ .

Output : Modified dataset D∗.
1 [judged, judgei] = PSE-DD∗(D, C, E,R, τ);
2 if [judged, judgei] == [false, false] then
3 return D;

4 G = buildCausalNetwork(D);
5 if judgei == unkonwn then
6 Obtain the modified CPT of E by solving the adjusted quadratic

programming problem;

7 else
8 Obtain the modified CPT of E by solving the original quadratic programming

problem;

9 Calculate P ∗(v) using the modified CPTs and generate D∗;
10 return D∗;

GraphPreprocess subroutine, denote by Q∗ (Q∗ ⊆ Q) the parents of E in G ′, and denote by

P ∗(e|c,q∗) the modified CPT of E obtained by solving the quadratic programming problem.

Note that in G ′, based on the local Markov condition, P ∗(e|c,q∗) = P ∗(e|c,q) for all q

that q∗ ⊆ q. According to the constraints in the quadratic programming, the indirect

discrimination based on the modified CPT of E is bounded by τ .

Now consider the original causal graph G with E’s CPT P ∗(e|c,q) = P ∗(e|c,q∗) for

all q that q∗ ⊆ q. We can see that causal graph G is actually equivalent to causal graph

G ′, hence the indirect discrimination measured should also be the same3. In the following,

we show that the indirect discrimination measured in G based on P ∗(e|c,q) equals to its

upper bound given in Theorem 6, which means that P ∗(e|c,q) satisfies the constraints of the

adjusted quadratic programming, and hence is a feasible solution of the adjusted quadratic

programming problem.

3In fact, it can be easily shown that the indirect discrimination measured in G′ based on Eq. (4.2) is
equivalent to the indirect discrimination measured in G based on Eq. (4.10).
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As shown in Theorem 5, the first term in Eq. (4.9) is given by

∑
a,b,w+,w−

(
P ∗(e+|c−,q)

∏
A∈A

P (a|pa+
A)
∏
B∈B

P (b|pa−B)
∏
W∈W

P (w+

pa+
W

, w−
pa−W

)

)

=
∑

a,b,w+,w−

(
P ∗(e+|c−,q∗)

∏
A∈A

P (a|pa+
A)
∏
B∈B

P (b|pa−B)
∏
W∈W

P (w+

pa+
W

, w−
pa−W

)

)
.

Similar to Theorem 6, set A can be divided into two subsets A1 and A2. In addition to

the properties shown in the proof of Theorem 6, we further identify two properties that appear

after executing GraphPreprocess : (1) any node A ∈ A1 cannot belong to Q∗, otherwise the

“kite” pattern still exists, contradicting to that GraphPreprocess removes the “kite” pattern;

(2) for similar reason w+ of any W ∈W cannot be involved in q∗. Thus, the above expression

becomes

∑
a2,b,w−

P ∗(e+|c−,q∗)
∏
A∈A2

P (a|pa+
A)
∏
B∈B

P (b|pa−B)
∏
W∈W

P (w−|pa−W ). (4.13)

Now back to the upper bound. Consider the first term of Eq. (4.11), which is given by

∑
a2,b,w−

max
a1,w+

{P (e+|c−,q∗)}
∏
A∈A2

P (a|pa+
A)
∏
B∈B

P (b|pa−B)
∏
W∈W

P (w−|pa−W ). (4.14)

As stated, a1 and w+ cannot be involved in q∗. Thus, the maximization operation on

P (e+|c−,q∗) has no effect, making Eq. (4.13) and (4.14) equivalent. Hence, the the proposition

is proved.

4.6 Experiments

In this section, we conduct experiments using two real datasets: the Adult dataset [68]

and the Dutch Census of 2001 [18]. The description of the two datasets can be founded in

Appendix A.1. We evaluate our discovery and removal algorithms under both identifiable

and unidentifiable situations. For comparison, we involve the local massaging (LMSG) and
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local preferential sampling (LPS ) algorithms proposed in [18] and disparate impact removal

algorithm (DI ) proposed in [37, 69]. The causal graphs are constructed and presented by

utilizing Tetrad [70]. We employ the original PC algorithm [57] and set the significance

threshold 0.01 for conditional independence testing in causal graph construction. The

quadratic programming is solved using CVXOPT [71]. By default, the discrimination

threshold τ is set as 0.05. The preprocessed data and algorithm implementations are available

at http://tiny.cc/pse-fairness.

4.6.1 Discrimination Discovery

For the Adult dataset, due to the sparse data issue and the convention in collecting

features by social-platforms [72], we binarize each attribute’s domain values into two classes

to reduce the domain sizes. We use three tiers in the partial order for temporal priority:

sex, age, native country, race are defined in the first tier, edu level and marital status

are defined in the second tier, and all other attributes are defined in the third tier. The

constructed causal graph is shown in Figure 4.5a. We treat sex as the sensitive attribute,

income as the decision, and marital status as the redlining attribute. Then set πd contains

the edge pointing from sex to income, and set πi contains all the causal paths from sex to

income that pass through marital status. As can be seen, the πi-specific effect does not

satisfy the recanting witness criterion. By computing the path-specific effects, we obtain that

SEπd(c
+, c−) = 0.025 and SEπi(c

+, c−) = 0.175. By setting τ = 0.05, the results indicate

no direct discrimination but significant indirect discrimination against females according to

our criterion. In [18], it has been shown that each of the attributes relationship, age and

working hours can explain some of the discrimination. However, no conclusion regarding

direct/indirect discrimination is drawn.

For the Dutch Census of 2001 dataset, similarly, we binarize the domain values of

attribute age due to its large domain size. Three tiers are used in the partial order for

temporal priority: sex, age, country birth are in the first tire, edu is in the second tire, and
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(a) The Adult dataset.

(b) The Dutch census of 2001 dataset.

Figure 4.5: The constructed causal graphs: the blue octagon node represents the sensitive
attribute, the green double-octagon node represents the decision, and the red rectangle nodes
represent represent the (potential) redlining attributes.

all other attributes are in the third tire. The constructed causal graph is shown in Figure 4.5b.

We treat sex as the sensitive attribute, occupation as the decision, and marital status as

the redlining attribute. In this case, the recanting witness criterion is also not satisfied. For

this dataset, we obtain SEπd(c
+, c−) = 0.220 and SEπi(c

+, c−) = 0.001, indicating significant

direct discrimination but no indirect discrimination against females.
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Table 4.1: Discrimination in the modified data (τ = 0.05), and comparison of utility with
varied τ values for the Adult dataset.

Remove Algorithm τ
PSE-DR DI LMSG LPS 0.025 0.05 0.075 0.1

Direct 0.013 0.001 -0.142 -0.142 0.008 0.012 0.019 0.024
Indirect 0.049 0.050 0.288 0.174 0.024 0.049 0.074 0.100
χ2(×104) 1.038 4.964 1.924 1.292 1.247 1.038 1.029 0.819

4.6.2 Discrimination Removal

We run the removal algorithm PSE-DR to remove discrimination from both datasets,

and then run the discovery algorithm PSE-DD to further examine whether discrimination

is truly removed in the modified dataset. For comparison, we include removal algorithms

from previous works: LMSG, LPS and DI. The discriminatory effects of the modified dataset

are shown in Table 4.1 (left) for the Adult dataset, and in Table 4.2 (left) for the Dutch

Census of 2001 dataset. As can be seen, our method PSE-DR completely removes direct and

indirect discrimination from both datasets. In addition, PSE-DR produces relatively small

data utility loss in term of χ2. For LMSG and LPS, indirect discrimination is not removed

from the Adult dataset, and in both datasets direct discrimination seems to be over removed.

The DI algorithm provides a parameter λ to indicate the amount of discrimination to be

removed, where λ = 0 represents no modification and λ = 1 represents full discrimination

removal. However, λ has no direct connection with the threshold τ . In our experiments, we

execute DI multiple times with different λ values and report the one that is closest to achieve

τ = 0.05. Although DI indeed removes direct and indirect discrimination, its data utility

is far more worse than PSE-DR, implying that it removes many information unrelated to

discrimination.

We then examine how the data utility in term of χ2 varies with different thresholds τ

for PSE-DR. We change the value of τ from 0.025 to 0.1. From Tables 4.1 and 4.2 (right)

we can see that less utility loss is incurred when larger τ value is used. This observation is

consistent with our analysis since the larger the value of τ , the more relaxed the constraints
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Table 4.2: Discrimination in the modified data (τ = 0.05), and comparison of utility with
varied τ values for the Dutch Census of 2001 dataset.

Remove Algorithm τ
PSE-DR DI LMSG LPS 0.025 0.05 0.075 0.1

Direct 0.049 0.000 -0.081 -0.100 0.022 0.049 0.073 0.099
Indirect 0.001 -0.001 0.001 0.001 0.001 0.001 0.001 0.001
χ2(×104) 1.104 4.604 4.084 1.742 1.279 1.104 1.099 0.934

in PSE-DR.

We also examine whether the predictive models built from the data modified by PSE-

DR incur discrimination in decision making. We divide the original dataset into the training

and testing datasets, and remove discrimination from the training dataset to obtain the

modified training dataset. Then, we build the predictive models from the modified training

dataset, and use them to make predictive decisions over the testing data. Four classifiers,

logistic regression (LR), decision tree (DT ), random forest (RF ) and SVM, are used for

prediction with five-fold cross-validation. Finally, we run PSE-DD to examine whether the

predictions for the testing data contain discrimination. The prediction accuracy using both

original and modified training dataset are reported as well. The results are shown in Tables

4.3 and 4.4. As can be seen, for the Adult dataset, the predictions of all classifiers do not

incur direct or indirect discrimination, with the accuracy only slightly decreased. However,

for the Dutch Census of 2001 dataset, the predictions contain direct discrimination, which is

smaller than that in the original data yet significant. Some recent works imply that, even

if discrimination is removed from the training data, it can still appear in the predictions of

classifiers [12, 73]. How to ensure non-discrimination in the prediction is a future direction of

our work.

4.6.3 Unidentifiable Situation

In this subsection, we examine the proposed methods for handling the unidentifiable

situation when measuring and removing the indirect discrimination. We consider each of
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Table 4.3: Discrimination in prediction for the Adult dataset.

LR DT RF SVM

Direct 0.045 0.023 0.022 0.023
Indirect 0.047 0.042 0.050 0.041

Accuracy(%)
Original 81.70 81.77 81.81 81.78
Modified 81.30 80.55 80.56 80.54

Table 4.4: Discrimination in prediction for the Dutch Census of 2001 dataset.

LR DT RF SVM

Direct 0.059 0.103 0.098 0.099
Indirect 0.001 0.001 0.001 0.001

Accuracy(%)
Original 83.45 82.46 83.12 83.70
Modified 81.93 81.36 81.57 82.10

attribute other than marital status that is on the causal paths from the sensitive attribute

to the decision as the redlining attribute and see whether the recanting witness criterion is

satisfied, i.e., πi forms the “kite” pattern. For the Adult dataset, these attributes include

edu level, occupation, hours per week, workclass and relationship, each of which

creates the “kite” pattern if it is treated as the redlining attribute. For the Dutch Census

of 2001 dataset, only edu level is on the causal paths from the sensitive attribute to the

decision, and treating it as the redlining attribute will not create the “kite” pattern. Thus,

the remaining of this subsection focus on the Adult dataset.

Upon selecting the redlining attribute, we execute algorithm PSE-DD∗ to compute the

πd-specific effect SEπd(c
+, c−) as well as the upper and lower bounds of the πi-specific effect

ub(SEπi(c
+, c−)) and lb(SEπi(c

+, c−)). The results are shown in Table 4.5. As can be seen,

for all attributes the πd-specific effect is the same. This is reasonable since treating different

Table 4.5: Discrimination measured and bounded under the unidentifiable situation for the
Adult dataset.

edu occupation hours workclass relationship

Direct 0.025

Indirect
lb -0.114 -0.069 -0.027 -0.014 -0.086
ub 0.361 0.039 0.072 0.016 0.015
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attribute as the redlining attribute should not affect the direct discrimination. On the other

hand, the upper and lower bounds imply that we can ensure no indirect discrimination if

either occupation, workclass or relationship onsidered as the redlining attribute, and we

are uncertain about indirect discrimination if either treating edu level or hours per week

as the redlining attribute.

sex

edu level
occupation

hours per week

workclass

relationship
marital status income

Figure 4.6: The “kite” pattern when treating edu leve as redlining. Red dashed edges are
to be deleted by GraphPreprocess.

We use edu level as an example to show the results of discrimination removal. The

subgraph shown in Figure 4.6 presents the “kite” pattern formed when treating edu leve as

the redlining attribute. The πi-specific effect satisfies the recanting witness criterion with

marital status as the witness. We evaluate the two removal algorithms: PSD-DR and

PSD-DR∗. For PSD-DR, subroutine GraphPreprocess needs to cut off all causal paths passing

through the redlining attribute in order to remove the “kite” pattern, which means that it

should delete all the edges highlighted by the red dashed edges. The discrimination in the

modified data is shown in Table 4.6. As can be seen, both algorithms guarantee no direct

discrimination as well as no indirect discrimination based on its upper bound. However, the

utility of the modified data produced by PSE-DR∗ is better than that produced PSE-DR,

which is consistent with our theoretical result. A more straightforward explanation for this

example can be that, since all the causal paths in πi are involved in the “kite” pattern,

GraphPreprocess must cut off all these paths, resulting a total elimination of all indirect

discriminatory effect. However, PSE-DR∗ can utilize the threshold τ = 0.05, achieving a

better balance between non-discrimination and utility preserving.
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Table 4.6: Discrimination in the modified data when treating edu level as redlining.

PSE-DR PSE-DR∗

Direct 0.038 0.033
Indirect (ub) 0 0.050
χ2(×104) 1.499 1.106

4.7 Summary

In this chapter, we studied the problem of discovering both direct/indirect discrimi-

nation from historical data, and removing them before performing predictive analysis. We

made use of the causal graph to capture the causal structure of the data, and modeled direct

and indirect discrimination as different path-specific effects. Based on that, we proposed the

discovery algorithm PSE-DD to discover both direct and indirect discrimination, and the

removal algorithm PSE-DR to remove them. For the situation where indirect discrimination

cannot be exactly measured due to the unidentifiability of the path-specific effects, we derived

the upper and lower bounds for the unidentifiable indirect discrimination, and developed the

refined discovery algorithm PSE-DD∗ and removal algorithm PSE-DR∗. The experiments

using the real dataset showed that, our approach can ensure that the modified data dose not

contain any type of discrimination while incurring small utility loss. Under the unidentifiable

situation, the refined algorithms PSE-DR∗ produces smaller utility loss than PSE-DR that

directly deletes edges to remove the unidentifiability. The early versions of this work have

been published in IJCAI 2017 [4] and TKDE 2019 [5].
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5 Discrimination Discovery and Removal from Ranked Data

5.1 Introduction

Fairness in the classification models has been widely studied by the research community

[19,41,44,45,52,74,75]. In this chapter, we investigate discrimination in ranking models, which

are another widely used machine learning models adopted by search engines, recommendation

systems, and auction systems, etc. To be more specific, we study the discrimination discovery

and removal from the ranked data. A ranked dataset is a combination of the candidate profiles

with the permutation of the candidates as the decision. Fairness concerns are raised for the

ranking models since biases and discrimination can also be introduced into the ranking.

Figure 5.1: A toy example of dataset and ranking results produced by two rankers. Blue
squares represent the favorable group and red circles represent unfavorable group.

Existing methods [76, 77] for studying the discrimination discovery and removal from

ranked data are mainly based on statistical parity, which means that the demographics

of individuals in any prefix of the ranking are identical to the demographics of the whole

population. However, it has already been shown in classification that statistical parity does

not take into account the fact that part of discrimination is explainable by some non-sensitive

attributes and hence cannot accurately measure discrimination [46]. We believe that this

observation also holds in the ranked data. Let us consider a toy example of ranked data for a

company recruiting system shown in Figure 5.1. The data contains four profile attributes:

race (C), zip code (Z), education (E), interview result (I), where race is the sensitive
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attribute with a favorable group (C = 1) and an unfavorable group (C = 0), and education

and interview result are the objective requirements of getting the job. Assume that there

are two rankers, both of which compute the qualification scores to produce the rankings. The

first ranker, denoted by Ranker#1, produces qualification scores as an equal-weighted linear

combination of two attributes education and interview result. Intuitively, Ranker#1

produces a fair ranking since it purely depends on two objective attributes. However, as

can be seen, the ranking results do not satisfy statistical parity. On the basis of Ranker#1,

the second ranker, Ranker#2, further gives a bonus score of 2 for the favorable group (i.e.,

C = 1). The usage of the sensitive attribute explicitly results in the unequal treatment to

the unfavorable group (C = 0). Nevertheless, the ranking results satisfy statistical parity

as two race groups are well-mixed in equal proportion. This example shows that statistical

parity may produce misleading conclusions regarding discrimination.

To address the limitation of the statistical parity-based methods, the causal graph-

based discrimination detection and removal methods have been recently proposed by Zhang

et al. [4]. It shows that the correlation between the sensitive attribute and the decision is a

nonlinear combination of the direct discrimination, the indirect discrimination, as well as the

explainable effect. The path-specific effect technique has been used to capture the causal

effects passing through different paths. However, this work focuses on binary classification.

In ranking systems, the decisions are given in term of a permutation of a series of unique,

concatenating integers which cannot be treated as regular random variables. This means

that causal graphs cannot be built in traditional ways. Thus, the methods in [4] cannot be

applied directly to deal with ranked data.

In this chapter, we employ the causal graph to solve the fair ranking problem by

adopting a continuous variable called score instead of the ranking positions to represent the

qualifications of individuals in the rank. We use the Bradley-Terry model [78] to obtain a

reasonable mapping from ranking positions to scores. We then construct the causal graph

from the individuals’ profiles and scores, a mix of categorical and continuous data. Traditional
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causal graph construction and inference are limited to the single data-type situations where

the variables are all discrete (e.g., causal Bayesian networks) or all continuous (e.g., linear

Gaussian models). To address this challenge, we associate the score with a set of Conditional

Gaussian (CG) distributions instead of the Conditional Probability Table (CPT). Then, we

extend the path-specific effect technique to our mixed-variable causal graph for capturing

direct and indirect discrimination. We also derive a relationship between the path-specific

effects for the ranked data and those for the binary decision, assuming that binary decision is

obtained based on certain cut-off point imposed on the ranking. Algorithms for detecting

discrimination in the causal graph, as well as for removing rank biases from the data

are developed. Finally, we conduct experiments using the real-world dataset to show the

effectiveness of our methods. The results show that our methods can correctly detect and

remove both direct and indirect discrimination with relatively small data utility loss, while

the statistical parity based methods neither correctly identify discrimination nor successfully

mitigate discrimination.

5.2 Related Work

In Chapter 2, we discuss the related work for fairness-aware machine learning, which

mainly focus on classification. Fair ranking is an emerging topic in fairness-aware learning.

Current works in fair ranking are mainly based on the statistical parity. In [76], it is required

that a preset proportion of sensitive individuals that must be maintained in each prefix of

the ranking for the rank to be fair. However, many existing works (e.g., [4]) have shown that

statistical parity alone is insufficient as a general notion of fairness.

In the previous chapter, we develop a causality-based framework to capture direct

and indirect discrimination in classification. Similarly, many researchers incorporate causal

graphs into the fairness-aware machine learning. [4,5,26,28,29,73,79]. The limitation of these

works is that they focus on the classification problems and cannot be applied directly to

the fair ranking problem. This is because in their models, the decision of each individual is

62



treated as an independent random variable, but the ranking positions of different individuals

are correlated. In this chapter we address above limitations and develop the causal-based fair

ranking algorithms.

In the field of data science, it is well-studied in data mining how to model a ranking

using a continuous score space [80]. Several models, such as the Plackett-Luce model [81, 82],

the Mallows model [83] and the Bradley-Terry model [78], are widely used in this field. In

this chapter, we adopt the Bradley-Terry model to characterize the ranked data and obtain

the continuous scores from the ranks.

5.3 Preliminaries

Follow the notations presented in Chapter 3, an attribute is denoted by an uppercase

letter, sets of attributes by a bold uppercase letter, a value by a lowercase letter, and a set

of values of a set attributes by a bold lowercase letter. The domain space of an attribute is

denoted by XX . The domain space of an attribute set is a Cartesian product of the domain

spaces of its elements, denoted by XX =
∏

X∈X XX .

In this chapter, we leverage causal inference techniques, e.g., the Structural Causal

Model, the total causal effect, and the path-specific effect. The introduction to essential

causal inference techniques can be found at Chapter 3.

A Bradley-Terry modelM assigns each individual i a score si (si ∈ R) to indicate the

qualification preference of individual. Generally, a larger score represents a better qualification.

The difference between the scores of two individuals i, j corresponds to the log-odds of the

probability pi,j that individual i is ranked before individual j in the rank, i.e.,

si − sj = log
pij

1− pij
.
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Equivalently, solving for pij yields

pij =
esi

esi + esj
.

On the other hand, the probability of any rank permutation ω given a Bradley-Terry model

M is proportional to the product of the probability pi,j of all preference pairs subject to ω,

i.e.,

P (ω|M) ∝
∏

(i,j):ωi<ωj

pij,

where ωi, ωj are the ranking positions of individuals i, j. Thus, the logarithm likelihood of

the Bradley-Terry model M given the observed rank permutation ω is given by L(M|ω) =

− logP (ω|M). As a result, the optimal Bradley-Terry model that best fits the observed

rank permutation ω can be obtained by minimizing L(M|ω) as the loss function. Wu et

al. [84] proved that the loss function is convex and could be efficiently optimized with gradient

descent.

5.4 Modeling Direct and Indirect Discrimination in Ranked Data

In this section, we study how to model direct and indirect discrimination in a ranked

dataset as the causal effect. We consider a ranked dataset D consisting of N individuals

with a sensitive attribute C, several non-sensitive attributes Z = {Z1, · · · , Zj, · · · }, and a

rank permutation π as the decision. There is a subset of attributes R ⊆ Z that may cause

indirect discrimination, referred to as the redlining attributes. We assume all attributes are

categorical. We further make two reasonable assumptions: 1) the sensitive attribute C has

no parent; and 2) the score S has no child. The two assumptions are to make our theoretical

results more concise and can be easily relaxed.
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5.4.1 Building Causal Graph for Ranked Data

A rank permutation is a series of unique, concatenating integers that cannot be treated

as normal categorical random variables. In data science, a number of models [80] are proposed

to map the ranking positions in a ranked dataset to the continuous scores. In this chapter we

use the Bradley-Terry model [78] but the logic also applies to other models. The comparison

of the performance of different models is beyond the scope of the chapter and is left for future

work.

After obtaining the score S using the Bradley-Terry model, we build a causal graph

for variables C, Z and S. We first adopt the PC-algorithm for learning the structure of the

causal graph. Since there exist both discrete and continuous variables, different conditional

independence testing methods can be adopted, such as chi-square test for discrete variables,

partial correlation matrix for continuous variables, and conditional Gaussian likelihood ratio

test for mixed variables. Then, for parameterizing the causal graph, we treat discrete and

continuous variables in different ways. For discrete variables C and Z (we can extend our

method to the situation where some profile attributes are continuous), each of them is

associated with a Conditional Probability Table (CPT). The conditional probabilities can

be estimated from data using standard statistical estimation techniques (like the maximum

likelihood estimation). For continuous score S, it is associated with the Conditional Gaussian

(CG) distributions instead of the CPT. Let Q = Pa(S)\{C}. For each value assignment c,q

of parents of S, there is a CG distribution whose mean and variance are based on c,q. Thus,

the CG distribution of S is given by

P (s|c,q) = N (µc,q, σ
2
c,q).

Finally, we fit each CG distribution N (µc,q, σ
2
c,q) to the scores of all candidates with C = c

and Q = q using standard statistical estimation techniques.

As an example, Figure 5.2 shows a causal graph of the toy example presented in

65



the Introduction. Each of C,Z,E, I is associated with a CPT representing the conditional

probability given the parents, and S is associated with a set of CG distribution where the

mean and the variance are based on its parents, the other four variables.

C

E

Z

I

S

...

N (µc,z,e,i, σc,z,e,i)

Score S

...

Figure 5.2: The causal graph of the toy example involving: race (C), zip code (Z),
education (E), interview result (I), and score (S).

5.4.2 Quantitative Measurement

Now we show how direct and indirect discrimination in a ranked dataset can be

quantitatively measured based on the causal graph we build. It is known that discrimination

is a causal effect of the sensitive attribute on the decision. We first give the quantitative

measure of the total causal effect of sensitive attribute C on score S as shown in Theorem 7.

Theorem 7. The total causal effect is given by

TE (c+, c−) =
∑
q∈XQ

(
µc+,qP (q|c+)− µc−,qP (q|c−)

)
(5.1)

Proof. According to Definition 3, total causal effect is given by

TE (c+, c−) = E
[
S|do(c+)

]
− E

[
S|do(c−)

]
=

∫
s · P (s|do(c+))ds−

∫
s · P (s|do(c−))ds.
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According to Eq. (3.2), we have

P (s|do(c+)) =
∑
z∈XZ

P (s, z|do(c+))

=
∑
z∈XZ

P (s|c+,q)
∏
Zj∈Z

P (zj|Pa(Zj))δC=c+ .

It can be shown that ∏
Zj∈Z

P (zj|Pa(Zj))δC=c+ = P (z|c+). (5.2)

In fact, if we sort all nodes in Z according to the topological ordering as {Z1, · · · , Zj, · · · },

we can see that all parents of each node Zj are before it in the ordering. In addition, since C

has no parent, it must be Zj ’s non-descendant; since E has no child, it cannot be Zj ’s parent.

Thus, based on the local Markov condition, we have P (zj|Pa(Zj)) = P (zj|c+, z1, · · · , zj−1).

According to the chain rule we obtain P (z|c+). Thus, it follows that

P (s|do(c+)) =
∑
z∈XZ

P (s|c+,q)P (z|c+)

=
∑
q∈XQ

P (s|c+,q)
∑
Z\Q

P (z|c+)

=
∑
q∈XQ

P (s|c+,q)P (q|c+).

As a result, we have

∫
s · P (s|do(c+))ds =

∫
s ·
∑
q∈XQ

P (s|c+,q)P (q|c+)ds

=
∑
q∈XQ

P (q|c+)

∫
sP (s|c+,q)ds

=
∑
q∈XQ

µc+,qP (q|c+).

Hence, the theorem is proven.
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In [4], the authors show that in the single-type causal graph, total causal effect

generally cannot correctly measure either direct discrimination or indirect discrimination,

which should be modeled as the path-specific effects. By adopting similar strategy, we capture

direct discrimination by the causal effect transmitted via the direct edge from C to S, and

capture indirect discrimination by the causal effect transmitted via the paths that pass

through redlining attributes. Formally, define πd as the path set that contains only C → S,

and define πi as the path set that contains all causal paths which are from C to S and pass

through R. Then, direct discrimination can be captured by the πd-specific effect PSEπd(·),

and indirect discrimination can be captured by the πi-specific effect PSEπi(·). We extend the

method in [4] for computing the path-specific effect from data to our mixed-variable causal

graph for computing PSEπd(·) and PSEπi(·). The results are shown in Theorem 8.

Theorem 8. The πd-specific effect PSEπd(c
+, c−) is given by

PSEπd(c
+, c−) =

∑
q∈XQ

(µc+,q − µc−,q)P (q|c−), (5.3)

The πi-specific effect PSEπi(c
+, c−) is given by

PSEπi(c
+, c−) =

∑
z∈XZ

(
µc−,q

∏
G∈Vπi

P (g|c+, Pa(G)\{C})
∏

H∈V̄πi

P (g|c−, Pa(G)\{C})

×
∏

O∈Z\Ch(C)

P (o|Pa(O))
)
−
∑
q∈XQ

(
µc−,qP (q|c−)

)
,

(5.4)

where Vπi and V̄πi is obtained by dividing C’s children except S based on the above method.

Eq. (5.4) can be simplified to

PSEπi(c
+, c−) =

∑
q∈XQ

µc−,q
(
P (q|c+)− P (q|c−)

)
(5.5)

if πi contains all causal paths from C to S except the direct edge C → S.
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Proof. For the πd-specific effect, according to Definition 4, we have

PSEπd = E
[
S|do(c+|πd)

]
− E

[
S|do(c−)

]
=

∫
s · P (s|do(c+|πd))ds−

∫
s · P (s|do(c−))ds.

In the above equation, P (s|do(c−)) can be computed according to the truncated

factorization formula (3.2). To compute P (s|do(c+|πd)), we follow the steps in [3]. First,

express P (s|do(c+|πd)) as the truncated factorization formula. Then, divide the children of C

into two disjoint sets Vπd and V̄πd . Let Vπd contains C’s each child V where edge C → V is

a segment of a path in πd; let V̄πd contains C’s each child V where either V is not included

in any path from C to S, or edge C → V is a segment of a path not in πd. Finally, replace

values of C with c+ for the terms corresponding to nodes in Vπ, and replace values of C with

c− for the terms corresponding to nodes in V̄πd .

Following the above procedure, we obtain

P (s|do(c+|πd)) =
∑
z∈XZ

P (s|c+,q)
∏
Zi∈Z

P (zi|Pa(Zi))δC=c− .

By using Eq. (5.2), it follows that

P (s|do(c+|πd)) =
∑
q∈XQ

P (s|c+,q)P (q|c−),

which leads to Eq. (5.3) in the theorem.

For the πi-specific effect, following the above procedure similarly we can obtain

P (s|do(c+|πi)) =
∑
z∈XZ

(
P (s|c−,q)

∏
G∈Vπi

P (g|c+, Qa(G))

×
∏

H∈V̄πi

P (g|c−, Pa(G)\{C})
∏

O∈Z\Ch(C)

P (o|Pa(O))
)
,

which leads to Eq. (5.4). If πi contains all causal paths from C to S except the direct edge,
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it means that Vπi = Ch(C)\{S}, and V̄πi = ∅. Thus, it follows that

P (s|do(c+|πi)) =
∑
z∈XZ

P (s|c−,q)
∏
Z∈Z

P (z|Pa(Z)\{C})δC=c+

=
∑
q∈XQ

P (s|c−,q)P (q|c+),

which leads to Eq. (5.5). Hence, the theorem is proven.

Theorems 7 and 8 present the quantitative measurement of the total causal effect

as well as the πd and πi-specific effects. The following proposition reveals the relationship

among TE (·), PSEπd(·) and PSEπi(·). It shows that the indirect (discriminatory) effect is

equal to the total causal effect plus the “reversed” direct (discriminatory) effect.

Proposition 5. If πi contains all causal paths from C to S except the direct edge C → S,

we have

PSEπi(c
+, c−) = TE (c+, c−) + PSEπd(c

−, c+).

Proof. The proof can be directly obtained from Eq. (5.1) and (5.5).

5.4.3 Relationship between Ranking and Binary Decision

In the earlier work [4], we have derived the πd and πi-specific effects of the sensitive

attribute C on a binary decision attribute E with positive decision e+ and negative decision

e− (denoted by PSEE
πd

(·) and PSEE
πi

(·) for distinguishing with the path-specific effects derived

for ranked data in this chapter). Assume that the decision is made based on a cut-off point

θ of the score. Then an interesting question is to ask, given a discrimination-free rank,

whether a binary decision made based on the cut-off point θ is also discrimination free.

Answering this question needs to derive a relationship between PSEπ(·) and PSEE
π (·). In this

subsection, we derive such relationships under the condition that ∀q, θ ≥ µc+,q ≥ µc−,q and

σc+,q = σc−,q = σ. We first obtain the formulas of PSEE
πd

(·) and PSEE
πi

(·) using the cut-off

point θ.
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Lemma 1. Given the causal graph based on score S, and a cut-off point θ for determining a

binary decision E, we have

PSEE
πd

(c+, c−) =
∑
q∈XQ

1

2

(
erf(

θ − µc−,q√
2σ

)− erf(
θ − µc+,q√

2σ
)

)
P (q|c−), (5.6)

PSEE
πi

(c+, c−) =
∑
q∈XQ

1− erf(
θ−µc−,q√

2σ
)

2
∆q. (5.7)

Proof. Since θ is a cut-off point, we have P (e+|c+,q) = P (s ≥ θ|c+,q) and P (e+|c−,q) =

P (s ≥ θ|c−,q). According to the CDF of the Gaussian distribution, we have

P (e+|c+,q) =
1− erf(

θ−µc+,q√
2σ

)

2
, P (e+|c−,q) =

1− erf(
θ−µc−,q√

2σ
)

2
.

The lemma is proven by substituting P (e+|c+,q) and P (e+|c−,q) in the formulas of PSEE
πd

and PSEE
πi

in [4] with the above expressions.

Then we present two lemmas to show the properties of erf(·).

Lemma 2. For any x1 ≥ x2 ≥ 0, we have

1

2
(erf(x1)− erf(x2)) ≤ erf(

x1 − x2

2
).

Proof. Since erf(x) (x ≥ 0) is concave and erf(0) = 0, we have

erf(x2)

x2

≥ erf(x1)

x1

=⇒ x2

2x1

erf(x1) ≤ 1

2
erf(x2)

which follows that (
1

2
− x2

2x1

)
erf(x1) ≥ 1

2
erf(x1)− 1

2
erf(x2).
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Again, since erf(x) (x ≥ 0) is concave and erf(0) = 0, we have

(
1

2
− x2

2x1

)
erf(x1) ≤ erf(

x1

2
− x2

2
).

Combining the above two inequalities, the lemma is proven.

Lemma 3. For any t ≥ 0, when 0 ≤ x ≤ t, we have

αtx ≤ erf(x) ≤ αtx+ βt,

where

αt =
erf(t)

t
, βt = erf(

√
ln

2t√
π erf(t)

)− erf(t)

t

√
ln

2t√
π erf(t)

.

Proof. It is obvious that erf(x) ≥ αtx (0 ≤ x ≤ t). Then, βt is obtained by calculating the

tangent line with the slope αt of erf(x).

Based on the above results, the following two theorems characterize the relationship

between PSEπ and PSEE
π .

Theorem 9. Given the causal graph based on score S and an arbitrary cut-off point θ, if for

the ranking derived from the score we have

PSEπd(c
+, c−) ≤ 2

√
2(τ − βt)σ
αt

,

for the binary decision derived from the score we must have PSEE
πi

(c+, c−) ≤ τ , where

t = max
q

{
µc+,q − µc−,q

2
√

2σ

}
.

Proof. Let x1 =
θ−µc−,q√

2σ
, x2 =

θ−µc+,q√
2σ

, according to Lemma 2 we have

1

2
(erf(x1)− erf(x2)) ≤ erf(

x1 − x2

2
) = erf(

µc+,q − µc−,q
2
√

2σ
).

72



According to Lemma 3 it follows that

erf(
µc+,q − µc−,q

2
√

2σ
) ≤ αt

µc+,q − µc−,q
2
√

2σ
+ βt.

Combining the above inequality with Eq. (5.6), we have

PSEE
πd
≤
∑
q∈XQ

(
αt
µc+,q − µc−,q

2
√

2σ
+ βt

)
P (q|c−) =

αt

2
√

2σ
PSEπd + βt ≤ τ.

Theorem 10. Given the causal graph based on score S and an arbitrary cut-off point θ, if

for the ranking derived from the score we have

PSEπi(c
+, c−) ≤ 2

√
2(τ − c)σ
αt

,

for the binary decision derived from the score we must have PSEE
πi

(c+, c−) ≤ τ , where

t = max
q

{
max{s} − µc−,q√

2σ

}
,

c =
1

2
−
∑

q:∆q≥0

(
αt maxq{µc+,q}√

2

)
−
∑

q:∆q<0

(
αt

2
√

2
+ βt

)
.

Proof. According to Lemma 3 we have

erf(
θ − µc−,q√

2σ
) ≥ erf(

maxq{µc+,q} − µc−,q√
2σ

) ≥ αt
maxq{µc+,q} − µc−,q√

2σ
,

erf(
θ − µc−,q√

2σ
) ≤ erf(

max{s} − µc−,q√
2σ

) ≤ αt
max{s} − µc−,q√

2σ
+ βt.
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Combining the above inequalities with Eq. (5.7), we have

PSEE
πi

=
∑

q:∆q≥0

1− erf(
θ−µc−,q√

2σ
)

2
∆q +

∑
q:∆q<0

1− erf(
θ−µc−,q√

2σ
)

2
∆q

≤ 1

2
+
∑

q:∆q≥0

αt
µc−,q −maxq{µc+,q}

2
√

2σ
∆q +

∑
q:∆q<0

(αt
µc−,q −max{s}

2
√

2σ
− βt)∆q

=
αt

2
√

2σ
PSEπi + c ≤ τ.

5.5 Discovery and Removal Algorithms

We develop the discrimination discovery and removal algorithms based on the derived

πd and πi-specific effects. Since the values of PSEπd(c
+, c−) and PSEπi(c

+, c−) can be

arbitrarily large, we give the criterion of direct and indirect discrimination in terms of relative

difference. We require that the ratio of PSEπd(c
+, c−) and PSEπi(c

+, c−) over the expected

score of the favorable group, i.e., E[S|c+], is smaller than a given threshold τ . For example,

the Equality and Human Rights Commission (EHRC) consider 0.05 as a significant threshold

for the gender pay gap. By defining the discrimination measures

DE d(c
+, c−) =

PSEπd(c
+, c−)

E[S|c+]

and

DE i(c
+, c−) =

PSEπi(c
+, c−)

E[S|c+]
,

the criterion of discrimination is shown below. To avoid reverse discrimination, we also

similarly define DE d(c
+, c−) and DE i(c

+, c−). Then, we give the criterion of discrimination

as follows.

Criterion 1. Given a user-defined threshold τ , direct discrimination exists if either DE d(c
+, c−) >

τ or DE d(c
−, c+) > τ holds, and indirect discrimination exists if either DE i(c

+, c−) > τ or
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DE i(c
−, c+) > τ holds.

Based on the above analysis, we develop the algorithm for discovering discrimination in

a rank, referred to as FDetect, as shown in Algorithm 7. Once direct or indirect discrimination

is detected, the discriminatory effects need to be eliminated before the ranked data is used for

training or sharing. We propose a path-specific-effect-based Fair Ranking (FRank) algorithm

to remove both discrimination from the ranked data and reconstruct a fair ranking. We first

modify the score distributions so that the causal graph contains no discrimination, and then

reconstruct a fair ranking based on the modified causal graph. As shown in Theorem 8, the

discriminatory effect only depends on the means of the score distributions. Hence we only

need to modify the means of the score.

Algorithm 7: FDetect

Input : Ranked dataset D, sensitive attribute C, user-defined parameter τ .
Output : Direct/indirect discrimination judged, judgei.

1 judged = judgei = false;
2 Derive the score S using the Bradley-Terry model;
3 Build the causal graph for S and attributes in D;
4 Compute DE d(·) according to Theorem 8;
5 if DE d(c

+, c−) > τ ‖ DE d(c
−, c+) > τ then

6 judged = true;

7 Divide C’s children except S into Vπi and V̄πi ;
8 Compute DE i(·) according to Theorem 8;
9 if DE i(c

+, c−) > τ ‖ DE i(c
−, c+) > τ then

10 judgei = true;

11 return [judged, judgei];

To maximize the utility during the modification process, we minimize the distance

between the original score distributions and the modified score distributions, as measured

by the Bhattacharyya distance [85]. Specifically, for each score distribution N (µc,q, σ
2
c,q),

denote the modified distribution by N (µ′c,q, σ
2
c,q). The Bhattacharyya distance between the

two distributions is given by

DB = − ln

∫ √
N (µc,q, σ2

c,q)N (µ′c,q, σ
2
c,q)ds =

(
µc,q − µ′c,q

)2

8σ2
c,q

.
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We define the objective function as the sum of the Bhattacharyya distances for all score

distributions. As a result, we obtain the following quadratic programming problem with µc,q

as the variables.

minimize
∑

c∈XC ,q∈XQ

(
µc,q − µ′c,q

)2

σ2
c,q

subject to DE d(c
+, c−) ≤ τ, DE d(c

−, c+) ≤ τ,

DE i(c
+, c−) ≤ τ, DE i(c

−, c+) ≤ τ.

After obtaining the modified score distribution by solving the quadratic programming

problem, we reconstruct a fair ranking as follows. Consider the individuals with the same

profile c,q, i.e., ∀i, ci = c,qi = q. For each individual i, the new score s′i is regenerated from

the new CG distribution N (µ′c,q, σ
2
c,q) at the same percentile as the score si in the original

distribution. Specifically, since si = µc,q + ρσc,q and s′i = µ′c,q + ρσc,q where ρ is the value

from the standard normal distribution for the percentile, we have s′i = si + (µ′c,q − µc,q).

Finally, we re-rank all individuals according to the descending order of their new scores. Since

the new scores contain no discrimination, so does the new rank. The procedure is shown in

Algorithm 8, referred to as FRank.

Algorithm 8: FRank

Input : Ranked dataset D, sensitive attribute C, user-defined parameter τ .
Output : Modified dataset D∗.

1 if PSE-DD(D, C, τ) == [false, false] then
2 return;

3 Obtain the modified distributions of S by solving the quadratic programming
problem;

4 foreach c,q do
5 foreach i : ci = c,qi = q do
6 s′i = si + (µ′c,q − µc,q);

7 Compute the new rank of each individual according to the descending order of S,
and replace the rank in D with the new one to obtain D∗;

8 return D∗;
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The computational complexity of our discovery and removal algorithms depends on

how efficiently to derive the score S using Bradley-Terry model. Wu et al. [84] proved

that the likelihood function is convex and the optimal solution can be efficiently obtained

using gradient descent. The complexity also depends on the complexities of building the

causal graph and computing the path-specific effect. Many researches have been devoted to

improving the performance of network construction [60,62,63] and probabilistic inference in

causal graphs [64,65]. The complexity analysis can be found in these related literature.

5.6 Experiments

5.6.1 Experimental Setup

In the experiments, the causal graphs are then constructed using Tetrad [70] and

parameterized as described in Section 5.4.1. The quadratic programming is solved using

CVXOPT [71]. The discrimination threshold τ is set as 0.05 for both direct and indirect

discrimination. The generated data and algorithm implementations are available at http:

//tiny.cc/fair-ranking.

Dataset. We use a real world dataset, the German Credit dataset [68], which is also

used in previous works [76, 77]. The description of the German Credit dataset is given in

Appendix A.1. Due to the small sample size, we only select 8 attributes in our experiments

including age, dependent, duration, housing, job, property, purpose, residence. We

treat age as the sensitive attribute, housing as the redlining attribute.

Based on the German Credit dataset, we generate three ranked datasets for experiments.

We employ the weighted-sum ranking strategy proposed in [76,77] to generate two ranked

datasets, denoted by D1 and D2. The weighted sum is computed through a weighted linear

summation of certain attributes, and then all candidates are ranked according to the weighted

sum. In D1, all attributes are summed up with equal weight, while in D2, the summation

is for all attributes except age. We also use another ranked data D where the ranking is

directly based on an original attribute credit amount. After that, we derive the continuous
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qualification scores from each ranked dataset using the Bradley-Terry model and build the

causal graph. As an example, the constructed causal graph for D is shown in Figure 5.3.

Baseline. We involve the statistical parity-based discrimination discovery and removal

algorithms proposed by Yang et al. [77] and Zehlike et al. [76]. For discrimination discovery,

Yang et al. [77] proposed three set-based discrimination measures called rRD, rND, and

rKL to compute the difference between the favorable group and the whole dataset in terms

of risk difference, risk ratio, and Kullback-Leibler distance. They compute the values of

difference at several discrete points (e.g., top-10, top-20, · · · ) and sum up all values with the

logarithmic discounts. All measures are normalized to 0-1 range (0 is the most fair value

and 1 is the least fair value). Since they do not provide any criterion for discrimination

discovery, we simply use 0.05 as the threshold for all three measures. Zehlike et al. [76]

proposed an adjusted fairness condition (FairCon) that requires the minimum number of

sensitive candidates in every prefix of the ranking list. For discrimination removal, Yang et

al. [77] proposed a fair data generator (FairGen) that manipulates the permutation according

to the user-defined preference f . For example, if f = 0.05, all the candidates are well mixed

in equal proportion at every prefix; if f = 1, the candidates from the unfavorable group are

ranked at the bottom. Zehlike et al. [76] proposed discrimination removal methods, FA*IR,

to select the most qualified candidate from the corresponding unfavorable group at every

prefix in order to satisfy the adjusted fairness condition.

To evaluate the data utility of all removal approaches, we adopt two widely used

metrics, the Spearman’s footrule distance (SFD) and the Kendall’s tau distance (KTD) [86].

The Spearman’s footrule distance (SFD) measures the total element-wise displacement

between the modified permutation and the original one. The Kendall’s tau distance (KTD)

measures the total number of pairwise inversions between the two permutations. For both of

the distance metrics, the larger values indicate more data utility loss.
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Figure 5.3: The causal graph of D. The yellow node Age is the sensitive attribute, the
orange node Housing is the redlining attribute, and the purple node Score is the decision
attribute. The red dash-dot line captures the direct discrimination from Age to Score, and
the green dashed line captures the indirect discrimination through Housing.

5.6.2 Discrimination Discovery

We quantify the strength of direct and indirect discrimination using our method

FDetect for all three ranked datasets. The results are shown in Table 5.1. For dataset

D1, all attributes including the sensitive attribute are used for ranking directly. Thus, the

ground-truth is that both direct and indirect discrimination occurs in this dataset. Our

method obtains DE d(c
+, c−) = 0.231 and DE i(c

+, c−) = 0.055, showing that both direct

and indirect discrimination are correctly identified. For dataset D2, since we use all the

other attributes except the sensitive attribute in the ranking process, the ground-truth is

that the indirect discrimination occurs but the direct discrimination does not. Our method

shows DE d(c
+, c−) = 0.026 and DE i(c

+, c−) = 0.061, which is also consistent with the

ground-truth. For dataset D, we do not have the ground-truth. Our method obtains

that DE d(c
+, c−) = 0.005 and DE i(c

+, c−) = 0.013. The results imply that neither direct

discrimination nor indirect discrimination exists in this dataset.

The statistical parity-based methods rRD, rND, rKL and FairCon cannot distinguish

direct and indirect discrimination. We directly report the results produced by these methods
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as shown in Table 5.1. For D1, the method proposed by Yang et al. shows that rRD = 0.590,

rND = 0.440, and rKL = 0.204, while Zehlike’s FairCon shows that the third position does

not satisfy the minimum fair requirement. For D2, Yang’s method shows that rRD = 0.160,

rND = 0.102, and rKL = 0.022, while FairCon reports that the 5-th position does not

satisfy the fair requirement. Most methods conclude discrimination for both dataset, which

kind of match our conclusions. However, for D, Yang’s method shows that rRD = 0.109,

rND = 0.070, and rKL = 0.008, where three values make the contradictory conclusions: there

is no discrimination according to rRD but rND and rKL report significant discrimination.

FairCon shows that the ranking cannot satisfy the fair requirement at the 20-th position.

All methods cannot obtain the results that are consistent with ours, implying that they may

produce incorrect or misleading conclusions.

Table 5.1: Comparison of discrimination discovery methods. The second column represents
the ground-truth for direct and indirect discrimination.

Ground-Truth DE d DE i FairCon rRD rND rKL
D1 Y/Y 0.231 0.055 3rd 0.590 0.440 0.204
D2 N/Y 0.026 0.061 5th 0.160 0.102 0.022
D - 0.005 0.013 20th 0.109 0.070 0.008

5.6.3 Discrimination Removal

We perform FRank to remove discrimination and reconstruct fairly ranked datasets

with neither direct nor indirect discrimination. Our theoretical results guarantee that there

is no discrimination after modification. For comparison, we also execute FairGen [77] and

FA*IR [76]. After removing discrimination, we further apply FDetect to evaluate whether

the newly-generated data achieves truly discrimination-free. The results of three removal

methods are shown in Table 5.2. As can be seen, our method FRank removes both direct and

indirect discrimination precisely. However, FairGen and FA*IR cannot achieve discrimination-

free. FairGen removes neither direct nor indirect discrimination. It even introduces more

discrimination to D. FA*IR can mitigate part of direct discrimination, but fails to remove
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indirect discrimination.

Table 5.2: Discrimination and data utility measured on the new ranked data produced by
FairGen, FA*IR, and our FRank. Values violating the discrimination criterion are marked in
bold.

Data Methods DE d DE i KTD SFD

D1
FRank 0.050 0.050 24602 72938

FairGen 0.234 0.064 11150 44600
FA*IR 0.077 0.066 13882 55528

D2
FRank 0.029 0.050 5851 18090

FairGen 0.246 0.060 19483 77934
FA*IR 0.022 0.061 231 924

D
FRank 0.005 0.013 0 0

FairGen 0.250 0.012 20806 83226
FA*IR 0.003 0.013 143 572

We adopt the Spearman’s footrule distance (SFD) and the Kendall’s tau distance

(KTD) to evaluate the data utility loss when mitigating the discrimination. As can be seen

from the last two columns of Table 5.2, our method FRank incurs relatively small data

utility loss, but FairGen suffers large data utility loss while not achieving discrimination-

free. Although FA*IR introduces quite a small data utility loss, it fails to mitigate indirect

discrimination. It is worth pointing out that there is no direct or indirect discrimination in

D so our FRank does not result in any distortion. On the contrary, FairGen leads to too

much utility loss.

We also examine how the data utility varies with different values of the discrimination

threshold τ . We perform FRank on D1 and vary the threshold τ for FRank from 0.00 to

0.25 for evaluating how much data utility loss is incurred. In Table 5.3, we can see that both

the Spearman’s footrule distance (SFD) and the Kendall’s tau distance (KTD) decrease with

the increase of τ , which means that less utility loss is incurred with a larger threshold. This

observation is consistent with our analysis since the larger τ , the more relaxed the constraints

in FRank.
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Table 5.3: Comparison of FRank with varied τ .

τ 0.00 0.05 0.10 0.15 0.20 0.25
DE d(c

+, c−) 0.000 0.050 0.100 0.150 0.200 0.231
DE i(c

+, c−) 0.000 0.050 0.055 0.055 0.055 0.055
SFD 43490 24602 14370 9041 3444 0
KTD 123626 72938 45636 28652 11054 0

5.7 Summary

In this chapter, we studied the problem of discovering discrimination in a rank and

reconstructing a fair rank if discrimination is detected. We leveraged structural causal

model to capture the bias in the rank as the causal effect. To address the limitation of the

existing single data-type causal graph, we modeled the ranking positions using a continuous

score, and built the causal graph for the profile attributes as well as the score. Then, we

extended the path-specific effect technique to the mixed-variable causal graph, which is used

to quantitatively measure direct and indirect discrimination in the ranked data. We also

theoretically analyzed the relationship between the path-specific effects for the ranked data

and those for the binary decision. Based on that, we developed an algorithm for discovering

both direct and indirect discrimination, as well as an algorithm to reconstruct a fair rank

from the causal graph. The experiments using the German Credit dataset showed that our

methods correctly measure the discrimination in the rank and reconstruct a rank that does

not contain either direct or indirect discrimination, while the statistical parity-based method

may obtain incorrect and misleading results. This work has been published in KDD 2018 [6].

In Theorem 8 we assumed that the πi-specific effect is identifiable from the data. In

some cases, the πi-specific effect is not able to be computed from the data due to the inherent

unidentifiability of the path-specific effect [2]. In Chapter 4, we have discussed how to deal

with this situation and developed lower and upper bounds for the unidentifiable path-specific

effect. Similar ideas can be adopted to deal with unidentifiable situation for ranked data.
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6 Counterfactual Fairness

6.1 Introduction

Recently, the research community has studied fairness-aware machine learning from

the causal perspective [4, 5, 28–30,73] using causal modeling [54]. In these works, fairness is

generally formulated and quantified as the average causal effect of the sensitive attribute on the

decision attribute. The effect is evaluated by the intervention through the post-interventional

distributions. Different from above works, Kusner et al. [7] introduced counterfactual fairness,

based on the counterfactual inference, which considers the causal effect within a particular

individual/group specified by of observational profile attributes. The notion of counterfactual

fairness is more general than the intervention-based notions where the set of profile attributes

is empty. Consequently, the counterfactual inference is more challenging than the intervention.

This is because measuring interventions only considers the post-interventional distributions,

but counterfactual inference considers both the real world without the intervention and the

counterfactual world with the intervention. Researchers have proved that the counterfactual

quantity cannot be uniquely computed from the observational data in some situations, which

are referred to as the unidentifiable situations [54].

The unidentifiable situations are big barriers to the application of counterfactual

fairness. In [7], the authors proposed three methods to evade the unidentifiability issue: 1) only

non-descendants of the sensitive attribute are used in classification, 2) the non-deterministic

substitutions of the hidden variables are postulated and inferred based on domain knowledge,

or 3) the complete causal model is postulated and estimated, e.g., , being treated as the

additive noise model then estimating the errors. However, the sensitive attribute is usually

an inherent nature of data hence many attributes are its descendants. If all descendants

are forbidden, very few attributes are allowed for classifier training, weakening the resultant

fair classifier dramatically. Also, it is over-simplified to postulate the substitutions and their
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distributions, since the exogenous variables represent all possible sources of randomness; or

presuppose that the causal model, which is supposed to represent the underlying mechanism

of the world, is an additive model.

In this chapter, we address the problem of learning counterfactually fair classifiers by

mathematically bounding the unidentifiable counterfactual quantity. We leverage the counter-

factual graph proposed in [87] for depicting the independence relationships among variables

in the real world and the counterfactual world which are of concern in the counterfactual

quantity. Then, we adopt the c-component factorization to decompose the counterfactual

quantity, and identify the terms that are the source of unidentification. We propose a

graphical criterion for determining the identification of counterfactual fairness and develop

the lower and upper bounds of counterfactual fairness in unidentifiable situations. Finally, we

propose a post-processing method for reconstructing arbitrary classifiers in order to achieve

counterfactual fairness. We formulate the reconstruction problem as a linear constrained

optimization problem with the bounded counterfactual fairness criterion as the constraints.

In the experiments, we evaluate our methods and compare them with existing ones

using real-world datasets and synthetic datasets where the ground-truth of counterfactual

fairness can be precisely quantified. The results show that our method correctly achieves

counterfactual fairness as expected according to our theorem, while obtaining high accuracy of

prediction. On the contrary, the methods proposed in [7] either fail to achieve counterfactual

fairness or suffer from low accuracy due to simplified assumptions.

6.2 Preliminaries

6.2.1 Counterfactual Inference and Unidentification

In Definition 3 of Chapter 3, the total causal effect is estimated using intervention

where the post-intervention distribution concerns the counterfactual world represented by

submodel Mx only. If we infer the post-intervention distribution while conditioning on

certain individuals or groups specified by a subset of endogenous variables, the inferred
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quantity will involve two worlds simultaneously, the real world represented by causal model

M, and the counterfactual worldMx, hence cannot be resolved by do-calculus directly. Such

causal inference problem is called the counterfactual inference, and the distribution of Yx

conditioning on the real world observation O = o is denoted by P (yx|o). Note that Yx is a

variable in submodel Mx, while O are variables in original causal model M.

Apparently, inferring P (yx|o) requires to know the connection between the real world

and the counterfactual world. This can be done if we have complete knowledge of the causal

model. According to [54], the counterfactual inference can be exactly performed using three

steps if the complete model, including all the structural equations, is known: 1. Abduction:

Update P (u) by observation O = o to obtain P (u|o). 2. Action: ModifyM by intervention

do(x) to obtain the submodel Mx. 3. Prediction: Use modified submodel 〈Mx, P (u|o)〉

to compute the probability of Yx,, i.e., the consequence of the counterfactual inference.

The above method is usually infeasible in practice due to the lack of the complete

knowledge of the causal model. If we only have the causal graph and observational data, which

is a common scenario in the literature, the counterfactual quantity might be evaluated by

using the IDC* algorithm developed in [87]. However, in certain situations where the IDC*

algorithm fails, the corresponding counterfactual quantity cannot be uniquely computed

from the observational data in theory. These situations are referred to as the unidentifiable

situations based on Definition 2. One typical unidentifiable situation [87] is shown in Lemma 4.

Lemma 4. Let X, Y be two variables such that Y is a parent of X, then P (Y = y, Yx = y′)

is unidentifiable if y 6= y′.

6.3 Quantifying and Bounding Counterfactual Fairness

Fairness-aware learning is widely studied using causal modeling to capture the causal

connection between the sensitive attribute and the challenged decision [4,7,29–31,88,89]. We

adopt the notion of counterfactual fairness proposed in [7], which formulates fairness as the

equivalence of two counterfactual quantities. Although this notion captures the true intuition
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behind fairness, it faces significant computational challenges due to the unidentifiability of

counterfactual inference. In this section, we first give the formal definition of counterfactual

fairness for predictive models and explain its physical meaning. Then, we show how to address

above challenges by mathematically bounding the unidentifiable counterfactual quantity.

In our notations, S ∈ {s+, s−} denotes the sensitive attribute, Y ∈ {y+, y−} denotes

the decision, and X denotes the set of other attributes. The historical dataset D drawn

from a distribution P (X, S, Y ) is used to train a classifier f : X, S → Ŷ . The underlying

mechanism that determines a distribution P (X, S, Ŷ ) is represented by a causal model M.

The causal graph associated with the causal model is denoted by G. Then, counterfactual

fairness is defined as follows.

Definition 6. (Counterfactual Fairness) Given a set of attributes Z ⊆ X, a classifier

f : X, S → Ŷ is counterfactually fair w.r.t. Z, if under any observational condition Z = z

we have

P (ŷs′ |s′, z) = P (ŷs|s′, z), where s′, s ∈ {s+, s−}.

Recall that a lowercase letter with a subscript represents a value assignment to the

corresponding variable in the submodel, e.g., ŷs is a value of Ŷs in the submodel Ms.

The physical meaning of counterfactual fairness can be interpreted as follows. Consider

candidates are applying for a job and a predictive model is used to make the decision

Ŷ . We concern an individual from disadvantage group s− who is specified by a profile z.

Straightforwardly, the probability of the individual to get the positive decision is P (ŷ|s−, z),

which is equivalent to P (ŷs−|s−, z) since the intervention makes no change to S’s value of

that individual. Now assume the value of S for this very individual had been changed from

s− to s+. The probability of this individual to get the positive decision after the hypothetical

change is given by P (ŷs+ |s−, z). Therefore, if two probabilities P (ŷs−|s−, z) and P (ŷs+ |s−, z)

are identical, we can claim the individual is treated fairly as if he/she had been from the

other group.
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Figure 6.1: (a) Causal Graph G. (b) Counterfactual Graph G ′ for P (ŷs|s′, z).

6.3.1 Identification of Counterfactual Quantity

In this section, we identify the source of unidentification for the counterfactual quantity

and give a graphical criterion determining the identifiability of the counterfactual quantity.

Our method is inspired by the IDC* algorithm and we further extend it to bound the

unidentifiable quantity.

The analysis of P (ŷs|s′, z) concerns the connection between two causal models, M

and Ms. Thus, we apply the make-cg algorithm [87] to the causal graph G to construct a

new graph G ′ that depicts the independence relationship among all variables in M and Ms

that are of concern in the analysis. The make-cg algorithm first combines the two causal

graphs and makes them share the same exogenous variables U, corresponding to the shared

causal context or background. Then, it removes the duplicated endogenous nodes which

are also not affected by do(s). The resultant graph is the so-called counterfactual graph.

Next, we apply the c-component factorization [90] to decompose counterfactual graph G ′ into

disjoint subgraphs called the c-components, such that any two nodes in the same c-component

are connected by a bi-directed path1. After that, the joint distribution of all variables in

the counterfactual graph can be factorized as the product of the conditional distribution of

1A bi-directed path is a path consisting of bi-directed edges only.
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each c-component. Our theoretical analysis will show that if certain c-component has the

unidentifiability issue that cannot be resolved by summation, the corresponding counterfactual

quantity is unidentifiable. Without loss of generality, we first use an example to illustrate

our idea. Consider the causal graph G shown in Figure 6.1 (a) where there are five attributes

A,B,C, S, Ŷ : S is the sensitive attribute; Ŷ is the prediction of the decision attribute obtained

by any classifier; A is the ancestor of Ŷ but not the descendant of S; B is the intersection

between the ancestor of Y and the descendant of S; and C is the descendant of S but not

the ancestor of Ŷ . We aim to study the identifiability of P (ŷs|s′, z), where Z is an arbitrary

subset of {A,B,C}.

The counterfactual graph denoted by G ′ is shown in Figure 6.1 (b), where the bi-

directed dash edge implies that the two nodes share the same exogenous variables. Note

that A and As are merged as A since they are duplicated. Next, we apply the c-component

factorization. In Figure 6.1 (b), there are five c-components: 〈A〉, 〈S〉, 〈B,Bs〉, 〈C,Cs〉, and

〈Ŷ , Ŷs〉. We can factorize P (ŷs, s
′, z) as

P (ŷs, s
′, z) =

∑
x\z,ŷ,b′,c′

R(a)R(s′)R(c, c′s)R(b, b′s)R(ŷ′, ŷs),

where R(w) = P
(
w|Pa(W)G′

)
for any node set W, x = {a, b, c}, and z is any subset of x.

Then, we can derive that

P (ŷs|s′, z) =

∑
x\z,ŷ,b′,c′ [P (a)P (s′|a)P (c, c′s|s′, a)P (b, b′s|s′, a)P (ŷ′, ŷs|a, b, b′s)]

P (s′, z)
.

Note that c′s in P (c, c′s|s′, a) and ŷ′ in P (ŷ, ŷs|a, b, b′s) can be canceled out by summation.

By applying the m-separation, we can remove b from P (ŷs|a, b, b′s), as B is d-separated from

Ŷs conditioning on A and Bs. Thus, we obtain

P (ŷs|s′, z) =

∑
x\z,b′ [P (a)P (s′|a)P (c|s′, a)P (b, b′s|s′, a)P (ŷs|a, b′s)]

P (s′, z)
. (6.1)
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To further analyze Eq. (6.1), we consider two cases below.

Case 1 (B /∈ Z): In this case, we have b under the Σ of Eq. (6.1), hence b in

P (b, b′s|s′, a) can be canceled out by summation, resulting in P (b′s|s′, a). Then, we can remove

s′ from P (b′s|s′, a) as Bs is d-separated from S conditioning on A, resulting in P (b′s|a). We

can further rewrite P (ŷs|a, b′s) as Ps(ŷ|a, b′), and rewrite P (b′s|a) as P (b′s|a). At last, we

invoke do-calculus Rule 2 [54] to convert Ps(ŷ|a, b′) to P (ŷ|a, b′, s), and Ps(b
′|a) to P (b′|a, s).

Finally, we obtain

P (ŷs|s′, z) =

∑
x\z\{b},b′ P (s′, a, c)P (b′|a, s)P (ŷ|a, b′, s)

P (s′, z)

=

∑
x\z\{b} P (s′, a, c)P (ŷ|a, s)

P (s′, z)
. (6.2)

Case 2 (B ∈ Z): In this case, since we do not have b under the Σ, term P (b, b′s|s′, a)

cannot be reduced, resulting in

P (ŷs|s′, z) =

∑
x\z,b′ P (s′, a, c)P (b, b′s|a, s′)P (ŷ|a, b′, s)

P (s′, z)
. (6.3)

From above two cases we see that, P (ŷs|s′, z) in Case 1 is identifiable as all terms in

Eq. (6.2) can be read from observational data. One can verify that this result is consistent

with the IDC* algorithm. However in Case 2, since P (b, b′s|s′, a) in Eq. (6.3) is unidentifiable

according to Lemma 4, P (ŷs|s′, z) is also unidentifiable. In this example, the identifiability of

P (ŷs|s′, z) depends on whether node B, the intersection of S’s descendants and Ŷ ’s ancestors,

is in set Z or not. We summarize this result as follows.

Proposition 6. For the causal graph in Figure 6.1 (a), P (ŷs|s′, z) is unidentifiable if and

only if B ∈ Z.
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6.3.2 Bounding Unidentifiable Counterfactual Quantity

In Eq. (6.3), we identify the source of unidentifiability. Next, we derive the lower and

upper bounds for P (ŷs|s′, z) as shown in the following proposition, which works for both

identifiable and unidentifiable situations.

Proposition 7. For the causal graph in Figure 6.1 (a) we have

P (ŷs|s′, z) ≤
∑

x\z P (s′,x) maxm′ {P (ŷ|s, a, b′)}
P (s′, z)

, (6.4)

P (ŷs|s′, z) ≥
∑

x\z P (s′,x) minm′ {P (ŷ|s, a, b′)}
P (s′, z)

, (6.5)

where x = {a, b, c}, z is any subset of x, and M = {B} ∩ Z.

Proof. Suppose B ∈ Z, then M = {B}. Obviously, we have

P (ŷ|s, a, b′) ≤ max
b′
{P (ŷ|s, a, b′)} .

By applying this inequality to Eq. (6.3), we have

P (ŷs|s′, z) ≤
∑

x\z P (s′, a, c) maxb′ {P (ŷ|s, a, b′)}
∑

b′ P (b, b′s|s′, a)

P (s′, z)

=

∑
x\z P (s′, a, c)P (b|s′, a) maxb′ {P (ŷ|s, a, b′)}

P (s′, z)

=

∑
x\z P (s′,x) maxb′ {P (ŷ|s, a, b′)}

P (s′, z)
.

The second step is due to the condition
∑

b′ P (b, b′s|s′, a) = P (b|s′, a), and the third step is

due to B ⊥ C|A, S. Similarly, we can replace max with min to obtain Eq. (6.5).

If B /∈ Z, M = ∅. Then, we have max∅{P (ŷ|s, a, b′)} = min∅{P (ŷ|s, a, b′)} = P (ŷ|s, a)

and both Eq. (6.4) and Eq. (6.5) become
∑

x\z\{b} P (s′,a,c)P (ŷ|s,a)

P (s′,z)
, which is consistent with the

identifiable situations (i.e., Eq. (6.2)).
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6.3.3 Extending to General Case

Above results can be extended to the general case. Let A denote the ancestors of Ŷ

which are not the descendants of S, B denote the intersection between the ancestors of Ŷ and

the descendants of S, C denote the descendants of S which are not the ancestors of Ŷ , i.e.,

A = An(Ŷ )G \ De(S)G, B = An(Ŷ )G ∩ De(S)G,

C = De(S)G \ An(Ŷ )G.

Note that A,B,C are disjoint and X = A∪B∪C. Now we are ready to extend Propositions 6

and 7 to the general case.

Theorem 11. (Identification of Counterfactual Quantity) Given a causal graph G

and the set of profile attributes Z, the counterfactual quantity P (ŷs|s′, z) is unidentifiable if

and only if B ∩ Z 6= ∅.

Theorem 12. (Bounds of Counterfactual Quantity) Given a causal graph G and a

set of profile attributes Z, we have

P (ŷs|s′, z) ≤

∑
x\z

[
P (s′,x) maxm′

{
P (ŷ|s, pa(Ŷ)G ∩m′, pa(Ŷ)G \ {s,m′}

}]
P (s′, z)

,

P (ŷs|s′, z) ≥

∑
x\z

[
P (s′,x) minm′

{
P (ŷ|s, pa(Ŷ)G ∩m′, pa(Ŷ)G \ {s,m′}

}]
P (s′, z)

,

where we partition B to two disjoint sets: a set M ∈ Z and a set N /∈ Z such that

M = B ∩ Z,N = B \ Z.

The proofs are similar to the previous ones.

6.4 Achieving Counterfactual Fairness in Classification

The derived bounds clear the path towards constructing counterfactually fair classifiers.

In this section, we propose a post-processing method for reconstructing any classifier to
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achieve counterfactual fairness. To this end, we first give a relaxed quantitative criterion of

fairness based on Definition 6.

Definition 7 (τ -Counterfactual Fairness). Given a profile attribute set Z ⊆ X and a threshold

τ , a classifier f : X, S → Ŷ is counterfactually fair if under any condition Z = z,

∣∣DE(ŷs−→s+|z)
∣∣ ≤ τ,

where DE(ŷs−→s+ |z) = P (ŷs+|s−, z)− P (ŷs−|s−, z).

In above definition,
∣∣DE(ŷs−→s+|z)

∣∣ captures the amount of unfairness or discrimina-

tion of a classifier in terms of the difference in the positive decision rate for a certain group of

individuals (specified by z) between the counterfactual world (where they had been changed

to s+) and the real world (where they are actually in s−). If the amount of unfairness of a

classifier is smaller than τ , we claim this classifier is (counterfactually) fair. Note that the

first term P (ŷs+|s−, z) has the identification issue, but the second term P (ŷs−|s−, z) simply

equals to P (ŷ|s−, z) since the intervention do(s−) makes no change to the value of S for this

group. By denoting the upper and lower bounds of P (ŷs+|s−, z) obtained in Theorem 12 as

ub(P (ŷs+|s−, z)) and lb(P (ŷs+ |s−, z)) respectively, we obtain the bounds of DE(ŷs−→s+|z) as

follows.

Corollary 1. (Bounds of Counterfactual Fairness) The upper and lower bounds of

counterfactual fairness DE(ŷs−→s+ |z) are given by

ub (DE(ŷs−→s+ |z)) = ub
(
P (ŷs+|s−, z)

)
− P (ŷ|s−, z), (6.6)

lb (DE(ŷs−→s+ |z)) = lb
(
P (ŷs+|s−, z)

)
− P (ŷ|s−, z). (6.7)

Corollary 3 can facilitate the detection of unfairness from observational data. Specif-

ically, if we have ub (DE(ŷs−→s+|z)) ≤ τ and lb (DE(ŷs−→s+|z)) ≥ −τ , then it is guar-

anteed that τ -counterfactual fairness is satisfied. If we have ub (DE(ŷs−→s+|z)) ≤ −τ or
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lb (DE(ŷs−→s+|z)) > τ , then it is guaranteed that τ -counterfactual fairness cannot be satisfied.

Otherwise, it is uncertain and cannot be determined from data.

Based on Corollary 3, we then propose an efficient method for constructing counter-

factually fair classifiers. Note that the bounds are consistent with identifiable situations, so

the method works for both identifiable/unidentifiable situations.

We consider to construct a new decision variable Ỹ from Ŷ in the causal model such

that τ -counterfactual fairness regarding Ỹ is satisfied. The objective is to find an optimal

probabilistic mapping function P (ỹ|ŷ, pa(Ŷ )G) that minimizes the difference between Y and Ỹ ,

measured by the empirical loss ED[`(Y, Ỹ )], meanwhile, the new decisions are counterfactually

fair. The formulation of this optimization problem is given below.

Problem Formulation 1. Given a dataset D with prediction Ŷ made by an arbitrary

classifier, we aim to learn a post-processing mapping function P (ỹ|ŷ, pa(Ŷ )G) by solving the

following optimization problem:

min ED[`(Y, Ỹ )]

s.t. for any z :

ub (DE(ỹs−→s+ |z)) ≤ τ, lb (DE(ỹs+→s−|z)) ≥ −τ,∑
ỹ

P (ỹ|ŷ, pa(Ŷ )G) = 1, 0 ≤ P (ỹ|ŷ, pa(Ŷ )G) ≤ 1,

where `(Y, Ỹ ) is the 0-1 loss function.

It is easy to show that Problem Formulation 1 is a linear programming problem

with P (ỹ|ŷ, pa(Ŷ )G) as variables. Note that distribution P (ỹ|pa(Ŷ )G) can be obtained

by P (ỹ|pa(Ŷ )G) =
∑

ŷ P (ŷ|pa(Ŷ )G)P (ỹ|ŷ, pa(Ŷ )G). Thus, all constraints are linear w.r.t.

P (ỹ|ŷ, pa(Ŷ )G). On the other hand, for the objective function we have

ED[`(Y, Ỹ )] =
∑

y,ỹ∈{y+,y−}
`(y, ỹ)P (ỹ, y) = 2P (ỹ 6= y).
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And we also have

P (ỹ 6= y) = P (ŷ 6= y)P (ỹ = ŷ) + P (ŷ = y)P (ỹ 6= ŷ)

=
∑
x,s

P (x, s)

P (ŷ 6= y|x, s)

 P (ỹ = y−|ŷ = y−,x, s)

P (ŷ = y−|x, s)
+

P (ỹ = y+|ŷ = y+,x, s)

P (ŷ = y+|x, s)


+P (ŷ = y|x, s)

 P (ỹ = y+|ŷ = y−,x, s)

P (ŷ = y−|x, s)
+

P (ỹ = y−|ŷ = y+,x, s)

P (ŷ = y+|x, s)




In the above expression, all probabilities except P (ỹ|ŷ,x, s) are read from the training set D,

making it a linear expression of P (ỹ|ŷ,x, s).

6.5 Experiments

We evaluate our method and compare it with previous methods on two datasets.

To show the correctness of our method, we generate a synthetic dataset from a known

causal model with complete knowledge in our evaluation. We also use the Adult dataset [68]

to evaluate these methods in a real-world environment. We evaluate four methods for

constructing classifiers: (1) the original learning algorithm without fairness constraints as

the baseline (denoted by BL); (2) two methods (denoted by A1 and A3) from [7] where

A1 uses non-descendants of S only for building classifiers, and A3 presuppose the additive

noise model for estimating the noise terms, which are then used for building classifiers; (3)

our method (denoted as CF). By default, the discrimination threshold τ is set as 0.05. The

datasets and implementations are available at http://tiny.cc/counterfactual-fairness.

6.5.1 Datasets

Synthetic Dataset. We manually build a causal model (where all variables are

discrete) with complete knowledge of the exogenous variables and the functions (i.e., the

contingency table) using Tetrad [70]. The corresponding causal graph is shown in Figure 6.2a.
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This causal model consists of 5 endogenous variables, A, S, M , N , Y , and 5 independent

exogenous variables, UA, US, UM , UN , UY . For simplicity, all endogenous variables have two

domain values and all exogenous variables have three domain values. The distributions of the

exogenous variables and the deterministic functions of the endogenous variables are randomly

assigned. Then, we generate 100,000 examples from this causal model and split the data into

training and testing sets with a ratio of 80/20. We consider S as the sensitive attribute and

Y as the decision attribute. The profile attribute set Z contains A,M .

Adult Dataset. The Adult dataset is described in Appendix A.1. We select 7 attributes,

binarize their domain values, and split the dataset into the training and testing sets, following

the 80/20 ratio. We apply the PC algorithm implemented in Tetrad to build the causal

graph while the significant threshold is set as 0.01 for conditional independence testing. We

use three tiers in the partial order for temporal priority: sex, age in Tier 1, education,

marital-status and workclass are defined in Tier 2, and income defined in Tier 3. The

causal graph is shown in Figure 6.2b, where sex is considered as the sensitive attribute

and income is the decision attribute. age, education, marital-status, and workclass are

contained the profile attributes Z.

6.5.2 Experiment on the Synthetic Dataset

Quantifying Counterfactual Fairness. According to Theorem 11, the counterfactual

fairness quantity is unidentifiable in this dataset. We evaluate the bounds of counterfactual

fairness using Theorem 12. The ground truth (i.e., the exact values of all counterfactual

quantities) is computed by applying the Abduction-Action-Prediction method. The results

are shown in Table 6.1, where the first column indicates the indices of z’s value combinations.

As can be seen, the exact values of DE(ŷs−→s+|z) fall into the range of our bounds for all

value combinations of Z, which validates our theorem.
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(a) Causal Graph for the synthetic
dataset.

(b) Causal graph for the Adult dataset.

Figure 6.2: Causal graphs for the synthetic dataset and the Adult dataset. Dashed nodes
represent the exogenous variables. Bold nodes represent the profile attributes in Z.

# of z
DE(ŷs−→s+|z)

ub lb Truth
1 0.399 0.105 0.328
2 0.471 0.177 0.467
3 0.147 -0.082 -0.038
4 0.374 0.145 0.145

Table 6.1: Bounds and ground truth of counterfactual fairness for all value combinations of
Z using the synthetic dataset.

Building Counterfactually Fair Classifiers. We then evaluate the classifier learning

methods. For the baseline method, we adopt the logistic regression (LR) and support

vector machine (SVM). Then, we apply A1, A3, and CF on top of both classifiers. The

counterfactual fairness is precisely evaluated and shown in Table 6.2 for all the methods using

the Abduction-Action-Prediction method. The predictive accuracy is reported in Table 6.3.

As expected, both A1 and CF achieve fairness, but our method achieves higher accuracy

than A1, implying that A1 loses more information. On the other hand, we see that BL

fails to achieve counterfactual fairness, because it ignores the fairness during the training. In
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# of z
LR SVM

BL A1 A3 CF BL A1 A3 CF
1 0.000 0.000 -0.233 0.049 0.114 0.000 0.174 0.049
2 1.000 0.000 1.000 0.049 0.762 0.000 0.648 0.049
3 0.000 0.000 0.000 0.000 -0.021 0.000 -0.021 0.000
4 1.000 0.000 0.000 0.048 1.000 0.000 0.000 0.048

Table 6.2: Counterfactual fairness for prediction of the synthetic dataset. Values violating
the threshold are highlighted in bold.

Accu. (%) Data BL A1 A3 CF

LR
Train 60.103 55.760 59.433 61.987
Test 60.421 56.563 59.713 62.512

SVM
Train 65.710 55.760 62.466 61.977
Test 65.841 56.563 62.542 62.463

Table 6.3: Prediction accuracy for the synthetic dataset.

addition, A3 also fails to achieve counterfactual fairness. This implies that assuming additive

model may produce biased results when the underlying causal model is non-linear.

6.5.3 Experiment on the Adult Dataset

We evaluate the fair classifier learning methods using the Adult dataset. Since we

do not have the ground truth, we report bounds of counterfactual fairness for different

methods. Table 6.4 shows that only A1 and CF can achieve counterfactual fairness for

all value combinations of Z, but our CF consistently achieves higher accuracy than A1

as shown in Table 6.5. This is as expected since A1 is proved to be fair in [7] (and also

identifiable according to Theorem 11), but will inevitably lead to lower accuracy as only S’s

non-descendants are used. For BL and A3 in Table 6.4, either the lower bound is larger than

τ or the upper bound is less than −τ , indicating the τ -counterfactual fairness is not achieved.

6.6 Summary

We focused on the unidentifiability challenge when applying counterfactual fairness

in practice. We decomposed the counterfactual quantities and identified the source of
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# of z
BL A1 A3 CF

ub lb val ub lb ub lb

LR

2 0.321 0.000 0.000 -1.000 -1.000 -0.007 -0.047
4 0.523 0.000 0.000 -1.000 -1.000 0.038 -0.027
13 1.000 0.304 0.000 0.000 -1.000 0.049 -0.016
15 1.000 0.398 0.000 0.000 -1.000 0.050 -0.007

SVM

2 0.135 -0.186 0.000 -0.186 -0.186 -0.007 -0.047
4 0.283 -0.240 0.000 -0.240 -0.240 0.038 -0.027
13 0.866 0.170 0.000 0.866 0.170 0.049 -0.016
15 0.907 0.305 0.000 0.907 0.305 0.050 -0.007

Table 6.4: Counterfactual fairness for prediction of the Adult dataset.

Accu. (%) Data BL A1 A3 CF

LR
Train 77.728 67.624 74.845 70.433
Test 77.200 66.934 73.867 69.451

SVM
Train 78.071 67.624 77.845 70.413
Test 77.449 66.934 77.166 69.438

Table 6.5: Prediction accuracy for the Adult dataset.

unidentification by leveraging the counterfactual graph and c-component factorization from

Pearl’s framework. We then developed the criterion of identification and the upper/lower

bounds for counterfactual fairness. Finally, we formulated counterfactually fair classification

as a linear programming problem. Empirical evaluations showed our method is guaranteed

to achieve counterfactual fairness in classification, while previous approaches either cannot

achieve counterfactual fairness or suffer bad performance due to over-simplified assumptions.

This work has appeared in IJCAI 2019 [8].
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7 Path-specific Counterfactual Fairness

7.1 Introduction

Based on Pearl’s structural causal models [54], a number of causality-based fairness

notions have been proposed for capturing fairness in different situations, including total

effect [4,5,30], direct/indirect discrimination [4,5,29,30], and counterfactual fairness [7,8,91,92].

One common challenge of all causality-based fairness notions is identifiability, i.e.,

whether they can be uniquely measured from observational data. As causality-based fairness

notions are defined based on different types of causal effects, such as total effect on interven-

tions, direct/indirect discrimination on path-specific effects, and counterfactual fairness on

counterfactual effects, their identifiability depends on the identifiability of these causal effects.

Unfortunately, in many situations these causal effects are in general unidentifiable, referred

to as unidentifiable situations [87]. Identifiability is a critical barrier for the causality-based

fairness to be applied to real applications. In previous works, simplifying assumptions are

proposed to evade this problem [4,7,31]. However, these simplifications may severely damage

the performance of predictive models. In [5] the authors propose a method to bound indirect

discrimination as the path-specific effect in unidentifiable situations, and in [8] a method

is proposed to bound counterfactual fairness. Nevertheless, the tightness of these methods

is not analyzed. In addition, it is not clear whether these methods can be applied to other

unidentifiable situations, and more importantly, a combination of multiple unidentifiable

situations.

In this chapter, we propose a framework for handling different causality-based fairness

notions. We first propose a general representation of all types of causal effects, i.e., the

path-specific counterfactual effect, based on which we define a unified fairness notion that

covers most previous causality-based fairness notions, namely the path-specific counterfactual

fairness (PC fairness). We summarize all unidentifiable situations that are discovered in
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the causal inference literature. Then, we develop a constrained optimization problem for

bounding the PC fairness, which is motivated by the method proposed in [9] for bounding

confounded causal effects. The key idea is to parameterize the causal model using so-called

response-function variables, whose distribution captures all randomness encoded in the causal

model, so that we can explicitly traverse all possible causal models to find the tightest

possible bounds. In the experiments, we evaluate the proposed method and compare it with

previous bounding methods using both synthetic and real-world datasets. The results show

that our method is capable of bounding causal effects under any unidentifiable situation

or combinations. When only path-specific effect or counterfactual effect is considered, our

method provides tighter bounds than methods in [5] or [8]. The proposed framework settles

a general theoretical foundation for causality-based fairness. We make no assumption about

the hidden confounders so that hidden confounders are allowed to exist in the causal model.

We also make no assumption about the data generating process and whether the observation

data is generated by linear or non-linear functions would not introduce bias into our results.

We only assume that the causal graph is given, which is a common assumption in structural

causal models.

Relationship to other work. In [89], the author introduces the term “path-specific

counterfactual fairness”, which states that a decision is fair toward an individual if it coincides

with the one that would have been taken in a counterfactual world in which the sensitive

attribute along the unfair pathways were different. They develop a correction method called

PSCF for eliminating the individual-level unfair information contained in the observations

while retaining fair information. Compared to [89], we formally define a general fairness

notion which, besides the individual-level fairness, is also applied to fairness in any sub-

group of the population. In addition, we further consider the identifiability issue in causal

inference that is inevitably brought by conditioning on the individual level. Unidentifiable

situation means that there exist two causal models which exactly agree with the same

observational distribution (hence cannot be distinguished using statistic methods such as
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maximum likelihood), but lead to very different causal effects. In this chapter, we address

various unidentifiable situations by developing a general bounding method. The authors in [93]

study the conditional path-specific effect and develop a complete identification algorithm

with the application to the problem of algorithmic fairness. Similar to our proposed notion,

their notion is also quantified via conditional distributions over the interventional variant.

However, the conditional path-specific effect generalizes the conditional causal effect, where

the factual condition is assumed to be “non-contradictory” (such as age in measuring the effect

of smoking on lung cancer) [87]. The path-specific counterfactual effect, on the other hand,

generalizes the counterfactual effect, where the factual condition can be contradictory to the

observation. Formally, in the conditional path-specific effect, the condition is performed on

the pre-intervention distribution, but in the path-specific counterfactual effect, the condition

is performed on the post-intervention distribution.

7.2 Preliminaries

In this chapter, we leverage the Structural Causal Model, identification of causal

inference, the path-specific effect, and the counterfactual effect whose definitions can be found

in Chapter 3, Chapter 4, and Chapter 6.

7.3 Path-specific Counterfactual Fairness

In this section, we define a unified fairness notion for representing different causality-

based fairness notions. The key component of our notion is a general representation of

causal effects. Consider an intervention on X which is transmitted along a subset of causal

paths π to Y , conditioning on observation O = o. Based on that, we define path-specific

counterfactual effect as follows.

Definition 8 (Path-specific Counterfactual Effect). Given a factual condition O = o and a

causal path set π, the path-specific counterfactual effect of the value change of X from x0 to
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x1 on Y = y through π (with reference x0) is given by

PCEπ(x1, x0|o) = P (yx1|π,x0|π̄|o)− P (yx0|o).

In the context of fair machine learning, we use S ∈ {s+, s−} to denote the protected

attribute, Y ∈ {y+, y+} to denote the decision, and X to denote a set of non-protected

attributes. The underlying mechanism of the population over the space S × X × Y is

represented by a causal model M, which is associated with a causal graph G. A historical

dataset D is drawn from the population, which is used to construct a predictor h : X, S → Ŷ .

The causal model for the population over space S ×X× Ŷ can be considered the same as

M except that function fY is replaced with a predictor h. We use Π to denote all causal

paths from S to Ŷ in the causal graph.

Then, we define the path-specific counterfactual fairness based on Definition 8.

Definition 9 (Path-specific Counterfactual Fairness (PC Fairness)). Given a factual condition

O = o where O ⊆ {S,X, Y } and a causal path set π, predictor Ŷ achieves the PC fairness if

PCEπ(s1, s0|o) = 0 where s1, s0 ∈ {s+, s−}. We also say that Ŷ achieves the τ -PC fairness

if
∣∣PCEπ(s1, s0|o)

∣∣ ≤ τ .

We show that previous causality-based fairness notions can be expressed as special

cases of the PC fairness. Their connections are summarised in Table 7.1, where πd contains

the direct edge from S to Ŷ , and πi is a path set that contains all causal paths passing

through any redlining attributes (i.e., a set of attributes in X that cannot be legally justified

if used in decision-making). Based on whether O equals ∅ or not, the previous notions can

be categorized into the ones that deal with the system level (O = ∅) and the ones that have

certain conditions (O 6= ∅). Based on whether π equals Π or not, the previous notions can be

categorized into the ones that deal with the total causal effect (π = Π), the ones that consider

the direct discrimination (π = πd), and the ones that consider the indirect discrimination

(π = πi).
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Table 7.1: Connection between previous fairness notions and PC fairness

Description References Relating to PC fairness

Total effect [4, 30] O = ∅ and π = Π

(System) Direct discrimination [4, 29,30] O = ∅ or {S} and π = πd = {S → Ŷ }
(System) Indirect discrimination [4, 29,30] O = ∅ or {S} and π = πi ⊂ Π

Individual direct discrimination [26] O = {S,X} and π = πd = {S → Ŷ }
Group direct discrimination [28] O = Q = PAY \{S} and π = πd = {S → Ŷ }
Counterfactual fairness [7, 8, 92] O = {S,X} and π = Π
Counterfactual error rate [91] O = {S, Y } and π = πd or πi

X Y

Figure 7.1: The “bow” graph.

X W

Z

Y

π = {X → W → Z → Y }

Figure 7.2: The “kite” graph.

X

Y

x

Yx

Figure 7.3: The “w” graph.

UX UY

X Y

Figure 7.4: The causal graph for a semi-
Markovian model.

In addition to unifying the existing notions, the notion of PC fairness also resolves

new types of fairness that the previous notions cannot do. One example is individual indirect

discrimination, which means discrimination along the indirect paths for a particular individual.

Individual indirect discrimination has not been studied yet in the literature, probably due to

the difficulty in definition and identification. However, it can be directly defined and analyzed

using PC fairness by letting O = {S,X} and π = πi.

7.4 Measuring Path-specific Counterfactual Fairness

In this section, we develop a general method for bounding the path-specific counter-

factual effect in any unidentifiable situation. In the causal inference field, researchers have

studied the reasons for unidentifiability under different cases. When O = ∅ and π ⊂ Π,
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the reason for unidentifiability can be the existence of the “kite” graph (see Figure 7.2) in

the causal graph [2]. When O 6= ∅ and π = Π, the reason for unidentifiability can be the

existence of the “w” graph (see Figure 7.3) [94]. In any situation, as long as there exists a

“hedge” graph (where the simplest case is the “bow” graph as shown in Figure 7.1), then the

causal effect is unidentifiable [87]. Obviously, all above unidentifiable situations can exist in

the path-specific counterfactual effect.

Our method is motivated by [9] which formulates the bounding problem as a constrained

optimization problem. The general idea is to parameterize the causal model and use the

observational distribution P (V) to impose constraints on the parameters. Then, the path-

specific counterfactual effect of interest is formulated as an objective function of maximization

or minimization for estimating its upper or lower bound. The bounds are guaranteed to be

tight as we traverse all possible causal models when solving the optimization problem. Thus,

a byproduct of the method is a unique estimation of the path-specific counterfactual effect in

the identifiable situation.

For presenting our method, we first introduce a key concept called the response-function

variable.

7.4.1 Response-function Variable

Response-function variables are proposed in [9] for parameterizing the causal model.

Consider an arbitrary endogenous variable denoted by V ∈ V, its endogenous parents denoted

by PAV , its exogenous parents denoted by UV , and its associated structural function in the

causal model denoted by v = fV (paV , uV ). In general, UV can be a variable of any type

with any domain size, and fV can be any function, making the causal model very difficult to

be handled. However, we can note that, for each particular value uV of UV , the functional

mapping from PAV to V is a particular deterministic response function. Thus, we can map

each value of UV to a deterministic response function. Although the domain size of UV is

unknown which might be very large or even infinite, the number of different deterministic
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response functions is known and limited, given the domain sizes of PAV and V . This means

that the domain of UV can be divided into several equivalent regions, each corresponding to

the same response function. As a result, we can transform the original non-parameterized

structural function to a limited number of parameterized functions.

Formally, we represent equivalent regions of each endogenous variable V by the

response-function variable RV = {0, · · · , NV − 1} where NV = |V ||PAV | is the total number

of different deterministic response functions mapping from PAV to V (NV = |V | if V has

no parent). Each value rV represents a pre-defined response function. We also denote the

mapping from UV to RV as rV = `V (uV ). Then, for any fV (paV , uV ), it can be re-formulated

as

fV (paV , uV ) = fV (paV , `
−1
V (rV )) = fV ◦ `−1

V (paV , rV ) = gV (paV , rV ),

where gV is the composition of fV and `−1
V , and denotes the response functions represented

by rV . We denote the set of all response-function variables by R = {RV : V ∈ V}.

Next, we show how joint distribution P (v) can be expressed as a linear function of P (r).

According to [67], P (v) can be expressed as the summation over the probabilities of certain

values u of U that satisfy following corresponding requirements: for each V ∈ V, we must

have fV (paV , uV ) = v where v, paV are specified by v and uV is specified by u. In other words,

denoting by V (u) the value that V would obtain if U = u, we have P (v) =
∑

u:V(u)=v P (u).

Then, by mapping from U to R, we accordingly obtain P (v) =
∑

r:V(r)=v P (r), where for

each V ∈ V, V (r) = v means that gV (paV , rV ) = v. As a result, by defining an indicator

function

I(v; paV , rV ) =


1 if gV (paV , rV ) = v,

0 otherwise,

we obtain

P (v) =
∑
r

P (r)
∏
V ∈V

I(v; paV , rV ), (7.1)

which is a linear expression of P (r).
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Example 1. Consider the causal graph shown in Figure 7.4 with two endogenous variables

X and Y , and two exogenous variables UX and UY with unknown domains. Assume that

both X and Y are binary, i.e., X ∈ {x0, x1} and Y ∈ {y0, y1}, and denote their response

variables as RX and RY . For Y , since there are a total number of 22 = 4 response functions,

response-function variable RY and response function gY can be defined as follows:

rY = `Y (uY ) =



0 if fY (x0, uY ) = y0, fY (x1, uY ) = y0;

1 if fY (x0, uY ) = y0, fY (x1, uY ) = y1;

2 if fY (x0, uY ) = y1, fY (x1, uY ) = y0;

3 if fY (x0, uY ) = y1, fY (x1, uY ) = y1.

gY (x, rY ) =



y0 if rY = 0;

y0 if x = x0, rY = 1;

y1 if x = x1, rY = 1;

y1 if x = x0, rY = 2;

y0 if x = x1, rY = 2;

y1 if rY = 3.

Similarly, response-function variable RX and response function gX can be defined as

rX = `X(uX) =


0 if fX(uX) = x0;

1 if fX(uX) = x1.

gX(rX) =


x0 if rX = 0;

x1 if rX = 1.

As a result, the joint distribution over X, Y is given by

P (x, y) =
∑
rX ,rY

P (rX , rY )I(x; rX)I(y;x, rY ).

7.4.2 Expressing Path-specific Counterfactual Fairness

For bounding the path-specific counterfactual effect, i.e., PCEπ(s1, s0|o) = P (ŷs1|π,s0|π̄|o)

−P (ŷs0 |o), we also apply response-function variables to express it. We focus on the expression

of P (ŷs1|π,s0|π̄|o), and the expression of P (ŷs0|o) can be similarly obtained as a simpler case.

Similar to the previous section, we first express P (ŷs1|π,s0|π̄|o) as the summation over the

probabilities of certain values of U that satisfy corresponding requirements. However, as

described below, the requirements are much more complicated than previous ones due to the
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integration of intervention, path-specific effect, and counterfactual.

Firstly, since the path-specific counterfactual effect is under a factual condition O = o,

values u must satisfy that O(u) = o, i.e., for each O ∈ O, we must have fO(paO, uO) = o.

Secondly, the path-specific counterfactual effect is transmitted only along some path set

π. According to [5], for the variables of X that lie on both π and π̄, referred to as witness

variables/nodes [2], we need to consider two sets of values, one obtained by treating them on

π and the other obtained by treating them on π̄. Formally, non-protected attributes X are

divided into three disjoint sets. We denote by W the set of witness variables, denote by A

the set of non-witness variables on π, and denote by B the set of non-witness variables on

π̄. A simple example is given in Figure 7.5. We denote the interventional variant of A by

As1|π, the interventional variant of B by Bs0|π̄, the interventional variant of W treated on π

by Ws1|π, and the interventional variant of W treated on π̄ by Ws0|π̄. Then, P (ŷs1|π,s0|π̄|o)

can be written as

P (ŷs1|π,s0|π̄|o) =
∑

a,b,w1,w0

P (Ŷs1|π,s0|π̄ = y,As1|π = a,Bs0|π̄ = b,Ws1|π = w1,Ws0|π̄ = w0 | o).

To obtain the above joint distribution, in addition to O(u) = o, values u must also satisfy

that:

1. As1|π(u) = a, which means for each A ∈ A, we must have fA(pa1
A, uA) = a, where pa1

A

means that if PAA contains S or any witness node W , its value is specified by s1 or w1

if edge S/W → Y belongs to a path in π, and specified by s0 or w0 otherwise;

2. Bs0|π̄(u) = b, which means for each B ∈ B, we must have fB(pa0
B, uB) = b, where pa0

B

means that if PAB contains S or any witness node W , its value is specified by s0 or w0;

3. Ws1|π(u) = w1, which means for each W ∈W, we must have fW (pa1
W , uW ) = w1;

4. Ws0|π(u) = w0, which means for each W ∈W, we must have fW (pa0
W , uW ) = w0.
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Then, by mapping from U to R, we can obtain the requirements for R accordingly.

Finally, denoting the values of R that satisfy O(r) = o by ro, we obtain

P (ŷs1|π,s0|π̄|o) =
∑

a,b,w1
w0,r∈ro


P (r)
P (o)

I(ŷ; pa1
Ŷ
, rŶ )

∏
A∈A

I(a; pa1
A, rA)

∏
B∈B

I(b; pa0
B, rB)∏

W∈W
I(w1; pa1

W , rW )I(w0; pa0
W , rW )

 , (7.2)

which is still a linear expression of P (r).

Similarly, we can obtain

P (ŷs0|o) =
∑

v′,r∈ro

P (r)

P (o)
I(ŷ; paŶ , rŶ )

∏
V ∈V′

I(v; paV , rV ), (7.3)

where V′ = V\{S, Y }.

Example 2. Consider causal graphs shown in Figures 7.1, 7.2, 7.3 and following unidentifiable

causal effects: total causal effect TCE(x1, x0) in Figure 7.1, path-specific effect PEπ(x1, x0)

in Figure 7.2, and counterfactual effect CE(x1, x0|x0, y0) in Figure 7.3. By similarly defining

response functions as in Example 1, for Figure 7.1 with R = {RX , RY }, we have

TCE(x1, x0) =
∑
rX ,rY

P (rX , rY )I(y;x1, rY )−
∑
rX ,rY

P (rX , rY )I(y;x0, rY ),

for Figure 7.2 with R = {RX , RW , RZ , RY }, we have

PEπ(x1, x0) =
∑

z,w1,w0,r

P (r)I(y; z, w0, rY )I(z;w1, rZ)I(w1;x1, rW )I(w0;x0, rW )

−
∑
z,w,r

P (r)I(y; z, w, rY )I(z;w, rZ)I(w;x0, rW ),

for Figure 7.3 with R = {RX , RY }, we have

CE(x1, x0) =
∑

rX ,rY ∈ro

P (rX , rY )

P (x0, y0)
I(y;x1, rY )−

∑
rX ,rY ∈ro

P (rX , rY )

P (x0, y0)
I(y;x0, rY ).
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Note that in Figures 7.1, the total causal effect is identifiable if UX and UY are

independent. This is reflected in our formulation such that when RX and RY are independent,

we have P (yx1) =
∑

rX ,rY
P (rX)P (rY )I(y;x1, rY ) = P (y|x1), which can be directly measured

from observational data. Similar phenomenons can be observed in other identifiable situations.

S W

A

B

Y
π = {S → W → A→ Ŷ ,

S → Ŷ }

Figure 7.5: A causal graph with unidentifiable path-specific counterfactual fairness.

Example 3. Consider a causal graph shown in Figure 7.5, and the path-specific counterfactual

effect PCEπ(s1, s0|o) where π = {S → Ŷ , S → W → A → Ŷ } and o = {s0, w
′, a′, b′}. Any

pair of exogenous variables can be correlated. Response-function variables are given by

R = {RS, RW , RA, RB, RŶ }. By similarly defining response functions as in Example 1, we

can obtain

P (ŷs1|π,s0|π̄|o) =
∑

a,b,w1,w0
r∈ro

P (r)

P (o)
I(ŷ; a, b, s1, rŶ )I(a;w1, rA)I(b;w0, rB)I(w1; s1, rW )I(w0; s0, rW ),

and

P (ŷs0|o) =
∑

a,b,w,r∈ro

P (r)

P (o)
I(ŷ; a, b, s0, rŶ )I(a;w, rA)I(b;w, rA)I(w; s0, rW ).

7.4.3 Bounding Path-specific Counterfactual Fairness

In above two sections we express both joint distribution P (v) and the path-specific

counterfactual effect as linear functions of P (r). All causal models (represented by different

P (r)) that agree with the distribution of observational data D cannot be distinguished and

should be considered in bounding PC fairness. Therefore, finding the lower or upper bound
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of the path-specific counterfactual effect is equivalent to finding the P (r) that minimizes or

maximizes the path-specific counterfactual effect, subject to that the derived joint distribution

P (v) agrees with the observational distribution P (D). This fact results in the following linear

programming problem for deriving the lower/upper bound of path-specific counterfactual

effect.

min/max P (ŷs1|π,s0|π̄|o)− P (ŷs0|o), (7.4)

s.t. P (V) = P (D),
∑
r

P (r) = 1, P (r) ≥ 0,

where P (ŷs1|π,s0|π̄|o) is given by Eq. (7.2), P (ŷs0|o) is given by Eq. (7.3), and P (v) is given

by Equation (7.1).

The lower and upper bounds derived by solving the above optimization problem is

guaranteed to be the tightest, since the response function is an equivalent mapping that

covers all possible causal models thus we can explicitly traverse all possible causal models.

We use the derived bounds for examining τ -PC fairness: if the upper bound is less

than τ and the lower bound is greater than −τ , then τ -PC fairness must be satisfied; if the

upper bound is less than −τ or the lower bound is greater than τ , τ -PC fairness must not be

satisfied; otherwise, it is uncertain and cannot be determined from data.

7.5 Experiments

Datasets. For synthetic datasets, we manually build a causal model with complete

knowledge of exogenous variables and equations using Tetrad [70] according to the causal

graphs. The causal model consists of 4 endogenous variables, S, W , A, Ŷ , all of which have

two domain values. Then, we consider two versions of the causal model: (1) we assume a

shared exogenous variables, i.e., a hidden confounder, with 100 domain values (the causal

graph is shown in Figure 7.6); (2) we assume all exogenous variables are mutually independent

as shown in Figure 7.7. The distribution of exogenous variables and structural equations of
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endogenous variables are randomly assigned. Finally, we generate two datasets from each

version of the causal model, denoted by D1 and D2 respectively.

For the real-world dataset, we adopt the Adult dataset described in Appendix A.1, we

select 7 attributes, binarize their values, and build the causal graph. Fairness threshold τ is

set to 0.1. The datasets and implementation are available at http://tiny.cc/pc-fairness-code.

S W

A

Y

Figure 7.6: The causal graph for the
synthetic dataset D1.

S W

A

Y

Figure 7.7: The causal graph for the
synthetic dataset D2.

Bounding Path-specific Counterfactual Fairness. We use D1 to validate our

method in Eq. (7.4) for bounding PCEπ(s+, s−|o) where O = {S,W,A} and π = {S → W →

A→ Ŷ , S → Ŷ }. The ground truth can be computed by exactly executing the intervention

under given conditions using the complete causal model. The results are shown in Table 7.2,

where the first column indicates the indices of o’s value combinations. As can be seen, the

true values of PCEπ(s+, s−|o) fall into the range of our bounds for all value combinations of

O, which validates our method.

Table 7.2: Bounds and ground truth of PC fairness on D1.

# of o
PCEπ(s+, s−|o)

lb ub Truth
1 -0.4548 0.5452 0.1507
2 -0.5565 0.4435 -0.0928
3 -0.5065 0.4935 0.0561
4 -0.4598 0.5402 0.0548

Comparing with previous bounding methods. We use D2 to compare with the

previous methods [5, 8] which are derived under the Markovian assumption. We compare

with [5] for bounding PEπ(s+, s−) with π = {S → W → A→ Ŷ , S → Ŷ }. We also compare

with [8] for bounding CE(s+, s−|o) with O = {S,W,A}. The results are shown in Table 7.3
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where the bold indicates that our method makes different judgments on discrimination

detection due to the tighter bounds. As can be seen, our method achieves much tighter

bounds than previous methods, which can be used to examine fairness more accurately. For

example, when measuring indirect discrimination using PEπ(s+, s−) (Row 1 in Table 7.3),

it is uncertain for [5] since the lower and upper bounds are −0.2605 and 0.2656, but our

method can guarantee that the decision is discriminatory as the lower bound 0.1772 is larger

than τ = 0.1. As another example, when measuring counterfactual fairness of the 2nd groups

of o using CE(s+, s−|o) (Row 3 in Table 7.3), the method in [8] is uncertain since the lower

and upper bounds are −0.4383,−0.0212 but our method can guarantee that the decision is

fair due to the range of [−0.0783,−0.0212].

We also use the Adult datset to compare with the method in [8] for bounding

CE(s+, s−|o) with O = {age, edu, marital-status} and obtain similar results, which are

shown in Table 7.4.

Table 7.3: Comparison with existing methods in [5, 8] on D2.

o Truth
Previous methods Our method
lb ub lb ub

PSF N/A 0.1793 -0.2605 0.2656 0.1772 0.1836

CF

1 0.3438 0.0878 0.5049 0.0878 0.5049
2 -0.0557 -0.4383 -0.0212 -0.0783 -0.0212
3 0.2318 -0.1192 0.2979 0.1282 0.2847
4 0.0800 -0.2101 0.2070 0.0110 0.1499

Table 7.4: Comparison with the existing method in [8] on the Adult dataset.

# of o
Method in [8] Our Method
lb ub lb ub

0 0.0541 0.2946 0.1498 0.1944
1 -0.1314 0.1091 -0.1314 0.1091
2 0.1878 0.3210 0.2507 0.2890
3 -0.0356 0.0976 -0.0356 0.0976
4 0.1676 0.5289 0.4419 0.5289
5 -0.1634 0.1979 -0.0731 0.1979
6 0.1290 0.4689 0.3942 0.4689
7 -0.1808 0.1591 0.0014 0.1591
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7.6 Summary

In this chapter, we developed a general framework for measuring causality-based

fairness. We proposed a unified definition that covers most of previous causality-based

fairness notions, namely the path-specific counterfactual fairness (PC fairness). Then, we

formulated a linear programming problem to bound PC fairness which can produce the

tightest possible bounds. Experiments using synthetic and real-world datasets showed that,

our method can bound causal effects under any unidentifiable situation or combinations and

achieves tighter bounds than previous methods. This work has been published in NeurIPS

2019 [10].
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8 Convexity and Bounds of Fairness-aware Classification

8.1 Introduction

Fairness-aware classification is receiving increasing attention in the machine learning

fields. Since the classification models seek to maximize the predictive accuracy, individuals

may get unwanted digital bias when the models are deployed for making predictions. As

fairness becomes a more and more important requirement in machine learning, it is imperative

to ensure that the learned classification models can strike a balance between accurate and

fair predictions. Previous works on this topic can be mainly categorized into two groups: the

in-processing methods which incorporate the fairness constraints into the classic classification

models (e.g., [13, 42, 43, 95, 96]), and the pre/post-processing methods which modify the

training data and/or derive fair predictions based on the potentially unfair predictions made

by the classifier (e.g., [4, 12, 37,73,79]). In this work, we focus on the in-processing methods.

Very recently, several works have been proposed for formulating the fairness-aware

classification as constrained optimization problems [13, 42, 43, 95–98]. Generally, they aim

to minimize a loss function subject to certain fairness constraints, e.g., demographic parity

(i.e., the difference of the positive predictions between the sensitive group and non-sensitive

group) is less than some threshold. However, most quantitative fairness metrics such as

demographic parity [19], mistreatment parity [13], etc., are non-convex due to the use of

the indicator function, thus making the optimization problem intractable. A widely-used

strategy to achieve convexity in optimization is to adopt surrogate functions for both loss

function and constraints. In [43], the authors applied the linear surrogate functions to non-

convex risk difference as the decision boundary fairness for margin-based classifiers. Similarly

in [95], a convex constraint is derived from the risk difference. One challenge is that, when

surrogate functions are used to convert non-convex functions to convex functions, estimation

errors must exist due to the difference between the surrogate function and the original non-

114



convex function. Thus, achieving the fairness constraints represented by surrogate functions

does not necessarily guarantee achieving the real fairness criterion. Hence, how to achieve

fairness-aware classification via constrained optimization still remains an open problem.

In this chapter, we propose a general framework for fairness-aware classification which

addresses the gap incurred by the estimation errors due to the surrogate function. The

framework can formulate various commonly-used fairness metrics (risk difference [20], risk

ratio [20], equal odds [12], etc.) as convex constraints that are then directly incorporated into

classic classification models. Within the framework, we first present a constraint-free criterion

(derived from the training data) which ensures that any classifier learned from the data will

guarantee to be fair in terms of the specified fairness metric. Thus, when the criterion is

satisfied, there is no need to add any fairness constraint into optimization for learning fair

classifiers. When the criterion is not satisfied, we need to learn fair classifiers by solving

the constrained optimization problems. To connect the surrogated fairness constraints to

the original non-convex fairness metric, we further derive the lower and upper bounds of

the real fairness measure based on the surrogate function, and develop the refined fairness

constraints. This means that, if the refined constraints are satisfied, then it is guaranteed

that the real fairness measure is also bounded within the given interval. The bounds work

for any surrogate function that is convex and differentiable at zero with the derivative larger

than zero. In the experiments, we evaluate our method and compare with existing works

using the real-world datasets. The results demonstrate the correctness of the constraint-free

criterion and the superiority of our method over existing ones in terms of achieving fairness

and retaining prediction accuracy.

8.2 Fairness-aware Classification

In this section we present our fairness-aware classification framework. We first introduce

the unconstrained optimization formulation for the classic classification models as proposed in

[99], and then present our constrained optimization formulation for fairness-aware classification.
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Throughout the chapter, we use the vector X ∈ X to denote the features used in classification,

and Y ∈ Y = {−1, 1} to denote the binary label. We denote the sensitive attribute by S,

assuming that it is associated with two values: sensitive group s− and non-sensitive group

s+. The training data D = {(xi, si, yi)}Ni=1 is a sample drawn from an unknown but fixed

distribution.

8.2.1 Classification Problem

The learning goal of classification is to find a classifier: f : X 7→ Y that minimizes the

average of the classification loss (a.k.a the empirical loss), given by

L(f) = EX,Y [1f(x)6=y], (8.1)

where 1[·] is an indicator function. The classification problem can then be formulated as an

optimization problem:

min
f∈F

L(f) = min
f∈F

EX,Y [1f(x)6=y].

Directly solving this optimization problem is intractable since the objective function is

non-convex [99]. For efficient computation, another predictive function h is adopted which is

performed in real number domain R, i.e., h : X 7→ R. By letting f = sign(h), the empirical

loss can be reformulated as

L(f) = L(h) = EX,Y

[
1

sign
(
h(x)
)
6=y

]
= EX

[
Pr(Y = 1|x)1h(x)<0 + Pr(Y = −1|x)1h(x)>0

]
.

(8.2)

If we replace the indicator function (a.k.a 0-1 loss function) with a convex surrogate

116



function φ, the empirical loss can be rewritten as

Lφ(h) = EX

[
Pr(Y = 1|x)φ

(
h(x)

)
+
(
1− Pr(Y = 1|x)

)
φ
(
− h(x)

)]
,

which is known as the φ-loss, and the optimization problem is reformulated as minh∈H Lφ(h).

In the past decades, a number of surrogate loss functions have been proposed and well studied,

such as the hinges loss, the square loss, the logistic loss, the exponential loss, etc.

8.2.2 Fairness-aware Classification Problem

The fairness-aware classification aims to find a classifier that minimizes the empirical

loss while satisfying certain fairness constraints. Several fairness notions or definitions are

proposed in the literature, such as demographic parity [19], mistreatment parity [13], etc.

Demographic parity is the most widely-used fairness notion in the fairness-aware

learning field. It requires the decision made by the classifier is independent to the sensitive

attribute, such as sex or race. Usually, demographic parity is quantified with regard to risk

difference [20], i.e., the difference of the positive predictions between the sensitive group and

non-sensitive group. For example, in the context of hiring, risk difference can be given by

the probability difference of being predicted to be hired between male applicants and female

applicants. Using the same language as that in the previous subsection, the risk difference

produced by a classifier f is expressed as

RD(f) = EX|S=s+ [1f(x)=1]− EX|S=s− [1f(x)=1]. (8.3)

As a quantitative metric, we say that classifier f is considered as fair if |RD(f)| ≤ τ , where τ

is the user-defined threshold. For instance, the 1975 British legislation for sex discrimination

sets τ = 0.05. By directly incorporating the risk difference into the optimization problem, we

formulate the fair classification problem as follows.

Problem Formulation 2. The goal of the fairness-aware classification is to find a classifier
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f that minimizes the loss L(f) while satisfying fairness constraint |RD(f)| ≤ τ . It can be

approached by solving the following constrained optimization problem

min
f∈F

L(f) (8.4)

subject to RD(f) ≤ τ, −RD(f) ≤ τ,

where L(f) and RD(f) are defined in Eq. (8.1) and Eq. (8.3).

Obviously, solving the above problem is computationally intractable, since both L(f)

and RD(f) contain indicator functions.

The real-value function h(x) and the surrogate functions have been proposed in the

recent works [43, 96, 100, 101]. For example, Zafar et al. [100] have proposed the decision

boundary covariance to quantify the fairness and serve as constraints, which is equivalent

to applying the linear surrogate functions to Problem Formulation 2. They have set the

constraint thresholds as c and −c, which specify the threshold for the covariance. However,

solving the optimization problem with surrogated constraints does not necessarily result in a

fair classifier in terms of the original non-convex fairness requirements, e.g., −τ ≤ RD(f) ≤ τ .

In fact, there is no any fairness guarantee on the produced classifier. We use an example to

show this. Consider two margin-based classifiers where the surrogate functions are linear

functions of the distance from the data point to the decision boundary. Therefore, the risk

difference is computed by counting the number of data points above and below the decision

boundary, and the surrogated risk difference (a.k.a the decision boundary covariance) is

computed by measuring the average signed distance from the data points to the decision

boundary. In the dataset shown in Figure 8.1a, we obtain that the surrogated risk difference

is 0 but the real risk difference is 0.25. This means that a classier obtained by solving

the constrained optimization problem actually can be very unfair. In the dataset shown in

Figure 8.1b, the risk difference is 0 but the surrogated risk difference is 0.5, meaning that

some fair classifiers cannot be obtained by solving the optimization problem with surrogated
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(a) A classifier that meets the surrogated
RD constraint makes unfair predictions.

(b) A classifier that does not meet the
surrogated RD constraint makes fair pre-
dictions.

Figure 8.1: Two classifiers and their predictions.

constraints.

The use of the surrogate function inevitably produces estimation errors and leads to the

mismatch between the surrogated constraints and the original non-convex fairness constraints.

Some intuitive techniques have been introduced to tune the threshold of the surrogated

constraints for learning fair classifiers. For example, Zafar et al. [100] have proposed to build

an unconstrained classifier and consider its risk difference as the initial threshold, say c∗, then

they heuristically select a factor m ∈ [0, 1] and let the threshold c = m× c∗. However, the

relationship between the threshold c of the surrogated constraints and the hard threshold τ

of the original metrics is unclear hence users have to repeatedly conduct experiments on the

datasets.

8.3 Convex Fairness Classification Framework

In this section, we propose a general framework for fairness-aware classification which

addresses the gap incurred by the estimation error due to the use of the surrogate function.

Our framework can formulate various fairness metrics (e.g., risk difference, risk ration, equal

odds, etc.) as convex constraints and incorporate them into classic classification model. In

the following sections, we present our framework based on the risk difference. In the next

section, we show how our framework can be easily extended to other fairness metrics, e.g., risk
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ratio, equalized odds.

We first present a constraint-free criterion that is derived from the data. This criterion

ensures that any classifier learned from the data are fair in terms of the specified fairness

metric. Then when this criterion is satisfied, there is no need to incorporate any fairness

constraints for learning fair classification. When this criterion is not met, we formulate the

fairness-aware classification task as a convex optimization problem. To fill the gap between

the surrogated constraints and the real fairness metrics, we derive the upper and lower bounds

for the real fairness metrics and further develop refined convex constraints. If the refined

constraints are satisfied, it is guaranteed that the original non-convex fairness requirements

are satisfied, e.g., −τ ≤ RD(f) ≤ τ .

8.3.1 Constraint-free Criterion

We propose a constraint-free criterion to determine whether the fairness constraints

are necessary. As discussed in Section 2.1, the unconstrained classification problem is well

studied and users can safely apply the classic methods for building a fair classifier.

We first define two special classifiers fmax and fmin which obtain the maximal and

the minimal risk differences respectively.

Definition 10. The maximal risk difference classifier fmax and the minimal risk difference

classifier fmin are defined as:

fmax(x) =


1 if η(x) ≥ p,

−1 otherwise,

fmin(x) =


−1 if η(x) ≥ p,

1 otherwise,

where we denote P (S = s+|x) by η(x) and P (S = s+) by p.

These two classifiers provide the maximum and minimum of risk difference among all

classifiers f out of the model space F :

Theorem 13. For any classifier f , it always holds that RD− ≤ RD(f) ≤ RD+, where
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RD− = RD(fmin) and RD+ = RD(fmax).

Proof. Following Eq. (8.3), the risk difference of the maximum risk difference classifier fmax

is given by:

RD(fmax) = EX

[η(x)

p
1fmax(X)=1 +

1− η(x)

1− p
1fmax(X)=−1

]
− 1.

The difference between RD(fmax) and any deterministic classifier RD(f) is given as:

RD(fmax)− RD(f) = EX

[η(x)

p

[
1fmax(X)=1 − 1f(x)=1

]
+

1− η(x)

1− p
[
1fmax(X)=−1 − 1f(x)=−1

]]
.

Let us consider the difference of the conditional risk difference:

DC(x) =
η(x)

p

[
1fmax(X)=1 − 1f(x)=1

]
+

1− η(x)

1− p
[
1fmax(X)=−1 − 1f(x)=−1

]
,

1. if η(x) ≥ p,

• if f(x) = 1, DC(x) = 0;

• if f(x) = −1, DC(x) = η(x)
p
− 1−η(x)

1−p ∝ η(x)− p ≥ 0;

2. if η(x) < p, fmax(x) = −1,

• if f(x) = 1, DC(x) = −η(x)
p

+ 1−η(x)
1−p ∝ −η(x) + p > 0;

• if f(x) = −1, DC(x) = 0.

We can find the difference of the conditional risk difference DC(x) is always non-

negative. Thus, the difference RD(fmax) − RD(f), the weighted average of DC(x), is also

non-negative. So RD(fmax) ≥ RD(f) is proved. Similarly we can prove that RD(fmin) ≤

RD(f).
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From Theorem 13, we directly obtain Corollary 2.

Corollary 2. Given the threshold τ , for a training data if we have RD+ ≤ τ and RD− ≥ −τ ,

then any classifier learned from this dataset is fair in terms of risk difference.

Given a dataset, we can always build two classifiers fmax and fmin, then compute RD+

and RD−. If Corollary 2 is satisfied, users can safely apply any classification models to build

classifiers without any fairness concern.

8.3.2 Convex Fairness-aware Classification

When the constraint-free criterion is not satisfied, it is required to incorporate fairness

constraints when learning classifiers, e.g., solving Problem Formulation 2. To this end, we

adopt two different surrogate functions for converting the original problem into a convex

optimization. We firstly adopt a real-value predictive function h and let f = sign(h), then

rewrite the risk difference as

RD(f) = RD(h)

= EX|S=s+

[
1
[
sign

(
h(x)

)
= 1
]]
− EX|S=s−

[
1
[
sign

(
h(x)

)
= 1
]]

= EX|S=s+ [1h(x)>0] + EX|S=s− [1h(x)<0]− 1.

It follows that

RD(f) = EX

[
P (S = s+|x)

P (S = s+)
1h(x)>0 +

P (S = s−|x)

P (S = s−)
1h(x)<0 − 1

]
(8.5)

= EX

[
η(x)

p
1h(x)>0 +

1− η(x)

1− p
1h(x)<0 − 1

]
,

where we denote P (S = s+|x) by η(x) and P (S = s+) by p for simplicity, thus P (S =

s−|x) = 1− η(x) and P (S = s−) = 1− p.

It is intuitive that the indicator function in above formula can be replaced with the

surrogate function. The challenge here is, two constraints RD(f) ≤ τ and −RD(f) ≤ τ are
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Figure 8.2: Curves of examples for κ(·) and δ(·).

opposite to each other. Thus, replacing all indicator functions with a single surrogate function

will result in a convex-concave problem, where only heuristic solutions for finding the local

optima are known to exist. Therefore, we adopt two surrogate functions, a convex one κ(·)

and a concave one δ(·), each of which replaces the indicator function for one constraint. As

a result, the formulated constrained optimization problem is convex and can be efficiently

solved. We call the risk difference represented by κ(·) and δ(·) as the κ, δ-risk difference,

denoted by RDκ(h) and RDδ(h). Almost all commonly-used surrogate functions can be

adopted for κ(·) and δ(·), by performing some shift or flip. Curves of some examples for κ(·)

and δ(·) are shown in Figure 8.2.

As a result, we obtain the following convex optimization formulation for learning fair

classifiers.

Problem Formulation 3. The fairness-aware classification is converted into a convex

optimization problem. The optimal solution h∗ can be obtained by solving

min
h∈H

Lφ(h)

subject to RDκ(h) ≤ c1, −RDδ(h) ≤ c2,

where κ(·) is a convex surrogate function, δ(·) is a concave surrogate function, c1, c2 are the
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thresholds of the κ, δ-risk difference, and

Lφ(h) = EX

[
Pr(Y = 1|x)φ

(
h(x)

)
+
(
1− Pr(Y = 1|x)

)
φ
(
− h(x)

)]
,

RDκ(h) = EX

[η(x)

p
κ
(
h(x)

)
+

1− η(x)

1− p
κ
(
− h(x)

)
− 1
]
,

RDδ(h) = EX

[η(x)

p
δ
(
h(x)

)
+

1− η(x)

1− p
δ
(
− h(x)

)
− 1
]
.

After obtaining h∗, we build the fair classifier by letting f ∗ = sign(h∗) and f ∗ is the

final fair classifier. We emphasize that in Problem Formulation 3, the constraint thresholds

are rewritten as c1 and c2 due to the difference between the surrogated constraints and the

original non-convex constraints.

8.3.3 Refined Fairness-aware Classification

In this section, we develop the upper and lower bounds of the risk difference RD(h)

with the κ, δ-risk difference RDκ(h) and RDκ(h). Based on the bounds, we present the

method to derive c1, c2 for RDκ(h),RDδ(h), which provides a fairness guarantee that the

solution f ∗ = sign(h∗) to Problem Formulation 3 satisfies the fairness requirements, e.g., −τ ≤

RD(f ∗) ≤ τ . The method works for various types of surrogate functions (e.g., hinge, square,

logistic, exponential, etc.).

We begin with defining the conditional risk difference Cη
(
h(x)

)
for a specific subpop-

ulation x:

Cη
(
h(x)

)
=
η(x)

p
1h(x)>0 +

1− η(x)

1− p
1h(x)<0 − 1,

where η is the abbreviation of η(x).

Then, according to Eq. (8.5), we have RD(f) = EX[Cη
(
h(x)

)
]. When surrogate

function κ(·) (resp. δ(·)) is adopted, we similarly define the conditional κ-risk difference

Cη
κ

(
h(x)

)
=
η(x)

p
κ
(
h(x)

)
+

1− η(x)

1− p
κ
(
− h(x)

)
− 1,
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and we have RDκ(h) = EX

[
Cη
κ

(
h(x)

)]
.

Note that the values of Cη
(
h(x)

)
and Cη

κ

(
h(x)

)
depend on η(x) and h(x), which are

determined by the subpopulation of the data specified by x, as well as predictive function

h. In order to study the general situations for any specific subpopulation and any possible

predictive function, we denote h(x) as α and define the generic conditional risk difference

Cη(α) and the generic conditional κ-risk difference Cη
κ(α):

Cη(α) =
η

p
1α>0 +

1− η
1− p

1α<0 − 1, Cη
κ(α) =

η

p
κ(α) +

1− η
1− p

κ(−α)− 1,

for any η ∈ [0, 1] and α ∈ R. Then, the minimal conditional risk difference H−(η) and the

minimal conditional κ-risk difference H−κ (η) for any arbitrary subpopulation and any possible

predictive function are given by

H−(η) = min
α∈R

Cη(α) = min
α∈R

[η
p
1α>0 +

1− η
1− p

1α<0 − 1
]
,

H−κ (η) = min
α∈R

Cη
κ(α) = min

α∈R

[η
p
κ(α) +

1− η
1− p

κ(−α)− 1
]
. (8.6)

It is straightforward that the minimal risk difference RD− is equivalent to the expectation of

H−(η(x)) since for any possible x, H−(η(x)) provides the minimal conditional risk difference.

Similarly, the minimal κ-risk difference achieved by any predictive function (denoted by RD−κ )

is the expectation of H−κ (η(x)), as given by

RD−κ = EX

[
H−κ (η(x))

]
.

Finally, we define the minimal conditional κ-risk difference within interval α s.t. α(η−p) ≥ 0:

H◦κ(η) = min
α:α(η−p)≥0

Cη
κ(α). (8.7)

We similarly define H+(η) the maximal conditional risk difference, H+
δ (η) the maximal
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conditional δ-risk difference, RD+
δ the maximal δ-risk difference, as well as H◦δ (η) the minimal

conditional δ-risk difference within interval α s.t. α(η − p) ≥ 0.

Now, we are able to present our results, which are given in Theorem 14 and Corollary

3.

Theorem 14. If κ(·) is convex and differentiable at zero with κ′(0) > 0, δ(·) is concave and

differentiable at zero with δ′(0) > 0, then for any predictive function h, we have

ψκ(RD(h)− RD−) ≤ RDκ(h)− RD−κ , (8.8)

ψδ(RD+ − RD(h)) ≤ RD+
δ − RDδ(h),

where

ψκ(µ) = H◦κ
(
p(1− p)µ+ p)−H−κ

(
p(1− p)µ+ p

)
,

ψδ(µ) = H+
δ

(
p(1− p)µ+ p

)
−H◦δ

(
p(1− p)µ+ p).

Proof. Let us firstly verify that ψκ is convex.

Because κ is convex and κ′(0) > 0, we have

H◦κ(η) = min
α:α(η−p)≥0

η

p
κ(α) +

1− η
1− p

κ(−α)

= min
α:α(η−p)≥0

(η
p

+
1− η
1− p

)[ η
p

η
p

+ 1−η
1−p

κ(α) +

1−η
1−p

η
p

+ 1−η
1−p

κ(−α)
]
.

Let ν = η
p

+ 1−η
1−p , the above can be reformulated as

H◦κ(η) = min
α:α(η−p)≥0

ν ×
[ η
pν
κ(α) +

1− η
(1− p)ν

κ(−α)
]
.
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Since κ is convex and according to Jensen’s inequality, we can derive

H◦φ(η) ≥ min
α:α(η−p)≥0

ν × κ
( η
pν
α− 1− η

(1− p)ν
α)
)

= min
α:α(η−p)≥0

ν × κ
( α(η − p)
ν ∗ p(1− p)

)
≥ νκ(0).

The equality is achieved when α(η − p) = 0, so that

H◦κ(η) =
(η
p

+
1− η
1− p

)
κ(0).

So it follows that

H◦κ
(
p(1− p)µ+ p

)
= (µ− 2pµ+ 2)κ(0).

Since H◦φ and H−φ are convex (H−κ is a point-wise minimum over linear functions and H◦κ is a

linear function of µ), we conclude that ψκ(µ) = H◦κ(p(1− p)µ+ p)−H−κ (p(1− p)µ+ p) is

convex.

Let us move back to Eq. (8.8) whose argument could be rewrite as

RD(h)− RD− = Ex

[
Cη(h,x)

]
−min

h∈H
Ex

[
Cη(h,x)

]
= Ex

[
Cη(h,x)−min

h∈H
Cη(h,x)

]
= Ex

[
1(η−p)h(x)<0 ×

[ | η − p |
p(1− p)

]]
= Ex

[
g(x)

]
.
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By Jensen’s inequality, if ψκ is convex, then we have

ψκ
(
RD(h)−RD−

)
= ψκ

(
Ex

[
g(x)

])
≤ Ex

[
ψκ
(
g(x)

)]
≤ Ex

[
ψκ

(
1(η−p)h(x)>0

[ | η − p |
p(1− p)

])]
= Ex

[
1(η−p)h(x)>0 × ψκ

( | η − p |
p(1− p)

)]
= Ex

[
1(η−p)h(x)>0 ×

[
H◦κ(η)−H−κ (η)

]]
= 1(η−p)h(x)>0 × Ex

[
H◦κ(η)−H−κ (η)

]
.

Note that if (η − p)h(x) ≥ 0, we always have Cη
κ

(
h(x)

)
≥ H◦κ(η) because of the

definition of H◦κ. Otherwise, we always have Cη
κ

(
h(x)

)
≥ H−κ (η) because of the definition of

H−φ . Thus,

ψκ
(
RD(h)− RD−

)
≤ 1(η−p)h(x)>0Ex

[
H◦κ(η)−H−κ (η)

]
+ 1(η−p)h(x)≤0 × 0

≤ 1(η−p)h(x)>0Ex

[
Cη
κ

(
h(x)

)
−H−κ

(
η
)]

+ 1(η−p)h(x)≤0Ex

[
Cη
κ

(
h(x)

)
−H−κ

(
η
)]

= Ex

[
Cη
κ

(
h(x)

)
−H−κ

(
η
)]

= RDκ(h)− RD−κ .

Similarly, we can prove ψδ
(
RD+ − RD(h)

)
≤ RD+

δ − RDδ(h). Thus, Theorem 3 is

proved.

In Theorem 14, ψκ(µ) and ψδ(µ) are directly derived from the surrogate function κ and

δ. Some commonly-used surrogate functions κ, δ and their corresponding ψκ, ψδ functions are

listed in Table 8.1. The inequalities in Theorem 14 bound the difference between RD(h) and

RD+,RD− by the differences RDκ(h)−RD−κ and RD+
δ −RDδ(h). Since RD−,RD+,RD−κ ,RD

+
δ

can be computed from the dataset, we connect the original non-convex constraints and the

surrogated convex constraints.

We reformulate Theorem 14 and explicitly give the upper and lower bounds of RD(h)
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in Corollary 3.

Corollary 3. For any predictive function h, let classifier f = sign(h), if κ(·) is convex and

differentiable at zero with κ′(0) > 0, δ(·) is concave and differentiable at zero with δ′(0) > 0,

then risk difference RD(f) is bounded by following inequalities:

RD(f) ≤ RD− + ψκ
−1
(
RDκ(h)− RD−κ

)
,

RD(f) ≥ RD+ − ψδ−1
(
RD+

δ − RDδ(h)
)
.

Based on the upper and lower bounds of RD(f), we can derive the thresholds c1, c2

for the surrogated constraints in Problem Formulation 3. For example, if we aim to obtain a

classifier f such that −τ ≤ RD(f) ≤ τ , we only require the upper bound of RD(f) is smaller

than τ and the lower bound is larger than −τ . That is:

RD− + ψκ
−1
(
RDκ(h)− RD−κ

)
≤ τ,

RD+ − ψδ−1
(
RD+

δ − RDδ(h) ≥ −τ.

Thus, we obtain the refined constraints and if the refined constraints are satisfied, the original

risk difference requirements are guaranteed to be satisfied.

We modify Problem Formulation 3 to obtain Problem Formulation 4 with refined

fairness constraints which guarantee the real non-convex fairness requirement.

Problem Formulation 4. A classifier f ∗ = sign(h∗) that achieves fairness guarantee

−τ ≤ RD(f) ≤ τ can be obtained by solving the following constrained optimization

min
h∈H

Lφ(h) (8.9)

subject to RDκ(h) ≤ ψκ(τ − RD−) + RD−κ ,

− RDδ(h) ≤ ψδ(−τ + RD+) + RD+
δ .
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Note that the right-hand sides of above two inequalities are constants for a given

dataset. Therefore, the constrained optimization problem is still convex. We can optimally

solve this problem and the solution f ∗ = sign(h∗) is guaranteed to satisfy −τ ≤ RD(f ∗) ≤ τ .

Table 8.1: Some common surrogate functions for κ-δ and the corresponding ψκ(µ) and
ψδ(µ).

Name of κ-δ κ(α) for α ∈ R δ(α) for α ∈ R ψκ(µ) or ψδ(µ) for µ ∈ (0, 1/p]
Hinge max{α + 1, 0} min{α, 1} µ
Square (α + 1)2 1− (1− α)2 µ2

Exponential exp(α) 1− exp(−α) (
√

(1− p)µ+ 1−
√

1− pµ)2

8.4 Extension to Other Fairness Notions

In the above sections, we present our framework based on the risk difference. We show

how our framework can be easily extended to other fairness metrics, e.g., risk ratio, equalized

odds.

Risk ratio is a common fairness notion [20, 56]. It also requires the decision is

independent with the protected attribute. Different with the risk difference, the unfairness is

quantified by the ratio of the positive decisions between the non-protected group and the

protected group. Let us formalize the risk ratio RR(h) of classifier h:

RR(h) =
EX|S=s+

[
1h(x)>0

]
EX|S=s−

[
1h(x)>0

] .
The fairness constraints with regards to risk ratio could be expressed as

RR(h) =
EX|S=s+

[
1h(x)>0

]
EX|S=s−

[
1h(x)>0

] ≤ τ.

Similar to Eq. (8.5), we express the constraints as

EX

[η
p
1h(x)>0 + τ

1− η(x)

1− p
1h(x)>0

]
− τ ≤ 0. (8.10)
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Equalized odds and equalized opportunity are proposed by Hardt et al. [12].

Equalized odds requires the protected attribute and the predicted label are independent

conditional on the truth label. To quantify the strength of equalized odds, we simply propose

the prediction difference between two groups conditional on the truth label. So, the equalized

odds is

EO(h) = EX|S=s+,Y [1h(x)>0]− EX|S=s−,Y [1h(x)>0].

Similarly, a classifier h is considered as fair with regard to equalized odds if EO(h) ≤ τ .

Let us reformulate the equalized odds constraints:

EO(h) = EX|S=s+,Y [1h(x)>0] + EX|S=s−,Y [1h(x)<0]− 1

= EX|Y
[P (S = s+|x, y)

P (S = s+|y)
1h(x)>0 +

1− P (S = s+|x, y)

1− P (S = s+|y)
1h(x)<0

]
− 1 ≤ τ. (8.11)

Equalized opportunity is a relaxation of equalized odds where only the positive group

( Y = 1 ) is taken into account:

EOP(h) = EX|Y=1

[P (S = s+|x, Y = 1)

P (S = s+|Y = 1)
1h(x)>0 +

1− P (S = s+|x, Y = 1)

1− P (S = s+|Y = 1)
1h(x)<0

]
− 1 ≤ τ.

(8.12)

By simply replacing the indicator functions with surrogate functions, we can readily

extend our framework to the constraints (8.10), (8.11), (8.12) with regard to the three notions.

Our criterion and bounds are also extensible to the three notions.

8.5 Experiments

8.5.1 Experimental Setup

Dataset. In the experiments we use two datasets: Adult and Dutch Census of 2001.

The description of the Adult dataset is given in Appendix A.1. We consider sex as the
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sensitive attribute with two values, male and female. Then, we consider income as the

class label. For the Dutch Census of 2001 dataset, details are also given in Appendix A.1.

Similarly, we use sex as the sensitive attribute, and occupation as the class label.

Baseline. We compare our method with two related works, referred to as Zafar-

1 [43] and Zafar-2 [13], both of which formulate the fairness-aware classification problem

as constrained optimization problems. In [43], the authors quantify fairness using the

covariance between the users’ sensitive attribute and the signed distance from the feature

vectors to the decision boundary. The fairness constraint is formulated as covariance ≤

m × c∗, where c∗ is the measured fairness of the unconstrained optimal classifier and m

is a multiplication factor ∈ [0, 1]. In [13], the fairness is quantified similarly with the

distance function being replaced with a convex non-linear function. As a result, the obtained

problem is a convex-concave optimization problem. In the experiments, we adopt the

Disciplined Convex-Concave Programming (DCCP) [102] as proposed in [13] for solving the

convex-concave optimization problem. For our method and Zafar-1, the convex optimization

problem is solved using CVXPY [103]. The datasets and implementation are available at

http://tiny.cc/fair-classification.

8.5.2 Constraint-free Criterion of Ensuring Fairness

To demonstrate the sufficiency criterion of learning fair classifiers, we build the

maximal/minimal risk difference classifiers fmin, fmax for both Adult and Dutch Census of

2001 datasets, and measure the risk differences they produce, i.e., RD− and RD+. The

results are shown in the first two rows in Table 8.2. As can be seen, in both datasets we have

large maximal and minimal risk differences. In order to evaluate a situation with small a

risk difference, we also create a variant of the Adult dataset, referred to as Adult*, where

all attributes are binarized and the sensitive attribute sex is shuffled to incur a small risk

difference. Then, we build a number of classifiers including Linear Regression (LR), Support

Vector Machine (SVM) with linear kernel, Decision Tree (DT), and Naive Bayes (NB), using
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Table 8.2: RD+,RD− and risk differences of Linear Regression (LR), Support Vector Machine
(SVM), Decision Tree (DT), and Naive Bayes (NB).

RD(·) Adult Dutch Census of 2001 Adult*
RD+ 0.967 0.516 0.046
RD− -0.967 -0.516 -0.046
LR 0.371 0.185 0.000

SVM 0.434 0.156 0.001
DT 0.316 0.184 0.001
NB 0.447 0.144 0.001

the three datasets as the training data with with 5-fold cross-validation. After that, their risk

differences are quantified on the testing data, as shown in the last four rows in Table 8.2. We

can see that all values are within RD−,RD+ which are consistent with our constraint-free

criterion.

8.5.3 Learning Fair Classifiers

We build our fair classifiers on both Adult and Dutch Census of 2001 datasets by

solving the optimization problem defined in Problem Formulation 3. For surrogate functions,

we use the logistic function for φ(·), and the hinge function for κ(·) and δ(·). We also compare

our methods with Zafar-1 and Zafar-2. The results are shown in Figure 8.3, which depict

the relationship between the obtained risk difference and empirical loss. For our method,

different risk differences are obtained by adjusting relax terms c1 and c2, while for Zafar-1

and Zafar-2 different risk differences are obtained by adjusting the multiplication factor m.

As can be seen, our method can achieve much smaller risk difference than Zafar-1 and Zafar-2.

This may be because Zafar-1 linear functions to formulate the fairness constraints, which

may incur large estimation errors; while Zafar-2 formulates a convex-concave optimization

problem, where only the local optima can be reached. For the same reason, we can observe

that our method produces better empirical loss than Zafar-2 given any same risk difference.
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(a) The Adult dataset. (b) The Dutch Census of 2001 dataset.

Figure 8.3: Comparison of fair classifiers on two datasets.

8.6 Summary

In this chapter, we studied the fairness-aware classification problem and formulated it

as the constrained optimization problem. We proposed a general framework which addresses

all limitations of previous works in terms of: (1) various fairness metrics can be incorporated

into classic classification models as constraints; (2) the formulated constrained optimization

problem is convex and can be solved efficiently; and (3) the lower and upper bounds of real

fairness measures are established using surrogate functions, which provide a fairness guarantee

for our framework. Within the framework, we proposed a constraint-free criterion under

which the learned classifier is guaranteed to be fair in terms of the specified fairness metric,

as well as developed the method for learning fair classifiers if the constraint-free criterion

fails to satisfy. The results demonstrated the correctness of the constraint-free criterion and

the superiority of our method over existing ones in terms of achieving fairness and retaining

prediction accuracy. This work has been published in The Web Conference 2019 (formerly

known as WWW) [11].
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9 Conclusions and Future Work

Fairness is an active research topic in the machine learning community. Researchers

have developed novel and efficient association-based methods to quantify discrimination

in data or models, then to debias data and models. However, there are inevitable gaps

between association and causation in machine learning. In this dissertation, we investigated

several problems in the fairness-aware machine learning field from the causal perspective.

The conclusions and future work are summarized as follows.

9.1 Conclusions

Discrimination is divided into direct and indirect discrimination in the legal field. Due

to the limitation of association-based fairness notions, existing notions, e.g., demographic

parity, fail to distinguish direct and indirect discrimination. Thus, the crude removal methods

simply remove all connections between the sensitive attribute and the decision attribute.

Consequently, the resultant training data or predictions may be still biased or suffer from

significant utility loss. To fill the gap between association and causation in the fairness-

aware machine learning field, we formulated the direct and indirect discrimination from the

causality perspective, and developed efficient algorithms for mitigating discrimination before

performing predictive analysis in Chapter 4. We leveraged the structural causal model and

defined discrimination as the causal effects of the sensitive attribute on the decision that are

carried by the causal paths. Direct discrimination is modeled as the causal effect transmitted

along the direct path from the sensitive attribute to the decision. Indirect discrimination is

modeled as the causal effect transmitted along other indirect causal paths. We employed

the path-specific effect technique [2] and formulated direct and indirect discrimination as

path-specific effects. In theory and practice, the path-specific effect has the unidentification

issue. In our research, we showed that direct discrimination is always identifiable, but indirect

discrimination may be unidentifiable. To address this challenge, we provided a bounding
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method for unidentifiable indirect discrimination. Based on the path-specific effect and the

theoretical bounding results, we further proposed effective algorithms that can deal with both

identifiable and unidentifiable situations, including quantifying direct/indirect discrimination,

as well as mitigating any type of discrimination. In the experimental parts, we evaluated the

proposed methods on real-world datasets and showed the effectiveness of our methods.

Apart from classification, ranked data analysis is a common task in machine learning

where the decisions are a series of unique, concatenating integers that cannot be treated as

normal categorical random variables. Thus, existing methods designed for classification are

not applicable to ranked data analysis. The concern of discrimination in the ranked data

is receiving increasing attention. In Chapter 5, we focused on quantifying and removing

discrimination in ranked data. We employed the structural causal model and the causal graph

to the ranked data by adopting a continuous substituted variable for the ranking permutation

to represent the qualifications of individuals. We deployed the Bradley-Terry model [78]

to map the ranking permutations into a new substituted variable called score. Thus, we

constructed a causal graph from the original data as well as the score and modeled the

mixed data using the conditional Gaussian distributions. We extended the path-specific effect

technique into the mixed data and captured the direct and indirect discrimination in ranked

data. We also built the theoretical relationship between the direct/indirect discrimination

in classification and these in ranked data. Finally, the experimental results showed the

effectiveness of the proposed methods on the real-world dataset.

Counterfactual fairness [7] is a new fairness notion based on counterfactual inference.

The notion is evaluated by performing interventions on some individuals specified by some

observed attributes. So two worlds, the factual world and the counterfactual world, are

involved in this notion. However, researchers have shown that counterfactual inference cannot

be uniquely computed from the observed data in some situations, referred to as unidentifiable

situations. These situations pose big barriers to the applications of counterfactual fairness.

In Chapter 6, we addressed the problem of learning counterfactually fair classifiers in
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the unidentifiable situations by theoretically bounding the counterfactual quantities. We

proposed a graphical criterion for determining the identification of counterfactual fairness

and further derived the upper and lower bounds for counterfactual fairness. Finally, we

proposed an efficient post-processing method for re-constructing arbitrary classifiers to achieve

counterfactual fairness. This re-construction was formulated as a linear optimization problem

where the bounded counterfactual fairness is constraints. In the experiments, we evaluated

our method as well as existing ones using synthetic and real datasets. The results showed

our method correctly achieved counterfactual fairness as expected while obtaining higher

prediction accuracy. On the contrary, the comparison methods either failed to achieve

counterfactual fairness or suffered from low accuracy.

The path-specific fairness and counterfactual fairness have been separately investigated

in Chapter 4 and Chapter 6. There is a lack of a unified framework that can deal with them

simultaneously. More importantly, one common and inevitable challenge of all causality-based

fairness notions is identification. The bounding methods proposed in Chapter 4 and Chapter 6

are not applicable to the general situations. In Chapter 7, we developed a framework for

handling various causality-based fairness notions and their combinations. We proposed a

general representation of all types of causal effects, known as the path-specific counterfactual

effect. Then we defined a unified fairness notion, path-specific counterfactual fairness, to

cover most previous causality-based fairness notions. Inspired by the Response Variable

method [9], we developed a constrained optimization problem for bounding the unidentifiable

path-specific counterfactual fairness. The obtained bounds were guaranteed to be the tightest

in theory. We evaluated the proposed method using synthetic and real datasets and compared

with existing methods. The comparison showed our method was capable of bounding causal

effects under any unidentifiable situations or combinations. Our method provided tighter

bounds than existing methods.

Fairness-aware classification is increasingly important. Since the classification al-

gorithms are designed to maximize predictive accuracy, the obtained classifiers may treat
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individuals with undesired bias. Recently, researchers have proposed to formulate fairness-

aware classification as constrained optimization. Nevertheless, the common fairness notions,

e.g., risk difference, risk ratio, are non-convex. It is common to adopt surrogated functions in

the optimization of non-convex functions. The consequent challenge is that there must be

estimation errors due to the adoption of surrogated functions. Thus, the obtained classifiers

are not guaranteed to satisfy the desired fairness requirements. In Chapter 8, we proposed

a general framework for fairness-aware classification which addressed the gap incurred by

the estimation errors. The framework formulated the common fairness notions as convex

constraints which could be directly integrated with classification models. We also theoretically

connected the surrogated fairness constraints with the original fairness requirements, then

proposed refined constraints with fairness guarantees. If the refined constraints are satisfied,

it is guaranteed that the original fairness measure is bounded with a given interval. The

experiments demonstrated the effectiveness of the proposed method and superiority over the

existing methods.

9.2 Future Work

We showed our proposed fairness notions and corresponding mitigation approaches in

this dissertation. There are several interesting directions that deserve further exploration

and investigation.

The proposed fairness notions are based on the structural causal model where the

conditional probabilities are required. The size of the conditional probability tables are

exponential to the domain spaces of variables and the number of parents. As a consequence,

scalability is a key issue when we evaluate the fairness notions, including the path-specific

fairness in Chapter 4, the counterfactual fairness in Chapter 6, and the PC fairness in

Chapter 7. One possible solution is to leverage the deep learning techniques, e.g., deep

neural networks, to encode the conditional distributions with parameters. Louizos et al. [104]

designed a method based on Variational Autoencoder (VAE) to model the hidden variables
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and estimate the causal effect. It is a potential direction to quantify and mitigate causal-based

discrimination leveraging this type of architecture.

In Chapter 7, we derived a bounding method to estimate PC fairness. How to

construct fair predictive models based on the derived bounds is an open problem and deserves

investigation. One possible method would be to incorporate the bounding formulation into a

post-processing method. The new formulation will be a min-max optimization problem, where

the optimization variables will include response variables P (r) as well as a post-processing

mapping P (ỹ|ŷ, paY ). The inner optimization is to maximize the path-specific counterfactual

effect to find the upper bound, and the outer optimization is to minimize both the loss

function and the upper bound.

More broadly, addressing discrimination issues in machine learning is still open and

deserves further exploration. We elaborate our future research plan for fairness from three

aspects: developing causal inference theories and technologies for discrimination detection,

addressing the fairness issues in various machine learning tasks, and applying fairness-aware

learning theories and techniques to real-world applications.

The development of causal inference has significant benefits for establishing principles

of fairness-aware learning. However, there remain great theoretical and conceptual challenges

that are worthy of further exploration in the causal inference and fairness fields. Firstly,

most causality-based fairness notions and methods are on the basis of the causal graphs.

Nevertheless, it is difficult to construct causal graphs from the observational data and domain

knowledge. Commonly, only an equivalence class of causal models can be inferred from

observational data. Some existing research [105–108] proposed the identification criteria

for the equivalence class of the causal models (a.k.a. Markov equivalence class). Whereas,

the identifiability of the path-specific effect and counterfactual effect is not clear until now.

It deserves further investment on how to achieve fairness in the Markov equivalence class.

Secondly, our previous research focuses on the static data generated by the underlying static

causal models. However, many underlying causal models are dynamic and they are not readily
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modeled by the existing structural causal model. The state-of-the-art technique for modeling

the dynamic causal relationship is the Granger causality. How to integrate the Granger

causality with fairness-aware learning is a challenging problem. Thirdly, most previous works

focus on the structured data. It is well known that the unstructured data, e.g., image, text,

social networks, play a key role in the Big Data Era. It is an open problem to identify causal

effects from the unstructured data and achieve causal fairness in those unstructured data.

Most existing works in the fairness-aware learning literature target classification, one

of the best-studied tasks in machine learning. There are many more machine learning tasks

beyond classification, where the concerns have been raised about the potential impacts of

discrimination. Usually, the existing methods designed for classification cannot be directly

extended to other machine learning tasks, e.g., ranking, recommendation, text mining,

reinforcement learning. It is urgent to develop new theorems, measurements, and algorithms

for achieving fairness in other tasks.

It is important to apply the fairness-aware learning techniques to real-world applications

in order to make a broader impact. For example, Correctional Offender Management Profiling

for Alternative Sanctions (a.k.a. COMPAS) [1] is a risk assessment instrument that is adopted

across the United States to help judges assess whether defendants should be detained or

released while awaiting trial. COMPAS assigns each defendant a risk score ranging from 1 to

10 which indicates how likely the defendant to commit a crime, with 10 being the highest

risk. The risk score is calculated based on more than 100 factors, including age, gender, and

criminal history, but excluding race. However, COMPAS suffers a great deal of criticism

since statistically black defendants are more likely to be classified as high risk. I believe our

research can help analyze practical decision algorithms such as COMPAS to find out whether

it is subject to discrimination, and if so help in designing fair algorithms.
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A Appendix

A.1 Datasets

To evaluate the methods proposed in this dissertation, multiple real-world datasets

are used, including the Adult dataset, the Dutch Census of 2001 dataset, and the German

Credit dataset. The sources of the datasets are listed in Table A.1. The detailed description

is given as below.

A.1.1 The Adult Dataset

The Adult dataset was extracted from the 1994 Census database, consisting of 48,842

tuples (32,561 training examples and 16,281 testing examples) with 11 attributes including

age, education, sex, occupation, income, marital status etc. This dataset is originally

designed for classification and the decision attribute is income, i.e., whether the income is

larger than 50k.

A.1.2 The Dutch Census of 2001 Dataset

The Dutch Census of 2001 dataset was used and preprocessed in [18]. It consists of

60,420 tuples with 12 attributes, including sex, age, household position, household size,

prev residence place, occupation, etc. This dataset is formulated for a binary classifi-

cation task where individuals are classified into high income and low income professions.

The decision attribute is occupation with two values.

Table A.1: Download links of datasets.

Dataset Name Link
Adult http://archive.ics.uci.edu/ml/datasets/Adult
Dutch Census of 2001 https://sites.google.com/site/conditionaldiscrimination/
German Credit http://archive.ics.uci.edu/ml/datasets/statlog+(german+

credit+data)
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Table A.2: Links to the implementations of proposed methods.

Chapter Link
Chapter 4 http://tiny.cc/pse-fairness
Chapter 5 http://tiny.cc/fair-ranking
Chapter 6 http://tiny.cc/counterfactual-fairness
Chapter 7 http://tiny.cc/pc-fairness
Chapter 8 http://tiny.cc/fair-classification

A.1.3 The German Credit Dataset

The German Credit dataset consists of 1000 individuals with 20 attributes applying

for loans. Among 20 attributes, 7 are numerical and 13 are categorical. This dataset is

designed for binary classification to predict whether an individual is a good or bad customer.

The decision attribute is the customer label where the value 1 means “good” and the value 2

means “bad”.

A.2 Software

Throughout this dissertation, the causal graphs are constructed using the PC algorithm

implemented by the open source software Tetrad [70]. This software is available at http:

//www.phil.cmu.edu/projects/tetrad/. The classic classification algorithms are implemented

by scikit-learn [109]. The optimization algorithms are implemented based on CVXOPT [71]

and CVXPY [103].

To promote research reproducibility, the implementations of all proposed methods in

this dissertation are publicly available. The download links are given in Table A.2.
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