
THE DEVELOPMENT OF DATA-DRIVEN METHODS

FOR MODELLING AND OPTIMISATION OF CHEMICAL

PROCESS SYSTEMS

A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy

in the Faculty of Science and Engineering

2022

Max Mowbray

Department of Chemical Engineering

Contents

Abstract 8

Declaration 9

Copyright Statement 10

Acknowledgements 11

1 Overview 31

1.1 Connecting Machine Learning and Process Systems Engineering 31

1.2 Decision-making in industrial process systems 35

1.2.1 Process control and online optimisation 37

1.2.2 Production scheduling and supply chain operations 39

1.3 Motivation and objectives . 41

1.4 Research contributions and thesis structure 43

1.4.1 Chapter 3 - Research Objective 1 43

1.4.2 Chapter 4 - Research Objective 2 44

1.4.3 Chapter 5 - Research Objective 3 45

1.4.4 Chapter 6 - Research Objective 4 45

2 Background and Literature Review 47

2.1 Identification of decision rules . 47

2.1.1 Sequential decision making problems and uncertainty 48

2.1.2 Reinforcement Learning . 56

2.1.3 Extracting decision rules from process data 82

2.2 Process control and online optimisation of batch process systems 90

2.2.1 Batch and fed-batch process systems 90

2

2.2.2 Modelling approaches . 90

2.2.3 Solution approaches . 96

2.3 Production scheduling . 102

2.3.1 Classification of batch production environments 104

2.3.2 Modelling approaches . 105

2.3.3 Solution approaches . 109

3 Using process data to generate an optimal control policy via appren-

ticeship and reinforcement learning 116

3.1 Introduction . 117

3.2 Preliminaries . 119

3.2.1 Policy gradients and Reinforce 119

3.2.2 Learning from demonstrations via apprenticeship 120

3.2.3 Motivation . 121

3.3 Methodology . 122

3.3.1 Problem statement . 122

3.3.2 Policy gradients and Reinforce 124

3.3.3 Apprenticeship learning via inverse reinforcement learning . . . 127

3.3.4 Maximum entropy inverse reinforcement learning (MaxEnt IRL) 129

3.3.5 Overview of proposed methodology 131

3.4 Computational case studies . 132

3.4.1 Introduction to the case studies 132

3.4.2 Design of state features for apprenticeship learning 133

3.4.3 Case study definitions . 135

3.5 Results and discussion . 136

3.5.1 Case study I – Learning from near optimal demonstrations . . 136

3.5.2 Case Study II - Learning from suboptimal demonstrations . . . 139

3.5.3 Case study III - Knowledge transfer in learning from demonstration141

3.6 Conclusions . 145

4 Safe chance constrained reinforcement learning for batch process con-

trol 146

4.1 Introduction . 147

3

4.1.1 Safe Reinforcement Learning . 148

4.1.2 Uncertainty aware modelling and control 150

4.1.3 Contribution . 151

4.2 Problem statement . 152

4.3 Methodology . 155

4.3.1 Gaussian processes for data-driven dynamic modelling 155

4.3.2 Safe chance constrained policy optimisation with Gaussian pro-

cesses . 159

4.4 Case Study . 170

4.4.1 A microalgal lutein photo-production dynamic process 171

4.4.2 Safe chance constrained policy optimisation 173

4.4.3 Benchmark for process optimisation 175

4.4.4 Key performance indicators . 176

4.5 Results and discussion . 176

4.5.1 Results of safe chance constrained policy optimisation 176

4.5.2 Comparison to benchmark methods 179

4.6 Conclusion . 183

5 Distributional reinforcement learning for scheduling of chemical pro-

duction processes 185

5.1 Introduction . 186

5.1.1 Online production scheduling: optimisation and simulation . . . 186

5.1.2 Online production scheduling and Reinforcement Learning . . . 188

5.1.3 Contribution . 189

5.2 Problem statement . 191

5.3 Methodology . 193

5.3.1 Identifying discrete control decisions 193

5.3.2 Constraint handling . 194

5.3.3 Stochastic search policy optimisation 196

5.3.4 Optimizing for the distribution of returns 197

5.4 Case studies . 201

5.4.1 Problem definition . 201

4

5.4.2 Benchmark . 203

5.4.3 Experiments . 204

5.5 Results and discussion . 206

5.5.1 Policy training . 206

5.5.2 Problem instance 1 . 207

5.5.3 Problem instance 2 . 212

5.5.4 Computational time cost in policy identification and decision-

making . 215

5.5.5 The effects of inaccurate estimation of plant uncertainties 217

5.6 Conclusions . 219

6 Distributional reinforcement learning for optimisation of multi-echelon

supply chains 221

6.1 Introduction . 222

6.2 Preliminaries . 227

6.2.1 Introduction to Reinforcement Learning 227

6.2.2 Reinforcement Learning and stochastic search optimisation . . . 228

6.2.3 Introduction to Distributional Reinforcement Learning 229

6.3 Methodology . 230

6.3.1 Stochastic search for Reinforcement Learning (SS-RL) 230

6.4 Case studies . 238

6.4.1 Virtual machine packing . 238

6.4.2 Asset allocation . 241

6.4.3 Supply chain inventory management 244

6.5 Conclusions . 251

7 Conclusions and future work 253

Bibliography 259

A Appendices for Background and Literature Review 320

A.1 Derivation of the state value function 320

A.2 Dynamic programming: policy iteration and value iteration 321

A.3 Markov Decision Processes . 323

5

A.4 Linear programming formulations for determining the optimal state

value function . 324

A.5 Maximum entropy optimisation . 324

B Appendices for research item: Using process data to generate an

optimal control policy via apprenticeship and reinforcement learning327

B.1 The Policy Gradient Theorem . 327

B.2 Long-short term memory (LSTM) policy networks 328

B.3 The principle of maximum entropy and maximum entropy Inverse Re-

inforcement Learning . 329

B.4 Policy characterisation . 333

B.5 Approximate Process Model . 333

B.6 Generation of demonstrated trajectories and control bounds 335

B.7 Case study I and II hyperparameters 336

B.8 Case study III hyperparameters . 336

B.9 Case study data requirements and computational time 337

C Appendices for research item: safe chance constrained reinforcement

learning 339

C.1 Gaussian process state space modelling 339

C.1.1 Training of Gaussian process models 339

C.1.2 Obtaining function realisations from GP state space models . . 340

C.2 Validation of Gaussian process models used in case study 342

C.3 Proximal policy optimisation, The advantage function and entropy reg-

ularisation . 342

C.3.1 The advantage function . 343

C.3.2 Entropy regularisation . 343

C.3.3 Entropy regularised proximal policy optimisation 344

C.4 Evaluating joint constraint satisfaction empirically 347

C.5 Further Information on Benchmark . 348

C.6 Hyperparameters for Learning in Case Study 348

6

D Appendices for research item: distributional reinforcement learning

for scheduling of chemical production processes 350

D.1 Particle swarm and simulated annealing (PSO-SA) hybrid algorithm . . 350

D.1.1 Particle swarm optimisation . 351

D.1.2 Simulated annealing . 352

D.1.3 Search space reduction . 352

D.1.4 Policy network structure selection 353

D.2 Definition of the production scheduling problem 354

D.2.1 Problem definition . 355

D.2.2 Formulating discrete-time scheduling problems as Markov deci-

sion processes . 357

D.2.3 A forecasting framework for handling future plant uncertainty . 360

D.2.4 Defining the initial system state 360

D.2.5 Defining the set of feasible controls 361

D.3 Definition of experimental data used in computational experiments . . 362

D.4 Results for distributional formulation: problem instance 2 366

D.5 Misspecification of plant uncertainty 366

D.6 The probability of constraint satisfaction 367

E Appendices for research objective: Distributional reinforcement learn-

ing for optimisation of multi-echelon supply chains 368

E.1 Simulated annealing . 368

E.2 Evolution strategy . 369

E.3 Particle swarm optimisation . 369

E.4 Artificial bee colony . 371

E.5 Recurrent Neural Network . 372

E.6 Results of sensitivity analysis . 373

Word count 77887 words

7

Abstract
In this thesis, data driven approaches to sequential decision making problems

within process systems engineering (PSE) are developed. Specifically, the use of model-
free Reinforcement Learning (RL) is considered for process control, online optimisa-
tion, online production scheduling and supply chain management problems. Model-free
RL methods are purely data-driven approaches to identifying an optimal control pol-
icy for an uncertain, decision process. These policies are identified independently of
assumptions on system dynamics and associated uncertainties. Incentives for the use
of RL and its challenges in application to PSE is presented in Chapter 2. These chal-
lenges include: improving the sample efficiency of policy identification; ensuring safety
through satisfaction of operational constraints; as well as robustness via risk-sensitive
decision making. A framework for the use of RL is also proposed, which all of the work
items in this thesis adhere to. This framework relies on initial policy identification via
simulation of an approximate, uncertain system model; and then subsequent transfer
of the policy to the real system for online decision making and policy improvement.

In Chapter 3, we explore how best to leverage existing process knowledge expressed
by process operators and control schemes in the form of process data to aid offline
policy learning. We propose a methodology to first extract a parameterisation of
this knowledge in an offline simulation model in the form of a control policy. This
removes the requirement to tune the policy manually and improves learning efficiency.
This policy parameterisation is then transferred to the real process to provide online
control and for subsequent policy improvement. A case study is provided via a tracking
problem in a linear, uncertain dynamical system and existing data is provided by a
proportional-integral-derivative controller.

In Chapter 4, an entirely data driven methodology is proposed to ensure the prob-
abilistic satisfaction of state constraints in online optimisation of uncertain, nonlinear
process systems. The approach is benchmarked to a nonlinear model predictive con-
trol scheme on a lutein photo-production process, demonstrating improvements in
constraint satisfaction and 30% improvements in the expected performance.

In Chapter 5, a zero-order optimisation approach to RL policy identification is pro-
posed for online scheduling of an uncertain sequential production environment. The
approach is able to robustly handle common restrictions on these problems. Addition-
ally, the framework inherits the benefits of posing risk-sensitive formulations, such as
optimising for the conditional value-at-risk (CVaR). The method is benchmarked to
an online mixed integer linear programming formulation and is demonstrated to be
competitive with a performance gap of at most 5%, but identifying online decisions
orders of magnitude more efficiently.

Finally, in Chapter 6 we explore the application of a zero-order RL framework to
an uncertain multi-echelon supply chain, inventory management problem. We bench-
mark the approach to a popular first-order RL method. We highlight the relative
sample efficiency of our method and demonstrate improved performance in the ob-
jective. Benchmark is also provided to mathematical programming, with the method
demonstrating competitive performance in the objective, but gaining the ability to
incentivise worst-case performance by constraining the CVaR.

As described, the work explores the development of RL methodologies and tailors
them specifically to PSE problems. Additionally, many of the open challenges associ-
ated with the use of RL are addressed. Conclusive summary is provided in Chapter
7.

8

Declaration

No portion of the work referred to in the thesis has been submitted in sup-

port of an application for another degree or qualification of this or any other

university or other institute of learning.

9

Copyright Statement

i. The author of this thesis (including any appendices and/or schedules to this thesis)

owns certain copyright or related rights in it (the “Copyright”) and s/he has given

The University of Manchester certain rights to use such Copyright, including for

administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic

copy, may be made only in accordance with the Copyright, Designs and Patents

Act 1988 (as amended) and regulations issued under it or, where appropriate, in

accordance with licensing agreements which the University has from time to time.

This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other intel-

lectual property (the “Intellectual Property”) and any reproductions of copyright

works in the thesis, for example graphs and tables (“Reproductions”), which may

be described in this thesis, may not be owned by the author and may be owned by

third parties. Such Intellectual Property and Reproductions cannot and must not

be made available for use without the prior written permission of the owner(s) of

the relevant Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and com-

mercialisation of this thesis, the Copyright and any Intellectual Property and/or

Reproductions described in it may take place is available in the University IP Policy,

in any relevant Thesis restriction declarations deposited in the University Library,

and the University Library’s regulations.

10

http://documents.manchester.ac.uk/display.aspx?DocID=24420
http://www.library.manchester.ac.uk/about/regulations/_files/Library-regulations.pdf

Acknowledgements

This thesis is dedicated to my family, friends and supervisors, and has been made

entirely possible through their support and advice. In particular, I would like to

thank Dr. Dongda Zhang, Dr. Ehecatl Antonio Del Rio Chanona and Prof. Robin

Smith for their investment into my development. The experience of the last three

years has been enriched by their dedication to academia and learning, as well as their

friendship. Additionally, I would like to thank Dr. Panagiotis Petsagkourakis for his

encouragement and collaboration, but more importantly for a number of coffees.

I would also like to thank the members of Dongda’s group at The University of Manch-

ester including Bovinille Anye Cho, Fernando Vega Ramon, Alex Rodgers, Alex Nor-

man, Harry Kay and Sam Kay; also Antonio’s group at Imperial College London in-

cluding Ilya Orson Sandoval, Thomas Savage, Zhengang Zhong, Damien van de Berg,

Akhil Ahmed, Miguel Angel de Carvalho Servia and Haiting Wang. Our collective

group meetings have been one of the most enjoyable parts of my week for nearly three

years.

Additionally, to Dr. Giannis Zacharopoulos and soon to be Dr. Bovinille Anye Cho for

their friendship. Our memories of fun in Manchester at the end of a busy week will stay

with me. I am also thankful to the rest of the Centre for Process Integration at The

University of Manchester and particularly Taicheng Zheng for interesting conversations

shared within and outside of the office.

Completion of this work could not have been possible without Campbell Minogue, John

Pilgrim, and especially Madison Brownley. Time spent with you provided valuable

distance from study as well as plenty of fun.

Finally and most importantly, I would like to thank my mother and sister, Elizabeth

and Imogen, for their unconditional love, support and perspective. The last few years

have been full of life for all of us, and I have been lucky to experience them with you.

11

List of Tables

3.1 Conditions of design for the case studies detailed. The real initial

state of the controlled variables x0 is drawn from the respective dis-

tributions. The set point y∗sp details the new setpoint of the respective

control variables as set at t = 0. 136

3.2 The expected discounted trajectory features of PID1 (υγ,E) and the

policy learned through AL (υγ, π), and IRL’s feature weight (α∗) gen-

erated in CS I. Y ∗ − Type indicates the type of trajectory feature and

the respective control loop error. 137

3.3 The expected discounted trajectory features of the PID2 (υγ,E) and

the policy learned through AL (υγ, π), and IRL’s feature weight (α∗)

generated in CS II. Y ∗ − Type indicates the type of trajectory feature

and the respective control loop error. 139

3.4 The expected discounted trajectory features of the PID1 generated in

CS III. Y ∗- Type indicates the type of trajectory feature and the re-

spective control loop error. 143

4.1 Case Study: List of parametric and initial state distributions imposed

to describe uncertainty in the real underlying bioprocess. 172

4.2 Case Study: List of key algorithm parameters 174

4.3 Case Study: Comparison of probabilities of joint constraint satisfaction

FLB(0) and FSA(0) and objective values of π∗
C(·, θ) as learned via the

methodology on the real process and GP state space model. The objec-

tive performance is quantified via the mean and variance due to process

stochasticity. See Eq. 4.33 for detail of the process objective. 179

12

4.4 Case Study: Comparison of probabilities of joint constraint satisfaction

FLB(0) and FSA(0) and objective values of π∗
C(·, θ) under the proposed

dynamic optimisation (DO) benchmark. Four different results are re-

ported for DO, corresponding to the four different initial conditions

used to generate the control profile offline. The objective performance

is quantified via the mean and variance due to process stochasticity. See

Eq. 4.33 for detail of the process objective. 180

4.5 Case Study: Comparison of probabilities of joint constraint satisfaction

FLB(0) and FSA(0) and objective values of π∗
C(·, θ) under the proposed

benchmark of nonlinear model predictive control (NMPC). The objec-

tive performance is quantified via the mean and variance due to process

stochasticity. See Eq. 4.33 for detail of the process objective. 181

5.1 Table of experimental conditions investigated. Details of the exact de-

scriptions of uncertain variables are provided by D.2. 205

5.2 Table of results for the proposed method from investigation of exper-

imental conditions detailed by Table 5.1 for Problem Instance 1. The

policies synthesised were optimised under the objective provided by Eq.

5.5. 209

5.3 Results for distributional RL from experimental conditions detailed by

Table 5.1. Results that are emboldened detail those policies that show

improved CVaR over the MILP approach (as detailed in Table 5.2). . . 210

5.4 Table of results for the proposed method from investigation of exper-

imental conditions detailed by Table 5.1 for Problem Instance 2. The

policies synthesised were optimised under the objective provided by Eq.

5.5. The * indicates the differences between the two groups are not

statistically significant based on two-sided t-test. 214

5.5 Normalized times for a) offline identification of a control policy, π, and

b) identification of online scheduling decisions for problem instances 1

and 2. 216

13

5.6 Table of experimental conditions investigated. In each experiment, we

take the trained policy from experimental condition E8, problem in-

stance 1 and evaluate its performance in a plant defined by different

uncertainties. The degree of misspecification increases with experiment

number. 218

6.1 Total reward comparison of different RL algorithms in virtual machine

packing. We report the mean and standard deviation (StD). The marker

* indicates benchmark results acquired from Hubbs et al. (2020b). In

this study, Hubbs et al. (2020b) provide training results only, which

enable objective comparison between MILP, PPO and stochastic search

RL. 240

6.2 Total reward comparison of different RL algorithms in asset allocation.

We report the mean and standard deviation (StD). The marker * in-

dicates benchmark results acquired from robust linear programming

(RLP) and PPO (Hubbs et al., 2020b). In this study, Hubbs et al.

(2020b) provide validation results, which enable further comparison be-

tween PPO and stochastic search RL. The training results reported for

mathematical programming formulations are evaluated over 100 simu-

lations. 243

6.3 Total reward comparison of different RL algorithms under 66000 train-

ing episodes. We report the mean and standard deviation (StD). The

marker * indicates benchmark results acquired from shrinking horizon

linear programming (SHLP), mixed integer programming (MIP) and

PPO (Hubbs et al., 2020b). In this study, Hubbs et al. (2020b) provide

training results only, which enable objective comparison between LP,

PPO and stochastic search RL. The training results reported for math-

ematical programming formulations are evaluated over 100 simulations. 247

B.1 Parameter definition and values within process model 334

B.2 Assumptions made in derivation of the underlying process dynamics . . 334

B.3 Tuned PID controllers facilitated by the MATLAB/Simulink package. . 336

B.4 Bounds of the action space to ensure limits of actuation 336

14

B.5 Hyperparameters of the Algorithms for offline learning with notation as

referenced in Algorithms 1 and 2. In Algorithm 1, different numbers

of training epochs were utilised depending on the iteration of policy

optimisation as defined in Algorithm 2. The index 1 refers to the number

of epochs used in iteration 1 and 2: refers to the number of epochs used

from iteration two onwards. 336

B.6 Hyperparameters of the Algorithms for offline learning with notation as

referenced in Algorithms 1 and 2. In Algorithm 1, different numbers

of training epochs were utilised depending on the iteration of policy

optimisation as defined in Algorithm 2. The index 1 refers to the number

of epochs used in iteration 1 and 2: refers to the number of epochs used

from iteration two onwards. 337

B.7 Data and computational time requirements for Case study II. Parallel

implementation and potential code-level improvements would reduce

the time requirement substantially. 337

B.8 Data and computational time requirements for Case study III. Note the

effect of knowledge transfer within the framework with respect to data

efficiency and time requirement. Parallel implementation and potential

code-level improvements would reduce the time requirement substantially.338

C.1 Multistep prediction mean absolute percentage error (MAPE) of leave-

one-out cross validation of Gaussian process state space model used in

Case study. 342

C.2 Miscellaneous hyperparameters specific to Proximal policy optimisation

algorithm used in this work. 349

D.1 Table of problem parameters and sets. *D.T.I. is shorthand for discrete

time indices. 356

D.2 Maximum task batch size (kg/batch) for every unit. RTU* denotes the

finite release time of the unit in days. The length of a discrete time

index corresponds to 0.5 days. 363

D.3 Order processing times (days/batch), PTil. The length of a discrete

time index corresponds to 0.5 days. 363

15

D.4 Set of feasible successors. 364

D.5 Cleaning times required between pairs of orders (days) in all units. The

length of a discrete time index corresponds to 0.5 days. 364

D.6 Order sizes, due dates (days) and release times. The length of a discrete

time index corresponds to 0.5 days. 365

D.7 Results for distributional RL from experimental conditions detailed by

Table 5.1. Results that are emboldened detail those policies that show

improved CVaR over the expected RL formulation (as detailed in Table

5.4). 366

E.1 Recurrent neural network detailed structure and number of parameters. 373

E.2 Results of sensitivity analysis for different parameters. 373

16

List of Figures

1.1 The structure of industrial distributed control systems, which consists of

enterprise resource planning (ERP), manufacturing execution systems

(MES), supervisory control and data acquisition (SCADA), control and

sensing structures. 36

1.2 The structure of established frameworks for real-time control and op-

timisation of industrial process systems. A) The traditional real-time

optimisation frameworks, and B) the more recently proposed economic

model predictive control framework. The arrows with dashed lines in-

dicate vertical integration with higher planning and scheduling functions. 39

2.1 Parameter estimates generated via a) Frequentist practice and b) Bayesian

estimation. 51

2.2 The single-stage scenario tree associated with a given state-control pair

and the associated probability masses of observing each scenario accord-

ing to an uncertain process model. Here the model represents a discrete

conditional probability mass function, exhibiting the Markov property. 51

2.3 Intuition behind the recursive definition of the state value function as

defined by Eq. 2.5. Here, we have one state variable, only one control

action available and deterministic dynamics. The stage cost is defined

as φt+1, for conciseness. 53

2.4 The Markov decision process framework. A description of the stochastic

optimal control problem without state constraints. 57

17

2.5 Figurative description of the combined action of policy evaluation and

policy improvement steps a) on the state-action value function, Qπ and

b) on the state value function Vπ in a continuous state space with one

state variable. b) Starting from a given value function, Vπ0 , that could

be randomly initialized, the combined action of these operators act to

iteratively improve the current state value function to satisfy the Bell-

man optimality equation (Eq. 2.7a). 60

2.6 Possible structures of feedforward artificial neural network approxima-

tions to the state-action value function, Qπ. The structures differ in

that a) defines the approximation as, Qπ : X → Rn|U| , providing a map

from states to the state-action values of all possible controls; whereas b)

defines, the state-action value function, Qπ : X×U → R, as a map from

state and controls, to a respective state-action value. As a result, a) is

amenable to small discrete control spaces, whereas b) can handle con-

tinuous control spaces, but requires optimisation to conduct the policy

improvement step. 62

2.7 A typical Gaussian stochastic policy as constructed by policy gradient

methods. 63

2.8 A framework for the identification and deployment of approximately

optimal policies via RL. It consists of an initial policy learning step

through simulation of an approximate process model. The policy is then

transferred to the real system for the purposes of online optimisation

and further learning. 64

2.9 Description of the performance distribution associated with a policy

and measures such as the mean, the conditional value-at-risk, CVaR,

and the value-at-risk, VaR, for a given probability level β, as well as

the expected value, µ under a) the probability density function and b)

the cumulative distribution function. 68

2.10 Network structures used in the deep deterministic policy gradient (DDPG)

actor-critic method. Here a) a policy function approximation provides

a map from states to optimal control predictions, π : X → U, whereas

b) defines the state-action value function, Qπ : X×U → R, as in Fig. 2.6. 73

18

2.11 Intuition behind the Apprenticeship Learning algorithm. At conver-

gence, the method identifies a policy, which is at most within a distance,

ϵ, of the state value function of the existing scheme, VπE(x0) in the ini-

tial state. There is ambiguity as to which policy to learn and how best

to define the distance, ϵ. 85

2.12 Informal intuition behind the differences between a) apprenticeship learn-

ing and b) maximum entropy inverse RL. In a) the problem is posed

within ‘value space’ (i.e. objective performance), whereas in b) it is

posed directly in the space of basis feature counts, which characterise

the policy with respect to control objectives. 86

2.13 Bayesian neural networks have probability density functions over pa-

rameters and may be interpreted as an infinite ensemble of conventional

neural networks, each with unique point estimates for parameters. . . . 92

2.14 Expression of a Gaussian process posterior distribution for the modeling

of a smooth noiseless function. The figure demonstrates the effects of

an increasing number of data points in the model (a) 5, b) 6, c) 7 data

points). In this instance, increasing the number of data points reduces

the epistemic uncertainty estimate and the mean GP prediction becomes

a better representation of the ground truth. 93

2.15 Demonstration of the use of state-feedback in receding horizon MPC

for online optimisation of an uncertain, nonlinear fed-batch process.

Optimised forecast and evolution of a) the state trajectory, and b) the

control trajectory (composed of piecewise constant control inputs). . . . 97

2.16 Intuition behind the decisions provided by the scheduling function and

its interaction with the plant and upper-level supply chain management

functions. 103

2.17 Multistage batch production environments. Here, a two stage produc-

tion environment is shown. Reactants are converted to intermediates

and then products through multiple processing steps. 105

2.18 Discrete-time and continuous-time modelling of time. In both cases

unit-specific representations are shown (i.e. the handling of time is not

global). 107

19

2.19 a) The state-task network (STN) process representation and b) the

resource-task network (RTN) process representation. The states in a)

and resources in b) are represented by circles, whereas the production

tasks are represented by rectangles. 110

2.20 An example of two-stage stochastic programming. Uncertainty is gen-

erally assumed to be realised once within the time horizon. 111

3.1 Translation of the framework provided by MDPs to process control,

where the process is analogous to an environment, and the controller

to an agent. xt is representative of the true system state at discrete

time t ; ut is the control action computed by the control law at discrete

time t ; and Rt+1 is the scalar feedback signal (reward) indicative of the

quality of process evolution at time t+1. 117

3.2 The offline–online framework proposed for the learning and optimisation

of processes. Offline learning utilises process data, (Ŷ, Û), to learn a

reward function, R(α∗, ·), and a parameterisation of the demonstrated

policy, πpo(θ(k0), ·). Online learning utilises the learned parameterisation

as initialisation for further policy optimisation under a reward function,

Rpo(·), descriptive of the true process objective. 122

3.3 Optimal policy of the agent in Case study I. A and B: Control and

system response of the concentration control loop and of the temper-

ature control loop, respectively. C and D: Zoomed system response

in the concentration control loop and in the temperature control loop,

respectively. πA and πE indicate the policy of the agent (after online

learning) and the PID, respectively. Solid line represents the mean con-

trol response and the shaded regions indicate the standard deviation.

Line colours of manipulated variables: blue - πA; light green - πE. Line

colours of control variables: red - πA; dark green - πE. Line colour of

set points: orange. 138

20

3.4 System response over the first 30 control interactions from the policy

learned from demonstration during AL in Case study II. A and B: Sys-

tem response in the concentration control loop and the temperature

control loop, respectively. πA and πE indicate the response associated

with the policy of the agent (after offline learning) and that demon-

strated, respectively. Solid line represents the mean control response

and the shaded regions indicate the standard deviation. Line colours of

control variables: red - πA; dark green - πE. Line colour of set points:

orange. 141

3.5 Optimal policy of the agent in CS II over the full simulated horizon.

A and B: Control and system response of the concentration control

loop and the temperature control loop, respectively. C and D: Zoom

of the system response in the concentration control loop and in the

temperature control loop, respectively. πA and πE indicate the policy

of the agent (after online learning) and the PID, respectively. Solid line

represents the mean control response and the shaded regions indicate

the standard deviation. Line colours of manipulated variables: blue -

πA; light green - πE. Line colours of control variables: red - πA; dark

green - πE. Line colour of set points: orange. 142

3.6 Policy πA generated as a result of knowledge transfer through AL and

online policy optimisation. A and B: Control and system response of

the concentration control loop and the temperature control loop, re-

spectively. C and D: Zoom of the system response in the concentration

control loop and the temperature control loop, respectively. πA and

πE indicate the policy of the agent (after online learning) and the PID,

respectively. Solid line represents the mean control response and the

shaded regions indicate the standard deviation. 144

21

4.1 Results from Case Study. (a) The state profile produced from the final

policy learned on the Gaussian Process model plotted against control

interactions (as a proxy for time). Control interactions are provided ev-

ery 24 hours of process operation. (b) The corresponding distribution

of trajectories with respect to the operational constraints. The ith con-

straint is denoted gi := ATi x− bi. The light blue shaded areas represent

the 99th to 1st percentiles and solid blue line represents the expected

trajectory. The black line plot represents the threshold of constraint

violation i.e. when gi = 0 . 177

4.2 Results from Case Study. (a) The distribution of trajectories with re-

spect to the operational constraints as sampled from the real uncertain

process. (b) An overlay of the distributions observed when the pol-

icy is deployed on the real uncertain process (red) and the GP state

space model (blue) as plotted in Fig. 4.1. The ith constraint is denoted

gi := ATi x− bi. The shaded areas represent the 99th to 1st percentiles

and solid line represents the expected trajectory. The black line plot

represents the threshold of constraint violation i.e. when gi = 0 178

4.3 Results from Case Study. (a) The distribution of controls selected by

the RL policy, π∗
C(·, θ), upon validation on the real uncertain process.

Red solid line represents the average control trajectory and the light

red shaded region represents a 1 standard deviation confidence inter-

val (which is essentially non-existent), (b) The distribution of controls

selected by the NMPC policy upon validation on the real uncertain

process. Green solid line represents the average control trajectory and

the light red shaded region represents a 1 standard deviation confidence

interval . 182

5.1 Figurative description of the feedback control framework used to for-

mulate the scheduling problem. A) A feedback control framework that

utilises logic to identify feasible scheduling decisions. B) Control selec-

tion via a deterministic rounding policy. 196

22

5.2 Description of the conditional value-at-risk, CV aRβ, and the value-at-

risk, V aRβ, for a given probability level β, as well as the expected

value, µ under a) the probability density function, pπ(zϕ), and b) the

cumulative distribution function, Fπ(zϕ). 199

5.3 The training profile of the RL agent on experiment E8, problem instance

1. Metrics of the best known policy are tracked as the population is

iterated. Plot a) shows the mean, standard deviation (shaded region

around the expected profile), value-at-risk (β = 0.2), the corresponding

conditional-value-at-risk and probability of constraint satisfaction, FLB,

for formulation Eq. 5.5. Plot b) displays the same information for

formulation Eq. 5.9a. 206

5.4 Investigating the offline schedule generated for the deterministic plant

(problem instance 1). The results for experiment E1 generated by the

a) RL and b) MILP methods and for experiment E2 generated by the

c) RL and d) MILP methods. The label Ti details the scheduling of

task i in a given unit. 208

5.5 The distributions of returns observed in validation of the RL policy

obtained from optimizing expectation (i.e. E8) and conditional value-

at-risk (i.e. D8) within the same production environment. Plot a) a

histogram of the objective performances, and b) the empirical cumula-

tive distribution function associated with each policy. 211

5.6 Investigating the offline schedule generated for the deterministic plant.

The results for experiment E1, problem instance 2 generated by the a)

RL and b) MILP methods. The results for experiment E2, problem

instance 2 generated by the c) RL and d) MILP methods. The label Ti

details the scheduling of task i in a given unit. 213

6.1 Interaction between the controller and stochastic process in a Markov

decision process. 227

6.2 Reinforcement Learning for process systems and supply chain optimi-

sation. 231

6.3 An overview of the stochastic search algorithm proposed. 235

23

6.4 Illustration of VaRα and CVaRα for a given probability level α under

a) the probability density function and b) the cumulative distribution

function. 238

6.5 The performance of different RL algorithms and distributional RL. Plot

a) shows the training curve of different RL algorithm; b) the training

curve of hybrid distributional RL; and c) displays the histogram of pol-

icy performance from 1000 simulated episodes for the optimal distribu-

tional RL policy. The shaded region for PPO represents the standard

deviation of the objective performance, for the stochastic search algo-

rithms the regions are bounded by the 25th and 75th percentiles. 243

6.6 Training curve of the different RL algorithms used in the inventory

management problem. The shaded areas represent the standard devia-

tion of the rewards. The results of PPO acquired by OR-gym are also

plotted to demonstrate the relative performance of the stochastic search

algorithms. 246

6.7 Investigating the performance of distributional RL in inventory man-

agement problem. Plot a) shows the training curve of distributional

RL. The shaded areas represent the standard deviation of the rewards.

Plot b) shows a histogram of policy performance from 1,000 simulated

episodes for the optimal distributional RL policy. 248

6.8 Investigating the influence of number of particles on a) mean rewards

and b) CVaR. Plot c) shows the influence of number of particles at a

lower range on computational time and mean rewards. 249

6.9 Investigating the influence of CVaR constraint on a) mean rewards and

b) CVaR. Investigating the influence of sample size on c) mean rewards

and d) CVaR. 251

B.1 A: Neural network parameterisation of the policy. Each of the nodes in

the hidden layers is a self-contained recurrent LSTM cell. B: A general,

simplified description of the mathematical operations internal to each

LSTM cell. The internal representation H represents a parameterisation

of previously observed states y. 329

B.2 Process flow diagram for offline learning as proposed in this work. . . . 332

24

E.1 Recurrent neural networks as a) unfolded computational graph and b)

hidden node. 373

25

List of Symbols

This section describes the notation used throughout the chapters of this thesis. If

notation is redefined between different chapters then it is included here for reference.

Chapter 2

x ∈ X ⊆ Rnx The physical system states

u ∈ U ⊆ Rnu The control inputs

t ∈ {0, . . . , T} Index within the finite discrete time horizon of length T

φ : X × U×X → R Stage cost function

γ Discount factor

G0 Discounted sum of stage costs

τ Process trajectory

x ∈ X ⊆ X The physical system states that satisfy state constraints

Û(x) ⊆ U The control inputs that satisfy state dependent input

constraints

fr(x,u, ·) The hypothesised real process dynamics

f : Rnx × Rnu × Rns → Rnx The approximating discrete time process dynamics

s ∈ S ⊆ Rns General uncertain model parameters

π : X → U A feedback control policy

E[Z] Expected measure of arbitrary random variable, Z

Vπ : X → R State value function

Qπ : X × U → R State-action value function

Tπ(·) Bellman operator

Tπ∗(·) Bellman optimality operator

α =(0,1] The learning rate

δ(·) The temporal difference error

δQL(·) The Q Learning error

26

δSA(·) The state-action-reward-state-action (SARSA) error

L(·) The squared Q learning error

θ ∈ Rnθ Parameters of a function approximation

ϕ : X × U×X → Rnw A set of basis functions

w ∈ Rnw A vector of learnable weights

υ(τ) Basis feature counts

r(·) Testable information

Chapter 3

y ∈ Rny Noisy observation of physical system state

p(y | x) The exact description of noisy observation

Rt The reward allocated (by the cost function)

p(τ | θ) Probability density function describing the process tra-

jectory under a policy

ρ̄(x0) Initial state distribution

J(τ) Expected trajectory cost

∇θJ(τ) The policy gradient

b Policy gradient baseline

H Hidden state of LSTM neural network

α ∈ Rnα A vector of learnable cost function weights

T Existing dataset of process trajectories

ξ Dataset acquired through sampling the approximate pro-

cess model via Monte Carlo under a control policy

h(·) Linear process dynamics

δ(·) Magnitude of disturbance

W Wiener process

CA Concentration of reagent

T Temperature of reactor

φi Basis function of type i

CA0 Influent concentration of reagent

TE Temperature of heated jacket

Chapter 4

x ∈ X ⊆ Rnx System state

27

X̂ ⊆ X Set of states that satisfy state constraints

υ ∈ Rnx+nu State and control pair

Υ Dataset of state and control pairs

Y Dataset of (future) state components

ω Additive white noise

fGP (·) Gaussian process prior

K Gram matrix

K∗ Covariance of a test datapoint

α User defined probability of joint chance constraint viola-

tion

P(·) Probability of event

ιj Probability of violation of constraint j

µ(·) Mean of Gaussian process state space model posterior

Σ(·) Covariance of Gaussian process state space model poste-

rior

x̄ Nominal system state

Σ[x] Covariance of system state

ϵj,t ∈ R A Cantelli-Chebyshev backoff

ξ ∈ Rng Constraint tightening multipliers

X̄ ⊆ X̂ Tightened set of states that satisfy state constraints

φp(·) Penalty function solving for tightened constraint set

κ ∈ R Constraint violation (penalty function) weighting

ζ ∈ Rnx×nx Penalty weighting for Gaussian process state space model

uncertainty

πC Constraint satisfying policy

FX(·) Cumulative distribution function

FSA(·) Empirical cumulative distribution function

FLB(·) Robust empirical cumulative distribution function

U Least squares in desired joint chance constraint satisfac-

tion

JBO(·) Objective for desired constraint tightening

β = [0, 1] Hyperparameter for JBO

28

c ∈ R+ Hyperparameter for JBO

σJ ∈ R Variance in policy objective performance

fEIAF (·) ∈ R Expected improvement acquisition function

Chapter 5

Z ∼ pπ(z) Cumulative sum of rewards (a random variable described

by a probability density function)

X ⊆ Rnx Set of physical system states

U(l) ⊆ Z Input constraint set for unit l

w ∈ W ⊂ Rnu Relaxed, continuous equivalent to discrete control space

Ū(x) ⊆ U Those controls, which satisfy constraints identifiable via

propositional logic

fr : W → Ū Rounding policy to map from continuous relaxed control

space to discrete controls that satisfy propositional logic

constraints.

g(u) Constraints on control inputs not handled via fr.

ϕ(·) Penalty function

Zϕ(·) Cumulative sum of penalty function allocations

κg Penalty function weight

Fπ(zϕ) Cumulative distribution function associated with policy

performance

zϕβ Value-at-risk defined for a given probability level, β

µϕβ Conditional value-at-risk defined for a given probability

level, β

Zϕ
MC Evaluations of policy performance

πβ Risk-sensitive policy

Ii Inventory associated with product i

ωj the task/product index processed within unit j over the

previous time interval

δj A forecast of remaining processing time of production

task in unit j

ρi A forecast of discrete time indices remaining until orders

(tasks) are due

29

Chapter 6

x ∈ X State space

u ∈ U Control space

P : X× U× X → [0,∞] State transition probability matrix

R : X× U× X → R Reward function

Gt Cumulative sum of rewards observed from time index t

Ffitness(·) Fitness function to evaluate the policy

Vα Value-at-risk associated with policy performance for prob-

ability level 1 − α

CV aRα Conditional value-at-risk associated with policy perfor-

mance for probability level 1 − α

D Evaluations of policy performance

Vα(D) Monte Carlo estimator for value-at-risk

CV aRα(D) Monte Carlo estimator for conditional value-at-risk

30

Chapter 1

Overview

This thesis investigates the development of data-driven and machine learning methods

for the modelling and optimisation of chemical process systems.

1.1 Connecting Machine Learning and Process Sys-

tems Engineering

The application of machine learning techniques is a key research direction within the

process systems engineering, control and operations research communities. The estab-

lishment of machine learning within these fields has been assisted by the engagement

of the public with paradigm redefining achievements in the fields of computer vision

and decision making, as well as its integration with conceptual frameworks such as

Industry 4.0. Industry 4.0 is billed to play a significant part of the fourth industrial

revolution (Thomas and Nicholas, 2018). First proposed by the German manufac-

turing community (Lasi et al., 2014), this conceptual contribution motivates the use

of process data, digitization and automation in achieving a more sustainable and re-

silient framework for industry. Machine learning techniques comprise a key component

of this concept, primarily because of their capacity to identify, parameterise and make

predictions based on patterns in potentially highly dimensional process data (Fuentes-

Cortes et al., 2022). The following explores the fundamentals of machine learning and

provides comment on its prospective use in chemical and process systems engineering

(PSE).

31

The identification of patterns within data has been standard practice within the

chemical engineering community since the early 1800s and the initial lectures provided

by George E. Davis at the University of Manchester in 1887 (Reed, 2020). This

has typically been achieved either using first principles reasoning, the construction

of semi-empirical expressions (often derived from the use of dimensional analysis)

or classical system identification methods. Instead, machine learning approaches the

problem of pattern identification through a black-box approach, typically by combining

statistical estimation procedures with highly flexible classes of nonlinear models. More

specifically, machine learning can be divided into three primary subfields: supervised

learning, unsupervised learning and reinforcement learning. Other subfields, such as

semi-supervised and contrastive learning exist, however, discussion of these methods

is out of the scope of this overview.

Supervised learning is a subfield that focuses on identifying a function mapping

between an input and output space, given a number of noisy observations of the true

underlying mapping. Appropriate identification of the defining model parameters may

proceed via either Frequentist or Bayesian estimation techniques as usual (Oden, 2018).

Traditionally, this is known as the inverse problem, where model construction proce-

dures are deployed to identify an approximation of the mapping concerned (De Vito

et al., 2005). Common examples of supervised learning include image classification,

which has been applied in the setting of healthcare diagnostics (Fujisawa et al., 2019);

time-series forecasting, which is a common problem in modelling the dynamics as-

sociated with process systems (Bradford et al., 2018; Wei et al., 2022; McBride and

Sundmacher, 2019); soft-sensing (Sun and Ge, 2021; Ge et al., 2017); and data-driven

optimisation (Demirhan et al., 2020; Beykal et al., 2022; van de Berg et al., 2022). The

major attraction for the use of ML in these settings is the lack of explicit knowledge re-

garding the underlying system. For example, there is no map that can be derived from

first principles reasoning that will classify whether or not a collection of pixels displays

evidence of a tumour. However, one can use human expertise as well as chemical and

biological diagnostics to help label images and then identify such a map in a black-box

manner (Banbury et al., 2019; Horgan et al., 2021). Similarly, in industrial process

systems it is often difficult to measure certain process variables, an example is estimat-

ing the viscosity of a non-Newtonian fluid via conventional process instrumentation

32

(Haroon et al., 2020). In the case that these process variables require monitoring,

it becomes crucial to estimate them. If sufficient mechanistic knowledge is unavail-

able, this can be achieved by a black-box approach, as demonstrated in (Memarian

et al., 2021). The flexibility of parametric modelling together with statistical estima-

tion techniques can also allow one to consider robust formulations that, for example,

account for outliers (Sadeghian et al., 2022). The example of modelling time series se-

quences essentially reduces to identifying discrete-time process dynamics. This can be

challenging, especially in processes characterised by complex reaction kinetics, such as

fermentation systems. In these cases, the reaction mechanism is fully described by the

possibly thousands or millions of reactions associated with cell metabolism. This has

led to the historic dependence on semi-empirical model structures such as the Monod

model (Koch, 1998; See et al., 2018). These structures are lumped approximations to

the process kinetics, which are often capable of describing the process over a range of

process conditions, but are often subject to mismatch (Meraz et al., 2022). In these

cases, it is desirable to use black-box or hybrid machine learning approaches to cap-

ture what is not well described by the mechanistic approach (Bradley et al., 2022).

Supervised learning has also been used in data driven optimisation frameworks. The

general idea here is to build a surrogate model of the function one wants to optimise

or of an unknown constraint (van de Berg et al., 2022; Beykal et al., 2020). This may

help overcome complex or intractable model-based optimisation problems (Dias and

Ierapetritou, 2020). The construction of these models may utilise parametric and non-

parametric methods including, for example, artificial neural networks (LeCun et al.,

2015) and Gaussian processes (Williams and Rasmussen, 2006), respectively.

Where supervised learning is interested in identifying input-output mappings, un-

supervised learning is instead interested in identifying statistical relationships between

data points within a given space. Often these relationships are exploited to identify

lower dimensional1 representations of the original input data. Such representations

can then be used for analysis of the input data or in the creation of subsequent mod-

els. For example, principal component analysis (PCA) is commonly thought of as a

form of unsupervised learning. PCA has been used within the process industries for

statistical process analysis and monitoring (Nomikos and MacGregor, 1994), and also

1These are also known as latent representations.

33

within the context of reduced order modelling where one is interested in identifying

lower dimensional models of a dynamical system (Audouze et al., 2009). The main idea

for the use of PCA within process systems monitoring is that the data that processes

generate is generally highly dimensional with process variables of different orders and

variation. Hence by using PCA, one is able to project this information into a low

dimensional latent space, which a) preserves the information expressed in the original

data space, and b) enables analysis of the reduced data representations via visual in-

spection and statistical analysis (Jiang et al., 2019). For example, Hotelling’s T2 test

is often used to characterise whether or not the process is moving away from the on-

specification distribution of data and as a result whether or not there has been a shift

in dynamics or a fault (Thebelt et al., 2022). PCA is also highly interpretable given

that it is essentially a linear transformation of the original data. More recent work

has investigated the use of generative modelling and generative adversarial networks

to make predictions as to whether a process has shifted or there is a fault, directly in

the original data space (Qin and Zhao, 2022). This approach is likely to be an effective

alternative to PCA-based monitoring when the process data is non-Gaussian in the

reduced space. However, this comes generally at the price of model interpretability.

Reinforcement learning (RL) is the final subfield that we will discuss here. RL has

generated excitement within the public domain, particularly due to its achievements

in sequential decision making under uncertainty problems. As a subfield, it presents

an avenue to learn an optimal decision policy in a purely data-driven manner (Sut-

ton and Barto, 2018a). Furthermore, many RL algorithms promise to achieve this

independently of any explicit knowledge about the dynamics of the system, provided

one can gain observations of how the discrete-time system state responds to control

inputs. This is particularly promising for PSE, given that generally, we are unable

to identify perfect models of processes via finite-dimensional expressions and in many

cases this does limit current model-based solution methods. For example, Google

DeepMind recently demonstrated the development of the first super-human Go sys-

tem, known as AlphaGo Zero (Silver et al., 2017b). The game of Go has long been

designated as the perfect forum to demonstrate the potential of RL, primarily due to

its complexity. It has of the order of 10170 different discrete system states and over

360 discrete control inputs (Silver, 2009). The AlphaGo Zero system utilised a set

34

of RL methods, together with Monte Carlo tree search and simulation to identify an

approximately optimal parameterization2 of a decision policy. Importantly, this policy

acts conditional to the current state of the Go board, enabling the decisions to account

for realizations of uncertainty derived from the counter moves of the opposing player.

There are many instances of decision making under uncertainty within the process

industries. For example, as will be outlined in the subsequent section, the areas of

process control (Spielberg et al., 2019; Lawrence et al., 2022), online optimisation (Yoo

et al., 2021a; Oh et al., 2022), as well as online production scheduling (Hubbs et al.,

2020a; Zhang et al., 2020a) and supply chain management (Peng et al., 2019) are all

instances of sequential decision-making problems under uncertainty. As a result, the

potential impact of RL within the process industries is substantial and this has been

demonstrated in a number of preliminary investigations (Lee et al., 2018a; Yoo et al.,

2021a).

1.2 Decision-making in industrial process systems

Decision-making processes are present in almost all operations common to the process

industries. Conventionally, industrial decision-making is thought of according to a

hierarchical framework, known as a distributed control system (DCS). Modern DCS

have been developed in accordance with the international standards founded upon and

including ISA-95 (ISA, 2022) and are widely applied in predominantly continuous,

but also batch process systems. The decision-making levels outlined by the DCS

include enterprise resource planning (ERP), manufacturing execution systems (MES),

supervisory control and data acquisition (SCADA), programmable logic controllers3

(PLC), and field and process sensors.

All of the decision-levels mentioned generally deal with multi-stage or sequential

decision making problems, which necessitate interaction with the system of concern

at discrete instances in time. ERP is concerned with business level decisions that

primarily pertain to the planning interactions within the supply chain as well as man-

agement of risk, sales, governance, finances and human resources (Shehab et al., 2004).

2The implementation used an artificial neural network as a mapping from states to control inputs.
3PLC are solid state computers that execute the control system’s decisions based on observations

of the process.

35

Figure 1.1: The structure of industrial distributed control systems, which consists of
enterprise resource planning (ERP), manufacturing execution systems (MES), super-
visory control and data acquisition (SCADA), control and sensing structures.

Whereas, MES is focused on ensuring productive transformation of raw materials to

marketable products within and across plants (Saenz de Ugarte et al., 2009). From the

perspective of process systems engineering (PSE), ERP and MES can be jointly and

more coarsely thought of as those decision-making functions that dictate a business’

supply chain and production scheduling operations. Meanwhile, the latter levels of

SCADA, PLC and field and process sensors can be thought of as those systems, which

enact process control and online optimisation (Trentesaux, 2009). The respective levels

and their relations are expressed by Fig. 1.1.

As Fig. 1.1 details, there is heterogeneity between the timescales upon which

decisions are required at the respective levels. Typically, ERP decisions occur on the

scale of weeks to months; MES at days to weeks; and, milliseconds to hours across

the SCADA, PLC and field levels (Darby et al., 2011). There is also is a degree

of information flow between each layer. For example, in process control structures

measurements of the physical process inform PLCs to provide fast acting supervisory

control. Other information passed between layers may relate to, for example, process

economics (Grossmann, 2005), production targets (Maravelias and Sung, 2009) or

other physical parameters of the system (Uraikul et al., 2007).

Information flow is a key requirement for decision-making. From the perspective

of decision theory, the decision-making process is often thought of as the identification

of a function mapping from an observable variable to a decision variable. The most

advanced methods in PSE, achieve this mapping via numerical optimisation. Infor-

mation flow between decision-making layers can therefore either constitute the observ-

able variable or to inform the construction of the decision mapping itself. However, it

36

should be noted that decisions are not necessarily made immediately upon receipt of

new information. For example, the MES layer typically does not continuously update

production plans based on feedback from the plant. Determining when to compute

decisions, especially from higher level functions is a central theme in PSE research.

For example, identifying optimal, event-based production planning (Okpoti and Jeong,

2021), rescheduling (Gupta et al., 2016) and control policies (Åarzén, 1999; Aström,

2008; Liu et al., 2014) has been well explored to approach the ambiguity regarding the

frequency with which control decisions should be provided.

This decision theory interpretation discussed above also allows for many other PSE

problems (beyond those constituting the DCS) to be viewed as decision-making prob-

lems. For example, both mechanistic model structure and parameter identification,

as well as the manual tuning of controllers (as often assisted by an operator’s process

knowledge) are both decision-making problems. As we will see, the identification of

decision rules is central to the motivation of all of the research objectives presented in

this thesis.

In the following subsections, we will explore the high level ideas that constitute

real-time process control, online optimisation, production scheduling and supply chain

operations.

1.2.1 Process control and online optimisation

The enactment of process control is generally handled by the lower three levels of the

DCS outlined in Fig. 1.1. For continuous and batch process systems, these three lay-

ers are commonly constituted by real-time optimisation (RTO), model predictive con-

trol (MPC) and supervisory control structures such as proportional-integral-derivative

(PID) controllers4 (Darby et al., 2011).

A traditional RTO layer provides a mapping (i.e. a decision rule) from information

pertaining to process economics and plant variables to optimal process set points of

controlled variables. In order to do this, RTO leverages nonlinear programming by

incorporation of finite dimensional descriptions of the steady state plant, and con-

straints imposed upon it5. Optimisation algorithms can then be deployed to identify

4It should be noted that alternative structures are also used within the (bio)chemical process
industries.

5There are other forms of RTO, which are not discussed further here. We direct the interested

37

a decision variable that satisfies the Karush-Kuhn-Tucker (KKT) conditions under

an economic objective (Darby et al., 2011). Such an objective may correspond to

plant operational cost, an appropriate minimiser of which is widely known as a KKT

point. After identification by the RTO layer, the KKT point is fed to a regulatory

control structure. This is typically either an MPC module combined with lower level

PID control or simply PID control. Both MPC and PID modules track the optimal

process operating conditions online, and react to uncertain process dynamics on the

basis of state feedback (Rawlings et al., 2017). Similar to RTO, MPC represents a

decision rule as expressed by a nonlinear programming model, however it makes use

of a finite dimensional description of system dynamics and a tracking objective. If an

MPC scheme is not implemented, typically lower level regulatory control is instead

enacted by a PID controller that identifies control actions to meet the new set point.

The identified regulatory control is then implemented through field instrumentation,

e.g. a valve actuator. Once the plant has reached a new steady state or a batch

has terminated6, plant measurements together with renewed process economics are

used to update the decision mapping of the RTO layer (Krishnamoorthy and Sko-

gestad, 2022). The manner in which these measurements are used to update RTO

decisions is an active area of research (Chachuat et al., 2009; Marchetti et al., 2016;

del Rio Chanona et al., 2021), discussion of which is beyond the scope of this thesis -

please see Krishnamoorthy and Skogestad (2022) for more information. However, the

effective utilisation of plant state feedback is certainly a common feature with MPC.

The shared conceptual ground between RTO and MPC has led to the development

of an alternative online optimisation framework known as economic MPC (EMPC)

(Ellis et al., 2014). EMPC attempts to directly optimise an ongoing process online

to maximize an economic objective via the use of state feedback. This enables one

to merge RTO and MPC layers by identifying process set points and conducting pre-

dictive control within one decision layer. This has been well detailed in Ellis et al.

(2014) and examples within the batch processing paradigm have been provided by

Markana et al. (2018); Bradford et al. (2021a); Kim et al. (2022). Major efforts within

reader to (Krishnamoorthy and Skogestad, 2022)
6The conditions used to trigger a new RTO iteration detailed here correspond to continuous and

batch processing, respectively. In the case of batch processing, RTO is often viewed as ‘batch to
batch optimisation’.

38

Figure 1.2: The structure of established frameworks for real-time control and op-
timisation of industrial process systems. A) The traditional real-time optimisation
frameworks, and B) the more recently proposed economic model predictive control
framework. The arrows with dashed lines indicate vertical integration with higher
planning and scheduling functions.

EMPC research have been directed towards providing control-type stability and per-

formance guarantees given certain assumptions on the underlying process dynamics

and uncertainties. However, the major practical benefit of the EMPC approach is

that it can account for potentially time-varying process economics and utilise process

state feedback7 within one mathematical programming model. This is something RTO

hierarchies based on static process optimisation fail to achieve directly.

Once one has identified optimizing control inputs via the EMPC decision layer,

the relevant information is fed to field and control instrumentation associated with

a process. The structural interactions of the two real-time optimisation and control

frameworks outlined within this section are detailed by Fig. 1.2.

1.2.2 Production scheduling and supply chain operations

Production scheduling and supply chain decision making problems constitute much

of the upper two levels of the DCS (ERP and MES). These problems can be more

broadly separated as long-term strategic planning; medium term tactical production

7Informally, state feedback is a beneficial mechanism because it contains often un-modelled in-
formation regarding realizations of process uncertainty and disturbance. This allows one to identify
control decisions according to existing process knowledge and new information descriptive of process
uncertainties.

39

planning; and, short term scheduling operations (Maravelias and Sung, 2009).

Generally, strategic operations are focused on determining the best operational

structure for a supply chain. Such a problem may consider the placement of new

production and transportation infrastructure based on that which is already existing,

geographical locations of raw materials, permits to access these raw materials, and

forecasts of costs and revenues that could be observed for a given supply chain design

(Cafaro and Grossmann, 2014). These decision problems are typically constructed

on a timescale of years, and ‘solved’ within an offline decision-making paradigm (i.e.

without chance for recourse decisions to be made). This problem class is generally

constituted by mixed integer programs (MIPs).

Whereas more medium term supply chain operations consider the tactical assign-

ment of production targets to facilities or stages within an existing supply chain infras-

tructure. For example, in the case of an oil and gas supply chain, allocation decisions

about production rates from a particular field may be informed by medium-term fore-

casts of oil and gas prices, the implied depletion rates of the respective fields and

the capacity of the available transportation networks (Attia et al., 2019). Clearly, the

structure of the supply chain ultimately provides a constraint for the tactical planning,

which is why strategic planning is essential. Further, coordination between each of the

production nodes within the supply chain is absolutely required to ensure the supply

chain can satisfy demand. If this is not achieved, phenomenon such as the bullwhip

effect can often be observed (Forrester, 1997). Such a phenomena describes ‘demand

amplification’ within the supply chain, where initial small imbalances or changes in

supply and demand down the chain, propagate through its constituent stages, such

that large imbalances are observed further up the chain (Wang and Disney, 2016).

These decisions generally occur on a timescale of weeks to months, with mathematical

programming approaches typically in the form of linear programs (LPs) or MIPs that

utilise nominal point values for model parameters.

The shortest term planning functions observed within the process industries are

production scheduling operations. The decisions identified assign production tasks to

equipment items, as well as determine the sequencing and sizing of those tasks within

the equipment. There are many different classifications of production scheduling prob-

lems, which ultimately reflects the heterogeneity in industrial production environments

40

(Harjunkoski et al., 2014). As a result, there exists a diversity of modelling and solu-

tion approaches. Furthermore, decision-making may be set within an online or offline

paradigm. The existence of the online decision-making paradigm again reflects the

presence of uncertainty, not only within plant dynamics (e.g. task processing times)

but also variations in immediate product demand. Due to the timescale required for

decisions in these problems, solution approaches in online production scheduling often

involve the use of heuristic rules and occasionally the operational knowledge of plant

staff (Letsios et al., 2021). This is primarily because the mathematical programming

models descriptive of production scheduling problems take the form of mixed integer

linear programs (MILP), which can often be characterized by large solution times. As

will be discussed in the following chapters, there is large interest in the development of

various frameworks that reduce the computational burden of online scheduling (Hubbs

et al., 2020a).

In the following section, the motivation and objectives of the thesis are defined.

The thesis contributions and structure are then outlined subsequently.

1.3 Motivation and objectives

In the previous sections, we discussed the fundamental sequential decision making

problems common to PSE, the most applied solution approaches and the basics of

modern machine learning. It is clear that modern solution methods based on math-

ematical programming ultimately require finite dimensional descriptions of uncertain

process models. In reality, when we have uncertain variables influencing the system

dynamics, that are described either by continuous or large discrete supports these

problems at best become very large or become infinite dimensional. This means that

typical model-based approaches are either required to make considerable approxima-

tion to the uncertain dynamics via stochastic programming, to handle the uncertainty

robustly or to neglect the uncertainty altogether and utilise a nominal description of

the uncertain parameters. Furthermore, computing a control decision online via opti-

misation has disadvantage in that either a) a control may not be identified in the time

frame required due to the size or nature of the problem at hand, b) there is potential

for the optimisation solver to fail, based on infeasibility in the underlying approximate

41

model, and c) the development and maintenance of advanced optimisation schemes

can often be expensive both in cost and technical expertise (Gopaluni et al., 2020).

In this thesis, we will look to explore the application and development of ML frame-

work, with particular focus on RL, for application to a variety of PSE problems. RL has

the potential to handle the three points mentioned above regarding exact mathemat-

ical programming because: a) it can identify optimal policy function approximations

within a feedback control framework independently of explicit assumptions as to the

form or propagation of uncertainty over the time horizon, this is explored in Chapter 2

and has some theoretical benefits in terms of optimality; b) because decisions are iden-

tified through predictions of a policy function, a control will always be identified and

in a time frame orders of magnitude shorter than common optimisation formulations;

and c) RL is based on intuitive model-free and data-driven update rules, which has

the potential to automate controller tuning and remove the requirements for expertise

heavy periodic recalibration. Additionally, the use of model-free update rules means

that RL does not make approximation to the uncertain system, but rather requires

samples from it. Typically, this means if there is enough data, the RL will not have to

make approximation to the system or model uncertainty. Clearly, real-world data is

expensive, but synthetic data could instead be gained from simulation of an uncertain

process model. This is discussed more extensively in Chapter 2.

However, there are some outstanding research challenges associated with the use

of RL. The first is the efficiency of RL policy learning. Generally, RL requires many

learning (optimisation) iterations to identify an approximately optimal control policy.

In this thesis, we will look to improve the efficiency of the policy learning process.

Specifically in Chapter 3, we explore how to best use process knowledge expressed

in process data from the action of existing control schemes and process operators

in order to hot-start the RL process. Then, in Chapter 6, we demonstrate that in

instances where the policy function approximation has a relatively small parameter

space, metaheuristic and stochastic search optimisation methods provide improved

efficiency in policy identification over well established RL methods such as the policy

gradient.

The other areas of research focus in RL considered in this thesis include a) handling

state and control constraints, and b) improving policy robustness. These two areas

42

are of interest to this work, because a) typical RL policy learning methods have no

inherent means of satisfying state constraints; and b) typically, one optimises for the

expected performance of an RL decision policy. Given that there will be a distribution

of policy performances due to the uncertain nature of the underlying process, it is

important to consider other risk-sensitive formulations. This is again explored in two

chapters of this thesis. In Chapter 4, we explore handling state constraints within fed-

batch process systems and in Chapter 5, we demonstrate a methodology for identifying

risk-sensitive policies as well as handling common input constraints present in online

production scheduling problems.

Further details of the research contributions follows.

1.4 Research contributions and thesis structure

The work is presented via the Journal format with permission from the supervisory

team associated with the project. Chapter 1 and 2 provide introduction to the thesis,

and background and literature review on the identification of decision rules within

the process industries, respectively. The research conducted throughout the course of

the period spanning from September 2019 to July 2022 is then summarised by four

distinct chapters (3-6). High level description of these works is provided subsequently.

Finally, the thesis is brought to a close in Chapter 7 with presentation of conclusions

and directions for future work.

1.4.1 Chapter 3 - Research Objective 1

In Chapter 3, a novel research contribution on the abstraction of operational knowl-

edge in process control is presented. In this work, we assume the availability of data

pertaining to the enactment of a control task (e.g. a set point change) from an ex-

isting control scheme. Specifically, this data set is assumed to be constituted by

measurements of the system state and control inputs at discrete instances in time. We

propose an operational framework to extract the knowledge of that control scheme

into a function parameterization of the control policy expressed within the data, and

then to improve it further. This is enabled by two data driven methodologies known

43

separately as inverse RL (IRL) and RL. IRL is used to synchronously extract the con-

trol objectives guiding the action of the existing control scheme and identify a policy

function parameterization of it. RL is then utilised to improve the policy function

parameterization (i.e. the decision rule expressed by the existing scheme) further by

learning on the real process system.

This research item is published in the American Institute of Chemical Engineers

(AIChE) Journal, and is accessible via the following reference:

Mowbray, M., Smith, R., Del Rio-Chanona, E.A. and Zhang, D., 2021. Using pro-

cess data to generate an optimal control policy via apprenticeship and reinforcement

learning. AIChE Journal, 67(9), p.e17306.

1.4.2 Chapter 4 - Research Objective 2

Chapter 4 presents a novel research contribution on the development of a completely

data-driven offline framework for the identification of a safe RL policy for online opti-

misation of constrained fed-batch process systems. The work utilises the uncertainty

prediction from simulation of an offline Gaussian process state space model to syn-

chronously identify a constraint tightening mechanism for state path constraints and

handle process-model mismatch. This enables the learning of a safe RL policy of-

fline, which is then deployed to optimise the real process online. The benefits of

this approach are evaluated against a nonlinear model predictive control scheme in

a computational study descriptive of an uncertain, fed-batch lutein photo-production

process. This contribution is aimed at a) handling the lack of explicit mechanism

to consider state constraints with RL and b) the uncertainty associated with model

construction for bioprocess systems where little mechanistic knowledge exists.

This research item is published in the Computers & Chemical Engineering (CACE)

Journal, and is accessible via the following reference:

Mowbray, M., Petsagkourakis, P., del Rio-Chanona, E.A. and Zhang, D., 2022.

Safe chance constrained reinforcement learning for batch process control. Computers

& Chemical Engineering, 157, p.107630.

44

1.4.3 Chapter 5 - Research Objective 3

In Chapter 5, a novel research contribution on the identification of an online scheduling

policy is provided. In this work a parallel, sequential chemical production environment

is assumed to be completely reactive to the decisions of the scheduling policy function.

Uncertainty is present in the unit specific processing times of each of the production

tasks as well as the due dates for shipping of the products to clients. We assume

that this problem can be modelled as a Markov decision process and a novel stochastic

search based RL methodology is proposed. The approach relies on the implementation

of an additional logic based mechanism to ensure that control selection satisfies both

disjunctive and precedence constraints, which are common restrictions on production

scheduling problems. The benefits of this approach is that the resultant policy explic-

itly accounts for plant uncertainties in online decision making, and provides scheduling

decisions via inference (orders of magnitude faster than the most efficient MIP mod-

els). Further, the framework enables the incentivisation of risk-sensitive measures,

such as the conditional value-at-risk, in offline policy identification. This enables the

identification of a scheduling policy, which is risk averse, something which is appealing

in industrial practice.

This research item has been submitted to the American Institute of Chemical

Engineers (AIChE) Journal. A revised version has been submitted for final decision.

The paper is accessible on arXiv via the following reference:

Mowbray, M., Zhang, D. and Chanona, E.A.D.R., 2022. Distributional Rein-

forcement Learning for Scheduling of Chemical Production Processes. arXiv preprint

arXiv:2203.00636.

1.4.4 Chapter 6 - Research Objective 4

In Chapter 6, a novel research contribution on the identification of a tactical planning

policy for supply chain management is presented. In this work a multi-echelon supply

chain inventory management problem is considered. A stochastic search based RL

methodology is proposed to ensure coordination between the re-order policies of the

constituent stages within the chain. This is in view of the potential for realization

45

of various phenomena such as the bullwhip effect if a sufficient amount of coordina-

tion is not achieved. Again, the framework enables the incentivisation of risk-sensitive

measures, such as the conditional value-at-risk, in offline policy identification. This

is highly desirable in industrial practice. The approach is benchmarked to a state of

the art policy gradient method as well as mathematical programming. The method

demonstrates improved sample efficiency over policy gradient methods and demon-

strates the ability to pose risk-sensitive formulations, something which is generally not

considered in mathematical programming approaches.

This research item has been submitted to the Industrial Engineering and Chemistry

Research (IECR) Journal:

Wu, G., de Carvalho Servia, M. A., Petsagkourakis, P., Zhang, D., Del Rio Chanona,

E.A., Mowbray, M., 2022. Distributional reinforcement learning for inventory man-

agement in multi-echelon supply chains, Submitted to Journal, 2022:

The paper was produced through supervision of a student (Guoquan Wu) who in-

terned with the research group after completing his MSc at the Department of Chemi-

cal Engineering, Imperial College London. Max Mowbray is the corresponding author

of this paper and responsible for the original draft.

46

Chapter 2

Background and Literature Review

In the following, common approaches to the identification of decision rules in the pro-

cess industries will be outlined. Specific attention will be directed towards sequential

decision-making under uncertainty problems. Major discussion will be directed to-

wards methods, collectively classified as Reinforcement Learning (RL). RL is a major

topic within this thesis, and has strong potential to provide solution to the class of

problems of interest. As a result the basic theory and its application direct much of

this Chapter.

2.1 Identification of decision rules

Currently, the most advanced and utilised approach to the identification of decision

rules at all levels of the distributed control systems hierarchy is encompassed by mathe-

matical programming. In the domain of process control and optimisation, for example

economic model predictive control (EMPC) is typically reduced to iteratively solv-

ing a nonlinear programming problem (Nocedal and Wright, 2006; Bazaraa et al.,

2013; Rawlings et al., 2017) at discrete instances through time. Similarly, supply

chain planning and management operations, as well as production scheduling, typi-

cally utilise (mixed integer) linear programs (Papageorgiou et al., 2007; Lodi, 2010;

Vanderbei et al., 2020; Maravelias, 2021a). The current state-of-the-art provided by

mathematical programming approaches is based on a long history of development and

application. However, its application to problems characterised by uncertainty, and

either non-smoothness or nonlinearity in the underlying system can be challenging.

47

In this section, we explore the potential applications of Reinforcement Learning (RL)

and the basic theory associated. As will be outlined through the course of this section,

RL has large potential for its ability to identify decision rules in a purely data-driven

manner. This enables the decision rule to flexibly account for uncertainty in general

discrete-time dynamics. However, its practical application, and hence algorithmic de-

velopment, is still in relative infancy. Discussion will also explore methodologies that

can be used to extract existing decision rules from existing industrial datasets. More

immediately, however, the attention of the review explores the construction of general

sequential decision making problems observed within the process industries.

2.1.1 Sequential decision making problems and uncertainty

Sequential decision making problems arise frequently in the process industries. Unlike

single-stage decision making problems, such as model parameter estimation, sequen-

tial decision making problems are concerned with identifying multiple decisions that

optimise an ongoing process through time (Bertsekas et al., 1995; Sutton and Barto,

2018b). Almost all of the decision problems that constitute the hierarchical decision

structure are sequential in nature. For example, in production scheduling, one is con-

cerned with allocating production tasks to available equipment items at discrete time

points over a given time horizon in order to satisfy e.g. production demand. Similarly,

at the level of process control and online optimisation, regulatory control structures

and EMPC schemes identify control inputs to a system through time to minimise an

operational objective. The identification of a globally minimising sequence of decisions

for a given problem in the process industries is obviously desirable, given the societal

requirement for efficient, productive and sustainable industrial operations (Grossmann

et al., 2016).We can state a general sequential decision making problem, over a finite

horizon, as follows:

48

u∗
τ = arg min

uτ

G0

s.t. x0 = x(0)

xt+1 = fr(xt,ut, ·)

ut ∈ Û(xt)

xt ∈ Xt

∀t ∈ {0, . . . , T − 1}

(2.1)

where x ∈ X ⊆ Rnx are the true system states; u ∈ U ⊆ Rnu are control decisions

identified by the decision rule; t represents the discrete time index within the control

horizon (of length T); uτ = (u0, . . . ,uT−1) is the sequence of controls identified over

the control horizon; G0 =
∑T−1

t=0 γ
tφ(xt,ut,xt+1) is the discounted sum of objective

costs as provided by a cost function, φ : X × U × X → R, accrued over the discrete

time horizon from the initial system state, x0; with γ = (0, 1] representing a discount

factor1; Xt ⊆ X and Û(x) ⊆ U represent constraint sets on the system states and

control decisions, respectively; and, fr(x,u, ·) represents the real process dynamics,

as indicated by the subscript, which one could conceptualise to be a function of the

current system state, x, control, u, and potentially further unknown variables.

It is clear that if appropriate assumptions are made regarding the form of the cost

function, real process dynamics, and constraint sets, a mathematical program can be

recovered and then a decision making problem may then be solved. Assumptions as

to the form of cost function, and the control and state constraint sets, are generally

well informed by the objective of operations, restrictions on control decisions2, and

operational constraints3. These are all objects that are typically known a priori to the

identification of operational decisions. However, the identification of the real process

dynamics, fr, is generally not tractable. Instead approximations are made through

the identification of process systems models (Pan et al., 2022).

The construction of systems models proceeds on the basis of identification of an

1The use of a discount factor can be thought of as a weighting that places greater importance on
costs accrued earlier in the horizon, or equivalently a net present value interpretation of future costs.

2Such restriction could be derived from upper bounds on value actuation, or plant production
in control tasks and tactical supply chain planning, respectively. This description also extends to
precedence constraints in production scheduling problems.

3Operational constraints may be derived from e.g. safe limits on the operating temperature for a
reactor or the requirements of downstream equipment items in (bio)chemical processing

49

appropriate model structure. A model structure may be defined through applications

of first principles reasoning, and for example in reactions systems via the identification

of kinetic mechanisms (Bradley et al., 2022). Alternatively, one could utilise a black-

box, data-driven approach where instead highly flexible model classes are utilised to

approximate complex functions (Thebelt et al., 2022). Hybrid approaches also exist

that combine the advantages of first principles and data-driven modelling (Von Stosch

et al., 2014). Once a model structure has been identified, statistical estimation pro-

cedures may be deployed to identify the associated model parameters that are not

available via process knowledge.

However, whichever modelling paradigm one exploits, the exercise itself is simply

an effort to identify an approximation to the complexity of the underlying reality.

Therefore, the model construction procedure is subject to various uncertainties, which

reflect a) the lack of information available to characterize the system, and b) the

natural variance of the underlying data generating process. More formally, this is

known as epistemic and aleatoric uncertainty, respectively (Mukhoti et al., 2021).

In view of the presence of these uncertainties, general approximations to the true

dynamics can be defined in state space form as follows:

fr(x,u, ·) ≈ f(x,u, s) (2.2)

where f : Rnx ×Rnu ×Rns → Rnx is the approximate process model4; and, s ∈ S ⊆

Rns denote general model uncertainties, which may be estimated by the modeller5.

For example, S could describe the support of a distribution over uncertain parameters

(Stuart, 2010) (see Fig. 2.1a)), or simply a set of possible parameter values that could

be observed with some confidence (Oden, 2018; Arridge et al., 2019) (see Fig. 2.1b)).

The identification of an uncertain process model implies that the discrete time process

evolution is probabilistic. For any given state and control decision pair, (xt,ut), the

model will describe a distribution over next states via a conditional probability density

function (cpdf), Xt+1 ∼ p(xt+1|xt,ut), such that the state at a given time index is

indeed a random variable. This also assumes that the evolution of the uncertain state

is dependent only on the current state-control pair, a characteristic widely known as

4This discrete-time mapping could be identified through integration of continuous-time models or
by constructing this mapping explicitly

5Model uncertainties could be descriptive of parametric uncertainty or terms descriptive of general
disturbance

50

Figure 2.1: Parameter estimates generated via a) Frequentist practice and b) Bayesian
estimation.

the Markov property. This is expressed by Fig. 2.2.

Figure 2.2: The single-stage scenario tree associated with a given state-control pair and
the associated probability masses of observing each scenario according to an uncertain
process model. Here the model represents a discrete conditional probability mass
function, exhibiting the Markov property.

As a consequence of uncertain state evolution, the performance of the decision-

maker, i.e. the objective cost from the initial state, G0, is a random variable distributed

according to some probability density function and dependent on the sequence of de-

cisions input to the system. If the process model is required for sequential decision

making, this typically necessitates the decision-maker to optimise for various measures

of the cost distribution. Generally, these measures are chosen based on the risk ex-

posure tolerated by the process operation. See Rockafellar et al. (2000) for further

discussion on risk-sensitive measures. A common objective for optimisation, given an

initial state, is the expected performance (also known as the cost), E
[
G0|X0 = x0

]
.

51

This enables redefinition of Eq. 2.1 as follows:

P(uτ) :=

min
uτ

E
[
G0|X0 = x0

]
s.t.

x0 = x(0)

xt+1 = f(xt,ut, st), ∀st ∈ S

ut ∈ Û(xt)

xt ∈ Xt

∀t ∈ {0, ..., T − 1}

(2.3)

In the context of mathematical programming, the field of stochastic optimisation

provides many solution approaches to this dynamic optimisation problem. However,

implementation of such an ‘open loop’ decision strategy, as expressed by Eq. 2.3, is

sub-optimal. Given that we have a finite sequence of decisions to optimise the uncertain

system at hand, it is important to introduce a necessary and sufficient condition for

the optimality of the decisions made along the horizon. This condition is essentially

contextualised by the The Principle of Optimality, which was developed by Richard

Bellman (Bellman and Lee, 1984).

The general statement of the principle is provided as follows, which applies specifi-

cally to those systems without state constraints imposed: given an uncertain sequential

decision making problem with the Markov property; the optimal sequence of decisions

is made by a policy, π∗ : X → U, which provides a decision rule and a mapping to

controls, ut, conditional to the realization of state, xt. Specifically, the optimal policy,

π∗, minimises the expected cost from a given state (Sniedovich, 1978). The cost for

an arbitrary policy π, in a given state is defined:

Eπ
[
Gt|Xt = xt] = Eπ

[
φ
(
xt, π(xt),xt+1

)
+

T−1∑
i=t+1

γi−tφ
(
xi, π(xi),xi+1

)
| Xt = xt

]
(2.4a)

= Eπ
[
φ(xt, π(xt),xt+1) + γGt+1 | Xt = xt

]
(2.4b)

where φ : X×U×X → R defines the stage cost and γ = (0, 1] is the discount factor as

before in Eq. 2.1. From analysis of this statement, the optimal sequence of decisions

52

Figure 2.3: Intuition behind the recursive definition of the state value function as
defined by Eq. 2.5. Here, we have one state variable, only one control action available
and deterministic dynamics. The stage cost is defined as φt+1, for conciseness.

is identified via a closed-loop decision making process6 (i.e. a policy). We can work

from this principle to provide a condition to certify the optimality of the policy via

definition of the Bellman equation:

Vπ(xt) = Eπ
[
Gt | Xt = xt

]
(2.5a)

Vπ(xt) = Eπ
[
φ(xt, π(xt),xt+1) + γVπ(xt+1) | Xt = xt

]
, ∀xt ∈ X (2.5b)

where Vπ : X → R defines the state value function, which provides a recursive defini-

tion of the expected cost of a policy, π, from a given state. For example, Eq. 2.5b, is

composed of the expected immediate stage cost from the current state (i.e. the first

term within the expectation), and the discounted expected state value at the next

time index (i.e. the second term within the expectation). This means the cost of the

decisions taken immediately are dependent not only the realisations of uncertainty but

also the decisions taken at future time indices. A derivation is provided in Appendix

A.1 for clarity and further intuition is provided by Fig. 2.3.

Although, the Bellman equation is able to recursively define the cost of a policy,

it does not quantify whether the policy is optimal. However, from the principle of

optimality we know that the optimal policy satisfies the following:

π∗ = arg min
π∈Π

Vπ(xt) (2.6)

6Note that feedback control policies are a rich class of decision making functions, which also
contains the decision rules described by open-loop control sequences (Bertsekas, 2012).

53

where Π is the set of policies that satisfy control input constraints. Given that we

have stated π as a deterministic function of the state, x, one can equivalently define

the Bellman optimality equation, which certifies the optimality of a policy:

Vπ∗(xt) = Eπ∗

[
φ(xt, π

∗(xt),xt+1) + γVπ∗(xt+1) | Xt = xt

]
(2.7a)

= min
ut∈Û(xt)

Eπ∗

[
φ(xt,ut,xt+1) + γVπ∗(xt+1) | Xt = xt

]
(2.7b)

Eq. 2.7a is simply a definition of Eq. 2.5 under the optimal policy and Eq. 2.7b is

the direct result of applying the principle of optimality (i.e. Eq. 2.6) to the Bellman

equation (i.e. Eq. 2.5). It is worth highlighting that both Eqs 2.7a and 2.7b are

equivalent definitions of the Bellman optimality equation and define the state value

function for the optimal policy. There are two further things to draw attention to here.

Firstly, Eq. 2.7b suggests one can handle control constraints directly by selecting those

controls, which satisfy the constraint set for a given state (Puterman, 2014a). Secondly,

by applying the minimum operator over the immediate controls to the optimal state

value function, one does not alter the value of the function itself (Bertsekas, 2022).

This is highlighted by the equivalence of the two expressions on the right-hand side

of Eqs. 2.7a and 2.7b. This is significant because it: a) it indicates the optimal

state value function, Vπ∗(x), is a fixed point7 of Eq. 2.7b; and b) specifies that the

optimal policy greedily minimises the state value function at each decision interaction.

The observations a) and b) are the basis for various algorithms, which fall under

the umbrella of dynamic programming (DP), which aim to identify the optimal state

value function. These methods shall be discussed in more detail in Section 2.1.2 and

at length in Appendix A.2.

Leveraging Eq. 2.6, and provided state constraint sets are also imposed, then

instead of identifying open loop controls as in Eq. 2.3, one can attempt to solve the

stochastic optimal control problem (SOCP):

7The fixed point, z∗ of a function, H(z), is defined such that z∗ = H(z∗). The identification of
fixed points is common to numerical optimisation too. For example, in unconstrained optimisation
of a continuous objective function, a minimising decision variable, is the fixed point of a Newton-
Raphson scheme (i.e. H(z)). The difference here is that optimal state value function is the fixed
point of Eq. 2.7b (i.e. H(z)).

54

P(π) :=

min
π
Vπ(X0 = x0)

s.t.

x0 = x(0)

Xt+1 ∼ p(xt+1|xt,ut)

ut = π(xt)

ut ∈ Û(xt)

xt ∈ Xt

∀t ∈ {0, ..., T − 1}

(2.8)

Provided that the state and control space is discrete, finite and small, and one

has closed form expressions for probabilistic, discrete time dynamics, then an optimal

policy for Eq. 2.8 may be identified via exact DP (Sniedovich, 1978). Significantly,

although not explicitly considered by the principle of optimality, DP can handle state

constraints by allocating infinite cost to those states, which incur violation8 (Sund-

ström et al., 2010). Due to the recursive definition of value provided by Eq. 2.5,

infinite cost then characterises all of those policies that violate (Bertsekas, 1971). Fur-

ther discussion in this vein is provided by Bertsekas (2005). However, DP becomes

computationally infeasible as the state and control spaces become large or contin-

uous,9, and generally probabilistic process dynamics are not known in closed form.

These are both characteristics common to process systems engineering applications,

which ultimately provides a barrier to solving Eq. 2.8 exactly via the use of DP for

general systems of concern to this work. As a result, few works have explored the use

of exact DP within PSE within the last 20 years, although approximate DP schemes

have been investigated instead (Luus, 1993; Zhao and Mi, 2021).

There has also been significant development of approximate policy identification

schemes via mathematical programming, including but not limited to stochastic, ro-

bust and chance constrained online schemes (Heirung et al., 2018; Mesbah, 2016; Ben-

Tal et al., 2009; Mayne, 2016). For example, in online optimisation of nonlinear batch

8This allocation is known to artificially reduce the feasible region of the problem and a number of
methods have been developed to consider this. The conventional approach is to allocate a sufficiently
large cost instead (Sundström et al., 2010).

9This is widely known as the curse of dimensionality, as coined by Bellman (Bellman, 1956). In
fact, when the state becomes continuous this problem is a function space optimisation problem, which
is infinite dimensional and cannot be solved exactly via mathematical programming either.

55

production processes, model predictive control re-solves NLP to identify ut = π(xt)

upon observation of a new state, xt (Rawlings et al., 2017). Alternatively, in online

production scheduling, MILP schemes are often used due to the non-smoothness of the

underlying model (McAllister et al., 2022). All of these methods are adept at handling

both continuous and discrete control and state spaces, as well as state, control and

dynamics constraints. However, they are often required to make approximations to the

model uncertainties because mathematical programming ultimately relies upon a finite

dimensional description of the uncertain system (Li and Floudas, 2016; Holtorf et al.,

2019). These approximations can be significant if the discrete-time system dynamics

are nonlinear functions of the current state and control. These existing methods are

discussed further in Section 2.2 and 2.3.

Recently, a set of methods known as Reinforcement Learning (RL) have been

demonstrated as an attractive approach to identifying optimal policies for sequential

decision making problems. This directs attention in the next section.

2.1.2 Reinforcement Learning

We will first provide an overview to the main frameworks for RL algorithms, before

discussing their implementation and application within process systems engineering

more thoroughly.

An overview of Reinforcement Learning

The field of RL is host to a wide diversity of ideas and concepts, however, more widely

these concepts can be thought of as heuristic, data-driven stochastic optimisation al-

gorithms. There are three major subfields - direct and indirect model-free methods

and model-based RL methods. It is worth differentiating our interest as specifically

directed to model-free RL, primarily because model-based RL shares significant simi-

larities to model predictive control (Kim et al., 2021b). Hence from here, reference to

RL will indicate model-free RL methods.

Both direct and indirect approaches are comprised by three key components: model-

free learning rules, simulation and function approximation. These elements shall be

explored in more depth in the following sections, however, direct and indirect methods

differ in their learning rules and in what objects they identify function approximation

56

Figure 2.4: The Markov decision process framework. A description of the stochastic
optimal control problem without state constraints.

to. In direct approaches, RL attempts to identify a policy function approximation, i.e.

π(x) ≈ π(x; θ), where θ ∈ Rnθ are function parameters, that minimises the state value

function (Eq. 2.6) (Schulman et al., 2017b). Whereas indirect methods aim to identify

a policy by parameterising the state value function, Vπ(x) ≈ Vπ(x; θ) and solving the

necessary and sufficient condition provided by the Bellman optimality equation (i.e.

Eq. 2.7). Optimal decisions may be identified thereafter by greedily minimising the

optimal state value function approximation. Indirect methods achieve this by using

model-free learning rules closely related to DP (Bertsekas, 2022). Further differences

between these two RL approaches will be made clearer in discussion provided later in

this section, however, we can characterize both approaches as providing solution to a

problem known as a Markov decision process (MDP). The MDP is a formal description

of Eq. 2.8, but defined without state constraints (Chang et al., 2007). Please see A.3

for formalisation of MDPs and Fig. 2.4 for intuition.

Indirect and Direct Reinforcement Learning

In this section, we will first provide background on ideas common to DP. This will

provide foundation to discuss indirect RL methods and their application.

The main idea of DP is to iteratively identify a better policy, πk+1, given the

current policy, πk, such that:

Vπk+1(x) ≤ Vπk(x), ∀x ∈ X

with equality achieved when the Bellman optimality equation is satisfied (i.e. Eq.

2.7a). In DP, we do not a priori know the optimal value function, but we do have

knowledge of the conditional probability mass functions descriptive of the discrete-time

57

probabilistic dynamics, some randomly initialized policy, as well as the cost function.

With this knowledge, identification of the optimal state value function, Vπ∗ , occurs

through recursive application of a policy evaluation step, known as the Bellman op-

erator, Tπ(·) and then a policy improvement step, defined by the Bellman optimality

operator, Tπ∗(·).

Before providing further detail of these two operations, we first introduce the state-

action value function, Qπ : X× U → R. Under the assumption of a stochastic policy,

π(u | x), which is a conditional probability density function over controls, the state-

action value function, Qπ, is related to the state value function, Vπ, as follows:

Vπ(xt) =
∑

ut∈Û(xt)

π(ut | xt)Eπ
[
φ(xt,ut,xt+1) + γVπ(xt+1) | Xt = xt, Ut = ut

]
(2.9a)

Vπ(xt) =
∑

ut∈Û(xt)

π(ut | xt)Qπ(xt,ut) (2.9b)

Analysis of Eqs. 2.9a and 2.9b enables us to define the state-action value function,

Qπ, as the expected cost of choosing a control, u, in state, x, and then following the

policy, π, thereafter. The motivation for definition in terms of a stochastic policy

will be made clearer in the following; however the use of stochastic policies is a key

concept in RL and it is a general way to think about decision making given that

a deterministic policy can also be described by e.g. placing all probability density

on one control. The definition of Qπ is particularly useful in the context of control

because it provides a ranking over the quality of controls in a given state. This is

reinforced by making a connection between the state-action value function and the

Bellman optimality equation (see Eq. 2.7b):

Vπ∗(x) = min
u∈Û(x)

Qπ∗(x,u) (2.10)

which defines that the optimal policy chooses the control, which greedily minimises

the state-action value function, Qπ, in each state. Due to the utility of the state-action

value function, estimated values are initialised in memory for each state and control

and then DP proceeds by applying the policy evaluation and policy improvement steps

to identify the optimal state value function (i.e Eq. 2.10).

It follows that the Bellman operator, Tπ(·), and Bellman optimality operators,

58

Tπ∗(·), are defined via Eq. 2.11a and Eq. 2.11b, respectively:

Tπ(Qπ(xt,ut)) = Eπ
[
φ(xt,ut,xt+1) + γVπ(xt+1) | Xt = xt, Ut = ut

]
, (2.11a)

Tπ∗(Qπ(xt,ut)) = min
ut∈Û(xt)

Qπ(xt,ut) (2.11b)

The intuition behind these operators is that the evaluation of Eq. 2.11a improves

the state-action value function estimates, Qπ, of the current policy (i.e. provides

policy evaluation). Whereas Eq. 2.11b improves the optimality of the state-action

value function, and is equivalent to selecting the control that greedily minimises the

state-action value function (i.e. it provides policy improvement).

For the sake of conciseness, formalisation of two specific DP algorithms, known as

value iteration and policy iteration, as well as the technical details of the operators

defined in Eq. 2.11a and 2.11b is provided in Appendix A.2. However, in parallel

to continuous optimisation methods that take Newton steps on a KKT system; the

application of the Bellman operator, Tπ(·) (Eq. 2.11a), and then subsequently applying

the Bellman optimality operator, Tπ∗(·) (Eq. 2.11b), to all states and controls within

the respective sets, can be thought of as taking a newton step on the current state-

action value function estimate, Qπ, in order to identify the optimal state-action value

function, Q∗
π (Grand-Clément, 2021; Bertsekas, 2022). By iterating through policy

evaluation and policy improvement operations, DP methods start from some initial

sub-optimal estimate, Qπ, to converge towards the optimal state-action value function,

Qπ∗(x,u). This intuition is reinforced by Fig. 2.5a) and 2.5b).

Commonly in PSE, we lack of closed form expression describing probabilistic

discrete-time dynamics. To approach this, RL utilises two of the three key components:

simulation and model-free learning rules. In indirect methods, these mechanisms are

inspired by policy evaluation and improvement steps.

We will start by introducing two of the most widely applied model-free learning

rules, known under the umbrella of TD-learning (Sutton and Barto, 2018a). The main

concept of policy evaluation is to iteratively apply the Bellman operator, Tπ(·), to the

current estimate of the state-action value function, Qπ, to minimise the difference be-

tween the estimate and the true function. The family of TD-learning updates achieves

this in a slightly different, data-driven manner (Meyn, 2022). For a discrete-time state

transition, τt:t+1 = (xt,ut,xt+1)
10, collected under policy, π, the general TD-learning

10Note that this transition may be representative of process data or synthetic data gained from a

59

(a) (b)

Figure 2.5: Figurative description of the combined action of policy evaluation and
policy improvement steps a) on the state-action value function, Qπ and b) on the
state value function Vπ in a continuous state space with one state variable. b) Starting
from a given value function, Vπ0 , that could be randomly initialized, the combined
action of these operators act to iteratively improve the current state value function to
satisfy the Bellman optimality equation (Eq. 2.7a).

update has the following structure:

Qπ(xt,ut) = Qπ(x,u) + αδ(Qπ) (2.12)

where α = (0, 1] is a learning rate, which weights the current estimate of the state-

action value function, Qπ(xt,ut), against the TD error, δ(Qπ). The TD error is defined

as a biased, bootstrapped estimate of the error in approximating the cost under the

policy, π, in a given state. We can differentiate the form of this update, as either on pol-

icy or off policy. Here, we detail two such rules, known as expected SARSA, δSA(Qπ),

(Van Seijen et al., 2009) and Q learning, δQL(Qπ), (Watkins, 1989), respectively:

δSA(Qπ) = φ(xt,ut,xt+1) + γVπ(xt+1) −Qπ(xt,ut) (2.13a)

δQL(Qπ) = φ(xt,ut,xt+1) + γTπ∗
(
Qπ(xt+1,ut+1)

)
−Qπ(xt,ut) (2.13b)

Both updates exploit the recursive definition of the cost (e.g. see Eq. 2.11a). They

form biased, bootstrapped estimates of the cost of a state and control pair, via the first

two terms on the right-hand side of the equation. The interpretation of the update as

an error is derived from negation of the state-action value estimate in the third term

on the right-hand side. However, the difference between the rules arises in how the

bootstrapped estimate of cost is formed. In the on policy expected SARSA update,

δSA(Qπ), the bootstrap is formed under the state value function11, Vπ(xt+1), of the

simulation model.
11Given that we are only keeping estimates of the state-action values in memory, this can be

estimated via Eq. 2.9b

60

policy used to collect the data transition, τt:t+1. This has similarities with the policy

evaluation step in DP (see Eq. 2.11a). Whereas, in the off policy update, δQL(Qπ),

the estimate of the cost is formed under the policy, which greedily minimises the state-

action value function. This is not necessarily the same policy used to collect the data.

Hence, the Q learning update evaluates the greedy policy, rather than evaluating the

current policy and under some assumptions will converge to the optimal state-action

value function (Mnih et al., 2014, 2015a).

For both learning rules to identify the optimal state-action value function effi-

ciently, policy improvement (i.e. deterministically minimising the state-action value

function in data collection) is required (Tsitsiklis, 1994). Typically, algorithms balance

acting randomly and optimally to further aid efficiency. The intuition for this is that

acting randomly enables the policy to observe a wider distribution of trajectories and

therefore more about the underlying system. This gives rise to the use of stochastic

policies. For discussion on the importance and the use of stochastic policies in RL, we

direct the reader to (McFarlane, 2018; Sutton and Barto, 2018a; Pistikopoulos et al.,

2021).

Despite the benefit of model-free learning rules and the sample efficiency gained

from use of stochastic policies, in current form the space complexity of TD learning

methods is at best linear in the cardinality of the control sets and the state set. As the

state and control sets become very large, the TD learning problem becomes intractable

if one holds point estimates for the state-action values in memory. To approach this RL

uses the final key algorithmic component of function approximation. The general idea

of function approximation is to instead approximate Q(x,u) ≈ Q(x,u; θ), via a para-

metric function, with parameters θ ∈ Rnθ (Melo et al., 2008; Sutton and Barto, 2018a).

This removes the requirement for one to store point estimates of all state-action val-

ues in memory, but rather to identify a parameterized function instead. As a result,

the problem of identifying the optimal state-action value function, is reformulated to

find the best parameters, θ∗ (Jin et al., 2020). Two popular parameteric function

approximations are shown in Fig. 2.6. In the case of function approximation, the

Q learning update is modified so that it is amenable to statistical parameter estima-

tion practices. This is demonstrated through popular minimisation of the squared Q

61

(a) (b)

Figure 2.6: Possible structures of feedforward artificial neural network approximations
to the state-action value function, Qπ. The structures differ in that a) defines the
approximation as, Qπ : X → Rn|U| , providing a map from states to the state-action
values of all possible controls; whereas b) defines, the state-action value function,
Qπ : X × U → R, as a map from state and controls, to a respective state-action
value. As a result, a) is amenable to small discrete control spaces, whereas b) can
handle continuous control spaces, but requires optimisation to conduct the policy
improvement step.

learning error (Bas-Serrano et al., 2021), such that stochastic gradient descent steps12

can be taken using batches of state transitions to improve the current parameters, θ,

to better represent the policy, π:

δQL(θ) = φ(xt,ut,xt+1) + Tπ∗
(
Qπ(xt+1,ut+1; θ)

)
−Qπ(xt,ut; θ)

L(θ) =
1

2
δQL(θ)2

θ = θ − α∇θL(θ)

(2.14)

where δQL(θ) is the Q learning error and L(θ) is the loss function in the form of the

mean square of the Q learning error. In practice, the full gradient is typically not

utilised but instead a semi-gradient is used instead and formed as:

∇θL(θ) ≈ δ(θ)∇θQ(xt,ut; θ) (2.15)

where ∇θQ is the gradient of state-action value prediction with respect to the pa-

rameter vector, and for general composite functions, such as neural networks, may be

computed via backpropagation (Goodfellow et al., 2016).

12Note that SGD is not the only method that can be used. For example approximate second order
methods such as ADAM (Kingma and Ba, 2014) are typically applied.

62

Figure 2.7: A typical Gaussian stochastic policy as constructed by policy gradient
methods.

We have now seen that the major ideas in indirect RL methods, is to identify the

optimal state-action value function, via three key components: model free learning

rules, simulation and function approximation. Direct RL methods also use all of these

key components. However, direct RL methods aim to directly parameterize a policy

instead, such that π∗(u | x) ≈ π(u | x; θ∗), where

θ∗ = arg min
θ

Eτt:T∼p(τt:T ;θ)

[
Gt

]
(2.16)

and τt:T = (xt,ut, . . . ,uT−1,xT) is the system trajectory from time index t to the end

of the horizon, and p(τt:T ; θ) describes the associated distribution over trajectories

subject to the policy parameters. There are two main methods that dominate direct

RL: policy gradients (PG) and direct policy search. The former, PG methods, are

a well established approach to policy identification, with the latter observing more

recent interest. Firstly, we will explore the use of PG methods.

PG methods are underpinned by the policy gradient theorem (Sutton et al., 1999,

2000) and typically parameterise a Gaussian stochastic policy (if the control space is

continuous) as demonstrated in Fig. 2.7. The PG theorem is explained extensively

in (Sutton and Barto, 2018a) and in Appendix B.1. However the PG can be formed

exactly as:

∇θEτt:T∼p(τt:T ;θ)

[
Gt

]
= Eτt:T∼p(τt:T ;θ)

[T∑
t′=t

∇θ log π(ut′ | xt′ ; θ)Qπ(xt′ ,ut′)
]

63

Figure 2.8: A framework for the identification and deployment of approximately opti-
mal policies via RL. It consists of an initial policy learning step through simulation of
an approximate process model. The policy is then transferred to the real system for
the purposes of online optimisation and further learning.

This equation states that the policy gradient is the direction, which makes trajec-

tories of lower cost more likely, or in other words, creates choosing those controls which

have a lower state-action value more likely. Stochastic gradient ascent or approximate

second-order methods can then be deployed to update the policy parameterization.

Given that an expression for the policy gradient is generally unavailable in closed form

(i.e. we do not know Qπ exactly), we can instead approximate it directly through a

sample average approximation (SAA) and subsequent use of e.g. backpropagation if

neural network policy function approximations are used. This leads to a number of

algorithms (Schulman et al., 2017a,b; Haarnoja et al., 2018; Abdolmaleki et al., 2018),

the most well known of which is the REINFORCE algorithm (Sutton et al., 1999).

Having outlined the major classes of RL algorithm, we can now first emphasise the

major attraction for the use of RL in sequential decision making problems common to

PSE, and where the major areas of research focus lie.

The promise of model-free Reinforcement Learning and open challenges

Utilising the three major components of RL algorithms (i.e. model-free learning rules,

simulation and function approximation), a general framework for the use of RL in the

process industries can be described. This is expressed by Fig. 2.8.

The major idea here is to first identify high quality, optimal policy function ap-

proximations offline through simulation of an approximate model together with its

64

associated uncertainties. Once this initial policy learning phase has been conducted,

we can then transfer this policy to the real process for purposes of online optimisation

(Levine et al., 2020). Additionally, model-free learning rules potentially enable one to

further improve the policy online directly from process data once deployed. This holds

promise for the development of learning based control and online optimisation schemes

(Fisac et al., 2018), potentially mitigating the requirement for expertise heavy scheme

re-calibration. Although, at this point, it is not completely clear if such potential can

be fulfilled safely.

Further major benefits of the framework described by Fig. 2.8 are detailed in the

following,:

• The identification of approximately optimal state-feedback policies independently

of the assumptions that the state and control sets are discrete and small13, and

that knowledge of probabilistic discrete time dynamics exists in closed form,

overcoming the limitations of DP (Sutton and Barto, 2018a; Nian et al., 2020).

The former point is mitigated by the use of function approximation and the

latter by model-free policy learning rules.

• When state-feedback policies are approximated via optimisation formulations,

one can often fail to identify decisions online if the problem becomes infeasible

under the optimisation model (Scokaert and Rawlings, 1999). RL policies gen-

erally identify decisions by prediction rather than optimisation meaning that a

control will always be identified.

• Additionally, conducting optimisation online can often become infeasible if the

system dynamics are faster than the time required to optimise (Wolf and Mar-

quardt, 2016). Instead RL identifies a policy function approximation offline

through simulation of an approximate process model and its associated uncer-

tainties, enabling provision of fast online control decisions for the real process

via prediction. As such, it can be applied to handle decision making problems

at all time-scales of the PSE hierarchy (Glavic et al., 2017).

13In other words, that the cardinality of these sets is small.

65

• Finally, the identification of policies via simulation enables one to optimise sys-

tems independently of smoothness assumptions in the underlying model or as-

sumptions on the form of the uncertainty. This enables ease in optimisation

of for example, production scheduling environments (Wang et al., 2021) and

biochemical systems that utilise a switch model (Brancato et al., 2022).

The benefits listed promise potential improvements in both operational perfor-

mance, wide applicability and flexible use of complex systems models. However, ma-

jor challenges also exist in the implementation of RL algorithms. These challenges

primarily relate to safety (Brunke et al., 2022), robustness (Waubert de Puiseau et al.,

2022) and stability guarantees for RL-based closed-loop decision making (Nian et al.,

2020; Osinenko et al., 2022), as will be explored immediately.

Safety in sequential decision making scenarios relates primarily to satisfaction of

operational state constraints, as desired, over the discrete-time horizon. This is par-

ticularly challenging because:

1. The MDP framework does not provide an explicit mechanism for handling state

constraints (Altman, 1999; Shin et al., 2019).

2. In the case that the support of uncertain variables is unbounded constraints

become difficult to satisfy absolutely, but may instead be handled with high

probability via chance constraints (Li et al., 2008; Yang et al., 2022)

3. The approximate model used for offline policy learning is rarely a perfect repre-

sentation of the true process, which means that focus should be in evaluating the

generalisation capabilities of the RL controller, to the real process and not the

model used for offline policy identification. If this is not well satisfied the policy

could drive the process into high risk operational regions of the state space (Curi

et al., 2020). This is because RL control predictions are derived from data-driven

function approximations and are not based on any physical understanding of the

system. This is a major benefit of model-based decision strategies and optimi-

sation formulations that leverage some degree of mechanistic description of the

system.

To handle 1) there have been many works proposed that approach the problem

66

by attempting to fuse the benefits of mathematical programming with respect to con-

straint handling with RL. Examples are provided by Amos et al. (2018); Zanon et al.

(2020); Wabersich and Zeilinger (2021). However, a key observation made in Fisac

et al. (2018) is that general additional modifications to the policy learning mechanism

to ensure safety should ideally not compromise the ability of the scheme to utilise RL’s

model-free learning rules. Ultimately, the model-free nature of these learning rules is

the basis for the potential benefits of RL. Specifically, the use of mathematical pro-

gramming for constraint handling, imposes non-trivial learning rules, which require at

the very least that the underlying system is smooth (Nian et al., 2020). Additionally,

its use requires solving an optimisation problem online, which has downsides in terms

of the required computation and problems associated to feasibility and failure to find

a solution online. This reduces the applicability of RL to more general systems.

Similar ideas extend to 2). Although, RL and mathematical programming may be

combined to good effect for chance constrained linear systems (Pfrommer et al., 2022);

when considering nonlinear systems handling chance constraints via mathematical

programming becomes challenging. This is primarily in view of the requirements to

propagate the uncertainty associated with the state over the discrete time horizon

(Heirung et al., 2018). More information on this is provided in Section 2.2. As a

result, there is substantial incentive to develop RL methods for chance constraint

satisfaction independently of mathematical programming to allow for probabilistic

constraint satisfaction in nonlinear systems.

The final point 3) is a general focus in many communities interested in RL. This has

led to the establishment of the offline RL community (Levine et al., 2020), who gener-

ally deal with learning a policy offline; either via a model (Yu et al., 2020, 2021b) or

via a fixed stationary dataset (Kumar et al., 2020b). The idea behind these algorithms

is to modify the model-free learning rule to ensure that the policy generalises beyond

the offline learning framework with inspiration either from various multi-armed ban-

dit strategies (Kuleshov and Precup, 2014; Rashidinejad et al., 2021) or via concepts

resting within robust optimisation (Agarwal et al., 2020; Kumar et al., 2020b).

The aspect of robustness in RL essentially boils down to two main points. The first

is related to the definition of the objective of decision making (Waubert de Puiseau

et al., 2022) and the second is related to algorithm implementation (Engstrom et al.,

67

(a) (b)

Figure 2.9: Description of the performance distribution associated with a policy and
measures such as the mean, the conditional value-at-risk, CVaR, and the value-at-
risk, VaR, for a given probability level β, as well as the expected value, µ under a) the
probability density function and b) the cumulative distribution function.

2019). With respect to the former point, RL algorithms generally optimise for the

expected performance of the policy from the initial state distribution over the discrete

finite time horizon. However, in process operation considering other measures of the

performance may have substantial benefit (Waubert de Puiseau et al., 2022). This

provides motivation to consider risk-averse (Greenberg et al., 2022) or distributional

RL formulations (Bellemare et al., 2022). The main idea in these two methods is to

take information from the full distribution of policy performances to inform construc-

tion of the policy. For example, in risk-averse RL the objective is to optimise for or

impose constraints on various risk-sensitive objectives (Ahmadi et al., 2021), such as

the conditional value-at-risk (CVaR) (Rockafellar et al., 2000). Given that the CVaR

defines the expected value in the worst returns that occur with at least a user defined

probability (see Fig. 2.9); this enables one to construct policies, which ensure against

high severity outcomes in the tails of the policy performance distribution (Urṕı et al.,

2021). For example, if a process objective is economic, then constraining the expected

performance of the worst 10% of policy performances (the CVaR for probability level

0.9) to be less than a certain cost, could help to protect the operation from making

a loss. Meanwhile, distributional RL can be thought of as encompassing risk-averse

RL and it generally aims to identify state and control dependent approximations to

specific discrete percentiles of the quantile function associated with a policy perfor-

mance (Bellemare et al., 2017a), or to learn the full quantile function itself (Yang et al.,

2019; Dabney et al., 2018a) via quantile regression (Dabney et al., 2018c). Although

quantile regression has been applied previously in stochastic model predictive control

to handle joint chance constraints (Yang et al., 2022), such a concept has not been

68

readily incorporated into optimisation based predictive control frameworks.

The final element of robustness regards implementation. Typically, RL practice

utilises flexible data driven functions such as neural networks for policy function ap-

proximation. These models are all associated with hyperparamters that define their

structure (Murphy, 2022), but also their initial parameters (Zhu et al., 2021a). Addi-

tionally, many of the model-free learning rules that comprise the field are composed

by hyperparameters such as pre-defined step-sizes (Kingma and Ba, 2014), parameters

that govern the degree of bias and variance within the updates (Schulman et al., 2018b)

and the discount factor (Amit et al., 2020; François-Lavet et al., 2015). Generally, al-

though there are rules of thumb for the selection of these hyperparameters, there is

little theoretical understanding as to how these factors combine to effect a) the dy-

namics of policy learning, and b) the performance of the final policy (Engstrom et al.,

2019). This results in the requirement for either some automated search algorithm

(Claesen and De Moor, 2015) or the use of technical expertise and rules-of-thumb to

solve an algorithm tuning problem (Engstrom et al., 2019). In reality, this adds an

additional layer of complexity and technical expense in identifying an optimal RL pol-

icy. This is a generally expensive step, because high variance can be observed in the

final policy performance when the algorithm is subject to relatively small changes in

hyperparameters.

The final point regarding the lack of closed-loop stability guarantees of RL poli-

cies primarily arises due to a relative lack of research focus. Arguably, much of the

theoretical research within RL has been directed towards developing algorithms with

convergence guarantees (Melo and Ribeiro, 2007; Sutton and Barto, 2018a; Meyn,

2022) and much of the applied research has investigated its optimality (Joshi et al.,

2021; Spielberg et al., 2019; Campos et al., 2022; Mart́ınez et al., 2022). This has led

to relative neglect in trying to ascertain closed-loop stability. Since the turn of the

century (Perkins and Barto, 2002), and as indicated by the recent review provided by

Osinenko et al. (2022), interest is building in this research direction. This is largely

due to the recent engagement of the control community within RL research. This

means that many of the approaches proposed so far to provide stability guarantees

for RL have relied on the assumption of an available process model (Gros and Zanon,

2019a); given that this is generally the case for the guarantees derived from the control

69

community (Mayne et al., 2000). This further emphasises the notion that although,

in its full potential RL is fully model-free, to be realised in industry there will likely

be some dependence on the use of a model (Osinenko et al., 2022).

Having elucidated the major drivers for research and a framework for the identifi-

cation of RL policies in PSE, we will now explore the means by which RL has been

applied in more detail.

Indirect Reinforcement Learning methods in Process Systems Engineering

As nonlinear and non-smooth systems are of interest to this work, it is unlikely that

a linear function approximation to the state-action value function, Qπ, is likely to

well satisfy the Bellman optimality equation. This notion is in keeping with standard

practice within the PSE and RL community, which generally exploits the advent of

deep learning, where complex and highly flexible classes of neural network (functions)

can be used as parameterisation. In fact, deep Q learning (DQN) (Mnih et al., 2013,

2015c) has become a well-known, benchmark indirect RL method14. For example,

Hong et al. (2020) deployed a DQN algorithm to identify optimal evacuation routes for

oil and gas processing and storage facilities in deep-water fields. They draw attention to

the benefits of identifying an optimal evacuation route via prediction in a hypothetical

accident situation. Decisions may be identified despite the uncertainty of, for example,

emergency exits being blocked or out of use. Further, Singh and Kodamana (2020)

demonstrate comparison between Q learning without function approximation (what is

known as a tabular implementation) and with function approximation on a nonlinear

fed-batch polymerisation problem. The tabular implementation uses point estimates

for each Qπ(x,u) and requires discretisation of a continuous control space (which

was the temperature of a heated jacket) and state space (which was the temperature

of the reactor). The authors remark that as the discretisation becomes finer, the

sample efficiency of the tabular implementation decreases quickly, whereas the DQN

implementation is able to handle continuous states efficiently. The general intuition

behind this is that tabular implementations are not able learn about multiple controls

or states close in the respective spaces from a single update. This is however not the

14The method itself is comprised by algorithmic components, which are well worth discussing, but
beyond the narrative of this section. Please see Mnih et al. (2013, 2015c); Van Hasselt et al. (2016);
Zhang and Sutton (2017) for more information.

70

case for the function approximation, which shares a parameter vector across all states

and controls (Mnih et al., 2015a). As a result, the parameter updates effect the policy

across the control and state spaces. A similar work is provided by Nikita et al. (2021),

who demonstrate a DQN approach for optimising the flowrate of a chromatography

column. The authors use a rigorous, nonlinear simulation model to identify a policy

that optimises the column flowrate profile over a discrete finite time horizon, to ensure

a specific purity in the separation of components. Once the policy had been identified

it was then used to optimise a real column with the authors reporting purity of the

components as desired, together with a significant reduction in time spent over the

conventional strategy of manual tuning the flowrate on the real system.

However, all the works mentioned above use a discretised control space and struc-

tures the state-value function approximation, Qπ(x,u; θ), according to Fig. 2.6a).

This means the algorithm is highly dependent on the discretisation being well cho-

sen. Continuous control spaces can be handled via indirect methods in one of two

approaches. The first is provided by the state-action value function structure in Fig.

2.6b). For example, Pan et al. (2021) demonstrate such a structure for the online op-

timisation of two uncertain, nonlinear fed-batch processes. They use an evolutionary

algorithm to identify the control, which greedily minimises the state-action value func-

tion approximation. In the first study, the authors optimise a Phycocyanin production

process demonstrating 3% improvement in closed loop performance over a nonlinear

model predictive control (NMPC) scheme, which represents the best-case determinis-

tic model. Additionally, in the second study they investigate the performance of the

approach on a semi-batch catalytic chemical reaction process. This time the NMPC

scheme outperforms the RL implementation by approximately 8%, however, this does

demonstrate the potential for RL to compete with current advanced predictive con-

trol schemes. It should be noted that in both cases, the authors assume that there

is a simulation model with a perfect description of the process uncertainty available

to identify the policy offline, with validation then conducted ‘online’ via Monte Carlo

simulation of the same model. This is of course an ideal assumption.

The same structure (e.g. Fig. 2.6b)) has been optimised to find the optimal control

via various other approaches. One example is to formulate the problem of identifying

the optimal control input to a rectified linear unit (ReLU) neural network as MILP

71

(Ryu et al., 2019). The authors demonstrate their method on a classic physics based

control problem, where the aim is to stabilise an inverted pendulum, which is described

by nonlinear dynamics, over a discrete time horizon. This is a description in common

with many fed-batch process systems in PSE. They demonstrate their approach to

outperform many other stochastic search methods by 2-20%. This includes the use of

genetic algorithms, and the cross entropy method (De Boer et al., 2005; Lim et al.,

2018; Wen and Topcu, 2018). A possible explanation for this is because given enough

computational budget, the MILP approach is able to enact a policy improvement step

exactly, whereas this is not necessarily the case with stochastic search methods (which

are heuristic approaches to optimisation).

Although, improved formulations for optimising ReLU networks via MILP have

been proposed within the PSE community (Tsay et al., 2021), conducting policy im-

provement via optimisation is more computationally expensive than e.g. making a

control prediction via a neural network policy. This limits the application of indirect

methods to optimise systems with fast dynamics. The other more popular solution

presents itself in the form of actor-critic methods, which roam a shared conceptual

ground between indirect and direct methods. Although, the application of the latter

will be explored in more detail in the subsequent section, the general idea of actor-

critic methods is to parameterise both a state-action value function, Qπ(x,u), as well

as policy, u = π(x; θ̂), where θ̂ ∈ Rnθ̂ are the parameters of the policy. The problem

then reduces to identifying optimal parameters, θ∗ and θ̂∗, for both approximations.

Fig. 2.10 represents the construction of the networks for an actor-critic method known

as deep deterministic policy gradient (DDPG) (Lillicrap et al., 2015).

For example, Ma et al. (2019) demonstrate the application of DDPG for the control

of a semi-batch polymerisation process. Here, the kinetics are described by a free radi-

cal polymerisation reaction, and the aim of control is to manipulate the monomer and

initiator inflow rates in order to track a reference trajectory for the weight-average

molecular weight of the batch. This trajectory was determined offline via dynamic

optimisation and is a good indicator of the molecular mass distribution of the prod-

uct, which dictates the polymer quality and structure. The approach demonstrated

robustness in the face of time delay and noisy observations of the system state. Other

applications of actor-critic algorithms for control have been demonstrated in Mart́ınez

72

(a) (b)

Figure 2.10: Network structures used in the deep deterministic policy gradient
(DDPG) actor-critic method. Here a) a policy function approximation provides a
map from states to optimal control predictions, π : X → U, whereas b) defines the
state-action value function, Qπ : X× U → R, as in Fig. 2.6.

et al. (2022), where multiple setpoint changes in the level of a continuous stirred tank

reactor and concentration of a respective component are enacted without the require-

ment to re-tune the policy. This is typically posed as a meta-RL problem (Nagabandi

et al., 2018), which is an area of RL that deals with learning a policy that generalises

to different control tasks. This is the formulation posed by McClement et al. (2021),

who demonstrate an actor-critic algorithm for multiple set point changes in a system

characterised by first order dynamics. The general idea of this scheme is to identify a

control-orientated, reduced order representation of a system state, that enables ease in

generalisation of the control policy across tasks. The authors highlight the potential

of RL to enact multiple setpoints indicating that it could be applied to a wide variety

of process systems and potential ease in recalibrating control and online optimisation

schemes. This idea has been successfully extended to second-order linear systems in

McClement et al. (2022).

Yoo et al. (2021b) demonstrated the potential of RL to handle multiple dynamical

phases within batch processes. Specifically, they highlighted DDPG on a polymerisa-

tion process with two dynamical regimes. This non-stationarity in dynamics is often

an issue for other model-based schemes (Shin et al., 2019). The authors report that

RL provides improvements over NMPC in closed-loop with respect to the satisfaction

of operational constraints in this case. A demonstration of RL in the ‘real-world’ was

73

provided by Lawrence et al. (2022). The authors use a modified version of DDPG,

to track level in a two-tank system. Specifically, although the authors parameterise

the state-action value function via a neural network, they parameterise the policy as

a PID controller. It is argued that this improves the stability properties of the closed-

loop system. Additionally, the authors report the identification of a well tuned PID

controller, learned ‘from scratch’ directly on the real system after 30-40 minutes of

experimentation. This highlights the potential to realise the benefits of model-free

learning rules in identifying a policy directly from the process. This is certainly a

promising result. To the author’s knowledge, there has not yet been such a demon-

stration on a real-world nonlinear system directly of concern to PSE. However, there

have been impressive achievements from other fields, which are worth mentioning. Of

particular note is the recent work in Degrave et al. (2022), where an actor-critic algo-

rithm was able to stabilise the high-temperature plasma of a tokamak (which is the

reactor used for nuclear fusion based energy generation). This is a control task that is

fundamental to the maturation of fusion technology. The authors demonstrate a sin-

gle neural network controller able to manipulate the reference voltage for 19 different

active control coils that are used to generate a magnetic field to suspend the plasma.

The work utilises initial policy learning in an offline rigorous simulation model and is

then transferred to the real process to provide control. This has been an open chal-

lenge to control due to the nonlinearity of the system and the requirement for high

frequency, multivariable control inputs. The system is able to stabilise the plasma,

providing sustained energy generation. However, the authors do note that the RL

controller has no guarantees for rejecting disturbances in the plasma and should likely

be implemented together with a simpler fallback system in case instability arises.

There have also been implementations of DQN at the level of production scheduling.

For example, it is common for the scheduling operation to utilise various heuristic rules

to react to realisations of uncertainty (this is discussed in more detail later in Section

2.3). In the work provided by Han and Yang (2020), the authors utilise a DQN agent

to select different heuristic rules upon realisations of plant uncertainty in a multi-

product sequential production environment. Additionally, work by Kim et al. (2021a)

demonstrates a DQN approach to the same production environment but with machine

breakdown. Here the network directly assigns jobs to machines rather than selecting

74

heuristics. The authors report a 37% improvement over the use of a deterministic

schedule determined offline.

The previous works mentioned certainly demonstrate the wide potential and ad-

vantages of model-free RL. A number of works have also considered handling the

open challenges posed previously within this section. For example, Yoo et al. (2021c)

recently considered the development of a dynamic penalty function for handling con-

straints in deterministic systems. The method gradually imposes constraints on the

policy as learning proceeds using the constraint aggregation function (Bloss et al.,

1999). This is to approach a problem commonly observed in offline policy learning;

it is often the case that when constraints are imposed by setting the cost function to

a penalty function, a policy can get ‘stuck’ in a poor local optima. This is generally

due to non-smoothness in the true state-action value function derived from handling

constraints via a penalty function. By dynamically imposing the constraints, the aim

is to mitigate problems associated with this approach. It is demonstrated in the work

by Yoo et al. (2021c) that their method identifies a constraint satisfying policy in 93

of 100 different computational runs, using the DQN algorithm in a relatively simple

vehicle control problem. The problem is described by a linear dynamical system, with

constraints on the vehicle position, velocity (i.e. state constraints) and acceleration

(i.e. control input bounds). This work goes someway to improving the robustness and

reliability of RL algorithms operating in constrained process systems. Slightly more

theoretical work is provided in Bas-Serrano et al. (2021), who present a new algo-

rithm that aims to mitigate some of the problems arising in the use of bootstrapping

in the Q learning update (see Eq. 2.13b). The authors report drastically improved

performance, compared to DQN, on the nonlinear dynamical system derived from the

inverted pendulum problem mentioned previously. This contribution helps to develop

the robustness of RL algorithms, given that the bias in bootstrapped updates can often

destabilise indirect RL methods. More recently, it has been proposed to combine the

benefits of model-free RL and mathematical programming approaches, by incorporat-

ing the state-action value function directly into the objective of a model predictive

controller, as a terminal cost (Oh et al., 2022). The resultant algorithm, Q-MPC,

was able to outperform differential dynamic programming (DDP), DQN and DDPG

with a nonlinear, and uncertain penicillin fed-batch production system. Specifically,

75

improvements of approximately 3% were reported in the closed-loop performance. It

is worth noting, that as the time horizon used to construct the Q-MPC formulation

tends to one discrete step, the formulation tends to ordinary DQN, but with the use

of e.g. IPM or SQP to identify the optimal greedy control. The authors report im-

proved sample efficiency over conventional DQN and DDPG approaches, and is able

to outperform DDP by accounting for process-model mismatch via the objective (i.e.

the state-action value function approximation). The authors leave the satisfaction of

state constraints for future work. Similarly, Hedrick et al. (2022) propose to integrate

a deep SARSA implementation and MPC, but instead within a hierarchical frame-

work, where the RL controller instead tunes the prediction and control horizon of

an MPC controller at each discrete control interaction within the process operation.

The first control identified by the MPC scheme is then implemented. The authors

demonstrate their approach on a selective catalytic reduction (SCR) unit, which is

a common approach for treatment of flue gas. The dynamics of this operation are

inherently nonlinear and subject to time delay. The MPC implementation uses an

approximate linear dynamical model and a tracking objective. The results show the

proposed method is able to achieve a 30% reduction in the integral squared error over

the MPC implementation on its own.

Having reviewed some of the major contributions to indirect methods within PSE,

we now turn our attention to direct RL methods.

Direct Reinforcement Learning methods and Policy Search in Process Sys-

tems Engineering

As discussed previously, a major set of direct RL algorithms are known via PG meth-

ods, which have been widely applied within PSE. For example, Shim and Lee (2022)

employed a PG method in the context of process design to identify an optimal se-

quence of distillation operations. This was opposed to the classical super-structure

optimisation approach. The authors conclude that the approach could be particularly

promising for more large-scale problems, where superstructure approaches become

particularly expensive mixed integer nonlinear programs (MINLP) (Mencarelli et al.,

2020). A more large-scale work was presented by Khan and Lapkin (2022), who have

explored the use of hierarchical RL schemes (based on policy gradient methods) for the

76

purposes of process design and synthesis. Specifically, they design an intensified ethy-

lene oxide production plant, reporting improved results compared to baselines within

the literature. It is worth commenting that the application of RL to process design

does not necessarily inherit benefit through the use of the MDP framework (as the

parameters of these problems are often assumed deterministic); however, the use of RL

can help to discover new heuristics for process synthesis and avoids use of expensive,

exact optimisation solvers which necessitates restriction of the solution space based on

knowledge. This is also noted in (Göttl et al., 2022; Stops et al., 2022).

The model-free nature of the policy gradient has also been explored within PSE,

typically within the context of batch-to-batch control and optimisation. For example,

Petsagkourakis et al. (2020b) explored ways in which to quickly update policy function

parameters when deployed to a ‘real’ bioprocess and then subsequently improve that

policy from batch-to-batch. Specifically, the authors froze a subset of model param-

eters, only updating the parameters in the final layer of the neural policy function

approximation. This allows for only slight modification to the output of the policy

and essentially retains the knowledge gained in initial offline policy learning via the

frozen parameters. This has also been applied in the domain of image classification

(Russakovsky et al., 2015). Similarly, Yu and Guo (2020) applied a policy gradient

method to a chemical mechanical polishing process, which is an operation common to

the semiconductor manufacturing industry. They explored the ability of RL to han-

dle run-to-run variations in the material removal rate (from a wafer) due to process

degradation, setpoint change and variations in noisy disturbances. The authors con-

clude that the policy gradient approach used, performs preferably to other common

heuristic methods, including a neural network parameterisation of an MPC controller.

The application of RL in the context of batch-to-batch is a essentially the same idea

as directly improving the policy online as proposed in Fig. 2.8. A recent work has ex-

plored the application of the policy gradient online (Dogru et al., 2021). The authors

demonstrate the transfer of a policy initially learned offline to ‘real’ (computational)

process. The authors report that under application of the policy gradient online, the

policy retains closed-loop stability. This is certainly a promising result, but one would

assume that the hyperparameters associated with the update would heaviy influence

such a conclusion. Further work should characterise, which hyperparameter settings

77

induce stable behaviour.

Zhu et al. (2021b) implemented a policy function approximation for online optimi-

sation of a polyol process. They discuss and provide analysis for the results, which are

of similar quality to that of mathematical programming. Additionally, they discuss the

problems of policy function interpretability (or a lack of it) and highlight that although

there is obscurity in the use of a neural network, one can analyse the control profiles

generated in simulation of an uncertain process model and align this with knowledge

of the physical system. Extensions to this analysis aim to investigate the sensitivity

of the policy prediction to small changes in the state input. This idea is encompassed

by the developing field of neural network verification, which aims to use optimisation

to certify the robustness of neural networks to changes in the input (Albarghouthi,

2021). The maturation of these approaches is likely to be important if we are to see the

deployment of neural policy functions to safety critical applications. Work provided

by Mendiola-Rodriguez and Ricardez-Sandoval (2022) also explores the robustness of

policy gradients to various disturbances for control and optimisation of an anaerobic

digester. They highlight its benefit over traditional MPC approaches in terms of time

to compute a decision online and accounting for process uncertainty in closed-loop.

The algorithm was found to be robust to a variety of disturbances, and the authors

indicate the potential to incorporate the policy function approximation into an inte-

grated design and control under uncertainty framework (Sachio et al., 2022). Another

work within PSE, has considered the use of RL for flexibility analysis in the design

of engineering systems (Caputo and Cardin, 2022a). The authors demonstrate the

advantage of policy gradient methods in identifying a policy that determines how best

to expand the capacity of a waste-to-energy system at discrete intervals over a 15 year

period. The aim of the policy is to increase the net-present value of the design subject

to high degrees of uncertainty in demand over the period. The RL approach is bench-

marked to common heuristic decision-rules and demonstrates marked performance

improvements of approximately 30%. This highlights the ability of RL to account for

uncertainty in closed-loop decision making. Similar motivations were demonstrated in

Hubbs et al. (2020a), who deployed a policy gradient method for online closed-loop

scheduling of a continuous chemical production system under demand uncertainty.

The approach was benchmarked to nominal and stochastic MILP approaches, with

78

the policy gradient method demonstrating improved performance over the stochastic

receding horizon MILP and comparative performance to the shrinking horizon nominal

MILP implementation. The major benefit here is that the scheduling decisions of the

RL, are orders of magnitude more efficient than the MILP implementations. Previous

work presented in Park et al. (2021), has combined RL with graph neural networks

(GNNs) (Bronstein et al., 2021), which are used to identify a control-oriented, reduced

dimension latent representation of a deterministic sequential production environment.

This is a promising approach for larger problem sizes and assumes that the production

environment can be well modelled as a disjunctive graph (B lażewicz et al., 2000). A

similar idea has also been presented in Zhang et al. (2020a). Both works compare the

algorithm proposed to common heuristics priority dispatching rules, with only Zhang

et al. (2020a) also benchmarking to an optimisation approach. Both works demon-

strate improvements over the heuristics, for example Park et al. (2021) showed at least

a 5% improvement in objective performance over the next best heuristic, and Zhang

et al. (2020a) showed as much as 25% improvement. However the latter work also

reported a gap of up to 40% compared to the optimisation implementation. It is well

known that combining graph neural networks and RL is open challenge with these

system characterised by complex ‘learning’ dynamics (Gupta et al., 2021; Munikoti

et al., 2022). This is in part because the algorithmic challenges of identifying policy

gradient RL policies are combined with those of GNNs (i.e. the model structure se-

lection becomes even more complex). As a result, there remains question as to the

optimality of such an approach.

Other applied policy gradient RL works within PSE research explore handling

mixed integer control spaces, effectively handling constraints on control inputs and aid-

ing the sample efficiency of policy gradient estimation. These key issues for application

are explored. Firstly, Campos et al. (2022) explored various different constructions of

the policy function and methods for control selection, to best handle mixed integer

control sets within scheduling of energy systems. Specifically, the authors consider the

operation of a district cooling plant in order to provide cooling utility. A case study of

a large-scale district cooling plant employing real demand and price data is presented.

It is shown in analysis that the algorithm can mitigate storage constraint violations,

and the solution can be improved using the model-free learning rules once deployed.

79

Given that the demand and electricity price is uncertain and actually forecast within

the system state, the work highlights that the algorithm can handle state uncertainty

and incomplete state information.

Hubbs et al. (2020b) explored the use of action-masking, rather than penalising

for control constraint violations through the cost function, in a number of operations

research problems including the bin packing problem, which is a classic combinato-

rial optimisation problem. This is highlighted in the operational healthcare applica-

tions presented in Van Houdenhoven et al. (2007); Vijayakumar et al. (2013). Action-

masking works specifically in discrete control spaces, by masking the controls in the

output of the policy function if they are infeasible. This is a more efficient approach

that using the model-free policy learning rule alone. There are approaches to action-

masking that operate over continuous control spaces (Wabersich and Zeilinger, 2021;

Chen et al., 2018b). These approaches allow one to convert state constraints into con-

trol constraints. The mechanism of these approaches is based on modifying the control

prediction of the neural policy function via a dynamic optimisation problem with a

least squares objective between the neural policy prediction and the modified con-

trol. Despite the safety benefits, there is reliance on the use of an underlying process

description, which can impose non-trivial learning rules and restricts the underlying

process model to be smooth and deterministic. This is likely to impose sub-optimality

if the model is subject to high uncertainty.

Finally, the work provided in Deisenroth and Rasmussen (2011) differentiates a

Gaussian process state space model to gain exact estimates of the policy gradient. The

authors applied their algorithm to a robotics problem, which is essentially a nonlinear

dynamical system. The authors demonstrated that they could control the system at

hand using very few samples of data collected from the real world. However, this does

rely on the explicit use of Gaussian process state space models to approximate the

true system (Sternberg and Deisenroth, 2017) and so assumes that the dynamics are

smooth. Similar ideas were also expressed in Chen et al. (2018b), but instead under the

assumption of linear time invariant dynamics enable accurate estimation of the state-

action value function (within the PG) using a reduced number of samples by exploting

the structure of the problem, rather than using a function approximation. This leads to

two orders of magnitude improvement in objective performance over the same number

80

of training samples as an actor-critic algorithm, which uses a function approximation,

for an infinite horizon, linear quadratic regulator (LQR) problem (approximated as

finite horizon with a terminal cost). However, this approach does explicitly require

the structure of the problem to be LQR.

The use of direct first order methods to identify approximately optimal policy

functions is an area worthy of discussion. As in general optimisation problems, if

there exists non-convexity or non-smoothness in the mapping from policy function

parameters to policy performance, first order methods are not guaranteed to perform

well and may get stuck in poor local minima. This has led to the development of

various zero-order methods, which aim to optimise policy parameters independently

of any gradient information from the underlying decision process (Salimans et al.,

2017a; Powell, 2021) by transferring the policy search from the control space, directly

to the policy function parameter space. This is further motivated by the ambiguity

regarding selection of other hyperparameters that are associated with first-order RL

approaches and general lack of theoretical understanding as to how these algorithms

work in practice (Ilyas et al., 2018; Nota and Thomas, 2019a; Chen et al., 2020; Kumar

et al., 2021).

The first major empirical demonstration of zero-order methods in RL was provided

by Salimans et al. (2017a), who proposed to use natural evolutionary strategies (NES)

within the high dimensional parameter space (nθ > 5000) of neural policy functions

in the context of game-based control benchmarks. This was an insightful paper given

wide acknowledgement that zero-order optimisation tends decrease in performance

as the dimensionality of the search space increases (Balasubramanian and Ghadimi,

2022). This is likely negated in the work provided, due to the flexibility of neural

network functions and the presence of redundancy in the parameter space. NES was

first proposed in Wierstra et al. (2014) and functions by maintaining a Gaussian dis-

tribution over the parameter space (rather than the control space as in the case of

policy gradients). Neural network parameters are then sampled from the distribution

and evaluated through simulation in the underlying environment. The evaluation re-

sults of the population are then utilised to form the ‘natural gradient update’ for the

mean and standard deviation of the distribution (Amari and Douglas, 1998). Greater

interest in these approaches is developing. For example, a company driving the use

81

of RL within industry, with machine learning applications in specialty glass produc-

tion, additive manufacturing and wind generation (Nnaisense, 2022b); have recently

released an open-source python package tailored for implementation of evolutionary

approaches to RL, which provides basis for further research into use of these methods

(Nnaisense, 2022a). Evolutionary approaches to RL have also been demonstrated in a

more niche physics-based application of directing self-assembly of molecular structures

(Whitelam and Tamblyn, 2020). The authors commented on the ease of application

and training relative to first-order RL methods.

2.1.3 Extracting decision rules from process data

Process knowledge expressed by existing operational decision systems can be extracted

from process data in two ways - both can be thought as under the conceptual umbrella

of ‘learning from demonstration’ (LfD). The first approach is to identify a parametric

function approximation to the action of the existing system. This parameterisation

could then be used, for example, to help hot-start the RL process, or simply deployed

to the process to remove the requirements for online optimisation (if, for example, the

existing decision system is a model predictive controller). The second approach is to

extract the objective function of the decision maker, based on the control and state

trajectories expressed in data. In reality, this is never actually known. This is because

we cannot construct a perfect model of the real world, and therefore, for example the

objective function of a model predictive controller and that extracted from the data

will be unlikely to align exactly. Instead, the objective that is extracted will contain

information about the real system, or any changes made by operators. Optimizing for

this objective, will then account for process knowledge.

These two approaches are well known by behavioural cloning and inverse reinforce-

ment learning (IRL), respectively. There is a wealth of engineering focused literature

demonstrating use of the two approaches. For example, early works in behavioural

cloning considered industrial engineering applications (Michie et al., 1990), ‘learning

to fly’ aircraft (Sammut et al., 1992) and motor control of a mobile robot (Esmaili

et al., 1995). However, these early works noted the apparent ‘brittleness’ of behavioural

cloning, when the identified parameterisation of the existing control strategy was de-

ployed (Bratko et al., 1995). Specifically, the authors note that the parameterisation

82

often produced unstable responses when the initial conditions or dynamics were dif-

ferent to those corresponding to the available process data. This is an intuitive result

given that these conditions represent off-distribution (i.e. extrapolative) predictive

tasks - an area where ML systems are notoriously poor if due consideration is not

provided in learning (Krueger et al., 2021).

There has also been a documented risk of over-fitting the parameterisation to the

data available in behavioural cloning, meaning it can often produce unstable responses

on the same system as the data was collected (i.e. in interpolative predictive tasks,

where ML systems generally perform well). This notion is also supported by Yoo et al.

(2021b), who demonstrated that imitation learning an NMPC controller, performs

worse than directly learning an RL controller from ‘scratch’ on a fed-batch polymeri-

sation process. A popular fix to this problem is to synthetically create extra data, by

augmenting the data one has available with some level of noise. This essentially pro-

vides some form of implicit regularisation (Kanervisto et al., 2020a; Hernández-Garćıa

and König, 2018). This has also been a popular approach to ensuring real-world gen-

eralisation in RL systems (Laskin et al., 2020; Park et al., 2022). These two perceived

downsides of behavioural cloning has generally led to its deployment as a means of

parameter initialisation in for example offline RL policy learning problems (i.e. within

the simulation model). For example, Sachio et al. (2022) used behavioural cloning to

initialise an RL policy for a control task from an MPC controller. However, it has

also been used to abstract the mapping provided by an MPC controller (Lucia and

Karg, 2018; Paulson and Mesbah, 2020) with the resultant parameterisation proposed

to be transferred to the real-system. However, we argue that it would be ill-advised to

deploy these parameterisations directly to the real system, unless very large amounts

of data were available. This is re-affirmed by Yoo et al. (2021b); Kumar et al. (2022).

The other route provided by IRL is generally deemed a more robust approach.

Instead of identifying a parametric model of the demonstrated behaviour in process

data, IRL identifies models of the stage cost function, φ : X × U × X → R, guiding

the existing scheme (Arora and Doshi, 2018). This means that a parameterisation

of the existing scheme can then be identified through RL under the cost function

abstracted in an approximate process model offline. IRL generally considers that

the behaviour of the existing scheme is optimal under that cost function. There are

83

a number of foundational works including Ng et al. (2000); Abbeel and Ng (2004),

which first presented the idea of Apprenticeship learning. Here, the idea is to identify

a cost function, φ(xt,ut,xt+1) = wTϕ(xt,ut,xt+1) as a linear combination of basis

functions, ϕ : X× U× X → Rnw , of the state and control variables. Note that a cost

function with a given setting of w ∈ Rnw and ϕ defines a specific MDP or control

task. The selection of ϕ is usually informed by expert knowledge of the control task

at hand, although there is ambiguity regarding their selection. Once the basis features

have been defined, the problem reduces to identifying the best cost weighting, w, to

recover the behaviour of the existing scheme as best as possible.

The motivation behind the Apprenticeship Learning algorithm (Abbeel and Ng,

2004) has the following concept at its core, which considers the state value function

at the initial state of the existing scheme, πE, should lower bound that of any other

arbitrary policy, π:

EπE

[T∑
t=0

wTϕ(xt, π
E(xt),xt+1)

]
≤ Eπ

[T∑
t=0

wTϕ(xt, π(xt),xt+1)
]

(2.17a)

wTEπE

[
υE
]
≤ wTEπ

[
υ
]

(2.17b)

where Eq. 2.17b follows directly from rearrangement of Eq. 2.17a; the feature

counts characterising the behaviour of the existing decision system are defined as

υE =
∑T

t=0ϕ(xt, π
E(xt),xt+1); the terms on the left hand-side correspond to the state

value function of the expert policy, πE, expressed in process data; π is any arbitrary

policy learned under the cost function parameterised by w ∈ Rnw , with associated

feature counts, υ ∈ Rnw ; and the term on the right hand-side of both equations corre-

sponds to the state value function of the associated policy. As the state value function

of the existing scheme lower bounds that of any other policy identified within the

associated MDP, the action of the existing scheme is considered to be optimal. The

method itself identifies a cost weighting, w, to obtain an ϵ - optimal policy, π such

that:

∥wT (EπE

[
υE
]
− Eπ

[
υ
]
)∥2 ≤ ϵ (2.18)

where ϵ ∈ R is a user defined hyperparameter, which is a) chosen to provide ter-

mination criterion for the algorithm and b) provides a minimum separation required

84

Figure 2.11: Intuition behind the Apprenticeship Learning algorithm. At convergence,
the method identifies a policy, which is at most within a distance, ϵ, of the state value
function of the existing scheme, VπE(x0) in the initial state. There is ambiguity as to
which policy to learn and how best to define the distance, ϵ.

between the existing scheme, πE, and the policy identified, π in terms of the state

value function at the start of the horizon, V (x0). This is expressed by Fig. 2.11.

The use of ϵ as a termination criterion means that the larger the value chosen, the

earlier the algorithm converges. However, even if ϵ is small, the policy identified by

the method, may not well reflect the behaviour of the existing scheme (as expressed

by the feature counts of the basis functions, υE) and many policies may also satisfy

this condition. This provides considerable ambiguity and an ill-posed problem.

This work provided in Ziebart (2010) aims to resolve this ambiguity via the prin-

ciple of maximum entropy (Jaynes, 1957) and maximum entropy optimisation. The

high-level idea here is to identify a policy, π(u|x), to match the feature counts, υ =

[υ1(τ), . . . , υnw(τ)], associated with the available process data, D = {τ(n),υE(τ(n))}Nn=1,

in expectation. As a result, the algorithm instead identifies a policy, which recovers the

characteristic behaviour of the existing scheme (as quantified via the feature counts

rather than objective performance, i.e. the state-value function in the initial state).

This major conceptual difference between the original AL algorithm (Abbeel and Ng,

2004) and the maximum entropy approach (Ziebart, 2010) is summarised by Fig.

2.12. Maximum entropy optimisation is a well-known idea, which has been applied

more widely within science and engineering (D’Alessandro et al., 1999; Tanyimboh and

85

Sheahan, 2002; Heckelei and Wolff, 2003; He et al., 2019; Cheng et al., 2019; Thebelt

et al., 2022). Given that this provides basis for one of the research objectives in this

thesis, we shall briefly review maximum entropy optimisation and its application to

sequential decision making problems.

(a) (b)

Figure 2.12: Informal intuition behind the differences between a) apprenticeship learn-
ing and b) maximum entropy inverse RL. In a) the problem is posed within ‘value
space’ (i.e. objective performance), whereas in b) it is posed directly in the space of
basis feature counts, which characterise the policy with respect to control objectives.

The principle of maximum entropy states that: given testable information, D =

{zn, r(zn)}Nn=1, where r(z) = [r1(z), . . . , rnw(z)], is a function of a discrete15 random

variable, Z ∼ pgt(z); the best approximating probability mass function (pmf), p(z) ≈

pgt(z), is the one that has maximum information entropy, H(Z), and satisfies the

constraint of testable information (Murphy, 2022; Amos, 2022).

To provide further intuition, we first provide insight on information entropy. The

information entropy of a random variable is defined as:

H(Z) = −
∑
z∈W

p(z) log p(z) (2.19)

where W ∈ Rnu is the support of the random variable, Z, and − log p(z) is the Shan-

non information, which can be thought as the information content of observing a

realisation of the random variable16 (Lombardi et al., 2016). Information entropy can

therefore be thought of as the expected information gain associated with observing

15This definition has been assumed for the purposes of notation; the ideas also extend to continuous
random variables.

16The basic intuition follows from the range of a logarithm over the domain provided by the range
of a valid probability mass function. As the probability of a realisation, z, tends to zero, the Shannon
information tends to infinity. Likewise as the probability mass of an event tends to one, the Shannon
information tends to zero. Hence the less likely an event is, the more information it provides about
the random variable.

86

an additional realisation of the random variable (Ronen and Karp, 1994; Muñoz-Cobo

et al., 2017). Hence, the approximating pmf, p(z), with greatest information entropy

that satisfies the constraint of testable information can be thought as the least biased

choice (Murphy, 2023).

The constraint of testable information has deliberately been left as a reasonably

obscure term until now. Given that one has many observations within the dataset, D,

an intuitive way to describe this data concisely is by its first two moments (i.e. mean

and variance) (Cover, 1999). In practice, we could constrain the approximating distri-

bution to satisfy both, however, in RL we tend to be most interested in what happens

in expectation. Under the assumption that we are interested just in expectation, we

can define the constraint of testable information as:

Ep(z)
[
ri(z)

]
= Ez∼D

[
ri(z)

]
, ∀i ∈ {1, . . . , nw} (2.20)

which constrains the approximating distribution, p(z), to match the testable informa-

tion (provided by the existing scheme in D) in expectation. With these two compo-

nents, one can define a primal problem to maximise Eq. 2.19 as the objective, with

constraints provided by Eq. 2.20. The decision variables are the values of the approxi-

mating distribution, p(z), over the support defined by W, and hence other constraints

that impose non-negativity and normalisation of these values are also defined (Cover,

1999). Full definition of the formulation, together with identification of its dual are

provided by Appendix A.5. It is worth noting here, however, that in the case that the

support, W, becomes continuous, the primal problem becomes infinite dimensional

providing barrier to computation (Ziebart, 2010). However, the problem is convex

and so the distribution can instead be identified by exploiting duality. The dual is a

maximum log-likelihood problem defined under the exponential distribution as follows:

max
λ

log p(D|λ) (2.21)

log p(D|λ) =
N∑
n=1

[
λTr(zn) + logA(λ)

]
(2.22)

where A(λ) =
(∑

z∼W) exp
(
λTr(z)

))−1
is the partition function, which enforces nor-

malisation of the exponential distribution; and λ ∈ Rnw are the Lagrange multipliers.

The problem reduces to identifying the Lagrange multipliers for the constraint of

testable information (note that generally nw is much less than |W|).

87

To approach the ambiguity of policy identification associated with the original work

in Abbeel and Ng (2004), Ziebart (2010) extended maximum entropy optimisation to

multi-stage decision processes. By identifying that the expert data is described by D =

{τ(n),υE(τ(n))}Nn=1, the methodology reformulates the IRL problem as maximising the

log-likelihood of observing the demonstrated behaviour under the maximum entropy

policy, which following from Eq. 2.21 takes the form:

max
λ

log p(D|λ) (2.23)

log p(D|λ) =
N∑
n=1

[
λTυE(τ(n)) + logA(λ)

]
(2.24)

where the partition function, A(λ) =
(∑

τ∼pπ∗
H

exp
(
λTυ(τ

))−1
, can be estimated

from the expected feature counts associated with the optimal maximum-entropy policy,

π∗
H , which induces some distribution over trajectories τ ∼ pπ∗

H
(τ). The policy, π∗

H is

optimal for an MDP with cost function defined as φ = λTϕ(xt, π
∗
H(xt),xt+1). Given

that we generally, assume the availability of a process model, the partition function

can be estimated directly through sampling. The intuition behind this formulation is

that the maximum entropy model of the existing scheme, places exponentially more

probability mass on those trajectories of lower cost (Ziebart et al., 2008; Finn et al.,

2016b).

A full derivation of Eq. 2.24 is shown in Appendix B.3 and its gradient with respect

to λ is also derived. Importantly, from the perspective of application, the methodology

enables one to recover the weights of a cost function that is either linear (Ziebart et al.,

2008) or nonlinear (Wulfmeier et al., 2016) in the basis functions, ϕ. When the cost

function proposed is linear, the estimation is also a convex problem, which ensures one

identifies a global solution for the set of basis functions and process data. Additionally,

the use of a cost function, which is linear in the parameters is particularly useful from

the perspective of interpretability.

Since the work of Ziebart (2010), a number of different IRL methodologies have

been presented. Particularly generative adversarial imitation learning (GAIL) (Ho

and Ermon, 2016), guided cost learning (Finn et al., 2016b) and adversarial IRL

(AIRL) (Fu et al., 2017) leverage some of the major advances in generative mod-

elling. Specifically, these methods exploit connections between generative adversarial

88

networks (Goodfellow et al., 2014), energy based models (Teh et al., 2003) and maxi-

mum entropy inverse reinforcement learning to identify an imitation, π, of an expert

policy, πE (Finn et al., 2016a). These methods in someway remove the ambiguity

behind defining basis functions, ϕ, with expert knowledge. This is achieved by essen-

tially forcing the policy to generate process trajectories, τ , (i.e. sequences of states

and controls) which are from the same distribution as that expressed in the expert

data, τ ∼ D. Another, main benefit of this approach is that it leverages more ex-

pressive cost functions (i.e. neural networks) than those that are linear or nonlinear

combinations of hand designed basis functions. This is of course at the cost of in-

terpretability, which is a key focus in engineering applications (Schweidtmann et al.,

2021; Steurtewagen and Van den Poel, 2021). Additionally, in chemical engineering

we often have knowledge of the key properties of the control task and so can design

features, ϕ, which both characterise the behaviour of the existing decision system and

provide control objectives.

Until now, the approach provided by inverse reinforcement learning has primar-

ily been ignored within the PSE and chemical engineering communities, although it

has been readily applied in robotics environments (Coates et al., 2009). Behavioural

cloning techniques have been more widely applied. This is primarily due to their

shared conceptual ground with supervised learning and model building practice. They

are also cheaper to implement computationally. However, there has been more recent

interest in the development of IRL approaches. For example, Anandan et al. (2022)

implemented an IRL approach to learn the behaviour of an existing NMPC scheme for

a crystallisation process. The results were compared to the behaviour of the NMPC

scheme on a computational representation of the ‘real’ process. The authors reported

that the IRL scheme was able to recover the behaviour of the NMPC approach and

also able to provide robust and stable control on the real system; highlighting a benefit

of the IRL approach over conventional behavioural cloning (Yoo et al., 2021b).

Having reviewed the key principles and ideas of (inverse) Reinforcement Learning

in sequential decision making problems as deployed in the research objectives presented

by this thesis, focus is directed towards the state-of-the-art works presented by the

PSE community in process control, online optimisation and in production scheduling.

89

2.2 Process control and online optimisation of batch

process systems

2.2.1 Batch and fed-batch process systems

In this section, the review will focus on the state-of-the-art methods used for data-

driven process control and online optimisation of batch processes. Focus is directed

here, primarily because these decision-making tasks occur over discrete and finite time

horizons (i.e. they are not continuous processes and infinite-horizon decision pro-

cesses), but also because the dynamics of these systems are subject to uncertainties.

Further the dynamics are also often nonlinear, which means propagating the uncer-

tainties associated with state evolution is an area of research focus, providing basis for

one of the items in this thesis.

From a high level, batch and fed-batch process systems deal with the conversion

of reactants input to a given equipment item to an output. The process output could

consist of multiple intermediate or final products (Rippin, 1993). There is a wide diver-

sity of batch and fed-batch processes ranging from biochemical fermentation processes

(Todaro and Vogel, 2014), to crystallisation (Benyahia et al., 2021; Zheng et al., 2022)

and emulsification (Stork et al., 2003; De Hert and Rodgers, 2017; Calvo et al., 2020),

as well as to catalytic chemical reaction processes, such as polymerisation (Zhang,

2008; Özkan et al., 2006) and hydrogenation of biomass (Biradar et al., 2014; Wang

et al., 2019a; Akhade et al., 2020). In the following, we will explore the major chal-

lenges and contributions to modelling and online optimisation of batch and fed-batch

processes. There are other aspects of batch process operations, such as state estima-

tion, soft-sensing and maintenance, which are well worth discussing, but out of this

scope of this thesis. For more discussion please see Kadlec et al. (2009).

2.2.2 Modelling approaches

For many batch process systems, discrete time process evolution of batch process sys-

tems can be well described by global process models, which are smooth functions of

the current system state and control, otherwise known as state space models. This is

primarily because, for example, changes in system composition and process operating

90

conditions are primarily driven by the reaction kinetic rates, enthalpies, macro-scale

volumetric flows, and energy losses from the system (i.e. they may be derived from

mass and energy balances) (Jakobsen, 2008). Subject to classical simplifying assump-

tions such as spatial homogeneity in composition and temperature, this ultimately

enables process description in terms of systems of ordinary differential equations and

mechanistic models.

However, if the assumptions and reasoning behind the derivations of the mechanis-

tic model do not well capture the real process, then predictions of process evolution

may incur high errors and mismatch (Sharma and Liu, 2022). For example, in build-

ing a mechanistic model we often assume that the state evolution is a time invariant

parametric function of the system state and control input (this gives rise to the term

time-invariant state space model). However, for more complex reaction systems this

is often not the case. An example of this arises in biochemical reaction systems using

cells, where the kinetics can often switch based on the underlying biochemistry of each

cell and the culture micro-environmental conditions (Almquist et al., 2014; Jing et al.,

2018). This phenomenon is often termed as non-stationarity in the process dynam-

ics (Yoo et al., 2021a,b). More widely speaking, there are a number of remedies to

handling mismatch in mechanistic modelling.

The first modelling paradigm to discuss is pure data-driven modelling (Fuentes-

Cortes et al., 2022; Sharma and Liu, 2022). Data-driven modelling has been an estab-

lished approach within the systems identification community for a long time (Chiuso

and Pillonetto, 2019). Broadly speaking the major methods used there can be sub-

divided into subspace and prediction error methods. In subspace methods, one can

efficiently identify linear time-invariant (LTI) models of process dynamics by exploiting

the singular value decomposition of the Hankel matrix, which (under some assump-

tions on the data-generation process) enables one to identify model parameters via

the normal equations (i.e. the solution to parameter estimation is globally optimal

and analytical) (Verhaegen, 2015). This enables one to avoid poor, low quality local

optima, but requires the dynamics to be well approximated via LTI dynamics. A

number of other subspace algorithms have been developed since to account for other

assumptions on data-generation (Van Overschee and De Moor, 1993; Katayama et al.,

2005; Ghosh et al., 2019; Cox and Tóth, 2021).

91

Figure 2.13: Bayesian neural networks have probability density functions over param-
eters and may be interpreted as an infinite ensemble of conventional neural networks,
each with unique point estimates for parameters.

However, as mentioned the assumptions of LTI can often be restrictive (i.e. the

evolution of state may not be well described as a linear combination of the current state

and control). This has led to the development and use of other more flexible model

classes such as the Hammerstein-Wiener (Wills et al., 2013; Wang and Georgakis,

2019), autoregressive models (Yang and Lam, 2019) and artificial neural networks (Lu

and Tsai, 2008; Yan and Wang, 2012; del Rio-Chanona et al., 2016). Additionally,

there are probabilistic data-driven models, which instead of providing a determinis-

tic prediction about the evolution of state, forecast state evolution via a conditional

probability density function (cpdf). This cpdf may express the aleatoric model un-

certainty (i.e. that irreducible uncertainty that represents the natural variation of the

data-generating process) alone or also the epistemic (i.e. that reducible part of model

uncertainty, which could be decreased with more data). Examples of these models

include heteroscedastic noise neural networks (Yang and Chen, 1998), and Bayesian

neural networks (BNNs) (Hernández-Lobato and Adams, 2015) and Gaussian pro-

cesses (GPs) (Williams and Rasmussen, 2006), respectively. It is important to note

that GPs are non-parametric in that, although they do have hyperparameters, the

92

Figure 2.14: Expression of a Gaussian process posterior distribution for the modeling
of a smooth noiseless function. The figure demonstrates the effects of an increasing
number of data points in the model (a) 5, b) 6, c) 7 data points). In this instance,
increasing the number of data points reduces the epistemic uncertainty estimate and
the mean GP prediction becomes a better representation of the ground truth.

mechanism for inference exploits statistical relationships asserted to exist in the avail-

able data. This is opposed to generating predictions via the composition of parametric

functions of the current state and control as in the case of neural networks. Further

intuition behind BNNs and GPs is provided by Fig. 2.13 and 2.14. The parameters

for all the models mentioned may be identified via the prediction error method, which

is essentially a term descriptive of iterative, search-based Bayesian and Frequentist

estimation routines (Astrom, 1979). Additionally, all of these models possess model

structures uninformed by mechanistic knowledge. Rather the model structure typi-

cally enters as a hyperparameter, which must be optimised via methods such as, for

example, random search (Bergstra and Bengio, 2012), grid search (Liashchynskyi and

Liashchynskyi, 2019), Bayesian optimisation (Frazier, 2018), population based train-

ing (Jaderberg et al., 2017), as well as other stochastic search optimisation routines

(Aszemi and Dominic, 2019; Lorenzo et al., 2017). However, the selection of these

hyperparameter optimisation routines should consider a) the available computational

budget and b) the expense of training and evaluating a model. Classical objectives in

these hyperparameter optimisation problems are the k-fold mean squared error (Ro-

driguez et al., 2009; Fushiki, 2011) or other information criteria such as the Akaike

(AIC) and Bayesian information criteria (BIC) (Konishi and Kitagawa, 1996). The

use of information criteria has the particular benefit of incurring lower computational

cost than k-fold, however, it is generally unclear which information criteria is actually

best to use for a given modelling problem (Dziak et al., 2020).

93

Data-driven modelling has been widely used for modelling of dynamics in batch pro-

cess systems. A recurrent neural network configuration was used in Zheng et al. (2022)

to model the dynamics of a batch crystallisation process. Although the study was

purely computational and leveraged a first-principles mechanistic model as a means

of data generation; the proposed approach was able to accurately approximate the

temporal evolution of temperature, solute concentration and crystal number produced

by the mechanistic model. Whereas, Chen et al. (2022) utilised GPs to identify nonlin-

ear batch process systems from an impulse response. Similarly, Bradford et al. (2018)

demonstrated the use of GP state space models and artificial neural networks for mod-

elling and dynamic optimisation of algal production processes. The GP approach was

demonstrated to be particularly powerful for predicting the evolution of nitrate and

the bioproduct (Lutein) concentration, however, the ANN was able to better predict

biomass concentration. Further benefits of the GP were the ability to account for model

uncertainty in the dynamic optimisation formulation, something that the ANN is not

able to do naturally. Efforts have been made to account for the uncertainty of ANNs,

primarily through the use of bootstrapping approaches. For example, Zhang (2004)

presented a bootstrapped ANN approach to modelling polymerisation processes and

this framework was also used for model identification and batch-to-batch optimisation

in Zhang (2008).

Generally, all of the works detailed so far, which utilise data-driven models, have

made approximations to state evolution between discrete time indices (i.e. via xt+1 =

f(xt,ut)). More recently a set of methods known under the umbrella of neural ordinary

differential equations (NODEs) have been proposed to enable data-driven approxima-

tions to continuous-time dynamics (Chen et al., 2018a). Although, their application in

the context of PSE has been relatively limited, they have been applied within a two-

step framework, as proposed by Bradley and Boukouvala (2021), for the purpose of

estimating mechanistic model parameters. The reasoning behind this is that NODEs

can accurately estimate the time derivative of a system’s state based on available

data, hence their use for parameter estimation of more interpretable mechanistic mod-

els removes the requirements for schemes such as single and multiple shooting, and

collocation to transcribe the ODE system into an NLP formulation (these schemes are

described in more detail in the next section). Instead, the system is described purely

94

by the derivative predictions from the NODE and the interpretable mechanistic ex-

pressions derived from physical and chemical knowledge and is hence directly an NLP

(i.e. not reliant on transcription via shooting). This allows for parameter estimation

of multiple different models in one procedure, in the case that there is structural ambi-

guity. However, the estimation of NODEs is typically conducted via a single shooting

procedure and they are known to be difficult to train (Turan and Jäschke, 2021).

Hence, the potential benefits of this indirect approach are likely to be realised on a

case-by-case basis. For more discussion regarding data-driven approaches to model

identification, the interested reader is referred to Fuentes-Cortes et al. (2022); Thebelt

et al. (2022); Pan et al. (2022).

The major differences in data-driven and mechanistic modelling essentially boil

down to the following:

• Data-driven modelling is an excellent approach to making highly accurate inter-

polative predictions. However, the mechanistic model structure provided by first

principles and semi-empirical approaches is amenable to extrapolating beyond

the domain in which one has data.

• Additionally, mechanistic models have interpretability, which is largely lost when

using a data-driven model such as a GP or BNN. There are methods that aim to

provide interpretability for data-driven approaches, but they are comparatively

limited relative to the clarity provided by mechanistic expressions (Doshi-Velez

and Kim, 2017).

In order to combine the benefits of both approaches, there is interest in integration

of both data-driven and mechanistic modelling in the form of hybrid modelling. An

excellent overview of this area is provided by Duarte et al. (2004); Von Stosch et al.

(2014); Sharma and Liu (2022); Fuentes-Cortes et al. (2022); Bradley et al. (2022).

The major ideas used in construction of hybrid models is that: there can be a) a serial

arrangement of mechanistic and data-driven models, with the data-driven model used

to dynamically predict parameters in the mechanistic model; or b) the two can be

deployed in a parallel arrangement where the data-driven model is used to predict the

process-model mismatch. For example, Zhang et al. (2020b) utilised a serial approach

to identify an approximation to a lutein photoproduction process. Whereas, Chen

95

et al. (2004) presented a serial approach to modelling a CSTR. In both cases, this

essentially allows the data-driven model to ‘mop’ up what is not captured by the

mechanistic model. However, in the arrangement provided by a) there is a degree

of ambiguity regarding those parameters to hold constant and those that one should

predict via the data-driven model. Conventionally, such ambiguities are handled either

by using existing process knowledge, conducting further experiments and collecting

more data (Von Stosch et al., 2014), or superstructure-based parameter estimation

schemes (Wieland et al., 2021; Zhang et al., 2020b). However, given a) the use of

hybrid models implies a lack of of process knowledge, b) there is expense associated

with further data collection in process systems, and c) superstructure approaches for

hybrid models can provide very large mixed-integer NLP; currently there is an open

question as to how to resolve this ambiguity for hybrid models beyond manual and

iterative model construction, especially when using neural networks (i.e. parametric

models with many parameters).

Having outlined the major ideas in modelling of batch process systems, we now turn

our attention to the solution approaches available for their use in process optimisation.

2.2.3 Solution approaches

In this section, we will review the major solution approaches to online optimisation

of batch process systems when an approximate process model is available. Model

predictive control (MPC) is the benchmark scheme in the domain of advanced process

control and optimisation (APC) (Rawlings et al., 2017). The general idea of MPC

follows: given the current state of the system, identify a discrete and finite sequence

of control inputs that optimises the temporal evolution of a dynamical system over a

discrete time horizon according to some objective function and operational constraints.

Then input the first control in the sequence to the real process system and wait until the

process transitions to the next time index, at which point observe the new state of the

process and then subsequently re-optimise. This is essentially a way of incorporating

state feedback into the decision-making process (Lee, 2011). The time horizon may

either shrink or remain the same length at each iteration. The former is known via

shrinking-horizon and the latter via receding-horizon MPC. The latter is summarised

by Fig. 2.15.

96

Figure 2.15: Demonstration of the use of state-feedback in receding horizon MPC for
online optimisation of an uncertain, nonlinear fed-batch process. Optimised forecast
and evolution of a) the state trajectory, and b) the control trajectory (composed of
piecewise constant control inputs).

MPC is a direct approach to optimal control and is reliant upon the identification

of some finite dimensional description of process evolution as a model. Various dis-

cretisation schemes, such as direct single-shooting, direct multiple shooting and direct

collocation (Kelly, 2017), can be deployed to identify finite dimensional expressions

when the underlying model is an ODE. These methods essentially transcribe the con-

tinuous time problem into a discrete-time problem, with a general NLP form. For

example, single shooting discretises the control profile into such that the control input

is parameterised locally over a number of finite time intervals (i.e. it is typically piece-

wise constant as in Fig. 2.15) (Ou et al., 2022). The state profile is then constructed

by integrating the ODE system from the initial state over the time horizon, subject to

changes in the control profile (Rawlings et al., 2017). This means that the state vari-

ables at each discrete time interval do not actually enter into the optimisation problem.

Instead, the only decision variables are the parameters determining the local control

parameterisations. Additionally operational constraints can be handled by enforcing

they are satisfied at the discrete time indices that each local control parameterisation

is updated.

However, single-shooting is known to run into problems for nonlinear systems with

long time horizons and can produce non-physical state profiles due to a propagation

of errors if the initial guess for the optimal control parameterisation is not close to

optimality (Hussein et al., 2019). Hence, multiple shooting is often used to provide

remedy (Baake et al., 1992). Multiple shooting follows the same intuition as single

97

shooting, but now the state variables at each time interval also enters as a decision

variable. This is enabled by decomposing the original system into a number of separate

dynamic systems (one for each discrete time interval). Each system is then integrated

according to an initial state and the local control parameterisation in the same way

as in single shooting but simply over the time interval rather than the entire horizon.

To ensure the continuity of the overall state trajectory, the final state of a given sub-

system is constrained to be equivalent to the initial state of the next (Beintema et al.,

2021).

The final direct transcription method widely used is direct collocation. Direct col-

location discretises both the state and control profiles in a similar way to multiple

shooting, however the state evolution over each local time interval is instead approxi-

mated via orthogonal polynomials. The problem then reduces to identifying the state

profile, the parameters of the polynomials and the local control parameterisations.

Collocation is particularly advantageous for nonlinear systems with path constraints

as it enables one to easily enforce constraints at discrete points (known as collocation

points) within a finite time interval (Arellano-Garcia et al., 2020). For more infor-

mation on these methods the reader is directed to Gautschi (1996); Tjoa and Biegler

(1991); Kelly (2017); Rawlings et al. (2017).

The major benefit of MPC is that if operational constraints are imposed upon

the problem and the underlying model is a perfect description of the system, the

solution identified will be (at least locally) optimal under both the dynamical model

and operational constraints, given that the control solution must satisfy the Karush-

Kuhn-Tucker (KKT) conditions. Various feasibility and stability guarantees can also

be provided under appropriate assumptions. However, if the dynamics are subject

to general uncertain elements (e.g. disturbance and parametric uncertainties), then

various formulations, which consider this uncertainty are required. Perhaps the most

known formulations are robust and stochastic MPC. In the following, discussion will

focus most on solution methods applicable to the use of nonlinear models.

Robust MPC typically comes in two flavours, in both cases one typically assumes

98

the uncertain parameters, s ∈ S ⊂ Rns ,17 belong to a compact set. The first is mini-

max MPC. To the author’s knowledge no minimax formulations exist for systems with

nonlinear dynamics, however, for linear systems it can optimise for the worst-case un-

certainty. Beyond lacking the ability to handle nonlinear dynamics, the major trouble

with minimax is that it can be conservative and generally becomes computationally

intractable for anything other than short time horizons (Lofberg, 2003). However,

in the case that one has an additive disturbance and linear dynamical system, then

approximate problems may be identified through reformulation and efficiently solved

instead (Löfberg, 2003).

A more popular approach to robust MPC is provided by tube-based MPC, which

has been applied to both linear (Fleming et al., 2014; Rawlings et al., 2017; Langson

et al., 2004) and nonlinear systems (Cannon et al., 2011; Mayne et al., 2011). The

high-level idea here is that as the system transitions between discrete time indices, the

system state will vary within some ‘tube’ around the nominal state evolution. The

intuitive idea of tube based robust MPC is then to essentially make an adaptation

to the nominal control input, in order to drive the system towards the reference tra-

jectory provided by the nominal state profile. As a result, the system will vary some

distance around the nominal profile, such that a ‘tube’ is constructed centred around

the nominal profile as the system evolves through time (Zeilinger et al., 2014). In the

case that the uncertain parameters are not described by compact sets, then operational

constraints may be tightened to ensure their probabilistic satisfaction (Rawlings et al.,

2017) through formulation of what is known as chance constraints (Nemirovski and

Shapiro, 2006). However, if the uncertainty is described by compact sets, constraint

tightening can enable constraint satisfaction absolutely (Köhler et al., 2020).

Stochastic MPC formulations instead attempt to optimise for the expected perfor-

mance of the system and typically handle constraints probabilistically via chance con-

straints (but they can also be handled robustly if the uncertainties belong to compact

sets). Excellent overviews are provided in Mesbah (2016); Heirung et al. (2018); Farina

et al. (2016). Generally, this requires propagating the uncertainty associated with the

state over the discrete time horizon. Chance constraints can be handled by backing off

17As before these uncertain parameters may be descriptive of parametric uncertainty or some, for
example, additive disturbance.

99

the nominal state from the constraint boundary to allow for process variation. In non-

linear systems, this can become challenging, given that nonlinear transformations of

distributions do not preserve their form (i.e. a nonlinear transformation of a Gaussian

random variable is no longer Gaussian). As a result, in nonlinear systems a number of

methods exist to propagate uncertainty to handle constraints. The first approach is to

conduct closed-loop Monte-Carlo simulations offline to estimate the back off distance

for the purposes of computation online. This has been demonstrated in both hybrid

and purely data-driven Gaussian process models (Bradford et al., 2021b, 2020).

The second approach to mention is encompassed by the unscented Kalman filter

and the concept of sigma points (Garćıa-Fernández et al., 2015), which essentially

enables one to make Gaussian approximations to nonlinear transformations of Gaus-

sian random variables (Bradford and Imsland, 2018). Chance constraints can then

be handled through use of statistical inequalities, which enable identification of de-

terministic finite-dimensional surrogate expressions that are functions of the expected

uncertain state and state covariance matrix at a given discrete time index, as well as

the probability with which one would like to satisfy the constraints (Paulson et al.,

2020). In the case of more than one operational constraint (i.e. joint chance con-

straints), this reformulation is encompassed by application Boole’s inequality and the

Cantelli-Chebyshev inequality (Lin and Bai, 2011). For example Bradford and Im-

sland (2018), used sigma points to propagate uncertainty in an NMPC scheme for

a chemical catalytic fed-batch reactor. The results demonstrate that the higher the

probability of constraint satisfaction defined, the more conservative the performance

in the process objective. This represents a trade-off to be considered by the process

operation. Meanwhile, Thangavel et al. (2020) demonstrated uncertainty propagation

via sigma points and then subsequent tight box over-approximations to the uncertain

state at each discrete time index in the horizon to ensure constraints robustly for a

semi-batch polymerization reactor. This is enabled because box sets are compact. The

tightness of these over-approximations reduces conservatism often observed in classic

robust approaches.

Another approach to propagating uncertainty is provided by polynomial chaos ex-

pansions (PCEs), which again use orthogonal polynomials, but this time within the

context of approximating the probability density functions associated with the state

100

discrete-time trajectory (Mesbah et al., 2014). PCEs allow for one to approximate

both the mean and variance of the pdfs via the deterministic coefficients of the poly-

nomials and hence to handle chance constraints. However, the approximation of these

moments is known to be sensitive to specific hyperparameters within the scheme that

are generally difficult to validate Paulson and Mesbah (2018).

Perhaps the final means of uncertainty propagation is the approach provided by

stochastic programming. Essentially, this consists of generating multiple scenarios by

realising uncertain parameters, incorporating them into a model and then enforcing

constraints. Solution to this approach identifies a) a here and now decision (as an

immediate control input) and b) recourse decisions, which are used to react to the

uncertainty as realised in the future (de la Penad et al., 2005; Yu and Biegler, 2019).

However, when the number of scenarios used in the model is low, constraint satisfac-

tion in reality can become problematic, primarily because the empirical distribution

sampled does not well approximate the underlying reality (Mesbah, 2016). Further

given that the first two moments of the state trajectory are not approximated, classical

deterministic reformulations of chance constraints cannot be readily used. However,

there are means by which to determine the number of scenarios required to ensure

constraints with a given probability, although generally these ideas are attributed to

the robust optimisation community (Campi et al., 2009). Clearly, however, as the

number of scenarios grows, the size of the resultant model can cause solution to be-

come intractable18. This has led to interest in various decomposition schemes, which

enable one to separate a large problem into relatively smaller sub-problems (Birge,

1997; Kang et al., 2015; Krishnamoorthy et al., 2019). Although some degree of cen-

tralised computation is retained, this enables one to exploit parallel computation for

solution (Marti et al., 2015). Other works look to selectively generate the scenario

tree by identifying worst-case uncertainties, essentially reducing the size of the model

and retaining tractability, whilst handling constraints (Krishnamoorthy et al., 2018;

Holtorf et al., 2019; Shang and You, 2019).

Having reviewed the major mathematical programming solution approaches19 to

18In the domain of linear dynamics models, convex approximations to the original problem may be
obtained as demonstrated in the scenario community (Campi et al., 2009).

19Other formulations exist including distributionally robust model predictive control. We direct
the reader to Zhong et al. (2022, 2021) for more information.

101

online optimisation of batch processes, focus will now be directed towards a review of

production scheduling within the process industries. These problems share similarity

to both MDPs and batch process systems in that production schedules are typically

generated over discrete, finite time horizons and plant dynamics are also subject to

uncertainties.

2.3 Production scheduling

The process industries are ultimately concerned with identifying the most cost effec-

tive and efficient route to convert raw materials into products that can be sold at

a price determined by the market. However, the most efficient route is not deter-

mined solely by an underlying physical process or chemical reaction mechanism. It is

also determined by the operational decisions taken within a processing environment,

which affect for example, the availability and inventory of materials, as well as the

timing, sequencing and sizing of production operations within the plant (Castro et al.,

2018). These decisions have influence not only the cost effectiveness and efficiency of

production, but also relationships held between the producer and client (Payne and

Frow, 2006). For example, timely and reliable delivery of products to clients has a

positive effect on a company’s reputation. Whereas unreliable and late deliveries have

the potential to destroy a client’s perception of a company. These considerations are

present in almost all manufacturing industries, which in the UK contributed to over

£402 billion20 of domestic sales in 2019 (ONS, 2021).

The operational decisions described are ultimately captured by production schedul-

ing and tactical supply chain management decisions. Generally, production scheduling

decisions are identified within offline decision-making environments (Verderame et al.,

2010). In the offline scheduling domain, for example, scheduling decisions are identi-

fied over a time horizon. The reasoning for this primarily arises in the requirement

to provide staff with a degree of certainty over the future production operations, and

less so for the purposes of optimality. Additionally, these problems are often described

by large MILP, which means iteratively solving these problems in a fashion similar to

MPC is often not feasible. As a result, as we shall see in Section 2.3.3, this leads to a

20This figure was reported as it reflects what one would deem ‘normal’ production levels, since
given the COVID-19 pandemic these figures have fallen nearly 10% (ONS, 2021).

102

Figure 2.16: Intuition behind the decisions provided by the scheduling function and
its interaction with the plant and upper-level supply chain management functions.

focus on the notion of robustness in generation of the schedule. This is primarily be-

cause the scheduling problem is in fact subject to elements of uncertainty. For example,

client demand is rarely known with certainty over the time horizon, one would like to

optimise for. Additionally, uncertainty arises within the plant via e.g. batch processing

time uncertainties, and unit availability may be subject to uncertain unit breakdowns

(Gupta et al., 2016). As we saw in Section 2.1.1, optimal decision-making is reac-

tive to realisations of uncertainty. This has led to interest in resheduling and online

scheduling paradigms, where the schedule may be re-computed via a receding-horizon

MPC type approach at discrete instances in time (Tang et al., 2010; Subramanian

et al., 2012; Georgiadis et al., 2019). Alternatively, reactive scheduling decisions may

be made through use of rule-based heuristics developed within the operations research

(OR) community or knowledge held by operatives (Harjunkoski et al., 2014). Intuition

behind the scheduling function is provided by Fig. 2.16.

In the following, we will explore the major classifications of production environ-

ments, as well as modelling and solution approaches for production scheduling prob-

lems.

103

2.3.1 Classification of batch production environments

Regardless of the decision-making environment, the ultimate modelling and therefore

solution approach will largely be governed by the nature of the underlying production

environment. Broadly speaking, the batch industry can be subdivided into sequential,

network and hybrid processing environments. In all of these classifications given the

available equipment items, the scheduling function may be required to assign, sequence

and size production tasks in equipment items through time. Generally, this is under

the assumption that production of each batch has a processing time and converts

available raw materials to potentially multiple products, and that there is a finite

number of resources within the plant. Even though the scheduling decisions required

across these environments are similar, their classification has an effect on the nature

of the decisions required by the scheduling function.

Sequential production environments

Sequential production environments are thought as more widely within the OR com-

munity as flexible jobshop or flexible flowshop problems, provided no sizing decisions

are required (Maravelias, 2012; Méndez et al., 2006). In the following, we shall explore

the major subdivisions of batch sequential production environments: multistage and

multipurpose problems.

The multistage batch environment essentially requires the conversion of raw mate-

rials to final products via the a sequence of intermediate production stages. Intuition

is provided by Fig. 2.17. Each equipment item is limited to processing one produc-

tion job at a time, a finite subset of the equipment can process in parallel within a

given stage, and no splitting or mixing of a batch (job) is allowed throughout the

sequence of process stages. For example, this is common in manufacture of active

pharmaceutical ingredients where batch identifiability needs to be retained inline with

good manufacturing practice (GMP) (EMA, 2000). Additionally, all the products go

through the stages in the same sequence (although products may skip a processing

stage). Multistage multiproduct problems are generally known within the operations

research community via the flexible flowshop description (Méndez et al., 2006).

Multipurpose production environments might also consist of multiple stages of

production. However, the major difference here is that the products do not need to

104

Figure 2.17: Multistage batch production environments. Here, a two stage production
environment is shown. Reactants are converted to intermediates and then products
through multiple processing steps.

be processed in the same sequence of stages (Maravelias, 2012). Additionally, mixing

and splitting of batches is not allowed, however, a product might observe the same

stage twice within the sequence of operations. Multipurpose problems are known via

the flexible jobshop description. General batch environments that allow for mixing

and splitting are also common within industry. These processes are considered more

widely under the network classification, which will be discussed subsequently.

Network production environments

In network processing environments, there is free mixing and splitting of batches, and

material can flow from storage vessels to reactors and to subsequent storage (provided

appropriate assumptions on connectivity are made). Given that material can be mixed

freely the concept of a batch essentially becomes redundant. Similarly, the concept of

a production stage becomes ill defined as the route for a product is generally flexible.

To handle this the frameworks provided by the state-task network (STN) and resource-

task network (RTN) have been deployed as process modelling frameworks (Maravelias,

2012).

Generally, however, many production environments consist of both sequential and

network structures and so hybrid structures also exist. This is discussed at length in

Maravelias (2012) and we direct the reader for more information.

2.3.2 Modelling approaches

The major modelling considerations within production scheduling problems are the

framework chosen for a) representation of time and b) representation of production

105

environment. We briefly discuss different approaches in the following.

Representations of time

The representation of time within scheduling models is a key consideration. Broadly

speaking there are two approaches for the explicit handling of time: discrete-time

models and continuous-time models. Both approaches essentially operate by defin-

ing a time-grid. Discussion is focused towards the modelling of time in sequential

environments.

In discrete-time models, the time horizon is discretised into a finite number of time

intervals (in a similar manner to which control trajectories are discretised within MPC

approaches) either specific to a unit or globally for all units (Velez and Maravelias,

2013). A production task is then assigned to a unit at a given time index, with the

operation terminating at the boundary of a given time interval. In general, units

can process one production task or job at a time, and so the scheduling model will

then require that no other production jobs be assigned to the unit for the process

time of the task allocated, which may span multiple time intervals (Floudas and Lin,

2004). Generally, discrete-time formulations lead to relatively large MILP model sizes.

This is because for inherent sub-optimality not to be introduced into the model, the

discrete-time interval should be the greatest common factor of all processing times

(Maravelias, 2021b). If this is not the case, production tasks may finish in the middle

of a time interval, which can then lead to under-utilisation of the equipment (given

that a production task may only be assigned to a unit at a given time index). In

order to handle these larger model sizes, interest has been placed in enhancing the

efficiency of optimisation. This has been approached from the perspective of adding

additional ‘valid inequalities’ or inequality constraints to reduce the number of infea-

sible subproblems identified through the iterative search of branch and bound-based

solvers (Dedopoulos and Shah, 1995; Sundaramoorthy and Maravelias, 2008). Other

approaches have explored the use of decomposition techniques, exploiting the temporal

structure of the problem (Bassett et al., 1996).

Whereas, in continuous-time models the time horizon is not discretised but rather

events are defined according to the sequencing of production tasks. Continuous-time

formulations provide much smaller MILP models than discrete-time models, and as

106

Figure 2.18: Discrete-time and continuous-time modelling of time. In both cases unit-
specific representations are shown (i.e. the handling of time is not global).

a result the majority of sequential production environments utilise continuous-time

formulations (Harjunkoski et al., 2014). The time at which events take place is essen-

tially dictated by the sequence of tasks in equipment items and the processing times

of those events. However, the manner in which event points are determined depends

on approach. Firstly, there is a precedence based approach, which builds the time-

grid implicitly by determining the sequence of tasks in units. It is relatively intuitive

(Cerda et al., 1997; Liu and Karimi, 2008), but suffers from worse relaxations due to

e.g. Big-M reformulations of bilinear terms (Harjunkoski et al., 2014; Castro et al.,

2018). Alternatively, there are slot based representations, which require one to prede-

termine the number of event points (which is not a trivial exercise) but result in tighter

models. As a result, event points may be specific to a unit or global (Mouret et al.,

2011; Maravelias, 2021b). For example, Liu and Karimi (2008) present a continuous-

time precedence based MILP model for a multistage sequential environment. Whereas,

Mouret et al. (2011) explore use of slot-based representations. Intuition is provided

by Fig. 2.18.

Representations of production environment

In general sequential production environments, there is no mixing and splitting of

batches. This allows for one to model the relationship between the objects at hand,

107

which are production tasks, i ∈ I, and units, j ∈ Jk, which belong to respective stages,

k ∈ K (Georgiadis et al., 2019). The aim of the scheduling function is then to identify

the assignment and sequencing of those operations over the time horizon, subject to

the constraints imposed on job route.

There are multiple process representations in sequential environments, however

an example is the disjunctive graph (which applies more specifically to multipurpose

environments, i.e. job shops) (Šeda, 2007). The graph itself is defined by a set of

vertices, which define production tasks and each vertex is associated with features that

identify the job (batch) and the respective stage/task. The graph is also composed of

edges which connect any two vertices. There are two types of edges: disjunctive, which

are undirected and whose features define the unit capable of processing the tasks the

edge connects; and conjunctive, which are directed and defines the viable sequence of

tasks that a job (batch) can be processed by. All initiating tasks associated with a

job are connected to a dummy vertex, as are all terminating tasks. Disjunctive graphs

have utility in providing visual definition of the allowable operations within a jobshop

and hence can be used to inform definition of an optimisation model (B lażewicz et al.,

2000). Additionally, a schedule may be identified by turning each disjunctive edge into

a directed edge. This enables one to define the sequence of production tasks within

units and allows one to define the state of the job shop at any given time (Zhang et al.,

2020a; Park et al., 2021). For more discussion of process representation in sequential

environments please see Šeda (2007); Panwalkar and Koulamas (2019).

There have been a number of different MILP models defined for sequential envi-

ronments. There is large heterogeneity between these models primarily due to the

diversity in different production environments. For example, in Cerda et al. (1997),

the authors presented a continuous-time MILP formulation for a single-stage multi-

product facility with multiple units operating in parallel. The basis of the model is

the identification of a viable sequence of jobs in equipment items, and as consequence

the timing at which these operations take place. However, the model does not con-

sider basic restrictions on resources or materials. This leads to for example, works

such as Méndez et al. (2000), which extend the model (of Cerda et al. (1997)) to

account for storage constraints. Similarly, work by Sundaramoorthy and Maravelias

108

(2008) demonstrates a continuous-time MILP model for a multi-stage sequential pro-

duction environment, which also allows for batching decisions to be made; whereas

Sundaramoorthy et al. (2009) present a discrete-time MILP model for a multi-stage

sequential production environment where batching decisions are not required, but util-

ity constraints are imposed.

Meanwhile, in general network production, mixing and splitting of batches may

be allowed and basic restrictions on resources, such as storage should be considered

to ensure feasibility. Therefore, a minimum requirement for the development of an

efficient and general mathematical model for a network production environment, is

the ability to define the relationships between resources (such as raw materials, inter-

mediates, final products, utilities, equipment items, etc.) and production tasks (e.g.

operations which transform materials). This has led to the development of various

process modelling frameworks including: the state-task network (STN), as proposed

in Kondili et al. (1993); Shah et al. (1993) for discrete-time and in Maravelias and

Grossmann (2003) for continuous-time representations; and the resource-task network

(RTN) (Pantelides, 1994; Castro et al., 2004). These frameworks enable one to graph-

ically and mathematically represent the relationships of material transformation and

resource utilisation within the plant and as a result to consider general production

scheduling restrictions. The STN represents the relations between states (i.e. the con-

suming and produced materials) and production tasks. Whereas, the RTN is slightly

more general and considers not just the material - production task relationship, but

the relationship between general resources (as mentioned above) and production tasks.

The STN and RTN are detailed by Fig. 2.19a) and b) respectively. The STN and

RTN provide basis for many optimisation models and frameworks proposed for net-

work production scheduling and integrated problems, as demonstrated in for example

McAllister et al. (2022); Perez et al. (2022); Castro et al. (2018).

Having formalised the major modelling approaches, we now explore the major

solution approaches.

2.3.3 Solution approaches

Solution approaches can be broadly separated into exact methods and heuristic meth-

ods. Both will be explored in the following with focus on handling uncertainty.

109

(a) (b)

Figure 2.19: a) The state-task network (STN) process representation and b) the
resource-task network (RTN) process representation. The states in a) and resources
in b) are represented by circles, whereas the production tasks are represented by rect-
angles.

Exact solution methods

Exact solution methods to MILP problems are essentially encompassed by branch and

bound methods and other MILP solvers. These primarily rely on use of nominal data

within the model. There are stochastic and robust formulations, however, which we

will explore in the following.

Stochastic approaches to scheduling generally rely on describing uncertain param-

eters from known distributions and then constructing deterministic MIP models and

solving them within the framework provided by stochastic programming. An excel-

lent review is provided by Li and Grossmann (2021). In cases where the support

of uncertain parameters is continuous21 or the uncertainty is realised at numerous

time indices within the horizon, the size of the model generally becomes intractably

large if exact description is used. This leads to the use of approximate formulations,

such as two-stage and multi-stage stochastic programming. The general idea here

is that instead of describing the uncertainty exactly, one can instead solve a smaller,

21In the case of multiple uncertain parameters, this point applies even to incidences where the
support for a variables is small and discrete. See Shapiro and Philpott (2007) for more discussion in
this vein.

110

Figure 2.20: An example of two-stage stochastic programming. Uncertainty is gener-
ally assumed to be realised once within the time horizon.

finite-dimensional deterministic model with approximate description of the uncertainty

provided by Monte Carlo sampling of uncertain parameters.

In two-stage stochastic programming, the uncertainty is assumed to be realised

once within the time horizon. In the first stage, decisions are identified with certainty,

and in the second stage recourse decisions are identified to react to the different re-

alisations of uncertainty (Ruszczyński and Shapiro, 2003). As a result, the number

of recourse decisions essentially grows linearly with the number of scenarios. Only

the decisions known with certainty are then implemented, with recourse decisions re-

identified later in the decision process. This is described by Fig. 2.20. This means that

stochastic programming is ideally suited to online receding horizon implementations

given that the recourse decisions are not known with certainty. Multi-stage stochastic

programming follows exactly the same idea, but now uncertainty is realised at multiple

points within the decision horizon (Shapiro et al., 2021). As a result, the number of

recourse decisions grows linearly in the number of stages and number of realisations at

each stage. The use of stochastic formulations is arguably much more prevalent within

production planning (tactical supply chain operations), primarily because the problem

class observed there tends to be LP, rather than MILP (Li and Grossmann, 2021) pri-

marily because these problems tend to deal with material flow rather than assignment

decisions as in production scheduling. However, application of stochastic programming

to scheduling has been demonstrated in a number of works. For example, Chu and

You (2013) demonstrate an integrated production scheduling and dynamic optimisa-

tion approach for batch process systems with two-stage stochastic programming. They

take advantage of the structure of the problem via decomposition methods enabling

identification of a solution in a number of hours of computation time. Similarly, Sand

111

and Engell (2004) propose a stochastic programming model for online scheduling of

a batch polystyrene network production environment. Again, they utilise decompo-

sition methods to enhance computation. Zhang et al. (2016) present an integrated

production scheduling and electricity procurement stochastic programming model to

handle uncertainty in demand and electricity price. They demonstrate the ability to

pose risk-sensitive formulations such as the conditional value-at-risk. With the use of

relatively few scenarios and advanced decomposition techniques the model could be

solved to an optimality gap of a few percent within two hours. Finally, Ye et al. (2014)

demonstrated a stochastic programming approach to production scheduling in a large-

scale steelmaking continuous casting process under demand uncertainties. The model

solution time was on the order of hours. The computational times reported for both

Zhang et al. (2016); Ye et al. (2014) were reliant on scenario reduction techniques that

aim to pick a subset of the scenarios in the full space model that best represent the un-

derlying uncertainties (Li and Floudas, 2014, 2016). Solutions to the full space models

defined took significantly longer. This generally limits the applicability of stochastic

programming based solution approaches in the context of online decision processes.

The other uncertainty aware formulation for production scheduling is provided by

robust optimisation approaches. As mentioned in previous sections a key idea in ro-

bust optimisation is to optimise for the worst-case scenario within an uncertainty set.

This enables use of a much smaller model than in the case of stochastic programming.

However, it tends to produce more conservative solutions because it generally does not

consider the option for recourse decisions to be made later in the time horizon. For

example, Li and Ierapetritou (2008a) examine different robust formulations to pro-

duction scheduling within a network production environment (the model is based on

the STN representation) with uncertain processing times and demands. They discuss

the benefits of satisfying constraints with some probability rather than robustly and

highlight that this results in a less conservative solution. Zhang et al. (2018) present

a method that is able to consider the correlation between parameters, which together

with a cutting plane method is able to reduce the size of classical uncertainty sets

(e.g. ellipsoid, box etc., see Ben-Tal et al. (2009) for more information) estimated on

parameters. This has the effect of reducing conservatism in the solution. This was

demonstrated via scheduling of an ethylene production operation with uncertainty in

112

the consumption rate of fuel gas. Finally, more recent work via McAllister et al. (2022)

has extended previous ideas presented in Gupta et al. (2016); Subramanian et al. (2012)

that drew connections between the online scheduling problem and model predictive

control. Specifically, McAllister et al. (2022) utilised ideas in tube-based robust non-

linear model predictive control to ensure robustness in rescheduling policies derived

from a discrete-time MILP formulation. This is achieved by essentially constraining

the solution to satisfy some terminal set. This also enables one to consider shorter

time horizons, but requires the availability of a nominal reference solution (which is

used to construct the terminal set). Clearly, this is a very strong contribution, but it

does require iteratively solving an MILP problem, which may provide computational

barrier in practice.

Heuristic solution methods

In order to approach the computational barrier associated with use of exact approaches

online, various heuristic solution methods have been demonstrated.

Perhaps one of the most popular approaches is the use of metaheuristic optimisation

methods. The general idea here is to use some directed, but stochastic search strategy

to permute the schedule and then evaluate it in an underlying simulation model via

sample approximations to some measure of the objective (Juan et al., 2015; Khan,

2018). This primarily relies on the fact that a high degree of parallelism can be achieved

with simulation and that this is generally cheaper than solving an MILP. Although,

it should be noted that often metaheurisitc methods are also used when the problem

itself becomes large scale (i.e. has a large number of resources, tasks and units).

Some examples of stochastic search methods include genetic algorithms (GA) (Banzhaf

et al., 1998; Laroque et al., 2012), particle swarm optimisation (PSO) (Kennedy and

Eberhart, 1995a; Lin and Huang, 2014), simulated annealing (SA) (Kirkpatrick et al.,

1983a; Altiparmak et al., 2002), artificial bee colony (ABC) (Gao and Liu, 2012; Li

et al., 2020) and tabu search (Glover, 1989; Vela et al., 2020). Each method has its

own properties and hence selection is generally tailored to the problem at hand. For

example, simulated annealing is a relatively exploitative algorithm (i.e. it generally

does not search the space widely), whereas ABC is generally more explorative (i.e.

searches the decision space widely). For more information on these methods, please

113

see the papers referenced above, as well as the work provided by Sörensen et al. (2018);

Camacho-Villalón et al. (2022).

The use of metaheuristic optimisation methods has been well documented in pro-

duction scheduling problems, particularly within the operations research community.

For example, Stützle et al. (1998) used an ant colony optimisation method, in order

to optimise a large-scale multipurpose sequential production environment. The ant

colony method maintains a population of ants and coordinates mutations to each of

their positions based on update rules inspired by the collective behaviour of ant colonies

when searching for food. Zhang et al. (2019b) hybridised the ant colony method with a

local search algorithm to improve the exploitative nature of the algorithm and demon-

strated their method on a steel manufacturing environment with uncertainty in the

processing times. Almeder and Hartl (2013) proposed a variable neighbourhood search

method (Hansen et al., 2010) for optimisation of a multipurpose sequential produc-

tion environment with uncertain processing times. They reported improvements of

3-10% in the case studies examined over various rule-based strategies. More recently,

Cao et al. (2021) demonstrated a gravitational search algorithm for scheduling of a

hybrid flowshop. Major focus in these methods is directed towards what is the best

representation of the rule and how best to search over it (Nguyen et al., 2019).

One major comment to be made here is that although, metaheuristic search meth-

ods are very capable at flexibly handling uncertain production environments, typically

identification of a schedule does not consider the ability to identify recourse decisions.

This is primarily because metaheuristics are generally most effective when the dimen-

sionality of the decision variables is in the region of 101 − 103 (Hussain et al., 2017).

Based on Bellman’s principle of optimality, this is likely to render the solution subop-

timal. Additionally, if they were to be implemented online, their implementation does

require re-running a search process. Although this is likely to be more computationally

efficient than online MILP implementations, it is by no means cheap.

The requirement for an online solution method to be cheap has led to the wide use of

rule-based strategies within production scheduling. Many of these heuristics have been

developed specifically within the operations research community and can be thought as

the PID controllers of production scheduling. For example, priority-rules in the context

of multiproduct sequential production environments, may be used to determine the

114

feasible sequence of jobs on machines, when uncertainty is realised (Sweeney et al.,

2019). Typically, the computation of job priorities accounts for nominal processing

time, job due date etc. and considers each unit to be operating alone. This is discussed

extensively in (Haupt, 1989). Common rules include prioritising those jobs with the

minimum release time, shortest or longest processing time, earliest due date, and

longest due date (Singer, 2001; Zhang et al., 2020a). Due to the diversity of potential

priority rules, there has been interested in developing hyper-heuristic methods, which

search over an optimal sequence of heuristic priority rules (Ochoa et al., 2009; Yska

et al., 2018; Shady et al., 2020) or conditional to the current ‘state’ of the system

(Riedmiller and Riedmiller, 1999). There has also historically been interest in the

development of expert-rule based scheduling systems, which are derived from operator

knowledge (Suresh and Chaudhuri, 1993). A good example of this is described by the

ISIS system developed at Carnegie Mellon (Fox, 1994).

Having provided extensive background to decision-making in process systems en-

gineering and the main methods in this thesis, we now direct attention to the main

research objectives provided by this thesis.

115

Chapter 3

Using process data to generate an

optimal control policy via

apprenticeship and reinforcement

learning

This research item is published in the American Institute of Chemical Engineers

(AIChE) Journal, and is accessible via the following reference:

Mowbray, M., Smith, R., Del Rio-Chanona, E.A. and Zhang, D., 2021. Using pro-

cess data to generate an optimal control policy via apprenticeship and reinforcement

learning. AIChE Journal, 67(9), p.e17306.

116

3.1 Introduction

Recent initiatives for efficiency improvements in industrial process operation has driven

interest in the development of high performance, advanced process control (APC)

schemes. Reinforcement learning (RL) has achieved impressive results on benchmark

game-based control tasks (Mnih et al., 2015b; Heess et al., 2015), providing an avenue

for research in translation to APC. In spite of its high potential, RL has yet to produce

any meaningful impact in the (bio)chemical process industry. This work presents

a two-step approach to RL-based policy learning, which leverages process data to

parameterise an existing control law and then improves the performance of closed

loop policy, and reduces technical investment, as well as data demand.

RL constitutes a subfield of machine learning (ML), which aims to learn optimal

control policies. Here, the control problem is formulated as a Markov decision process

(MDP), which describes decision making as a value maximisation problem. MDPs

construct a probabilistic framework for the discrete-time evolution of a stochastic

decision process, with the cost (or value) associated with a control policy, and ulti-

mately process trajectory, evaluated by a reward function. Explicitly, MDPs provide

a mathematical basis for sequential decision-making in stochasticuch control further.

Additionally, the approach promises to increase the learning efficiency of RL-based

control policies, reducing computa environments, which is a description common to

process control (Kirk, 1998). Fig. 3.1 details the interpretation of process control as

an MDP. The structure of MDPs provide natural closed loop feedback control.

Figure 3.1: Translation of the framework provided by MDPs to process control, where
the process is analogous to an environment, and the controller to an agent. xt is
representative of the true system state at discrete time t ; ut is the control action
computed by the control law at discrete time t ; and Rt+1 is the scalar feedback signal
(reward) indicative of the quality of process evolution at time t+1.

117

Solution to an MDP provides a policy, π(·), which minimises the expected cost

or equivalently maximises the expected value associated with the evolution of process

state. Such a policy satisfies the Bellman optimality equation, which is a discrete-

time analogue to the continuous-time Hamilton-Jacobi-Bellman (HJB) equation (Kirk,

1998). Dynamic programming (DP) methods provide exact solution to the Bellman op-

timality equation. However, such an approach assumes knowledge of the exact process

dynamics. DP becomes additionally impractical in the highly dimensional continuous

state and action spaces often observed in the process industries (Liu et al., 2017).

In contrast, RL methods do not require knowledge of the exact process dynamics to

learn a solution policy. Instead, RL learns from experience of the process, allowing for

π(·) to be recalibrated as the process evolves through time via process data (Petsagk-

ourakis et al., 2020b). Furthermore, RL has shown significant industrial potential as

demonstrated in a number of research works, which have explored application to the

calibration of PID controllers (Lawrence et al., 2020); set point tracking (Spielberg

et al., 2019); dynamic optimisation of nonlinear, stochastic systems (Petsagkourakis

et al., 2020b; Kim et al., 2020a; Kim and Lee, 2020); de novo drug (Gottipati et al.,

2020) and protein design (Angermueller et al., 2020); and in augmentation of the per-

formance of various model predictive control (MPC) approaches (Gros and Zanon,

2019b; Zanon et al., 2020). Indeed, the potential use of RL draws discussion of its

relation to MPC in the development of APC schemes. MPC schemes require periodic

recalibration, which demands expense in technical expertise and often process down-

time. The data-driven nature of RL could well mitigate this. Further, the framework

provided by MDPs accounts for process stochasticity in a closed loop manner, converse

to MPC where decisions are based on open-loop simulation of the process model, with

the loop only ‘closed’ upon observation of the system state at the next discrete time

index. Hence, inputs from an RL controller will account for disturbance whereas MPC

may not. This provides a theoretical basis for the benefit of RL over MPC controllers.

One set of RL algorithms are known generally as policy optimisation methods.

Policy optimisation methods aim to learn a policy by implicitly learning the value

or cost over the decision space (Schulman et al., 2017b,a, 2018a) and directly pa-

rameterising a policy. There are a number of approaches to policy optimisation as

underpinned by evolutionary strategies, finite difference and policy gradient methods

118

(Lehman et al., 2017; Sutton et al., 1999). Policy optimisation methods have been

deployed for tasks including dynamic optimisation of nonlinear stochastic processes

(Petsagkourakis et al., 2020a) and tracking problems (Lawrence et al., 2020). For

further review of RL methods and their application within the process industries, we

direct the reader to the following works (Spielberg et al., 2019; Shin et al., 2019).

The learning process encapsulated by RL demands both time and technical invest-

ment in policy training. This is highlighted further given that RL-based controllers

are currently unable to generalise well across control tasks e.g. different changes of set

point, meaning policy training is typically undertaken for each task (Beaulieu et al.,

2020). As a result, implementation of RL control policies is computation and expertise

expensive. To solve this problem, this work proposes a method to reduce the time and

resource investment demanded by RL, through leverage of process data to learn from

demonstration provided by an existing (but unknown) control policy. Then, the ini-

tialised RL is improved by learning from the real process over a short time period, thus

outperforming the existing control policy. This two-step strategy has been recently

deployed in domains including autonomous helicopter flight (Coates et al., 2009) and

self-driving cars (Wu et al., 2020; Silver et al., 2010). To demonstrate this approach,

Section 3.2 will introduce the preliminaries and motivation, Section 3.3 will outline

the methodology, with Section 3.4 exhibiting different case studies.

3.2 Preliminaries

3.2.1 Policy gradients and Reinforce

Policy gradient methods directly learn a policy. Through the use of artificial neural

networks as parameterisation, the policy may be deployed naturally in either discrete

or continuous action spaces through appropriate network construction (Sutton and

Barto, 2018a). Policy gradient methods do not explicitly learn the value of the policy.

Instead, under the policy gradient theorem, acting with respect to the policy and

gaining experience of the process dynamics provides approximation of the direction in

which value increases fastest in parameter space. Hence, learning proceeds through

gradient ascent to update the parameters of the policy to ensure control policies of

high value (or low cost) are more probable(Sutton et al., 1999).

119

One policy gradient algorithm, Reinforce with baseline, approximates the direction

in which the policy observes increased performance through Monte Carlo realisations

of the process dynamics under the current policy parameterisation. This algorithm has

several advantages such as convergence to locally optimal solutions in policy (Zhang

et al., 2020d) and efficient exploration of the decision space without requirement for

a bandit strategy or further optimisation routine for action selection – as is the case

in many pure action-value methods(Simmons-Edler et al., 2019). Demonstration of

the method is also available(Petsagkourakis et al., 2020a). Therefore, it is used in this

work to learn an RL parameterisation of an existing control policy from process data.

Despite use of the Reinforce with baseline algorithm in this work, other RL methods

capable of operating in continuous control and state spaces (i.e. that identify a policy

function approximation for a continuous control space) could be implemented. These

include entropy regularised policy optimisation methods (Schulman et al., 2018a),

trust region policy optimisation (TRPO) (Schulman et al., 2017a), and proximal policy

optimisation (PPO) methods (Schulman et al., 2017b).

3.2.2 Learning from demonstrations via apprenticeship

Learning from demonstrations encompasses an increasingly prevalent and established

group of methods, which leverage data generated from an existing but unknown control

policy to aid learning-based control systems. This concept is generally termed as

apprenticeship learning (AL). AL has been adopted in a number of complex control

domains (Coates et al., 2009; Silver et al., 2010), but to our knowledge, this work

is the first to propose use of the method to leverage plant data directly, and this is

one of the primary contributions of this work. The concepts of AL are expressed in

three main subfields including behavioural cloning (i.e. supervised learning), inverse

optimal control, and inverse reinforcement learning (IRL).

This study exploited IRL built upon the framework provided by MDPs (Coates

et al., 2009; Silver et al., 2010). MDPs express process objectives mathematically as a

reward function. The reward function provides a scalar feedback signal indicative of

the optimality of process evolution. IRL is concerned with the task of mathematically

abstracting the reward function given process knowledge and demonstrations from an

existing control policy. The IRL problem is formalised as: given observations of an

120

existing policy over time, sensory inputs available for determination of the originally

demonstrated control law and a model of the process; determine the reward function

that can mostly justify the demonstrated behaviour (Silver et al., 2010; Abbeel and

Ng, 2004; Ziebart et al., 2008). IRL proceeds on the assumption that demonstrated

control action is noisily optimal under the reward function derived (Ziebart et al., 2008;

Wulfmeier et al., 2016). However, it should be noted that this does not necessarily

imply that the policy is optimal in view of the true objectives for process control and

optimisation.

As such, IRL leverages process data to learn a reward function, which encodes the

control objectives of an existing scheme into a feedback signal. A control policy that

maximises the utility of this reward function within the MDP framework, provides a

parameterisation of the existing control scheme. Hence the pairing of IRL with RL as

an MDP solver, allows for synchronously learning the parameterisation of an existing

but unknown control policy as described in process data. The generated reward func-

tion can be used to compare against the process objective (if known) and suggest if

the extracted control policy is suitable for online learning. Moreover, manual modifi-

cations are always implemented during process control even if the process objective is

known. These manual modifications cannot be quantified by human operators, but can

be retrieved from historical data by IRL. Therefore, using IRL to generate a reward

function is advantageous for parameterisation of the optimal control policy.

3.2.3 Motivation

In the following work, we demonstrate a framework for learning and optimisation of

chemical processes. The framework consists of two steps: offline learning, and online

learning and improvement. Here, the use of terminology is converse to that common

in the machine learning community. In this work, offline learning indicates a process of

AL (via IRL) to infer control objectives from process data and the learning of a corre-

sponding parameterisation of the control policy described by data; online improvement

then indicates the transfer of the learned parameterisation to the real system for the

purpose of further policy improvement under the true process objective. The frame-

work enables the learning of an RL-based control policy, by leveraging process data

from existing control schemes (offline) and subsequently improves the learned policy

121

Figure 3.2: The offline–online framework proposed for the learning and optimisation
of processes. Offline learning utilises process data, (Ŷ, Û), to learn a reward func-
tion, R(α∗, ·), and a parameterisation of the demonstrated policy, πpo(θ(k0), ·). Online
learning utilises the learned parameterisation as initialisation for further policy opti-
misation under a reward function, Rpo(·), descriptive of the true process objective.

parameterisation via further RL (online). The automation of offline learning and the

policy tuning process that is associated, provides a significant contribution given the

technical, computational and data demands of RL-based policy learning.

Offline learning produces a parameterisation of the existing control policy, which

could be deployed directly for control. The parameterisation will achieve similar per-

formance to that expressed by the original control scheme. If necessary, the param-

eterisation may then be transferred to the second stage of online learning for further

policy improvement. It should be emphasised that the leveraging of process data is

significant given the practical difficulties in learning an RL based policy ‘from scratch’

(Petsagkourakis et al., 2020a; Karg et al., 2019). The framework also lends itself to

the improvement and recalibration of the control scheme temporally. Fig. 3.2 provides

further description of the framework proposed.

3.3 Methodology

3.3.1 Problem statement

The following work proceeds on the formulation of the underlying problem of process

control as a Markov decision process (MDP). The true dynamics of an MDP are

122

described as follows

xt+1 ∼ p (xt+1|xt,ut) (3.1)

yt+1 ∼ p (yt+1|xt+1) (3.2)

where x ∈ Rnx is a vector of continuous variables representative of the

true system state, u ∈ Rnu , the manipulated variables (MVs), y ∈Rny , the observed

control variables (CVs) and t is indicative of the discrete time index (Rohani, 2017).

The process evolution between discrete time indices t and t + 1 is governed by the

conditional density function, p (xt+1|xt,ut). Similarly, the observation, yt, of the true

state of the system, xt, is governed by the conditional density, p (yt|xt). To facilitate

learning of a policy prior to transfer to the real system, approximation of the true

dynamics proceeds via construction of state space models and assumptions regarding

process stochasticity, hence:

xt+1 = f (xt,ut, st) (3.3)

yt+1 = g(xt+1) (3.4)

where f : Rnx×nu×ns → Rnx is representative of the process dynamics and st ∈ Rns is

representative of the process disturbance. The mapping g : Rnx → Rny is the state

observation associated with measurement noise(Heess et al., 2015).

The following work deploys RL to learn a control policy from process data. The

objective of RL is to minimise the expected cost of a dynamic process (or equivalently

to maximise its value). A process trajectory, τ = (x0,y0,u0, . . . ,uT−1,xT ,yT), de-

scribes the manner in which a process evolves over a given discrete time horizon of

length T . The cost or value, G (τ), of the process trajectory over a finite horizon is

denoted:

G (τ) =
T∑
t=1

γt−1Rt (3.5)

where γ ∈ (0, 1] is a discount factor, which provides a net present value interpreta-

tion of future value; and Rt is the reward assigned to the process’ evolution between

time indices t− 1 and t. However, in view of process stochasticity, the probability of

observing τ adheres to a conditional density p(τ |θ) based on the control policy and

process dynamics:

p (τ |θ) = ρ̄ (x0) p (y0|x0)
T−1∏
t=0

π (ut|yt, θ) p (xt+1|xt, ut) p (yt+1|xt+1) (3.6)

123

where ρ̄ (x0) is the probability density of the initial system state; π(ut|yt; θ, ·) is the

conditional density function descriptive of the learned policy, which is parameterised

by θ ∈ Rnθ ; and p (xt+1|xt,ut) is the conditional density function representative of the

process dynamics.

Note that the definition of a policy as a conditional density function implies it

is stochastic. This is important in the scope of the learning process associated with

RL but does not necessarily assert the use of a stochastic policy upon deployment for

control of the real system (only the mode might be used in practice). The objective

of the RL problem and learning process is to find a policy π(·, θ∗) that maximises the

objective J(τ), such that:

π (θ∗, ·) = arg min
π(θ,·)

−J (τ) (3.7)

J (τ) =

∫
p (τ |θ)G (τ) dτ (3.8)

Eq. 3.7 describes the probability-weighted average of trajectory value and hence

reformulation may utilise equivalence of J (τ) as the expectation of trajectory value

under the policy parameters θ, such that

J (τ) = Eτ∼p(τ |θ) [G (τ)] (3.9)

The description provided in this section formalises the problem of optimal control un-

der the framework provided by MDPs. One approach to finding approximate solution

to the problem described by Eqs. 3.7-3.9 is encompassed by policy optimisation RL

methods.

3.3.2 Policy gradients and Reinforce

Policy gradient methods are a subset of policy optimisation methods, which estimate

the gradient of the objective detailed by Eq. 3.7, with respect to the parameters of

the current policy. Mathematically, this is described by the policy gradient theorem

(Sutton et al., 1999). The Appendix B.1 provides full derivation and explanation of

the policy gradient theorem. Given an estimate of the true policy gradient, gradient

ascent methods facilitate policy improvement to make trajectories of higher reward

more probable. In this manner, the policy parameterisation is updated in the direction

124

provided by the policy gradient, which is described by Eq. 3.10:

∇θ(j)J (τ) = ∇θ

∫
p (τ |θ)G (τ) dτ (3.10)

= Eτ∼p(τ |θ)[G (τ)∇θ log p (τ |θ)] (3.11)

θ(j+1) = θ(j) + ω∇θ(j)J(τ) (3.12)

where j is the iteration of policy optimisation and ω ∈ R+ is the step size in the

direction of the policy gradient ∇θ(j)J(τ). The derivation of Eq. 3.10, leverages the use

of a logarithmic identity (see Appendix B.1). This enables mathematical separation

of the conditional probability functions descriptive of the process dynamics and policy

(see Eq. 3.6). Given the process dynamics are independent of the parameterisation θ

of the policy π(θ, ·), examination of Eq. 3.6 provides:

∇θ(j) log p (τ |θ) =
T−1∑
t=0

∇θ(j) log π
(
ut|yt, θ(j)

)
(3.13)

Consequently, the policy gradient described by Eq. 3.10 is reformulated as:

∇θ(j)J (τ) = Eτ

[
G (τ)

T−1∑
t=0

∇θ(j) log π
(
ut|yt, θ(j)

)]
(3.14)

Exact computation of the true policy gradient requires full knowledge of the con-

ditional density functions descriptive of process dynamics. Given such knowledge of

the process dynamics are unavailable, the policy gradient is approximated by directly

sampling the process under the current policy parameterisation over a given time hori-

zon via a Monte Carlo method (Petsagkourakis et al., 2020b). This is encapsulated

by the Reinforce with baseline algorithm, which is detailed by Algorithm 3.1.

125

Algorithm 3.1 Reinforce with Baseline

Input: A policy π with initial parameters θ0; learning rate ω; episode length T ; K

episodes for Monte Carlo rollouts of the policy; and, N training epochs. Early

stopping conditions may also be implemented.

for j = 1, . . . , N do

a. Perform Monte Carlo realizations of the policy for T timesteps and K trajec-

tories. Store all state action pairs observed
(
ukt , y

k
t

)
, as well as the total return

from the episode Gk
t (see Eq. 3.5 and Algorithm B.1)

b. Estimate the policy gradient and update the parameters of the policy such

that:

θ(j+1) = θ(j) + ω(j)
1
K

∑K
k=1

[(
Gk − b

)
∇θ

∑T−1
t=0 ln π

(
ukt
∣∣ykt , θ(j))], where b =

1
K

∑K
k=1G

k

end for

Output: An approximately optimal policy π(u|y, θ∗)

Through utilisation of the Monte Carlo method, an unbiased approximation of

the true policy gradient is obtained. However, due to the stochastic nature of both

the policy and process dynamics, the gradient may observe high variance. In order to

reduce the variance of approximation, a baseline b is introduced (Petsagkourakis et al.,

2020b). This baseline is formulated directly as the expectation of cost associated with

the realisations of the policy. In this manner, the update balances the cost of an action

against the expected cost from the current policy.

It is of important note that the parameterisation of the policy must be continuously

differentiable as prescribed by the policy gradient theorem. Naturally, this lends to

application of artificial neural networks (ANN) for function approximation in this

work. Specifically, a recurrent long-short term memory (LSTM) neural network was

used for parameterisation of the control policy. Recurrent LSTM neural networks

have demonstrated utility in dynamic stochastic control problems with extension to

systems characterised by partial observability (Heess et al., 2015). General detail of

the mathematical operations specific to LSTMs can be found in the following works

(Hochreiter and Schmidhuber, 1997; Colah, 2015), with figurative description of the

network used in this application provided by Appendix B.2. The investigation utilised

126

the Pytorch 1.3.1 framework and first order gradient ascent method Adam to train the

LSTM network proposed. The network structure was composed of two hidden layers,

each with 20 LSTM cells. A leaky rectified linear unit (ReLU) activation function was

applied across both hidden layers and a ReLU6 activation function was applied across

the output layer, naturally bounding the output prediction. For a random variable z,

the ReLU6 transformation is described as:

ReLU6 (z) = min (max (0, z) , 6)

The network designed in the context of this work, predicts the mean (µt) and standard

deviation (σt) of a unimodal multivariate normal distribution. This distribution de-

scribes the conditional density function representative of the control policy, such that:

ut ∼ π (ut|yt,Ht, θ) = N (µt, σ
2
t), where Ht is a learned parameterisation of the

history of process states provided by the LSTM cells, and σ2
t is the variance. Here, we

formally construct the control policy as stochastic. However, upon deployment of the

policy to the real system, the policy may be assumed deterministic through selection

of the actions corresponding to the mode (equivalently, the mean) of the multivariate

normal distribution, such that ut = µt.

In this section, we have presented an approach to solving the MDP characteris-

tic of a control problem through use of the policy gradient method, Reinforce with

baseline, in combination with an LSTM network for parameterisation of the learned

policy. In the following, we introduce an approach to policy learning, namely max-

imum entropy inverse reinforcement learning (MaxEnt IRL), which utilises existing

process data to learn from demonstration. Conceptually, this approach is commonly

known as apprenticeship learning (AL).

3.3.3 Apprenticeship learning via inverse reinforcement learn-

ing

Apprenticeship learning (AL) via inverse reinforcement learning (IRL) is a general

approach to policy learning from demonstration (i.e. process data). The benefits to

such an approach are two-fold. Firstly, AL via IRL provides a parameterisation of the

existing control policy expressed in the process data. Secondly, it facilitates RL-based

policy learning under the ‘real’ process objective as it provides an initial policy to

127

hot-start the RL procedure. Otherwise, initially, the agent (or controller) will explore

the control action space randomly, which results in a data hungry and time-consuming

approach. These benefits are exploited by the framework proposed in Section 3.2.3 as

detailed by Fig. 3.2.

The foundational IRL algorithms construct the reward function R : Y→ R as a

linear combination of state features representative of the system state φ ∈ Rd×1, such

that:

R = α1φ1 + α2φ2 + . . .+ αdφd (3.15)

where αi ∈ R are feature weightings and φi : Y→ R explicitly represent the system

state (y), but also implicitly encode control objectives. Typically, φ are hand designed

based on process and control task knowledge(Abbeel and Ng, 2004). Knowledge of

process objectives can also be applied to place bounds on the weights α in the reward

function, however, this may not always be desired as one could assert technical bias

on the problem and reduce the feasible region. From this definition of the reward

function R (α,y), consequent reformulation of the policy optimisation objective J(τ)

in Eq. 3.9 yields

J (τ) = Eτ∼p(τ |θ)

[
T∑
t=1

γt−1R (α, yt)

]
(3.16)

J (τ) =
d∑
i=1

αiEτ∼p(τ |θ)

[
T∑
t=1

γt−1φi (yt)

]
(3.17)

This may be further decomposed through definition of trajectory features υi, such that

for the discounted case:

υγi =
T∑
t=1

γt−1φi (yt) (3.18)

J (τ) =
d∑
i=1

αiEτ∼p(τ |θ)[υ
γ
i] (3.19)

= αTEτ∼p(τ |θ)[υ
γ] (3.20)

where α ∈ Rd×1 and υγ ∈ Rd×1. Equivalently, undiscounted trajectory features υ

may be recovered by setting γ = 1. The characterisation of a policy and process

trajectory in terms of υ enables RL to learn from multiple, distributed trajectories

128

and reduces the problem to learning feature weights α∗(Abbeel and Ng, 2004; Ziebart

et al., 2008). Conceivably, a number of different reward functions exist that recover

the desired behaviour. The current study uses the MaxEnt IRL framework proposed

by Ziebart et al. (2008); Ziebart (2010), which proceeds in identification of α via a

probabilistic approach as underpinned by the principle of maximum entropy.

3.3.4 Maximum entropy inverse reinforcement learning (Max-

Ent IRL)

In AL we are interested in learning a policy as described by a conditional probability

density function π(ut|yt, ·), such that upon deployment of the policy to the real system,

the process observes the same evolution as that described by process data (see Eq 3.6).

Explicitly, the investigation learns the expert’s policy expressed by process trajectories

T = [τE1 , .., τEK] as characterised by trajectory features,
{
υEk
}
k=1,..,K

. MaxEnt IRL

(Ziebart et al., 2008) is an established method and poses solution to the problem of

learning such an approximate policy. It learns a reward function that maximises the

likelihood of observing the demonstrated trajectories, T, given an accurate model of

the process dynamics. Further discussion is provided in Appendix B.3. It follows that

the log-probability of observing a given trajectory τ is proportional to the cumulative

undiscounted reward observed between a start and terminal state (Ziebart, 2010), such

that:

p (τ |α) =
exp

{
αTυ(τ)

}
Z(α, ·)

(3.21)

where υ = [υ1, . . . , υd], and Z(α, ·) =
∑

τ exp
{
αTυ(τ)

}
is the partition function,

which enforces normalisation of the distribution. Formally, the approach prescribes

that each of the demonstrations, τE ∈ T, are independently and identically distributed

such that the likelihood of observing the set of trajectories, T, expressed in process

data is:

p(T|α) =
K∏
k=1

p
(
τEk
∣∣α) =

K∏
k=1

1

Z (α, ·)
exp

{
αTυEk

}
(3.22)

where Z (α, ·) is assumed constant for all τE ∈ T (Ziebart et al., 2008); and

p(T | α) is the likelihood of observing the set of demonstrations. Under the maxi-

mum entropy formulation (Ziebart et al., 2008; Wulfmeier et al., 2016; Ziebart, 2010),

129

optimal solution of the feature weights α∗ is:

α∗ = arg max
α

p(T|α) = arg max
α

K∏
k=1

p
(
τEk
∣∣α) (3.23)

The gradient of the log-likelihood objective (Eq. 3.23) with respect to feature

weights α is formulated as:

∇α(i)

K∑
k=1

log p(τEk |α(i)) =
1

K

K∑
k=1

υEk −∇α(i)
logZ(α(i), ·) (3.24)

∇α(i)
logZ(α(i), ·) = Eτπ∼p(τπ |α(i), θ

∗) [υπ] (3.25)

where ∇α(i)
logZ(α(i), ·) is estimated via policy optimisation in the underlying

MDP to find a policy π(·, θ∗), which maximises the following modified objective and

then subsequently performing Monte Carlo realisations of the solution policy under

the process dynamics to provide sample trajectories ξ = [τ π1 , . . . , τ
π
N] characterised by

{υπn}, where n = 1, .., N . This is also discussed further in Appendix B.3. Eqs. 3.24

suggest that the MaxEnt IRL problem finds a weight vector α∗, which minimises

the differences between the expected trajectory features of the learned policy and that

which is demonstrated. Gradient based optimisation methods may be deployed to find

solution α∗ by stepping parameter values α in the direction of the gradient (Ziebart

et al., 2008; Ziebart, 2010). This work utilises the first order gradient ascent method

(Eq. 3.26):

α(i+1) = α(i) + κ∇α(i)
log p

(
T | α(i)

)
(3.26)

where κ is a learning rate. The problem formulated here constitutes a bi-level opti-

misation, with the upper level task approached by MaxEnt IRL and the lower level

task handled by the policy gradient method Reinforce. In each iteration i of the upper

MaxEnt IRL problem a new reward function R(α(i), ·) is abstracted. The underlying

MDP is subsequently solved by policy optimisation and estimation of the partition

function and E[υπ] provided. The Reinforce method and the approach to solving the

lower level optimisation task is detailed by Algorithm 3.1. It should be noted that the

approaches to policy optimisation provided by PPO and entropy regularisation could

provide further stability in learning and accuracy in estimation of the partition func-

tion, respectively. In view of the length of the horizon specific to many control tasks,

130

discounted trajectory features υγ, as described by Eq. 3.18, should be used rather

than the undiscounted features. This establishes the upper MaxEnt IRL task as a

nonconvex optimisation (Zhou et al., 2018) but provides performance improvements

in the lower level policy optimisation task. Algorithm 3.2 details the MaxEnt IRL

algorithm further.

Algorithm 3.2 MaxEnt Inverse Reinforcement Learning

Input: A policy πA(0) with initial parameters θ(0); a weight vector α; state feature

functions φ(x); trajectory features representative of the demonstrated trajectories

υE; maximum iterations Nmax ; learning rate κ;

for n = 1, . . . , Nmax do

1. Perform policy optimisation of πA(n−1) under the current reward function

R(α(n)) via Algorithm 3.1. Return πA(n) as solution to the MDP defined.

2. Perform Monte Carlo simulation of πA(n) (via Algorithm B.1) to evaluate the

policy. Return the trajectory features characteristic of the expected process evo-

lution under the policy E [υπ(n)]

3. Approximate the gradient of the likelihood of observing the demonstrated

trajectories with respect to the weights:

∇α log p (T | α) = 1
K

∑K
k=1 υ

E
k − E [υπ(n)]

4. Perform gradient ascent such that: α(n+1) = α(n) + κ∇α log p (T | α)

end for

Output: Optimal weights α∗ and parameterisation of the demonstrated policy

πpo(θ(k0), ·) for further policy improvement in online learning.

3.3.5 Overview of proposed methodology

The methodology proposed leverages the large amount of process control data avail-

able to industry to learn an RL-based parameterisation of a previously implemented

control scheme through AL via IRL. This parameterisation should express the existing

control law as well as the process knowledge of operators provided the available data

is sufficiently rich. Once a parameterisation is constructed offline, it is deployed as

initialisation for further RL-based policy improvement (online). This online learning

proceeds under a reward function descriptive of the real process objectives. Through

131

this approach, we significantly reduce the computational and technical investment

associated with training an RL-based control policy. Specifically, the improvements

noted are drawn from the offline section of the framework. Here, we combine simula-

tion with the use of IRL to automate analysis of historical process data. This enables

us to directly abstract a reward function, which provides clear preference (discrimina-

tion) over controls from: (i) knowledge of the process control task we are concerned

with (represented by the basis features φ in the reward function); and (ii) empirical

observations of the system and its behaviour in response to controls (by optimizing the

feature weight α). Learning under this reward function provides a parameterisation of

the existing control scheme expressed in process data. Section 3.4 presents a number

of computational case studies for empirical demonstration of the framework described.

3.4 Computational case studies

3.4.1 Introduction to the case studies

The optimisation objective of the following studies is set point tracking in a multiple-

input, multiple output (MIMO) control scheme. Specifically, the process is a non-

isothermal continuous stirred tank reactor (CSTR) under operation of an endothermic

isomerism reaction of the form A → B. The reaction rate temperature dependence is

described by the Arrhenius kinetics. Demonstration is provided in the form of pro-

cess data generated by the action of a PID control scheme, produced via a discrete

time Python 3.7.3 implementation. The controlled variables (y) are concentration

of reagent Cobs
A and temperature of the reactor T obs. The manipulated variables (u)

are the temperature of a heating jacket TE and concentration of the reagent in the

input stream CA0. Bounds are placed upon the absolute values of the action space.

Definition of process variables follows:

y =
[
Cobs
A , T obs

]T
x = [CA, T]T u = [CA0, TE]T

In the case studies presented, the process model is of deviation variable form and

was derived from first principles. The deviation variable z∗ of random variable z is

132

expressed as:

z∗ = z − zss

where zss is the previous steady state value of z. Process stochasticity (disturbance)

is assumed zero mean Gaussian, as is the nature of system observation. Therefore,

approximation of the true underlying process dynamics takes the form of a system of

stochastic differential equations (SDE), such that:

x∗
t+1 = x∗

t + h (x∗
t , u

∗
t) dt+δ (x∗

t) dWt (3.27)

y∗
t+1 = g(x∗

t+1) (3.28)

where the function h (·) is descriptive of the underlying process dynamics; δ (·) the

magnitude of disturbance, as described by the Wiener process, Wt, (Mao, 2015); and

g(·) the nature of system observation. In the following studies:

h (x∗
t , u

∗
t) =

−3.997 −0.446

−6.092 −1.581

x∗
t+

0.500 0

0 0.305

u∗
t (3.29)

δ (x∗
t) =

0.500 0

0 0.300

x∗
t (3.30)

g
(
x∗
t+1

)
=

1 + N (0, 0.025) 0

0 1 + N (0, 0.025)

x∗
t+1 (3.31)

and the Euler Maryuama method was utilised for system integration (Mao, 2015).

The Appendix B.5 provides formal derivation and parameter values. Given the for-

mulation of the MIMO problem, the investigation is concerned with controlling the

evolution of error ε within both the temperature T obs and reagent concentration Cobs
A

control loops.

3.4.2 Design of state features for apprenticeship learning

The introduction provided in Section 3.3.4 outlines a framework for learning the weight

vector α∗, which provides a linear mapping from state representations φ to scalar

cost. Further, for a given representation, a set of possible process trajectories exist,

which match the counts of state features (trajectory features) of the existing policy.

133

Therefore, design of φ should consider both the process, optimisation objectives and

restriction of the possible set of trajectories. As a result, this work proposes the

use of three types of state features, all of which provide consistent control objectives

temporally and utilise knowledge of the underlying process control task.

Type I

The first state feature proposed is encapsulated by the radial basis function (RBF). The

RBF provides a similarity measure and allocates exponentially lower cost or greater

value for those control policies which achieve set point tracking. The feature is formu-

lated as:

ε̂ =
ysp − y

ysp − yss
(3.32)

φI (ε̂) = exp−(βε̂)2 (3.33)

where yss is the previous observed steady state of the system, ysp is the desired set

point, β is the shape parameter and φI (ε̂) = [0, 1]. The closer the value of β to

zero, the greater the offset tolerated and the denser the reward landscape. Conversely,

higher values of β provide exponentially greater rewards for trajectories closer to the set

point, but a sparser reward landscape. In the following case studies, the investigation

utilised β = 10.

Type II

Although the Type I feature is an absolute measure of control performance, alone it

does not fully characterise the evolution of system response. Furthermore, the set

of possible process trajectories, which could match the representation of the demon-

strated policy vE is large. To restrict the possible set, Type II and III features take

inspiration from the PID control law, which at a given time is a linear combination of

the error ε = ysp − y in the control loop at the current time point (proportional), the

manner in which the error has evolved over time (integral) and the projected evolution

of error in the future (derivative). Hence, the Type II state feature proposed intends

to quantify how the absolute error in a control loop evolves temporally. As such, Type

134

II state features are described as:

φII (ε̂) =

∫ t

0

|ε̂|dt ≈
tc∑
j=1

|ε̂|∆t (3.34)

where ∆t is equivalent to the sampling time or times at which control is provided (in

this work the two are synonymous), | · | refers to the absolute value; j the discrete time

index and tc the current time point. The absolute magnitude of the error provides

clear control objective regardless of whether the error ε̂ is positive or negative in value.

If this was not taken, actions that decrease error in the control loop may be penalised

or rewarded in an RL setting depending upon whether the integral of the error becomes

positive or negative as a result.

Type III

The design of Type III state features aim to quantify how the error in the control loop

may evolve into the future. As a result, the feature approximates the derivative of the

error in the control loop at the sampled time:

φIII (ε̂) =
d|ε̂|
dt

≈ |ε̂tc| − |ε̂tc−1|
∆t

(3.35)

where tc − 1 is the previous discrete time index. In view of the proposed state

features, the investigation is able to characterise control trajectories and provide direct

and consistent control objective. As a result, the reward function R of the MDP

described is specified as:

R = α1φI
(
ε̂C∗

A

)
+ α2φI (ε̂T ∗) + α3φII

(
ε̂C∗

A

)
+ α4φII (ε̂T ∗) + α5φIII

(
ε̂C∗

A

)
+ α6φIII (ε̂T ∗) (3.36)

3.4.3 Case study definitions

Three case studies demonstrate the use of the framework in different contexts and

control tasks. Table 3.1 details the specific experimental setup. Case study I demon-

strates the framework proposed for deployment when subjectively near optimal control

is provided by an existing control scheme. Case study II demonstrates the framework

is still effective when the control demonstrated by an existing scheme is subjectively

suboptimal. Case study III explores the potential to transfer knowledge within the

framework in order to aid efficiency in learning on different control tasks.

135

Table 3.1: Conditions of design for the case studies detailed. The real initial state of
the controlled variables x0 is drawn from the respective distributions. The set point
y∗sp details the new setpoint of the respective control variables as set at t = 0.

Case
Study

System Parameter Concentration (C∗
A)

Control Loop
Temperature (T∗)
Control Loop

I
Initial state distribution ρ(x0) N (0, 0.25) N (0, 0.75)
Set point Y ∗

sp −1 4

II
Initial state distribution ρ(x0) N (0, 0.25) N (0, 0.75)
Set point Y ∗

sp 1 4

III
Initial state distribution ρ(x0) N (0, 0.25) N (0, 0.75)
Set point Y ∗

sp −2.5 3

3.5 Results and discussion

3.5.1 Case study I – Learning from near optimal demonstra-

tions

The purpose of this case study is to construct an RL controller which learns from

demonstration provided by a near optimal control policy and then to improve it fur-

ther. As such, we demonstrate the full utility of the offline-online framework proposed.

Firstly, offline learning under MaxEnt IRL is deployed to find a linear combination

α∗ of state features, which infers and encodes control objectives into a feedback signal

or reward function. Under this reward function a parameterisation of the control pol-

icy expressed in process data is learned in order to match the demonstrated process

behaviour as characterised through expected trajectory features. The learned parame-

terisation is then improved under the real process objective, which in this case is pure

tracking. Here the demonstrated control policy is that of a well-tuned PID controller

(PID1 as detailed by the Table B.3).

Results of apprenticeship learning via MaxEnt IRL

Utilising 500 Monte Carlo realisations of the PID1 policy, the methodology was able

to generate an informative dataset and subsequently characterise the policy using the

six basis features presented in Eq. 3.36, with γ = 0.99 and T = 50 indicates the length

of the discrete-time finite horizon. The trajectory feature expectations of PID1 are

outlined in Table 3.2.

136

Table 3.2: The expected discounted trajectory features of PID1 (υγ,E) and the policy
learned through AL (υγ, π), and IRL’s feature weight (α∗) generated in CS I. Y ∗−Type
indicates the type of trajectory feature and the respective control loop error.

Trajectory Features

C∗
A − I T ∗ − I C∗

A − II T ∗ − II C∗
A − III T ∗ − III

E
[
υγ,E

]
21.63 20.68 4.08 7.93 -22.87 -22.43

E[υγ,π] 21.41 20.76 4.31 7.03 -22.28 -22.71
α∗ 0.137 0.652 -0.067 -0.630 -0.194 -0.343

From Table 3.2, it is concluded that under the characterisation of the PID1 policy

υγ,E, Algorithm 3.2 was able to learn an agent parameterisation of the demonstrated

policy (i.e. PID controller). This was achieved after just four iterations of the algo-

rithm. Each iteration is composed of solving an MDP via RL (detailed by Algorithm

3.1) and then updating the weight vector α via Eq. 3.24. The hyperparameters

for Algorithm 3.2 and each iteration are detailed by the Appendix B.7. It is worth

reiterating that there is a set of possible policies, which observe the same expected

trajectory feature counts E
[
υγ,E

]
as that of the demonstrated policy. In the context

of this work, further restricting the possible set is not necessary, however, introduction

of further state features φ would facilitate such. Given that φ compose the reward

function and all express inherent set point tracking objectives, intuitively, any of the

policies from the possible set, which match the trajectory features of the demonstrated

policy should provide good initialisation for further policy improvement. The learned

weight vector α∗ may also be interpreted and provide insight into the dynamics of the

respective control loops.

The state features which are specific to the temperature control loop receive a

greater weight than the concentration control loop. This is likely reflective of the

endothermic nature of reaction and the relative changes of set point in the temper-

ature loop and concentration loop. Compared to changing reactant concentration,

an increase in reactor temperature T will likely shift reaction equilibrium more sig-

nificantly in a manner to increase consumption of reagent. As a result, the system

dynamics act in a way to aid the set point change in the concentration control loop.

Hence, greater weighting is allocated to control of the temperature control loop.

In this section, we show the utility of the offline learning method proposed in

the context of learning by demonstration (or AL). Subsequently, we demonstrate how

137

Figure 3.3: Optimal policy of the agent in Case study I. A and B: Control and sys-
tem response of the concentration control loop and of the temperature control loop,
respectively. C and D: Zoomed system response in the concentration control loop and
in the temperature control loop, respectively. πA and πE indicate the policy of the
agent (after online learning) and the PID, respectively. Solid line represents the mean
control response and the shaded regions indicate the standard deviation. Line colours
of manipulated variables: blue - πA; light green - πE. Line colours of control variables:
red - πA; dark green - πE. Line colour of set points: orange.

online learning may be deployed for further policy improvement.

Online learning and optimal control

Further improvement of the initial policy (Section 3.5.1) utilises Algorithm 3.1 and

a real process reward function shown as Eq. 3.37, which expresses pure set point

tracking objective 5

R = φI
(
ε̂C∗

A

)
+ φI (ε̂T ∗) (3.37)

5 Here, the parameter β in φI (Eq. 3.32) is re-tuned to ensure that high performance

set-point tracking is achieved (β = 30). The final result of the policy obtained is

displayed in Fig. 3.3.

138

Examination of Fig. 3.3A describes the control policies of the agent and PID1

within the concentration control loop. Given the initialisation provided by IRL, fur-

ther online RL based policy improvement learns a control observably similar but rel-

atively smoother, to that demonstrated by the PID controller. Explicitly, the policy

improvement was provided by two rounds of online learning, with 10 training itera-

tions (epochs) per round. As a result, the agent is able to facilitate a system response,

which meets set point faster with less overshoot observed than using the PID controller

(shown in Fig. 3.3C). Similar observations are made in analysis of Fig. 3.3B and Fig.

3.3D, which demonstrate the response of the temperature control loop. In this case,

the online updated RL yields a better temperature response characterised by a fast

rise time with no observable overshoot.

3.5.2 Case Study II - Learning from suboptimal demonstra-

tions

In Case study II, the demonstrations (process data) are derived from a second PID

controller (PID2 detailed by the Table B.3). Compared to Case study I, the demon-

strations provided by the PID controller here are of an overdamped control response,

which subjectively appears suboptimal.

Results of apprenticeship learning via MaxEnt IRL

In similar fashion to Section 3.5.1, Algorithm S1 was used to characterise the demon-

strations from PID2. Table 3.3 details the resultant trajectory feature expectations

E[υγ,E].

Table 3.3: The expected discounted trajectory features of the PID2 (υγ,E) and the
policy learned through AL (υγ, π), and IRL’s feature weight (α∗) generated in CS
II. Y ∗ − Type indicates the type of trajectory feature and the respective control loop
error.

Trajectory Features

C∗
A − I T ∗ − I C∗

A − II T ∗ − II C∗
A − III T ∗ − III

E
[
υγ,E

]
13.76 8.52 8.02 15.53 - 22.49 - 20.71

E[υγ,π] 16.41 7.10 6.46 13.29 -21.82 -18.79
α∗ -0.259 -0.182 -0.545 -0.093 -0.545 -0.545

139

Once again, Algorithm 3.2 facilitates the learning of an agent parameterisation of

the demonstrated policy in three iterations. It is of note, however, that the method-

ology was unable to match the trajectory features exactly. Instead, a good approxi-

mation of the demonstrated policy was produced. There are two points of discussion

here. Firstly, it is likely that the reward function itself is underspecified and further

state features φ should be proposed. Secondly, it is possible that the objectives of

the demonstrated control policy cannot be described purely as a linear combination

of the state features (Wulfmeier et al., 2016) – although the linear approximation in

this case is reasonable, given the similarity of the trajectory features.

In this case study, state features relevant to the concentration control loop are

allocated the greatest weighting. This is because the set points are changed in the

same direction (as detailed by Table 3.1). Naturally, a rise in reagent concentration will

cause a decrease in temperature (endothermic reaction), whilst a rise in temperature

will facilitate the conversion of reagent concentration. As the reaction equilibrium is

more sensitive to the temperature change, greater weightings must be added to the

concentration control loop to reach the new set point.

Furthermore, Type I state features are allocated negative weights, which is unusual.

Intuitively, Type I features represent a similarity measure between the current state

of the system and the desired set point. Given that the feature value is non-negative

(φI = [0, 1]), a negative reward weighting means that the IRL learnt objective func-

tion will prevent the process from reaching the new set point. This is the primarily

attributed to the fact that a large proportion of the demonstrations never reached the

new set point (Fig. 3.4 and 3.5) due to the overdamped control response. As AL

considers the expert’s (i.e. PID controller) actions as a noisily optimal control policy,

it will find the optimal solution of weight vector α∗ to reproduce this overdamped

control response. Therefore, the current result indicates that if the demonstration

data does not contain a good control policy, it is essential to further improve the AL

generated policy through online learning.

Online learning and optimal control

As in Section 3.5.1, online learning is performed to improve the AL policy (initialised

for RL). Given that a degree of offset was present in both control loops as detailed by

140

Figure 3.4: System response over the first 30 control interactions from the policy
learned from demonstration during AL in Case study II. A and B: System response
in the concentration control loop and the temperature control loop, respectively. πA

and πE indicate the response associated with the policy of the agent (after offline
learning) and that demonstrated, respectively. Solid line represents the mean control
response and the shaded regions indicate the standard deviation. Line colours of
control variables: red - πA; dark green - πE. Line colour of set points: orange.

Fig. 3.4, two short rounds of RL policy improvement, again consisting of 10 training

epochs, proceeded with hand tuning of the parameter β in each round. Fig. 3.5 details

the final results of the update RL model.

From Fig. 3.5, it is found that the improved policy of the agent πA, observes

a faster rise time, no overshoot and subjectively better set point tracking than the

demonstrated policy (PID). In this way, the methodology shows ability to learn from

suboptimal demonstrations and then efficiently improve the learned parameterisation

of the demonstrated policy through online learning (in this work, 24 minutes spent

online to update the RL).

3.5.3 Case study III - Knowledge transfer in learning from

demonstration

Finally, Case study III demonstrates how knowledge transfer from one task improves

the efficiency of offline apprenticeship learning for further set points. Here, we again

assume the availability of existing demonstrations as described by process data. The

control task (set point change) in this study is described by Table 3.1 and is different

to both tasks examined in Case study I and II. Again, we would like to learn a parame-

terisation of the control policy (offline) expressed in the process data and then improve

141

Figure 3.5: Optimal policy of the agent in CS II over the full simulated horizon. A and
B: Control and system response of the concentration control loop and the temperature
control loop, respectively. C and D: Zoom of the system response in the concentration
control loop and in the temperature control loop, respectively. πA and πE indicate
the policy of the agent (after online learning) and the PID, respectively. Solid line
represents the mean control response and the shaded regions indicate the standard
deviation. Line colours of manipulated variables: blue - πA; light green - πE. Line
colours of control variables: red - πA; dark green - πE. Line colour of set points:
orange.

142

it further (online), but we wish to reduce the computational budget associated with

offline AL. Thus, we propose to transfer knowledge from a previous study to improve

computational and learning efficiency.

Knowledge transfer is in the form of the offline learned policy parameterisation

πpo(θ(k0), ·) and weight vector α∗ from a previous task. Here, knowledge is transferred

from Case Study I, given its better PID performance than Case Study II. Both α∗ and

πpo(θ(k0), ·) from Case Study I are provided as initialisation for AL of the new task

in Case Study III. Update of this initialisation only takes 80 epochs. Previously, the

two studies recovered demonstrated behaviour within a total of 300 and 250 epochs

of policy optimisation, respectively. This reduction in the computational intensity of

policy learning demonstrates that the computational burden of AL via IRL – under the

current methodology – may be significantly reduced through knowledge transfer. In

this study, process data was generated using PID1. Table 3.4 details the corresponding

trajectory feature expectations υγ,E.

Table 3.4: The expected discounted trajectory features of the PID1 generated in CS
III. Y ∗- Type indicates the type of trajectory feature and the respective control loop
error.

Trajectory Features

C∗
A − I T ∗ − I C∗

A − II T ∗ − II C∗
A − III T ∗ − III

E
[
υγ,E

]
16.07 18.36 8.08 8.35 - 21.83 - 22.78

E[υγ,π] 14.00 18.04 9.37 6.50 -19.94 -21.06
α 0.664 0.052 -0.223 -0.226 -0.403 -0.541

Given the parameterisation as learned via IRL, a further two rounds of 10 epochs

of RL enabled further policy improvement online. The results are presented in Fig 3.6.

Fig. 3.6A and B highlight how the policy learned under knowledge transfer achieves

pure set point tracking with a smoother control policy than that demonstrated by

PID1. Once again, Fig 3.6C and D show that this control policy successfully facilitates

a system response with fast rise time, but no overshoot or oscillatory behaviour around

the set point, as is present in the demonstrations.

143

Figure 3.6: Policy πA generated as a result of knowledge transfer through AL and
online policy optimisation. A and B: Control and system response of the concentration
control loop and the temperature control loop, respectively. C and D: Zoom of the
system response in the concentration control loop and the temperature control loop,
respectively. πA and πE indicate the policy of the agent (after online learning) and
the PID, respectively. Solid line represents the mean control response and the shaded
regions indicate the standard deviation.

144

3.6 Conclusions

In this paper, we propose a framework based on apprenticeship learning (AL) to learn

a control law based on process data, this approach allows us to synthesise a neural net-

work control policy from a previous controller (e.g. PID, MPC or human controllers)

more robustly than with supervised learning. Having learned a parameterisation of

the control law, subsequent deployment of RL enables further policy improvement

by directly interacting with the real process, thus outperforming the existing control

law. Here, AL is implemented through inverse reinforcement learning (IRL). Given

the data-driven nature of IRL, the RL-based policy parameterisation promises to ex-

press the action of the control scheme and process knowledge of the operators. RL

is constructed using a policy optimisation algorithm, although other methods could

be also applied in the future. Based on the case studies, it is concluded that the

proposed framework can effectively extract control information from available process

data, transfer knowledge between different cases, and can result in a better optimal

control policy efficiently. It should be noted that we assume the availability of rich

informative datasets. If the data is not informative, the framework is unlikely to

be effective. Future work will explore implementation of various data augmentation

strategies, based on physical knowledge or statistical analyses, to artificially synthesise

informative datasets.

145

Chapter 4

Safe chance constrained

reinforcement learning for batch

process control

This research item is published in the Computers & Chemical Engineering (CACE)

Journal, and is accessible via the following reference:

Mowbray, M., Petsagkourakis, P., del Rio-Chanona, E.A. and Zhang, D., 2022.

Safe chance constrained reinforcement learning for batch process control. Computers

& Chemical Engineering, 157, p.107630.

146

4.1 Introduction

Recently, there has been growing interest amongst the research community and indus-

try in the development of reinforcement learning (RL) based control schemes (Shin

et al., 2019). This is underpinned by the ability of RL to naturally account for process

stochasticity and handle nonlinear dynamics, and reflected by a growing literature

that demonstrates application empirically in applications ranging from set point con-

trol (Mowbray et al., 2021; Spielberg et al., 2019), online optimisation and control of

batch processes (Kim et al., 2020b; Joshi et al., 2021), real time optimisation (Powell

et al., 2020) and production scheduling (Hubbs et al., 2020a). All of these works rely

on offline simulation of a process model, with results often validated on the same model

that the RL policy was trained. This implicitly considers that the model used offline is

in fact a perfect description of the real process and, in the context of control, provokes

the question: ”if a model is available, why not use model predictive control (MPC)?”.

In practice, the real system is never perfectly described by the available model. In

the presence of uncertainty, the predictions from a model may not have closed-form

expression, e.g. propagation of uncertainty using Bayesian inference. Here lies the

real attraction of RL controllers - the ability to find an optimal control policy (Kirk,

2004; Bertsekas et al., 1995) independently of closed-form expressions of the uncer-

tain process dynamics, as is required by conventional finite dimensional optimisation

approaches such as stochastic, tube and distributionally robust MPC (Kouvaritakis

and Cannon, 2016; Langson et al., 2004; Lu et al., 2020). Additionally, the use of RL

allows for a greater diversity of models i.e. they are not required to be smooth.

However, there is a dualism implicit to RL. RL is very data expensive because

knowledge about the uncertain dynamics and the quality of a control policy is instead

gained by sampling (Sutton and Barto, 2018a). Offline learning (simulation) is ab-

solutely required due to the cost of real world data and the operational and safety

risk associated with conducting the RL process online. As a result, there remains

a dependence on the availability of a description of the physical system for offline

simulation, which provides means to conduct preliminary learning before deployment

to the real system. Despite this, few works consider the transfer of the policy (Pet-

sagkourakis et al., 2020b) to the real online system, which promotes concerns for

147

operational safety1. For example, if model-process mismatch exists, constraints may

be violated or the process driven to unsafe operating regimes. Given the acknowl-

edgement that no model is a perfect description of the real process - the development

of methods should consider that RL exploits the mathematical nature of the offline

model. Similar concerns are addressed in Hüllen et al. (2020).

Broadly, there are two approaches to synthesising the type of safe controller re-

quired: modifications could be made to the reinforcement learning process (Kumar

et al., 2020b; Agarwal et al., 2020; Yu et al., 2021b), or modifications made to the

offline model (Kidambi et al., 2021; Yu et al., 2020), which can then be integrated

into the RL objective. Recent works are discussed in the following with consideration

directed to both operational and safety concerns.

4.1.1 Safe Reinforcement Learning

One of the earliest works in process systems engineering (PSE), which considers the

online operational safety of reinforcement learning is provided by Lee and Lee (2005).

Here, the authors present an action-value method, with integration of a Parzen prob-

ability density estimator (Parzen, 1962) to bias the action-value function approxima-

tion based on the local data density. In this case, the data is used to construct the

action-value function and hence the data density helps quantify epistemic uncertainty

(i.e. the reducible part of model uncertainty arising from a lack of information - data

or knowledge - about the underlying functional (Hüllermeier and Waegeman, 2019)).

This concept is shared in more recent work (Clements et al., 2020), and enables the

implementation to produce conservative controls and restricts optimisation from ex-

ploiting the mathematical nature of the approximate action-value function. However,

this approach does not consider operational constraints or the accuracy of the under-

lying model. For RL to be deployed to real process systems, operational constraints

should be satisfied with high probability (if soft). One approach to achieve this is

underpinned by modification of the control selected by the RL agent, in order to en-

sure the system remains within some safe set via direct optimal control (DOC) (Li

et al., 2021; Wabersich and Zeilinger, 2021). However, the use of DOC retains explicit

1This is also placed in the scope of a wider concern regarding the interpretability of machine
learning systems

148

dependence upon a process model and imposes non-trivial learning rules that could

affect the optimality of the policy produced.

Other methods directly leverage the Markov decision process (MDP) formulation,

upon which the reinforcement learning problem is built. This approach tends to avoid

DOC and promotes use of ’model-free’ methods. A reasonably popular approach to

address constraints in the RL setting is provided by the constrained MDP (CMDP)

formulation. In Achiam et al. (2017), the authors approach the need for satisfaction

of operational constraints via CMDP, but do so in expectation and simultaneously

negate process-model mismatch. In Huh and Yang (2020), the authors propose the

identification of a lyapunov function (this time model-free and outside of the CMDP

framework) to ensure the process stays within some safe set with a given probability.

However, potential issues arising from plant-model mismatch are similarly ignored in

offline simulations. In Leurent et al. (2020), an approach to robust control is presented

(i.e. the method optimises for the worst case event), and the presence of process-model

mismatch is considered. However, the framework is limited to linear systems with ad-

ditive uncertainty. Recently, in Peng et al. (2021) the authors present an approach to

address high probability constraint satisfaction based on the augmented lagrangian.

However, the penalty term presented does not provide information about the quality

of control selection (i.e. essentially ignoring the RL problem) and is likely to lead to

conservative control policies. There have been two methods proposed recently, by Pet-

sagkourakis et al. (2020a); Pan et al. (2020), which integrate a similar penalty method

into the RL problem properly, and achieve high probability constraint satisfaction.

This is achieved through deployment of the concept of constraint tightening, which

is common to the stochastic MPC (sMPC) community (Mesbah et al., 2019; Valdez-

Navarro and Ricardez-Sandoval, 2019; Rafiei and Ricardez-Sandoval, 2020). A further

method has been proposed by Yoo et al. (2021c) for the case of hard constraints, which

constructs a slow non-stationary MDP to promote stability of learning via the imple-

mentation of a dynamic penalty method. However, the aforementioned works negate

the presence of offline model-process mismatch.

Most of the previous works ignore issues arising from process-model mismatch.

The domain of batch RL (otherwise known as offline RL) has drawn a lot of recent

research interest (Kumar et al., 2020a). The promise of this field lies in the synthesis

149

of real-world control policies from existing datasets (offline). The key idea in batch RL

is to learn with awareness of the limitations of the available data. Many of the works

set in this domain focus on action-value methods and look to bias (or regularise) the

action-value function approximation (Agarwal et al., 2020) by considering the data

density (Kumar et al., 2020b) in a manner not dissimilar to Lee and Lee (2005). More

recently, attention has been directed towards considerate construction of an offline

model, based on the available data and this directs attention in the following analysis.

4.1.2 Uncertainty aware modelling and control

A key consideration in the development of model-based RL approaches is the rela-

tionship between model construction and policy learning. For example, in Rajeswaran

et al. (2020), the problem of learning under the limitations of a local model and im-

proving policy performance on the real process is considered within a game theoretic

framework (similar to model-based design of experiments). However, it is not clear as

to whether this approach would ensure real-process safety unless modifications were

made to the reward function. This problem is approached by the work presented in

Petsagkourakis and Galvanin (2020) and more recently in Kidambi et al. (2021). In

Zanon and Gros (2020), the authors integrate RL into a robust, linear MPC scheme,

by using an RL policy to parameterise an uncertainty set. This allows for ensurance

of optimality under the scheme, but is traded at the price of restrictive modelling as-

sumptions. In Lütjens et al. (2019), model uncertainty is incorporated into a penalty

function for RL, however, the uncertainty estimate is gained through approximate

methods such as bootstrapping and MC dropout, which provides computational cost.

In Kidambi et al. (2021), the epistemic uncertainty associated with offline prediction

is quantified via the variance of a model ensemble. The epistemic uncertainty is used

to modify the reward function of the MDP to synthesise a safe control policy without

further interaction with the real system. A type of model, which achieves this more

naturally than an ensemble, is the Gaussian process (GP). GPs are data-driven mod-

els and their use is well documented in PSE applications (Sternberg and Deisenroth,

2017; Frigola, 2015; Bradford et al., 2020, 2018; del Rio Chanona et al., 2021). In part,

this is due to their compatibility with small datasets, but primarily for their natural

quantification of epistemic and aleatoric uncertainty. In a number of previous works,

150

(realisations of) GPs have been used to inform control decisions. Most of these works

lie in the domain of sMPC (Bradford et al., 2020; Umlauft et al., 2018), however, a few

hail from the field of RL-based policy optimisation (Deisenroth and Rasmussen, 2011;

Curi et al., 2020; Berkenkamp et al., 2017). In Deisenroth and Rasmussen (2011), the

authors compute gradients for policy improvement analytically, resulting in a highly

efficient algorithm for unconstrained problems. In Curi et al. (2020), the authors utilise

GPs and the variance of the posterior distribution to produce a controller-directed ex-

ploration strategy, but negate propagation of model uncertainty and, again, process

constraints. Whereas Berkenkamp et al. (2017) present an algorithm that simulta-

neously balances exploration and exploitation of a GP model, considers constrained

problems and provides stability guarantees for the policy identified. In the following,

we draw from works closer to sMPC (Umlauft et al., 2018; Bradford et al., 2020), to

synthesise a safe RL-based control policy, which considers both operational constraints

and process-model mismatch.

4.1.3 Contribution

A number of RL-based methodologies have been proposed to ensure operational con-

straints are satisfied with high probability (Pan et al., 2020; Petsagkourakis et al.,

2020a; Peng et al., 2021). Other works have been proposed to consider the process-

model mismatch that exists when learning an RL policy offline (Kumar et al., 2020b;

Kidambi et al., 2021; Yu et al., 2021b). However, as far as the authors are aware, there

are no RL methods, which achieve both. In this work, we propose a method that syn-

chronously satisfies operational constraints with high probability, whilst respecting the

limitations of a process model. Specifically, we deploy the use of GPs to construct a

data-driven state space model. The variance of the posterior predictive distribution of

the GP is used in two different ways: firstly, it provides a constraint tightening mech-

anism to back the nominal (or expected) process away from the constraint boundary

(to provide constraint satisfaction with high probability); and, secondly, it is used to

penalise exploration of regions of the GP model with high epistemic uncertainties. The

full method as proposed also implements a Bayesian optimisation strategy in order to

tune the degree of constraint tightening - balancing operational risk with performance.

Here, we draw analogue to reward shaping, except in this case, we identify a policy

151

variant mechanism for constraint satisfaction as desired (Ng et al., 1999). Importantly,

the dimensionality of the shaping problem is equivalent to the number of operational

constraints imposed on the system, which provides means to scale the method to larger

problems. Further advantages include the inheritance of the MDP framework - which

theoretically enables us to account for uncertainty in a proper closed loop manner -

as well as the mitigation of resolving an optimisation problem online (as is required

by conventional methods). Instead controls are selected via inference, which lends

itself naturally to handling systems of both fast and slow dynamics. Additionally, the

approach is completely data-driven and synchronously accounts for model uncertainty,

removing demands for assumption of mechanistic process knowledge.

The following is structured as follows: in Section 4.2, we outline the problem state-

ment and implicitly define the processes of interest; in Section 4.3, the methodology is

presented; in Section 4.4 a fed-batch bioprocess case study is presented with a view to

demonstrate the methodology; in Section 4.5 and 4.6 the results and discussion, and

conclusion are presented, respectively.

4.2 Problem statement

This work is concerned with the synthesis of an optimal control strategy for nonlinear,

uncertain systems of the form:

xt+1 = f(xt,ut, st) (4.1)

where x ∈ X ⊆ Rnx denotes the system state; u ∈ U ⊆ Rnu the control inputs to

the system; t = [1, . . . , T] denotes the discrete time index; s ∈ S ⊆ Rns , where S

represents a set of realisations of process stochasticity; and, f : X × U × S → X.

Here, no formal assumption is made regarding the source of stochasticity S, but it

could be introduced via parametric uncertainty or disturbances. In either case, given

the presence of stochasticity within system description, Eq. 4.1 may be expressed

equivalently via the following conditional probability density function:

xt+1 ∼ p(xt+1|xt,ut) (4.2)

Specifically, it is assumed that the process dynamics adhere to description as a Markov

process, and therefore that the associated decision-making problem may be formalized

152

as a Markov decision process (MDP). MDPs provide a probabilistic value framework

for decision making in uncertain systems, which display the Markov property. Under

the MDP framework, the probability of observing a given process trajectory p(τ),

under a control policy π is described:

p(τ) = p(x0)
T−1∏
t=0

π(ut|xt)p(xt+1|xt,ut) (4.3)

where τ = (x0,u0, . . . ,xT) denotes the process trajectory; p(x0) denotes the initial

state distribution; p(xt+1|xt,ut) the process dynamics; and the policy π(ut|xt) is ex-

plicitly defined as a conditional probability function over control inputs. Provided

process evolution is subject to a stochastic policy and process dynamics, the perfor-

mance of a policy is evaluated via the expected discounted sum of rewards Rt+1 ∈ R

accumulated from the initial state:

G(τ) =
T−1∑
t=0

γtRt+1

J =

∫
p(τ)G(τ)dτ

(4.4)

where the reward is allocated by a reward function R : X×U×X → Rt+1 and γ = [0, 1]

is the discount factor. Therefore, the optimal policy π∗:

π∗ = arg max
π

J (4.5)

One approach to learning such a controller is via Reinforcement Learning (RL). How-

ever, under the framework provided by MDPs, the optimal policy π∗ (and, hence RL)

implicitly neglects the satisfaction of both safety and operational constraints. In ap-

plications related to this work (i.e. industrial batch process systems), the satisfaction

of both operational and safety constraints is of concern. As such, it is of interest to

develop an RL-based methodology for the synthesis of an optimal control policy π∗
C ,

which respects constraints. The problem statement follows that common to works set

153

in the domain of stochastic optimal control:

P(πC) :=

max
π

J

s.t.

x0 ∼ p(x0)

xt+1 ∼ p(xt+1|xt,ut)

ut ∼ π(ut|xt)

ut ∈ Û

P(
T⋂
i=0

{xi ∈ X̂i}) ≥ 1 − α

∀t ∈ {0, ..., T − 1}

(4.6)

where Û ⊂ U represents the set of control inputs, which satisfy hard constraints on

the control space; and, X̂ ⊂ X denotes the set of states, which satisfy operational and

safety constraints imposed on the state space. Under the assumption that the problem

definition may have ng constraints, X̂ may be expanded more generally as the joint

chance constraint set, such that:

X̂t = {xt ∈ Gj,t,∀j ∈ {1, . . . , ng}} (4.7)

where Gj,t ⊂ Rnx defines the set of states, which ensure satisfaction of the jth constraint

at time step t. Specifically, in the following analysis, we assume that:

Gj,t = {xt ∈ Rnx : ATj xt − bj ≤ 0} (4.8)

where Aj ∈ Rnx and bj ∈ R define the jth constraint. The general principles discussed

subsequently extend to problems with nonlinear constraints. However, in that case,

the constraints should be represented by lower order power series expansions of the

nonlinear functions (Rafiei and Ricardez-Sandoval, 2018) i.e. the nonlinear expressions

should be linearized. Given that the process is stochastic, the constraints are ’soft-

ened’ such that satisfaction is guaranteed for all time t = {0, . . . , T} with a desired

probability, denoted 1 − α.

Theoretically, solution to Eq. 4.6 may be realised via exact dynamic programming

(DP), which requires exact descriptions of the probabilistic process dynamics. In

process systems, these are typically unavailable. Further, DP is known to suffer from

154

the the curse of dimensionality, which implies that high dimensional problems, or those

that operate over continuous state and control spaces, are computationally intractable.

In the domain of sMPC, works generally leverage reformulation of the problem via

deterministic expressions for the joint chance constraints and modelling assumptions

regarding the nature of process stochasticity (Mesbah et al., 2019; Subramanian et al.,

2021). This work similarly forms a deterministic surrogate of Eq. 4.6 in combination

with Gaussian process (GP) data-driven modelling, and identifies a reinforcement

learning (RL) based control policy, which naturally accounts for process stochasticity

in a closed-loop manner. These benefits are complementary to those noted in Section

4.1.3. In the following section, a methodology is proposed for synthesis of the controller

πC .

4.3 Methodology

4.3.1 Gaussian processes for data-driven dynamic modelling

Model-free RL-based policies are learned through Monte Carlo (MC) sampling of the

process dynamics and iteratively improved based on the collected data. This is oth-

erwise known as policy iteration. For real world applications, the synthesis of RL-

policies is dependent upon an accurate description (model) of the process dynamics.

For nonlinear, uncertain processes, construction of mechanistic dynamical models can

be problematic, even if understanding of the fundamental mechanisms driving process

behaviour exists. Hence, the construction of a purely data-driven model is proposed

to represent the discrete time, evolution of the nonlinear, uncertain dynamical system

described by xt+1 = f(xt,ut, st), i.e. Eq 4.1. In order to construct a representation of

the system dynamics, it is assumed that: a) f is a smooth function and b) there is an

available dataset D, which is composed as follows:

D = [ΥT YT], Y = [yi, . . . ,yN], Υ = [υi, . . . ,υN], υi =
[
xTi uTi

]T
,

(4.9)

where υ ∈ V ⊆ Rnυ , nυ = nx + nu are input measurements and y ∈ Y ⊆ Rnx

are output measurements of the system, which are gathered subject to some noisy

process ω ∈ W ⊆ Rnx (Rasmussen, 2006). Here, W is assumed to be an infinite set

155

representative of possible realisations of system noise, such that:

yi = f(υi) + ωi

ωi ∼ N (0,Σn)
(4.10)

where Σn = diag([σ2
n,1, . . . , σ

2
n,nx

]) ∈ Rnx×nx defines a diagonal matrix, where each

element on the diagonal denotes a state dependent variance. Further, as usual, it is

assumed that all datapoints di = [υi,yi] (equivalent to rows of D) are independently

and identically distributed (i.i.d.). Parallel can be drawn between Eq. 4.2, such

that Eq. 4.10 is equivalently described as a conditional probability function y ∼

p(y|υ). This description of data generation shares similarities to assumptions made in

Section 4.2 and directs attention to a branch of probability theory known as stochastic

processes (SPs), and in particular Gaussian processes (GPs).

Gaussian processes

SPs define a probability model over an infinite collection of random variables, any

finite subset of which have a joint distribution (Lindgren, 2012). This definition leads

to the interpretation of SPs as probability distributions over functions (Rasmussen,

2006), such that one realisation of an SP can be thought of as obtaining a sample from

a function space. When the distribution over the function space is assumed Gaussian,

the resultant model is termed a GP.

A GP is fully specified by a mean function, m : V → R, and covariance function,

k : V× V → R, such that:

fGP (υ) ∼ GP
(
m(υ), k(υ,υ′)

)
(4.11)

A number of covariance functions exist within the GP toolbox. Selection of both the

function and the associated hyperparameters, λ ∈ Rnλ , define the properties of the

GP in function space. As such, the decision as to appropriate covariance function is

often informed by domain knowledge and understanding of the modelling problem at

hand. The definition of hyperparameters is handled by maximisation of the marginal

log-likelihood (this is discussed in C.1.1 and referred to as GP training). Popular

choices include the Matern 5/2 and radial basis function (RBF) covariance functions

(Rasmussen, 2006). Definition of the mean function is also important. Often, a zero

156

mean (m(υ) = 0) is assumed, which is not unreasonable given standardisation of the

output data, Y.

GP model inference takes place within the framework provided by Bayesian rea-

soning. The assertion of a modelling decision regarding the mean and covariance

function therefore represents a prior belief about the possible properties of the hidden,

functional relationship expressed in the dataset D. When presented with a new test

input υ∗ ∈ Rnυ , the construction of a single GP model for the jth state leads to the

generation of an associated prediction y∗j ∈ R via the following joint prior distribution:[
YT
j

y∗j

]
= N

(
0,

[
K + σ2

nIN K∗

KT
∗ k(υ∗,υ∗)

])
(4.12)

where Yj ∈ R1×N denotes the jth row of the output of the training dataset Y; K ∈

RN×N denotes the Gram matrix, such that provided with training input measurements

(see Eq. 4.9), element km,n = k(υm,υn), where m = [1, . . . , N] and n = [1, . . . , N];

σ2
n denotes the variance of the noise associated with observation of state yj ∈ R (see

Eq. 4.10); K∗ ∈ RN denotes the covariance of the test datapoint υ∗ with the existing

(training) input measurements; and, lastly, k(υ∗,υ∗) ∈ R represents the variance of

the test datapoint.

Furthermore, as GPs operate through Bayesian reasoning, by conditioning the joint

prior distribution (Eq. 4.12) upon the observed dataset D and the test point υ∗, we

obtain a predictive posterior Gaussian distribution, with mean µj and variance σ2
j as

follows:

µj(υ
∗) = KT

∗ (K + σ2
nIN)−1YT

j

σ2
j (υ

∗) = k(υ∗,υ∗) −KT
∗ (K + σ2

nIN)−1K∗

(4.13)

In the context of dynamical systems modelling, Eq. 4.13 represents a probability

model over the next state of the dynamical system at the next discrete time index.

The construction of a posterior probability function is particularly useful in engineer-

ing applications, given that it expresses elements of both aleotoric and epsitemic model

uncertainty. Typically, the mean is taken as the model’s prediction, however, predic-

tion may also be directly sampled from posterior distribution (Bradford et al., 2018).

This will be discussed further in section 4.3.1.

Thus far, the methodology has formalised the construction of GPs, and defined

157

them as multiple-input, single-output models. Hence a single GP provides a func-

tional mapping descriptive of the future discrete time evolution of a single state, given

observation of the full system state and control inputs at the current time index. It

is of interest to this work to construct a multiple-input, multiple-output state space

model. This is discussed subsequently in Section 4.3.1 and has been presented previ-

ously by other related works (Bradford et al., 2020; Umlauft et al., 2018; Deisenroth

and Rasmussen, 2011). We direct the interested reader for more information.

Gaussian processes for state space modelling

In this study, state space models are constructed by training nx GP models separately

and combining them to simultaneously predict the state vector x ∈ Rnx at the next

discrete time interval, t + 1. Specifically, under the assumption that each of the

nx models has been constructed and trained according to Section 4.3.1 and C.1.1,

this implies that the the posterior prediction from the GP state space model, when

presented with υt follows:

µ(υt;D) =
[
µ1(υt), . . . , µnx(υt)

]
Σ(υt;D) = diag(σ2

1(υt), . . . , σ
2
nx

(υt))

xt+1 ∼ N
(
µ,Σ

) (4.14)

where µ ∈ Rnx and Σ ∈ Rnx×nx amd xt+1 ∈ Rnx is the next state . In the following

section, we discuss how the GP state space model is used to generate realisations of

underlying process stochasticity, and relate discussion directly to the decision making

process.

Gaussian process realisations and decision making

For effective and safe control and optimisation of process systems, a control policy

must consider worst-case realisations of process stochasticity. In GP models, function

realisations are sampled from the GP. Each function realisation represents a specific

instance of model uncertainty across process evolution - including the worst case. In

order to achieve this, model uncertainties must be propagated correctly. This work

implements the method detailed in Umlauft et al. (2018), which recursively updates

the dataset D as the process evolves between discrete time indices. This process is

158

detailed by Algorithm C.1 in C.1.2 and relies upon linear algebra to account for the

effects of conditioning the GP models on the updated dataset. See Bradford et al.

(2020); Strassen (1969) for more details.

In the following section, an approach that synchronously combines concepts from

sMPC and RL to produce a self-optimizing, policy varying reward shaping mechanism

is presented, which provides probabilistic constraint satisfaction. Specifically, a penalty

function method is combined with the concept of backoffs.

4.3.2 Safe chance constrained policy optimisation with Gaus-

sian processes

In this section, we provide details of the methodology, which enables combination of GP

state space models with RL-based policy optimisation for high probability constraint

satisfaction. To achieve this, the methodology is organised as follows and the full

algorithm is detailed by Algorithm 4.2:

1. In Section 4.3.2, the general stochastic optimal control problem defined by Eq.

4.6 is modified to consider the nominal evolution of the states and obtain a deter-

ministic expression for the probabilistic joint constraints. To facilitate this, we

implement an approach similar to Petsagkourakis et al. (2020a) in combination

with a GP state space model.

2. In Section 4.3.2 the deterministic surrogate constraints are incorporated into a

reformulation of the RL objective (see Eq. 4.4) via an lp penalty function2 (No-

cedal and Wright, 2006; Larson et al., 2019) and detail of a general constrained

policy optimisation algorithm is provided (Schulman et al., 2017b).

3. Then, in Section 4.3.2, an ’efficient’ global optimisation strategy (Jones et al.,

1998) is presented to iteratively tune the penalty function enabling satisfaction

of the original joint chance constraints with the desired probability 1 − α estab-

lishing a strong connection between this work and reward shaping (Ng et al.,

1999).

2The subscript p of lp denotes the norm incorporated into the penalty function

159

The methodology is formalized with a view to the use of policy optimisation methods,

however, the concepts discussed can also be integrated into actor-critic and action-

value methods (Sutton and Barto, 2018a).

Probabilistic joint chance constraints

In this section, reformulation of the probabilistic joint chance constraint detailed by

Eq. 4.6 is presented. The joint chance constraints are restated here for ease:

P(
T⋂
i=0

{xi ∈ X̂i}) ≥ 1 − α (4.15)

The following analysis proceeds to obtain a set of deterministic surrogate constraints,

which can then be integrated into a revised objective for RL-based policy optimisation.

In particular, we leverage Boole’s inequality and the Cantelli-Chebyshev inequality to

obtain a deterministic constraint for each of those that comprise the original joint

constraint. The analysis follows Paulson et al. (2020); Farina et al. (2014).

Lemma 1 Boole’s Inequality (Boole, 1847): Consider a finite set of countable

events {Z1, Z2, . . . , Zng}, the probability that one of these events occurs is no greater

than the sum of the probabilities of the individual events:

P
(ng⋃
i=1

Zi

)
≤

ng∑
i=1

P(Zi) (4.16)

Now, considering ng constraints comprise the joint chance constraint, then applying

this result enables decomposition of Eq. 4.15, into ng individual chance constraints.

As in Petsagkourakis et al. (2020a), for ease of notation, we define the following:

X = max
(t,j)∈{0,...,T}×{1,...,ng}

Ajxt − bj, g = {x ∈ Rnx : X}, G′

j =
T⋂
i=0

{xi /∈ Gj,i}

where G′
j defines the set of states, which do not satisfy constraint j for all time indices

and X ∈ Rnx defines a random variable. From Lemma 1:

P
(ng⋃
j=1

{g ⊂ G′

j}
)
≤

ng∑
i=1

P(g ⊂ G′

j) (4.17)

Explicitly, Eq. 4.17, dictates that the probability of achieving joint constraint satis-

faction under a given policy π is lower bounded by the probability of satisfying each of

160

the respective constraints individually. Therefore, guaranteeing satisfaction of chance

constraints individually can be considered a robust approximation to joint satisfaction:

ιj = P(g ⊂ G′

j) =⇒ α ≤
ng∑
j=1

ιj

where ιj ∈ R, subject to satisfying Eq. 4.17. This enables approximation of Eq. 4.15

via the following:
ng∑
j=1

P
(T⋂
i=0

{xi ∈ Gj,i}
)

= 1 −
ng∑
j=1

ιj (4.18)

In this work, we define ιj = α/ng, j = [1, . . . , ng]. Having decomposed the original

joint chance constraint into a set of individual chance constraints, the methodology

looks to express a set of deterministic surrogate expressions (of the original probabilis-

tic chance constraints), which can then be incorporated into the method presented.

To proceed, we deploy the concept of constraint tightening, which is an approach

commonly deployed within the domain of sMPC. The intuition behind constraint tight-

ening is described as follows. The process of concern is subject to unbounded uncer-

tainties. We consider that under a given policy π, the process will vary probabilistically

within a given region of X̂t. Specifically, one can assume that the process will vary

within some euclidean distance from the nominal or expected behaviour with a given

probability. If we back the nominal process off from the constraint boundary then we

will be able to achieve chance constraint satisfaction with the desired probability. This

is underpinned by the Cantelli-Chebyshev inequality, which is described by Lemma 2

Lemma 2 Cantelli-Chebyshev Inequality (Ogasawara, 2019): Consider a ran-

dom variable Z, with expected value E
[
Z
]
and finite variance Σ[Z], then:

P
(
Z − E

[
Z
]
≥ δ
)
≤

Σ
[
Z]

Σ[Z] + δ2

The mechanism of constraint tightening takes the form of a set of backoffs εj =

[εj,0, . . . , εj,T], which can be conceptualised as the necessary euclidean distance from

the expected or nominal state x̄t ∈ Rnx to the constraint boundary to guarantee

chance satisfaction with a given probability (note, backoff values are specific to both

the constraint and time index). As stated in Section 4.2, the analysis provided in this

work assumes affine constraints. Therefore, the tightened constraint sets follow:

Ḡj,t = {x̄t ∈ Rnx : ATj x̄t + εj,t − bj ≤ 0}

X̄t = {x̄t ∈ Ḡj,t,∀j = {1, . . . , ng}}
(4.19)

161

The determination of the backoff values εj,t is handled via the following analysis.

Specifically, we work from the developments made in Farina et al. (2014); Magni et al.

(2009), which (via Lemma 2) show that the Cantelli-Chebyshev approximation of the

backoff set is equivalent to:

εj,t =

√
1 − ιj
ιj

√
ATj Σ[xt]Aj (4.20)

where εj,t represents a robust approximation of the backoff required for individual

chance constraint satisfaction with the desired probability ιj. In this work, we deploy

a GP state space model to estimate both the nominal state x̄ ∈ Rnx and the variance

of the state Σ[xt], as described by Eq. 4.14, enabling construction of a deterministic

expression for each of the individual chance constraints. In practice, it is well docu-

mented that use of the Cantelli-Chebyshev approximation leads to overly-conservative

control policies, which operate far from the constraint boundary. In order to balance

the performance of the control trajectory, with constraint satisfaction, we propose to

tune εj,t via a multiplying factor ξj = [0, 1] for each constraint. As such, the deter-

ministic surrogate for each of the individual chance constraints, detailed by Eq. 4.18,

are described:

ATj x̄t + ξj

√
1 − ιj
ιj

√
ATj Σ[xt]Aj − bj ≤ 0 (4.21)

The approach to the tuning of the multiplying factors, ξ = [ξ1, . . . , ξng], could be

handled via Bayesian optimisation (BO) or bisection method (Petsagkourakis et al.,

2020a; Bradford et al., 2020; Pan et al., 2020). This work employs a BO strategy,

which is detailed by Section 4.3.2. The computational implications for this are small

given the efficiency of BO.

The use of a GP to parameterise the backoff values εj is more efficient than the set

of methods proposed previously by Petsagkourakis et al. (2020a); Pan et al. (2020). In

those works, initial backoff values were estimated via MC sampling and then tuned.

Here, we provide a method to analytically express the backoff values via the posterior

predictive distribution of the GP state space model, removing the requirement for

sampling and the potential inaccuracies it brings in initialisation. This is the primary

novelty of this work.

The methodology has now obtained a set of deterministic surrogate constraints

for joint chance constraint satisfaction. Identification of these expressions enables

162

reformulation of the original problem statement P(·) described by Eq. 4.6 as follows:

P̂(πC) :=

max
π

J

s.t.

x0 ∼ p(x0)

xt+1 ∼ N (µ(υt),Σ(υt))

ut ∼ π(ut|xt)

ut ∈ Û

xt ∈ X̄t

∀t ∈ {0, ..., T − 1}

(4.22)

where υt =
[
xTt uTt

]T
and solution to P̂(·) is equivalent to that of the original P(·).

Due to the presence of a GP state space model within the problem description, P̂ is

a function space optimisation problem. Previous works have solved this problem via

nonlinear MPC with precalculation of the backoff values, and description of the discrete

time state evolution according to the mean of the GP (equivalent to the nominal

process) (Bradford et al., 2020). In this work, we use RL to solve P̂ (hence the use of

function realisations and Algorithm C.1, detailed by C.1.2) with incorporation of the

deterministic surrogate constraints into a modified RL objective. This is achieved via

an lp penalty function, under a given value of the backoff multipliers, ξ. Solution to

this problem under the optimal backoff multipliers ξ∗ is deemed equivalent to finding

solution to Eq. 4.22 as discussed subsequently.

Safe constrained policy optimisation with fixed backoffs

As GPs express process uncertainties, they present an avenue to synthesise policies,

which only exploit regions of the state space in which the model is confident of the

true process behaviour i.e. where epistemic uncertainties are low. By incorporating the

variance prediction, Σ(υt), of the GP state space model posterior directly in the RL

performance index, we force the ultimate RL policy to avoid the areas that the GP is

uncertain and provide explicit mechanism to mitigate exploitation of the mathematical

nature of the GP model. Hence the policy pessimistically accounts for the limitations

of the data-driven model when deployed to the real process.

163

Use of the l1 or l2 penalty functions is particularly appealing because of the ex-

actness (under certain conditions) to the solution of P̂ (Nocedal and Wright, 2006).

This would further preserve the approximation provided by Eq. 4.22 to Eq. 4.6. The

general penalty function, φp : X× U× X → R is detailed as follows:

φp(x,u, t) = Rt+1 − tr
(
ζΣ[υt]

)
− κ

∥∥[ATxt+1 + εt − b]−
∥∥
p

(4.23)

where A ∈ Rnx×ng and b ∈ Rng define the set of inequality constraints; εt ∈ Rng the set

of backoff values relevant to the set of constraints at a given time index (see Eq. 4.21);

[z]− = max(0, z) defines an element wise operation over z ∈ Rng ; ∥·∥p the general

p-norm; Rt+1 ∈ R the rewards accumulated under the original process objective e.g.

productivity maximisation in a (bio)chemical process; and, κ ∈ R and ζ ∈ Rnx×nx (a

diagonal matrix) weight the penalty for constraint violation and model uncertainty,

respectively - relative to Rt+1. The incorporation of model uncertainty, therefore, is

represented by the term tr
(
ζΣ[υt]

)
. It is expected that in some cases there is likely

to be a dependence between the uncertainty and constraint penalty terms, which may

lead to over-penalisation of constraint violations. This may favour the identification of

conservative policies, although this is likely to be case dependent and may be mitigated

by the tuning process discussed in Section 4.3.2. Expression of the penalty function,

enables redefinition of the RL objective J(τ) via J̄C(τ):

ḠC(τ) =
T−1∑
t=0

γtφp(x,u, t)

J̄C =

∫
p(τ)ḠC(τ)dτ

(4.24)

It is hypothesised that RL-based optimisation of this new objective will synthesise a

policy, which provides chance constraint satisfaction and exploits regions of the state

space well characterised by the model - encouraging the learning of inherently safe

control policies. Further, because the modifications are made directly to the reward

function itself, the approach is compatible with any RL method. Given the GP state

space model is constructed over continuous state and control variables, as usual, the

RL can learn a parameterisation of the optimal constrained policy:

π∗
C(u|x; θ, ·) ≈ π∗

C(u|x)

π∗
C(·, θ) = arg max

θ
J̄C

(4.25)

164

where θ ∈ Rnθ denotes a vector representation of the policy parameters (typically the

weights and bias of a neural network). A general algorithm for constrained policy

optimisation under a fixed set of backoff values is provided by Algorithm 4.1. These

backoffs are adjusted via BO - details are presented later in the manuscript in Section

4.3.2 and Algorithm 4.2.

Algorithm 4.1 Safe Policy Optimisation for Fixed Backoffs

Input: Experimental dataset D; GP state space model fGPSS = [f1GP (υ), . . . , f
nx
GP (υ)] with

hyperparameters Λ̂ = [λ̂1, . . . , λ̂nx] trained on D; Initial control policy π(u|x; θ0); Pol-

icy optimisation algorithm fPO(·); backoff multipliers ξ; Finite horizon length T; initial

state distribution p(x0); Memory Binfo for information required for fPO(·); K episodes;

tolerance criterion;

1. i = 0

while not converged do

2a. Obtain a batch of K rollouts over a horizon of T discrete intervals according to

Algorithm C.1, via π(u|x; θi), fGPSS , and p(x0). Return the trajectory information3 of

each rollout and any further necessary information for fPO(·) and store in Binfo.

2b. Perform policy optimisation θi+1 = fPO(Binfo, θi)

2c. Reset memory Binfo
2d. i += 1

2e. Assess tolerance criterion

end while

3. Assess final policy performance J(θi) under the unconstrained reward function R and

approximate the probability of joint constraint violation (Eq. 4.15) denoted FLB(0) via

the method detailed in Appendix C.4

Output: Optimal constrained policy π∗C(u|x; θi) under backoff multipliers ξ and associated

performance indices J(θi) and FLB(0)

The description provided by Algorithm 4.1 considers all on-policy policy optimisa-

tion approaches, denoted generally as fPO(·), although there is no reason the approach

could not utilise an off-policy method too (Pan et al., 2020). The detail provided for-

malises the process of obtaining function space realisations from the GP state space

model, fGPSS, each of which represents a potential instance of the uncertain process

3This includes the rewards φ
(k)
0:T−1 = [φ

(k)
1 , . . . , φ

(k)
T−1] under Eq. 4.23 and the current backoff

multipliers ξ, for the sequence of controls u
(k)
0:T−1 = [u

(k)
1 , . . . ,u

(k)
T−1] and states x

(k)
0:T = [x

(k)
1 , . . . ,x

(k)
T]

165

detailed by Eq. 4.1. Every process trajectory is ranked according to Eq. 4.23 and the

current iterate of backoff multiplier, ξ, values. Using the collected experience (includ-

ing relevant information that describes decision making), stored in the memory, Binfo,

the weights of the policy are updated by fPO(·). This is repeated until a convergence

criterion is satisfied. In the following computational experiments detailed by this work,

the methodology was integrated with the proximal policy optimisation (PPO) algorithm

(Schulman et al., 2017b). This is an attractive option given: a) the ability to directly

parameterise a policy as a conditional probability distribution over a continuous con-

trol input space; b) compatibility with recurrent neural networks (Schulman et al.,

2017b); c) sample efficiency relative to conventional policy optimisation methods i.e.

reinforce; and, d) ease of implementation. Full detail of the PPO algorithm is provided

by C.3.

In this section, the methodology has provided a mechanism to incorporate informa-

tion about the constrained problem into the reward signal characteristic of the MDP.

In doing so, a strong connection to reward shaping is established. In reward shaping,

policy invariant modifications of the reward function are identified to aid learning of

the optimal policy π∗ (Ng et al., 1999; Dong et al., 2020). In this work, we construct

a policy varying modification of the reward function in order to satisfy operational

constraints. The resultant penalty function (Eq. 4.23) contains a number of free pa-

rameters. In the subsequent section, it is proposed to tune the backoffs, ε, via the

multipliers, ξ, (see Eq. 4.21) and a BO scheme. This leaves decision as to the param-

eters κ ∈ R and ζ ∈ R open to the implementation, although it is recommended that

they are large real values (Nocedal and Wright, 2006). Ultimately this provides mech-

anism for the implementation to balance operational risk and performance manually.

Optimisation of backoff multipliers

The primary objective of this section is to identify a mechanism which facilitates

synthesis of a policy that:

(a) achieves high probability constraint satisfaction as desired, and

(b) performs with respect to the original process objective as specified by R : X×U×

X → R.

166

’Efficient’ global optimisation of the backoff multipliers ξ is proposed, and so the

methodology explores definition of an objective to evaluate candidate values of ξ as

follows.

Firstly, discussion is directed in how best to evaluate a) from the policy generated

by Algorithm 4.1. Specifically, with reference to Eq. 4.17 and the following works

(Paulson et al., 2020; Petsagkourakis et al., 2020a):

FX(0) = P(X ≤ 0) = P(
T⋂
i=0

{xi ∈ X̂i}) (4.26)

where FX(·) indicates the cumulative distribution function (cdf), which in this case is

analytically intractable. In order to assess a), it is proposed to validate the probability

of constraint satisfaction empirically via MC sampling under the GP state space model

i.e. via the sample approximation of FX(0), denoted FSA(0). The specific approach is

detailed in Petsagkourakis et al. (2020a) and repeated in C.4 for completeness. Ulti-

mately, through this sampling-based method, a lower bound for Eq. 4.26 and FSA(0)

is obtained and denoted FLB(0). This accounts for potential inexactness introduced

through finite samples. The evaluation of b) is more simple and directed via the def-

inition of the process objective in the form of the reward function R. As such, the

investigation may evaluate the performance of the policy under the original, uncon-

strained objective provided by Eq. 4.4. This work therefore proposes the use of the

following objective function in evaluation of candidate multiplier values ξ ∈ Rng :

U = (FLB(0) − (1 − α))2

JBO = −(J(τ) − βσJ) exp(−cU)
(4.27)

where β = [0, 1], c ∈ R+ and σJ denotes the standard deviation of the policy with

respect to the unconstrained process objective. This is a modification to the objective

function proposed previously in Petsagkourakis et al. (2020a), which equated JBO to

U . Here, Eq. 4.27, provides a smoother latent function and naturally balances the

objectives a) and b). The inclusion of the term σJ also incentivises those policies,

which exploit regions of the state space well characterised by the model. The factor

c provides a shape parameter for the RBF part of the objective, with higher values

providing greater incentive to obtain joint constraint satisfaction as desired. Care

should be taken in selection as the higher the value, the sparser the mapping provided

by the objective. This is likely to have consequences for the efficacy of optimisation.

167

In the following case studies, β = 0.1, c = 1 and a BO scheme was deployed via GP

surrogate models with RBF covariance functions and zero mean priors to optimise the

backoff multipliers ξ:

ξ∗ = arg min
ξ

JBO (4.28)

Due to the expensive black box optimisation proposed BO is deemed the most ap-

propriate approach. BO proceeds to construct and exploit a GP surrogate model to

sample new candidate points. Construction of the GP surrogate demands a small

initial dataset, describing a set of inputs, Ξ, and their corresponding fulfilment of the

objective function, JΞ. New sampling points (or in this case, candidate backoff mul-

tipliers) are sampled to maximise an acquisition function (AF), which is a function

of the posterior distribution of the GP surrogate. The AF, denoted fAF (·), used in

this work was the expected improvement (EI) function (Frazier, 2018; Jones et al.,

1998). It was found that the EI AF, fEIAF (·), was most efficient in this case, balancing

exploration and exploitation of the GP surrogate model to find the optimal solution.

The expected improvement function is detailed as follows (Jones et al., 1998; Brochu

et al., 2010):

ϱ =
µ(ξ) − J+

BO

σ(ξ)

fEIAF (ξ) =

σ(ξ)ψ(ϱ) + (µ(ξ) − J+
BO)ϕ(ϱ), if σ(ξ) > 0

0, otherwise

(4.29)

where ϕ(·) is the Gaussian cumulative distribution function, ψ(·) is the Gaussian prob-

ability density function, J+
BO is the objective value of the current best backoff multiplier

values ξ+ (Jones et al., 1998; Frazier, 2018), and µ(·) and σ(·) are detailed by Eq. 4.13.

Dissecting Eq. 4.29, the first term on the right hand side incentivises exploring regions

of the input space associated with high uncertainty in the posterior distribution, and

the second term provides basis to exploit regions of the input space corresponding to

high mean predictions in the posterior (Jones et al., 1998). As such, Eq. 4.29 provides

explicit mechanism to balance exploration and exploitation of the GP surrogate model,

in a fashion not dissimilar to the exploration-exploitation paradigm in RL. For more

detail on BO in this context, we direct the interested reader to previous work (Pet-

sagkourakis et al., 2020a; del Rio Chanona et al., 2021) and a comprehensive review

(Frazier, 2018).

168

Algorithm 4.2 formalises the approach to reward shaping detailed by this Section.

In Step 1, an optimal policy parameterisation is learned for the unconstrained prob-

lem. This is used as an initialisation for learning of the optimal constrained policy

thereafter. In Step 2.a, a number of policies are learned for the constrained problem

each utilising different values of the backoff multipliers. In 2.b, each of the policies is

assessed with respect to JBO, providing an input-output dataset, where the inputs are

backoff multipliers and the outputs are corresponding performances under the objec-

tive (JBO). In Step 3, a surrogate GP model is built via this input-output dataset

for subsequent BO. Pseudocode for BO is provided by Step 4, with Step 5 doc-

uments the return of the solution policy from memory. In the following section, the

method is demonstrated on a microalgal lutein photo-production dynamic process and

benchmarked against dynamic optimisation and NMPC strategies.

169

Algorithm 4.2 Safe Chance Constrained Policy Optimisation

Input: Desired probability of joint chance constraint satisfaction, α; GP prior for Bayesian

Optimisation fBO; Acquisition function fAF ; Objective function JBO; maximum number

of acquisitions for BO, M ; Initial set of B backoff multiplier values Ξ = [ξ1, . . . , ξB]

generated via sobol sequence (Sobol’, 1967);

1. Perform policy optimisation for unconstrained problem to maximise Eq. 4.4 via mod-

ification to Algorithm 2. Return policy π∗(·, θ).

2i. Train a set of B constrained policies π∗init = [π∗C(·, θ1), . . . , π∗C(·, θB)] to maximise Eq.

4.24 under the respective backoff values, Ξ, via Algorithm 2 with π∗(θ) as initialisation.

2ii. Return performance indices FLB(0) and J(τ , θ) ∀ π∗C(·, θ) ∈ π∗init and assess JBO,

such that JΞ = [JBO(ξ1), . . . , JBO(ξB)].

3. Train a GP model given input-output pairs representative of (backoff multiplier values

and policy performance under JBO) Ξ and JΞ according to C.1.1 and condition to obtain

updated predictive posterior distribution, p(JBO|ξ,Ξ).

for m ∈ {1, . . . ,M}: do

4i. According to p(JBO|ξ,Ξ) find ξB+m = argmaxξ fAF (·) and update Ξ =

[ξ1, . . . , ξB+m]

4ii. Train constrained policy π∗C(·, θB+m) via Algorithm 2, π∗(·, θ) for initialisation

under the backoff values ξB+m. Return performance indices FLB(0) and J(τ , θB+m) for

π∗C(·, θB+m), assess JBO(ξB+m) and append to dataset, JΞ = [JBO(ξ1), . . . , JBO(ξB+m)]

4iii. if m < M : repeat step 3.

end for

5. Return π∗C(θ) corresponding to ξ∗ = argmaxξ JΞ

Output: Optimal Constrained Policy π∗C(θ)

4.4 Case Study

To demonstrate the methodology, a case study was selected from previous work con-

ducted by Zhang et al. (2019a); del Rio-Chanona et al. (2017), which is underpinned

by a set of ordinary differential equations (ODEs). The problem and standard bench-

marks are detailed via the following subsections.

170

4.4.1 A microalgal lutein photo-production dynamic process

Fed-batch fermentation processes are thought to be ideal systems for RL-based con-

trollers and particularly suited to data-driven approaches to control and optimisation.

This is due to characteristics of predominantly batch mode operation and complex

physical phenomena driven by the metabolic reaction network. The complexity of the

process physics often provides impediment to structural and practical model identi-

fication, with large parametric uncertainties common across bioprocess systems. To

demonstrate the method proposed here, we consider an in-silico microalgal lutein

photo-production process described as follows:

ċX = u0
cN

cN +KN

cX − udcX

ċN = −YN/Xu0
cN

cN +KN

cX + FN,in

ċL = k0
cN

cN +KNL

cX − kdcLcX

(4.30)

where cX (g L−1) defines the biomass concentration; cN (mg L−1) defines the nitrate

concentration; cL (mg L−1) defines the lutein (product) concentration; FN,in(mg h−1)

is the nitrate inflow to the system (a control input); u0 ∈ R (h−1) is the specific biomass

growth rate, which is a function of the incident light intensity I0 ∈ R (µmol m−2 s−1)

to the reactor and the maximum theoretical growth rate um ∈ R (h−1); k0 ∈ R

(mg g−1 h−1) is the specific lutein production rate, which is a function of I0 and the

maximum theoretical production rate km ∈ R (mg g−1 h−1); kd ∈ R (L g−1 h−1) is the

lutein consumption rate; ud ∈ R (h−1) is the biomass specific decay rate; YN/X ∈ R

(mg g−1) is the nitrate yield coefficient; and, KN ∈ R (mg L−1) andKNL ∈ R (mg L−1)

are the nitrate half-velocity constant for cell growth and lutein synthesis, respectively.

The growth rates of biomass and lutein are constituted by the terms u0 and k0. These

are both functions of the incident light intensity to the reactor and are detailed as

follows:

u0 =
um
20

9∑
n=1

(
I0

I0 + ks +
I20
ki

+ 2
InL

10

InL
10

+ ks +
I2nL

10

ki

+
IL

IL + ks +
I2L
ki

)

k0 =
km
20

9∑
n=1

(
I0

I0 + ksL +
I20
kiL

+ 2
InL

10

InL
10

+ ksL +
I2nL

10

kiL

+
IL

IL + ksL
+
I2L
kiL

) (4.31)

171

where ki ∈ R and kiL ∈ R are light inhibition terms for biomass growth and lutein

synthesis, respectively. Similarly, ks ∈ R and ksL ∈ R are light saturation terms for

biomass growth and lutein synthesis, respectively. More information on parameter

definitions and values is provided by del Rio-Chanona et al. (2017); Zhang et al.

(2019a). The states x = [cX , cN , cL] of the system are absolute and hence ci ≥ 0 ∀ i ∈

{X,N,L}. Further to FN,in , the control input is also constituted by I0, such that nu =

2 and u(t) = [FN,in , I0]
T , with bounds 0.1 ≤ FN,in ≤ 100 mg h−1 and 100 ≤ I0 ≤ 1000

µmol m−2 s−1. It is assumed that the process is subject to stochasticity in the form

of 5 % parametric uncertainty. This and the initial state distribution is detailed by

Table 4.1. Parametric values not detailed are assumed constant following the original

works (del Rio-Chanona et al., 2017; Zhang et al., 2019a). Additionally, the initial

state distribution, p(x0), is defined in keeping with the work (Zhang et al., 2019a).

However, the state constraints imposed are specific to this work and not the previous.

Table 4.1: Case Study: List of parametric and initial state distributions imposed to
describe uncertainty in the real underlying bioprocess.

Variable Uncertainty Distribution

um N (0.152, 0.0038)
KN N (30, 0.75)
ud N (5.93× 10−3, 1.483× 10−4)
YN/X N (305, 7.625)

km N (0.35, 0.00875)
Kd N (3.71× 10−3, 9.275× 10−5)
x0

[
N (0.27, 3.125× 10−3),N (765.0, 9.5625),N (0.0, 0.0)

]
Here, affine constraints are defined using notation from Section 4.3.2:

A =

1 0 −1.67

0 −1 × 10−3 0

0 0 1

 b =

2.6

0.15

0

 (4.32)

The constraints were constructed to represent common operational concerns in bio-

processing. The first column of A considers the potential raw material to product

conversion via constraint of the maximum biomass concentration (as biomass is a ’by-

product’). The second column considers the protection of cell growth (via a minimum

nitrate constraint) and the third ensures continued productivity (via constraint of the

maximum ratio of secondary metabolite to biomass). The process objective reward

172

function R : X× U× X → Rt+1 is as follows:

Rt+1 =

dTxt+1 − ∆uTt C∆ut if t = T − 1

−∆uTt C∆ut, otherwise

(4.33)

where t = [0, . . . , T] and the length of the finite horizon is defined T = 6; ∆ut =

ut − ut−1 ∈ Rnu defines the change of controls between discrete time steps; C =

diag([0.16, 8.1×10−5]) ∈ Rnu×nu provides a penalty for changing the controls and pro-

motes the learning of ’stable’ control profiles; and, d = [0,−0.001, 4]T ∈ Rnx provides

an overall objective for process operation i.e. to maximise the production of lutein

and minimise waste of nitrate. The problem definition is common to both Section

4.4.2 and the benchmark described in Section 4.4.3, except the benchmark does not

consider any form of parametric uncertainty. A formalisation of the control problem

follows:

P(πC) :=

max
πC

EπC
[T−1∑
t=0

Rt+1

]
(see Eq. 4.33)

s.t.

x0 ∼ p(x0)

st ∼ p(s) (see Table 4.1)

xt+1 = f(xt,ut, st) (see Eqs. 4.30 and 4.31)

ut = πC(xt)

ut ∈ Û

xt ∈ X̂t (see Eqs. 4.7 and 4.32)

∀t ∈ {0, ..., T − 1}

(4.34)

4.4.2 Safe chance constrained policy optimisation

To demonstrate the methodology, this work deploys the PPO algorithm with both

actor and critic recurrent long-short term memory (LSTM) neural network param-

eterisations. The actor network expresses a mapping between observed states and

controls (i.e. a control policy) and the critic provides a mapping between a state and

the value of that state under the policy (this is known as the value function). The use

of a critic provides means to deploy the general advantage estimate (GAE) form of the

173

policy gradient (PG) within the PPO framework. The GAE enables the implementa-

tion to manually balance the bias and variance of the advantage PG. This provides

means to synchronously ensure stable learning, improve the sample efficiency of the

algorithm and find a clear direction (in weight space) for policy improvement. For

more information on PPO and the GAE, the reader is directed to C.3 and Schulman

et al. (2017a,b). The implementation utilised Pytorch 1.7.1. Information about the

structure of the actor, critic and all hyperparameters defining the PPO algorithm as

used in this work, may be found in C.3.3. See Table 4.2 for definition of general case

study parameters.

Table 4.2: Case Study: List of key algorithm parameters

Variable Value

Penalty weight, κ 34
Uncertainty penalty weight, ζ 300 × diag([1/σ2

1Υ
, . . . , 1/σ2

nxΥ
])4

Tolerance criterion |J̄C(τ , θi) − J̄C(τ , θi−1)| ≤ 10−3

Joint Probability of constraint violation, α 0.001
Probability of individual constraint violation, ιj 0.00033

In order to train the desired policy π∗
C(·, θ) via Algorithm 4.2, a GP state space

model is required. In this work, the model was built using an initial dataset D5, gener-

ated by simulation of the uncertain process’ response to 32 different control sequences,

u
(j)
0:T , j = [1, . . . , 32] (hence the dataset contains information from 32 separate batch

experiments). Each control sequence was generated via transformation of a Sobol se-

quence (of length T) to the bounded controls space (as detailed in Section 4.4.1). In

practice, this dataset could be generated via an initial design of experiments (Petsagk-

ourakis and Galvanin, 2020). Having generated D, (nx = 3) individual GP models

were constructed to form a state space model (for the prediction of each state) via

the methodology outlined in Section 4.3.1. A prior distribution with mean function

m(υ) = 0 and a matern 5/2 covariance function was specified for each of the con-

stituent models. The covariance function was selected according to preliminary exper-

iments, which examined the model’s predictive accuracy. All GPs were constructed

with the GPy 1.9.9 python package and subsequent BO utilised GPyOpt 1.2.6. Details

4σ2
nxΥ

represents the variance of the distribution of state xnx in the dataset D
5The dataset used for model construction may be found at https://github.com/mawbray/Lutein-

Dataset

174

of the data used for model construction, as well as metrics relating to the predictive

accuracy of the model are detailed in C.2.

In the presentation of results for this work, the investigation is concerned with

two main questions. Firstly, does Algorithm 4.2 enable identification of a reward

function, which provides policy performance with respect to the process objective and

probabilistic constraint satisfaction? And, secondly, does the incorporation of the

posterior variance prediction of the GP state space model (into the reward function

(Eq. 4.23)) provide means to minimise the risk of policy deployment (to the real

uncertain process), by ensuring the policy exploits regions of the model with small

model-process mismatch? These two questions will direct discussion in Section 4.5.

All results were generated under view of the policy as deterministic i.e. ut = π(xt).

This was achieved through selection of the control corresponding to the mode of the

conditional distribution π(u|x).

4.4.3 Benchmark for process optimisation

The results from the proposed methodology were benchmarked relative to the control

profiles generated from a) dynamic optimisation (DO) strategies, and b) nonlinear

model predictive control (NMPC). Both a) and b) use the process model detailed by

Eq. 4.30. The deterministic form of this model (i.e. with no parametric uncertainty)

represents the most accurate deterministic model, which may be built for process pre-

diction and optimisation. Therefore, the controls generated from a) and b) assume

that the underlying process is deterministic, and are subsequently validated on the

stochastic analogue of the process concerned. As both a) and b) neglect the existence

of uncertainty over the parameter values assumed from del Rio-Chanona et al. (2017),

validation of the strategies on the stochastic variant of the process (detailed by Sec-

tion 4.4.1) directly investigates the effects of uncertainty (model-plant mismatch) on

performance with respect to the objective and constraint satisfaction. It should be

noted that this benchmark is not reflective of the existing state-of-the-art optimisa-

tion methods, such as sMPC that similarly consider model uncertainty. The control

strategy for a) was generated offline through optimisation of the control inputs to

the model detailed in Eq. 4.30. Hence the control policy generated is deterministic

and unconditional to online state observation. Conversely. the control strategy for

175

b) was generated online through perfect state observation as in the RL case. Both

benchmarks utilised the orthogonal collocation method and one finite element per con-

trol interval (Biegler, 2007; Kelly, 2017) and the IPOPT solver (Wächter and Biegler,

2006). This was facilitated by the Casadi 3.5.1 Python package (Andersson et al.,

2012). In the case that a feasible solution could not be found online, the MPC scheme

was tuned further with an approximate problem solved to minimise constraint viola-

tion. From empirical analysis, this tuning increased the performance of the NMPC

scheme. Further information on the approximate problem is available in C.5.

4.4.4 Key performance indicators

In the following section, this work will investigate the utility of the algorithm, and pre-

sentation of the results will focus on the ability of the proposed method to find a safe

constrained policy π∗
C(·, θ). Explicitly, the policy should exploit regions of the real pro-

cess state space (i.e. Eq. 4.30), well characterised by the approximating process model

(i.e. Eq. 4.14), therefore minimising mismatch between the state distributions simu-

lated under the offline process model and observed under the real uncertain process.

This will be demonstrated in two ways. First, via visual comparison as presented

figuratively, and secondly via the quantitative metrics (key performance indicators)

available to the investigation. Primarily, these metrics are the performance of the pol-

icy with respect to the unconstrained process objective J(τ) (see Eqs. 4.4 and 4.33)

and the probability of joint chance satisfaction as evaluated by FSA(0) and FLB(0).

The same metrics will be used to evaluate the performance of the benchmarks of DO

and NMPC.

4.5 Results and discussion

4.5.1 Results of safe chance constrained policy optimisation

Firstly, the results of Algorithm 4.2 with respect to the approximate offline state space

model are displayed by Fig. 4.1. Explicitly, here, we demonstrate the performance

of the final policy π∗
C(·, θ) on the GP state space model. The results were obtained

according to 500 function realisations of π∗
C(·, θ) via Algorithm C.1. Fig. 4.1 a)

176

expresses a representation of the state evolution x0:T and Fig. 4.1 b) provides a

visualisation of the performance of the policy with respect to the constraints. In Fig.

4.1 a), the average state evolution and an associated confidence interval of one standard

deviation for the validation trajectories is represented by a solid line and a shaded

region, respectively. It can be seen that the agent learns to maximise the productivity

objective - balancing maximisation of the lutein product at the end of the batch with a

decrease in the concentration of nitrate left in the system. This is achieved in a manner

that accounts for worst case process stochasticity by backing the nominal or expected

state trajectory away from the constraint boundary. This is highlighted by Fig. 4.1 b).

In particular, the shaded regions indicate 99% confidence intervals for process deviation

and the dark blue solid line plot indicates the nominal process. Further, the utility

of tuning the backoff multipliers via Algorithm 4.2 is highlighted given that the worst

case realisations of process stochasticity do not violate, but approach the constraint

boundary very closely. The performance of the policy π∗
C(·, θ) with respect to both

process objective and constraint satisfaction on the GP process model is detailed by

Table 4.3. The performance of the policy on the process model is however, not the

(a) (b)

Figure 4.1: Results from Case Study. (a) The state profile produced from the final
policy learned on the Gaussian Process model plotted against control interactions (as
a proxy for time). Control interactions are provided every 24 hours of process opera-
tion. (b) The corresponding distribution of trajectories with respect to the operational
constraints. The ith constraint is denoted gi := ATi x− bi. The light blue shaded areas
represent the 99th to 1st percentiles and solid blue line represents the expected tra-
jectory. The black line plot represents the threshold of constraint violation i.e. when
gi = 0

primary contribution of this work. Rather, it is of interest to validate the safety of the

177

policy on deployment to the real stochastic process and highlight the particular use

of the training approach detailed. To achieve this, results were obtained by sampling

the real process described by Eq. 4.30, with the parametric uncertainty detailed in

Section 4.4. The results of this are expressed by Fig. 4.2. Similar to Fig. 4.1 b),

(a) (b)

Figure 4.2: Results from Case Study. (a) The distribution of trajectories with respect
to the operational constraints as sampled from the real uncertain process. (b) An
overlay of the distributions observed when the policy is deployed on the real uncertain
process (red) and the GP state space model (blue) as plotted in Fig. 4.1. The ith

constraint is denoted gi := ATi x − bi. The shaded areas represent the 99th to 1st
percentiles and solid line represents the expected trajectory. The black line plot rep-
resents the threshold of constraint violation i.e. when gi = 0

Fig. 4.2 a) details the performance of the policy with respect to the constraints, but

upon deployment to the real uncertain process. Again, the shaded regions indicate

99% confidence intervals of process deviation and the dark blue solid line indicates

the nominal process. Fig. 4.2 b) provides comparative detail of the distribution of

the trajectories with respect to the constraints when the policy is deployed on the GP

state space model (blue) and when deployed to the real uncertain process (red). As

previously, the shaded regions indicate 99% confidence intervals for process deviation

and the solid line indicates the nominal process. It is observed that there is very

little mismatch between the model and real process in this region of the state space

and as a result the distributions of the first and second constraint (g1 and g2) are

almost indistinguishable. Notably, however, there is indeed clear, but small amounts

of mismatch between the nominal process trajectories on the GP state space model

and the real process as demonstrated via the third constraint plot of g3. Interestingly,

178

this plot shows that 99% of the real process trajectories (the red region) are contained

within the (blue) region described by the samples from the GP state space model. This

indicates the potential that the offline GP model (epistemic) uncertainty, expressed via

the variance of the posterior, could be able to provide constraint satisfaction and ensure

safe RL policies. Table 4.3 demonstrates the utility of the algorithm in achieving

Table 4.3: Case Study: Comparison of probabilities of joint constraint satisfaction
FLB(0) and FSA(0) and objective values of π∗

C(·, θ) as learned via the methodology on
the real process and GP state space model. The objective performance is quantified
via the mean and variance due to process stochasticity. See Eq. 4.33 for detail of the
process objective.

Process FLB(0) FSA(0) Process Objective (Eq. 4.33)

Offline Gaussian process model 1.0 1.0 15.29 +/- 0.11
Online real uncertain process 1.0 1.0 15.23 +/- 0.096

constraint satisfaction as desired in both the offline model and real uncertain process.

There is a small discrepancy between the performances of the two validations. This

could be explained either due to the number of finite samples (500) used in assessment

of policy performance, or via small amounts of nominal process mismatch between

the GP model and the real process. If the latter view is taken and it is assumed

the biomass and nitrate states are perfectly predicted (biomass is not included in the

objective directly and nitrate is, but weakly), then this difference corresponds to a

0.375% prediction error of the nominal lutein trajectory. In the following sections,

the work detailed here is benchmarked against results observed from implementing

control policies on the uncertain process determined via a) offline DO and b) NMPC.

The approach to generation of these results is discussed in Section 4.4.3.

4.5.2 Comparison to benchmark methods

The benchmark for this case study is provided by DO and NMPC, both of which

are common approaches to process control. In the following sections the investiga-

tion provides comparative analysis to demonstrate the utility and limitations of the

methodology.

179

Comparison to dynamic optimisation

In order to demonstrate the effects of process stochasticity for dynamic optimisation

(DO), control profiles were generated for the system (Eq. 4.30) from four different ini-

tial conditions, all of which are probable to be drawn from the initial state distribution

detailed in Section 4.4. As previously, all results are derived from 500 realisations of

the real uncertain process model. The comparative performance of the DO benchmark

is detailed by Table 4.4. From Table 4.4 it is clear that the effects of small amounts of

Table 4.4: Case Study: Comparison of probabilities of joint constraint satisfaction
FLB(0) and FSA(0) and objective values of π∗

C(·, θ) under the proposed dynamic opti-
misation (DO) benchmark. Four different results are reported for DO, corresponding
to the four different initial conditions used to generate the control profile offline. The
objective performance is quantified via the mean and variance due to process stochas-
ticity. See Eq. 4.33 for detail of the process objective.

Algorithm Initial Conditions x0 FLB(0) FSA(0) Process Objective J(τ)

DO I [0.276, 784, 0.0] 0.036 0.056 16.68 +/- 0.24
DO II [0.273, 774, 0.0] 0.046 0.068 16.68 +/- 0.25
DO III [0.270, 765, 0.0] 0.030 0.048 16.65 +/- 0.25
DO IV [0.267, 755, 0.0] 0.043 0.064 16.61 +/- 0.25
Proposed x0 ∼ p(x0) 1.0 1.0 15.23 +/- 0.096

stochasticity have dramatic implications for the probability of joint chance constraint

satisfaction for DO. Both the statistically robust FLB(0) and the sample approximate

FSA(0) are less than 0.06 for all DO control profiles. This highlights the utility of

the method proposed in accounting for process stochasticity. It is also necessary to

comment on the standard deviation of the performance with respect to the process

objective as reported. The RL policy trained by the method achieves a lower variance

in performance than that of the DO scheme. This is worth discussion as it highlights

the ability of RL policies to naturally account for process stochasicity in a closed loop

feedback control manner. Whereas, the variance of performance reported for the DO

strategies is similar across all results and expresses the effects of process stochastic-

ity on an open loop nominal (and deterministic) control policy. However, it is also

important to note that although the RL method proposed performs with respect to

constraint satisfaction, it does not achieve as well as DO with respect to the expected

unconstrained process objective J(τ). This is mainly because backing the nominal

process away from the constraint boundaries in order to account for variability, will

180

naturally incur a decrease in the nominal performance of the policy. However, as the

process objective function is only reduced by 8% and the constraints are satisfied with

high probability, the current approach is still advantageous.

Despite the comparative benefits of RL, it is worth highlighting that the perfor-

mance is sensitive to correct specification of initial state distribution, p(x0), in offline

training. Initialising the system in an initial state, x0, not well described by p(x0)

will likely lead to deterioration in the performance of the RL policy. Compared to the

traditional NMPC approach in which process model can be continuously re-calibrated

using online data, other advanced techniques (Wang et al., 2019b) could conceivably

be applied given the slow dynamics under consideration in this case study. Although

updating RL online is out of current study’s scope, it is worth investigating in future

work.

Comparison to nonlinear model predictive control

The generation of the NMPC trajectory similarly assumes use of the deterministic

variant of Eq. 4.30, as the process model. Here, however, the control policy is up-

dated online via complete observation of the real uncertain process state (as is typical).

The initial state is drawn from the initial state distribution detailed in Section 4.4.1,

which was also used to train and validate the RL policy π∗
C(·, θ). Table 4.5 reports

the respective KPIs for the method proposed and the NMPC scheme. Interestingly,

Table 4.5: Case Study: Comparison of probabilities of joint constraint satisfaction
FLB(0) and FSA(0) and objective values of π∗

C(·, θ) under the proposed benchmark of
nonlinear model predictive control (NMPC). The objective performance is quantified
via the mean and variance due to process stochasticity. See Eq. 4.33 for detail of the
process objective.

Algorithm FLB(0) FSA(0) Process Objective J(τ)

NMPC 0.12 0.148 11.58 +/- 4.07
Proposed 1.0 1.0 15.23 +/- 0.096

with reference to Table 4.5, the method proposed performs better than NMPC with

respect to the process objective. In this case, this is primarily due to the destabilisa-

tion of NMPC by process stochasitity, which was evidenced by the frequent inability

to find control solutions online. This is common when stochastic systems are driven

close to constraint boundaries with deterministic methods. The inability of NMPC

181

to find control solutions online is the primary reason for the difference in objective

performance as detailed by Table 4.5 (Note: if solution could not be found, an ap-

proximate problem was solved to minimise constraint violation, and this was found to

considerably improve performance - see Section 4.4.3 for information). In combination

with worst cases of process stochasticity, this provides a skewing of the nominal pro-

cess performance as reported. Demonstration of the sensitivity of the NMPC control

scheme to process stochasticity is best expressed in analysis of the control trajectories

generated in validation on the real uncertain process. This is reported by Fig. 4.3.

(a) (b)

Figure 4.3: Results from Case Study. (a) The distribution of controls selected by
the RL policy, π∗

C(·, θ), upon validation on the real uncertain process. Red solid line
represents the average control trajectory and the light red shaded region represents a
1 standard deviation confidence interval (which is essentially non-existent), (b) The
distribution of controls selected by the NMPC policy upon validation on the real
uncertain process. Green solid line represents the average control trajectory and the
light red shaded region represents a 1 standard deviation confidence interval

From Fig. 4.3 the relative effect of stochasticity on the NMPC scheme is apparent.

Fig. 4.3 a) displays the distribution of controls selected under the RL policy, π∗
C(·, θ),

on the real uncertain process. The red solid line represents the average control tra-

jectory and the red shaded region, which is essentially indistinguishable, represents a

confidence interval of one standard deviation. Fig. 4.3 b) represents the distribution

of controls selected by the benchmark NMPC control policy when validated under the

real uncertain process. Here, the green solid line represents the average control tra-

jectory and the green shaded region, which is relatively large, represents a confidence

interval of one standard deviation. It is likely that the average control trajectory plot-

ted is not representative of actual control behaviour, i.e. the distribution of controls at

each time interval is not best described by a unimodal Gaussian. However, the figure

182

plotted well expresses the relative variance of controls selected.

From comparison of 4.3 a) and b), it is clear that the RL method proposed natu-

rally accounts for process stochasticity in a closed loop manner, with little variance in

the distribution of controls shown. This is characteristic of a control strategy, which is

robust to process uncertainty. This is especially beneficial in the context of cell culti-

vation or fermentation processes, where cell metabolism is sensitive to variation in the

environmental conditions. As a result, the oscillatory control behaviour demonstrated

by the NMPC control scheme would likely have a detrimental effect on the efficacy

of operation/cell metabolism. It should be noted that the detrimental effects of pro-

cess stochasticity on deterministic control strategies are demonstrated here, with small

amounts of uncertainty. In the types of processes of concern to this work, (parametric)

uncertainties can be much larger. This further contextualises the benefits provided by

the strategy proposed i.e. the ability to simultaneously account for process-model

mismatch and constraints.

The results provided by the work provokes the following question: is the primary

benefit of the RL method proposed (relative to the NMPC result) derived due to

the benefits of accounting for uncertainty in closed loop (i.e. operating within the

MDP framework), or due to the description of process uncertainty provided by the

GP model? Admittedly, it is difficult to answer this question certainly without further

computational experiments and more thorough comparisons; however, through the

current study it is believed that both elements are likely to be at play in separating

the performance of the proposed method and NMPC. This question provides basis for

future empirical studies.

4.6 Conclusion

In this work, an efficient, purely data-driven method has been proposed, which consid-

ers the safe deployment of RL policies from the offline training environment (process

model) to the real uncertain process. The method also provides approach to ensuring

joint chance constraint satisfaction with a set probability. This is facilitated through

use of the aleatoric and epistemic uncertainties expressed naturally by Gaussian pro-

cess models, as well as the concept of constraint tightening. The method was analysed

183

empirically and benchmarked against two commonly used, deterministic approaches

to control and optimisation of fed-batch process systems. It was demonstrated that

the presence of even small amounts of process stochasticity may have a destabilising

effect on the performance of deterministic methods and their relative probabilities

of achieving joint constraint satisfaction. It should be highlighted that the level of

parametric uncertainty (5%) expressed in this case study is a common lower-bound

to that typically observed in the processes of concern to this work. It is likely that

the benefits of this method would be even more apparent in cases where higher un-

certainties were present. Therefore, it is thought that the scheme proposed is likely

to be competitive with state-of-the-art sMPC approaches that similarly account for

model uncertainties. The benefit (or drawback, depending on the context) of RL be-

ing that it shifts the computational effort offline, and is therefore much faster online

(although slower offline). Further, the formalisation of this approach and the link

drawn to reward shaping, enables combination of the method with any RL algorithm

- policy optimisation, action-value methods and all that lies inbetween. We hypothe-

sise that once deployed, the policy could be continuously improved offline as the local

model is iteratively improved and updated between batches (Rajeswaran et al., 2020).

Further, it is possible the method could be adapted to the multi-agent setting for

distributed control of fed-batch processes or into the domain of continuous process-

ing (McClement et al., 2021). We do however, assume the availability of an existing

dataset, which provides information about the operational region of interest, however

this could be developed using available mechanistic models and Petsagkourakis and

Galvanin (2020) in a model-based design of experiments. Future work should consider

the quantification of uncertainties in the parameterisation of the control function.

184

Chapter 5

Distributional reinforcement

learning for scheduling of chemical

production processes

This research item has been submitted to the American Institute of Chemical Engi-

neers (AIChE) Journal. A revised version has been submitted for final decision. The

paper is accessible on arXiv via the following reference:

Mowbray, M., Zhang, D. and Chanona, E.A.D.R., 2022. Distributional Rein-

forcement Learning for Scheduling of Chemical Production Processes. arXiv preprint

arXiv:2203.00636.

185

5.1 Introduction

5.1.1 Online production scheduling: optimisation and simu-

lation

The development of methods for efficient production scheduling of batch processes is

an area of significant interest within the domain of process systems engineering and op-

erations research (Sarkis et al., 2021; Kis et al., 2020). There are three main drivers for

research within online production scheduling: a) identifying modelling approaches that

integrate with the practicalities of online scheduling, b) considering plant uncertain-

ties, and c) handling nonlinearities (Harjunkoski et al., 2014). There is a diverse array

of modelling and solution methods for production scheduling problems (Maravelias,

2012). On one hand, modelling approaches can be broadly classified as discrete or

continuous time (Floudas and Lin, 2004); on the other hand, optimisation approaches

can be characterized as simulation-based or optimisation. The former is generally

underpinned by stochastic search algorithms, whereas the latter is dominated via the

use of mixed integer programming (MIP). However, industrial practice is generally

dominated by the use of heuristics given the challenges outlined in a-c.

Recent works have argued that formulation of the underlying scheduling problem in

terms of a discrete-time, state space model alleviates many of the problems associated

with the former challenge (i.e. a)) (Gupta and Maravelias, 2017; Subramanian et al.,

2012). The benefits of this approach primarily relate to the ease of incorporating state-

feedback into the scheduling MIP model and mitigate the requirement for various

heuristics to update the model when uncertainty is observed (as may be the case

in other approaches e.g. continuous-time models). However, the intuitive benefits

inherited from state-space modelling produces scheduling models of a much larger size

than continuous-time formulations. This has implications for the solution time and

suboptimality can be introduced if the discretization of the time domain is too coarse.

Further, considering uncertainty within the model formulation is essentially intractable

via MIP solution methods, at least for problems of industrial size. For example, in the

case of stochastic MIP, considerable approximations to the scenario tree are required

to solve the models (even offline) (Li and Grossmann, 2021). This means the most

practical way to consider uncertainty is often via robust formulations. This leads to

186

smaller model sizes but requires approximation of plant uncertainties via a few finite

dimensional, deterministic expressions. Many of these formulations are conservative

(Li and Ierapetritou, 2008b), however a more recent work provided in McAllister et al.

(2022) has ensured both robustness and performance by exploiting some of the ideas

that exist in nonlinear model predictive control. This is clearly a strong contribution to

the field, however its implementation requires repeatedly solving an MILP model over

the time-horizon. This is something one can actively avoid through use of heuristic

methods.

Considering uncertainty is widely acknowledged as an important facet of solution

approaches (Li and Ierapetritou, 2008a; Beykal et al., 2022; Tian and Pistikopoulos,

2018). In the context of scheduling, the simulation community has demonstrated

strong benefits in handling uncertainty (Oyebolu et al., 2019; Fu et al., 2019b). The

high level idea here is generally to compute approximately optimal schedules by evalu-

ating their performance via a Monte Carlo method and a stochastic search algorithm.

These approaches have also proven useful in integrating decision-making functions

where nonlinearities often arise in the underlying model (Dias et al., 2018). This is

primarily because one avoids the formulation of MINLP. However, it should be noted

that optimisation approaches fare well with regard to integrated problems when the re-

sultant formulation is mixed integer linear programming (MILP) (Santos et al., 2021a;

Charitopoulos et al., 2019a). In addition, simulation based approaches are generally

expensive to conduct online because of the sample inefficiency associated with Monte

Carlo methods and stochastic search algorithms.

The expense of conducting simulations online has led to the development of Re-

inforcement Learning (RL) based approaches to online production scheduling (Hubbs

et al., 2020a). The primary idea here is to exploit the Markov decision process (MDP)

framework to model production scheduling systems as a stochastic decision process.

One can then use RL to identify a function approximation of an optimal decision

policy for the underlying environment through offline simulations of the model. The

policy function can then be deployed online to provide scheduling decisions, instead of

online optimisation. This allows the scheduling element to a) consider nonlinearities

and uncertainties within the process dynamics, b) use arbitrary descriptions of the

uncertainty, and c) identify scheduling decisions in a very short time frame (i.e. on

187

the order of micro to milliseconds). Despite the additional work required in offline,

simulation-based policy learning, these facets are appealing in the context of modern

production environments.

5.1.2 Online production scheduling and Reinforcement Learn-

ing

Although RL has been demonstrated for sequential decision making in a number of

case studies (Caputo and Cardin, 2022b; Lawrence et al., 2022; Yoo et al., 2021a), its

application to physical production systems has been relatively limited. This is in part

due to the fairly recent establishment of the online production scheduling paradigm

(Gupta et al., 2016). For example, Waschneck et al. (2018) applied deep Q networks

to optimise a flexible jobshop (i.e. a multipurpose multi-stage production facility),

however, the authors provide little information as to how the method proposed ac-

counts for constraints. Further, the approach is benchmarked to common heuristics

rather than optimisation formulations. In Palombarini et al. (2018), an RL reschedul-

ing approach is presented to repair and ensure the feasibility of the schedule when

subject to realizations of plant uncertainty. However, the method does not consider

the optimality of the original schedule and is not benchmarked to an existing method.

More recently, Hubbs et al. (2020a) provided an extensive analysis of a Reinforcement

Learning approach compared to deterministic and stochastic MIP for a single-stage,

continuous production scheduling problem. The RL method is demonstrated to be

an appealing solution approach. Despite their achievements, as this is a first proof-of-

concept, the case study considered is relatively simple and does not involve precedence

constraints or requirements for setup time between the end and start of subsequent

operations within a given unit.

In addition, considering constraints is an important step in the development of

RL algorithms, given the MDP framework does not provide an explicit mechanism

to handle them. There has been much research in other decision-making problems

regarding this (Petsagkourakis et al., 2022; Achiam et al., 2017). The presence of

precedence and disjunctive constraints in production scheduling provides a challenge of

a different nature. Detailed examples of these constraints are explored in Section 5.3.2.

188

Further, the use of RL poses challenges such as robustness and reliability (Waubert de

Puiseau et al., 2022).

Recently, there has been a lot of interest in the development of distributional RL

algorithms (Bellemare et al., 2023). Instead of formalizing the objective via expected

performance, distributional RL algorithms try to find the optimal policy for other

measures of the performance distribution (Bellemare et al., 2023). This enables iden-

tification of more risk-sensitive policies and consideration of the tails of the policy

performance (Tang et al., 2019a). The proposition of risk-sensitive formulations has

been common to mathematical programming for some time (Rockafellar and Urya-

sev, 2002), however, its use in scheduling problems has been limited (Najjarbashi and

Lim, 2019; Chang et al., 2017). In this work, we utilise distributional RL to consider

risk-sensitive formulations and low probability, worst-case events. This is particularly

important in engineering and business applications, where decision-making is generally

risk-averse and catastrophic events are highly disfavoured.

5.1.3 Contribution

In this work, we develop the methodology of Reinforcement Learning to production

scheduling by proposing a novel and efficient policy optimisation method that a) han-

dles precedence and disjunctive constraints, b) provides means to identify risk-sensitive

policies, and c) is practical and observes stability in learning. In doing so, we improve

the reliability and robustness of RL algorithms, but also inherit the advantages of iden-

tifying online scheduling decisions in real time from a function, and ease in handling

nonlinearity and uncertainty.

To handle a), we present a logic based framework that implements transformations

of the RL scheduling decisions to ensure they satisfy those constraints derived from

propositional logic (i.e. precedence and disjunctive constraints). This is discussed in

detail in Section 5.3.2 and represents a novel application of a concept known as action

masking (Kanervisto et al., 2020b). The optimisation of the policy in view of this

framework is handled by a stochastic search optimisation algorithm (PSO-SA) which

combines particle swarm optimisation (PSO) and simulated annealing (SA) to balance

exploitation and exploration of the policy parameters. The use of stochastic search op-

timisation approaches lend themselves naturally to distributional RL and facilitate b)

189

and c). Specifically, for b) one can gain unbiased estimates of risk-sensitive measures

such as the conditional value-at-risk via a Monte Carlo method. This has particular

advantage over other policy gradient and action-value based approaches to distribu-

tional RL, which generally make biased approximations to the desired risk-measure

to optimise (Tang et al., 2019a) and the quantile function (Dabney et al., 2018b), re-

spectively. Further, the use of stochastic search methods removes the dependence on

first-order gradient-based policy learning methods, which are known to lack robust-

ness (Tran et al., 2022). This is partly due to the use of noisy directions for policy

improvement, whose evaluation is known to be expensive (i.e. policy gradients and

deep Q learning) (Riedmiller et al., 2007a; Nota and Thomas, 2020). However, this is

amplified in scheduling problems, primarily because the state value function is not a

smooth function of the system state, implying that these approaches are unlikely to

converge or observe stable learning dynamics (Zhang et al., 2021). It is worth highlight-

ing that the methodological components proposed have been applied elsewhere (as is

the norm in practically all operations research or mathematical programming solution

methods), however their combination and deployment has been tailored specifically

for production scheduling problems in this work

The proposed method is benchmarked on a classical uncertain production schedul-

ing environment against an MILP approach. The aim of the study is to evaluate the

performance of the method in terms of optimality over the production horizon con-

sidered and demonstrate the flexibility of the framework proposed. The problem is a

multiproduct batch plant with parallel production lines. The case study is a modified

version of the original study provided in Cerda et al. (1997) to include processing time

and due date uncertainty. Extensive analysis of the results is provided. The rest of

this paper is organized as follows: in Section 5.2, we present the problem statement; in

Section 5.3 we outline a novel and efficient RL approach to scheduling; in Section 4.4,

we outline the details of a case study, the results and discussion of which are presented

subsequently in Section 4.5; and, in Section 5.6 we finish with concluding thoughts

and plans for future work.

190

5.2 Problem statement

The scheduling problem is generally subject to both endogenous and exogenous sources

of uncertainty. In this work, we focus on the online scheduling of parallel, sequential

batch operations in a chemical production plant (Maravelias, 2012). We assume that

the state of the plant at a given time index, t ∈ {0, . . . , T}, within a discrete finite

time horizon (of length T), is represented by a state, xt ∈ X ⊆ Rnx , where xt can

be thought as (but not limited to) current product and raw material inventory, unit

availability, and tasks currently being processed. At discrete time steps within the

scheduling process of the plant, the scheduler (agent or algorithm who decides the

scheduling actions) is able to observe the state of the plant, and select a control action,

ut ∈ U ⊆ Znu , which represents an appropriate scheduling decision on the available

equipment. The state of the plant then evolves according to the following difference

equation:

xt+1 = f(xt,ut, st) (5.1)

where st ∈ S ⊆ Rns represents a realization of some uncertain plant parameters or dis-

turbance. Eq. 5.1 describes the stochastic evolution of the plant and could be equiva-

lently expressed as a conditional probability density function (CPDF), p(xt+1|xt,ut).

Here, we identify that the system has the Markov property (i.e. the future state

only depends on the current state and control actions) and hence the system may be

described as a Markov decision process (MDP).

The aim of the scheduler is to minimise objectives such as makespan (which defines

the time to complete all of the required tasks on the available equipment) and the

tardiness of product completion. Given these objectives, one can define a reward

function, R : X×U×X → R, which describes the performance of the decisions taken

(e.g. the higher the reward, the more profit achieved by the scheduler). Solution

methods for MDPs aim to identify a control policy, π : X → U, whose aim is to

maximize the reward:

Z =
T−1∑
t=0

Rt+1 (5.2a)

π∗ = arg max
π

Eπ
[
Z|X0 ∼ p(x0)

]
(5.2b)

where X0 ∈ X is the initial state of the plant, which is treated as a random

191

variable and described by an initial state distribution, p(x0). The return, Z ∼ pπ(z),

is a random variable that is described according to a probability density function,

pπ(z), under the current policy, π, because the plant dynamics are subject uncertainty.

Generally, exact expressions of pπ(z) in closed form are unavailable. Therefore, the

solution policy, π∗, (i.e. Eq. 5.2) is evaluated via the sample average approximation.

Operationally, there is a constraint set, Û(xt) = Û(1)
t (xt)× Û(2)

t (xt) . . .× Û(nu)
t (xt),

where Û(l)(xt) ⊂ Z, that defines the available tasks or jobs that may be scheduled in

the nu units at any given time index. This may be defined by the viable sequencing

of operations in units; requirements for unit cleaning and maintenance periods; re-

quirements for orders to be processed in campaigns; and that processing of batches

must be finished before another task is assigned to a given unit, to name a few. Gen-

eral intuition behind these constraints is provided in Section 5.3.2. These constraints

may or may not be functions of uncertain process variables (e.g. if processing times

are subject to uncertainties). In essence, we are trying to solve a discrete time finite

horizon stochastic optimal control problem (SOCP) of the form:

P(π) :=

max
π

Eπ
[
Z
]

s.t.

X0 ∼ p(x0)

st ∈ S ⊆ Rns

xt+1 = f(xt,ut, st)

ut = π(xt)

ut ∈ Û(xt) ⊂ Znu

∀t ∈ {0, ..., T}

(5.3)

where π : X → U is a control policy, which takes the state as input and outputs a

control action, ut. In practice, mixed integer approaches to the scheduling problem

either make large approximations to the SOCP formed (i.e. via stochastic program-

ming) or assume description of a nominal model, neglecting the presence of uncertain

variables entirely. The latter approach is especially common when considering problem

sizes of industrial relevance. In the following section, we present an efficient and novel

methodology to identify a policy π, which provides an approximately optimal solution

to the finite horizon SOCP detailed by Eq. 5.3, via RL. Specifically, π(θ, ·) is defined

by a neural network with parameters, θ ∈ Rnθ . The problem (i.e. Eq. 5.3) is then

reduced to identifying the optimal policy parameters, θ∗.

192

5.3 Methodology

The approach that follows is proposed given the following characteristics of the RL

production scheduling problem: a) Eq. 5.3 formulates control inputs (decisions) as

discrete integer values, U ⊂ Znu , that identify the allocation of a task (or job) in a

unit at a given time index, and b) one must handle the hard constraints imposed by

ut ∈ Û(xt).

5.3.1 Identifying discrete control decisions

In this work, we are concerned with identifying a policy, which is suitable for opti-

misation via stochastic search methods and is able to handle relatively large1 control

spaces. The reasoning behind the use of stochastic search is discussed extensively in

Section 5.3.3. However, as stochastic search methods are known not to perform well

when the effective dimension of a problem is high2, there is a requirement for careful

construction of the policy function.

We propose to make predictions via the policy function in a continuous latent

space, wt ∈ W ⊆ Rnu , and then transform that prediction to a corresponding discrete

control decision, ut. As a result, the policy function requires an output dimensionality

equivalent to that of the control space (i.e. nu the number of units or equipment

items in the context of production scheduling). The transformation could be defined

by a stochastic or deterministic rounding policy. For example, the nearest integer

function (i.e. round up or down to the nearest integer), denoted fr : W → U, is a

deterministic rounding policy demonstrated implicitly by many of the studies provided

in Hubbs et al. (2020b). Both of these transformations are non-smooth and generally

assume that the latent space, w ∈ W, is a relaxed, continuous equivalent of the

original control space. In this work, we implement a nearest integer function approach,

fr(w) = nint(w).

In the context of this work, this approach is appealing because it minimises the

number of output nodes required in the policy function, and as a result, the number of

function parameters. This lowers the effective dimensionality of the problem compared

1The term “large” is used to indicate a control space with high cardinality, |U|.
2Stochastic search is known to be less effective when the number of decision variables is in the

order of 1000s, as is common in the neural network function approximations often used in RL.

193

to other means of control selection (e.g. directly predicting the probability mass of a

control in the output of the function, as is common in policy gradients with discrete

control spaces3). This is key for the use of stochastic search optimisation methods.

In the subsequent section, we explore the development of an approach to handling

constraints imposed on the scheduling problem.

5.3.2 Constraint handling

Handling the constraints imposed on RL control selection (input constraints) is gener-

ally done explicitly (Mowbray et al., 2022a). In the class of problem of concern to this

work, the structure of the constraints on the control space arises from standard oper-

ating procedures (SOPs). SOPs can generally be condensed into propositional logic.

For example, consider the special case of a production environment with one process-

ing unit available and two tasks i and m that require processing. We may define a

sequencing constraint through the following statement: “task i can only be processed

after task m”. In the language of propositional logic, this statement is associated with

a True or False boolean. If task m has just been completed and the statement is

True (i.e. task i can succeed task m), then task i belongs to the constraint set at

the current time index t, i.e. i ∈ Ût. This is known as a precedence constraint. More

complex expressions can be derived by relating two or more propositional statements.

For example, consider the following expression that relates requirements for starting,

T s, and end times, T f , of tasks i and m in a production environment with one unit:

{T si ≥ T fm} ∨ {T sm ≥ T fi }

where ∨ is a disjunction operator and can be interpreted as an OR relation. Essentially,

this statement says that no two tasks can be processed in a given unit at the same time,

and is otherwise known as a disjunctive constraint (Maravelias, 2012). Such scheduling

rules are conventionally transcribed into either generalized disjunctive programming

or mixed integer programming formulations. Both solution methods enable constraint

satisfaction.

In this work, we hypothesise that a set of controls, ut ∈ Ūt ⊆ Znu , may be identified

that adhere to the logic provided by the SOPs at each discrete control interaction,

3This approach requires |U| nodes in the output layer of the policy function, where |U| >> nu.

194

based on the current state of the plant, xt ∈ Xt. This functional transformation is

denoted, fSOP : U× X → Ū, where Ū ⊆ Znu , and is assumed non-smooth.

If we are able to define and satisfy all constraints via propositional logic (i.e. fSOP),

we proceed to use the rounding policy, fr, defined in Section 5.3.1. Specifically, by

redefining fr : W → Ū, the implementation provides means to identify a mapping

from a continuous latent space to discrete controls that are feasible. This mechanism

is widely known via action shaping, action masking or domain restriction, and has

been shown to significantly improve the efficiency of RL learning process (Kanervisto

et al., 2020b; Hubbs et al., 2020b).

In the case one is unable to identify (and satisfy) all input constraints, Û(x),

via fSOP we penalise the violation of those constraints that cannot be handled, and

incorporate a penalty function for the constraint violation, ϕ : X×U×X → φt+1 ∈ R.

For example, using discrete-time state space models, one cannot impose the constraint

“no two units can start processing the same task, at the same time” via this logical

transformation, without imposing considerable bias on the control selection of the

policy. This is discussed further in D.2.5. Given g(u) : U → Rng , represents the

ng constraints that cannot be handled innately via propositional logic, we define the

penalised return from an episode as:

ϕ = R− κg
∥∥[g(u)]+

∥∥
p

Zϕ =
T−1∑
t=0

φt+1

(5.4)

where κg ∈ R is the penalty weight; [y]+ = max(0,y) defines an element wise operation

over y ∈ Rny ; and, ∥·∥p defines the general lp-norm. From here we can identify a

solution policy to Eq. 5.3, π∗ as follows:

π∗ = arg max
π

Eπ
[
Zϕ
]

(5.5)

A figurative description of the approach proposed is provided by Fig. 1, and formalized

by Algorithm 5.1.

195

Figure 5.1: Figurative description of the feedback control framework used to formulate
the scheduling problem. A) A feedback control framework that utilises logic to identify
feasible scheduling decisions. B) Control selection via a deterministic rounding policy.

Algorithm 5.1 Control selection for production scheduling of an uncertain plant

Input: Policy function, π(θ0, ·); functional transformation derived from plant stan-

dard operating procedure, fSOP : X × U → Ū; description of uncertain plant dy-

namics, f : X×U× S → X (see Eq. 5.1); rounding policy, fr : W → Ū; initial state

distribution, p(x0); the number of units (equipment) available, nu; the number of

tasks to be processed, nT ; the control set, U; penalty function, ϕ : X×U×X → R;

and, empty memory buffer, Binfo
1. Draw initial state, x0 ∼ p(x0)

for t = 0, . . . , T − 1 do

2a. Identify control set, Ūt = {fSOP (xt,u) ∈ Znu ,∀u ∈ U} ⊂ Znu

2b. Predict latent coordinate conditional to current state, wt = π(xt; θ)

2c. Implement rounding policy, ut = fr(wt)

2d. Implement scheduling decision and simulate, xt+1 = f(xt,ut, st), where st ∈

S.

2e. Observe feedback from penalty function, φt+1 = ϕ(xt,ut,xt+1)

end for

3. Assess Zϕ (see Eq. 5.4) and store, together with information required for policy

optimisation, in Binfo
Output: Binfo

5.3.3 Stochastic search policy optimisation

Due to the nature of the problem at hand, this work proposes the use of stochastic

search policy optimisation algorithms. In general, any stochastic search algorithm

196

can be used. A high level description of the algorithm used in this work is provided

by Algorithm 5.3.4. Summarizing this approach, we use a hybrid algorithm, which

combines particle swarm optimisation (PSO) (Kennedy and Eberhart, 1995a) with

simulated annealing (SA) (Kirkpatrick et al., 1983a) and a search space reduction

strategy (Park et al., 2005a). For clarity, we refer to this algorithm simply as PSO-

SA. The hybridization of the two algorithms helps to efficiently balance exploration

and exploitation of the policy function’s parameter space. For more details on this

algorithm, please refer to D.1.

The use of stochastic search policy optimisation inherits three major benefits. The

first being that stochastic search algorithms are easily parallelizable, which means

offline computational time in policy learning can be reduced. The second benefit is

that one is freed from reliance on accurate estimation of first order gradients indicative

of directions for policy improvement, as in policy gradients and deep Q learning.

Estimation of these directions is known to be computationally expensive (Riedmiller

et al., 2007a), and there is potential for policies to become stuck in local optima,

as well as instability in policy learning. This is particularly likely because the loss

landscape with respect to the policy parameters is thought to be non-smooth and

rough in scheduling problems4 (Merchant et al., 2021; Amos, 2022). The final bonus

is that one can easily optimise for a variety of measures of the distribution of penalised

return, pπ(zϕ), (i.e. go beyond optimisation in expectation as is declared in Eq. 5.2)

provided one is able to obtain a sufficient number of samples. This is discussed further

in the next section.

5.3.4 Optimizing for the distribution of returns

Recent developments within RL have enabled the field to move beyond optimisation

in expectation. This subfield is known as distributional RL. One of the advantages

provided by distributional RL is that one can incentivize optimisation of the tails

of the distribution of returns, providing a more risk-sensitive formulation. The con-

cept of distributional RL was first introduced by (Bellemare et al., 2017b) in 2017.

4This is due to the structure of the control space and the nature of the scheduling task, i.e. controls
that are close in the control space (have small euclidean distance between them) do not necessarily
induce similar process dynamics.

197

However, optimisation of risk-sensitive criteria has been well established in the port-

folio optimisation and management community for some time, with the advent of e.g.

value-at-risk (VaR), conditional value-at-risk (CVaR) (Rockafellar et al., 2000), and

Sharpe’s ratio. Conventionally, (stochastic gradient-based) distributional RL algo-

rithms are dependent upon making approximations of the probability density function

of returns pπ(zϕ), so as to gain tractable algorithms (Bellemare et al., 2017b; Tang

et al., 2019a). The major benefit of stochastic search approaches is that one is freed

from such approximations by simply estimating the interested measure (e.g. mean,

variance, (C)VaR) directly from samples (i.e. a Monte Carlo method). In the follow-

ing, we outline the CVaR in the context of stochastic search policy optimisation, and

reasons for its use as metric to optimise pπ(zϕ).

The conditional value-at-risk (CVaR)

The CVaR is closely related to the value-at-risk (VaR). The VaR defines the value,

zϕβ , of the random variable, Zϕ, that occurs with probability less than or equal to

a certain pre-defined level, β = [0, 1], under the cumulative distribution function

(CDF), Fπ(zϕ) = P(Zϕ ≤ zϕ|π). Informally, VaR (for some β) gives us a value,

which is the best possible value we can get with a probability of at most β. For

example, conceptualize that Zϕ represents the mass produced in a process plant per

day (kg/day). If the plant has zϕβ = 1000 kg/day, and β = 0.05, this means that there

is a 0.05 probability that the production will be of 1000 kg/day or less.

In the context of sequential decision-making problems, it is important to note that

the CDF, and hence the VaR, is dependent on the policy, π. The following definitions

are provided in terms of reward maximization, rather than loss (given the context of

RL and MDPs). Specifically, the VaR is defined:

zϕβ = max{zϕ : Fπ(zϕ) ≤ β} ⇐⇒ zϕβ = F−1
π (β) (5.6)

It follows then that the CVaR is the expected value, µϕβ ∈ R, of the random variable,

Zϕ, with a probability less than or equal to β under Fπ(zϕ):

µϕβ = zϕβ +
1

β

∫
zϕ<zϕβ

pπ(zϕ)(zϕ − zϕβ)dzϕ (5.7)

Eq. 5.7 expresses the CVaR (for a given probability β). This can be interpreted as

the VaR minus the expected difference between the VaR and the returns, zϕ, which

198

are realized with probability ≤ β, i.e. such that Fπ(zϕ) ≤ β. This is further reinforced

by Fig. 5.2, which provides a visualization of the VaR and CVaR.

(a) (b)

Figure 5.2: Description of the conditional value-at-risk, CV aRβ, and the value-at-
risk, V aRβ, for a given probability level β, as well as the expected value, µ under a)
the probability density function, pπ(zϕ), and b) the cumulative distribution function,
Fπ(zϕ).

The optimisation of the CVaR has advantage over the VaR in engineering applica-

tions because it provides more information about the performance of the policy within

the tails of the distribution, pπ(zϕ). This is particularly beneficial if the distribution

is characterised by heavy tails, which is often the case, given the possibility for rare

events within the plant. Further, Zϕ
β possesses many undesirable functional properties

that makes its optimisation more difficult than µϕβ (Rockafellar and Uryasev, 2002).

Therefore, in this work we favor the CVaR and present means to estimate from samples

in the proposed framework.

Optimisation of CVaR via sampling

We seek means by which to gain approximations of Eqs. 5.6 and 5.7 via sampling.

Specifically, assuming one has N realizations, Zϕ
MC = [zϕ1 , . . . , z

ϕ
N], then Eq. 5.6 may

be approximated via the ⌊βN⌋th order statistic, which we denote z̄ϕβ . The CVaR, µϕβ,

may then be approximated via µ̄ϕβ as follows:

µ̄ϕβ = z̄ϕβ +
1

βN

[
N∑
i=1

min(0, zϕi − z̄ϕβ)

]
(5.8)

Here, we simply replace the integral term in Eq. 5.7 via its sample average approxi-

mation. The minimum operator enforces the bounds of integration detailed, such that

only realizations less than the VaR are considered. The statistical properties associ-

ated with estimation of µ̄ϕβ have been well researched. Under some assumptions, the

199

Monte Carlo estimate of the CVaR converges with increasing samples at the same rate

as the sample average approximation (Hong and Liu, 2009). We direct the interested

reader to the cited works for more information.

How one incorporates this distributional perspective into the RL problem is highly

flexible when applying stochastic search policy optimisation. The CVaR may be either

optimised as a sole objective or it may be enforced as a constraint subject to appro-

priate definition of β. In other words, one may formulate either of the two following

optimisation problems:

π∗
β = arg max

π
µ̄ϕβ (5.9a)

π∗
β = arg max

π
Eπ
[
Zϕ
]

s.t. µ̄ϕβ ≥ b (5.9b)

where b ∈ R is some minimum desired value. For the use of RL, we are dependent

upon obtaining a closed form expression as an optimisation objective. Optimisation

of Eq. 5.9a is trivial. Whereas Eq. 5.9b may be handled via a penalty method,

or simply by discarding infeasible policies in the case of stochastic search algorithms.

Please see Rockafellar and Uryasev (2002) for more information on CVaR optimisation

formulations. A general approach to optimisation of either of the formulations (Eqs.

5.9a and 5.9b) is provided by Algorithm 5.3.4. The description is kept general to ensure

clarity of the methodology. For further information on stochastic search optimisation

and the algorithm used in this work, PSO-SA, please see D.1.

To provide demonstration of the ideas discussed, we now investigate the application

of the methodology on a case study, which has been adopted from early work provided

in Cerda et al. (1997). We add plant uncertainties to the case study and construct a

discrete-time simulation of the underlying plant. The case study is discussed further

in the next Section.

200

Algorithm 5.2 Distributional stochastic search policy optimisation

Input: Policy function (a neural network in this study), π(θ̂, ·), parameterized by θ̂; a num-

ber of samples to evaluate each candidate policy, nI ; sample approximation of objective

function to optimise, fSA(·); a general stochastic search optimisation algorithm, fSSO(·);

population size, P ; upper, θUB, and lower, θLB, bounds on the search space; popula-

tion initialization method, finit(θ̂, P, θUB, θLB); a number of optimisation iterations, K; a

memory buffer, BSSO; memory for metrics of optimal policy, Bπ∗ = {Jπ∗ , π(θ∗, ·)}

1. Generate initial (neural network) population parameters, Θ1 = finit(θ̂, P, θUB, θLB),

where Θ1 = {θ1, . . . , θP }

for k = 1, . . . ,K do

2a. Construct policy population, Πk = {π(θi, ·), ∀θi ∈ Θk}

for each (neural network) policy πc,i ∈ Πk do

2b i. Evaluate penalized return of the policy, Zϕ, of πc,i via Algorithm 5.1 for nI

samples

2b ii. Return distribution information of the policy, Bπc,i = {B1
info, . . . ,B

nI
info} from

Algorithm 5.1

2b iii. Assess sample approximate objective, Ji = fSA(Bπc,i)

2b iv. Collect information for policy πc,i and append [Ji,Bπc,i] to BSSO

2b v. if Ji > Jπ∗ then update best known policy Bπ∗ = {Ji, πc,i}

end for

2c. Generate new parameters Θk+1 = fSSO(BSSO), where Θk+1 = {θc,1, . . . , θc,P }

end for

Output: π(θ∗, ·) ∈ Bπ∗

5.4 Case studies

5.4.1 Problem definition

We consider a multi-product plant where the conversion of raw material to product

only requires one processing stage. We assume there is an unlimited amount of raw

material, resources, storage and wait time (of units) available to the scheduling el-

ement. Further, the plant is completely reactive to the scheduling decisions of the

policy, π, although this assumption can be relaxed (with appropriate modification

to the method stated here) if decision-making is formulated within an appropriate

201

framework as shown in Hubbs et al. (2020a). The scheduling element must decide the

sequencing of tasks (which correspond uniquely to client orders) on the equipment

(units) available to the plant. The requirement for sizing decisions is removed from

the problem, based on the requirement for the production of tasks to be organised in

campaigns (i.e. multiple sequential batches if required), as well as the fact that the

yield of a batch is known with certainty. Full detail of the properties and requirements

of the production environment is detailed in D.2.1.

The objective is to minimise the makespan and the tardiness of task (order) comple-

tion. Once all the tasks have been successfully processed according to the operational

rules defined, then the decision making problem can be terminated. It should be noted

that, although it is a valid objective in this case study, it is unlikely that makespan

would provide a suitable objective in reality, primarily because the production con-

tinues beyond the end of the horizon. The problem is modelled as an MDP with a

discrete-time formulation. Full details of the MDP construction, uncertain state space

model and model data used in this work is provided by D.2, however the definition of

system state and control spaces are provided subsequently.

The representation of system state in discrete-time scheduling MILP models is

discussed at length in Subramanian et al. (2012); McAllister et al. (2022), where a

state-task network representation is assumed. The state in that work is actually a

matrix based on the use of lifting variables to account for the continued processing

of production tasks over multiple time intervals. Instead, we pose a problem specific

representation as follows:

xt =

[
I1t, . . . , INt, w1t, . . . , wnut, δ1t, . . . , δnut, ρ1t, . . . , ρNt, t

]T
∈ R2N+2nu+1 (5.10)

where Iit ∀i ∈ I quantifies the current inventory of client orders in the plant; the

tasks processed within units in the plant over the previous time interval, wlt ∀l ∈ L; a

forecast, based on nominal processing times, of the discrete time indices remaining until

completion of the task campaigns being processed in all units, δlt ∀l ∈ L; a forecast

of the the discrete time indices remaining until orders (tasks) are due, ρit ∀i ∈ I; and,

the current discrete time index, t. The major difference here compared to the state

representation provided in McAllister et al. (2022) is that we desire a vector, rather

than matrix, representation of state.

202

Similarly, we define the control space, u = [u1, . . . , unu]T ∈ U, where U(l) = I ∪

{N+1}, and N+1 is an integer value, which represents the decision to idle the unit for

one time period. Given that the time grid is global across units, some logic is required

to ensure that operations can span multiple time intervals and are not rescheduled at

every discrete time index. This, together with means of forecasting state evolution and

identification of control sets, is discussed at length in the supporting information (see

D.2.2). However, it is worth noting that there is one input constraint, which cannot

be handled explicitly through identification of control sets. This is the requirement for

no production task to be repeated over the course of the time horizon. As discussed

in section 5.3.2, this cannot be asserted via action masking without biasing the policy

and so it is instead handled through a penalty method.

5.4.2 Benchmark

The benchmark for the following experiments as presented in Section 5.4.3 is provided

by both offline and online implementations of the continuous time, mixed integer linear

programming (MILP) model first detailed in Cerda et al. (1997).

To ensure that the solutions from the two time transcriptions (i.e. the continuous

time formulation of the benchmark and the discrete-time formulation of the methodol-

ogy proposed) are comparable, the data which defines the sequence dependent cleaning

times, task-unit dependent processing times and release times are redefined from the

original study to ensure that their greatest common factor is equal to the length of a

time interval in the discrete-time transcription.

Online implementation was dependent upon updating the model data by receiving

feedback from the state of the plant at a given discrete time index and fixing variables

appropriately. The MILP model was resolved at each discrete time index in the horizon

to allow fair comparison to the RL approach. Given that there are uncertainties in the

plant dynamics, the MILP model utilises the expected values of the uncertain data.

Similarly, in RL expected values of uncertain variables are maintained in the state

representation, until the uncertainty is realized at which point the state is updated

appropriately (Hubbs et al., 2020a). Please see Cerda et al. (1997) and D.3 for more

information on the model and data used for the following experiments, respectively.

All MILP results reported were generated via the Gurobi v9.1.2 solver together with

203

the Pyomo v6.0.1 modelling framework. The proposed method utilised the PyTorch

v1.9.0 python package and Anaconda v4.10.3.

5.4.3 Experiments

Problem instances and sizes

In the following, we present the formulation of a number of different experiments across

two different problem instances. The first problem instance is defined by a small

problem size. Specifically, we are concerned with the sequencing of 8 client orders

(tasks) on four different units. This corresponds to 304 binary decision variables

and 25 continuous decision variables within the benchmark continuous-time MILP

formulation. The second problem instance investigates the ability of the framework to

handle larger problems with 15 orders and 4 units. In this case, the MILP formulation

consists of 990 binary decision variables and 46 continuous decision variables.

Study designs and assessment of performance

Both of the problem instances are investigated thoroughly. We demonstrate the ability

of the method to handle: a) uncertainty in processing times; b) uncertainty in the due

date; and, c) the presence of finite release times. These three considerations, a)-c),

are used as factors to construct a full factorial design of experiments. Each factor has

two levels, either it is present in the underlying problem, or it is not. As a result, the

majority of analysis focuses on the investigation of the method’s ability to optimise in

expectation. This is captured by experiments E1-E8 in Table 5.1.

A number of the experimental conditions were used to demonstrate the ability of

the method to optimise for the CVaR of the distribution also. This was investigated

exclusively within problem instance 1, as detailed by experiments D3-D8 in Table 5.1.

In all experiments, the processing time uncertainty is defined via a uniform prob-

ability density function (see Eq. D.14a) and the due date uncertainty is described by

a Poisson distribution (see Eq. D.14b).

Further to the experiments proposed in Table 5.1, the proposed and benchmark

methods are compared with respect to online and offline computational burden. The

robustness of the proposed RL method to misspecification of the plant uncertainties

204

Table 5.1: Table of experimental conditions investigated. Details of the exact descrip-
tions of uncertain variables are provided by D.2.

Optimizing in Expectation (Eq. 5.5)

Reference Processing time uncertainty Due date uncertainty Finite release times

E1 ✗ ✗ ✗

E2 ✗ ✗ ✓
E3 ✗ ✓ ✗

E4 ✗ ✓ ✓
E5 ✓ ✗ ✗

E6 ✓ ✗ ✓
E7 ✓ ✓ ✗

E8 ✓ ✓ ✓

Optimizing for Conditional Value at Risk (CVaR) (Eq. 5.9a)

Reference Processing time uncertainty Due date uncertainty Finite release times

D3 ✗ ✓ ✗

D4 ✗ ✓ ✓
D5 ✓ ✗ ✗

D6 ✓ ✗ ✓
D7 ✓ ✓ ✗

D8 ✓ ✓ ✓

is also investigated. The results are detailed in Section 5.5.4 and 5.5.5, respectively.

The performance indicators used to evaluate the respective methods include the

expected performance of the scheduling policy, µz = Eπ
[
Z
]
, the standard deviation of

the performance, σZ = Σπ

[
Z
]

and the conditional-value-at-risk. Specifically, we use a

version of the CVaR, µ̄β, which considers the non-penalised returns5 with β = 0.2 (i.e.

µ̄β represents the expected value of the worst case policy performance observed with

probability less than or equal to 0.2). Finally, we utilise a statistically robust approx-

imation to the probability of constraint satisfaction, FLB, to evaluate the constraint

handling abilities of both solution algorithms. Formal details of evaluation of FLB are

provided by D.6. In the following section, the results for the different experiments are

presented for the method proposed and benchmarked relative to a continuous-time

MILP formulation.

5This is assessed via appropriate modification to Eq. 5.8, such that we consider the sum of rewards,
rather than the return under the penalty function.

205

5.5 Results and discussion

In this section, we turn our attention to analysing the policy training process and

ultimate performance of the framework proposed. In all cases, results were generated

by the hybrid PSO-SA stochastic search algorithm with space reduction. In learning

(or stochastic search), all candidate policies were evaluated over nI = 50 samples

(when the plant investigated was subject to uncertainty, if deterministic nI = 1), with

a population size of P = 60 and maximum optimisation iterations of K = 150. The

structure of the network utilised for policy paramaterization is detailed by D.1.

5.5.1 Policy training

Demonstration of the training profiles for experiment E8, problem instance 1 are pro-

vided by Fig. 5.3. Fig. 5.5.1 details the formulation provided by Eq. 5.5 and Fig.

5.5.1 details Eq. 5.9a (i.e. the expected and CVaR objective, respectively).

(a) (b)

Figure 5.3: The training profile of the RL agent on experiment E8, problem instance
1. Metrics of the best known policy are tracked as the population is iterated. Plot
a) shows the mean, standard deviation (shaded region around the expected profile),
value-at-risk (β = 0.2), the corresponding conditional-value-at-risk and probability
of constraint satisfaction, FLB, for formulation Eq. 5.5. Plot b) displays the same
information for formulation Eq. 5.9a.

The plots detail how the methodology steadily makes progress with respect to the

measure of the objective posed by the respective problem formulation. The VaR rep-

resents the maximum objective performance observed with probability less than or

equal to 0.2. Hence, the similarity between the VaR and the expected performance, as

expressed by Fig. 5.3, indicates that the returns are not well described by a Gaussian

distribution. This is an approximation required by many distributional RL algorithms,

206

but not stochastic search optimisation approaches as used in this work. Optimisation

iterations proceed after population initialization. Therefore, the performance of the

initial best known policy is dependent upon the initialization. Thereafter, each it-

eration consists of evaluating each candidate policy in the population over nI = 50

samples, such that 150 iterations is equivalent to obtaining 450,000 simulations of the

uncertain model. The computational time cost of this is discussed in Section 5.5.4.

All current best known policies identified throughout training satisfy the constraints

imposed on the problem, indicating the efficacy of framework proposed.

5.5.2 Problem instance 1

In this section, the results of investigations for experiments corresponding to problem

instance 1 are presented. In this problem instance there are 8 customer orders and

4 units available to the production plant. Firstly, we present results confirming the

ability of the method to identify an optimal scheduling solution for a deterministic

plant, which corresponds to the generation of an offline production schedule. We then

turn our attention to scheduling of the plant subject to uncertainties.

Optimisation of the deterministic plant (offline production scheduling)

There are two experiments that investigate the optimality of the method proposed in

generation of an offline production schedule: E1 and E2 (see Table 5.1). Investigation

E1 defines a deterministic plant without finite release times, whereas E2 includes finite

release times.

Fig. 5.5.2 and 5.5.2 provides a comparative plot of the schedule generated via the

policy identified via the method proposed and the MILP formulation for experiment

E1, respectively. As reinforced by Table 5.2, the policy obtained from the method

proposed achieves the same objective value as the benchmark MILP method, despite

the slight difference in the structure of the solutions identified. The difference in the RL

solution arises in the sequencing of tasks in unit 3 and 4, but does not affect the overall

quality of schedule identified. Importantly, this result highlights the ability of the

method proposed to account for e.g. sequence dependent cleaning times, sequencing

constraints, and requirements to complete production in campaigns in the appropriate

units as imposed in this case study

207

(a) (b)

(c) (d)

Figure 5.4: Investigating the offline schedule generated for the deterministic plant
(problem instance 1). The results for experiment E1 generated by the a) RL and b)
MILP methods and for experiment E2 generated by the c) RL and d) MILP methods.
The label Ti details the scheduling of task i in a given unit.

Next, we turn our attention to the handling of finite release time within the frame-

work provided. This is probed by experiment E2. Again, a comparative plot of the

relative production schedules identified by the MILP formulation and proposed method

is provided by Fig. 5.5.2 and 5.5.2. Despite a slight difference in the structure of the

solution, arising from the sequencing of tasks in unit 3; as detailed from Table 5.2,

the policy obtained from the method proposed achieves the same objective value as

the benchmark MILP method on experiment E2. This further supports the capacity

of the framework to handle the constraints imposed on the problem. In the following

section, we explore the ability of the framework to handle plant uncertainties.

Optimisation of the uncertain plant (reactive production scheduling)

In this section, we turn our attention to demonstrating the ability of the framework

to handle plant uncertainty. Specifically, we incrementally add elements of plant un-

certainty to the problem via investigation of experiments E3-E8. Again, the MILP

formulation is used to benchmark the work. For both approaches, policies were vali-

dated by obtaining 500 Monte Carlo (MC) simulations of the policy under the plant

dynamics. This enables us to accurately estimate measures of the distribution of

208

return, pπ(z).

Table 5.2: Table of results for the proposed method from investigation of experimental
conditions detailed by Table 5.1 for Problem Instance 1. The policies synthesised were
optimised under the objective provided by Eq. 5.5.

Reference Method µZ σZ µ̄β FLB Method µZ σZ µ̄β FLB

E1

Proposed

-62.0 0.0 -62.0 1.0

MILP

-62.0 0.0 -62.0 1.0
E2 -65.0 0.0 -65.0 1.0 -65.0 0.0 -65.0 1.0
E3 -61.9 4.4 -72.5 1.0 -63.3 4.4 -72.2 1.0
E4 -66.0 4.9 -75.6 1.0 -66.3 4.9 -76.5 1.0
E5 -66.8 8.7 -86.0 1.0 -70.1 9.6 -90.2 1.0
E6 -73.8 10.7 -97.5 1.0 -73.6 10.3 -94.0 1.0
E7 -67.4 10.9 -86.8 1.0 -71.6 11.3 -93.5 1.0
E8 -75.3 11.5 -101.13 0.99 -75.1 11.7 -97.7 1.0

Table 5.2 presents the results for the method proposed and the MILP benchmark

for experiments E3-8. Here, the proposed method aims to optimise µZ (the expected

performance), whereas the MILP formulation assumes the plant is deterministic, and

only accounts for plant uncertainty via state-feedback. In 4 out of 6 experiments

(E3, E4, E5 and E7), the RL method outperforms the MILP approach and these

are statistically significant results based on two-sided Student’s t-tests. The most

significant of these is experiment E7, where the proposed approach (-67.4) outperforms

the MILP (-71.6) by 5.8% in the objective. The MILP approach only marginally

outperforms the proposed method (by ≤ 0.2%) in 2 of 6 of the experiments. This is

observed in the results of experiment E6 and E8.

Further, in all but one of the experiments, constraints are respected absolutely

across all 500 MC simulations by both the methods. In experiment E8, however, the

method proposed violated the constraints in what equates to 1 out of the 500 MC

simulations. This is primarily because in the optimisation procedure associated with

the method candidate policies are evaluated over 50 MC simulations. This means that

a realization of uncertainty, which caused the policy to violate the constraint expressed

by the penalty function in validation, was not observed in the learning phase (see

D.2.5 for more information regarding the specific constraint). This can be mitigated

practically by increasing the number of samples, nI , that a policy is evaluated for, at

the cost of increased computation.

Most of the analysis so far has concentrated on the expected performance, µZ , of

the policy and the probability of constraint satisfaction, FLB. Generally, all standard

209

deviation, σZ , of pπ(z) across the experiments are similar for both the RL approach and

the MILP approach. There is some discrepancy between the CVaR, µ̄β, of the RL and

MILP which considers the worst 20% of returns associated with pπ(z), however, this

should be interpreted with care given that there is no justification for either method’s

formulation to be better than the other. However, this can be incentivized in the RL

approach and this is discussed in the subsequent section.

Optimizing risk-sensitive measures

In this section, we present the results from investigation of experiments D3-8. The

difference between these experiments and E3-8, is that now we are interested in opti-

mizing for a different measure of the distribution, pπ(z). In E3-8, the objective was

optimisation in expectation, µZ . In D3-8, the objective is optimisation for the expected

cost of the worst 20% of the penalised returns, i.e. Eq. 5.9a, with β = 0.2. Again, the

optimisation procedure associated with the proposed method utilises a sample size of

nI = 50. All policies were then evaluated for 500 MCs.

Table 5.3: Results for distributional RL from experimental conditions detailed by Table
5.1. Results that are emboldened detail those policies that show improved CVaR over
the MILP approach (as detailed in Table 5.2).

Method Reference µZ σZ µ̄β FLB

Proposed

D3 -62.1 4.1 -69.8 0.99
D4 -65.5 4.9 -75.5 0.99
D5 -67.2 8.2 -83.9 1.0
D6 -74.9 11.2 -99.0 1.0
D7 -67.9 9.7 -87.1 0.99
D8 -73.2 11.6 -96.7 1.0

Table 5.3 details the results of the investigations D3-8. As before, the results corre-

sponding to µ̄β quantify the CVaR of the sum of rewards, Z, i.e. not including penalty

for violation of constraints. The results that are emboldened show improvements in

the CVaR over the MILP results as detailed in Table 5.2. To reiterate, the only differ-

ence here is that the MILP uses the expected values of data in its formulation, whereas

the distributional RL approach (the proposed method) accounts for uncertainty in the

data and optimises for the expected value of the worst 20% of penalized returns. This

leads to improvements in the CVaR in 5 out of 6 of all experiments (D3-8), with an

average improvement of 2.29% in the expected value of the worst 20% of the returns.

210

This figure should be interpreted with care, given that there is likely to be some statis-

tical inaccuracy from the sampling process. However, the weight of the result supports

that there is an improvement in performance gained from the RL formulation.

The expected performance, µZ , of the policy identified for experiments D3-8 is

also competitive with the MILP formulation. However, this is not promised to hold

generally, given improvements in the expected performance are not incentivized within

the formulation (i.e. Eq. 5.9a, although this result is also noted in Sarin et al. (2014)).

To balance both objectives the formulation provided by Eq. 5.9b could be investigated,

if it is of interest to a given production setting.

(a) (b)

Figure 5.5: The distributions of returns observed in validation of the RL policy ob-
tained from optimizing expectation (i.e. E8) and conditional value-at-risk (i.e. D8)
within the same production environment. Plot a) a histogram of the objective per-
formances, and b) the empirical cumulative distribution function associated with each
policy.

Similar observations can be made with respect to the probability of constraint

satisfaction as in Section 5.5.2. In 3 of the 6 experiments, the constraint imposed in

the penalty function is violated in approximately 1 of the 500 MC simulations. Again,

this could be mitigated by increasing the number of samples, nI , in policy evaluation

during the optimisation procedure. However, even at the current setting of nI = 50,

the constraints are respected with high probability, and this was deemed sufficient for

this work.

Fig. 5.5 expresses the distribution of returns under the RL policies optimizing

expectation and CVaR, as obtained in experiment E8 and D8, respectively. Both

policies are learned in production environments defined by the same dynamics and

211

uncertainties. Their quantitative metrics can be found in Table 5.2 and 5.3, respec-

tively. Particularly, Fig. 5.5.2 highlights how the CVaR policy observes improved

performance in the tail of the distribution over the policy optimizing for expectation

(i.e. the CVaR plot is shifted along the x-axis to the right). Although, the policy does

not observe as good a best-case performance, this eloquently highlights the utility of

distributional formulations to identify risk-sensitive policies.

5.5.3 Problem instance 2

Optimisation of the deterministic plant (offline production scheduling)

Here, the results of investigation of experiments E1 and E2 are presented for problem

instance 2. The purpose of the investigation is to determine whether the method is

able to scale with larger problem instances efficiently and retain a zero optimality-gap

as in Section 5.5.2. Both experiments consider the plant to be deterministic, with E2

additionally considering the presence of finite release times.

Fig. 5.5.3 and 5.5.3 presents the comparative results of the schedule identified for

experiment E1 of the RL and MILP approach. There are clear differences between

the schedules. These arise in the sequencing of task 6 and 9 in unit 1, and in the

sequencing of unit 3. However, for this case the RL approach is able to retain a zero

optimality-gap. This provides promise for the method proposed in scaling to larger

problem sizes. This is reinforced by the value of the objective as presented in Table

5.4, where both methods achieve an objective score of -107.

Fig. 5.5.3 and 5.5.3 presents comparative results of the schedule generated for

experiment E2. Here, we see that again there is slight difference between the schedule

generated for the RL relative to the MILP. However in this case, there is an optimality

gap of 4.4% in the RL schedule generated. This is confirmed by Table 5.4, which details

the RL method achieved an objective score of -143.0, whereas the MILP method

achieved a score of -137.0. The difference between the schedules, which causes the

optimality-gap, is observed in the scheduling of task 10 in unit 2 (in the case of RL).

This leads to a slight increase in the overall makespan of production. This could be

attributed to the complex and non-smooth mapping between the state and optimal

control, which makes model structure selection a difficult task when using parametric

212

(a) (b)

(c) (d)

Figure 5.6: Investigating the offline schedule generated for the deterministic plant.
The results for experiment E1, problem instance 2 generated by the a) RL and b)
MILP methods. The results for experiment E2, problem instance 2 generated by the
c) RL and d) MILP methods. The label Ti details the scheduling of task i in a given
unit.

models, such as neural networks. An alternate hypothesis exists in the parameter

space, rather than the model space. The mapping between policy parameters and

objective is again likely to be highly non-smooth, which could pose difficulties for

stochastic search optimisation. It should be noted, however, that the latter proposition

should hold true for the experiment without finite release times (E1), but in this case

an optimality gap is not observed. One could therefore consider devising algorithms

to: a) enable use of function approximators more suited to expressing non-smooth

relationships between the state and optimal control e.g. decision trees; b) automate

the identification of the appropriate parametric model structure; or c) improve on the

existing hybrid stochastic search algorithm used in this work. Despite the presence of

the optimality gap in experiment E2, in both experiments, the framework is able to

efficiently handle the constraints imposed on the plant. In the following section, we

consider the addition of process uncertainties via investigation of experiments E3-8.

213

Optimisation of the uncertain plant (reactive production scheduling)

From Table 5.4, it is clear that generally the MILP outperforms the RL formulation

proposed. On average, the performance gap is 2.2%. This can be decomposed, such

that if we consider those experiments with finite release time present, the average

gap is 2.95%; for those experiments that did not include finite release times, the

average gap is just 1.4%. This further supports the argument that the optimality

gap is dependent upon the underlying complexity of the optimal control mapping (i.e.

the optimal scheduling policy becomes more difficult to identify when finite release

times are included).All but one of these differences are statistically significant, with

only experiment E5, showing no differences between the two algorithms (based on

two-sided, Student’s t-tests).

Table 5.4: Table of results for the proposed method from investigation of experimental
conditions detailed by Table 5.1 for Problem Instance 2. The policies synthesised were
optimised under the objective provided by Eq. 5.5. The * indicates the differences
between the two groups are not statistically significant based on two-sided t-test.

Reference Method µZ σZ µ̄β FLB Method µZ σZ µ̄β FLB

E1

Proposed

-107.0 0.0 -107.0 1.0

MILP

-107.0 0.0 -107.0 1.0
E2 -143.0 0.0 -143.0 1.0 -137.0 0.0 -137.0 1.0
E3 -116.3 8.06 128.1 0.98 -109.2 8.11 121.2 1.0
E4 -150.5 14.6 175.4 0.97 -142.7 12.3 159.8 1.0
E5∗ -123.4 18.4 150.2 1.0 -123.4 16.7 148.6 1.0
E6 -169.3 21.9 199.8 0.98 -166.6 22.1 193.5 1.0
E7 -127.2 19.6 150.1 0.95 -127.9 20.4 155.8 1.0
E8 -168.9 24.1 203.2 0.99 -167.5 24.6 200.1 1.0

It is also of note that the probability of constraint satisfaction decreases in this

case study relative to problem instance 1, across experiments E3-8 (see Table 5.2).

However, these changes are generally small, with the largest change equivalent to a 4%

decrease. This is likely due to realizations of uncertainty unseen in the training having

greater impact in validation, given the increased complexity of the decision making

problem. Additionally, this change is in the robust statistic, rather than the empirical

probability of constraint violation (see D.6) and hence the ability of RL in satisfying

constraints is still satisfactory. This is because we are explicitly trading off a small

risk of constraint violation with improved computational time to identify a scheduling

decision. However, as previously stated, the potential to handle constraints could be

improved by increasing nI in training, at the cost of added computational complexity.

214

This is reinforced by the binomial proportion confidence interval literature (Wilcox,

2011). Similar ideas exist within the scenario optimisation community, although in

this case, there are no such guarantees (Calafiore and Campi, 2005).

Additionally, the distributional RL formulation was investigated for problem in-

stance 2. Due to space limitations the results are fully detailed by Table D.7 in

D.4. On average across the experiments, the distributional formulation observes an

improvement of 0.62% in the CVaR for probability level β = 0.8, with a maximum

improvement of 5.28% in experiment D3. In 3 of 6 experiments improvements were ob-

served for the CVaR and the largest gap (1.91%) across all experiments was observed

in experiment D2. In this case, the true benefits of the distributional formulation seem

inconclusive and it is hypothesised this is either due to structure of the problem, or

the stochastic nature of RL.

5.5.4 Computational time cost in policy identification and

decision-making

In this section, we are interested in the comparative time intensity of the RL approach

proposed relative to the MILP approach. Having identified a model of the plant and

the associated uncertainties, we are interested in how long it takes to identify: a) a

control policy, π, (this is conducted offline) and b) a control decision, ut, conditional to

observation of the plant state, xt, at discrete time index, t (this is conducted online).

The code was parallelized to minimise the time complexity of computation. In practice,

the computational metrics reported in the following could be bettered considerably,

with respect to policy identification, if the appropriate hardware were available.

In the case of a), in RL we consider the amount of time to conduct stochastic

search optimisation associated with the proposed method when the sample size nI =

50; whereas, the MILP incurs no time cost in identification of the policy, given the

optimisation formulation is essentially the policy, π. In b), we consider the time

taken: for RL to conduct a forward pass of the neural network parameterization of

the control policy; and, to solve an MILP problem. Table 5.5 details the respective

results for problem instance 1 and 2.

From Table 5.5, it is clear that the RL method demands a much greater investment

215

Table 5.5: Normalized times for a) offline identification of a control policy, π, and b)
identification of online scheduling decisions for problem instances 1 and 2.

Time for identification

Object of identification Problem instance MILP RL

Control decision (online)
1 1 0.0067
2 1 0.002

Control policy (offline)
1 0 1
2 0 1

in the computational synthesis of a scheduling policy, π, offline. Generally, policy

synthesis required between 1-2 hours for problem instance 1 and 2 under the sample

size, nI , detailed by this work. The computational expense of the simulation essentially

scales linearly with the length of discrete time horizon. The differences in time for

offline policy identification between problems 1 and 2 arises due to an increased number

of orders (leading to a longer makespan and hence simulation time in problem instance

2). The effects of increased makespan on simulation time could be partially weakened

through the use of a discrete-event simulation, as the methodology proposed here can

also be applied to such models.

However, the work required online to update the control schedule, given a realiza-

tion of plant uncertainty, is far lower in the case of RL than in the MILP formulation.

For problem instance 1, the MILP is characterized by 304 binary decision variables

and 25 continuous decision variables. In this case, inference of a control decision is

150 times cheaper via the RL method proposed. In problem instance 2, the MILP

formulation consists of 990 binary decision variables and 46 continuous decision vari-

ables. For a problem of this size, the RL approach is 500 times cheaper than the MILP.

The online computational benefits of RL are likely to be considerable for larger case

studies, which is of significant practical benefit to the scheduling operation.

It is worth briefly mentioning here two main points. The first being that for many

production operations, it is not possible to model demand as well as assumed in this

work. Often, the number of orders and level of demand is highly variable from week-

to-week and month-to-month, which means demand forecasting can be subject to

high mismatch. In these cases, it is likely that the plant dynamics are no longer well

represented by the original simulation model over a long horizon (Maravelias, 2012).

216

This is an issue that also effects MILP approaches. However, because offline policy

identification only requires a short period of time, one could re-identify the policy in

the offline simulation model with updated data in the same way that MILP models

are also updated. Additionally, in such instances, interaction between the scheduling

and upper level planning and business functions can help inform the definition of

appropriate length of the time horizon to optimise over, which may also reduce the

time required for offline simulation (as discussed earlier in this section).

The second point to discuss is that the notion of generating scheduling decisions

from a function implies that at each discrete time index, the entire schedule is not

generated for the time horizon, which may lead to a lack of certainty over future plant

operations. This could be overcome by forecasting the system state via the nominal

process data or developing a framework to identify the most likely schedule. This may

then provide some certainty for the operation.

5.5.5 The effects of inaccurate estimation of plant uncertain-

ties

To further consider the practicalities of RL, in this section, we consider the effects

of inaccurately estimating the real plant uncertainties for the policy synthesised via

experiment E8, problem instance 1. Specifically, we assume that in the offline model

of the plant dynamics and plant uncertainties are as previous. While in the following

experiments M1-8, we assume that actual plant uncertainties are different from that of

the offline model. The processing time uncertainty has the same form (a discrete uni-

form probability distribution), but with the upper and lower bounds misspecified by

an additive constant, kpt ∈ Z+. Similarly, the rate of the Poisson distribution descrip-

tive of the due date uncertainty is misspecified. Here, however, the misspecification is

treated probabilistically, such that the rate is either unperturbed or misspecified by a

constant, kdd ∈ Z+ (this is either added or subtracted), with uniform probability. See

D.5 for further details. In the respective experiments M1-8, kpt and kdd are defined to

investigate the effects of different degrees of plant-model mismatch. In all cases, the

policy identified from experiment E8 in problem instance 1 was rolled out in a plant

where the true uncertainties are misspecified for 500 MC simulations. The experiments

217

and their results are detailed by Table 5.6.

Table 5.6: Table of experimental conditions investigated. In each experiment, we take
the trained policy from experimental condition E8, problem instance 1 and evaluate
its performance in a plant defined by different uncertainties. The degree of misspeci-
fication increases with experiment number.

Reference Processing time, kpt Due date, kdd µZ σZ µ̄ϕβ FLB

Model (E8) 0 0 -75.3 11.5 -101.1 0.99
M1 0 1 -74.8 12.3 -101.3 0.98
M2 0 2 -73.8 11.8 -99.9 0.99
M3 1 0 -76.0 13.3 -106.8 0.95
M4 1 1 -77.3 13.2 -104.4 0.95
M5 1 2 -78.0 14.8 -105.6 0.95
M6 2 0 -83.9 17.6 -121.7 0.78
M7 2 1 -81.5 17.5 -116.2 0.82
M8 2 2 -83.4 18.7 -118.5 0.82

From Table 5.6, it is clear that misspecification of plant uncertainties generally

impacts the performance of the policy identified. The misspecifications identified are

relatively mild in the case of due date uncertainty, however, they are more pronounced

in the case of processing times. This is reflected in the results of the experiments, where

little variation is observed in the policy performance when kpt < 2. For example, the

maximum deviation in terms of expected performance, µz, when this condition is not

imposed, is observed in experiment M5 where the corresponding decrease in µz from

the performance observed in the offline model (experiment E8) is just 3.6%. Similarly,

the probability of constraint satisfaction, FLB, remains high (slightly decreases to

0.95). Notably in experiments M1 and M2, the policy performance increases. As the

estimated values for due dates are maintained in the state (fed to the policy), the

misspecification is unlikely to induce a significantly different state distribution than

the model and hence the result should be interpreted with caution (i.e. it likely arises

from the statistical inaccuracies of sampling).

The effects on policy performance become notable when the processing time mis-

specification, kpt = 2. In all experiments M6-8, where this condition is imposed, the

decrease in expected performance, µZ , is in the region of 10%. Additionally, the mag-

nitude of the CVaR for β = 0.2 (i.e. the expected value of the worst 20% of policy

performances) decreases by 15-20%, and this is mirrored further by a considerable

decrease in the probability of constraint satisfaction, such that FLB ≈ 0.8.

218

From the analysis above, it is clear that accurate estimation of the true plant

uncertainties is important if RL is to be applied to a real plant. However, it does appear

that RL is likely to be robust to small amounts of error, which may be unavoidable

given the limitations of finite plant data.

5.6 Conclusions

Overall, in this work, we have presented an efficient RL-based methodology to address

production scheduling problems, including typical constraints imposed derived from

standard operating procedures and propositional logic. The methodology is demon-

strated on a classical single stage, parallel batch scheduling production problem, which

is modified to enable comparison between discrete-time and continuous-time formula-

tions as well as to consider the effects of uncertainty. The RL methodology is bench-

marked against a continuous-time MILP formulation. The results demonstrate that

the RL methodology is able to handle constraints and plant uncertainties effectively.

Specifically, on a small problem instance RL shows particular promise with perfor-

mance improvements over the MILP approach by up to 4.7%. In the larger problem

instances, the RL approach had practically the same performance as MILP. Further,

the RL methodology is able to optimise for various risk-aware formulations and we

demonstrate the approach is able to improve the 20% worst case performances by

2.3% on average. The RL is orders of magnitude (150-500 times) cheaper to evaluate

online than the MILP approach for the problem sizes considered. This will become

even greater when larger problem sizes are considered or if compared to discrete-time

scheduling formulations. Finally, the RL approach demonstrated reasonable robust-

ness to misspecification of plant uncertainties, showing promise for application to real

plants. It should be emphasised however, that there is no notion of robustness guar-

antee associated with RL as may be seen in (McAllister et al., 2022). This is clearly

an area worthy of future investigation.

In future work, we will consider the translation of this methodology to larger prob-

lem instances, multi-agent problems, and integration with other PSE decision-making

functions, such as maintenance and process control. Additionally, we will look to in-

vestigate efficient frameworks for updating the policy function in the case of highly

219

variable demand patterns and generating the schedule for the entire time horizon.

220

Chapter 6

Distributional reinforcement

learning for optimisation of

multi-echelon supply chains

This research item has been submitted to the Industrial Engineering and Chemistry

Research (IECR) Journal:

Wu, G., de Carvalho Servia, M. A., Petsagkourakis, P., Zhang, D., Del Rio Chanona,

E.A., Mowbray, M., 2022. Distributional reinforcement learning for inventory man-

agement in multi-echelon supply chains, Submitted to Journal, 2022:

The paper was produced through supervision of a student (Guoquan Wu) who in-

terned with the research group after completing his MSc at the Department of Chemi-

cal Engineering, Imperial College London. Max Mowbray is the corresponding author

of this paper and responsible for the original draft.

221

6.1 Introduction

Supply chain management and optimisation are key features of the operation and de-

velopment of sustainable industrial production systems. The outbreak and spread of

the COVID-19 pandemic has brought great challenges to governments, enterprises,

medical institutions and citizens. Throughout the pandemic, the global supply chain

has been greatly impacted, and there have been sudden shortages of various commodi-

ties, ranging from toilet paper (Fisher, 2020), medical materials, computer chips, cars

and other products (Swanson, 2020). As a result, the pandemic has emphasized the

importance and relevance of supply chain operations, which has inspired the academic

community to develop methods for supply chain management and robust optimisation

under uncertainty. For example, Remko (2020) made a preliminary empirical explo-

ration of the potential effects of COVID-19 on the supply chain, and proposed practical

methods to enhance its resilience. Paul and Chowdhury (2020) built a supply chain

model that can adapt to supply and demand disruptions caused by the pandemic.

Ibrahim et al. (2021) developed a new optimisation-based vaccine supply chain model

and embedded the model into a system framework to support the planning and delivery

of vaccination campaigns for pandemics.

The traditional research methods of operational research are usually divided into

two steps. The first is to, establish a mathematical model of the problem to be

solved, including system dynamics, constraints and objective function; and the second

is to design algorithms to solve the model, such as branch and bound (Karimi and

Davoudpour, 2015), tabu search (Melo et al., 2012), genetic algorithms (Kannan et al.,

2010) and linear programming solvers (Peidro et al., 2010). These approaches have

been widely used in supply chain management and achieved state-of-the-art results.

With the development of new frameworks for manufacturing and the decreasing

prices of information storage devices, various industries have accumulated a large

amount of historical data. These valuable data contain realizations of uncertain sup-

ply chain dynamics, which explicitly describe the operational problem at hand. It is

important to utilise these data to find rules and learn strategies to improve supply

chain optimisation solutions. For example, Gao et al. (2019) proposed a two-stage

222

distributionally robust optimisation model, which takes advantage of the data avail-

ability in industry to address the optimal design and operations of shale gas supply

chains under uncertainty and ambiguity.

In recent years, many researchers have proposed methods to deal with uncertainty

in supply chain and scheduling problems. Santos et al. (2021b) developed a rolling

horizon framework for the integrated personnel allocation and machine scheduling in

large-scale industrial facilities. Tsay et al. (2019) used a data-driven approach to study

scheduling-related dynamics from historical data of industrial processes, which is ca-

pable of describing the dynamic characteristics of industrial air separation units and

its model predictive control system with accuracy. In addition, to dealing with long-

term generation expansion planning under uncertainty, Lara et al. (2020) decomposed

the problem via stochastic dual dynamic integer programming and then used paral-

lelization to enhance the computation. By using a novel multi-parametric nonlinear

programming algorithm, Charitopoulos et al. (2019b) developed a strict rescheduling

mechanism to reduce the impact of dynamic interruptions on planning and schedul-

ing operation decisions. However, for large-scale and complex supply chain systems,

the traditional operations research methods still face many difficulties in practical ap-

plication. Firstly, the solution space is often large and often supply chain scenarios

involve many nodes with complex network relationships. As a result, the solution

time is often large as the constructed model is typically subject to the phenomenon

of combinatorial explosion with increasing problem size causing the time and space

complexity of computation to increase exponentially (Lee et al., 2018b). The second

challenge is that of large operational uncertainty. There are various uncertain factors

in the operation of the supply chain, such as demand, price fluctuations and produc-

tion uncertainty (Emenike and Falcone, 2020). Coping with uncertainty is one of the

most important issues in supply chain systems. As the evolution of the system state is

uncertain, deterministic (or nominal) supply chain models can often be associated with

large predictive errors. This means many current approaches based on mathematical

programming are often suboptimal because they explicitly require deterministic, finite-

dimensional expressions in the underlying model, and those that explicitly account for

uncertainty are intractable for large problems or online solutions.

Reinforcement learning (RL) is a subfield of machine learning that computes an

223

optimal decision-making policy by interacting with the underlying system via an iter-

ative approach. The RL problem is formalized as a Markov Decision Process (MDP),

which provides an effective framework for modelling uncertain, sequential decision-

making problems (Puterman, 2014b). As RL has demonstrated impressive results

in sequential decision-making tasks such as Go (Silver et al., 2017a), ATARI games

(Mnih et al., 2015a) and engineering (Li, 2017), it has also attracted attention in the

field of supply chain optimisation. RL can overcome the shortcomings of traditional

operations research methods: it allows for flexible use of different classes of model

and forms of uncertainty. As the process system state transitions, the controller (or

policy) can make use of state feedback to produce reactive control solutions (Caputo

and Cardin, 2022a). Another benefit is that RL does not need to explicitly identify

the conditional probability density function descriptive of discrete time system dynam-

ics, but instead uses simulation methods (i.e., Monte Carlo) to approximate it. This

is especially beneficial, because such explicit knowledge of discrete time dynamics is

typically unavailable in OR applications.

In view of the above characteristics, RL has been applied to supply chain manage-

ment in recent years, and a series of excellent results have been demonstrated. For

example, Oroojlooyjadid et al. (2017) introduced the latest deep Q-network (DQN)

into a multi-agent cooperative supply chain problem and developed a cooperation

framework with transfer learning to achieve knowledge transfer between controllers.

The simulation results show that the DQN algorithm can obtain near-optimal results

and with favorable performance relative to a base-stock policy. Gijsbrechts et al.

(2021) applied the Asynchronous Advantage Actor Critic (A3C) algorithm to lost

sales, dual-sourcing, and multi-echelon inventory models, and introduced a real data

set for algorithm validation. The results show that the inventory cost calculated by

the A3C algorithm is close to the optimal solution, and matches the performance of

state-of-the-art heuristic methods. Kara and Dogan (2018) implemented RL to solve

a supply chain system of perishable products, and compared SARSA and Q-learning

algorithms with genetic algorithms. The results show that a better solution can be

obtained by using an RL algorithm despite great changes in customer demand and

short product life.

224

Although RL has made great achievements in the research of supply chain opti-

misation problems, most literature uses Q-learning and policy gradient algorithms to

identify a solution policy. When combined with nonlinear function approximation (as

is standard practice), these algorithms are generally unstable in training, get easily

trapped in low-laying local optima and in most cases, are unable to provide guarantees

of convergence to local solutions. Furthermore, problems related to training stability

often arise, such as the vanishing or exploding gradient problem, leading to unsatisfac-

tory results. More effective and robust policy learning methods are required to resolve

these perceived shortcomings of gradient-based RL approaches. A potential means of

achieving this is provided by derivative-free RL methods.

Derivative-free RL methods provide another way of policy learning for RL. A direct

way of applying derivative-free optimisation methods to RL is to define the search

space as the parameter space of the policy, and the objective function as the expected

cumulative reward. For policy learning, derivative-free RL approaches have their own

advantages. For example, they are invariant to control frequency and delayed rewards,

tolerant of extremely long horizons, and do not need to identify search directions via

backpropagation (Salimans et al., 2017b). However, it is also well known that ‘vanilla’

stochastic search algorithms are inefficient in high dimensions. This has led to the

development of advanced algorithms tailored to address this problem (Memmel et al.,

2022).

In general, evaluating the average cumulative reward and standard deviation of

the reward over multiple episodes is sufficient to determine how well the RL algorithm

performs a specific task. However, RL algorithms often show great differences in per-

formance in different episodes, which reduces their reliability in terms of performance

consistency. In addition, in some cases, minimum performance thresholds may always

be required to avoid risk (Waubert de Puiseau et al., 2022). Therefore, a key challenge

is how to ensure that the learned policy is safe, robust and performance consistent,

which requires different measures of the performance distribution under RL policies.

Recent research on risk-sensitive policy learning draws inspiration from risk-measures

common in finance, such as using value-at-risk (VaR) or conditional value-at-risk

(CVaR) as the criterion to optimise. These approaches are part of a subfield of RL

research, known as distributional RL (Bellemare et al., 2022). The VaR and CVaR

225

can be efficiently optimised using different mathematical programming formulations

(Rockafellar and Uryasev, 2000). The utility of CVaR in non-finance applications has

been fully discussed by Filippi et al. (2020). Recently, Ma et al. (2021) proposed con-

servative offline distributional actor critic (CODAC), an offline RL algorithm suitable

for both risk-neutral and risk-averse domains by considering CVaR. Tang et al. (2019b)

developed worst case policy gradient (WCPG) to learn risk-sensitive policies by max-

imizing CVaR. The learned policy was demonstrated to be risk averse and robust in

an autonomous driving simulation. Furthermore, Mowbray et al. (2022b) presented

a distributional RL framework to address precedence and disjunctive constraints on

production scheduling problems, which is able to optimise for various risk-aware for-

mulations. The results demonstrate that the method can improve the 20% worst case

performances by up to 4.5% over an expected formulation, whilst providing compara-

tive expected performance to a nominal, online MILP approach.

Drawing inspiration from the above works and to address current shortcomings

in supply chain optimisation, in this work we propose a hybrid stochastic search al-

gorithm for policy optimisation and risk sensitive formulations for distributional RL.

Hybridization of stochastic search is well-known and has demonstrated performance

improvements in many problems (Estrada-Wiese et al., 2018). Our method combines

four stochastic optimisation algorithms: evolution strategy (ES) (Hansen et al., 2015),

artificial bee colony (ABC) algorithm (Karaboga, 2005), particle swarm optimisation

(PSO) (Kennedy and Eberhart, 1995b) and simulated annealing (SA) (Kirkpatrick

et al., 1983b). The composition of these methods allows one to balance exploitation

and exploration in the search process. An additional search space reduction strategy

is implemented to accelerate the optimisation process. Furthermore, we propose a

novel distributional RL method based on this hybrid search algorithm to identify a

risk-sensitive policy. Finally, we use a multi-echelon supply chain inventory manage-

ment problem and two common operations research studies as benchmark test cases

to demonstrate the effectiveness of our proposed method. The performance of the

method proposed is compared with state-of-the-art algorithms like receding horizon

MIP and proximal policy optimisation (PPO).

226

Figure 6.1: Interaction between the controller and stochastic process in a Markov
decision process.

6.2 Preliminaries

6.2.1 Introduction to Reinforcement Learning

RL encompasses a set of methods, which approximately solve a Markov decision pro-

cess (MDP), which is shown in Fig. 6.1 (Sutton and Barto, 2018a). MDPs, can be

expressed as a 5-tuple < U,X, P, R, γ >, which includes the control space, U ⊆ Rnu ,

state space X ⊆ Rnx , discrete time state transition probability, P : X×U×X → [0,∞] ,

reward R : X× U× X → R and discount factor γ = (0, 1]. The optimal policy in an

MDP maximizes the expected sum of rewards over a finite, discrete time horizon. The

MDP framework is outlined by Fig. 6.1.

From a high level, the implementation process of RL is as follows: a controller

observes the system and its current state xt ∈ X at the time index t, and then takes an

action according to ut = π(xt). At the next time index t+1, the system then transitions

to a new state, xt+1 ∈ X, and discrete-time system evolution is evaluated by a reward,

Rt+1 ∈ R. The decision-making process trajectory, τ = (x0,u0,x1, R1, . . . ,xT , RT)

within the MDP.

Through a learning process, the controller finds the optimal policy π∗ that maxi-

mizes the long-term cumulative reward. After time t, the long-term cumulative reward

Gt with discount factor γ = (0, 1] is defined as follows:

Gt = Rt+1 + γRt+2 + . . .+ γT−1RT

= Rt+1 + γGt+1

(6.1)

The state value function V π(x) and the state-action value function Qπ(x,u) can

227

be expressed as follows:

V π (x) = E [Gt|Xt = x] (6.2)

Qπ(x,u) = E [Gt|Xt = x,ut = u] (6.3)

Traditional first order RL relies on the accurate estimation of gradient-based directions

for policy improvement. However, evaluation of directions for policy improvement is

generally noisy and computationally expensive (Riedmiller et al., 2007b). In addition,

the update directions tend to be approximations of the gradients, which can have

implications for convergence, as explored in Nota and Thomas (2019b); Tran et al.

(2022); Ziemann et al. (2022). Through the advent of deep learning, classes of flexible

and powerful models (e.g., neural networks) are available for use in RL. It is worth

mentioning that although the gradient for policy improvement can be estimated, the

RL objective is often a complex (i.e., nonlinear or non-smooth) function of the policy

parameters. This is especially true when using a deep neural network model (that is not

extremely large). For this type of optimisation problem, gradient-based RL methods

may get stuck in local optimal solutions and face the gradient vanishing problem in

the optimisation process (Qian and Yu, 2021), leading to unsatisfactory final results.

A promising approach that circumvents these issues is the use of stochastic search

optimisation algorithms within the RL framework.

6.2.2 Reinforcement Learning and stochastic search optimi-

sation

Stochastic search optimisation for RL is a form of derivative-free RL. For policy learn-

ing, stochastic search algorithms have several advantages, for example, they often have

stronger exploration ability and policy learning is easily parallelized (computationally).

The fitness function is the core of stochastic search algorithms, and in the RL case

it represents the individual policy’s fitness when evaluated in the uncertain process

system. Here, the fitness represents the quality of each individual policy with respect

to the process objective. We use the value of the long-term return in RL as the fitness

function of the stochastic search algorithm, which is shown in Eq. 6.4:

Ffitness(θ) = Eτ∼p(τ)[G0]

= Eτ∼p(τ)[R1 + γR2 + . . .+ γT−1RT]
(6.4)

228

where τ ∼ p (τ) represents the distribution of trajectories induced under the cur-

rent policy π; T is the length of episode; and G0 represents the total returns of an

episode. Instead of calculating the state value function corresponding to each state,

we directly calculate the overall evaluation value G0 of each policy via the sample av-

erage approximation. Through this method, the effect of sparse immediate rewards –

a common issue of state-action value and policy gradient methods – is avoided. Sparse

reward problems are characterized by non-informative feedback from the reward func-

tion for most state transitions.

Despite these advantages, few researchers have applied stochastic search algorithms

to policy learning. The OpenAI team has used evolutionary strategies to directly op-

timise the weights of the policy network (Salimans et al., 2017b). The experimental

results on Atari games and MuJoCo control tasks show that ES algorithm has better

exploration behavior than other policy gradient methods such as trust region policy

optimisation. Choromanski et al. (2018) enhanced the parameter update of the ES

algorithm through structural evolution and the use of intensive policy networks. The

proposed algorithm uses fewer policy network parameters, so it can speed up training

and inference. Such et al. (2017) used the genetic algorithm to solve the RL task. The

algorithm iteratively maintains a policy population, updates the individuals in the

population by a mutation operator, and then uses elitism to select the next generation

of the population. The experimental results on the control tasks of Atari game and

MuJuCo show that genetic algorithm is effective and competitive compared with pop-

ular first order RL methods. In addition, Memmel et al. (2022) proposed a method for

dimensionality reduction and prioritized exploration with application to policy search

algorithms in black-box optimisation, which enables more efficient learning of policies.

6.2.3 Introduction to Distributional Reinforcement Learning

As reinforcement learning is applied to diversified problem instances in the real world,

it is common to observe parametric and other general uncertainties. In general, RL

algorithms are designed to maximize the expected sum of rewards. However, maximiz-

ing in expectation is not risk-sensitive because it does not explicitly account for low

probability, worst-case events (Tang et al., 2019b). In recent years, Bellemare et al.

(2017a) introduced distributional RL, which instead studies the complete distribution

229

of future returns. There are two main drivers for research in distributional RL. The

first focus is to find better distributional parameterizations to improve approximation

of the actual distribution associated with the return of a given state and control. This

is demonstrated in a number of works (Dabney et al., 2018d; Yang et al., 2019). The

second is to model the different statistical characteristics of the distribution and try

to identify the modeling methods that are more suitable for RL tasks, such as learning

the quantile value of the distribution (Dabney et al., 2018a) or learning the expec-

tile value of distribution as in Expectile distributional RL (Rowland et al., 2019). A

typical application direction is risk-sensitive scenarios (Ma et al., 2020; Zhang et al.,

2020c). For example, Min et al. (2019) applied distributional RL to the autonomous

highway driving problem, and the results show that policy trained by distributional

RL drives more efficiently, safely and faster. These requirements are all paralleled in

the process industry.

6.3 Methodology

In this work, the true system is assumed to be described by a stochastic process with

the Markov property (i.e., discrete time system evolution depends only on the current

state and control action). Our strategy seeks to use stochastic search algorithms to find

the optimal policy for a supply chain system under the presence of uncertainty. Ad-

ditionally, we leverage the use of risk sensitive measures to allow for the identification

of a more robust and risk-averse policy.

In practice, the workflow for the identification of RL controllers is as presented in

Mowbray et al. (2022a). Specifically, due to the data intensity of RL, we conduct an

initial policy search via offline simulation of an approximate process model. Once a

policy has been identified in the offline model, it may then be transferred to the real

system for the purposes of online decision-making. This workflow is depicted by Fig.

6.2.

6.3.1 Stochastic search for Reinforcement Learning (SS-RL)

Different stochastic optimisation algorithms exhibit different characteristics. For ex-

ample, the ES emphasizes the evolutionary ability of groups, the ABC algorithm

230

Figure 6.2: Reinforcement Learning for process systems and supply chain optimisation.

emphasizes cooperation between groups, and the PSO algorithm emphasizes group

learning. Therefore, some algorithms are better at exploring the search space, whereas

others are better at exploiting it. The tradeoff between exploration and exploitation

has proved to be the key to affect optimisation performance (e.g., the accuracy and

convergence speed of stochastic optimisation algorithms) (Chen et al., 2009; Črepinšek

et al., 2013). Balancing the exploration and exploitation of the search space has been

effectively demonstrated in some algorithms. For example, del Rio-Chanona et al.

(2019) proposed a stochastic search algorithm that combines SA, PSO and random

search, and Anye Cho et al. (2021) combined ABC and PSO for optimizing nonlinear

ordinary differential equations. Both of their strategies are developed by creating a

hierarchical system where the best solutions are given to the most exploitative algo-

rithms, whereas the worst solutions are given to the most explorative algorithms (Ali

and Tawhid, 2017).

Aside from providing a good exploitative-explorative balance, it is also important

to ensure that the stochastic search algorithm is as efficient as possible. Park et al.

(2005b) proposed a space-reduction strategy that improved the efficiency of their PSO

algorithm. Therefore, we have combined hybridization and space reduction strategies

in tailoring our stochastic search algorithm, which uses SA, ES, PSO and ABC. The

steps of this algorithm are described as follows (following from Algorithm 6.1):

Step 1, Initialization: In this phase, N particles are randomly placed in the

parameter space of the neural network, θ ∈ Rnθ .

Step 2, Evaluation and Classification: The fitness function value of each

231

particle is evaluated (see Algorithm 6.2), and the particles are sorted into four groups of

equal size (i.e. 25% are allocated to each), depending on the quality of their evaluation.

The group to which they are assigned determines which stochastic search algorithm is

used to subsequently perturb the particle position.

Step 3, Space Exploration and Exploitation: The above classification ensures

a good balance between exploitation and exploration within the algorithm’s framework.

The NSA, NES, NPSO and NABC particles are used as inputs for SA, ES, PSO and ABC

algorithms, respectively. For a detailed description of the SA, ES, PSO and ABC

algorithm, see E.1 - E.4.

Step 4: During the search process, the individual best position θnb and the global

best position θ∗ are recorded.

Step 5, Repeat: After Nc iterations the algorithm either returns to the Step 2

or terminates.

Step 6, Space Reduction: We gradually restrict the search space to a high

performing region of the parameter space. After every Ns iterations, the search space

is dynamically adjusted according to the distance between the θ∗ and current bounds

on the search space.

232

Algorithm 6.1 Hybrid stochastic search algorithm

Input: The number of maximum search iterations M ; dimensionality J of the optimisation

problem; population size N ; upper bound θUB and lower bound θLB on the search space;

number of iterations Nc to reclassify the particles; number of iterations Ns to reduce search

space and step size ∆;

1. Initialization: Randomly generate the position θi,j of N particles, i ∈ {1, . . . , N},j ∈

{1, . . . , J}, and evaluate each particle by Algorithm 6.2

2. Sort the N particles in descending fitness function value, then classify them into four

groups from best to worst performing: NSA, NES, NPSO, NABC.

for m = 1, . . . ,M do

3. Pass the NSA, NES, NPSO and NABC particles to the SA, ES, PSO and ABC algo-

rithms, respectively, to update their respective positions. All individual’s positions are

subject to upper and lower bounds, such that θi,j =
[
θLBj , θUB

j

]
.

4. Evaluate all particles via Algorithm 6.2 and keep record of the current individual

best position θnb ∀n and the global best position θ∗.

if m mod Nc = 0 then

5a. Conduct step 2 and then continue.

else

5b. Continue.

end if

if m mod Ns = 0 then

6a. Update upper bound: θUB := θUB − (θUB − θ∗)×∆ and then continue.

6b. Update lower bound: θLB := θLB + (θLB − θ∗)×∆ and then continue.

else

6c. Continue.

end if

end for

Output: Global best position of the population θ∗ and objective function value Ffitness(θ
∗)

In this work, a recurrent neural network (RNN) is used to parameterize our policy

in RL as it allows for the use of prior information for decision-making. The RNN

must be trained to adjust its weights so that the output corresponds to an optimal

control action. In this case, the controls are a deterministic function of state, however,

the network could be modified to enable construction of a stochastic policy. A brief

233

introduction to RNN’s and how they have been implemented in this work is given in

Appendix E.5. Since the stochastic search algorithm proposed has great explorative

characteristics due to its structure and choice of sub-algorithms, it is tailored to un-

dertake the responsibility of exploring the control and state space in RL. In addition,

the proposed algorithm does not need to estimate a gradient for policy improvement,

which effectively reduces the number of computations per episode and mitigates the

common exploding gradient problem observed in RNNs. To this end, we use the above

optimisation algorithm (Algorithm 6.1) to optimise the RL policy . N particles in the

stochastic search Algorithm 6.1 represents N policy networks, and the position of par-

ticles represents the weight of policy networks. The steps for evaluating each candidate

policy are outlined in Algorithm 6.2. A summary of the hybridized stochastic search

algorithm proposed in this work, is presented in Fig. 6.3.

Algorithm 6.2 Evaluation of each candidate policy over a finite discrete time horizon

Input: The number of episodes K to evaluate each candidate policy; policy function

π (θ, ·) to be evaluated; fitness function, Ffitness(θ, ·); and memory store, B;

for k = 1, ..., K do

1a. Generate initial state xk0.

for t = 0, ..., T − 1 do

1b. Observe state variable xkt , identify control variables ukt = π
(
xkt ; θ

)
, simu-

late uncertain discrete time process dynamics, observe xkt+1 and evaluate reward,

Rk
t+1. Hold information in memory store, B.

end for

1c. Calculate the returns Gk
0 of an episode (see Eq. 6.1) and store in B.

end for

2. Collect policy performance information from B, provided by the returns of the

K episodes.

3. Evaluate the objective function value Ffitness(θ) of each candidate policy network.

Output: Objective function value Ffitness(θ) of candidate policy.

234

Figure 6.3: An overview of the stochastic search algorithm proposed.

235

Distributional Reinforcement Learning

When learning a policy for safety or operation-critical applications, it is important

to consider risks and avoid catastrophic events. Only maximizing the expected value

of return does not protect the decision-maker against low probability, high severity

events. For this reason, we introduce the use of the value at risk (VaR) and conditional

value at risk (CVaR) measures to optimise the supply chain. This approach utilises the

empirical distribution of returns from a number of sampled episodes. This is otherwise

known as distributional RL (Bellemare et al., 2022).

We start by first defining the VaR value Vα as the maximum possible return under

a policy π. Let G be the random variable of return and Fπ (Vα) = prob(G ≤ Vα) be

the cumulative distribution function (CDF) of G. Specifically, for any α = (0, 1), the

VaR is defined:

Vα = max {g : Fπ (g) ≤ 1 − α} ⇔ Vα = F−1
π (1 − α) (6.5)

where α is the confidence level. For example, take the case of optimizing the total

profit made by a supply chain: if the Vα is equal to £10 million and alpha is 0.9,

it means that the maximum profit made by the supply chain under the policy with

probability less than or equal to 0.1 will be £10 million. However, the definition of

Vα does not quantify the quality of operational decision making within the tail of

performances that are observed with probability less than or equal to 1−α. A metric

that does quantify this is the CVaR, which is defined as:

CV aRα = E [G | G ≤ V aRα] (6.6)

In engineering applications, the optimisation of CVaR has advantages over VaR be-

cause it preserves convexity, as well as quantifying policy performance in the bottom

(1-α)-percentile of the potential events. From the previous example, it follows by def-

inition that the CVaR represents the expected profit associated with the outcomes

observed with probability less than or equal to 0.1 (i.e. 1 − α).

As closed form expressions of the performance distribution under the policy are

unavailable, we use Monte Carlo estimation (Hong and Liu, 2011) to compute the

VaR and CVaR in RL. Suppose that D =
{
G0

0, . . . , G
K
0

}
are K independent and

identically distributed returns sorted in ascending order. Then, the VaR of G can be

236

estimated by:

Vα(D) = G
[K(1−α)]:K
0 (6.7)

where Gi:K
0 is the i th worst return from the K observations expressed by D. Here,

we are ordering the returns expressed by D in terms of increasing return and then

taking the K (1 − α)th worst return. This is an approximation to the value-at-risk for

probability level 1 − α.

Then we can apply Eq. 6.7 to directly estimate CVaR as follows (Hong and Liu,

2011):

CV aRα (D) = Vα(D) +
1

K (1 − α)

K∑
i=0

[
Gi

0 − Vα(D)
]−

(6.8)

where [a]− = min {0, a}. Finally, we propose an objective function for RL (Eq.

6.9a), which optimises the expected value of return whilst taking into account the

CVaR of the distribution. The optimisation problem is also given as Eq. 6.9b:

Z = E[G0] − β [b− CV aRα]+ (6.9a)

π∗ = arg max
π

E[G0] s.t. CV aRα ≥ b (6.9b)

where [a]+ = max (0, a), β is the penalty factor, which is usually set to a large number

to ensure that the learned policy satisfies the CVaR constraint, and b ∈ R is the

constraint imposed on the CVaR. When the CVaR is less than b, the current policy

will be penalized. For example, b could represent the minimum profit or loss one can

make to ensure a company does not go bankrupt. A visualization of the VaR and

CVaR is presented in Fig. 6.4. Fig. 6.4a) shows that by constraining or optimizing

for CVaR, we seek policies that shift the tail-end of the distribution to the right,

thereby reducing the probability of experiencing a very negative event. In addition,

the distributional approach we propose does not need to make assumptions on the

distribution of returns1, whereas policy gradient methods generally do (Tang et al.,

2019b). The steps of the stochastic search algorithm for distributional RL are outlined

in Algs. 6.1 and 6.2.

1In other words, it is an unbiased estimate

237

Figure 6.4: Illustration of VaRα and CVaRα for a given probability level α under a)
the probability density function and b) the cumulative distribution function.

6.4 Case studies

In this section, a multi-echelon supply chain problem from OR-gym (Hubbs et al.,

2020b) is presented to illustrate the effectiveness of the proposed stochastic search

algorithm for RL. Prior to presenting these results, we first benchmark our method on

a virtual machine packing problem and a multi-period asset allocation problem, both of

which are supply chain and operations research related problems. The computational

work was carried out in Python on a HP Pavilion notebook with a Quad-core 6th

Generation Intel i-5 processor with up to 2.3 GHZ and 8 GB of RAM. In all case

studies the results are benchmarked by the PPO algorithm and online (mixed integer)

linear programming formulations as detailed in Hubbs et al. (2020b). As the results

used are leveraged from another work, we are unable to explicitly provide validation

test results as evaluated for the proposed approach. However, the benchmarks are

deemed appropriate because they are thoroughly justified and objective comparison

can still be made with respect to the training results of PPO and the benchmarks for

mathematical programming formulations provided in Hubbs et al. (2020b).

6.4.1 Virtual machine packing

Problem statement

The virtual machine packing problem (VMPP) can be regarded as a kind of bin packing

problem, which is an NP-hard problem. Specifically, we benchmarked our algorithm

on the multi-dimensional virtual machine problem in the OR-gym. At each control

interaction (or, equivalently, each discrete time index within the finite, discrete time

238

horizon), an arriving virtual machine (VM) process must be allocated to one of nPM =

50 physical machines (PMs) available. The goal is to minimise unused capacity on each

PM in both the compute and memory dimensions over the horizon, which consists of

72 discrete time steps.

This problem is modelled as an MDP (⟨X,U, P, R (·) , γ⟩) . The state, x ∈ X ∈

R2nPM+3×ZnPM is comprised both by discrete and continuous components. Specifically,

it is composed of a binary representation of whether each of the PMs are available,

the respective CPU and memory load of the PM at the current time, and the current

CPU and memory demands of the incoming VM process. The control, u ∈ U ⊂ Z+,

is to choose from one of the 50 PMs to allocate the incoming VM process to and is

discrete.The PM’s dynamics are deterministic and are functions of current state and

control. However, the CPU and memory demands of the incoming VM are realized

probabilistically, hence the dynamics are uncertain. Specifically, the CPU demand

uncertainty is exogenous and described by a Gaussian distribution, with mean and

variance equal to 0.16 and 1.5×10−4, respectively. The memory demand uncertainty is

again exogenous and described by a discrete uniform distribution with a lower bound of

0.2 and upper bound of 1. The reward function, R, is defined as the sum of differences

between the current size and excess space (in terms of CPU and memory) for all PMs.

Constraints are imposed to enforce that memory and CPU limits of the PMs are not

violated (both upper bounds are equal to one arbitrary unit of space). In practice, this

is achieved simply by allocating a large penalty to the violation (of -1000), which is

not conditional to the magnitude of the constraint violation. This is something defined

inherently by the OR-gym library, but could potentially induce conservative behavior

from the RL controller. The rewards are undiscounted over the finite horizon, such

that the discount factor, γ = 1.

The results of the approach proposed are benchmarked to mathematical program-

ming methods and the policy gradient method, PPO. For more details of the param-

eters associated with the simulation model, and the respective benchmarks please see

OR-gym (Hubbs et al., 2020b).

239

Results and discussion

Here, we simply evaluate RL when optimizing in expectation and leave investigation

of the CVaR formulation (i.e. Eq. 6.9b) for Section 6.4.2 and 6.4.3. We compare the

training results of the hybrid stochastic search RL algorithm with each constituent

stochastic search algorithm, including PSO-RL, ABC-RL, and ES-RL (i.e. policy op-

timisation by PSO, ABC and ES, respectively). We benchmark all results to the PPO

and MILP implementation detailed in OR-gym. All stochastic search RL algorithms

are trained under the same number of total training episodes (16000) as this is in

line with the training routine detailed for PPO by OR-gym. This enables objective

comparison of the sample efficiencies of the two approaches. Once the training has

terminated, the policies identified by the respective stochastic search algorithms are

subsequently validated over 1000 episodes The results are detailed by Table 6.1.

The sample size of each candidate policy during stochastic search RL training is

set to 100. The hybrid algorithm quickly learns an effective policy, with the optimal

policy identified observing an expected performance of -450 over 100 episodes. This is

a performance improvement of 12.0% relative to the expected score of -511 for the PPO

algorithm. Further, this result is comparable to the performance of a shrinking horizon

MILP benchmark, which attained an expected performance of -439 per episode, but

with online decisions identified more efficiently from the function mapping provided

by the policy. This highlights RL’s potential for online combinatorial optimisation

problems. Also, in the 1000 Monte Carlo simulations used for validation, the expected

performance of an episode is -462, which indicates the sample size selected in training

is appropriate.

Table 6.1: Total reward comparison of different RL algorithms in virtual machine pack-
ing. We report the mean and standard deviation (StD). The marker * indicates bench-
mark results acquired from Hubbs et al. (2020b). In this study, Hubbs et al. (2020b)
provide training results only, which enable objective comparison between MILP, PPO
and stochastic search RL.

Solution method

Evaluation MILP* PPO* ABC-RL ES-RL PSO-RL Hybrid-RL

Training
Mean -439 -511 -460 -452 -463 -450
StD 111 110 95 97 107 91

Validation
Mean -480 -472 -479 -462
StD 101 104 100 89

240

6.4.2 Asset allocation

Problem statement

In this section, we evaluated our algorithm on a multi-period asset allocation problem

in the OR-gym. Asset allocation identifies an investment strategy that aims to bal-

ance risk and reward by apportioning a portfolio’s assets, subject to some investment

standards and constraints. In this RL environment, the portfolio initially consists of

$100 in cash and some initial holdings of nA = 3 assets. The goal is to maximize the

value of the portfolio over 10 time periods.

The problem is modelled as an MDP. The state variables, x ∈ X ⊂ Z+ × R2nA+1,

include the current time index within the horizon, the current portfolio holdings of

cash and assets, as well as the current prices of the assets. The control variables,

u ∈ U ⊂ RnA , represent decisions regarding how much to buy and sell of each asset.

These decisions are bounded such that one can only buy or sell at most 2000 units

of each asset at a given time index within the horizon. The evolution of the portfolio

holdings is a deterministic function of the current asset prices, control decisions and

cost associated with buying or selling the asset. However, the asset prices themselves

are uncertain (additionally, they are not influenced by decision making and hence ex-

ogeneous). Specifically, price uncertainty is assumed Gaussian, N (µ (t) , Σ (t)), with

time varying mean, µ (t) = [1, 10]nA and variance, Σ (t) = diag
([
σ2
1, . . . , σ

2
nA

])
, with

σi (t) = 0.45 where i indexes each asset. When all prices are known for certain in ad-

vance, the solution to this deterministic optimisation problem is $17,956.20. However,

market prices fluctuate on a daily basis, so this value has little practical reference other

than providing an upper bound on the objective. The environment is also character-

ized by a sparse reward landscape, where the portfolio value is assigned as a reward

at the end of an episode. The rest of the rewards allocated during the control horizon

are equal to zero (Hubbs et al., 2020b).

Results and discussion

Similar to Section 6.4.1, here we evaluate the stochastic search RL methods relative

to a robust linear programming (RLP) formulation and the PPO algorithm via the

results detailed in OR-gym. Again, we utilise a total number of training episodes

241

for each algorithm that is consistent with the training budget of the PPO algorithm

demonstrated in OR-gym. Due to the large uncertainty of price, the sample size of

each candidate policy in RL training is set to 100.

Results for RL via stochastic search are given in Fig. 6.5a) and Table 6.2. Specif-

ically, these results detail optimizing for the expected performance of the policy (i.e.

Eq. 6.4). It can be seen that the hybrid algorithm performs best among the four

stochastic search algorithms, and when the policy is validated over 1000 Monte Carlo

simulations, the policy identified by the hybrid algorithm still provides the highest

expected portfolio value. Furthermore, the policy trained by PPO in the same 200,000

training episodes can only give an expected portfolio value of about $930, which is

substantially lower than the portfolio value of the four stochastic search algorithms.

Under a sparse-reward environment, there is no reward for each step in an episode

that is non-terminating, which reduces the information one can derive from samples

and hence express in the policy gradient. PPO also uses the generalized advantage

estimate variant of the policy gradient, which is bootstrapped and constituted by an

estimate of the state value function. The state value function suffers from a similar

problem to the vanilla policy gradient when the reward landscape is sparse. Together,

these mechanisms likely produce the ‘slow learning’ dynamics presented in OR-gym.

RL with stochastic search shows stronger performance because it does not require es-

timation of first order directions for policy improvement and does not need to fit state

value functions. Additionally, the RL approach outperforms the online RLP results of

the benchmark provided in Hubbs et al. (2020b) by a considerable margin.

It is worth noting however, that the standard deviation of the hybrid algorithm

is much larger than that of the PPO algorithm. Intuitively, a highly uncertain per-

formance may not be operationally desirable, particularly if high losses are observed

with low probability. However, the tail of policy performance may also be observed in

terms of increasing profit, meaning the high standard deviation is derived from achiev-

ing very high profit with low probability2. Further analysis suggests that the standard

deviation associated with policy performance is actually derived from the latter case

for the algorithm proposed. This is highlighted by Fig. 6.5a), which visualises the

2Of course, if the performance distribution exhibits some symmetry or low degrees of skewness
then both cases could be observed

242

Figure 6.5: The performance of different RL algorithms and distributional RL. Plot
a) shows the training curve of different RL algorithm; b) the training curve of hybrid
distributional RL; and c) displays the histogram of policy performance from 1000
simulated episodes for the optimal distributional RL policy. The shaded region for
PPO represents the standard deviation of the objective performance, for the stochastic
search algorithms the regions are bounded by the 25th and 75th percentiles.

range of the 25th and 75th percentile of the policy performance through training via

the shaded regions. Analysis of the figure highlights that the position of the mean

policy performance lies closer to the 75th percentile, indicating that a heavier tail lies

on the side of large profit than losses and that the distribution is asymmetric.

Table 6.2: Total reward comparison of different RL algorithms in asset allocation. We
report the mean and standard deviation (StD). The marker * indicates benchmark re-
sults acquired from robust linear programming (RLP) and PPO (Hubbs et al., 2020b).
In this study, Hubbs et al. (2020b) provide validation results, which enable further
comparison between PPO and stochastic search RL. The training results reported for
mathematical programming formulations are evaluated over 100 simulations.

Solution method

Evaluation RLP* PPO* ABC-RL ES-RL PSO-RL Hybrid-RL

Training
Mean 865 ~930 2716 2904 2309 3861
StD 80 ~250 1791 2294 1704 2180

Validation
Mean ~870 ~910 2493 2556 2121 3578
StD ~80 ~200 1547 1626 1729 2195

The high standard deviation associated with policy performance observed from

maximizing expectation in RL would obviously be negative if high losses, rather than

profits, were observed with low probability. A priori one cannot know the whether the

policy performance will be associated with high losses or profits in the tails and so

simply additionally penalising for the standard deviation of policy performance in the

fitness function is not desirable. Instead, we would prefer the policy be sensitive to risk.

Therefore, we highlight the utility of the proposed distributional RL to achieve this.

243

The CVaR constraint is set to b = 800 based on the results of the RLP formulation

provided in OR-gym (see Table 6.2), the sample size during training is set to 100 and

the confidence level is set to α = 0.97. Compared with the hybrid algorithm optimizing

solely in expectation, which has a CVaR of $510 in the 1000 Monte Carlo simulations,

the policy identified by distributional RL has a higher CVaR of $848 (showing a 66.3%

improvement) with only a minor decrease (9.2%) on the mean reward value, indicating

its superior performance in decision-making. As shown in Fig. 6.5b) and c), the CVaR

constraints can be satisfied in both training and validation, and the policy exhibits

better financial risk control.

6.4.3 Supply chain inventory management

Problem statement

Inventory management is closely intertwined with supply chain sustainability. The

inventory management problem presented here is a ns = 4 stage production-inventory

system. The retailer (stage 1) is responsible for dealing with demand uncertainty from

the customer given a current product inventory. This is handled by maintaining a

reorder policy and ensuring deliveries from the stage upstream enable demand satis-

faction from the customer. A similar problem occurs at each stage within the supply

chain, apart from stage 4, which is assumed to have an infinite inventory to supply

demand from stage 3. Each stage within the supply chain is required to manufac-

ture and deliver the product ordered to the stage down the supply chain, within a

given delivery (lead) time. For all stages the lead time is assumed deterministic and

constant.

The problem is defined as an MDP. To ensure that the state retains the Markov

property the state variables are augmented with the history of the previous Lmax

time steps, where Lmax is the maximum lead time associated with the delivery of

product from all stages. In this study Lmax = 10. As a result, the state variables,

x ∈ X ⊂ R(ns−1)(Lmax−1), are defined by the current inventory and the previous Lmax

controls of stages 1-3. The controls, u ∈ U ⊂ Zns−1
+ , are the reorder quantities made

at each stage in the supply chain, which are integer values and bounded between zero

and an upper bound, which is stage dependent and defined as uub = [100, 90, 80] for

244

stage 1-3, respectively. The goal of supply chain management here is to maximize

the expected total profit after 30 discrete time steps. At each time step the reward

function, R (·), allocates the profit made by the total chain in the most recent time

increment, which is comprised by total sales and various costs of holding inventory,

procurement and unfulfilled demand at the respective stages. There is substantial un-

certainty in this problem, and this arises from variations in customer demand at stage

1. This exogeneous uncertainty is assumed to be described by a Poisson distribution

with rate parameter equal to 20 arbitrary units of inventory.

In these problem classes, the bullwhip effect (Lee et al., 1997) is often observed as

a result of the supply chain interactions becoming uncoordinated. The bullwhip effect

refers to an extreme change in the supply position upstream caused by a small change

in demand downstream. This dynamic inventory control problem poses challenge to

traditional optimisation methods, provided it is subject to uncertainty and formally

an MILP problem. For more details and parameters on the environment model, see

InvManagement-v1 in OR-gym (Hubbs et al., 2020b).

Results and discussion

Optimizing for expectation

In this section, we further explore the training efficiency of the state-of-the-art policy

gradient method, PPO, with the stochastic search methods developed in this work. As

before, in addition to the hybrid stochastic search algorithm proposed above, several

other stochastic search algorithms were run for benchmarking, including PSO-RL,

ABC-RL, and ES-RL. In order to fairly compare the performance of these algorithms,

all the hyperparameters shared by these algorithms will be set to the same value,

for example, the number of particles is set to 60 and a total training budget of 66000

episodes allocated to ensure objective comparison to the results of the PPO benchmark.

Fig. 6.6 shows the training curve of the stochastic search algorithms for RL applied to

the inventory management problem. It can be seen from the figure that although the

(best performing) randomly initialized policy of the hybrid algorithm performs poorly,

it can quickly learn an effective policy over the first few thousand training episodes.

After around 10000 episodes, the policy it has learned is better than the other three

algorithms. This is due to the fact that the hybrid algorithm can effectively balance

245

Figure 6.6: Training curve of the different RL algorithms used in the inventory man-
agement problem. The shaded areas represent the standard deviation of the rewards.
The results of PPO acquired by OR-gym are also plotted to demonstrate the relative
performance of the stochastic search algorithms.

the exploration and exploitation of the search space. The initial random policy of

ABC performs best, but its exploitative ability is the worst, resulting in the lowest

total rewards among all algorithms.

The number of sampling episodes for each candidate policy network is 10 during

the training. To demonstrate the effectiveness of the final policy obtained by RL

training, the final policy is then evaluated in the supply chain for 1000 episodes. The

training and validation results are shown by Table 6.3, and highlight that the policy

trained by the hybrid algorithm can still perform stably when evaluated in scenarios

unseen in training and has good robustness. Table 6.3 also compares the stochastic

search approaches described with the policy gradient, PPO method used in OR-gym

after the same number of training episodes, as well as the shrinking horizon LP and

MILP (the latter benchmark operates with no recourse) results demonstrated in that

work. It is worth noting that the four derivative-free RL algorithms all outperformed

proximal policy optimisation (PPO) in this case, demonstrating better exploration

behavior. The hybrid method also outperformed the PPO implementation showing

expected performance improvements of approximately 11%. The hybrid method also

outperformed the MILP by 20%. It was also competitive with the LP relaxation of

the problem with a performance gap of 6%.

246

Table 6.3: Total reward comparison of different RL algorithms under 66000 training
episodes. We report the mean and standard deviation (StD). The marker * indicates
benchmark results acquired from shrinking horizon linear programming (SHLP), mixed
integer programming (MIP) and PPO (Hubbs et al., 2020b). In this study, Hubbs
et al. (2020b) provide training results only, which enable objective comparison between
LP, PPO and stochastic search RL. The training results reported for mathematical
programming formulations are evaluated over 100 simulations.

Solution method

Evaluation SHLP* MIP* PPO* ABC-
RL

ES-RL PSO-
RL

Hybrid-
RL

Training
Mean 485.4 378.5 409.8 412.4 448.5 442.1 454
StD 29.1 26.1 17.9 21.2 18.8 20.2 18

Validation
Mean 411.4 428.3 426.6 431.3
StD 16.9 27.5 28 22.2

Optimizing for risk sensitive formulations

Since our proposed hybrid stochastic search algorithm is found to outperform other

algorithms, in this section we turn our attention to specifically investigate its per-

formance for optimisation of the distributional CVaR objective. Since the CVaR is

calculated by Monte Carlo sampling, a small number of sampling episodes will likely

cause the algorithm to optimise for high probability events, so the number of episodes

evaluated for each candidate policy network was increased to 60 during training. The

confidence level was set to 0.9. The value of CVaR constraint is set to 380 based on

the work provided in OR-gym.

Fig. 6.7a) shows the training curve of distributional RL and how the CVaR changes

during training. The return of the policy after training is 428.8, the standard devi-

ation is 14.2, and CVaR is 397.6 which satisfies the CVaR constraint imposed. To

further demonstrate that the algorithm learns a more robust risk-averse policy, the

distributional RL policy is validated over 1000 Monte Carlo samples (as in previous

experiments). As shown in Fig. 6.7b), the distributional RL policy is able to obtain

an average reward of 425.1 with a standard deviation of 16.4. More importantly, the

CVaR of the distributional RL policy is 392.4, compared with only 365.9 when the hy-

brid stochastic search algorithm optimizing for expectation is evaluated in 1000 Monte

Carlo simulations. This means distributional RL can offer better protection against

worst case realizations of process uncertainty (7.2% improvement). It is worth men-

tioning that although we increased the number of sampled episodes in distributional

247

Figure 6.7: Investigating the performance of distributional RL in inventory manage-
ment problem. Plot a) shows the training curve of distributional RL. The shaded areas
represent the standard deviation of the rewards. Plot b) shows a histogram of policy
performance from 1,000 simulated episodes for the optimal distributional RL policy.

RL, since backpropagation is not performed and there is no value function parameter-

ization required, the amount of computation is reduced, partially offsetting the slight

decrease in data efficiency. The amount this is offset is not clear and is dependent on

algorithm hyperparameters, but in the case of the PPO benchmark.

Sensitivity to different parameters

We use the control variate method to analyze the sensitivity of the three parameters,

which define the RL policy training algorithm: number of particles, CVaR constraint,

b, and the number of sampling episodes for each candidate policy network in distri-

butional RL. This sensitivity study provides a basis for RL technicians to select good

hyperparameters. For a more objective analysis, the learned policy is validated over

1000 Monte Carlo simulations.

Firstly, we study the impact of number of particles on the mean reward and CVaR

of the supply chain because the number of particles will affect the global search ability

of the algorithm. The CVaR constraint is set to b = 380 and the sample size of each

candidate policy is 60 as before. As shown in Fig. 6.8a), the supply chain profit is not

sensitive to the number of particles ranging from 40 to 100 in the hybrid algorithm,

and the learned policy is stable even in 1000 Monte Carlo simulations.

However, the reason for the insensitivity to the number of particles may be that 40

particles is good enough to ensure stable performance. Therefore, we investigate the

248

Figure 6.8: Investigating the influence of number of particles on a) mean rewards
and b) CVaR. Plot c) shows the influence of number of particles at a lower range on
computational time and mean rewards.

relationship between the number of particles and the computation time in a lower test

range, where we introduce a termination condition: the algorithm will be terminated

if the current best solution policy observes no improvement for 10 consecutive itera-

tions. As shown in Fig. 6.8c), when the number of particles is small, the algorithm

will easily fall into a local optimum and converge prematurely. On the other hand,

when the number of particles increases to 30, little performance improvement is ob-

served with the addition of further particles thereafter. It should also be highlighted

that as the number of particles increased, the computational burden of the algorithm

increases accordingly. In summary we deem generally that in this case study, the hy-

brid algorithm demonstrated no significant performance increase in using more than

40 particles. This hyperparameter selection enables the implementation to minimise

the the computational cost of the algorithm.

Next, we investigated the impact of changes in CVaR constraint on the mean reward

and CVaR of the supply chain system. As shown in Fig. 6.9a), by imposing a larger

bound within the CVaR constraint, the mean rewards of the learned policy decrease

at both training and validation. We hypothesize this is because increasing the value of

the CVaR constraint forces the algorithm to give priority to satisfying CVaR constraint

during the training process. As shown in Fig. 6.9b), when the CVaR bound is greater

than a critical value between 380 and 400, the learned policy will not be able to satisfy

CVaR constraint both during training and validation, this is because the algorithm

tends to optimise low-risk events in order not to be punished for violating constraints.

Noticeably, when the CVaR bound is set b = 420, the algorithm performs poorly. It is

unrealistic to expect that CVaR will be greater than 420 by simply imposing a greater

249

lower bound, given that expected return obtained by optimizing solely for expectation

was around that value (see Table 6.3). In this case, the algorithm was unable to find

a solution policy.

Finally, we explore the influence of sample size of each candidate policy during

training, where again the CVaR bound, b = 380 and the number of particles is N = 60.

As can be seen in Fig. 6.9c) and d), mean policy performance decreases in training,

whereas validation remains roughly constant with increasing of sample size. This is

primarily due to the statistical inaccuracies associated with sample average approx-

imations with low sample size in training. This is highlighted by lower differences

between training and validation results as samples are increased. Similar observations

can be made with respect to the CVaR, but additionally, the validation CVaR appears

to increase with sample size. This is likely due to observing more information in train-

ing routines with higher sample numbers and better observing the influence of high

risk, low probability events. However, increasing the sample size blindly will bring

expense in computational cost. When the algorithm performs similarly in training

and validation, it can be considered that the sample size is sufficient. The results of

the sensitivity analysis on these three parameters are integrated in Table E.2 in E.6.

250

Figure 6.9: Investigating the influence of CVaR constraint on a) mean rewards and b)
CVaR. Investigating the influence of sample size on c) mean rewards and d) CVaR.

6.5 Conclusions

In this article, we present a method that combines stochastic search algorithms with

reinforcement learning, to address supply chain and operations research problems, this

approach overcomes the shortcomings of gradient-based reinforcement learning meth-

ods. The hybrid search algorithm is based on PSO, ABC, ES and SA can balance the

exploration-exploitation paradigm in the process of parameter search. We also propose

a novel distributional RL framework to learn a risk-sensitive policy by introducing a

CVaR penalty into the objective function.

Through a case study of a multi-echelon supply chain, the efficiency and poten-

tial of our method for the optimisation of complex stochastic systems is well demon-

strated. The hybrid algorithm obtains a substantially larger return ($454) against

PPO ($409.8) and other stochastic optimisation algorithms. Furthermore, the pro-

posed distributional RL successfully learns a risk-sensitive policy, and the CVaR value

given by distributional RL is greatly improved compared with expectation-based RL

(7.2% improvement).

251

In the asset allocation case, our method is proved to be more effective than policy

gradient method in a sparse-reward environment. The distributional RL can also offer

more downside protection portfolio value (66.3% improvement). In addition, in the

case of virtual machine packing, the results also show that stochastic search algorithm

for RL is a more powerful method.

It is worth highlighting that most of the literature advocates for policy gradients

(or actor-critic) RL algorithms. Here we indicate that stochastic search algorithms

are more efficient and flexible in these problem instances. It is clear that the value

of gradient-based search increases with the dimensionality of the parameter space,

however, in many engineering applications, policy network parameters are not in the

millions and hence stochastic search (or other derivate free algorithms) have value.

In future work, we plan to investigate a multi-agent approach for distributional RL,

consider hybrid controls (Campos et al., 2022), as well as vertically integrated decision

problems.

252

Chapter 7

Conclusions and future work

In this section, we will summarise the major insight and contribution provided by this

thesis.

In Chapter 2, we explored the fundamental theory of indirect and direct methods

and the potential contributions of RL to PSE as well as the outlying challenges. We

then explored particular applications of RL and the developments made by the PSE

community with particular focus in highlighting the advantages over existing meth-

ods and the challenges these works approach. These advantages primarily arise in

the use of model-free learning rules, which enables RL policies to optimise systems

independently of assumptions on the dynamics or the associated uncertainties and

instead directly through data. The challenges to RL arise in sample efficient offline

policy learning, safety, robustness and closed loop stability. Subsequently, the existing

methods to model and provide online decisions for uncertain batch process systems

and chemical production systems were explored. We highlighted that in batch process

systems, when nonlinearity is present in the dynamics, propagating the uncertainty

of the system state over the time horizon becomes particularly challenging; and that

ultimately all existing methods in mathematical programming, require us to make

approximation to this uncertainty. We highlighted that with respect to production

scheduling environments that considering uncertainty in online decision making via

existing strategies is essentially intractable from the perspective of computation.

Through the work items, we have explored the development of strategies to ap-

proach the challenges highlighted in literature review. Specifically, we developed

schemes to:

253

1. Reduce computational expense and expertise heavy tuning in offline policy learn-

ing by leveraging existing process knowledge described in process data.

2. Optimise uncertain constrained fed-batch process systems without mechanistic

knowledge of the underlying system dynamics.

3. Compute online scheduling decisions for uncertain sequential production environ-

ments orders of magnitude more efficiently than optimisation approaches whilst

explicitly considering uncertainty.

4. Learn policy function approximations robustly via zero-order optimisation. This

approach also demonstrated relative sample efficiency over benchmark policy

gradient RL approaches.

More specifically, in Chapter 3, we saw how we could use existing process data and

inverse reinforcement learning techniques to parameterise and improve operational

knowledge provided by existing control schemes and process operators through a two-

step framework. In step 1, we synchronously abstract the control objectives and a

parameterisation of the existing control scheme. Then in step 2, we demonstrate that

we can improve the parameterisation further by learning from the process online under

the real process objective. This framework was demonstrated on a set point tracking

problem with linear system dynamics and data from an existing PID control scheme.

It was demonstrated that IRL could be used successfully to abstract the existing

behaviour of the PID scheme under a cost function that could be easily interpreted for

safety purposes. Challenges to implementation of this approach were discussed, with

the primary obstacle arising in the selection and design of characterising basis features

of the behaviour of the existing scheme, such that the control objective could be

abstracted as a linear combination of these features. In the second step, we highlighted

the ease of model-free learning rules in subsequent policy improvement directly from

the real process. The applicability of this framework will largely be challenged by

the nature of the control task. If the control problem is periodically redefined (as

in the case of multiple set point changes) then implementation of the scheme will be

difficult. This would require abstracting a separate parameterisation for each task

or investigating the use of inverse meta RL techniques (Yu et al., 2019; McClement

et al., 2022). Alternatively, the current framework may be deployed for batch processes,

254

such as fermentation systems, where the current control system may be for example a

nonlinear model predictive controller. The policy could then be improved via a batch-

to-batch approach once deployed as highlighted in Petsagkourakis et al. (2020b).

In Chapter 4, a framework for safe RL is presented that utilises a fully data-driven

approach for online optimisation of constrained nonlinear and uncertain fed-batch

processes. The framework again consists of offline policy learning in an approximate

process model, with subsequent transfer to the real process. The methodology al-

lows for satisfaction of operational constraints with a given probability defined via

the user and handling of offline process model-plant mismatch. The results demon-

strated impressive performance against the best case deterministic method provided

by nonlinear model predictive control (NMPC) with a 30% improvement in closed-loop

performance. Of particular note, was the ability of the method proposed to handle

state constraints on the real process (with the probability level desired), whereas the

NMPC scheme was unable to handle constraints as desired and often failed to find a

solution online due to infeasibility in the optimisation model. However, the methodol-

ogy faces challenges as in current form relies on the use of Gaussian process state space

models. If the model is unable to well capture the process physics then other hybrid or

purely data-driven models could also be used with modification to the methodology.

The use of mechanistic expressions in a hybrid model would be particularly appealing

as it would allow the methodology to use a smaller dataset than in the current im-

plementation. This would likely require exploitation of distributional approaches to

RL especially if the variance of the system state is not parameterised by the resultant

process model.

In Chapter 5, a framework for scheduling of uncertain sequential batch production

environments is presented, which leverages a zero-order, stochastic search optimisa-

tion approach to RL and allows for flexible formulation of risk-sensitive objectives.

The major benefit of this algorithm over first-order approaches to RL is that it is

able to handle the non-smoothness of the mapping between the state value function

and policy parameters. In the presence of non-smoothness in this map, first-order RL

approaches have no guarantees in terms of convergence or optimality (Zhang et al.,

2021). Additionally, estimation of risk-sensitive objectives is unbiased. This is gener-

ally not the case in other risk-averse RL formulations. The potential for application

255

of this approach was thoroughly investigated in two different problem instances and

demonstrated to be competitive against nominal online MILP strategies in terms of

objective performance. The largest optimality gap was of the order of 5%. Addition-

ally, the algorithm was able to effectively handle common restrictions on sequential

production environments through an action-masking mechanism. The RL approach

was able to identify online scheduling decisions orders of magnitude faster than the

MILP approach. However, this algorithm has been tailor made to smaller problem

sizes. As the problem size increases the dimensionality of the state representation will

also increase, likely to a size where the method, which is based in zero-order search

(Balasubramanian and Ghadimi, 2022) is no longer as effective. Additionally, when

assessed in validation the method was unable to handle hard constraints imposed on

the production environment absolutely, but instead with very high probability (violat-

ing in 1 or 2 of 500 scenarios). The constraints that were violated had to be imposed

via a penalty function in offline policy identification and could not be handled by

the action-masking mechanism proposed without biasing the policy considerably. In

future work, we will explore modifications to the algorithm in order to handle larger

problem sizes and ensure constraint satisfaction absolutely.

Finally, in Chapter 6, we explored the development and application of a zero-

order, hybrid stochastic search RL approach to inventory management in uncertain

multi-echelon supply chains. Here, we directly compare our approach against the

benchmark policy gradient RL implementation and mathematical programming im-

plementations reported in Hubbs et al. (2020b). The method proposed demonstrates

improved sample efficiency and performance (11% improvement) over the benchmark

policy gradient and provides basis for the wider use of stochastic search approaches to

RL in PSE. Currently, policy gradient methods are the go to, primarily due to their

popularisation in game-based control benchmarks. In those problems the neural policy

parameter space tends to be much higher dimensional, which is where the use of gradi-

ents have their advantage. In PSE, neural policy functions are typically much smaller

and hence why stochastic search routines are practical. The proposed method was

also deemed competitive with state-of-the-art mathematical programming approaches

(20% improvement over MILP), but inherits the ability to pose risk-sensitive formu-

lations. For example, it was demonstrated that the approach could constrain the

256

expected cost of the worst case policy performances through use of the conditional

value-at-risk (CVaR) with an improvement of 7.2% over the case when the CVaR was

left unconstrained. This is in common with the method proposed in Chapter 5 and

generally something not well-explored within the PSE literature (Guerra et al., 2019;

Germscheid et al., 2022). However, again, there is likely to be issues with the method

as the problem size increases (i.e. stages added to the supply chain). In future work,

we will look to explore the use of graph neural networks and multi-agent RL algorithms

in order to handle these problems.

In the literature review associated with this work, major challenges were outlined

in applied RL research as sample efficient learning, safety, robustness and closed-loop

stability. This thesis has made contributions to all of these areas bar closed-loop sta-

bility. Having said this, as with all algorithmic frameworks, these methods have their

weaknesses. These have been partly outlined in the previous discussion. However,

further work should be directed towards all of these open areas. It is likely that for

example improvements in sample efficiency will be derived by making connections from

RL to other fields (Meyn, 2022) and classes of methods (Salehkaleybar et al., 2022;

Garćıa-Fernández et al., 2015). Similarly, open challenges still exist in ensuring state

constraint satisfaction in a wide range of process systems models. Particularly han-

dling resource constraints in production scheduling problems (i.e. where the system is

non-smooth) would be an interesting contribution. We have demonstrated that RL can

be used to pose risk-sensitive formulations in this work, however major challenges still

exist in algorithmic robustness to small variations in hyperparameters. Clearly, there

are meta-optimisation algorithms (Claesen and De Moor, 2015; Bergstra and Bengio,

2012; Aszemi and Dominic, 2019), which can mitigate some of these challenges, but

it is known that these methods are computationally expensive. The major progress

will likely derive from theoretical contributions, the development of new learning rules

(Bas-Serrano et al., 2021; Chen et al., 2020) and properly characterising how current

methods work (Fu et al., 2019a). The final area of closed-loop stability is a particu-

larly interesting area of research. Characterising the conditions under which a policy

parameterisation induces stable behaviour is likely to be a challenging task if the func-

tion structure is nonlinear (Cooman et al., 2017), and providing guarantees is made

more complex by the stochastic nature of the underlying system (Nakamura-Zimmerer

257

et al., 2021). However, focus directed towards this area is likely to be of greater benefit

to industrial practice than necessarily demonstrating optimality on arbitrary process

systems.

However, from the perspective of application, the development of RL algorithms

for network production environments and large scale process systems is particularly

desirable. In terms of production scheduling, RL has particular potential primarily

because, in the online decision making setting, it could mitigate computationally ex-

pensive optimisation - meaning that online scheduling has the potential to become

a more tractable task. This is increasingly desirable as operations become more dis-

tributed, and reactive to consumer demand and market changes. Additionally, the

heuristic decisions provided by RL are identified within an optimal control framework

and so are likely to provide considerable performance improvements over classic prior-

ity decision rules. As the size of the underlying problem grows this is likely to require

new thinking on how best to generate decisions from policy functions, decomposing the

problem via multi-agent frameworks and learning low dimensional representations of

highly dimensional systems. This is unlikely to be learned end-to-end and would likely

require data from existing schemes and optimisation methods as a hot-start (Zhang

et al., 2020a). More generally, although focus within this thesis has been directed

towards the (bio)chemical process industries, process systems thinking can be flexibly

applied to other industries. For example, healthcare systems could particularly benefit

from the operational decision making strategies developed within PSE (Pistikopoulos

et al., 2021) and this is an area which would also greatly serve the public, especially

within the UK where healthcare is a publicly funded service and efficiency improve-

ments are perhaps even more crucial to continued operation. These are systems which

are characterised by high uncertainty and limited mechanistic knowledge. As a result,

they are well suited to data-driven approaches to modelling and optimisation (Nestor

et al., 2019; Bellot and Schaar, 2020; Gottesman et al., 2019; Yu et al., 2021a).

258

Bibliography

Åarzén, K.-E., 1999: A simple event-based pid controller. IFAC Proceedings Volumes ,

32, no. 2, 8687–8692.

Abbeel, P. and A. Y. Ng, 2004: Apprenticeship learning via inverse reinforcement

learning. Twenty-first international conference, ACM Press, Banff, Alberta, Canada,

1, [Online; accessed 2020-06-12].

URL http://portal.acm.org/citation.cfm?doid=1015330.1015430

Abdolmaleki, A., J. T. Springenberg, Y. Tassa, R. Munos, N. Heess, and M. Riedmiller,

2018: Maximum a posteriori policy optimisation.

URL https://arxiv.org/abs/1806.06920

Achiam, J., D. Held, A. Tamar, and P. Abbeel, 2017: Constrained policy optimization.

Agarwal, R., D. Schuurmans, and M. Norouzi, 2020: An optimistic perspective on of-

fline reinforcement learning. International Conference on Machine Learning , PMLR,

104–114.

Ahmadi, M., U. Rosolia, M. D. Ingham, R. M. Murray, and A. D. Ames, 2021: Con-

strained risk-averse markov decision processes. Proceedings of the AAAI Conference

on Artificial Intelligence, volume 35, 11718–11725.

Ahmed, Z., N. Le Roux, M. Norouzi, and D. Schuurmans, 2019a: Understanding the

impact of entropy on policy optimization. Proceedings of the 36th International Con-

ference on Machine Learning , K. Chaudhuri and R. Salakhutdinov, Eds., PMLR,

volume 97 of Proceedings of Machine Learning Research, 151–160.

Ahmed, Z., N. L. Roux, M. Norouzi, and D. Schuurmans, 2019b: Understanding the

impact of entropy on policy optimization.

259

http://portal.acm.org/citation.cfm?doid=1015330.1015430
https://arxiv.org/abs/1806.06920

Akhade, S. A., N. Singh, O. Y. Gutiérrez, J. Lopez-Ruiz, H. Wang, J. D. Holladay,

Y. Liu, A. Karkamkar, R. S. Weber, A. B. Padmaperuma, et al., 2020: Electrocat-

alytic hydrogenation of biomass-derived organics: a review. Chemical Reviews , 120,

no. 20, 11370–11419.

Albarghouthi, A., 2021: Introduction to neural network verification.

URL https://arxiv.org/abs/2109.10317

Ali, A. F. and M. A. Tawhid, 2017: A hybrid particle swarm optimization and genetic

algorithm with population partitioning for large scale optimization problems. Ain

Shams Engineering Journal , 8, no. 2, 191–206, iSBN: 2090-4479 Publisher: Elsevier.

Almeder, C. and R. F. Hartl, 2013: A metaheuristic optimization approach for a

real-world stochastic flexible flow shop problem with limited buffer. International

Journal of Production Economics , 145, no. 1, 88–95.

Almquist, J., M. Cvijovic, V. Hatzimanikatis, J. Nielsen, and M. Jirstrand, 2014:

Kinetic models in industrial biotechnology–improving cell factory performance.

Metabolic engineering , 24, 38–60.

Altiparmak, F., B. Dengiz, and A. A. Bulgak, 2002: Optimization of buffer sizes in

assembly systems using intelligent techniques. Proceedings of the Winter Simulation

Conference, IEEE, volume 2, 1157–1162.

Altman, E., 1999: Constrained Markov decision processes: stochastic modeling . Rout-

ledge.

Amari, S.-I. and S. C. Douglas, 1998: Why natural gradient? Proceedings of the

1998 IEEE International Conference on Acoustics, Speech and Signal Processing,

ICASSP’98 (Cat. No. 98CH36181), IEEE, volume 2, 1213–1216.

Amit, R., R. Meir, and K. Ciosek, 2020: Discount factor as a regularizer in reinforce-

ment learning. International conference on machine learning , PMLR, 269–278.

Amos, B., 2022: Tutorial on amortized optimization for learning to optimize over

continuous domains .

260

https://arxiv.org/abs/2109.10317

Amos, B., I. Jimenez, J. Sacks, B. Boots, and J. Z. Kolter, 2018: Differentiable mpc for

end-to-end planning and control. Advances in neural information processing systems ,

31.

Anandan, P. D., C. D. Rielly, and B. Benyahia, 2022: Optimal control policies of a

crystallization process using inverse reinforcement learning. Computer Aided Chem-

ical Engineering , Elsevier, volume 51, 1093–1098.

Andersson, J., J. Åkesson, and M. Diehl, 2012: Casadi: A symbolic package for auto-

matic differentiation and optimal control. Recent advances in algorithmic differen-

tiation, Springer, 297–307.

Angermueller, C., D. Dohan, D. Belanger, R. Deshpande, K. Murphy, and L. Colwell,

2020: Model-based reinforcement learning for biological sequence design. Interna-

tional Conference on Learning Representations .

URL https://openreview.net/forum?id=HklxbgBKvr

Anye Cho, B., M. A. de Carvalho Servia, E. A. del Rio Chanona, R. Smith, and

D. Zhang, 2021: Synergising biomass growth kinetics and transport mechanisms to

simulate light/dark cycle effects on photo-production systems. Biotechnology and

Bioengineering , 118, no. 5, 1932–1942, iSBN: 0006-3592 Publisher: Wiley Online

Library.

Arellano-Garcia, H., T. Barz, B. Dorneanu, and V. S. Vassiliadis, 2020: Real-time

feasibility of nonlinear model predictive control for semi-batch reactors subject to

uncertainty and disturbances. Computers & Chemical Engineering , 133, 106529.

Arora, S. and P. Doshi, 2018: A survey of inverse reinforcement learning: Challenges,

methods and progress .

URL https://arxiv.org/abs/1806.06877

Arridge, S., P. Maass, O. Öktem, and C.-B. Schönlieb, 2019: Solving inverse problems

using data-driven models. Acta Numerica, 28, 1–174.

Astrom, K., 1979: Maximum likelihood and prediction error methods. IFAC Proceed-

ings Volumes , 12, no. 8, 551–574.

261

https://openreview.net/forum?id=HklxbgBKvr
https://arxiv.org/abs/1806.06877

Aström, K. J., 2008: Event based control. Analysis and design of nonlinear control

systems , Springer, 127–147.

Aszemi, N. M. and P. Dominic, 2019: Hyperparameter optimization in convolutional

neural network using genetic algorithms. International Journal of Advanced Com-

puter Science and Applications , 10, no. 6.

Attia, A. M., A. M. Ghaithan, and S. O. Duffuaa, 2019: A multi-objective optimiza-

tion model for tactical planning of upstream oil & gas supply chains. Computers &

Chemical Engineering , 128, 216–227.

Audouze, C., F. De Vuyst, and P. Nair, 2009: Reduced-order modeling of parameter-

ized pdes using time–space-parameter principal component analysis. International

journal for numerical methods in engineering , 80, no. 8, 1025–1057.

Baake, E., M. Baake, H. Bock, and K. Briggs, 1992: Fitting ordinary differential

equations to chaotic data. Physical Review A, 45, no. 8, 5524.

Balasubramanian, K. and S. Ghadimi, 2022: Zeroth-order nonconvex stochastic opti-

mization: Handling constraints, high dimensionality, and saddle points. Foundations

of Computational Mathematics , 22, no. 1, 35–76.

Banbury, C., R. Mason, I. Styles, N. Eisenstein, M. Clancy, A. Belli, A. Logan, and

P. Goldberg Oppenheimer, 2019: Development of the self optimising kohonen index

network (skinet) for raman spectroscopy based detection of anatomical eye tissue.

Scientific reports , 9, no. 1, 1–9.

Banzhaf, W., P. Nordin, R. E. Keller, and F. D. Francone, 1998: Genetic program-

ming: an introduction: on the automatic evolution of computer programs and its

applications . Morgan Kaufmann Publishers Inc.

Bas-Serrano, J., S. Curi, A. Krause, and G. Neu, 2021: Logistic q-learning. Interna-

tional Conference on Artificial Intelligence and Statistics , PMLR, 3610–3618.

Bassett, M. H., J. F. Pekny, and G. V. Reklaitis, 1996: Decomposition techniques for

the solution of large-scale scheduling problems. AIChE Journal , 42, no. 12, 3373–

3387.

262

Bazaraa, M. S., H. D. Sherali, and C. M. Shetty, 2013: Nonlinear programming: theory

and algorithms . John Wiley & Sons.

Beaulieu, S., L. Frati, T. Miconi, J. Lehman, K. O. Stanley, J. Clune, and N. Cheney,

2020: Learning to continually learn. arXiv:2002.09571 [cs, stat] , arXiv: 2002.09571.

URL http://arxiv.org/abs/2002.09571

Beintema, G. I., R. Tóth, and M. Schoukens, 2021: Non-linear state-space model

identification from video data using deep encoders. IFAC-PapersOnLine, 54, no. 7,

697–701.

Bellemare, M. G., W. Dabney, and R. Munos, 2017a: A distributional perspective

on reinforcement learning. International Conference on Machine Learning , PMLR,

449–458.

— 2017b: A distributional perspective on reinforcement learning. International Con-

ference on Machine Learning , PMLR, 449–458.

Bellemare, M. G., W. Dabney, and M. Rowland, 2022: Distributional Reinforcement

Learning . MIT Press.

— 2023: Distributional Reinforcement Learning . MIT Press, http://www.

distributional-rl.org.

Bellman, R., 1956: Dynamic programming. RAND CORP SANTA MONICA CA.

Bellman, R. and E. Lee, 1984: History and development of dynamic programming.

IEEE Control Systems Magazine, 4, no. 4, 24–28.

Bellot, A. and M. V. D. Schaar, 2020: Flexible modelling of longitudinal medical

data: A bayesian nonparametric approach. ACM Transactions on Computing for

Healthcare, 1, no. 1, 1–15.

Ben-Tal, A., L. El Ghaoui, and A. Nemirovski, 2009: Robust optimization. Robust

optimization, Princeton university press.

Benyahia, B., P. D. Anandan, and C. Rielly, 2021: Control of batch and continuous

crystallization processes using reinforcement learning. Computer Aided Chemical

Engineering , Elsevier, volume 50, 1371–1376.

263

http://arxiv.org/abs/2002.09571
http://www.distributional-rl.org
http://www.distributional-rl.org

Bergstra, J. and Y. Bengio, 2012: Random search for hyper-parameter optimization.

Journal of machine learning research, 13, no. 2.

Berkenkamp, F., M. Turchetta, A. P. Schoellig, and A. Krause, 2017: Safe model-based

reinforcement learning with stability guarantees .

Bertsekas, D., 2012: Dynamic programming and optimal control: Volume I , volume 1.

Athena scientific.

— 2022: Newton’s method for reinforcement learning and model predictive control.

Results in Control and Optimization, 100121.

Bertsekas, D. P., 1971: Control of uncertain systems with a set-membership description

of the uncertainty.. Ph.D. thesis, Massachusetts Institute of Technology.

— 2005: Dynamic programming and suboptimal control: A survey from adp to mpc.

European Journal of Control , 11, no. 4-5, 310–334.

Bertsekas, D. P., D. P. Bertsekas, D. P. Bertsekas, and D. P. Bertsekas, 1995: Dynamic

programming and optimal control , volume 1. Athena scientific Belmont, MA.

Beykal, B., S. Avraamidou, and E. N. Pistikopoulos, 2022: Data-driven optimization

of mixed-integer bi-level multi-follower integrated planning and scheduling problems

under demand uncertainty. Computers & Chemical Engineering , 156, 107551.

Beykal, B., S. Avraamidou, I. P. Pistikopoulos, M. Onel, and E. N. Pistikopoulos, 2020:

Domino: Data-driven optimization of bi-level mixed-integer nonlinear problems.

Journal of Global Optimization, 78, no. 1, 1–36.

Biegler, L. T., 2007: An overview of simultaneous strategies for dynamic optimization.

Chemical Engineering and Processing: Process Intensification, 46, no. 11, 1043–

1053.

Billingsley, P., 2008: Probability and measure. John Wiley & Sons.

Biradar, N. S., A. A. Hengne, S. N. Birajdar, R. Swami, and C. V. Rode, 2014:

Tailoring the product distribution with batch and continuous process options in

catalytic hydrogenation of furfural. Organic Process Research & Development , 18,

no. 11, 1434–1442.

264

Birge, J. R., 1997: State-of-the-art-survey—stochastic programming: Computation

and applications. INFORMS journal on computing , 9, no. 2, 111–133.

B lażewicz, J., E. Pesch, and M. Sterna, 2000: The disjunctive graph machine rep-

resentation of the job shop scheduling problem. European Journal of Operational

Research, 127, no. 2, 317–331.

Bloss, K. F., L. Biegler, and W. Schiesser, 1999: Dynamic process optimization

through adjoint formulations and constraint aggregation. Industrial & engineering

chemistry research, 38, no. 2, 421–432.

Boole, G., 1847: The mathematical analysis of logic. Philosophical Library.

Bradford, E. and L. Imsland, 2018: Economic stochastic model predictive control using

the unscented kalman filter. IFAC-PapersOnLine, 51, no. 18, 417–422.

Bradford, E., L. Imsland, M. Reble, and E. A. del Rio-Chanona, 2021a: Hybrid gaus-

sian process modeling applied to economic stochastic model predictive control of

batch processes. Recent Advances in Model Predictive Control , Springer, 191–218.

— 2021b: Hybrid gaussian process modeling applied to economic stochastic model

predictive control of batch processes. Recent Advances in Model Predictive Control ,

Springer International Publishing, 191–218.

URL https://doi.org/10.1007%2F978-3-030-63281-6_8

Bradford, E., L. Imsland, D. Zhang, and E. A. del Rio Chanona, 2020: Stochastic data-

driven model predictive control using gaussian processes. Computers & Chemical

Engineering , 139, 106844.

Bradford, E., A. M. Schweidtmann, D. Zhang, K. Jing, and E. A. del Rio-Chanona,

2018: Dynamic modeling and optimization of sustainable algal production with un-

certainty using multivariate gaussian processes. Computers & Chemical Engineering ,

118, 143–158.

Bradley, W. and F. Boukouvala, 2021: Two-stage approach to parameter estimation

of differential equations using neural odes. Industrial & Engineering Chemistry Re-

search, 60, no. 45, 16330–16344.

265

https://doi.org/10.1007%2F978-3-030-63281-6_8

Bradley, W., J. Kim, Z. Kilwein, L. Blakely, M. Eydenberg, J. Jalvin, C. Laird, and

F. Boukouvala, 2022: Perspectives on the integration between first-principles and

data-driven modeling. Computers & Chemical Engineering , 107898.

Brancato, S. M., F. De Lellis, D. Salzano, G. Russo, and M. di Bernardo, 2022:

External control of a genetic toggle switch via reinforcement learning .

URL https://arxiv.org/abs/2204.04972

Bratko, I., T. Urbančič, and C. Sammut, 1995: Behavioural cloning: phenomena,

results and problems. IFAC Proceedings Volumes , 28, no. 21, 143–149.

Brochu, E., V. M. Cora, and N. De Freitas, 2010: A tutorial on bayesian optimization

of expensive cost functions, with application to active user modeling and hierarchical

reinforcement learning. arXiv preprint arXiv:1012.2599 .

Bronstein, M. M., J. Bruna, T. Cohen, and P. Veličković, 2021: Geometric deep learn-

ing: Grids, groups, graphs, geodesics, and gauges .

URL https://arxiv.org/abs/2104.13478

Brown, L. D., T. T. Cai, and A. DasGupta, 2001: Interval estimation for a binomial

proportion. Statistical Science, 16, no. 2, 101–117, doi:10.2307/2676784.

URL http://www.jstor.org/stable/2676784

Brunke, L., M. Greeff, A. W. Hall, Z. Yuan, S. Zhou, J. Panerati, and A. P. Schoellig,

2022: Safe learning in robotics: From learning-based control to safe reinforcement

learning. Annual Review of Control, Robotics, and Autonomous Systems , 5, 411–

444.

Cafaro, D. C. and I. E. Grossmann, 2014: Strategic planning, design, and development

of the shale gas supply chain network. AIChE Journal , 60, no. 6, 2122–2142.

Calafiore, G. and M. C. Campi, 2005: Uncertain convex programs: randomized solu-

tions and confidence levels. Mathematical Programming , 102, no. 1, 25–46.

Calvo, F., J. M. Gómez, L. Ricardez-Sandoval, and O. Alvarez, 2020: Integrated

design of emulsified cosmetic products: A review. Chemical Engineering Research

and Design, 161, 279–303.

266

https://arxiv.org/abs/2204.04972
https://arxiv.org/abs/2104.13478
http://www.jstor.org/stable/2676784

Camacho-Villalón, C. L., M. Dorigo, and T. Stützle, 2022: Exposing the grey wolf,

moth-flame, whale, firefly, bat, and antlion algorithms: six misleading optimization

techniques inspired by bestial metaphors. International Transactions in Operational

Research.

Campi, M. C., S. Garatti, and M. Prandini, 2009: The scenario approach for systems

and control design. Annual Reviews in Control , 33, no. 2, 149–157.

Campos, G., N. H. El-Farra, and A. Palazoglu, 2022: Soft actor-critic deep reinforce-

ment learning with hybrid mixed-integer actions for demand responsive scheduling

of energy systems. Industrial & Engineering Chemistry Research.

Cannon, M., J. Buerger, B. Kouvaritakis, and S. Rakovic, 2011: Robust tubes in

nonlinear model predictive control. IEEE Transactions on Automatic Control , 56,

no. 8, 1942–1947.

Cao, C., Y. Zhang, X. Gu, D. Li, and J. Li, 2021: An improved gravitational search

algorithm to the hybrid flowshop with unrelated parallel machines scheduling prob-

lem. International Journal of Production Research, 59, no. 18, 5592–5608.

Caputo, C. and M.-A. Cardin, 2022a: Analyzing Real Options and Flexibility in En-

gineering Systems Design Using Decision Rules and Deep Reinforcement Learning.

Journal of Mechanical Design, 144, no. 2, iSBN: 1050-0472 Publisher: American

Society of Mechanical Engineers Digital Collection.

— 2022b: Analyzing real options and flexibility in engineering systems design using

decision rules and deep reinforcement learning. Journal of Mechanical Design, 144,

no. 2.

Castro, P. M., A. P. Barbosa-Póvoa, H. A. Matos, and A. Q. Novais, 2004: Sim-

ple continuous-time formulation for short-term scheduling of batch and continuous

processes. Industrial & engineering chemistry research, 43, no. 1, 105–118.

Castro, P. M., I. E. Grossmann, and Q. Zhang, 2018: Expanding scope and computa-

tional challenges in process scheduling. Computers & Chemical Engineering , 114,

14–42.

267

Cerda, J., G. P. Henning, and I. E. Grossmann, 1997: A mixed-integer linear program-

ming model for short-term scheduling of single-stage multiproduct batch plants with

parallel lines. Industrial & Engineering Chemistry Research, 36, no. 5, 1695–1707.

Chachuat, B., B. Srinivasan, and D. Bonvin, 2009: Adaptation strategies for real-time

optimization. Computers & Chemical Engineering , 33, no. 10, 1557–1567.

Chang, H. S., J. Hu, M. C. Fu, and S. I. Marcus, 2007: Simulation-based algorithms

for Markov decision processes . Springer.

Chang, Z., S. Song, Y. Zhang, J.-Y. Ding, R. Zhang, and R. Chiong, 2017: Distribu-

tionally robust single machine scheduling with risk aversion. European Journal of

Operational Research, 256, no. 1, 261–274.

Charitopoulos, V. M., L. G. Papageorgiou, and V. Dua, 2019a: Closed-loop integra-

tion of planning, scheduling and multi-parametric nonlinear control. Computers &

Chemical Engineering , 122, 172–192.

— 2019b: Closed-loop integration of planning, scheduling and multi-parametric non-

linear control. Computers & Chemical Engineering , 122, 172–192, iSBN: 0098-1354

Publisher: Elsevier.

Chen, J., B. Xin, Z. Peng, L. Dou, and J. Zhang, 2009: Optimal contraction theorem

for exploration–exploitation tradeoff in search and optimization. IEEE Transactions

on Systems, Man, and Cybernetics-Part A: Systems and Humans , 39, no. 3, 680–

691, iSBN: 1083-4427 Publisher: IEEE.

Chen, L., Y. Hontoir, D. Huang, J. Zhang, and A. J. Morris, 2004: Combining first

principles with black-box techniques for reaction systems. Control Engineering Prac-

tice, 12, no. 7, 819–826.

Chen, M., Z. Xu, J. Zhao, Y. Zhu, and Z. Shao, 2022: Nonparametric identification

of batch process using two-dimensional kernel-based gaussian process regression.

Chemical Engineering Science, 250, 117372.

Chen, R. T., Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, 2018a: Neural

ordinary differential equations. Advances in neural information processing systems ,

31.

268

Chen, S., A. M. Devraj, F. Lu, A. Busic, and S. Meyn, 2020: Zap q-learning with non-

linear function approximation. Advances in Neural Information Processing Systems ,

33, 16879–16890.

Chen, S., K. Saulnier, N. Atanasov, D. D. Lee, V. Kumar, G. J. Pappas, and M. Morari,

2018b: Approximating explicit model predictive control using constrained neural

networks. 2018 Annual American control conference (ACC), IEEE, 1520–1527.

Cheng, Y., H. Fu, J. Lyu, Z. Wang, H. Li, and X. Chen, 2019: Optimisation estima-

tion of uncertainty integrated with production information based on bayesian fusion

method. The Journal of Engineering , 2019, no. 23, 9178–9182.

Chiuso, A. and G. Pillonetto, 2019: System identification: A machine learning perspec-

tive. Annual Review of Control, Robotics, and Autonomous Systems , 2, 281–304.

Choromanski, K., M. Rowland, V. Sindhwani, R. Turner, and A. Weller, 2018: Struc-

tured evolution with compact architectures for scalable policy optimization. Inter-

national Conference on Machine Learning , PMLR, 970–978.

Chu, Y. and F. You, 2013: Integration of scheduling and dynamic optimization of

batch processes under uncertainty: Two-stage stochastic programming approach and

enhanced generalized benders decomposition algorithm. Industrial & Engineering

Chemistry Research, 52, no. 47, 16851–16869.

Claesen, M. and B. De Moor, 2015: Hyperparameter search in machine learning. arXiv

preprint arXiv:1502.02127 .

Clements, W. R., B. V. Delft, B.-M. Robaglia, R. B. Slaoui, and S. Toth, 2020:

Estimating risk and uncertainty in deep reinforcement learning .

Clerc, M., 2010: Particle swarm optimization, volume 93. John Wiley & Sons.

Clopper, C. J. and E. S. Pearson, 1934: The use of confidence or fiducial lim-

its illustrated in the case of the binomial. Biometrika, 26, no. 4, 404–413,

doi:10.2307/2331986.

URL http://www.jstor.org/stable/2331986

269

http://www.jstor.org/stable/2331986

Coates, A., P. Abbeel, and A. Ng, 2009: Apprenticeship learning for helicopter control.

Communications of the ACM , 52, no. 7, 97–105, publisher: ACM.

Colah, C., 2015: Understanding lstm networks .

URL https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Conrad, K., 2014: The contraction mapping theorem. Expository paper. University of

Connecticut, College of Liberal Arts and Sciences, Department of Mathematics .

Cooman, A., F. Seyfert, M. Olivi, S. Chevillard, and L. Baratchart, 2017: Model-free

closed-loop stability analysis: A linear functional approach. IEEE Transactions on

Microwave Theory and Techniques , 66, no. 1, 73–80.

Cover, T. M., 1999: Elements of information theory . John Wiley & Sons.

Cox, P. B. and R. Tóth, 2021: Linear parameter-varying subspace identification: A

unified framework. Automatica, 123, 109296.

Curi, S., F. Berkenkamp, and A. Krause, 2020: Efficient model-based reinforcement

learning through optimistic policy search and planning. Advances in Neural Infor-

mation Processing Systems , 33, 14156–14170.

Dabney, W., G. Ostrovski, D. Silver, and R. Munos, 2018a: Implicit quantile networks

for distributional reinforcement learning. International conference on machine learn-

ing , PMLR, 1096–1105.

— 2018b: Implicit quantile networks for distributional reinforcement learning. Inter-

national conference on machine learning , PMLR, 1096–1105.

Dabney, W., M. Rowland, M. Bellemare, and R. Munos, 2018c: Distributional rein-

forcement learning with quantile regression. Proceedings of the AAAI Conference on

Artificial Intelligence, volume 32.

— 2018d: Distributional reinforcement learning with quantile regression. Proceedings

of the AAAI Conference on Artificial Intelligence, volume 32, issue: 1.

D’Alessandro, D., M. Dahleh, and I. Mezic, 1999: Control of mixing in fluid flow: A

maximum entropy approach. IEEE Transactions on Automatic Control , 44, no. 10,

1852–1863.

270

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Darby, M. L., M. Nikolaou, J. Jones, and D. Nicholson, 2011: Rto: An overview and

assessment of current practice. Journal of Process control , 21, no. 6, 874–884.

De Boer, P.-T., D. P. Kroese, S. Mannor, and R. Y. Rubinstein, 2005: A tutorial on

the cross-entropy method. Annals of operations research, 134, no. 1, 19–67.

De Hert, S. C. and T. Rodgers, 2017: Continuous, recycle and batch emulsification

kinetics using a high-shear mixer. Chemical Engineering Science, 167, 265–277.

de la Penad, D. M., A. Bemporad, and T. Alamo, 2005: Stochastic programming

applied to model predictive control. Proceedings of the 44th IEEE Conference on

Decision and Control , IEEE, 1361–1366.

De Vito, E., L. Rosasco, A. Caponnetto, U. De Giovannini, F. Odone, and P. Bartlett,

2005: Learning from examples as an inverse problem. Journal of Machine Learning

Research, 6, no. 5.

Dedopoulos, I. T. and N. Shah, 1995: Optimal short-term scheduling of mainte-

nance and production for multipurpose plants. Industrial & engineering chemistry

research, 34, no. 1, 192–201.

Degrave, J., F. Felici, J. Buchli, M. Neunert, B. Tracey, F. Carpanese, T. Ewalds,

R. Hafner, A. Abdolmaleki, D. de Las Casas, et al., 2022: Magnetic control of

tokamak plasmas through deep reinforcement learning. Nature, 602, no. 7897, 414–

419.

Deisenroth, M. and C. E. Rasmussen, 2011: Pilco: A model-based and data-efficient

approach to policy search. Proceedings of the 28th International Conference on ma-

chine learning (ICML-11), Citeseer, 465–472.

del Rio-Chanona, E. A., N. r. Ahmed, D. Zhang, Y. Lu, and K. Jing, 2017: Kinetic

modeling and process analysis for desmodesmus sp. lutein photo-production. AIChE

Journal , 63, no. 7, 2546–2554.

del Rio-Chanona, E. A., E. Manirafasha, D. Zhang, Q. Yue, and K. Jing, 2016: Dy-

namic modeling and optimization of cyanobacterial c-phycocyanin production pro-

cess by artificial neural network. Algal Research, 13, 7–15.

271

del Rio Chanona, E. A., P. Petsagkourakis, E. Bradford, J. A. Graciano, and

B. Chachuat, 2021: Real-time optimization meets bayesian optimization and

derivative-free optimization: A tale of modifier adaptation. Computers & Chem-

ical Engineering , 147, 107249.

del Rio-Chanona, E. A., J. L. Wagner, H. Ali, F. Fiorelli, D. Zhang, and K. Hellgardt,

2019: Deep learning-based surrogate modeling and optimization for microalgal bio-

fuel production and photobioreactor design. AIChE Journal , 65, no. 3, 915–923,

iSBN: 0001-1541 Publisher: Wiley Online Library.

Demirhan, C. D., F. Boukouvala, K. Kim, H. Song, W. W. Tso, C. A. Floudas, and

E. N. Pistikopoulos, 2020: An integrated data-driven modeling & global optimiza-

tion approach for multi-period nonlinear production planning problems. Computers

& Chemical Engineering , 141, 107007.

Dias, L. S. and M. G. Ierapetritou, 2020: Integration of planning, scheduling and con-

trol problems using data-driven feasibility analysis and surrogate models. Computers

& Chemical Engineering , 134, 106714.

Dias, L. S., R. C. Pattison, C. Tsay, M. Baldea, and M. G. Ierapetritou, 2018: A

simulation-based optimization framework for integrating scheduling and model pre-

dictive control, and its application to air separation units. Computers & Chemical

Engineering , 113, 139–151.

Dogru, O., N. Wieczorek, K. Velswamy, F. Ibrahim, and B. Huang, 2021: Online

reinforcement learning for a continuous space system with experimental validation.

Journal of Process Control , 104, 86–100.

Dong, Y., X. Tang, and Y. Yuan, 2020: Principled reward shaping for reinforcement

learning via lyapunov stability theory. Neurocomputing , 393, 83–90.

Doshi-Velez, F. and B. Kim, 2017: Towards a rigorous science of interpretable machine

learning .

URL https://arxiv.org/abs/1702.08608

Duarte, B., P. Saraiva, and C. Pantelides, 2004: Combined mechanistic and empirical

modelling. International Journal of Chemical Reactor Engineering , 2, no. 1.

272

https://arxiv.org/abs/1702.08608

Dziak, J. J., D. L. Coffman, S. T. Lanza, R. Li, and L. S. Jermiin, 2020: Sensitivity and

specificity of information criteria. Briefings in bioinformatics , 21, no. 2, 553–565.

Ellis, M., H. Durand, and P. D. Christofides, 2014: A tutorial review of economic model

predictive control methods. Journal of Process Control , 24, no. 8, 1156–1178.

EMA, E. M. A., 2000: Ich topic q 7. good manufacturing practice for active pharma-

ceutical ingredients. Step 5: Note for Guidance on Good Manufacturing Practice for

Active Pharmaceutical Ingredients (CPMP/ICH/4106/00).

Emenike, S. N. and G. Falcone, 2020: A review on energy supply chain resilience

through optimization. Renewable and Sustainable Energy Reviews , 134, 110088,

iSBN: 1364-0321 Publisher: Elsevier.

Engstrom, L., A. Ilyas, S. Santurkar, D. Tsipras, F. Janoos, L. Rudolph, and A. Madry,

2019: Implementation matters in deep rl: A case study on ppo and trpo. Interna-

tional conference on learning representations .

Esmaili, N., C. Sammut, and G. Shirazi, 1995: Behavioural cloning in control of a

dynamic system. 1995 IEEE International Conference on Systems, Man and Cyber-

netics. Intelligent Systems for the 21st Century , IEEE, volume 3, 2904–2909.

Estrada-Wiese, D., E. A. del Ŕıo-Chanona, and J. A. Del Rı́o, 2018: Stochastic op-

timization of broadband reflecting photonic structures. Scientific Reports , 8, no. 1,

1–9, iSBN: 2045-2322 Publisher: Nature Publishing Group.

Farina, M., L. Giulioni, L. Magni, and R. Scattolini, 2014: An mpc approach to output-

feedback control of stochastic linear discrete-time systems .

Farina, M., L. Giulioni, and R. Scattolini, 2016: Stochastic linear model predictive

control with chance constraints–a review. Journal of Process Control , 44, 53–67.

Filippi, C., G. Guastaroba, and M. G. Speranza, 2020: Conditional value-at-risk be-

yond finance: a survey. International Transactions in Operational Research, 27, no.

3, 1277–1319, iSBN: 0969-6016 Publisher: Wiley Online Library.

273

Finn, C., P. Christiano, P. Abbeel, and S. Levine, 2016a: A connection between gener-

ative adversarial networks, inverse reinforcement learning, and energy-based models .

URL https://arxiv.org/abs/1611.03852

Finn, C., S. Levine, and P. Abbeel, 2016b: Guided cost learning: Deep inverse opti-

mal control via policy optimization. International conference on machine learning ,

PMLR, 49–58.

Fisac, J. F., A. K. Akametalu, M. N. Zeilinger, S. Kaynama, J. Gillula, and C. J.

Tomlin, 2018: A general safety framework for learning-based control in uncertain

robotic systems. IEEE Transactions on Automatic Control , 64, no. 7, 2737–2752.

Fisher, M., 2020: Flushing out the true cause of the global toilet paper shortage amid

coronavirus pandemic. Washington Post, April , 7.

Fleming, J., B. Kouvaritakis, and M. Cannon, 2014: Robust tube mpc for linear

systems with multiplicative uncertainty. IEEE Transactions on Automatic Control ,

60, no. 4, 1087–1092.

Floudas, C. A. and X. Lin, 2004: Continuous-time versus discrete-time approaches

for scheduling of chemical processes: a review. Computers & Chemical Engineering ,

28, no. 11, 2109–2129.

Forrester, J. W., 1997: Industrial dynamics. Journal of the Operational Research So-

ciety , 48, no. 10, 1037–1041.

Fox, M. S., 1994: Isis: a retrospective. Intelligent scheduling , 1, 3–28.

François-Lavet, V., R. Fonteneau, and D. Ernst, 2015: How to discount deep reinforce-

ment learning: Towards new dynamic strategies. arXiv preprint arXiv:1512.02011 .

Frazier, P. I., 2018: A tutorial on bayesian optimization.

Frigola, R., 2015: Bayesian time series learning with Gaussian processes . Ph.D. thesis,

University of Cambridge.

Fu, J., A. Kumar, M. Soh, and S. Levine, 2019a: Diagnosing bottlenecks in deep q-

learning algorithms. International Conference on Machine Learning , PMLR, 2021–

2030.

274

https://arxiv.org/abs/1611.03852

Fu, J., K. Luo, and S. Levine, 2017: Learning robust rewards with adversarial inverse

reinforcement learning .

URL https://arxiv.org/abs/1710.11248

Fu, Y., H. Wang, G. Tian, Z. Li, and H. Hu, 2019b: Two-agent stochastic flow shop de-

teriorating scheduling via a hybrid multi-objective evolutionary algorithm. Journal

of Intelligent Manufacturing , 30, no. 5, 2257–2272.

Fuentes-Cortes, L. F., A. Flores-Tlacuahuac, and K. D. Nigam, 2022: Machine learning

algorithms used in pse environments: A didactic approach and critical perspective.

Industrial & Engineering Chemistry Research.

Fujisawa, Y., Y. Otomo, Y. Ogata, Y. Nakamura, R. Fujita, Y. Ishitsuka, R. Watanabe,

N. Okiyama, K. Ohara, and M. Fujimoto, 2019: Deep-learning-based, computer-

aided classifier developed with a small dataset of clinical images surpasses board-

certified dermatologists in skin tumour diagnosis. British Journal of Dermatology ,

180, no. 2, 373–381.

Fushiki, T., 2011: Estimation of prediction error by using k-fold cross-validation.

Statistics and Computing , 21, no. 2, 137–146.

Gao, J., C. Ning, and F. You, 2019: Data-driven distributionally robust optimization

of shale gas supply chains under uncertainty. AIChE Journal , 65, no. 3, 947–963,

iSBN: 0001-1541 Publisher: Wiley Online Library.

Gao, W.-f. and S.-y. Liu, 2012: A modified artificial bee colony algorithm. Computers

& Operations Research, 39, no. 3, 687–697, iSBN: 0305-0548 Publisher: Elsevier.

Garćıa-Fernández, Á. F., L. Svensson, M. R. Morelande, and S. Särkkä, 2015: Pos-

terior linearization filter: Principles and implementation using sigma points. IEEE

transactions on signal processing , 63, no. 20, 5561–5573.

Gautschi, W., 1996: Orthogonal polynomials: applications and computation. Acta

numerica, 5, 45–119.

Ge, Z., Z. Song, S. X. Ding, and B. Huang, 2017: Data mining and analytics in the

process industry: The role of machine learning. Ieee Access , 5, 20590–20616.

275

https://arxiv.org/abs/1710.11248

Georgiadis, G. P., A. P. Elekidis, and M. C. Georgiadis, 2019: Optimization-based

scheduling for the process industries: from theory to real-life industrial applications.

Processes , 7, no. 7, 438.

Germscheid, S. H., A. Mitsos, and M. Dahmen, 2022: Demand response potential

of industrial processes considering uncertain short-term electricity prices. AIChE

Journal , e17828.

Ghosh, D., E. Hermonat, P. Mhaskar, S. Snowling, and R. Goel, 2019: Hybrid model-

ing approach integrating first-principles models with subspace identification. Indus-

trial & Engineering Chemistry Research, 58, no. 30, 13533–13543.

Gijsbrechts, J., R. N. Boute, J. A. Van Mieghem, and D. Zhang, 2021: Can deep rein-

forcement learning improve inventory management? performance on dual sourcing,

lost sales and multi-echelon problems. Manufacturing & Service Operations Man-

agement .

Glavic, M., R. Fonteneau, and D. Ernst, 2017: Reinforcement learning for electric

power system decision and control: Past considerations and perspectives. IFAC-

PapersOnLine, 50, no. 1, 6918–6927.

Glover, F., 1989: Tabu search—part i. ORSA Journal on computing , 1, no. 3, 190–206.

Goodfellow, I., Y. Bengio, and A. Courville, 2016: Deep learning . MIT press.

Goodfellow, I., J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio, 2014: Generative adversarial nets. Advances in neural

information processing systems , 27.

Gopaluni, R. B., A. Tulsyan, B. Chachuat, B. Huang, J. M. Lee, F. Amjad, S. K.

Damarla, J. W. Kim, and N. P. Lawrence, 2020: Modern machine learning tools for

monitoring and control of industrial processes: A survey. IFAC-PapersOnLine, 53,

no. 2, 218–229.

Gottesman, O., F. Johansson, M. Komorowski, A. Faisal, D. Sontag, F. Doshi-Velez,

and L. A. Celi, 2019: Guidelines for reinforcement learning in healthcare. Nature

medicine, 25, no. 1, 16–18.

276

Gottipati, S. K., B. Sattarov, S. Niu, Y. Pathak, H. Wei, S. Liu, K. M. J. Thomas,

S. Blackburn, C. W. Coley, J. Tang, S. Chandar, and Y. Bengio, 2020: Learning

to navigate the synthetically accessible chemical space using reinforcement learning.

arXiv:2004.12485 [cs] , arXiv: 2004.12485.

URL http://arxiv.org/abs/2004.12485

Göttl, Q., D. G. Grimm, and J. Burger, 2022: Automated synthesis of steady-state

continuous processes using reinforcement learning. Frontiers of Chemical Science

and Engineering , 16, no. 2, 288–302.

Grand-Clément, J., 2021: From convex optimization to mdps: A review of first-order,

second-order and quasi-newton methods for mdps. arXiv preprint arXiv:2104.10677 .

Greenberg, I., Y. Chow, M. Ghavamzadeh, and S. Mannor, 2022: Efficient risk-averse

reinforcement learning. arXiv preprint arXiv:2205.05138 .

Gros, S. and M. Zanon, 2019a: Data-driven economic nmpc using reinforcement learn-

ing. IEEE Transactions on Automatic Control , 65, no. 2, 636–648.

— 2019b: Data-driven economic nmpc using reinforcement learning. arXiv:1904.04152

[cs] , arXiv: 1904.04152.

URL http://arxiv.org/abs/1904.04152

Grossmann, I., 2005: Enterprise-wide optimization: A new frontier in process systems

engineering. AIChE Journal , 51, no. 7, 1846–1857.

Grossmann, I. E., R. M. Apap, B. A. Calfa, P. Garćıa-Herreros, and Q. Zhang, 2016:

Recent advances in mathematical programming techniques for the optimization of

process systems under uncertainty. Computers & Chemical Engineering , 91, 3–14.

Guerra, O. J., A. J. Calderón, L. G. Papageorgiou, and G. V. Reklaitis, 2019: In-

tegrated shale gas supply chain design and water management under uncertainty.

AIChE Journal , 65, no. 3, 924–936.

Gupta, A., P. Matta, and B. Pant, 2021: Graph neural network: Current state of art,

challenges and applications. Materials Today: Proceedings , 46, 10927–10932.

277

http://arxiv.org/abs/2004.12485
http://arxiv.org/abs/1904.04152

Gupta, D. and C. T. Maravelias, 2017: A general state-space formulation for online

scheduling. Processes , 5, no. 4, 69.

Gupta, D., C. T. Maravelias, and J. M. Wassick, 2016: From rescheduling to online

scheduling. Chemical Engineering Research and Design, 116, 83–97.

Haarnoja, T., A. Zhou, P. Abbeel, and S. Levine, 2018: Soft actor-critic: Off-policy

maximum entropy deep reinforcement learning with a stochastic actor. International

Conference on Machine Learning , PMLR, 1861–1870.

Han, B.-A. and J.-J. Yang, 2020: Research on adaptive job shop scheduling problems

based on dueling double dqn. IEEE Access , 8, 186474–186495.

Hansen, N., D. V. Arnold, and A. Auger, 2015: Evolution strategies. Springer handbook

of computational intelligence, Springer, 871–898.

Hansen, P., N. Mladenović, and J. A. Moreno Pérez, 2010: Variable neighbourhood

search: methods and applications. Annals of Operations Research, 175, no. 1, 367–

407.

Harjunkoski, I., C. T. Maravelias, P. Bongers, P. M. Castro, S. Engell, I. E. Gross-

mann, J. Hooker, C. Méndez, G. Sand, and J. Wassick, 2014: Scope for industrial

applications of production scheduling models and solution methods. Computers &

Chemical Engineering , 62, 161–193.

Haroon, K., A. Arafeh, S. Cunliffe, P. Martin, T. Rodgers, Ć. Mendoza, and M. Baker,

2020: Comparison of individual and integrated inline raman, near-infrared, and mid-

infrared spectroscopic models to predict the viscosity of micellar liquids. Applied

Spectroscopy , 74, no. 7, 819–831.

Haupt, R., 1989: A survey of priority rule-based scheduling. Operations-Research-

Spektrum, 11, no. 1, 3–16.

He, W., G. Li, P. Hao, and Y. Zeng, 2019: Maximum entropy method-based reliability

analysis with correlated input variables via hybrid dimension-reduction method.

Journal of Mechanical Design, 141, no. 10.

278

Heckelei, T. and H. Wolff, 2003: Estimation of constrained optimisation models for

agricultural supply analysis based on generalised maximum entropy. European review

of agricultural economics , 30, no. 1, 27–50.

Hedrick, E., K. Hedrick, D. Bhattacharyya, S. E. Zitney, and B. Omell, 2022: Re-

inforcement learning for online adaptation of model predictive controllers: Appli-

cation to a selective catalytic reduction unit. Computers & Chemical Engineering ,

160, 107727.

Heess, N., J. J. Hunt, T. P. Lillicrap, and D. Silver, 2015: Memory-based control with

recurrent neural networks.

Heirung, T. A. N., J. A. Paulson, J. O’Leary, and A. Mesbah, 2018: Stochastic model

predictive control—how does it work? Computers & Chemical Engineering , 114,

158–170.

Hernández-Lobato, J. M. and R. Adams, 2015: Probabilistic backpropagation for

scalable learning of bayesian neural networks. International conference on machine

learning , PMLR, 1861–1869.

Hernández-Garćıa, A. and P. König, 2018: Data augmentation instead of explicit reg-

ularization.

URL https://arxiv.org/abs/1806.03852

Ho, J. and S. Ermon, 2016: Generative adversarial imitation learning. Advances in

neural information processing systems , 29.

Hochreiter, S. and J. Schmidhuber, 1997: Long short-term memory. Neural Computa-

tion, 9, no. 8, 1735–17380, publisher: MIT Press.

Holtorf, F., A. Mitsos, and L. T. Biegler, 2019: Multistage nmpc with on-line gener-

ated scenario trees: Application to a semi-batch polymerization process. Journal of

Process Control , 80, 167–179.

Hong, L. J. and G. Liu, 2009: Simulating sensitivities of conditional value at risk.

Management Science, 55, no. 2, 281–293.

279

https://arxiv.org/abs/1806.03852

— 2011: Monte Carlo estimation of value-at-risk, conditional value-at-risk and their

sensitivities. Proceedings of the 2011 Winter Simulation Conference (WSC), IEEE,

95–107.

Hong, S., K. Jang, J. Lee, H. Yoon, I. Moon, et al., 2020: Optimal evacuation route

prediction in fpso based on deep q-network. Computer Aided Chemical Engineering ,

Elsevier, volume 48, 1867–1872.

Horgan, C. C., M. Jensen, A. Nagelkerke, J.-P. St-Pierre, T. Vercauteren, M. M.

Stevens, and M. S. Bergholt, 2021: High-throughput molecular imaging via deep-

learning-enabled raman spectroscopy. Analytical Chemistry , 93, no. 48, 15850–

15860.

Hubbs, C. D., C. Li, N. V. Sahinidis, I. E. Grossmann, and J. M. Wassick, 2020a: A

deep reinforcement learning approach for chemical production scheduling. Comput-

ers & Chemical Engineering , 141, 106982.

Hubbs, C. D., H. D. Perez, O. Sarwar, N. V. Sahinidis, I. E. Grossmann, and J. M.

Wassick, 2020b: Or-gym: A reinforcement learning library for operations research

problems .

Huh, S. and I. Yang, 2020: Safe reinforcement learning for probabilistic reach-

ability and safety specifications: A lyapunov-based approach. arXiv preprint

arXiv:2002.10126 .

Hüllen, G., J. Zhai, S. H. Kim, A. Sinha, M. J. Realff, and F. Boukouvala, 2020:

Managing uncertainty in data-driven simulation-based optimization. Computers &

Chemical Engineering , 136, 106519.

Hüllermeier, E. and W. Waegeman, 2019: Aleatoric and epistemic uncertainty

in machine learning: An introduction to concepts and methods. arXiv preprint

arXiv:1910.09457 .

Hussain, K., M. N. M. Salleh, S. Cheng, and R. Naseem, 2017: Common benchmark

functions for metaheuristic evaluation: A review. JOIV: International Journal on

Informatics Visualization, 1, no. 4-2, 218–223.

280

Hussein, A. S., C. M. Elias, and E. I. Morgan, 2019: A realistic model predictive control

using single and multiple shooting in the formulation of non-linear programming

model. 2019 IEEE International Conference on Vehicular Electronics and Safety

(ICVES), IEEE, 1–6.

Ibrahim, D., Z. Kis, K. Tak, M. M. Papathanasiou, C. Kontoravdi, B. Chachuat, and

N. Shah, 2021: Model-Based Planning and Delivery of Mass Vaccination Campaigns

against Infectious Disease: Application to the COVID-19 Pandemic in the UK.

Vaccines , 9, no. 12, 1460, publisher: Multidisciplinary Digital Publishing Institute.

Ilyas, A., L. Engstrom, S. Santurkar, D. Tsipras, F. Janoos, L. Rudolph, and A. Madry,

2018: Are deep policy gradient algorithms truly policy gradient algorithms?

ISA, I. S. o. A., 2022: Isa95, enterprise-control system integration.

https://www.isa.org/standards-and-publications/isa-standards/

isa-standards-committees/isa95, accessed: 2022-03-28.

Jaderberg, M., V. Dalibard, S. Osindero, W. M. Czarnecki, J. Donahue, A. Razavi,

O. Vinyals, T. Green, I. Dunning, K. Simonyan, et al., 2017: Population based

training of neural networks. arXiv preprint arXiv:1711.09846 .

Jakobsen, H. A., 2008: Chemical reactor modeling. Multiphase Reactive Flows .

Jaynes, E. T., 1957: Information theory and statistical mechanics. Physical review ,

106, no. 4, 620.

Jiang, Q., X. Yan, and B. Huang, 2019: Review and perspectives of data-driven

distributed monitoring for industrial plant-wide processes. Industrial & Engineering

Chemistry Research, 58, no. 29, 12899–12912.

Jin, C., Z. Yang, Z. Wang, and M. I. Jordan, 2020: Provably efficient reinforce-

ment learning with linear function approximation. Conference on Learning Theory ,

PMLR, 2137–2143.

Jing, K., Y. Tang, C. Yao, E. A. del Rio-Chanona, X. Ling, and D. Zhang, 2018:

Overproduction of l-tryptophan via simultaneous feed of glucose and anthranilic

acid from recombinant escherichia coli w3110: Kinetic modeling and process scale-

up. Biotechnology and bioengineering , 115, no. 2, 371–381.

281

https://www.isa.org/standards-and-publications/isa-standards/isa-standards-committees/isa95
https://www.isa.org/standards-and-publications/isa-standards/isa-standards-committees/isa95

Jones, D. R., M. Schonlau, and W. J. Welch, 1998: Efficient global optimization of

expensive black-box functions. Journal of Global optimization, 13, no. 4, 455–492.

Joshi, T., S. Makker, H. Kodamana, and H. Kandath, 2021: Application of twin de-

layed deep deterministic policy gradient learning for the control of transesterification

process .

Juan, A. A., J. Faulin, S. E. Grasman, M. Rabe, and G. Figueira, 2015: A review

of simheuristics: Extending metaheuristics to deal with stochastic combinatorial

optimization problems. Operations Research Perspectives , 2, 62–72.

Kadlec, P., B. Gabrys, and S. Strandt, 2009: Data-driven soft sensors in the process

industry. Computers & chemical engineering , 33, no. 4, 795–814.

Kakade, S. M., 2001: A natural policy gradient. Advances in neural information pro-

cessing systems , 14.

Kanervisto, A., J. Karttunen, and V. Hautamäki, 2020a: Playing minecraft with be-

havioural cloning. Proceedings of the NeurIPS 2019 Competition and Demonstration

Track , H. J. Escalante and R. Hadsell, Eds., PMLR, volume 123 of Proceedings of

Machine Learning Research, 56–66.

URL https://proceedings.mlr.press/v123/kanervisto20a.html

Kanervisto, A., C. Scheller, and V. Hautamäki, 2020b: Action space shaping in deep

reinforcement learning. 2020 IEEE Conference on Games (CoG), IEEE, 479–486.

Kang, J., A. U. Raghunathan, and S. Di Cairano, 2015: Decomposition via admm for

scenario-based model predictive control. 2015 American Control Conference (ACC),

IEEE, 1246–1251.

Kannan, G., P. Sasikumar, and K. Devika, 2010: A genetic algorithm approach for

solving a closed loop supply chain model: A case of battery recycling. Applied

mathematical modelling , 34, no. 3, 655–670, iSBN: 0307-904X Publisher: Elsevier.

Kara, A. and I. Dogan, 2018: Reinforcement learning approaches for specifying order-

ing policies of perishable inventory systems. Expert Systems with Applications , 91,

150–158, iSBN: 0957-4174 Publisher: Elsevier.

282

https://proceedings.mlr.press/v123/kanervisto20a.html

Karaboga, D., 2005: An idea based on honey bee swarm for numerical optimization.

Technical report-tr06, Erciyes university, engineering faculty, computer

Karg, B., T. Alamo, and S. Lucia, 2019: Probabilistic performance validation of deep

learning-based robust nmpc controllers. arXiv:1910.13906 [cs, eess, math] , arXiv:

1910.13906.

URL http://arxiv.org/abs/1910.13906

Karimi, N. and H. Davoudpour, 2015: A branch and bound method for solving multi-

factory supply chain scheduling with batch delivery. Expert Systems with Applica-

tions , 42, no. 1, 238–245, iSBN: 0957-4174 Publisher: Elsevier.

Katayama, T. et al., 2005: Subspace methods for system identification, volume 1.

Springer.

Kelly, M., 2017: An introduction to trajectory optimization: How to do your own

direct collocation. SIAM Review , 59, no. 4, 849–904.

Kennedy, J. and R. Eberhart, 1995a: Particle swarm optimization. Proceedings of

ICNN’95-international conference on neural networks , IEEE, volume 4, 1942–1948.

— 1995b: Particle swarm optimization. Proceedings of ICNN’95-international confer-

ence on neural networks , IEEE, volume 4, 1942–1948.

Khan, A., 2018: Long-term production scheduling of open pit mines using particle

swarm and bat algorithms under grade uncertainty. Journal of the Southern African

Institute of Mining and Metallurgy , 118, no. 4, 361–368.

Khan, A. A. and A. A. Lapkin, 2022: Designing the process designer: Hierarchical

reinforcement learning for optimisation-based process design. Chemical Engineering

and Processing-Process Intensification, 108885.

Kidambi, R., A. Rajeswaran, P. Netrapalli, and T. Joachims, 2021: Morel : Model-

based offline reinforcement learning .

Kim, J. et al., 2021a: DQN Learning Approach to Scheduling in Multi-job Production

Systems . Ph.D. thesis, DGIST.

283

http://arxiv.org/abs/1910.13906

Kim, J. W., N. Krausch, J. Aizpuru, T. Barz, S. Lucia, P. Neubauer, and M. N. C.

Bournazou, 2022: Model predictive control and moving horizon estimation for adap-

tive optimal bolus feeding in high-throughput cultivation of e. coli. arXiv preprint

arXiv:2203.07211 .

Kim, J. W., B. J. Park, T. H. Oh, and J. M. Lee, 2021b: Model-based reinforcement

learning and predictive control for two-stage optimal control of fed-batch bioreactor.

Computers & Chemical Engineering , 154, 107465.

Kim, J. W., B. J. Park, H. Yoo, T. H. Oh, J. H. Lee, and J. M. Lee, 2020a: A model-

based deep reinforcement learning method applied to finite-horizon optimal control

of nonlinear control-affine system. Journal of Process Control , 87, 166–178.

— 2020b: A model-based deep reinforcement learning method applied to finite-horizon

optimal control of nonlinear control-affine system. Journal of Process Control , 87,

166–178.

Kim, Y. and J. M. Lee, 2020: Model-based reinforcement learning for nonlinear optimal

control with practical asymptotic stability guarantees. AIChE Journal , n/a, no.

n/a, e16544, doi:10.1002/aic.16544.

Kingma, D. P. and J. Ba, 2014: Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980 .

Kirk, D. E., 1998: Optimal control theory : an introduction. Dover Books on Electrical

Engineering Ser., Dover Publications, Mineola, N.Y.

— 2004: Optimal control theory: an introduction. Courier Corporation.

Kirkpatrick, S., C. D. Gelatt, and M. P. Vecchi, 1983a: Optimization by simulated

annealing. science, 220, no. 4598, 671–680.

Kirkpatrick, S., C. D. Gelatt Jr, and M. P. Vecchi, 1983b: Optimization by simulated

annealing. science, 220, no. 4598, 671–680, iSBN: 0036-8075 Publisher: American

association for the advancement of science.

284

Kis, Z., C. Kontoravdi, R. Shattock, and N. Shah, 2020: Resources, production scales

and time required for producing rna vaccines for the global pandemic demand. Vac-

cines , 9, no. 1, 3.

Koch, A. L., 1998: The monod model and its alternatives. Mathematical modeling in

microbial ecology , Springer, 62–93.

Köhler, J., R. Soloperto, M. A. Müller, and F. Allgöwer, 2020: A computationally

efficient robust model predictive control framework for uncertain nonlinear systems.

IEEE Transactions on Automatic Control , 66, no. 2, 794–801.

Kolmogorov, A. N. and S. V. Fomin, 1957: Elements of the theory of functions and

functional analysis , volume 1. Courier Corporation.

Kondili, E., C. C. Pantelides, and R. W. Sargent, 1993: A general algorithm for short-

term scheduling of batch operations—i. milp formulation. Computers & Chemical

Engineering , 17, no. 2, 211–227.

Konishi, S. and G. Kitagawa, 1996: Generalised information criteria in model selection.

Biometrika, 83, no. 4, 875–890.

Kouvaritakis, B. and M. Cannon, 2016: Model predictive control. Switzerland:

Springer International Publishing , 38.

Krishnamoorthy, D., B. Foss, and S. Skogestad, 2019: A primal decomposition al-

gorithm for distributed multistage scenario model predictive control. Journal of

Process Control , 81, 162–171.

Krishnamoorthy, D. and S. Skogestad, 2022: Real-time optimization as a feedback

control problem-a review. Computers & Chemical Engineering , 107723.

Krishnamoorthy, D., M. Thombre, S. Skogestad, and J. Jäschke, 2018: Data-

driven scenario selection for multistage robust model predictive control. IFAC-

PapersOnLine, 51, no. 20, 462–468.

Krueger, D., E. Caballero, J.-H. Jacobsen, A. Zhang, J. Binas, D. Zhang, R. L.

Priol, and A. Courville, 2021: Out-of-distribution generalization via risk extrapola-

tion (rex). Proceedings of the 38th International Conference on Machine Learning ,

285

M. Meila and T. Zhang, Eds., PMLR, volume 139 of Proceedings of Machine Learn-

ing Research, 5815–5826.

URL https://proceedings.mlr.press/v139/krueger21a.html

Kuleshov, V. and D. Precup, 2014: Algorithms for multi-armed bandit problems. arXiv

preprint arXiv:1402.6028 .

Kumar, A., R. Agarwal, T. Ma, A. Courville, G. Tucker, and S. Levine, 2021:

Dr3: Value-based deep reinforcement learning requires explicit regularization. arXiv

preprint arXiv:2112.04716 .

Kumar, A., R. Agarwal, G. Tucker, L. Li, D. Precup, and A. Kumar, 2020a: Work-

shop: Offline reinforcement learning, neural Information Processing Systems Online

Conference 2020.

Kumar, A., J. Hong, A. Singh, and S. Levine, 2022: When should we prefer offline

reinforcement learning over behavioral cloning? .

Kumar, A., A. Zhou, G. Tucker, and S. Levine, 2020b: Conservative q-learning for

offline reinforcement learning .

Langson, W., I. Chryssochoos, S. Raković, and D. Q. Mayne, 2004: Robust model

predictive control using tubes. Automatica, 40, no. 1, 125–133.

Lara, C. L., J. D. Siirola, and I. E. Grossmann, 2020: Electric power infrastructure

planning under uncertainty: stochastic dual dynamic integer programming (SDDiP)

and parallelization scheme. Optimization and Engineering , 21, no. 4, 1243–1281,

iSBN: 1573-2924 Publisher: Springer.

Laroque, C., A. Klaas, J.-H. Fischer, and M. Kuntze, 2012: Fast converging, auto-

mated experiment runs for material flow simulations using distributed computing

and combined metaheuristics. Proceedings of the 2012 Winter Simulation Confer-

ence (WSC), IEEE, 1–12.

Larson, J., M. Menickelly, and S. M. Wild, 2019: Derivative-free optimization methods.

arXiv preprint arXiv:1904.11585 .

286

https://proceedings.mlr.press/v139/krueger21a.html

Lasi, H., P. Fettke, H.-G. Kemper, T. Feld, and M. Hoffmann, 2014: Industry 4.0.

Business & information systems engineering , 6, no. 4, 239–242.

Laskin, M., K. Lee, A. Stooke, L. Pinto, P. Abbeel, and A. Srinivas, 2020: Rein-

forcement learning with augmented data. Advances in neural information processing

systems , 33, 19884–19895.

Lawrence, N. P., M. G. Forbes, P. D. Loewen, D. G. McClement, J. U. Backström,

and R. B. Gopaluni, 2022: Deep reinforcement learning with shallow controllers: An

experimental application to pid tuning. Control Engineering Practice, 121, 105046.

Lawrence, N. P., G. E. Stewart, P. D. Loewen, M. G. Forbes, J. U. Backstrom, and

R. B. Gopaluni, 2020: Optimal pid and antiwindup control design as a reinforcement

learning problem. arXiv:2005.04539 [cs, eess, math] , arXiv: 2005.04539.

URL http://arxiv.org/abs/2005.04539

LeCun, Y., Y. Bengio, and G. Hinton, 2015: Deep learning. nature, 521, no. 7553,

436–444.

Lee, H. L., V. Padmanabhan, and S. Whang, 1997: Information distortion in a supply

chain: The bullwhip effect. Management science, 43, no. 4, 546–558, iSBN: 0025-

1909 Publisher: Informs.

Lee, J. H., 2011: Model predictive control: Review of the three decades of development.

International Journal of Control, Automation and Systems , 9, no. 3, 415–424.

Lee, J. H., J. Shin, and M. J. Realff, 2018a: Machine learning: Overview of the recent

progresses and implications for the process systems engineering field. Computers &

Chemical Engineering , 114, 111–121.

— 2018b: Machine learning: Overview of the recent progresses and implications for

the process systems engineering field. Computers & Chemical Engineering , 114,

111–121, iSBN: 0098-1354 Publisher: Elsevier.

Lee, J. M. and J. H. Lee, 2005: Approximate dynamic programming-based approaches

for input–output data-driven control of nonlinear processes. Automatica, 41, no. 7,

1281–1288.

287

http://arxiv.org/abs/2005.04539

Lehman, J., J. Chen, J. Clune, and K. O. Stanley, 2017: Es is more than just a

traditional finite-difference approximator.

Letsios, D., J. T. Bradley, R. Misener, N. Page, et al., 2021: Approximate and robust

bounded job start scheduling for royal mail delivery offices. Journal of Scheduling ,

24, no. 2, 237–258.

Leurent, E., D. Efimov, and O.-A. Maillard, 2020: Robust-adaptive control of linear

systems: beyond quadratic costs .

Levine, S., A. Kumar, G. Tucker, and J. Fu, 2020: Offline reinforcement learning:

Tutorial, review, and perspectives on open problems .

URL https://arxiv.org/abs/2005.01643

Li, C. and I. E. Grossmann, 2021: A review of stochastic programming methods for op-

timization of process systems under uncertainty. Frontiers in Chemical Engineering ,

2, 622241.

Li, P., H. Arellano-Garcia, and G. Wozny, 2008: Chance constrained programming

approach to process optimization under uncertainty. Computers & chemical engi-

neering , 32, no. 1-2, 25–45.

Li, Y., 2017: Deep reinforcement learning: An overview. arXiv preprint

arXiv:1701.07274 .

Li, Y., W. Huang, R. Wu, and K. Guo, 2020: An improved artificial bee colony algo-

rithm for solving multi-objective low-carbon flexible job shop scheduling problem.

Applied Soft Computing , 95, 106544.

Li, Y., N. Li, H. E. Tseng, A. Girard, D. Filev, and I. Kolmanovsky, 2021: Safe

reinforcement learning using robust action governor .

Li, Z. and C. A. Floudas, 2014: Optimal scenario reduction framework based on

distance of uncertainty distribution and output performance: I. single reduction via

mixed integer linear optimization. Computers & Chemical Engineering , 70, 50–66.

288

https://arxiv.org/abs/2005.01643

— 2016: Optimal scenario reduction framework based on distance of uncertainty dis-

tribution and output performance: Ii. sequential reduction. Computers & Chemical

Engineering , 84, 599–610.

Li, Z. and M. Ierapetritou, 2008a: Process scheduling under uncertainty: Review and

challenges. Computers & Chemical Engineering , 32, no. 4-5, 715–727.

Li, Z. and M. G. Ierapetritou, 2008b: Robust optimization for process scheduling under

uncertainty. Industrial & Engineering Chemistry Research, 47, no. 12, 4148–4157.

Liashchynskyi, P. and P. Liashchynskyi, 2019: Grid search, random search, genetic

algorithm: a big comparison for nas. arXiv preprint arXiv:1912.06059 .

Lillicrap, T. P., J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and

D. Wierstra, 2015: Continuous control with deep reinforcement learning. arXiv

preprint arXiv:1509.02971 .

Lim, S., A. Joseph, L. Le, Y. Pan, and M. White, 2018: Actor-expert: A framework

for using q-learning in continuous action spaces. arXiv preprint arXiv:1810.09103 .

Lin, J. T. and C.-J. Huang, 2014: A simulation-based optimization approach for

a semiconductor photobay with automated material handling system. Simulation

Modelling Practice and Theory , 46, 76–100.

Lin, Z. and Z. Bai, 2011: Probability inequalities . Springer Science & Business Media.

Lindgren, G., 2012: Stationary stochastic processes: theory and applications . CRC

Press.

Liu, D., Q. Wei, D. Wang, X. Yang, and H. Li, 2017: Overview of adaptive dynamic

programming. Adaptive Dynamic Programming with Applications in Optimal Con-

trol , Springer International Publishing, Cham, 1–33.

URL https://doi.org/10.1007/978-3-319-50815-3_1

Liu, Q., Z. Wang, X. He, and D. Zhou, 2014: A survey of event-based strategies on

control and estimation. Systems Science & Control Engineering: An Open Access

Journal , 2, no. 1, 90–97.

289

https://doi.org/10.1007/978-3-319-50815-3_1

Liu, Y. and I. Karimi, 2008: Scheduling multistage batch plants with parallel units and

no interstage storage. Computers & Chemical Engineering , 32, no. 4-5, 671–693.

Lodi, A., 2010: Mixed integer programming computation. 50 years of integer program-

ming 1958-2008 , Springer, 619–645.

Lofberg, J., 2003: Approximations of closed-loop minimax mpc. 42nd IEEE Inter-

national Conference on Decision and Control (IEEE Cat. No. 03CH37475), IEEE,

volume 2, 1438–1442.

Löfberg, J., 2003: Minimax approaches to robust model predictive control , volume 812.

Linköping University Electronic Press.

Lombardi, O., F. Holik, and L. Vanni, 2016: What is shannon information? Synthese,

193, no. 7, 1983–2012.

Lorenzo, P. R., J. Nalepa, M. Kawulok, L. S. Ramos, and J. R. Pastor, 2017: Par-

ticle swarm optimization for hyper-parameter selection in deep neural networks.

Proceedings of the genetic and evolutionary computation conference, 481–488.

Lu, C.-H. and C.-C. Tsai, 2008: Adaptive predictive control with recurrent neural

network for industrial processes: An application to temperature control of a variable-

frequency oil-cooling machine. IEEE Transactions on Industrial Electronics , 55, no.

3, 1366–1375.

Lu, S., J. H. Lee, and F. You, 2020: Soft-constrained model predictive control based

on data-driven distributionally robust optimization. AIChE Journal , 66, no. 10,

e16546.

Lucia, S. and B. Karg, 2018: A deep learning-based approach to robust nonlinear

model predictive control. IFAC-PapersOnLine, 51, no. 20, 511–516.

Lütjens, B., M. Everett, and J. P. How, 2019: Safe reinforcement learning with model

uncertainty estimates. 2019 International Conference on Robotics and Automation

(ICRA), IEEE, 8662–8668.

Luus, R., 1993: Application of dynamic programming to differential-algebraic process

systems. Computers & chemical engineering , 17, no. 4, 373–377.

290

Ma, X., L. Xia, Z. Zhou, J. Yang, and Q. Zhao, 2020: DSAC: Distributional soft actor

critic for risk-sensitive reinforcement learning. arXiv preprint arXiv:2004.14547 .

Ma, Y., D. Jayaraman, and O. Bastani, 2021: Conservative offline distributional rein-

forcement learning. Advances in Neural Information Processing Systems , 34.

Ma, Y., W. Zhu, M. G. Benton, and J. Romagnoli, 2019: Continuous control of a

polymerization system with deep reinforcement learning. Journal of Process Control ,

75, 40–47.

Magni, L., D. Pala, and R. Scattolini, 2009: Stochastic model predictive control of

constrained linear systems with additive uncertainty. 2009 European Control Con-

ference (ECC), IEEE, 2235–2240.

Mao, X., 2015: The truncated euler–maruyama method for stochastic differential equa-

tions. Journal of Computational and Applied Mathematics , 290, no. C, 370–384,

publisher: Elsevier B.V.

Maravelias, C., 2021a: Chemical production scheduling : mixed-integer programming

models and methods . Cambridge series in chemical engineering, Cambridge Univer-

sity Press, Cambridge ; New York, NY.

Maravelias, C. T., 2012: General framework and modeling approach classification for

chemical production scheduling. AIChE Journal , 58, no. 6, 1812–1828.

— 2021b: Chemical Production Scheduling: Mixed-integer Programming Models and

Methods . Cambridge University Press.

Maravelias, C. T. and I. E. Grossmann, 2003: New general continuous-time state-

task network formulation for short-term scheduling of multipurpose batch plants.

Industrial & engineering chemistry research, 42, no. 13, 3056–3074.

Maravelias, C. T. and C. Sung, 2009: Integration of production planning and schedul-

ing: Overview, challenges and opportunities. Computers & Chemical Engineering ,

33, no. 12, 1919–1930.

291

Marchetti, A. G., G. François, T. Faulwasser, and D. Bonvin, 2016: Modifier adap-

tation for real-time optimization—methods and applications. Processes , 4, no. 4,

55.

Markana, A., N. Padhiyar, and K. Moudgalya, 2018: Multi-criterion control of a

bioprocess in fed-batch reactor using ekf based economic model predictive control.

Chemical Engineering Research and Design, 136, 282–294.

Marti, R., S. Lucia, D. Sarabia, R. Paulen, S. Engell, and C. de Prada, 2015: Improving

scenario decomposition algorithms for robust nonlinear model predictive control.

Computers & Chemical Engineering , 79, 30–45.

Mart́ınez, B., M. Rodŕıguez, and I. Dı́az, 2022: Cstr control with deep reinforcement

learning. Computer Aided Chemical Engineering , Elsevier, volume 49, 1693–1698.

Mayne, D., 2016: Robust and stochastic model predictive control: Are we going in the

right direction? Annual Reviews in Control , 41, 184–192.

Mayne, D. Q., E. C. Kerrigan, E. Van Wyk, and P. Falugi, 2011: Tube-based robust

nonlinear model predictive control. International journal of robust and nonlinear

control , 21, no. 11, 1341–1353.

Mayne, D. Q., J. B. Rawlings, C. V. Rao, and P. O. Scokaert, 2000: Constrained

model predictive control: Stability and optimality. Automatica, 36, no. 6, 789–814.

McAllister, R. D., J. B. Rawlings, and C. T. Maravelias, 2022: The inherent robustness

of closed-loop scheduling. Computers & Chemical Engineering , 159, 107678.

McBride, K. and K. Sundmacher, 2019: Overview of surrogate modeling in chemical

process engineering. Chemie Ingenieur Technik , 91, no. 3, 228–239.

McClement, D. G., N. P. Lawrence, M. G. Forbes, P. D. Loewen, J. U. Backström, and

R. B. Gopaluni, 2022: Meta-reinforcement learning for adaptive control of second

order systems.

McClement, D. G., N. P. Lawrence, P. D. Loewen, M. G. Forbes, J. U. Backström, and

R. B. Gopaluni, 2021: A meta-reinforcement learning approach to process control .

292

McFarlane, R., 2018: A survey of exploration strategies in reinforcement learning.

McGill University .

Melo, F. S., S. P. Meyn, and M. I. Ribeiro, 2008: An analysis of reinforcement learning

with function approximation. Proceedings of the 25th international conference on

Machine learning , 664–671.

Melo, F. S. and M. I. Ribeiro, 2007: Q-learning with linear function approximation.

International Conference on Computational Learning Theory , Springer, 308–322.

Melo, M. T., S. Nickel, and F. Saldanha-da Gama, 2012: A tabu search heuristic for

redesigning a multi-echelon supply chain network over a planning horizon. Inter-

national Journal of Production Economics , 136, no. 1, 218–230, iSBN: 0925-5273

Publisher: Elsevier.

Memarian, A., S. K. Varanasi, and B. Huang, 2021: Mixture robust semi-supervised

probabilistic principal component regression with missing input data. Chemometrics

and Intelligent Laboratory Systems , 214, 104315.

Memmel, M., P. Liu, D. Tateo, and J. Peters, 2022: Dimensionality Reduction and

Prioritized Exploration for Policy Search. arXiv preprint arXiv:2203.04791 .

Mencarelli, L., Q. Chen, A. Pagot, and I. E. Grossmann, 2020: A review on superstruc-

ture optimization approaches in process system engineering. Computers & Chemical

Engineering , 136, 106808.

Méndez, C., G. Henning, and J. Cerdá, 2000: Optimal scheduling of batch plants

satisfying multiple product orders with different due-dates. Computers & Chemical

Engineering , 24, no. 9-10, 2223–2245.

Méndez, C. A., J. Cerdá, I. E. Grossmann, I. Harjunkoski, and M. Fahl, 2006: State-of-

the-art review of optimization methods for short-term scheduling of batch processes.

Computers & chemical engineering , 30, no. 6-7, 913–946.

Mendiola-Rodriguez, T. A. and L. A. Ricardez-Sandoval, 2022: Robust control for

anaerobic digestion systems of tequila vinasses under uncertainty: A deep deter-

ministic policy gradient algorithm. Digital Chemical Engineering , 3, 100023.

293

Meraz, M., V. Sanchez-Vazquez, and F. Martinez-Martinez, 2022: A systematic deriva-

tion of the monod equation for multi-substrate conditions. Revista Mexicana De

Ingenieŕıa Qúımica, 21, no. 2, Bio2798–Bio2798.

Merchant, A., L. Metz, S. S. Schoenholz, and E. D. Cubuk, 2021: Learn2hop: Learned

optimization on rough landscapes. Proceedings of the 38th International Conference

on Machine Learning , M. Meila and T. Zhang, Eds., PMLR, volume 139 of Pro-

ceedings of Machine Learning Research, 7643–7653.

URL https://proceedings.mlr.press/v139/merchant21a.html

Mesbah, A., 2016: Stochastic model predictive control: An overview and perspectives

for future research. IEEE Control Systems Magazine, 36, no. 6, 30–44.

Mesbah, A., I. V. Kolmanovsky, and S. Di Cairano, 2019: Stochastic model predictive

control. Handbook of Model Predictive Control , Springer, 75–97.

Mesbah, A., S. Streif, R. Findeisen, and R. D. Braatz, 2014: Stochastic nonlinear

model predictive control with probabilistic constraints. 2014 American control con-

ference, IEEE, 2413–2419.

Meyn, S., 2022: Control Systems and Reinforcement Learning . Cambridge University

Press.

Michie, D., M. Bain, and J. Hayes-Miches, 1990: Cognitive models from subcognitive

skills. IEE control engineering series , 44, 71–99.

Min, K., H. Kim, and K. Huh, 2019: Deep distributional reinforcement learning based

high-level driving policy determination. IEEE Transactions on Intelligent Vehicles ,

4, no. 3, 416–424, iSBN: 2379-8904 Publisher: IEEE.

Mnih, V., A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and

K. Kavukcuoglu, 2016: Asynchronous methods for deep reinforcement learning.

International conference on machine learning , PMLR, 1928–1937.

Mnih, V., N. Heess, and A. Graves, 2014: Recurrent models of visual attention. Ad-

vances in neural information processing systems , 27.

294

https://proceedings.mlr.press/v139/merchant21a.html

Mnih, V., K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and

M. Riedmiller, 2013: Playing atari with deep reinforcement learning. arXiv preprint

arXiv:1312.5602 .

Mnih, V., K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,

A. Graves, M. Riedmiller, A. K. Fidjeland, and G. Ostrovski, 2015a: Human-level

control through deep reinforcement learning. nature, 518, no. 7540, 529–533, iSBN:

1476-4687 Publisher: Nature Publishing Group.

Mnih, V., K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,

A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie,

A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hass-

abis, 2015b: Human-level control through deep reinforcement learning. Nature, 518,

no. 7540, 529–52933, publisher: Nature Publishing Group.

Mnih, V., K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,

A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., 2015c: Human-

level control through deep reinforcement learning. nature, 518, no. 7540, 529–533.

Mouret, S., I. E. Grossmann, and P. Pestiaux, 2011: Time representations and

mathematical models for process scheduling problems. Computers & Chemical

Engineering , 35, no. 6, 1038–1063, doi:10.1016/j.compchemeng.2010.07.007.

URL https://www.sciencedirect.com/science/article/pii/

S0098135410002553

Mowbray, M., P. Petsagkourakis, E. A. del Rio-Chanona, and D. Zhang, 2022a: Safe

chance constrained reinforcement learning for batch process control. Computers &

Chemical Engineering , 157, 107630, iSBN: 0098-1354 Publisher: Elsevier.

Mowbray, M., R. Smith, E. A. Del Rio-Chanona, and D. Zhang, 2021: Using process

data to generate an optimal control policy via apprenticeship and reinforcement

learning. AIChE Journal , e17306.

Mowbray, M., D. Zhang, and E. A. D. R. Chanona, 2022b: Distributional Reinforce-

ment Learning for Scheduling of (Bio) chemical Production Processes. arXiv preprint

arXiv:2203.00636 .

295

https://www.sciencedirect.com/science/article/pii/S0098135410002553
https://www.sciencedirect.com/science/article/pii/S0098135410002553

Mukhoti, J., A. Kirsch, J. van Amersfoort, P. H. Torr, and Y. Gal, 2021: Deterministic

neural networks with appropriate inductive biases capture epistemic and aleatoric

uncertainty. arXiv preprint arXiv:2102.11582 .

Munikoti, S., D. Agarwal, L. Das, M. Halappanavar, and B. Natarajan, 2022: Chal-

lenges and opportunities in deep reinforcement learning with graph neural networks:

A comprehensive review of algorithms and applications .

URL https://arxiv.org/abs/2206.07922

Muñoz-Cobo, J.-L., R. Mendizábal, A. Miquel, C. Berna, and A. Escrivá, 2017: Use

of the principles of maximum entropy and maximum relative entropy for the deter-

mination of uncertain parameter distributions in engineering applications. Entropy ,

19, no. 9, 486.

Murphy, K. P., 2022: Probabilistic machine learning: an introduction. MIT press.

— 2023: Probabilistic Machine Learning: Advanced Topics . MIT Press.

URL probml.ai

Nagabandi, A., I. Clavera, S. Liu, R. S. Fearing, P. Abbeel, S. Levine, and C. Finn,

2018: Learning to adapt in dynamic, real-world environments through meta-

reinforcement learning. arXiv preprint arXiv:1803.11347 .

Najjarbashi, A. and G. J. Lim, 2019: A variability reduction method for the operating

room scheduling problem under uncertainty using cvar. Operations Research for

Health Care, 20, 25–32.

Nakamura-Zimmerer, T., Q. Gong, and W. Kang, 2021: Neural network optimal feed-

back control with enhanced closed loop stability .

URL https://arxiv.org/abs/2109.07466

Nemirovski, A. and A. Shapiro, 2006: Scenario approximations of chance constraints.

Probabilistic and randomized methods for design under uncertainty , 3–47.

Nestor, B., M. B. McDermott, W. Boag, G. Berner, T. Naumann, M. C. Hughes,

A. Goldenberg, and M. Ghassemi, 2019: Feature robustness in non-stationary health

records: caveats to deployable model performance in common clinical machine learn-

ing tasks. Machine Learning for Healthcare Conference, PMLR, 381–405.

296

https://arxiv.org/abs/2206.07922
probml.ai
https://arxiv.org/abs/2109.07466

Neu, G., A. Jonsson, and V. Gómez, 2017: A unified view of entropy-regularized

markov decision processes .

Ng, A. Y., D. Harada, and S. Russell, 1999: Policy invariance under reward transfor-

mations: Theory and application to reward shaping. Icml , volume 99, 278–287.

Ng, A. Y., S. Russell, et al., 2000: Algorithms for inverse reinforcement learning. Icml ,

volume 1, 2.

Nguyen, S., Y. Mei, B. Xue, and M. Zhang, 2019: A hybrid genetic programming

algorithm for automated design of dispatching rules. Evolutionary computation, 27,

no. 3, 467–496.

Nian, R., J. Liu, and B. Huang, 2020: A review on reinforcement learning: Introduc-

tion and applications in industrial process control. Computers & Chemical Engi-

neering , 139, 106886.

Nikita, S., A. Tiwari, D. Sonawat, H. Kodamana, and A. S. Rathore, 2021: Rein-

forcement learning based optimization of process chromatography for continuous

processing of biopharmaceuticals. Chemical Engineering Science, 230, 116171.

Nnaisense, 2022a: .

URL https://evotorch.ai/

— 2022b: Empowering industry .

URL https://nnaisense.com/case-studies/

Nocedal, J. and S. Wright, 2006: Numerical optimization. Springer Science & Business

Media.

Nomikos, P. and J. F. MacGregor, 1994: Monitoring batch processes using multiway

principal component analysis. AIChE Journal , 40, no. 8, 1361–1375.

Nota, C. and P. S. Thomas, 2019a: Is the policy gradient a gradient? arXiv preprint

arXiv:1906.07073 .

— 2019b: Is the policy gradient a gradient? arXiv preprint arXiv:1906.07073 .

— 2020: Is the policy gradient a gradient? .

297

https://evotorch.ai/
https://nnaisense.com/case-studies/

Ochoa, G., J. A. Vázquez-Rodŕıguez, S. Petrovic, and E. Burke, 2009: Dispatching

rules for production scheduling: A hyper-heuristic landscape analysis. 2009 IEEE

congress on evolutionary computation, IEEE, 1873–1880.

Oden, J. T., 2018: Adaptive multiscale predictive modelling. Acta Numerica, 27,

353–450.

Ogasawara, H., 2019: The multiple cantelli inequalities. Statistical Methods & Appli-

cations , 28, no. 3, 495–506.

Oh, T. H., H. M. Park, J. W. Kim, and J. M. Lee, 2022: Integration of reinforcement

learning and model predictive control to optimize semi-batch bioreactor. AIChE

Journal , 68, no. 6, e17658.

Okpoti, E. S. and I.-J. Jeong, 2021: A reactive decentralized coordination algorithm for

event-driven production planning and control: A cyber-physical production system

prototype case study. Journal of manufacturing systems , 58, 143–158.

ONS, O. f. N. S., 2021: Uk manufacturers’ sales by product: 2020 results .

Oroojlooyjadid, A., M. Nazari, L. Snyder, and M. Takác, 2017: A deep q-network for

the beer game with partial information. arXiv preprint arXiv:1708.05924 .

Osinenko, P., D. Dobriborsci, and W. Aumer, 2022: Reinforcement learning with

guarantees: a review. IFAC-PapersOnLine, 55, no. 15, 123–128.

Ou, R., G. Pan, and T. Faulwasser, 2022: Data-driven multiple shooting for stochastic

optimal control. IEEE Control Systems Letters , 7, 313–318.

Oyebolu, F. B., R. Allmendinger, S. S. Farid, and J. Branke, 2019: Dynamic scheduling

of multi-product continuous biopharmaceutical facilities: A hyper-heuristic frame-

work. Computers & Chemical Engineering , 125, 71–88.

Özkan, G., H. Hapoğlu, and M. Alpbaz, 2006: Non-linear generalised predictive con-

trol of a jacketed well mixed tank as applied to a batch process—a polymerisation

reaction. Applied Thermal Engineering , 26, no. 7, 720–726.

Palombarini, J. A., J. C. Barsce, and E. C. Mart́ınez, 2018: Generating rescheduling

knowledge using reinforcement learning in a cognitive architecture.

298

Pan, E., P. Petsagkourakis, M. Mowbray, D. Zhang, and A. del Rio-Chanona, 2020:

Constrained model-free reinforcement learning for process optimization.

Pan, E., P. Petsagkourakis, M. Mowbray, D. Zhang, and E. A. del Rio-Chanona, 2021:

Constrained model-free reinforcement learning for process optimization. Computers

& Chemical Engineering , 154, 107462.

Pan, I., L. R. Mason, and O. K. Matar, 2022: Data-centric engineering: integrating

simulation, machine learning and statistics. challenges and opportunities. Chemical

Engineering Science, 249, 117271.

Pantelides, C. C., 1994: Unified frameworks for optimal process planning and schedul-

ing. Proceedings on the second conference on foundations of computer aided opera-

tions , 253–274.

Panwalkar, S. and C. Koulamas, 2019: The evolution of schematic representations of

flow shop scheduling problems. Journal of Scheduling , 22, no. 4, 379–391.

Papageorgiou, L., M. C. Georgiadis, E. N. Pistikopoulos, and V. Dua, 2007: Supply-

Chain Optimization, Part II , volume 4. John Wiley & Sons.

Park, J., J. Chun, S. H. Kim, Y. Kim, and J. Park, 2021: Learning to schedule job-

shop problems: representation and policy learning using graph neural network and

reinforcement learning. International Journal of Production Research, 59, no. 11,

3360–3377.

Park, J., Y. Seo, J. Shin, H. Lee, P. Abbeel, and K. Lee, 2022: Surf: Semi-supervised

reward learning with data augmentation for feedback-efficient preference-based rein-

forcement learning .

URL https://arxiv.org/abs/2203.10050

Park, J.-B., K.-S. Lee, J.-R. Shin, and K. Y. Lee, 2005a: A particle swarm optimization

for economic dispatch with nonsmooth cost functions. IEEE Transactions on Power

systems , 20, no. 1, 34–42.

— 2005b: A particle swarm optimization for economic dispatch with nonsmooth cost

functions. IEEE Transactions on Power systems , 20, no. 1, 34–42, iSBN: 0885-8950

Publisher: IEEE.

299

https://arxiv.org/abs/2203.10050

Parzen, E., 1962: On estimation of a probability density function and mode. The

annals of mathematical statistics , 33, no. 3, 1065–1076.

Paul, S. K. and P. Chowdhury, 2020: A production recovery plan in manufacturing

supply chains for a high-demand item during COVID-19. International Journal of

Physical Distribution & Logistics Management , iSBN: 0960-0035 Publisher: Emer-

ald Publishing Limited.

Paulson, J. A., E. A. Buehler, R. D. Braatz, and A. Mesbah, 2020: Stochastic model

predictive control with joint chance constraints. International Journal of Control ,

93, no. 1, 126–139.

Paulson, J. A. and A. Mesbah, 2018: Nonlinear model predictive control with explicit

backoffs for stochastic systems under arbitrary uncertainty. IFAC-PapersOnLine,

51, no. 20, 523–534.

— 2020: Approximate closed-loop robust model predictive control with guaranteed

stability and constraint satisfaction. IEEE Control Systems Letters , 4, no. 3, 719–

724.

Payne, A. and P. Frow, 2006: Customer relationship management: from strategy to

implementation. Journal of marketing management , 22, no. 1-2, 135–168.

Peidro, D., J. Mula, M. Jiménez, and M. del Mar Botella, 2010: A fuzzy linear pro-

gramming based approach for tactical supply chain planning in an uncertainty en-

vironment. European Journal of Operational Research, 205, no. 1, 65–80, iSBN:

0377-2217 Publisher: Elsevier.

Peng, B., Y. Mu, J. Duan, Y. Guan, S. E. Li, and J. Chen, 2021: Separated

proportional-integral lagrangian for chance constrained reinforcement learning .

Peng, Z., Y. Zhang, Y. Feng, T. Zhang, Z. Wu, and H. Su, 2019: Deep reinforce-

ment learning approach for capacitated supply chain optimization under demand

uncertainty. 2019 Chinese Automation Congress (CAC), IEEE, 3512–3517.

Perez, H. D., J. M. Wassick, and I. E. Grossmann, 2022: A digital twin framework

for online optimization of supply chain business processes. Computers & Chemical

Engineering , 107972.

300

Perkins, T. J. and A. G. Barto, 2002: Lyapunov design for safe reinforcement learning.

Journal of Machine Learning Research, 3, no. Dec, 803–832.

Petsagkourakis, P. and F. Galvanin, 2020: Safe model-based design of experiments

using gaussian processes .

Petsagkourakis, P., I. O. Sandoval, E. Bradford, F. Galvanin, D. Zhang, and E. A. del

Rio-Chanona, 2020a: Chance constrained policy optimization for process control

and optimization. arXiv preprint arXiv:2008.00030 .

— 2022: Chance constrained policy optimization for process control and optimization.

Journal of Process Control , 111, 35–45.

Petsagkourakis, P., I. O. Sandoval, E. Bradford, D. Zhang, and d. E. A. Rio-Chanona,

2020b: Reinforcement learning for batch bioprocess optimization. Comput. Chem.

Eng., 133, doi:10.1016/j.compchemeng.2019.106649.

URL https://doi.org/10.1016/j.compchemeng.2019.106649

Pfrommer, S., T. Gautam, A. Zhou, and S. Sojoudi, 2022: Safe reinforcement learn-

ing with chance-constrained model predictive control. Learning for Dynamics and

Control Conference, PMLR, 291–303.

Pistikopoulos, E. N., A. Barbosa-Povoa, J. H. Lee, R. Misener, A. Mitsos, G. V.

Reklaitis, V. Venkatasubramanian, F. You, and R. Gani, 2021: Process systems

engineering–the generation next? Computers & Chemical Engineering , 147, 107252.

Powell, K. M., D. Machalek, and T. Quah, 2020: Real-time optimization using rein-

forcement learning. Computers & Chemical Engineering , 143, 107077.

Powell, W. B., 2021: From reinforcement learning to optimal control: A unified frame-

work for sequential decisions. Handbook of Reinforcement Learning and Control ,

Springer, 29–74.

Puterman, M. L., 2014a: Markov decision processes: discrete stochastic dynamic pro-

gramming . John Wiley & Sons.

— 2014b: Markov decision processes: discrete stochastic dynamic programming . John

Wiley & Sons.

301

https://doi.org/10.1016/j.compchemeng.2019.106649

Qian, H. and Y. Yu, 2021: Derivative-free reinforcement learning: a review. Frontiers

of Computer Science, 15, no. 6, 1–19, iSBN: 2095-2236 Publisher: Springer.

Qin, R. and J. Zhao, 2022: High-efficiency generative adversarial network model for

chemical process fault diagnosis. IFAC-PapersOnLine, 55, no. 7, 732–737.

Rafiei, M. and L. A. Ricardez-Sandoval, 2018: Stochastic back-off approach for inte-

gration of design and control under uncertainty. Industrial & Engineering Chemistry

Research, 57, no. 12, 4351–4365.

— 2020: Integration of design and control for industrial-scale applications under uncer-

tainty: a trust region approach. Computers & Chemical Engineering , 141, 107006.

Rajeswaran, A., I. Mordatch, and V. Kumar, 2020: A game theoretic framework for

model based reinforcement learning .

URL https://arxiv.org/abs/2004.07804

Rashidinejad, P., B. Zhu, C. Ma, J. Jiao, and S. Russell, 2021: Bridging offline rein-

forcement learning and imitation learning: A tale of pessimism. Advances in Neural

Information Processing Systems , 34, 11702–11716.

Rasmussen, C. E., 2006: Gaussian processes for machine learning. MIT Press.

Rawlings, J. B., D. Q. Mayne, and M. Diehl, 2017: Model predictive control: theory,

computation, and design, volume 2. Nob Hill Publishing Madison, WI.

Reed, P., 2020: George e. davis (1850–1907): Transition from consultant chemist to

consultant chemical engineer in a period of economic pressure. ambix , 67, no. 3,

252–270.

Remko, V. H., 2020: Research opportunities for a more resilient post-COVID-19 supply

chain–closing the gap between research findings and industry practice. International

Journal of Operations & Production Management , 40, no. 4, 341–355, iSBN: 0144-

3577 Publisher: Emerald Publishing Limited.

Riedmiller, M., J. Peters, and S. Schaal, 2007a: Evaluation of policy gradient methods

and variants on the cart-pole benchmark. 2007 IEEE International Symposium on

Approximate Dynamic Programming and Reinforcement Learning , IEEE, 254–261.

302

https://arxiv.org/abs/2004.07804

— 2007b: Evaluation of policy gradient methods and variants on the cart-pole bench-

mark. 2007 IEEE International Symposium on Approximate Dynamic Programming

and Reinforcement Learning , IEEE, 254–261.

Riedmiller, S. and M. Riedmiller, 1999: A neural reinforcement learning approach to

learn local dispatching policies in production scheduling. IJCAI , Citeseer, volume 2,

764–771.

Rippin, D., 1993: Batch process systems engineering: a retrospective and prospective

review. Computers & chemical engineering , 17, S1–S13.

Rockafellar, R. and S. Uryasev, 2002: Conditional value-at-risk for general deviation

measure. J. Banking Financ, 26, 1443–1471.

Rockafellar, R. T. and S. Uryasev, 2000: Optimization of conditional value-at-risk.

Journal of risk , 2, 21–42, iSBN: 1465-1211 Publisher: Citeseer.

Rockafellar, R. T., S. Uryasev, et al., 2000: Optimization of conditional value-at-risk.

Journal of risk , 2, 21–42.

Rodriguez, J. D., A. Perez, and J. A. Lozano, 2009: Sensitivity analysis of k-fold cross

validation in prediction error estimation. IEEE transactions on pattern analysis and

machine intelligence, 32, no. 3, 569–575.

Rohani, S., 2017: Coulson and Richardson’s chemical engineering. Volume 3B, Pro-

cess control . Fourth edition.nd ed., Butterworth-Heinemann, Kidlington, Oxford,

container-title: Coulson and Richardson’s chemical engineering. Volume 3B, Pro-

cess control.

Ronen, B. and R. Karp, 1994: An information entropy approach to the small-lot

concept. IEEE Transactions on Engineering Management , 41, no. 1, 89–92.

Rowland, M., R. Dadashi, S. Kumar, R. Munos, M. G. Bellemare, and W. Dabney,

2019: Statistics and samples in distributional reinforcement learning. International

Conference on Machine Learning , PMLR, 5528–5536.

303

Russakovsky, O., J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpa-

thy, A. Khosla, M. Bernstein, et al., 2015: Imagenet large scale visual recognition

challenge. International journal of computer vision, 115, no. 3, 211–252.

Ruszczyński, A. and A. Shapiro, 2003: Stochastic programming models. Handbooks in

operations research and management science, 10, 1–64.

Ryu, M., Y. Chow, R. Anderson, C. Tjandraatmadja, and C. Boutilier, 2019: Caql:

Continuous action q-learning. arXiv preprint arXiv:1909.12397 .

Sachio, S., M. Mowbray, M. M. Papathanasiou, E. A. del Rio-Chanona, and P. Petsagk-

ourakis, 2022: Integrating process design and control using reinforcement learning.

Chemical Engineering Research and Design, 183, 160–169.

Sadeghian, A., N. M. Jan, O. Wu, and B. Huang, 2022: Robust probabilistic prin-

cipal component regression with switching mixture gaussian noise for soft sensing.

Chemometrics and Intelligent Laboratory Systems , 222, 104491.

Saenz de Ugarte, B., A. Artiba, and R. Pellerin, 2009: Manufacturing execution

system–a literature review. Production planning and control , 20, no. 6, 525–539.

Salehkaleybar, S., S. Khorasani, N. Kiyavash, N. He, and P. Thiran, 2022: Momentum-

based policy gradient with second-order information.

URL https://arxiv.org/abs/2205.08253

Salimans, T., J. Ho, X. Chen, S. Sidor, and I. Sutskever, 2017a: Evolution strategies as

a scalable alternative to reinforcement learning. arXiv preprint arXiv:1703.03864 .

— 2017b: Evolution strategies as a scalable alternative to reinforcement learning.

arXiv preprint arXiv:1703.03864 .

Sammut, C., S. Hurst, D. Kedzier, and D. Michie, 1992: Learning to fly. Machine

Learning Proceedings 1992 , Elsevier, 385–393.

Sand, G. and S. Engell, 2004: Modeling and solving real-time scheduling problems by

stochastic integer programming. Computers & chemical engineering , 28, no. 6-7,

1087–1103.

304

https://arxiv.org/abs/2205.08253

Santos, F., R. Fukasawa, and L. Ricardez-Sandoval, 2021a: An integrated machine

scheduling and personnel allocation problem for large-scale industrial facilities using

a rolling horizon framework. Optimization and Engineering , 22, no. 4, 2603–2626.

— 2021b: An integrated machine scheduling and personnel allocation problem for

large-scale industrial facilities using a rolling horizon framework. Optimization and

Engineering , 22, no. 4, 2603–2626, iSBN: 1573-2924 Publisher: Springer.

Sarin, S. C., H. D. Sherali, and L. Liao, 2014: Minimizing conditional-value-at-risk for

stochastic scheduling problems. Journal of Scheduling , 17, no. 1, 5–15.

Sarkis, M., A. Bernardi, N. Shah, and M. M. Papathanasiou, 2021: Decision support

tools for next-generation vaccines and advanced therapy medicinal products: present

and future. Current Opinion in Chemical Engineering , 32, 100689.

Schulman, J., X. Chen, and P. Abbeel, 2018a: Equivalence between policy gradients

and soft q-learning. arXiv:1704.06440 [cs] , arXiv: 1704.06440.

URL http://arxiv.org/abs/1704.06440

Schulman, J., S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel, 2017a: Trust region

policy optimization.

Schulman, J., P. Moritz, S. Levine, M. Jordan, and P. Abbeel, 2018b: High-

dimensional continuous control using generalized advantage estimation.

Schulman, J., F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, 2017b: Proximal

policy optimization algorithms. arXiv preprint arXiv:1707.06347 .

Schwefel, H.-P. and G. Rudolph, 1995: Contemporary evolution strategies. European

conference on artificial life, Springer, 891–907.

Schweidtmann, A. M., E. Esche, A. Fischer, M. Kloft, J.-U. Repke, S. Sager, and

A. Mitsos, 2021: Machine learning in chemical engineering: a perspective. Chemie

Ingenieur Technik , 93, no. 12, 2029–2039.

Scokaert, P. O. and J. B. Rawlings, 1999: Feasibility issues in linear model predictive

control. AIChE Journal , 45, no. 8, 1649–1659.

305

http://arxiv.org/abs/1704.06440

Šeda, M., 2007: Mathematical models of flow shop and job shop scheduling problems.

International Journal of Physical and Mathematical Sciences , 1, no. 7, 307–312.

See, J., S. Jamaian, R. Salleh, M. Nor, and F. Aman, 2018: Parameter estimation of

monod model by the least-squares method for microalgae botryococcus braunii sp.

Journal of Physics: Conference Series , IOP Publishing, volume 995, 012026.

Shady, S., T. Kaihara, N. Fujii, and D. Kokuryo, 2020: Automatic design of dis-

patching rules with genetic programming for dynamic job shop scheduling. IFIP In-

ternational Conference on Advances in Production Management Systems , Springer,

399–407.

Shah, N., C. Pantelides, and R. Sargent, 1993: A general algorithm for short-term

scheduling of batch operations—ii. computational issues. Computers & chemical

engineering , 17, no. 2, 229–244.

Shang, C. and F. You, 2019: A data-driven robust optimization approach to scenario-

based stochastic model predictive control. Journal of Process Control , 75, 24–39.

Shapiro, A., D. Dentcheva, and A. Ruszczynski, 2021: Lectures on stochastic program-

ming: modeling and theory . SIAM.

Shapiro, A. and A. Philpott, 2007: A tutorial on stochastic programming. Manuscript.

Available at www2. isye. gatech. edu/ashapiro/publications. html , 17.

Sharma, N. and Y. Liu, 2022: A hybrid science-guided machine learning approach for

modeling chemical processes: A review. AIChE Journal , 68, no. 5, e17609.

Shehab, E., M. Sharp, L. Supramaniam, and T. A. Spedding, 2004: Enterprise resource

planning: An integrative review. Business process management journal .

Shim, J. and J. M. Lee, 2022: Synthesis of distillation sequence with thermally coupled

configurations using reinforcement learning. Computer Aided Chemical Engineering ,

Elsevier, volume 49, 169–174.

Shin, J., T. A. Badgwell, K.-H. Liu, and J. H. Lee, 2019: Reinforcement learning–

overview of recent progress and implications for process control. Computers & Chem-

ical Engineering , 127, 282–294.

306

Silver, D., 2009: Reinforcement Learning and Simulation-Based Search in Computer

Go. Ph.D. thesis, Dept. of Comp. Sci., Univ. of Alberta, Edmonton, AB, Canada.

Silver, D., J. A. Bagnell, and A. Stentz, 2010: Learning from demonstration for au-

tonomous navigation in complex unstructured terrain. The International Journal of

Robotics Research, 29, no. 12, 1565–1592, publisher-place: London, England pub-

lisher: SAGE Publications.

Silver, D., J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hu-

bert, L. Baker, M. Lai, and A. Bolton, 2017a: Mastering the game of go without

human knowledge. nature, 550, no. 7676, 354–359, iSBN: 1476-4687 Publisher: Na-

ture Publishing Group.

Silver, D., J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hu-

bert, L. Baker, M. Lai, A. Bolton, et al., 2017b: Mastering the game of go without

human knowledge. nature, 550, no. 7676, 354–359.

Simmons-Edler, R., B. Eisner, E. Mitchell, S. Seung, and D. Lee, 2019: Q-learning for

continuous actions with cross-entropy guided policies. arXiv:1903.10605 [cs] , arXiv:

1903.10605.

URL http://arxiv.org/abs/1903.10605

Singer, M., 2001: Decomposition methods for large job shops. Computers & Operations

Research, 28, no. 3, 193–207.

Singh, V. and H. Kodamana, 2020: Reinforcement learning based control of batch

polymerisation processes. IFAC-PapersOnLine, 53, no. 1, 667–672.

Sniedovich, M., 1978: Dynamic programming and principles of optimality. Journal of

Mathematical Analysis and Applications , 65, no. 3, 586–606.

Sobol’, I. M., 1967: On the distribution of points in a cube and the approximate

evaluation of integrals. Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki ,

7, no. 4, 784–802.

Sörensen, K., M. Sevaux, and F. Glover, 2018: A history of metaheuristics. Handbook

of heuristics , Springer, 791–808.

307

http://arxiv.org/abs/1903.10605

Spielberg, S., A. Tulsyan, N. P. Lawrence, P. D. Loewen, and R. Bhushan Gopaluni,

2019: Toward self-driving processes: A deep reinforcement learning approach to

control. AIChE Journal , 65, no. 10, e16689.

Sternberg, W. and M. P. Deisenroth, 2017: Identification of gaussian process state-

space models.

Steurtewagen, B. and D. Van den Poel, 2021: Adding interpretability to predictive

maintenance by machine learning on sensor data. Computers & Chemical Engineer-

ing , 152, 107381.

Stops, L., R. Leenhouts, Q. Gao, and A. M. Schweidtmann, 2022: Flowsheet synthe-

sis through hierarchical reinforcement learning and graph neural networks. arXiv

preprint arXiv:2207.12051 .

Stork, M., R. Tousain, J. Wieringa, and O. H. Bosgra, 2003: A milp approach to the

optimization of the operation procedure of a fed-batch emulsification process in a

stirred vessel. Computers & chemical engineering , 27, no. 11, 1681–1691.

Strassen, V., 1969: Gaussian elimination is not optimal. Numerische mathematik , 13,

no. 4, 354–356.

Stuart, A. M., 2010: Inverse problems: a bayesian perspective. Acta numerica, 19,

451–559.

Stützle, T. et al., 1998: An ant approach to the flow shop problem. Proceedings of the

6th European Congress on Intelligent Techniques & Soft Computing (EUFIT’98),

Verlag Mainz, Wissenschaftsverlag Aachen, volume 3, 1560–1564.

Su, H. T., T. J. McAvoy, and P. Werbos, 1992: Long-term predictions of chemical

processes using recurrent neural networks: A parallel training approach. Industrial

& engineering chemistry research, 31, no. 5, 1338–1352, iSBN: 0888-5885 Publisher:

ACS Publications.

Subramanian, K., C. T. Maravelias, and J. B. Rawlings, 2012: A state-space model for

chemical production scheduling. Computers & chemical engineering , 47, 97–110.

308

Subramanian, S., S. Lucia, R. Paulen, and S. Engell, 2021: Tube-enhanced multi-stage

model predictive control for flexible robust control of constrained linear systems

with additive and parametric uncertainties. International Journal of Robust and

Nonlinear Control , doi:10.1002/rnc.5486.

URL http://dx.doi.org/10.1002/rnc.5486

Such, F. P., V. Madhavan, E. Conti, J. Lehman, K. O. Stanley, and J. Clune, 2017:

Deep neuroevolution: Genetic algorithms are a competitive alternative for training

deep neural networks for reinforcement learning. arXiv preprint arXiv:1712.06567 .

Sun, Q. and Z. Ge, 2021: A survey on deep learning for data-driven soft sensors. IEEE

Transactions on Industrial Informatics , 17, no. 9, 5853–5866.

Sundaramoorthy, A. and C. T. Maravelias, 2008: Simultaneous batching and schedul-

ing in multistage multiproduct processes. Industrial & engineering chemistry re-

search, 47, no. 5, 1546–1555.

Sundaramoorthy, A., C. T. Maravelias, and P. Prasad, 2009: Scheduling of multi-

stage batch processes under utility constraints. Industrial & engineering chemistry

research, 48, no. 13, 6050–6058.

Sundström, O., D. Ambühl, and L. Guzzella, 2010: On implementation of dynamic

programming for optimal control problems with final state constraints. Oil & Gas

Science and Technology–Revue de l’Institut Français du Pétrole, 65, no. 1, 91–102.

Suresh, V. and D. Chaudhuri, 1993: Dynamic scheduling—a survey of research. Inter-

national journal of production economics , 32, no. 1, 53–63.

Sutton, R., D. McAllester, S. Singh, and Y. Mansour, 2000: Policy gradient methods

for reinforcement learning with function approximation. Neural information process-

ing systems foundation, 1057–1063, iSSN: 10495258.

Sutton, R. S. and A. G. Barto, 2018a: Reinforcement learning: An introduction. MIT

press.

— 2018b: Reinforcement learning: An introduction. MIT press.

309

http://dx.doi.org/10.1002/rnc.5486

Sutton, R. S., D. A. McAllester, S. P. Singh, Y. Mansour, et al., 1999: Policy gradient

methods for reinforcement learning with function approximation. NIPs , Citeseer,

volume 99, 1057–1063.

Swanson, A., 2020: Global trade sputters, leaving too much here, too little there. The

New York Times , 10.

Sweeney, K. D., D. C. Sweeney II, and J. F. Campbell, 2019: The performance of

priority dispatching rules in a complex job shop: A study on the upper mississippi

river. International Journal of Production Economics , 216, 154–172.

Tang, L., S. Jiang, and J. Liu, 2010: Rolling horizon approach for dynamic parallel

machine scheduling problem with release times. Industrial & engineering chemistry

research, 49, no. 1, 381–389.

Tang, Y. C., J. Zhang, and R. Salakhutdinov, 2019a: Worst cases policy gradients .

— 2019b: Worst cases policy gradients. arXiv preprint arXiv:1911.03618 .

Tanyimboh, T. and C. Sheahan, 2002: A maximum entropy based approach to the

layout optimization of water distribution systems. Civil Engineering and Environ-

mental Systems , 19, no. 3, 223–253.

Teh, Y. W., M. Welling, S. Osindero, and G. E. Hinton, 2003: Energy-based models

for sparse overcomplete representations. Journal of Machine Learning Research, 4,

no. Dec, 1235–1260.

Thangavel, S., R. Paulen, and S. Engell, 2020: Robust multi-stage nonlinear model

predictive control using sigma points. Processes , 8, no. 7, 851.

Thebelt, A., J. Wiebe, J. Kronqvist, C. Tsay, and R. Misener, 2022: Maximizing

information from chemical engineering data sets: applications to machine learning.

Chemical Engineering Science, 252, 117469.

Thomas, P. and D. Nicholas, 2018: The fourth industrial revolution: Shaping new era.

Journal of International Affairs , 72, no. 1, 17–22.

310

Tian, Y. and E. N. Pistikopoulos, 2018: Synthesis of operable process intensification

systems—steady-state design with safety and operability considerations. Industrial

& Engineering Chemistry Research, 58, no. 15, 6049–6068.

Tjoa, I. B. and L. T. Biegler, 1991: Simultaneous solution and optimization strategies

for parameter estimation of differential-algebraic equation systems. Industrial &

Engineering Chemistry Research, 30, no. 2, 376–385.

Todaro, C. C. and H. C. Vogel, 2014: Fermentation and biochemical engineering hand-

book . William Andrew.

Tran, T. H., L. M. Nguyen, and K. Scheinberg, 2022: Finding optimal policy for

queueing models: New parameterization. arXiv preprint arXiv:2206.10073 .

Trentesaux, D., 2009: Distributed control of production systems. Engineering Appli-

cations of Artificial Intelligence, 22, no. 7, 971–978.

Tsay, C., J. Kronqvist, A. Thebelt, and R. Misener, 2021: Partition-based formulations

for mixed-integer optimization of trained relu neural networks. Advances in Neural

Information Processing Systems , 34, 3068–3080.

Tsay, C., A. Kumar, J. Flores-Cerrillo, and M. Baldea, 2019: Optimal demand re-

sponse scheduling of an industrial air separation unit using data-driven dynamic

models. Computers & Chemical Engineering , 126, 22–34, iSBN: 0098-1354 Pub-

lisher: Elsevier.

Tsitsiklis, J. N., 1994: Asynchronous stochastic approximation and q-learning. Ma-

chine learning , 16, no. 3, 185–202.

Turan, E. M. and J. Jäschke, 2021: Multiple shooting for training neural differential

equations on time series. IEEE Control Systems Letters , 6, 1897–1902.

Umlauft, J., T. Beckers, and S. Hirche, 2018: Scenario-based optimal control for

gaussian process state space models. 2018 European Control Conference (ECC),

IEEE, 1386–1392.

311

Uraikul, V., C. W. Chan, and P. Tontiwachwuthikul, 2007: Artificial intelligence for

monitoring and supervisory control of process systems. Engineering applications of

artificial intelligence, 20, no. 2, 115–131.

Urṕı, N. A., S. Curi, and A. Krause, 2021: Risk-averse offline reinforcement learning.

arXiv preprint arXiv:2102.05371 .

Valdez-Navarro, Y. I. and L. A. Ricardez-Sandoval, 2019: A novel back-off algorithm

for integration of scheduling and control of batch processes under uncertainty. In-

dustrial & Engineering Chemistry Research, 58, no. 48, 22064–22083.

van de Berg, D., T. Savage, P. Petsagkourakis, D. Zhang, N. Shah, and E. A. del

Rio-Chanona, 2022: Data-driven optimization for process systems engineering ap-

plications. Chemical Engineering Science, 248, 117135.

Van Hasselt, H., A. Guez, and D. Silver, 2016: Deep reinforcement learning with double

q-learning. Proceedings of the AAAI conference on artificial intelligence, volume 30.

Van Houdenhoven, M., J. M. Van Oostrum, E. W. Hans, G. Wullink, and G. Kazemier,

2007: Improving operating room efficiency by applying bin-packing and portfolio

techniques to surgical case scheduling. Anesthesia & Analgesia, 105, no. 3, 707–

714.

Van Overschee, P. and B. De Moor, 1993: Subspace algorithms for the stochastic

identification problem. Automatica, 29, no. 3, 649–660.

Van Seijen, H., H. Van Hasselt, S. Whiteson, and M. Wiering, 2009: A theoretical

and empirical analysis of expected sarsa. 2009 ieee symposium on adaptive dynamic

programming and reinforcement learning , IEEE, 177–184.

Vanderbei, R. J. et al., 2020: Linear programming . Springer.

Vela, C. R., S. Afsar, J. J. Palacios, I. Gonzalez-Rodriguez, and J. Puente, 2020: Evo-

lutionary tabu search for flexible due-date satisfaction in fuzzy job shop scheduling.

Computers & Operations Research, 119, 104931.

312

Velez, S. and C. T. Maravelias, 2013: Multiple and nonuniform time grids in discrete-

time mip models for chemical production scheduling. Computers & Chemical Engi-

neering , 53, 70–85.

Verderame, P. M., J. A. Elia, J. Li, and C. A. Floudas, 2010: Planning and schedul-

ing under uncertainty: a review across multiple sectors. Industrial & engineering

chemistry research, 49, no. 9, 3993–4017.

Verhaegen, M., 2015: Subspace techniques in system identification. Encyclopedia of

Systems and Control , Springer, 1386–1396.

Vijayakumar, B., P. J. Parikh, R. Scott, A. Barnes, and J. Gallimore, 2013: A dual

bin-packing approach to scheduling surgical cases at a publicly-funded hospital.

European Journal of Operational Research, 224, no. 3, 583–591.

Von Stosch, M., R. Oliveira, J. Peres, and S. F. de Azevedo, 2014: Hybrid semi-

parametric modeling in process systems engineering: Past, present and future. Com-

puters & Chemical Engineering , 60, 86–101.

Wabersich, K. P. and M. N. Zeilinger, 2021: A predictive safety filter for learning-based

control of constrained nonlinear dynamical systems .

Wächter, A. and L. T. Biegler, 2006: On the implementation of an interior-point filter

line-search algorithm for large-scale nonlinear programming. Mathematical program-

ming , 106, no. 1, 25–57.

Wang, L., Z. Pan, and J. Wang, 2021: A review of reinforcement learning based

intelligent optimization for manufacturing scheduling. Complex System Modeling

and Simulation, 1, no. 4, 257–270.

Wang, X. and S. M. Disney, 2016: The bullwhip effect: Progress, trends and directions.

European Journal of Operational Research, 250, no. 3, 691–701.

Wang, Y., D. Zhao, D. Rodŕıguez-Padrón, and C. Len, 2019a: Recent advances in

catalytic hydrogenation of furfural. Catalysts , 9, no. 10, 796.

313

Wang, Z. and C. Georgakis, 2019: Identification of hammerstein-weiner models for

nonlinear mpc from infrequent measurements in batch processes. Journal of Process

Control , 82, 58–69.

Wang, Z., H.-X. Li, and C. Chen, 2019b: Incremental reinforcement learning in con-

tinuous spaces via policy relaxation and importance weighting. IEEE transactions

on neural networks and learning systems , 31, no. 6, 1870–1883.

Waschneck, B., A. Reichstaller, L. Belzner, T. Altenmüller, T. Bauernhansl, A. Knapp,

and A. Kyek, 2018: Optimization of global production scheduling with deep rein-

forcement learning. Procedia Cirp, 72, 1264–1269.

Watkins, C. J. C. H., 1989: Learning from delayed rewards.

Waubert de Puiseau, C., R. Meyes, and T. Meisen, 2022: On reliability of reinforce-

ment learning based production scheduling systems: a comparative survey. Journal

of Intelligent Manufacturing , 1–17.

Wei, L., R. McCloy, and J. Bao, 2022: Discrete-time contraction-based control of

nonlinear systems with parametric uncertainties using neural networks. Computers

& Chemical Engineering , 107962.

Wen, M. and U. Topcu, 2018: Constrained cross-entropy method for safe reinforcement

learning. Advances in Neural Information Processing Systems , 31.

Whitelam, S. and I. Tamblyn, 2020: Learning to grow: Control of material self-

assembly using evolutionary reinforcement learning. Physical Review E , 101, no. 5,

052604.

Wieland, F.-G., A. L. Hauber, M. Rosenblatt, C. Tönsing, and J. Timmer, 2021:

On structural and practical identifiability. Current Opinion in Systems Biology , 25,

60–69.

Wierstra, D., T. Schaul, T. Glasmachers, Y. Sun, J. Peters, and J. Schmidhuber, 2014:

Natural evolution strategies. The Journal of Machine Learning Research, 15, no. 1,

949–980.

314

Wilcox, R. R., 2011: Introduction to robust estimation and hypothesis testing . Aca-

demic press.

Williams, C. K. and C. E. Rasmussen, 2006: Gaussian processes for machine learning ,

volume 2. MIT press Cambridge, MA.

Wills, A., T. B. Schön, L. Ljung, and B. Ninness, 2013: Identification of hammerstein–

wiener models. Automatica, 49, no. 1, 70–81.

Wolf, I. J. and W. Marquardt, 2016: Fast nmpc schemes for regulatory and economic

nmpc–a review. Journal of Process Control , 44, 162–183.

Wu, Z., L. Sun, W. Zhan, C. Yang, and M. Tomizuka, 2020: Efficient sampling-

based maximum entropy inverse reinforcement learning with application to au-

tonomous driving. IEEE Robotics and Automation Letters , 5, no. 4, 5355–5362,

doi:10.1109/LRA.2020.3005126.

Wulfmeier, M., P. Ondruska, and I. Posner, 2016: Maximum entropy deep inverse

reinforcement learning. arXiv:1507.04888 [cs] , arXiv: 1507.04888.

URL http://arxiv.org/abs/1507.04888

Yan, Z. and J. Wang, 2012: Model predictive control of nonlinear systems with unmod-

eled dynamics based on feedforward and recurrent neural networks. IEEE Transac-

tions on Industrial Informatics , 8, no. 4, 746–756.

Yang, D., L. Zhao, Z. Lin, T. Qin, J. Bian, and T.-Y. Liu, 2019: Fully parameter-

ized quantile function for distributional reinforcement learning. Advances in neural

information processing systems , 32.

Yang, J.-H. and H.-F. Lam, 2019: An innovative bayesian system identification method

using autoregressive model. Mechanical Systems and Signal Processing , 133, 106289.

Yang, S.-B., Z. Li, and J. Moreira, 2022: A recurrent neural network-based approach

for joint chance constrained stochastic optimal control. Journal of Process Control ,

116, 209–220.

Yang, Z. R. and S. Chen, 1998: Robust maximum likelihood training of heteroscedastic

probabilistic neural networks. Neural Networks , 11, no. 4, 739–747.

315

http://arxiv.org/abs/1507.04888

Ye, Y., J. Li, Z. Li, Q. Tang, X. Xiao, and C. A. Floudas, 2014: Robust optimization

and stochastic programming approaches for medium-term production scheduling

of a large-scale steelmaking continuous casting process under demand uncertainty.

Computers & Chemical Engineering , 66, 165–185.

Yoo, H., H. E. Byun, D. Han, and J. H. Lee, 2021a: Reinforcement learning for batch

process control: Review and perspectives. Annual Reviews in Control , 52, 108–119.

Yoo, H., B. Kim, J. W. Kim, and J. H. Lee, 2021b: Reinforcement learning based opti-

mal control of batch processes using monte-carlo deep deterministic policy gradient

with phase segmentation. Computers & Chemical Engineering , 144, 107133.

Yoo, H., V. M. Zavala, and J. H. Lee, 2021c: A dynamic penalty function approach

for constraints-handling in reinforcement learning .

Yska, D., Y. Mei, and M. Zhang, 2018: Genetic programming hyper-heuristic with co-

operative coevolution for dynamic flexible job shop scheduling. European Conference

on Genetic Programming , Springer, 306–321.

Yu, C., J. Liu, S. Nemati, and G. Yin, 2021a: Reinforcement learning in healthcare:

A survey. ACM Computing Surveys (CSUR), 55, no. 1, 1–36.

Yu, J. and P. Guo, 2020: Run-to-run control of chemical mechanical polishing pro-

cess based on deep reinforcement learning. IEEE Transactions on Semiconductor

Manufacturing , 33, no. 3, 454–465.

Yu, L., T. Yu, C. Finn, and S. Ermon, 2019: Meta-inverse reinforcement learning with

probabilistic context variables. Advances in neural information processing systems ,

32.

Yu, T., A. Kumar, R. Rafailov, A. Rajeswaran, S. Levine, and C. Finn, 2021b: Combo:

Conservative offline model-based policy optimization.

Yu, T., G. Thomas, L. Yu, S. Ermon, J. Zou, S. Levine, C. Finn, and T. Ma, 2020:

Mopo: Model-based offline policy optimization.

Yu, Z. J. and L. T. Biegler, 2019: Advanced-step multistage nonlinear model predictive

control: Robustness and stability. Journal of Process Control , 84, 192–206.

316

Zanon, M. and S. Gros, 2020: Safe reinforcement learning using robust mpc. IEEE

Transactions on Automatic Control .

Zanon, M., V. Kungurtsev, and S. Gros, 2020: Reinforcement learning based on real-

time iteration nmpc. arXiv:2005.05225 [cs, eess] , arXiv: 2005.05225.

URL http://arxiv.org/abs/2005.05225

Zeilinger, M. N., D. M. Raimondo, A. Domahidi, M. Morari, and C. N. Jones, 2014:

On real-time robust model predictive control. Automatica, 50, no. 3, 683–694.

Zhang, C., W. Song, Z. Cao, J. Zhang, P. S. Tan, and X. Chi, 2020a: Learning to

dispatch for job shop scheduling via deep reinforcement learning. Advances in Neural

Information Processing Systems , 33, 1621–1632.

Zhang, D., E. A. Del Rio-Chanona, P. Petsagkourakis, and J. Wagner, 2019a: Hy-

brid physics-based and data-driven modeling for bioprocess online simulation and

optimization. Biotechnology and bioengineering , 116, no. 11, 2919–2930.

Zhang, D., T. R. Savage, and B. A. Cho, 2020b: Combining model structure identifi-

cation and hybrid modelling for photo-production process predictive simulation and

optimisation. Biotechnology and Bioengineering , 117, no. 11, 3356–3367.

Zhang, J., 2004: A reliable neural network model based optimal control strategy for

a batch polymerization reactor. Industrial & Engineering Chemistry Research, 43,

no. 4, 1030–1038.

— 2008: Batch-to-batch optimal control of a batch polymerisation process based on

stacked neural network models. Chemical Engineering Science, 63, no. 5, 1273–1281.

Zhang, J., A. S. Bedi, M. Wang, and A. Koppel, 2020c: Cautious reinforcement learn-

ing via distributional risk in the dual domain. arXiv preprint arXiv:2002.12475 .

Zhang, K., A. Koppel, H. Zhu, and T. Başar, 2020d: Global convergence of policy

gradient methods to (almost) locally optimal policies. arXiv:1906.08383 [cs, eess,

math, stat] , arXiv: 1906.08383.

URL http://arxiv.org/abs/1906.08383

317

http://arxiv.org/abs/2005.05225
http://arxiv.org/abs/1906.08383

Zhang, M. S., M. A. Erdogdu, and A. Garg, 2021: Convergence and optimality of

policy gradient methods in weakly smooth settings .

URL https://arxiv.org/abs/2111.00185

Zhang, Q., J. L. Cremer, I. E. Grossmann, A. Sundaramoorthy, and J. M. Pinto,

2016: Risk-based integrated production scheduling and electricity procurement for

continuous power-intensive processes. Computers & chemical engineering , 86, 90–

105.

Zhang, R., S. Song, and C. Wu, 2019b: Robust scheduling of hot rolling production

by local search enhanced ant colony optimization algorithm. IEEE Transactions on

Industrial Informatics , 16, no. 4, 2809–2819.

Zhang, S. and R. S. Sutton, 2017: A deeper look at experience replay. arXiv preprint

arXiv:1712.01275 .

Zhang, Y., X. Jin, Y. Feng, and G. Rong, 2018: Data-driven robust optimization

under correlated uncertainty: a case study of production scheduling in ethylene

plant. Computers & Chemical Engineering , 109, 48–67.

Zhao, S. and C. C. Mi, 2021: A two-stage real-time optimized ev battery cooling

control based on hierarchical and iterative dynamic programming and mpc. IEEE

Transactions on Intelligent Transportation Systems .

Zheng, Y., X. Wang, and Z. Wu, 2022: Machine learning modeling and predictive

control of the batch crystallization process. Industrial & Engineering Chemistry

Research, 61, no. 16, 5578–5592.

Zhong, Z., E. A. del Rio-Chanona, and P. Petsagkourakis, 2021: Data-driven distribu-

tionally robust mpc using the wasserstein metric. arXiv preprint arXiv:2105.08414 .

— 2022: Distributionally robust mpc for nonlinear systems. IFAC-PapersOnLine, 55,

no. 7, 606–613.

Zhou, Z., M. Bloem, and N. Bambos, 2018: Infinite time horizon maximum causal

entropy inverse reinforcement learning. IEEE Transactions on Automatic Control ,

63, no. 9, 2787–2802, publisher: IEEE.

318

https://arxiv.org/abs/2111.00185

Zhu, C., R. Ni, Z. Xu, K. Kong, W. R. Huang, and T. Goldstein, 2021a: Gradinit:

Learning to initialize neural networks for stable and efficient training. Advances in

Neural Information Processing Systems , 34, 16410–16422.

Zhu, W., R. Rendall, I. Castillo, Z. Wang, L. H. Chiang, P. Hayot, and J. A. Ro-

magnoli, 2021b: Control of a polyol process using reinforcement learning. IFAC-

PapersOnLine, 54, no. 3, 498–503.

Ziebart, B. D., 2010: Modeling purposeful adaptive behavior with the principle of

maximum causal entropy.

Ziebart, B. D., A. L. Maas, J. A. Bagnell, A. K. Dey, et al., 2008: Maximum entropy

inverse reinforcement learning. Aaai , Chicago, IL, USA, volume 8, 1433–1438.

Ziemann, I., A. Tsiamis, H. Sandberg, and N. Matni, 2022: How are policy gradient

methods affected by the limits of control? arXiv preprint arXiv:2206.06863 .

Črepinšek, M., S.-H. Liu, and M. Mernik, 2013: Exploration and exploitation in evo-

lutionary algorithms: A survey. ACM computing surveys (CSUR), 45, no. 3, 1–33,

iSBN: 0360-0300 Publisher: ACM New York, NY, USA.

319

Appendix A

Appendices for Background and

Literature Review

A.1 Derivation of the state value function

We wish to identify a policy, which minimises the sum of stage costs in expectation.

This can be quantified through the Bellman equation (i.e. the state value function).

The derivation of the state value function relies heavily on three key points: 1) that

the cost of a policy is defined in terms of the sum of stage costs, 2) the system obeys

the Markov property and 3) the expectation operator is linear (Billingsley, 2008):

Vπ(xt) = Eπ
[
Gt | Xt = xt

]
= Eπ

[
φ(xt, π(xt),xt+1) + γGt+1 | Xt = xt

]
= Eπ

[
φ(xt, π(xt),xt+1) | Xt = xt

]
+ γEπ

[
Eπ
[
Gt+1 | Xt+1 = xt+1

]
| Xt = xt

]
= Eπ

[
φ(xt, π(xt),xt+1) + γVπ(xt+1) | Xt = xt

]
(A.1)

where Vπ : X → R. The expression detailed by Eq. A.1 is also known as the state

value function, which can be interpreted as the expected “cost-to-go” from the current

state, xt, under policy, π.

320

A.2 Dynamic programming: policy iteration and

value iteration

Both value iteration and policy iteration firstly randomly initialize and store in memory

an estimate of the state value function, V 0
π0(x) ≈ Vπ0(x), ∀x ∈ X associated with

the random policy π0. Then they alternate between two distinct phases known as

policy evaluation and policy improvement, which are defined by recursive application

of specific operators. Both operations leverage knowledge of the fact that both the

conditional probability mass functions descriptive of the dynamics and policy, and cost

function1.

In the policy evaluation phase, the objective is to quantify the true expected cost

to go, Vπk(x), of following the current policy, πk, in a given state. This is achieved by

applying an operator known as the Bellman operator, Tπ(·), to the current estimate

of the value function for a number of iterations. For example, at the j th iterate of

policy evaluation, the Bellman operator is applied to the current estimate of the value

function, under policy πk via:

Tπ(V j
πk(xt)) = V j+1

πk (xt)

=
∑

ut∈Û(xt)

πk(ut | xt)
∑

xt+1∈X

p(xt+1 | xt,ut)
[
φ(xt,ut,xt+1) + γV j

πk(xt+1)
]
,

∀xt ∈ X
(A.2)

where the probabilities, π(u|x) are appropriately updated if U ̸= Û(xt). Application

of the operator identifies an updated estimate for Vπk(x). The motivation for the re-

current application of the Bellman operator is that it is technically a contraction map-

ping. This means that according to the contraction mapping theorem (Kolmogorov

and Fomin, 1957; Conrad, 2014), for any two estimates of the value function, V j+1
πk (x)

and V j
πk(x), under a given policy, πk:

∥Tπ(Vj+1
πk) − Tπ(Vj

πk)∥∞ ≤ γ∥Vj+1
πk −Vj

πk∥∞ (A.3)

where γ is the discount factor as previously defined; V is a vector representation

of the state values for all states in the state set; and ∥·∥∞ is the l∞ norm. This is

1Provided that these items are known, and both the state and control spaces are countable, we
then have a system of |X | equations with |X | unknowns (i.e. the state values of each state in the
state set). This forms a linear programming problem, which is also formalised in Appendix A.4.

321

a technical condition but it ensures iterative application of the Bellman operator, to

an estimate of the state value function, converges to a fixed point (or equivalently the

true state value function associated with the current policy), such that:

V j+1
πk (x) = V j

πk(x) = Vπk(x), ∀x ∈ X

The second phase, known as policy improvement, then applies a slightly different

operator known as the Bellman optimality operator, Tπ∗(·), which acts on the most

recent estimate of the value function, V j
πk , descriptive of policy πk. However, as one

may gather from the name of the operation, instead of improving the estimate of

the state value function under the policy, this operation aims to improve the current

policy. This is achieved by choosing the controls, which greedily minimise the expected

cost-to-go under the current estimate of the state value function:

Tπ∗(V j
πk(xt)) = V 0

πk+1(x)

= min
ut∈Û(xt)

∑
xt+1∈X

p(xt+1 | xt,ut)
[
φ(xt,ut,xt+1) + γV j

πk(xt+1)
]
,

∀xt ∈ X

(A.4)

Greedily minimising the expected cost-to-go is appealing, because it is also an opera-

tion that satisfies the contraction mapping theorem. Specifically, for two state value

functions Vπk and Vπk+1 :

∥Tπ∗(Vπk+1) − Tπ∗(Vπk)∥∞ ≤ γ∥Vπk+1 −Vπk∥∞ (A.5)

This means that by applying the Bellman optimality operator to the current state

value function, one can iteratively identify a state value function that satisfies the

necessary and sufficient conditions provided by the Bellman optimality equation (i.e.

Eq. 2.7a). This is guaranteed as k → ∞.

The major differences between value iteration and policy iteration algorithms sim-

ply arises in the number of iterations of policy evaluation (or the number of times the

Bellman operator, Tπ(·)) is applied to all states before a policy improvement step is

taken. In policy iteration the Bellman operator is applied until a convergence toler-

ance criterion is satisfied, whereas just one step is taken in value iteration (Sutton

and Barto, 2018a). Clearly, this implies that one step of value iteration has a lower

computational burden than policy iteration. Specifically, one step of value iteration

322

has a computational time complexity that is polynomial in the cardinality of the state

set, |X |, and provided that no state dependent control constraints are imposed, linear

in the cardinality of the control set, |U|. Additionally, both DP algorithms have mem-

ory requirements that scale linearly with |X |. In practice this provides obstacle to

the implementation of DP methods for most practical PSE decision-making problems.

The value iteration algorithm is expressed by Algorithm A.1.

Algorithm A.1 The Value Iteration Algorithm

Input: Vπ0(x), ∀x ∈ X ; tolerance criterion, δ; ∆ = ∞; k = 0;

while ∆ > δ do

∆ = 0

for xt ∈ X do

Vold = Vπk(xt)

Vπk+1(xt) = minut∈Û(xt)

∑
xt+1∈X p(xt+1 | xt,ut)

[
φ(xt,ut,xt+1) + γVπk(xt+1)

]
∆ = max(∆, |Vold − Vπk+1(xt)|)

k = k + 1

end for

end while

Output: Optimal state value function, Vπ∗(x) and policy π∗ that satisfies Vπ∗(x).

A.3 Markov Decision Processes

The MDP is a formal description of Eq. 2.8, but defined without state constraints

(Chang et al., 2007). Instead, the problem of identifying an optimal policy for a finite

horizon MDP is stated:

P(π) :=

min
π
Vπ(X0 = x0)

s.t.

X0 ∼ p(x0)

Xt+1 ∼ p(xt+1 | xt,ut)

Ut ∼ π(ut | xt)

ut ∈ Û(xt)

xt ∈ X

∀t ∈ {0, ..., T − 1}

(A.6)

323

where, under the assumption that state and control sets are continuous, X0 ∼ p(x0)

describes a probability density function (pdf) over initial states, and the policy, π, is

defined as stochastic and therefore a conditional probability density function (cpdf).

This is a general way to think of closed-loop decision-making, given that a deterministic

function can be recovered if all probability mass (or density) is placed on a single

control. Stochastic policies may be directly parameterised in direct methods, or by

choosing the control which minimises the state value function with some probability

in indirect methods. We will see in the following sections, the use of stochastic policies

is a key concept within both direct and indirect RL algorithms.

A.4 Linear programming formulations for deter-

mining the optimal state value function

Here we present formulation of a linear programming problem for determining the

optimal state value function, given knowledge of the conditional probability den-

sity functions descriptive of discrete time dynamics, and under the conditions that

states are countable and control sets continuous, and the cost function is linear in

the state and control. The problem then reduces to finding the |X | state values,

V = [V (x1), . . . , V (x|X |)], given the initial state distribution p(x).

P(V) :=

min
V

∑
x∈X

p(x)Vπ(x)

s.t.

Vπ(x) ≥
∑
x′∈X

p(x′|x,u)[φ(x,u) + γVπ(x
′)], ∀u ∈ Û(x), ∀x ∈ X

(A.7)

A.5 Maximum entropy optimisation

The principle of maximum entropy states that: given testable information, D =

{zn, r(zn)}Nn=1, where r(z) = [r1(z), . . . , rnw(z)], is a function of a discrete random

variable2, Z ∼ pgt(z); the best approximating probability mass function (pmf), p(z) ≈
2For notation purposes, the description presented assumes a discrete random variable, but the

ideas also extend to continuous random variables.

324

pgt(z), is the one that has maximum information entropy, H(Z), and satisfies the

testable information. The information entropy of a random variable is defined as:

H(Z) = −
∑
z∈W

p(z) log p(z)

H(Z) = Ep(z)
[
IZ(z)

]
where W ∈ Rnu is the support of Z and IZ(z) = − log p(z) is the Shannon information,

which can be thought as the information content of observing a realisation of the

random variable3. Information entropy can therefore be thought of as the expected

information gain associated with observing an additional realisation of the random

variable. Hence, the approximating pmf, p(z), with greatest information entropy can

be thought as the least biased choice. The primal problem to identify p(z) is provided

by the following formulation:

P(p(z)) :=

min
p(z),∀z∈W

−Ep(z)
[
IZ(z)

]
s.t.

1

N

∑
z∈D

ri(z) =
∑
z∈W

p(z)ri(z), ∀i ∈ {1, . . . , nw}

∑
z∈W

p(z) = 1

p(z) ≥ 0, ∀z ∈ W

(A.8)

The first constraint restricts the distribution to satisfy testable information in expecta-

tion (i.e. it is a moment matching constraint), whereas the final two constraints enforce

normalisation and non-negativity of the distribution. By forming the Lagrange func-

tion, L and setting dL
dp(z)

= 0, one recovers that the solution of Eq. A.8 has exponential

form:

p(z) = A(λ1, . . . , λnw , ·) exp

(nw∑
i=1

λiri(z)

)
, ∀z ∈ W (A.9)

where A is the partition function, which ensures normalisation of the distribution and

λi ∈ R, ∀i ∈ {1, . . . , nw} are the Lagrange multipliers associated with the constraint

3The basic intuition follows from the range of a logarithm over the domain provided by the range
of a valid probability mass function. As the probability of a realisation, z, tends to zero, the Shannon
information tends to infinity. Likewise as the probability of an event tends to one, the Shannon
information tends to zero. Hence the less likely an event is, the more information it provides about
the random variable.

325

to satisfy testable information. Solving the primal problem identifies the Lagrange

multipliers, which provide parameters to the exponential distribution in Eq. A.9 with

support, W. Given that the primal problem is convex, the solution identified will be a

global optimum. However, if the cardinality of the support, |W|, is large or the support

is continuous the number of constraints imposed on the primal problem becomes very

large, to the point that the primal problem may become computational intractable to

solve. Given that the problem is convex, one can instead exploit duality to solve the

problem. The dual problem for Eq. A.8 is equivalent to maximising the log-likelihood

under the exponential distribution, which provides the dual function to the primal

formulation of Eq. A.8 (Ziebart, 2010):

log p(D | λ1, . . . , λnw) =
∑
z∈D

log

(
1∑

z∈W exp
(∑nw

i=1 λiri(z)
) exp

(nw∑
i=1

λiri(z)

))
(A.10)

The dual function can be obtained by substituting Eq. A.9 into the constraint enforc-

ing normalisation of the distribution as detailed by Eq. A.8. This identifies that the

partition function, A = 1∑
z∈W exp

(∑nw
i=1 λiri(z)

) , and essentially removes the presence of

Lagrange multipliers relating to normalisation and non-negativity from entering into

the dual function. This means that the maximum-entropy log-likelihood function is

simply a function of the Lagrange multipliers related to the constraint of testable in-

formation. However, it does require one to estimate the partition function. Hence,

in the case that nw << |W|, solving the dual problem may be more computationally

attractive than solving the primal problem. As a result, finding λi,∀i ∈ {1, . . . , nw}

that maximise Eq. A.10 recovers the exponential distribution, which best approxi-

mates the random variable, Z ∼ pgt(z), subject to information provided by D. This is

discussed further in Appendix B.3 within the context of sequential decision making.

326

Appendix B

Appendices for research item:

Using process data to generate an

optimal control policy via

apprenticeship and reinforcement

learning

B.1 The Policy Gradient Theorem

The value G(τ) of a process trajectory is equal to the discounted sum of rewards Rt+1

accumulated along its path

G (τ) =
T−1∑
t=0

γtRt+1

Given the stochasticity of the underlying process, we wish to find a policy π∗(·, θ,

which maximises the expected trajectory value, or the utility J(τ):

J (τ) =

∫
p (τ |θ) G (τ) dτ

In order to iteratively improve the policy, we wish to find the gradient of the utility

with respect to the policy parameters θ, providing a direction for policy improvement.

The gradient may be expressed analytically via the following, which leverages the use

of a logarithmic identity:

327

∇θ(j)J (τ) = ∇θ

∫
p (τ |θ)G (τ) dτ

=

∫
∇θp (τ |θ) G (τ) dτ

=

∫
p (τ |θ) ∇θp (τ |θ)

p (τ |θ)
G (τ) dτ

=

∫
p (τ |θ)∇θ log p (τ |θ)G (τ) dτ

= Eτ∼p(τ |θ) [G (τ)∇θ log p (τ |θ)]

This gradient may be estimated via the sample average approximation. The parame-

ters of the policy may then be improved by stochastic gradient ascent:

θ(j+1) = θ(j) + ω∇θ(j)J(τ)

where ω ∈ R+ is a learning rate or step size. This iterative procedure of policy

improvement acts to make trajectories of high value more probable under the policy.

Clearly, approximate second-order methods such as ADAM may also be used.

B.2 Long-short term memory (LSTM) policy net-

works

Figure B.1.A details the LSTM policy network, which was implemented in this work.

Figure B.1.B details a simplified description of the mathematical operations internal

to LSTM cells.

328

Figure B.1: A: Neural network parameterisation of the policy. Each of the nodes in
the hidden layers is a self-contained recurrent LSTM cell. B: A general, simplified
description of the mathematical operations internal to each LSTM cell. The internal
representation H represents a parameterisation of previously observed states y.

B.3 The principle of maximum entropy and maxi-

mum entropy Inverse Reinforcement Learning

In this work, we are concerned with recovering a control policy (a conditional probabil-

ity density function), which induces equivalent observed trajectory features, υπ ∈ Rd,

to that of an existing expert policy,υE ∈ Rd. There is likely to exist a set of condi-

tional probability density functions (or optimal control policies), Π = {π∗
1, . . . , π

∗
O},

which achieve this. Each control policy π∗ ∈ Π could correspond to the optimal con-

trol policy for a given MDP. All of the corresponding MDPs are defined by the same

probabilistic process dynamics, p (xt+1|xt, ut) p (yt+1|xt+1,xt, ut), state and control

spaces, but differing reward functions, R (·).

The question that arises therefore, is “which control policy or in which MDP is it

optimal to learn”? The information theoretic answer to this question lies in the work

provided by Jaynes (1957), where the Principle of Maximum Entropy (PoME) was

first presented. The PoME says that the probability density function, which explains

existing (testable) information about a target probability density function, and has

329

the greatest entropy, is optimal. This is a general framework, which has been applied

to many different problem settings.

Following the PoME, the Max.Ent. IRL formulation, finds a reward function, that

constructs a control policy π(u|y), which:

1. Induces a distribution over trajectories, p(τ).

2. Matches the trajectory features υ corresponding to p (τ) to those (υE) observed

from empirical demonstrations. T = [τE1 , . . . , τEK] of the target expert policy,

πE, in expectation.

3. Subject to maximising the entropy, H = −
∑

τ p (τ) log p (τ), of the distribution,

p(τ), induced by the policy learned π(u|y).

In the following analysis, we highlight the relation of PoME to Section 3.3.4, by

optimising over the inducing distribution p (τ) of state trajectories. For more infor-

mation we redirect the interested reader to the original works. In consideration of a

linear reward function R = α̂Tφ (y), the undiscounted return from a given trajectory

τ is formalised G (τ) =
∑T

t=1R (yt). The primal problem expressed by the Max.Ent.

IRL framework can then be written:

min
p(τ)

∑
τ

p (τ) log p (τ)

s.t
∑
τ

p (τ)G(τ)=E
[
G(τE)

]
∑
τ

p (τ) = 1

Forming the Lagrangian function L (α, p (τ)), one obtains:

L (α, p (τ)) =
∑
τ

p (τ) log p (τ)

+ λ1

(
E
[
G(τE)

]
−
∑
τ

p (τ)G(τ)

)
+ λ2

(
1 −

∑
τ

p (τ)

)
where λ1∈ R and λ2∈ R. Differentiating with respect to the induced distribution

p(τ), and evaluating first order conditions, it follows that:

dL (α, p (τ))

dp(τ)
= log p (τ) + 1 − λ1G(τ) − λ2

330

when dL(α, p(τ))
dp(τ)

= 0,

log p (τ) + 1 − λ1G(τ) − λ2 = 0 =⇒ p (τ) = exp{λ1G(τ) + λ2 − 1}

∴ p (τ) =Ẑ exp{λ1G(τ)}

This result implies that the maximum entropy model of the induced distribution p(τ)

belongs to the exponential family and that this distribution assigns exponentially

greater probability mass on trajectories, which observe high cumulative rewards. To

find an expression for the constant Ẑ, we make use of the normalisation constraint

enforced in the primal problem, such that if assumed constant for all τ :∑
τ

Ẑ exp (λ1G(τ)) = 1

Ẑ =
1

Z
=

1∑
τ exp (λ1G(τ))

where Z is the partition function. In practice, we do not know G(τE) prior to conduct-

ing AL. However, we do possess knowledge of the trajectory features υE. Hence, the

problem described in Section 3.3.4, can then be recovered by identifying that α = λ1α̂,

and equating λ1G (τ) = αTυ. Drawing attention back to the primal problem, it is

clear that the introduction of discounted trajectory features introduces non-convexity

into problem, as the constraint of testable information is no longer affine. As discussed

in Section 3.3.4, the MaxEnt IRL problem then follows:

max
α

K∏
k=1

p(τE
(k) | α)

p(τ | α) =
exp

(
αTυ(τ)

)
Z

where the weights of the linear reward function are analogous to the Lagrange

multipliers of the original problem. In order to estimate the partition function Z, this

work proposes to perform policy optimisation in the underlying MDP as constructed

with linear reward function R = αTφ(y). Theoretically, the policy should possess

the property of maximum entropy. This can be achieved by performing policy op-

timisation under a reward function, which is augmented with an entropy incentive:

RH = αTφ (y) +βHπ, where Hπ = −
∑

u π (u|x) log π (u|x) is the entropy of the

331

Figure B.2: Process flow diagram for offline learning as proposed in this work.

policy π at a given control interval, and β ∈ R≥0 is a non-negative real number. In

practice, the parameter β is hand tuned and specific to the implementation, hence in

the RL sense it is difficult to guarantee the property of maximum entropy absolutely.

In this work, we found β = 0, recovered the desired behaviour, although performance

may be improved by hand tuning β or drawing upon works such as soft actor critic

(SAC). Having identified the optimal policy under the current iterate of αT , gradient

steps can be taken to maximise the log-likelihood function as follows:

∇α log p(τE | α) = υE −∇α logZ(α)

∇α logZ(α) =
1

Z(α)
∇αZ(α)

=
1

Z(α)

∑
τ

υ(τ) exp(αTυ(τ))

=
∑
τ

p(τ | α)υ(τ)

∴ ∇α log p(τ | α) = υE − Eτ∼p(τ |α)[υ]

Figure B.2 summarises the general idea for AL (offline learning) provided by this

work.

332

B.4 Policy characterisation

Algorithm B.1 Monte Carlo Policy Evaluation

Input: A policy π(u|y;θ); state features φ (y) = [φ1(y), . . . , φd(y)]; a number of

episodes N ; episode length T ; a model of the process dynamics M(·); an initial

state distribution η ∼ p(x0); discount factor γ;

Output: Trajectory feature expectations E[υ] ∈ Rd

for n = 1, . . . , N do

1a. Initialise process state x0, observe y0 and store projection to state feature

space φn ∈ Rd

for t = 1, . . . , T − 1 do

1b. Select action ut ∼ π (ut | yt; θ)

1c. Observe transition of process state yt+1 given dynamics M(·)

1d. Project process state yt+1 into state feature space φ(n) ∈ Rd

end for

2. Calculate and store discounted sum of state features such that υ(n),γ =∑T
t=0 γ

tφ(n) (yt)

end for

3. Calculate trajectory feature expectations E[υγ] = 1
N

∑N
n=1 υ

(n),γ

B.5 Approximate Process Model

Mass Balance

Input = MR.VA.CAO.δt Gen. = − (−rA) .VR.MR.δt;

Output = MR.VA.CAδt; Acc = MR.VR.δCA

(−rA) = kCA = A.CA. exp− E
RT

Hence as δt→ 0,

dCA

dt
=
VA
VR

(CAO − CA) − A.CA.e
− E

RT

333

Table B.1: Parameter definition and values within process model

Parameter Description Values

VA Inflow rate, m3s-1 0.50
Ti Inlet temperature, K Not defined in deviation variable

model
CA0 Inlet concentration, kmol m-3 Manipulated variable
CA Outlet Concentration, kmol m-3 Control variable, SS = 12
VR Volume of reactor m3 1
A Pre-exponential factor s-1 148.41
E Activation energy, kJ kmol-1 11× 103

R Universal gas constant, kJ K-1

kmol-1
8.314

he Convective HTC, kW m-2 K-1 100
Ae Effective area of heating element

m2
3.5

Te Temperature of heating element
K

Manipulated Variable

ρ Density of system kg m-3 820 (Benzene)
Cp Specific heat capacity of system

kJ kg-1 K-1
1.4 (Benzene)

T Temperature of Reactor, K Control Variable, SS = 353
dHr Enthalpy of reaction kJ kmol-1 2000

Table B.2: Assumptions made in derivation of the underlying process dynamics

Mass Balance Energy Balance

A and B are of the same molecular mass No phase change and specific heat capac-
ity of the streams and reactor are constant
and approximately equal.

Reactor is perfectly filled and mixed Agitation imparts no energy into the sys-
tem

Density of the system remains constant
and the system is dilute

Reaction is irreversible and first order.

Mass flowrate in and out are equal and
constant

Heating element or jacket is thin walled

Taking deviation variables and linearizing non-linear exponential via:

f (x, y) = f (xo, yo) +
df

dx
|(xo,yo) (x− xo) +

df

dy
|(xo,yo)(y − yo)(

dCA
dt

− dCAss

dt

)
=
VA
VR

((CA0 − CA0ss) − (CA − CAss)) − (rA − rAss)

dC∗
A

dt
=
VA
VR

(C∗
A0 − C∗

A) − (k1C
∗
A + k2T

∗)

where k1 = Ae−
E

RTss and k2 = AECAss

RT 2
ss
e−

E
RTss , where constant terms associated with

linearization of the exponential cancel, and the first derivative terms of the steady

334

state rate constant are zero.

Energy Balance

Input = (ρVA.Cp.Ti.+ heAe (Te − T)) δt Gen. = (−rA) .dHR.VR.δt

Output = ρ.VA.Cp.T.δt Acc. = ρ.Cp.VRδT

Hence as δt→ 0,

dT

dt
=
VA
VR
.(T i − T) +

heAe
ρCp.VR

(Te − T) − dHR.(−rA)

ρCp

Taking deviation variables and linearizing non-linear exponential:

dT ∗

dt
=
VA
VR
.(T i

∗ − T ∗) +
heAe
ρCp.VR

(Te
∗ − T ∗) − (k1

′
CA

∗ + k2
′
T ∗)

where k
′
1 = dHR

ρCp
k1 and k

′
2 = dHR

ρCp
k2. Since the inlet temperature Ti is assumed

constant i.e. T ∗
i = 0, we can reformulate:

dT ∗

dt
= −VA

VR
T ∗ +

heAe
ρCp.VR

(Te
∗ − T ∗) − (k1

′
CA

∗ + k2
′
T ∗)

Hence allowing for condensation into linear state space form:

dC∗
A

dt
= −

(
VA
VR

+ k1

)
C∗
A − k2T

∗ +
VA
VR
C∗
A0

dT ∗

dt
=

(
−k2

′ − VA
VR

− heAe
ρCp.VR

)
T ∗ − k1

′
CA

∗ +
heAe
ρCp.VR

Te
∗

Or

d

dt

 C∗
A

T ∗

 =

−(VAVR + k1

)
−k2

−k1
′ −

(
k2

′
+ VA

VR
+ heAe

ρCp.VR

)
 C∗

A

T ∗

+

VAVR 0

0 heAe

ρCp.VR

C∗
A0

Te
∗

This is related to the definition of h(·) discussed in section 3.4 of the article asso-

ciated

h (x∗
t , u

∗
t) =

−(VAVR + k1

)
−k2

−k1
′ −

(
k2

′
+ VA

VR
+ heAe

ρCp.VR

)
x∗

t +

VAVR 0

0 heAe

ρ.Cp.VR

u∗
t

B.6 Generation of demonstrated trajectories and

control bounds

335

Table B.3: Tuned PID controllers facilitated by the MATLAB/Simulink package.

Controller PID Parameters Concentration Control
Loop

Temperature Control
Loop

PID1
KC 43.07 89.30
KI 428.54 683.41
KD 0.29 0.33

PID2
KC 11.36 8.77
KI 51.66 19.89
KD 0.19 0.39

Table B.4: Bounds of the action space to ensure limits of actuation

Action Bound Concentration Control Loop
(C∗

A0), kmol m-3
Temperature Control Loop
(T∗

e), K

Upper Bound uUB 30 60
Lower Bound uLB −30 −60

B.7 Case study I and II hyperparameters

Table B.5: Hyperparameters of the Algorithms for offline learning with notation as
referenced in Algorithms 1 and 2. In Algorithm 1, different numbers of training epochs
were utilised depending on the iteration of policy optimisation as defined in Algorithm
2. The index 1 refers to the number of epochs used in iteration 1 and 2: refers to the
number of epochs used from iteration two onwards.

Algorithm Hyperparameter Value

Algorithm 2
Maximum Iterations Nmax 15
Learning rate κ 0.05

Algorithm 1
Episodes of Monte Carlo Policy Evalua-
tion K

500

Training Epochs [N1, N2:] [150, 50]
Learning rate ω 0.008

B.8 Case study III hyperparameters

336

Table B.6: Hyperparameters of the Algorithms for offline learning with notation as
referenced in Algorithms 1 and 2. In Algorithm 1, different numbers of training epochs
were utilised depending on the iteration of policy optimisation as defined in Algorithm
2. The index 1 refers to the number of epochs used in iteration 1 and 2: refers to the
number of epochs used from iteration two onwards.

Algorithm Hyperparameter Value

Algorithm 2
Maximum Iterations Nmax 10
Learning rate κ 0.05

Algorithm 1
Episodes of Monte Carlo Policy Evalua-
tion K

500

Training Epochs [N1, N2:] [10, 10]
Learning rate ω 0.008

B.9 Case study data requirements and computa-

tional time

It should be noted that the following is specific to a serial implementation on an

Intel® Xeon® W-2123 CPU with 32.0 GB RAM. All processing times could be

improved primarily through a parallel computing configuration of the code or use

of more advanced hardware. All values detailed are specific to the hyperparameter

settings as in B.7 and B.8.

Table B.7: Data and computational time requirements for Case study II. Parallel
implementation and potential code-level improvements would reduce the time require-
ment substantially.

Algorithm (Hyper)parameter Value

Offline Training (CSII)
Trajectories Simulated 125× 103

Computational Time Requirements
(min)

300

Online Training (CSII)
Trajectories Simulated 10× 103

Computational Time Requirements
(min)

24

337

Table B.8: Data and computational time requirements for Case study III. Note the
effect of knowledge transfer within the framework with respect to data efficiency and
time requirement. Parallel implementation and potential code-level improvements
would reduce the time requirement substantially.

Algorithm (Hyper)parameter Value

Offline Training (CSIII)
Trajectories Simulated 40× 103

Computational Time Requirements
(min)

96

Online Training (CSIII)
Trajectories Simulated 10× 103

Computational Time Requirements
(min)

24

338

Appendix C

Appendices for research item: safe

chance constrained reinforcement

learning

C.1 Gaussian process state space modelling

C.1.1 Training of Gaussian process models

Selection of the appropriate hyperparameters, λ̂ = [λ, σ2
n] ∈ Rnλ+1 for a covariance

function provides considerable improvement in the predictive abilities of GPs and can

be viewed as a parallel to parameter estimation for mechanistic process models. The

tuning procedure acts to maximise the marginal log-likelihood p(YT
j |Υ, λ̂) of the state

specific, noisy output data points Yj, provided with the respective input measurements

Υ and hyperparameters λ̂:

log p(YT
j |Υ, λ̂) = −1

2
(Yj(K + σ2

nIN)−1YT
j + log |K + σ2

nIN | +N log 2π) (C.1)

Gradient-based optimisation may then be deployed to find λ̂, which maximise the

likelihood of observing our output data, given the covariance function chosen and

the input data. This problem is non-convex and so typically multi-start schemes are

deployed to find the best solution.

339

C.1.2 Obtaining function realisations from GP state space

models

In this work, we are concerned with obtaining function realisations from a Gaussian

process state space model. The state space model is composed of nx individual Gaus-

sian process models of each state. Here, we use the method proposed by Strassen

(1969); Bradford et al. (2020); Umlauft et al. (2018). The method aims to update the

posterior distribution of the Gaussian process model according to the initial dataset D

used for model construction, as well as the states and control inputs observed during

each trajectory evolution. This combined dataset is denoted D+.

Algorithm C.1 Function Realisations via GP State Space Model for Decision-making

Under Uncertainty

Input: Experimental dataset D; GP state space model fGPSS = [f 1
GP (υ), . . . , fnx

GP (υ)]

with hyperparameters Λ̂ = [λ̂1, . . . , λ̂nx] trained on D; Control Policy π(u|x); Finite

horizon length T; initial state distribution p(x0); Memory for state Bx and control

Bu trajectories, as well as for information related to decision making Bπ for use in

subsequent policy optimisation.;

1. Set D+ = D

2. Draw x0 ∼ p(x0). Append x0 to Bx

for t = 1, . . . , T − 1 do

3a. Observe xt−1, sample ut−1 ∼ π(u|x) and concatenate, such that υt−1 =[
xTt−1u

T
t−1

]T
3b. Condition the GP state space model on (D+,υt−1) to obtain the predictive

posterior: p(xt|υt−1,D+) = N (µ(υt−1;D+),Σ(υt−1;D+))

3c. Draw next state from posterior of the GP state space model, xt ∼

p(xt|υt−1,D+)

3d. Update D+ = [DT
+ dTN+t]

T , where dN+t = [υTt−1 xTt] and append xt and ut−1

to Bx and Bu, respectively

end for

Output: Function realisation stored in Bx and Bu and information related to decision

making Bπ (to be explained in Algorithm 4.2)

340

The use of Algorithm C.1 allows for proper propagation of model uncertainty and

sampling of functions from the GP. In essence, it is desired to obtain state sequences

x0:T = [x0, . . . ,xT], which are expressive of Eq. 4.1 and represent a realisation of

process uncertainty. As samples xt are drawn from the posterior they are added,

along with the respective input υt−1, to the dataset D+ upon which the GP is condi-

tioned. This leads to a subsequent update of the GP posterior distribution (via C.2

- C.3) considering previous samples xt−1 as noiseless observations, with retention of

the original covariance function hyperparameters λ̂. This means that if the updated

GP posterior were to be queried at the previous input υt−1, the exact realisation of

xt−1 would be drawn again i.e. the GP would express xt−1 deterministically. Such

an outcome highlights the algorithm’s utility in effective function space sampling and

implies that future process evolution is explicitly dependent upon the past realisations

of uncertainty.

We can express the updated posterior distribution of the jth GP after transition

from one discrete time index at t = t0 to t = t1 as follows:

µj(υ
∗;D+) = K+T

∗ Σ+−1

Y+T

j

σ2
j (υ

∗;D+) = k(υ∗,υ∗) −K+T

∗ Σ+−1

K+
∗

(C.2)

where Y+
j = [Yj, y

+
j] ∈ R1×(N+1), where y+j ∈ R is state xj ∈ R observed at time

index t = t1; The updated covariance matrices are expressed as follows:

K+T

∗ =
[
KT

∗ , k(υ∗, υ
+)
]

Σ+−1 =

[
K + σnIN K+

KT
+ k(υ+,υ+)

]−1

(C.3)

where KT
+ = [k(υ+,υi), . . . , k(υ+,υN)] ∈ R1×N , and υ+ ∈ Rnυ is the state and

control input pair at time index t = t0. This process is repeated iteratively for state

transitions thereafter, which means that the memory and computation requirements

will grow quadratically and cubically, respectively, with the time horizon T . Updating

K+
∗ , Y +

j is relatively easy, however, updating Σ+−1
, is slightly more involved due to

inversion. In order to do this we use the method from Strassen (1969) as proposed in

Bradford et al. (2020); Umlauft et al. (2018). We refer the reader to these works for

more information.

341

C.2 Validation of Gaussian process models used in

case study

Table C.1 details the results of leave-one-out cross validation of the Gaussian process

state space model used in this case study. Specifically, the results reported assess

multi-step ahead predictions, which correspond to forecasting the entire batch given

an initial state and control profile. Results are reported as the average across all

possible different folds (of which there are 32). Predictions from the GP were drawn

using the mean of the posterior. The dataset used to construct the Gaussian process

models is available at https://github.com/mawbray/Lutein-Dataset

Table C.1: Multistep prediction mean absolute percentage error (MAPE) of leave-one-
out cross validation of Gaussian process state space model used in Case study.

Component of State MAPE (%)

Biomass 2.5
Nitrate 4.3
Lutein 2.2

C.3 Proximal policy optimisation, The advantage

function and entropy regularisation

PPO is at its core a policy gradient (PG) method. PG methods have previously been

discussed, and so this work directs the interested reader to the original paper Sutton

et al. (1999) and other recent work Petsagkourakis et al. (2020b). PPO utilises a

specific instance of the PG, known as the advantage policy gradient (APG). The APG

Mnih et al. (2016) is a powerful, low variance form of the policy gradient, which utilises

the generalised advantage function estimate Aφ (GAE), rather than the action-value

estimate, as in vanilla policy gradient methods Sutton et al. (1999). Further detail

on the GAE and PPO is provided by C.3.1 and C.3.3, respectively. In practice,

the investigation found the addition of an entropy regularisation term useful in RL

training. Entropy regularisation is widely studied in the RL literature, and at a high

level provides mechanism to ensure the policy does not converge deterministically to a

342

poor local optimum. This is particularly important in view of RL as a set of sampling-

based algorithms Neu et al. (2017); Ahmed et al. (2019a) and is discussed further in

C.3.2.

C.3.1 The advantage function

The advantage function Schulman et al. (2018b) is formalised:

V π(xt) = Eπ
[T−1∑
t′=t

Rt′+1|x = xt

]
Qπ(xt,ut) = Eπ

[
Rt+1 + γV π(x′)|x = xt,u = ut

]
Aπ(xt,ut) = Qπ(xt,ut) − V π(xt)

(C.4)

and, represents the difference between the expected returns under a policy in the

current state, V π, and the returns accumulated from selecting a given control in the

current state and the current policy thereafter, Qπ. In RL practice, parameterisation

of the value function Vψ is required in order to approximate the true value function

V π, such that Vψ ≈ V π. Decision as to the model structure and initialisation of the

parameters asserts bias into estimation of the advantage function. This is reduced

through use of the generalised advantage function estimate Âπ (GAE). The GAE

provides a mechanism to explicitly trade off variance and bias, by maximising the

information provided by the reward signal. Explicitly, the GAE is formalised as:

Âπt = δt+1 + (ργ)δt+2 + . . .+ (ργ)T−t+1δT

δt+1 = Rt+1 + γVψ(xt+1) − Vψ(xt)
(C.5)

The parameter ρ = [0, 1] provides the mechanism to balance the bias and variance.

Values closer to 1 reduce bias by utilising more information from the reward signal,

but at the compromise of increasing the variance of the estimate. The opposite applies

as values tend to 0.

C.3.2 Entropy regularisation

There is a rich literature on maximum entropy (Max.Ent.) RL Ahmed et al. (2019b);

Haarnoja et al. (2018); Ziebart (2010). Instead of simply optimizing for the process

objective and accumulated reward, G(τ), Max.Ent. RL also optimises for the expected

343

entropy of the stochastic policy learned. As a result, we can formulate the Max.Ent.

RL objective, JH as follows:

JH = E
[
G(τ) +Hπ

]
(C.6)

where Hπ = −Eπ
[

log π(u|x)
]

is the entropy of the policy. Typically, in practice,

this objective is maximised via a regularisation term i.e. not as an extrinsic addi-

tion of entropy to the reward signal, and therefore not optimised via the PG. It is

thought that entropy regularisation provides two main benefits: 1) it modifies the op-

timisation landscape ’for the better’, and in some cases provides a smoother landscape

than the vanilla objective, and 2) the use of entropy plays some role in tackling the

exploration-exploitation paradigm, i.e. by regularising entropy, exploration is encour-

aged, preventing convergence to a suboptimal deterministic policy. The use of entropy

was found to be particularly helpful in this study, aiding the learning dynamics. It

could be perceived that the constraint boundary provides a discontinuity in the re-

ward landscape, and the promotion of exploration via entropy provides mechanism to

’escape’ local optima.

C.3.3 Entropy regularised proximal policy optimisation

PPO aims to provide conservative policy updates, by utilising the concept of trust

region optimisation. The idea of trust region optimisation in the RL sense, is to con-

strain the update of an initial policy, such that the ultimate policy remains within a

given distance of the initial in policy space. This distance could e.g. be quantified by

the Kullback-Liebler divergence. One algorithm known as trust-region policy optimi-

sation (TRPO) necessitates estimate of the Hessian of the approximate KL divergence

with respect to the policy parameters Schulman et al. (2017a) (this also shares similar-

ities with the natural policy gradient Kakade (2001)). PPO sidesteps this complexity

through approximation of the 2nd order TRPO update with a first order update - in-

stead of explicitly enforcing this as a hard constraint, PPO enforces this via a penalty

method Schulman et al. (2017b). This means that PPO is more computationally effi-

cient than TRPO and provides flexible use of different function approximators (policy

parameterisations).

The objective function LCLIP formalised within the PPO framework follows:

344

rt(θ) =
πθ(ut|xt)
πθold(ut|xt)

LCLIP (θ) = Êt
[

min(rt(θ)Â
π
t , clip(rt(θ), 1 − ϵ, 1 + ϵ)Âπt)

] (C.7)

where, ϵ = [0, 1] and Âπt is the advantage function, as discussed previously. By

clipping the ratio r, updates corresponding to negative advantages are clipped with a

ratio of r = 1 + ϵ, whereas updates with positive advantages are clipped at r = 1 − ϵ.

The minimum is taken in order to provide a pessimistic update and enforce what could

be interpreted as a trust-region. A full entropy regularised PPO algorithm is presented

by Algorithm C.3.3.

345

Algorithm C.2 Entropy Regularised Proximal Policy Optimisation

Input: Approximate state space model or process dynamics fSS(·); Initial control policy

π(u|x; θ0); Initial critic V (xt, ψ0); Reward function Rxx′ ; Finite horizon length T ; initial

state distribution p(x0); entropy penalty term β ∈ R+; Learning rate wπ ∈ R+; Learning

rate wV ∈ R+; Strategies for updating the learning rates (schedules) fπw(·) and fVw (·);

Memory Binfo for information required for policy optimisation; K episodes; Learning

updates per batch J ; batchsize of M trajectories; tolerance criterion

1. i = 0

while not converged do

2a. Obtain a batch of K rollouts over horizon of T discrete intervals, via π(u|x; θi),

fSS , and p(x0)

2b. Return trajectory information i.e. rewards R
(k)
0:T−1 = [R

(k)
1 , . . . , R

(k)
T] under Rxx′

for the sequence of controls u
(k)
0:T−1 = [u

(k)
0 , . . . ,u

(k)
T−1] and states x

(k)
0:T = [x

(k)
0 , . . . ,x

(k)
T],

corresponding to each rollout and store in Binfo

2c. j = 0

while j < J do

2ci. Perform policy optimisation by sampling the information ofM trajectories from

Binfo, calculating the respective importance ratios rt via Eq. C.7 and GAEs via Eq.

C.5:

θi+1 = θi+w
π
i ∇θ

[
1
MT

∑M
m=1

∑T−1
t=0 L

CLIP (x
(m)
t ,u

(m)
t ,x

(m)
t+1, θi)+βHπ(π(u

(m)
t |x(m)

t))
]

2cii. Update the critic V (x, ψi) on the same data sampled in 2c.i. and the respective

returns, Gt:

ψi+1 = ψi −∇ψi
V (x, ψi)(V (x

(m)
t , ψi)−G

(m)
t)

2ciii. Update the learning rate : wπi+1 = fπw(wi)

2civ. Update the learning rate : wVi+1 = fVw (wi)

2cv. i+ = 1, j+ = 1

end while

2d. Reset memory Binfo
2e. Assess tolerance criterion

end while

Output: Optimal Constrained Policy π∗C(θ) trained under ξ∗

346

C.4 Evaluating joint constraint satisfaction empir-

ically

In this work, we are concerned with the satisfaction of the joint chance constraints

expressed by:

FX(0) = P(X ≤ 0) = P(
T⋂
i=0

{xi ∈ X̂i}) (C.8)

where X̂i is the tightened joint constraint set and

X = max
(t,j)∈{0,...,T}×{1,...,ng}

Ajxt − bj,

defines the maximum constraint violation during process evolution. As analytical

expression of Eq. C.8 is not available, it is proposed to instead estimate it via Monte

Carlo sampling. Hence we can define the empirical cumulative distribution function

(ecdf) via S Monte Carlo samples:

FX(0) ≈ FSA(0) =
1

S

S∑
s=1

1(X(s) ≤ 0) (C.9)

where 1 is the indicator function. However, due to the limits imposed by finite

samples, the approximation is likely to include error. Therefore, in order to account

for this we deploy a concept from the binomial proportion confidence interval literature.

Specifically, the Clopper–Pearson interval Clopper and Pearson (1934), which enables

us to ensure the probability of joint satisfaction with a given confidence level, 1 − υ,

on the basis of empirical observation. This is expressed by Lemma 3, which is recycled

from Petsagkourakis et al. (2020a).

Lemma 3 Joint chance constraint satisfaction via the Clopper-Pearson

confidence interval Clopper and Pearson (1934); Brown et al. (2001): Consider

the realisation of FSA(0) based on S independently and identically distributed samples.

The lower bound of the true value FLB(0) may be defined with a given confidence 1−υ,

such that:

P(FX(0) ≥ FLB(0)) ≥ 1 − υ

FLB(0) = 1 − betainv(υ, S + 1 − SFSA(0), SFSA(0))
(C.10)

347

where betainv(·) is the inverse of the Beta cumulative distribution function with pa-

rameters {S + 1 − SFSA(0)} and {SFSA(0)}.

C.5 Further Information on Benchmark

In construction of the benchmark provided, a direct collocation scheme was imple-

mented in python. The code is available at https://github.com/mawbray/Lutein DO.

In the case of NMPC and online optimisation, an approximate problem was solved if a

solution could not be found online an approximate problem was solved instead. This

was conducted via the following formulation:

max
ut′:T−1,ϵ

T−1∑
t=t′

Rt+1 − zϵ (see Eqs. 4.33 and 4.32)

s.t.

xt+1 = f(xt,ut) (see Eqs. 4.30 and 4.31)

ut ∈ Û

Axt − b ≤ ϵ (see Eqs. 4.7 and 4.32)

0 ≤ ϵ

∀t ∈ {t′, ..., T − 1}

(C.11)

where z = [1, 10, 10] and xt′ is observed from the uncertain process. This approximate

problem modifies the objective function to incentivize minimisation of constraint vi-

olation. It should be stressed that this problem is only solved if a solution cannot

be found to the original problem. This was typically the case when the optimisation

was initialised such that xt′ had already violated the constraints and arose from the

inability to handle constraints.1

C.6 Hyperparameters for Learning in Case Study

1Note that there is a notational mistake in the supporting information provided in Mowbray et al.
(2022a). The information provided here is correct and was used to generate the results presented in
this thesis.

348

Table C.2: Miscellaneous hyperparameters specific to Proximal policy optimisation
algorithm used in this work.

Parameter Value

Episodes, K 200
Nodes per LSTM layer of Policy Net. 30
LSTM Layers in Policy Net. 4
Activation function in output layer of Policy Net. ReLU6
Nodes per LSTM layer in Value Net. 30
LSTM layers in Value Net. 2
Activation function in output layer of Value Net. Leaky ReLU
Policy learning rate, wπ 5 × 10−3

Value learning rate, wV 5 × 10−3

GAE weight, ρ 0.99
Batch size, M 100
Weight updates, J 2
Clipping factor, ϵ 0.2
Discount factor, γ 0.99
Entropy regularisation weights, β 5 × 10−2

349

Appendix D

Appendices for research item:

distributional reinforcement

learning for scheduling of chemical

production processes

D.1 Particle swarm and simulated annealing (PSO-

SA) hybrid algorithm

The general intuition behind stochastic search is provided by Algorithm 5.3.4. Most

stochastic search algorithms adhere to the description provided, which is summarised

as follows. In step 1 a population of parameters for a policy (network) is instanti-

ated by a space filling procedure of choice. Then, in step 2, the following steps are

performed iteratively : a) a population of neural policies are constructed from the pop-

ulation of parameters; bi-iv) the population is evaluated via Monte Carlo according

to the estimator defined; bv) the current best policy is tracked and stored in memory

(if a criterion is satisfied); and, c) the population parameters are then perturbed ac-

cording to a stochastic search optimisation algorithm. After a number of optimisation

iterations, the best policy identified is output. The number of optimisation iterations

is defined according to the available computational budget or according to a threshold

on the rate of improvement.

350

In this work, we use a hybrid particle swarm optimisation - simulated annealing

stochastic search optimisation algorithm with a search space reduction strategy Park

et al. (2005a) in order to identify the optimal scheduling policy parameters, θ∗ ∈ Rnθ .

Hybridisation of particle swarm optimisation and simulated annealing enables us to

balance exploitation and exploration of the parameter space. The search space reduc-

tion strategy was found to improve performance, especially in the harder experiments

conducted i.e. for experiment E3-8.

D.1.1 Particle swarm optimisation

Particle swarm optimisation is a stochastic search algorithm initially proposed in

Kennedy and Eberhart (1995a), which takes inspiration from the behaviour of ani-

mals such as fish and birds in a shoal or murmuration, respectively. The population

is defined by a number of individuals, P . Each individual (candidate will be as a

synonymous term) within the population is first initialised with a velocity, v0
i ∈ Rnθ ,

and a position, θ0i , ∀i ∈ {1, . . . , P}. All individual’s positions are subject to upper

and lower bounds, such that θi = [θLB, θUB]nθ . Similarly, all velocities are subject to

upper bounds, such that vi = [−∞, vmax]
nθ , where vmax ∈ R is typically defined as:

vmax = c3(θUB − θLB)

where c3 = [0, 1]. Each candidate is then rated with respect to an objective function,

FSA : Rnθ → R that one would like to minimise. A note of: the candidate’s current best

position, b∗
i ∈ Rnθ ; the locally best position, g∗

i ∈ Rnθ , within a neighbourhood of nh

individuals; and, of the global best, θ∗, is then made. The optimisation procedure may

then proceed by updating the position of each individual in the population iteratively

via the following equation:

vk+1
i = ωvki + c1r1

(
b∗
i − θki) + c2r2(g

∗
i − θki)

θk+1
i = θki + vk+1

i

(D.1)

where ω ∈ R+, c1 ∈ R+ and c2 ∈ R+ may be interpreted to represent a weighting for

inertia, individual acceleration and global acceleration, respectively. The individual

and local best components of the total acceleration are adjusted stochastically by the

definition of r1 ∼ U(0, 1) and r2 ∼ U(0, 1). From Eq. D.1, the update of the individ-

ual’s position makes use of information both from the trajectory of the individual but

351

the trajectories collected across the swarm.

D.1.2 Simulated annealing

Simulated annealing is also a stochastic search optimisation algorithm, which is super-

ficially related to structural transitions of physical systems under temperature change.

The algorithm updates the position of an individual, θki , probabilistically based on the

improvement provided in the proposed update with respect to the objective, FSA, and

the current temperature, T ∈ R+, of the algorithm. Specifically, an updated candidate,

θ̄ki , is proposed and accepted or rejected as follows:

θ̄ki = θki + wk
i (D.2a)

where wk
i = [−1, 1]nθ is described according to a distribution of choice on the space

[−1, 1]nθ . Eq. D.2a details the perturbation of a candidate’s position. The evaluation

and acceptance or rejection of the proposed position follows:

∆E = FSA(θki) − FSA(θ̄ki) (D.2b)

θk+1
i =

θ̄
k
i , if ∆E > 0 or z̄ ≥ exp(∆E

T
)

θki , otherwise

(D.2c)

where z̄ ∼ U(0, 1). From Eq. D.2c, it is seen that if the proposed candidate does not

improve with respect to the objective function, then it is accepted probabilistically to

balance exploration and exploitation.

Generally, schemes are implemented to update the temperature, T , given that it

controls the acceptance rate. The lower the value of T , the higher the probability of

acceptance. The larger the value of T the lower the probability of acceptance. Due

to the nature of the hybridisation used in this work, large constant values of T were

used.

D.1.3 Search space reduction

Search space reduction strategies are known to improve the performance of general

stochastic search algorithms. In this work, preliminary experiments demonstrated

that the use of a space reduction strategy improved performance of θ∗ as identified by

352

the algorithm. The strategy follows the reasoning of the work provided in Park et al.

(2005a):

θk+1
LB = θkLB + α(θkLB − θ∗)

θk+1
UB = θkUB − α(θkUB − θ∗)

(D.3)

where α = [0, 1] represents a learning rate. Algorithm D.1.3 details the hybridization

of the constituent components discussed in this section.

In this work, two logic conditions are implemented to trigger exploitative search

and space reduction and are defined as follows:

logicSA =

True, if k mod 5 = 0

False, otherwise

(D.4)

logicSSR =

True, if (k mod 5 = 0) & (k > 20)

False, otherwise

(D.5)

D.1.4 Policy network structure selection

Generally, it was observed that the performance of π learned via the method proposed

was dependent upon proper selection of the neural network structure. It was found

that a neural network 3 layer network with: an input layer of nx = 2N + 2u + 1

nodes, where N is the number of tasks and nu is the number of units; hidden layer

1 composed of 10 feedforward nodes; hidden layer 2 composed of 4 Elman recurrent

(tanh) nodes; hidden layer 3 composed of feedforward 2 nodes; and, an output layer

composed of nu nodes. Hyperbolic tangent activation functions were applied across

hidden layer 2, a sigmoid over hidden layer 3, and a ReLU6 function over the output

layer. The investigation of deeper networks was generally led by research supporting

their use for approximation of non-smooth functions. The use of recurrency within the

network was used to handle the potential partial observability of the problem when

uncertainty was present in case study.

353

Algorithm D.1 A hybrid particle swarm optimisation - simulated annealing algorithm
with a search space reduction strategy

Input: Initial upper, θ0UB, and lower bounds, θ0LB, on the parameter search space; Popula-
tion size, P ; Maximum velocity, vmax = [vmax,1, . . . , vmax,nθ

]; Search space reduction step
size, α; Particle swarm optimisation algorithm, gPSO(·); Simulated annealing algorithm,
gSA(·); Temperature, T ; Cooling schedule, gT (·); Search space reduction rule, gSSR; Ob-
jective function, FSA(·); Memory buffer, Binfo; Maximum number of search iterations,
K; Logic condition to trigger simulated annealing search optimisation algorithm, logicSA;
Logic condition to trigger search space reduction, logicSSR

1. Generate initial population of individual parameters, Θ1 = {θ11, . . . , θ1P }. Each pa-
rameter setting θ1i = [θ1i,1, . . . , θ

1
i,nθ

] ∈ Θ1 is generated such that, θi,j ∼ U(θLB,j , θUB,j),
∀j ∈ {1, . . . , nθ}.
2. Initialize a velocity for each individual in the population via the following strategy:
v0
i = (2a−1)(θUB−θLB), where a = [a1, . . . , anθ

], and ai ∼ U(0, 1). Define V1 = {vi,∀i ∈
{1, . . . , P}}.
for k = 1, . . . , K do

3a. Evaluate Jki = FSA(θi), ∀θi ∈ Θk. Append Ji to Binfo, ∀i
3b. Determine the current local best, g∗

i , for a neighbourhood composed of nh individ-
uals, for θi ∈ Θk. Define Gk = {g∗

i ,∀i ∈ {1, . . . , P}}.
3c. According to J ji ∈ Binfo, ∀j ∈ {1, . . . , k}, determine whether θki is the best param-
eter setting observed by the individual. Store this position as the current individual
best, b∗

i and store in Bk = {b∗
i ,∀i ∈ {1, . . . , P}}

if logicSSR then
3d. Reduce search space: θkUB, θ

k
LB = gSSR(Gk, θk)

end if
if logicSA then

3e.i. Conduct simulated annealing and update individual and neighbourhood best:
Θk,Gk,Bk,Binfo = gSA(Θ

k,Gk,Bk,Binfo, FSA, T k), via e.g. Eq. D.2

3e.ii. Update temperature: T k+1 = gT (T
k)

end if
3f. Update population via Particle Swarm: Θk+1,Vk+1 = gPSO(Θ

k,Gk,Bk) via e.g.
Eq. D.1. Ensure θk+1

i ∈ Θk+1 and vk+1
i ∈ Vk+1 satisfy constraints provided by θLB,

θUB and vmax

end for
4. Determine global best parameters, θ∗, from BK and Binfo

Output: θ∗

D.2 Definition of the production scheduling prob-

lem

The following text defines the problem case studies presented in this work. Full

code implementation of the system defined here is available at https://github.com/

mawbray/ps-gym and is compatible with stable RL baseline algorithms (as it is coded

via the recipe provided by OpenAI gym custom classes).

354

https://github.com/mawbray/ps-gym
https://github.com/mawbray/ps-gym

D.2.1 Problem definition

We consider a multi-product plant where the conversion of raw material to product

only requires one processing stage. We assume there is an unlimited amount of raw

material, resources, storage and wait time (of units) available to the scheduling el-

ement. Further, we assume that the plant is completely reactive to the scheduling

decisions of the policy, π, although this assumption can be relaxed if decision-making

is formulated within an appropriate framework as shown in Hubbs et al. (2020a). The

scheduling element must decide the sequencing of tasks (which correspond uniquely

to client orders) on the equipment (units) available to the plant. The following oper-

ational rules are imposed on the scheduling element:

1. A given unit l has a maximum batch size for a given task i. Each task must

be organized in campaigns (i.e. processed via multiple batches sequentially) and

completed once during the scheduling horizon. All batch sizes are predetermined,

but there is uncertainty as to the processing time (this is specific to task and

unit).

2. Further, the task should be processed before the delivery due date of the client,

which is assumed to be an uncertain variable (the due date is approximately

known at the start of the scheduling horizon, but is confirmed with the plant a

number of periods before the order is required by the client).

3. There are constraints on the viable sequencing of tasks within units (i.e. some

tasks may not be processed before or after others in certain units).

4. There is a sequence and unit dependent cleaning period required between oper-

ations, during which no operations should be scheduled in the given unit.

5. Each task may be scheduled in a subset of the available units.

6. Some units are not available from the beginning of the horizon and some tasks

may not be processed for a fixed period from the start of the horizon (i.e. they

have a fixed release time).

7. Processing of a task in a unit must terminate before another task can be sched-

uled in that unit.

355

The objective of operation is to minimise the makespan and the tardiness of task

(order) completion. This means that once all the tasks have been successfully processed

according to the operational rules defined, then the decision making problem can be

terminated. As in the original work, we formalize the notation of a number of problem

sets and parameters in Table D.1. We try to keep notation consistent with that

work. It should be noted that in this work, we transcribe the problem as a discrete-

time formulation. The original work Cerda et al. (1997) utilised a continuous-time

formulation. We formalize the notation of a number of problem sets and parameters

in Table D.1.

Table D.1: Table of problem parameters and sets. *D.T.I. is shorthand for discrete
time indices.
Sets Notation

Tasks (orders) to be processed I = {1, . . . , N} ⊂ Z+

Available units L = {1, . . . , nu} ⊂ Z+

Available units for task i Li ⊆ L
The task most recently processed in unit l Ml ⊂ Z; |Ml| ≤ 1
Tasks which have been completely processed Tf ⊂ Z
Feasible successors of task i in unit l SUil ⊂ Z+

Feasible successors of task i SUi = ∪l∈LSUil ⊂ Z+

The task currently being processed in unit l Ol

Parameters Notation

Number of tasks N ∈ R+

Due date of client order (task) τi ∈ Z+

Number of units nu ∈ Z+

Batch size of unit l for task i Bil ∈ R+

Number of batches required to process task i in unit l NBil ∈ Z+

Sequence dependent set up time υ̂ilt ∈ Z+

Release time of tasks in D.T.I. (RTT)i ∈ Z+

Release time of units in D.T.I. (RTU)l ∈ Z+

Sequence dependent cleaning time (task i succeeds m) TCLmil ∈ Z+

Miscellaneous Variables Notation

Variable indicating campaign production of task i starts at time t in unit l Wilt ∈ Z2

Variable indicating unit l is processing task i at time t W̄ilt ∈ Z2

Integer variable denoting task i is being processed in unit l at time t wlt ∈ U
Estimated D.T.I. for unit l to process a batch of task i P̄ T il ∈ Z
Actual D.T.I. for unit l to process batch n of task i PLinl ∈ Z
Actual D.T.I. to finish processing current campaign in unit l at time t δlt ∈ Z
Current inventory of task (client order) i at time t Iit ∈ R+

D.T.I. until due date of task i at time t ρit ∈ Z
The length of a discrete time index dt ∈ R+

356

D.2.2 Formulating discrete-time scheduling problems as Markov

decision processes

The methodology presented in Section 6.3 utilises formulation of the scheduling prob-

lem as an MDP, which is an approximation to solving the finite-horizon stochastic

optimal control problem (as detailed in Eq. 5.3). Construction of the problem follows.

Firstly, the time horizon is discretised into T = 200 finite periods of length dt = 0.5

days, where t ∈ {0, . . . , T} describes the time at a given index in the discrete time

horizon.

We hypothesise that the system is made completely observable by the following

state representation:

xt =

[
I1t, . . . , INt, w1t, . . . , wnut, δ1t, . . . , δnut, ρ1t, . . . , ρNt, t

]T
∈ R2N+2nu+1 (D.6)

where Iit ∀i ∈ I quantifies the current inventory of client orders in the plant; the tasks

processed within units in the plant over the previous time interval, wlt ∀l ∈ L; the

discrete time indices remaining until completion of the task campaigns being processed

in all units, δlt ∀l ∈ L; the discrete time indices remaining until orders (tasks) are due,

ρit ∀i ∈ I; and, the current discrete time index, t.

Similarly, we define the control space, u = [u1, . . . , unu]T ∈ U as the set of integer

decisions (tasks) that could be scheduled in the available units. Hence, one can define

U =
⋃nu

l=1Ul ⊂ Znu
+ , where Ul = I ∪ {N + 1}, and N + 1 is an integer value, which

represents the decision to idle the unit for one time period.

A sparse reward function is defined as follows:

R =

dTxt+1, if t = T − 1 or Tf = I

0, otherwise

(D.7)

where d ∈ Znx denotes a vector specified to penalise order lateness and makespan;

I ⊆ Z denotes the set of tasks (or client orders); and, Tf ⊆ Z denotes the set of tasks,

which have been completed. If Tf = I is satisfied, the decision-making problem is

terminated. Definition of d follows:

d =
[
01,N ,01,nu ,01,nu ,11,N ,−1

]T ∈ Z2N+2nu+1 (D.8)

where 01,j represents a row vector of zeros of dimension j; and, 11,j represents a

row vector of ones of dimension j. How the definition provided by Eq. D.7 enforces

357

operational objectives is clarified by full definition of the dynamics, as presented sub-

sequently.

The inventory balance is defined to highlight that the underlying state space model

is both non-smooth and subject to uncertain variables:

Iit+1 = Iit +

NBil∑
n=1

∑
l∈Li

BilWilt−υ̂ilt−
∑n

n̂=1 PLin̂l
∀i ∈ I (D.9)

where Bil is the maximum batch size (kg) of unit l for task i ; NBil is the integer

number of batches required to satisfy the client’s order size in unit l ; PLinl is a random

variable that indicates the number of discrete time indices required to produce batch

n of task i in unit l and represents a realization of an uncertain variable; Wilt ∈ Z2 is

a binary variable, indicating a production campaign for task i was first scheduled in

unit l at time t ; υ̂ilt defines the current sequence dependent unit set up time required

to process order i in unit l at time t. The sequence dependent unit set up time is

defined as follows:

υ̂ilt =

∑

m∈Ml
max(max([TCLmil + tml − t]+, [(RTT)i − t]+), [(RTU)l − t]+

)
, if |Ml| = 1

max([(RTT)i − t]+, [(RTU)l − t]+
)
, otherwise

(D.10)

where Ml ⊂ Z+, defines a set denoting the task most recently processed in unit l, which

finished at time, tml ≤ t, such that the cardinality of the set |Ml| ∈ Z2; TCLmil ∈ R+

defines the cleaning times between successive tasks m and i ; (RTT)i ∈ Z+ defines the

release time (in number of discrete time indices) a task i cannot be processed for at

the start of the horizon; (RTU)l ∈ Z+ defines the release time of unit l.

It is apparent that in order to handle the requirements for cleaning time between

processing of successive tasks m and i in unit l, we directly incorporate the cleaning

time required and all other mandated setup time (collectively denoted υ̂ilt) into the

total processing time of task i in unit l when first scheduled at time t. The total

processing time for a task i in unit l at time t̂l is then equivalent to
∑NBil

n=1 PLinl+ υ̂il̂tl .

Further, if a different task î is scheduled by the policy at time, t̄, in unit l, before the

end of the production campaign for task i (i.e. where Wilt̂l
(
∑NBil

n=1 PLinl + υ̂ilt̂l) + t̂l >

t̄ > t̂l), then the task indicator Wilt̂l
= 0 is redefined.

Similarly, if a production campaign of task i successfully terminates at time t in

unit l, then: Wilt̂l
= 0; Ml = {i}; tml = t; and, the task is added to a list of completed

358

orders, Tf = Tf ∪ {i}. In both cases redefinition of the binary variable is retroactive

to the initial scheduling decision.

Next, we update a representation of ’lifting variables’ Gupta and Maravelias (2017)

that indicate current unit operations:

wlt+1 = ult ∀l ∈ L (D.11)

where ult ∈ Z+ is the scheduled decision at the previous time index. This is

deemed a necessary part of the state representation, given that it provides information

regarding the operational status of the available equipment at the current time index.

For example: if ult = N + 1, then the unit is idle; if 0 ≤ ult < N + 1, then it is not.

A control must be predicted at each discrete time index. Typically, the length of a

production campaign will be greater than the duration of discrete time interval, dt.

To handle this if ult = ult−1 it is deemed that the scheduling element is indicating to

continue with the current operation in unit l.

To determine the amount of processing time left for a given campaign in a unit l,

we define:

Alt =
∑
i∈IL

Wilt

(NBil∑
n=1

PLinl + υ̂ilt − δlt

)
+ δlt

δlt+1 = Alt − 1 ∀l ∈ L

(D.12)

The formulation assumes that we know the processing time required for batch n of task

i in unit l, PLi,n,l, ahead of its realization. In reality it is treated as a random variable,

which is only observed when a given batch in a production campaign terminates. This

is discussed further in Section D.2.3. The final equation comprising the system updates

the number of discrete time indices until the order i is to be completed for delivery to

the client, ρit:

ρit+1 =

[ρit]
−, if i ∈ Tf

ρit − 1, otherwise

∀i ∈ I (D.13)

where [y]− = min(0, y). The use of the logic condition enforced in Eq. D.13 is es-

sentially redundant from the point of view of providing information about completed

tasks, given that this is equivalently expressed by the inventory representation in the

state vector. However, it is particularly useful in the allocation of rewards as it pro-

vides means to easily allocate penalty for tardy completion of tasks as expressed in

Eq. D.7.

359

D.2.3 A forecasting framework for handling future plant un-

certainty

In this study, the processing time of a batch, PLinl, and the due date of the client

orders, τi, are described by uniform and poisson distributions, respectively. This is

detailed bu Eq. D.14a and D.14b:

PLinl ∼ U(max(1, P̄ T il − c), P̄ T il + c) ∀n ∈ {1, . . . , NBil}, ∀l ∈ Li, ∀i ∈ I

(D.14a)

where c ∈ Z+ defines the variance of the distribution (c = 1 in this work); and, P̄ T il is

the expected processing time for a batch of task i in unit l. The due date uncertainty

is described as follows:

τi ∼ P (τ̄i) ∀i ∈ I (D.14b)

where τ̄i is the expected due date. In practice, we do not observe the realizations of

these variables in advance, and hence maintain estimates according to their expected

values within the state representation (i.e. Eq. D.6). In the case of the due date, the

client is required to confirm the delivery date two days before the order - at which

point τi is observed and updated within the state. Whereas the true processing time

is only observed at the end of the operation.

D.2.4 Defining the initial system state

Eq. D.9 - D.13 represent the discrete-time plant dynamics (i.e. Eq. 5.1) that we

are concerned with. To initiate the system, it is necessary to define an initial state,

x0, that represents the plant at the start of the scheduling horizon, t = 0. This is

described by the following set of expressions:

Ii0 = 0 ∀i ∈ I (D.15a)

which assumes that at the start of the horizon, the plant holds no inventory of the

products one desires to produce;

wl0 = N + 1 ∀l ∈ L (D.15b)

denotes that at the start of the horizon all units are idled. Even if this is not the case

(i.e. the unit is unavailable for other reasons, such as production of another task which

360

it began before the start of the scheduling horizon), the allocation appears satisfactory

according to experiments that follow in Section 5.5;

δl0 = (RTU)l ∀l ∈ L (D.15c)

Eq. D.15c assumes that the unit is required to be idled for at least a period equivalent

to its release time. At the start of the horizon, the number of discrete time indices

until a task is due to be delivered to a client is equivalent to the task due date:

ρi0 = τ̄i ∀i ∈ I (D.15d)

It should also be noted that at t = 0, Ml = {} ∀l and Tf = {}.

Having provided detail of the state, controls space and plant dynamics, we now

turn our attention to identification of the feasible controls.

D.2.5 Defining the set of feasible controls

We seek to identify the set of controls Ût ⊂ U ⊂ Znu , which innately satisfy the

constraints imposed on the scheduling element.

Here, we define a number of sets that enable us to identify Ūt:

1. A given unit l can process a subset, Il ⊆ I of the tasks that require processing.

2. If unit l has just processed task i then there exists a set of tasks which may be

processed subsequently, SUil.

3. There exists a set, Ol = {i}, which describes the task currently being processed

in unit l. At t = 0, Ol = ∅. If the unit is idled, then Ol = ∅.

4. As previously mentioned there exists a set, Tf , descriptive of those tasks, which

have already been processed successfully. At t = 0, Tf = ∅.

5. Lastly, again, there exists a set, Ml descriptive of the task most recently processed

in unit l. Likewise, at t = 0, Ml = ∅.

It follows then that any given time in processing, one can define the set of controls

361

that partially satisfy the imposed operational rules as:

Ūt =
nu⋃
l=1

(Il ∪ {N + 1})\Tf if Ol = ∅ & Ml = ∅

((Il ∪ {N + 1}) ∩ SUml)\Tf where, m ∈ Ml if Ol = ∅ & |Ml| = 1

Ol if Ol ̸= ∅
(D.16)

Note, however, in this instance we cannot innately satisfy the control set Ût, as Ût ⊂

Ūt. Specifically, Ūt permits the scheduling of the same task i in two different units l

and l’ at the same time index t. We propose to handle this through use of a penalty

function, which we define as:

ϕ = R− κg
∥∥[g(x,u)]+

∥∥
2

g(x,u) = [g1, . . . , gN]

gi =
∑
l∈Li

W̄ilt − 1

(D.17)

where κg = 250 and W̄ilt ∈ Z2 is a lifting variable that indicates unit l is processing

task i at time t, such that if ult = i, then W̄ilt = 1 and, otherwise W̄ilt = 0. Note that

technically, under the discrete-time state space model formulation used in this work

(i.e. Eq. D.11), this could also be considered as a state inequality constraint. However,

due to the uncertainty associated with the evolution of the state, this formalism will be

explored in future work. By deploying the methodology proposed in Section 6.3, but

modifying the rounding policy such that it is defined fr : W → Ū, we can ensure that

the decisions of the policy function, π satisfy the constraints imposed on the scheduling

problem (see D.2.1) as originally proposed in Cerda et al. (1997) by maximising the

penalised return defined under ϕ.

D.3 Definition of experimental data used in com-

putational experiments

This section details the data used to define the case studies investigated in Section

5.5. Please see Tables D.2, D.3, D.4, D.5, D.6 for information regarding: the feasible

processing of tasks in units and respective maximum batch sizes; nominal process-

ing times; the viable successors of a given task; the cleaning times required between

362

successive tasks; and information regarding order sizes, due dates and release times,

respectively.

Table D.2: Maximum task batch size (kg/batch) for every unit. RTU* denotes the
finite release time of the unit in days. The length of a discrete time index corresponds
to 0.5 days.

Unit, l

Task (order) 1 2 3 4

T1 100
T2 210
T3 140 170
T4 120
T5 90 130
T6 280 210
T7 390 290
T8 120
T9 200
T10 250 270
T11 190
T12 140 150
T13 120 155
T14 115
T15 130 145

RTU* 0.0 3.0 2.0 3.0

Table D.3: Order processing times (days/batch), PTil. The length of a discrete time
index corresponds to 0.5 days.

Unit, l

Task (order), Ti 1 2 3 4

T1 2.0
T2 1.0
T3 1.0 1.0
T4 1.5
T5 1.5 1.0
T6 2.5 2.0
T7 1.0 1.5
T8 2.0
T9 1.5
T10 2.5 2.0
T11 1.5
T12 2.0 1.5
T13 3.0 1.0
T14 2.5
T15 1.0 2.0

363

Table D.4: Set of feasible successors.
Task (order) Feasible Successors

T1 T6, T9, T10, T13
T2 T3, T11, T13
T3 T1, T2, T7, T9, T10, T11, T12
T4 T5, T10, T14, T15
T5 T4, T6, T7, T8, T12, T14
T6 T1, T3, T4, T9, T13, T14, T15
T7 T2, T5, T8, T12
T8 T7, T11, T12, T15
T9 T1, T3, T6, T10, T13
T10 T1, T3, T4, T9, T13, T14, T15
T11 T2, T12, T13
T12 T3, T5, T7, T8, T11, T15
T13 T1, T2, T3, T6, T7, T9, T10, T11, T12
T14 T4, T5, T6, T10, T15
T15 T4, T6, T7, T8, T10, T12, T14

Table D.5: Cleaning times required between pairs of orders (days) in all units. The
length of a discrete time index corresponds to 0.5 days.

Succeeding Task

Task (order) T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

T1 0.5 1.0 0.5 1.5
T2 1.0 1.0 1.5
T3 1.0 0.5 0.5 1.5 0.5 1.0 2.0
T4 0.5 0.5 2.0 1.0
T5 0.5 0.5 1.0 0.5 0.5 0.5
T6 1.5 0.5 0.5 1.0 0.5 1.0 1.5
T7 2.0 1.0 0.5 1.0
T8 1.5 0.5 0.5 1.5
T9 2.0 1.0 0.5 1.5 3.0
T10 1.0 0.5 0.5 1.0 2.5 0.5 2.0 1.0
T11 1.0 0.5 2.5
T12 1.0 1.5 2.0 1.0 0.5 1.0
T13 1.5 0.5 2.0 2.0 2.5 0.5 0.5 1.0 1.5
T14 0.5 0.5 0.5 0.5 0.5
T15 0.5 0.5 0.5 0.5 1.5 0.5 0.5

364

Table D.6: Order sizes, due dates (days) and release times. The length of a discrete
time index corresponds to 0.5 days.

Task (order) Ti P1 Order Size,
Mi (kg)

P2 Order size,
Mi (kg)

Due date, τ̄i
(days)

Release time of or-
der, (RTO)i (days)

T1 700 700 10 0
T2 1050 850 22 5
T3 900 900 25 0
T4 1000 900 20 6
T5 650 500 28 0
T6 1350 1350 30 2
T7 950 950 17 3
T8 850 850 23 0
T9 450 30 2
T10 650 21 6
T11 300 30 0
T12 450 28 1.5
T13 200 15 0
T14 700 29 0
T15 300 40 5.5

365

D.4 Results for distributional formulation: prob-

lem instance 2

In this section, we present the results from investigation of experiments D3-8. The

difference between these experiments and E3-8, is that now we are interested in opti-

mizing for a different measure of the distribution, pπ(z). In E3-8, the objective was

optimisation in expectation, µZ . In D3-8, the objective is optimisation for the expected

cost of the worst 20% of the penalised returns, i.e. Eq. 5.9a, with β = 0.2. Again, the

optimisation procedure associated with the proposed method utilises a sample size of

nI = 50. All policies were then evaluated for 500 MCs.

Table D.7: Results for distributional RL from experimental conditions detailed by
Table 5.1. Results that are emboldened detail those policies that show improved
CVaR over the expected RL formulation (as detailed in Table 5.4).

Method Reference µZ σZ µ̄β FLB

Proposed

D3 -116.0 10.4 -130.6 1.0
D4 -151.8 10.2 -166.6 0.98
D5 -123.4 18.2 -150.2 1.0
D6 -166.5 22.2 -198.7 1.0
D7 -127.1 20.3 -152.9 0.99
D8 -167.0 23.7 -199.9 0.98

D.5 Misspecification of plant uncertainty

The processing time uncertainty has the same form as Eq. D.14a, but with misspec-

ification of the parameters of the distribution by an additive constant, kpt ∈ Z+. In

this case, the actual plant processing time uncertainty, Eq. D.14a, is redefined:

PLinl ∼ U
(

max(1, P̄ T il − ĉ), P̄ T il + ĉ
)
, ∀n ∈ {1, . . . , NBi,l}, ∀l ∈ Li, ∀i ∈ I

where ĉ = c + kpt (in this work c = 1). Similarly, the rate of the Poisson distribution

descriptive of the due date uncertainty (Eq. D.14b) is misspecified. Here, however, the

misspecification is treated probabilistically, such that the rate, τ̄i, ∀i ∈ I, is perturbed

by a relatively small amount. Specifically, we redefine the due date uncertainty of the

real plant as follows:

τi ∼ P (τ̂i), ∀i ∈ I

366

where τ̂i = τ̄i + kddzi, zi ∼ U(−1, 1) ∀i ∈ I and kdd ∈ Z+. Details of kpt and kdd

investigated in this work are provided by Table 5.6 in Section 5.5.5.

D.6 The probability of constraint satisfaction

In this work, we are interested in satisfying hard constraints on the scheduling deci-

sions (control inputs) to a plant. In the case that the underlying plant is subject to

uncertainties, we evaluate this constraint probabilistically. This means we are inter-

ested in quantifying the probability, FU , that the constraints on the control inputs,

ut ∈ Ût, ∀t are satisfied:

FU = P
(T−1⋂

i=0

{ui ∈ Ûi}
)

(D.18)

In order to estimate FU , we gain empirical approximation, FSA, known as the empirical

cumulative distribution function, by sampling. In this work, nI = 500 Monte Carlo

samples were used to estimate FLB in the results reported as follows:

FSA =
1

nI

nI∑
i=1

Y i (D.19)

where Y i is a random variable, which takes a value of Y i = 1, if ut ∈ Ût, ∀t, and

Y i = 0 if ∃ ut /∈ Ût, ∀t. Due to the nature of estimation from finite samples, the FSA

is prone to estimation error. Hence, we employ a concept from the binomial proportion

confidence interval literature, known as the Clopper–Pearson interval (CPI). The use

of the CPI helps to ensure the probability of joint satisfaction with a given confidence

level, 1 − υ. This is expressed by Lemma 4, which is recycled from Mowbray et al.

(2022a).

Lemma 4 Joint chance constraint satisfaction via the Clopper-Pearson

confidence interval: Consider the realisation of FSA based on nI independently and

identically distributed samples. The lower bound of the true value FLB may be defined

with a given confidence 1 − υ, such that:

P(FU ≥ FLB) ≥ 1 − υ

FLB = 1 − betainv(υ, nI + 1 − nIFSA, nIFSA)
(D.20)

where betainv(·) is the inverse of the Beta cumulative distribution function with pa-

rameters {nI + 1 − nIFSA} and {nIFSA}.

367

Appendix E

Appendices for research objective:

Distributional reinforcement

learning for optimisation of

multi-echelon supply chains

E.1 Simulated annealing

Simulated annealing is a stochastic search algorithm proposed in Kirkpatrick et al.

(1983b), inspired by the solid annealing process. The SA algorithm starts from a high

initial temperature, and with the continuous decrease of temperature parameters, it

can jump out of the local optimal solution and finally approach the global optimal

solution. The basic steps of the SA we present in Algorithm E.1 are as follows:

Step 0: Initialization: initial temperature T (sufficiently large), initial solution

state θ (the starting point of the algorithm), the number of iterations Niter for each T.

Step 1: Generate a new solution θ
′
.

Step 2: Calculate the increment ∆T = Ffitness(θ) − Ffitness (θ′), where Ffitness(θ) is

the evaluation function. If ∆T < 0, θ′ is accepted as the new current solution, other-

wise, θ′ is accepted as the new current solution with the probability of exp(−∆T/T).

Step 3: If the termination condition is satisfied, output the current solution as

the optimal solution, and the program is terminated. Decrease T gradually, go to step

(1).

368

Algorithm E.1 Simulated Annealing

Input: Temperature T; initialization θ; upper bound θUB and lower bound θLB on the
search space; cooling rate C; and, the number of iterations Niter

for k = 1, . . . , Niter do
1. Generate a new solution θ′

2. If ∆T > 0 & exp
(
−∆T

T

)
< U(0, 1): θk+1 = θk; else: θk+1 = θ

′

3. T = T × C
4. k := k + 1

end for
Output: Final solution θ∗ and objective function value Ffitness(θ

∗)

E.2 Evolution strategy

The two common selection schemes for evolution strategy (ES) algorithms are (µ+λ)-

ES and (µ, λ)-ES (Schwefel and Rudolph, 1995; Hansen et al., 2015). In this work, we

implement an adaptive (µ+ λ)-ES, which is shown in Algorithm E.2.

Algorithm E.2 Adaptive (µ+ λ)-ES

Input: Number of parents µ; number of kids λ; k := 0; and the number of
iterations Niter; upper bound θUB and lower bound θLB on the search space;

1. Initialize parameters θ and mutation strength of µ individuals
for k = 1, . . . , Niter do

2a. Crossover: randomly recombine individuals from parents µ to produce off-
spring λ.
2b. Mutation: apply mutation operator to the λ kids.
2c. Evaluate the µ+ λ individuals.
2d. Select µ individuals for survival.
2e. k := k + 1

end for
Output: Optimal solution θ∗ and objective function value Ffitness(θ

∗)

E.3 Particle swarm optimisation

PSO algorithm is a new parallel meta-heuristic algorithm first proposed by Kennedy

and Eberhart (1995b). The particles in the algorithm determine the search pattern

according to their own experience and the experience of other particles, and constantly

approach the optimal solution until the termination condition is reached. Here we

implement a PSO algorithm with shrinkage factor (Clerc, 2010). Each particle i is

first randomly initialized with a position vector θi = [θi,1, . . . , θi,D] and velocity vector

369

vi = [vi,1, . . . , vi,D] in D-dimensional space. The population is defined by a number of

particles N . All particles update their own speed according to two extreme values: one

is the individual extreme value (θbi); the other is the global extreme value (θ∗). The

update formula of the position vector and velocity vector of all particles is as follows:

ω =
2∣∣∣∣2 − (r1 + r2) −

√
(r1 + r2)

2 − 4 (r1 + r2)

∣∣∣∣ (E.1a)

vk+1
i = ω[vki + c1r1

(
θbi − θki

)
+ c2r2(θ

∗ − θki)] (E.1b)

θk+1
i = θki + vk+1

i (E.1c)

where ω is a shrinkage factor, which determines how much the speed of the last iteration

is reserved. It is one of the important parameters of PSO, the global search ability

and local search ability of the algorithm can be balanced by adjusting it. c1 and c2

are the learning factor of the algorithm. It is generally believed that a larger c1 will

make all particles linger too much in the local area, which is not conducive to the

global search of the algorithm. However, a larger c2will make the particles fall into

the local optimal value prematurely and reduce the accuracy of the solution. r1 and

r2 are random numbers between 0 and 1. The algorithm is also outlined in Alg. E.3.

Algorithm E.3 Particle Swarm Optimisation

Input: Initialize the number of particle N, upper bound θUB and lower bound θLB on the
search space, maximum velocity vmax = [vmax,1, vmax,2, . . . vmax,D], individual acceleration
c1 and global acceleration c2.

for each particle i = 1, ..., N do
1a. Initialize the position θi and velocity vi of particles i.

1b. Evaluate particle i and set θbi = θi
end for
2. θ∗ = argmaxi Ffitness(θ

b
i)

for i = 1, ..., N do
3a. Update the velocity vi and position θi of particle i.

3b. Calculate the value of individual fitness function.

3c. If Ffitness(θi) > Ffitness(θ
b
i) then θbi = θi.

3d. If Ffitness(θi) > Ffitness(θ
∗) then θ∗ = θi

3e. If termination criterion satisfied then break.
end for

Output: Optimal position θ∗ and objective function value Ffitness(θ
∗)

370

E.4 Artificial bee colony

The ABC algorithm was proposed in Karaboga (2005), inspired in the intelligent be-

havior of honey bee colonies. Since bees generate new candidate solutions by updating

the random dimension vector of their parent solutions, this search pattern is good at

exploration but poor at exploitation (Gao and Liu, 2012).

It is assumed that the dimension of solving the problem is D and the number of

particles is N . The position of honey source i is expressed as θki = [θki1, θ
k
i2, . . . θ

k
iD] in k

iterations. The initial position of honey source i is randomly generated in the search

space. Employed bees search around the honey source i based on Eq. E.2 to produce

a new honey source:

θk+1
i = θki + φ(θki − θkj) (E.2)

where j ̸= i, φ is uniformly distributed random number. Then onlooker calculate

the selection probability matrix based on Eq. E.3, then use the roulette selection

method to choose one of their sources and retain the honey source by greedy selection.

M =
1

N

N∑
i

fiti (E.3a)

Fi = e
fiti
M (E.3b)

Pi =
Fi∑N
i=1 Fi

(E.3c)

where fiti is the fitness value of honey source i.

During the search, if the honey source θi does not get a better honey source after

klimit iterations, the honey source θki will be abandoned and the corresponding employed

bees will be transformed into scout bees. Scout bees will randomly generate a new

honey source instead of θi in the search space.

371

Algorithm E.4 Artificial bee colony search routine

Input: The number of iteration Niter, , upper bound θUB and lower bound θLB on the search
space, the number of particles N;

1. Initialize the food source memory θi

for k = 1, . . . , N iter do

2a. Employed bees set out to find the next honey source and make greedy choices.

2b. Onlooker calculate the selection probability matrix, then execute the roulette se-
lection method to choose one of their sources, and repeat the greedy selection.

2c. Scout bees conduct a domain search to find possible new food sources.

2d. Remember the location of the best food source available.

e. k := k + 1

end for
Output: The best food source θ and objective function value Ffitness(θ)

E.5 Recurrent Neural Network

Recurrent neural networks (RNNs) have previously been used as a solution to model-

ing (Su et al., 1992) and control law parameterization (Mnih et al., 2014). The RNNs

generates an output at each time step and has a recursive connection between the

hidden units. This enables them to exploit information from the previous states, a

feature that allows RNNs to be successfully applied to partially observable problems

and belief MDPs. In this work, we use RNNs to parameterize the policy π (xt;ht−1, θ).

A detailed representation of a simple RNN is depicted in Fig. E.1. The RNNs main-

tains a hidden state ht, that is an abstraction of the information provided by the

previous sequence of states. This hidden state is updated at each time index based on

new information provided by the current state, which is then fed forward through the

activation function σ (·) in the network to ultimately influence the control prediction

of the network. Here σ (·) is the Tanh function. Similar to general artificial neural

networks, the parameters of RNNs can be optimised via standard tools and algorithms.

In this work, we build a neural network with two hidden layers. The first hidden

layer uses RNNs, and the second hidden layer uses a fully connected feedforward

layer. Each case study has a slightly different neural network structure with different

number of parameters. The detailed structure of each neural network and the number

of their parameters are presented in Table E.1. In order to facilitate neural network

learning and mitigate the effects of mathematical bias in the state representation, we

372

Figure E.1: Recurrent neural networks as a) unfolded computational graph and b)
hidden node.

standardize all data so that the input data are of the same order of magnitude. The

metrics used for standardization are fixed during training, and estimated from the

range of state variables.

Table E.1: Recurrent neural network detailed structure and number of parameters.

Hyperparameter Virtual Machine Packing Asset Allocation Supply Chain

Input layer nodes 153 7 33
Hidden recurrent layer 1
nodes

10 10 10

Hidden recurrent layer 2
nodes

5 5 5

Output linear layer nodes 1 3 3
Number of parameters 1711 263 523

E.6 Results of sensitivity analysis

Table E.2: Results of sensitivity analysis for different parameters.

Experiment Number

1 2 3 4 5 6 7 8 9

Training
Parameters

Particles 40 60 80 100 80 80 80 60 60
CVaR bound 380 380 380 380 360 400 420 380 380
Sample Size 60 60 60 60 60 60 60 10 30

Policy
Training

Expectation 427.9 430.2 428.8 438.9 432.3 424.1 410 451.2 436.2
Std. Dev. 16.3 14.9 14.2 21.4 21.8 13 17.5 13.2 20.1
CVaR 394.2 398.7 397.6 394.1 387.0 400.1 381.5 425.9 396.4

Policy
Validation

Expectation 423.5 425.9 425.0 430.5 430.1 422.4 407.4 430.8 430.4
Std. Dev. 18.4 18.4 16.4 24.3 22.5 16.3 21.3 27.8 24.8
CVaR 385.1 390.1 392.4 381.5 384.1 389.8 364.6 378 381.5

373

	Abstract
	Declaration
	Copyright Statement
	Acknowledgements
	Overview
	Connecting Machine Learning and Process Systems Engineering
	Decision-making in industrial process systems
	Process control and online optimisation
	Production scheduling and supply chain operations

	Motivation and objectives
	Research contributions and thesis structure
	Chapter 3 - Research Objective 1
	Chapter 4 - Research Objective 2
	Chapter 5 - Research Objective 3
	Chapter 6 - Research Objective 4

	Background and Literature Review
	Identification of decision rules
	Sequential decision making problems and uncertainty
	Reinforcement Learning
	Extracting decision rules from process data

	Process control and online optimisation of batch process systems
	Batch and fed-batch process systems
	Modelling approaches
	Solution approaches

	Production scheduling
	Classification of batch production environments
	Modelling approaches
	Solution approaches

	Using process data to generate an optimal control policy via apprenticeship and reinforcement learning
	Introduction
	Preliminaries
	Policy gradients and Reinforce
	Learning from demonstrations via apprenticeship
	Motivation

	Methodology
	Problem statement
	Policy gradients and Reinforce
	Apprenticeship learning via inverse reinforcement learning
	Maximum entropy inverse reinforcement learning (MaxEnt IRL)
	Overview of proposed methodology

	Computational case studies
	Introduction to the case studies
	Design of state features for apprenticeship learning
	Case study definitions

	Results and discussion
	Case study I – Learning from near optimal demonstrations
	Case Study II - Learning from suboptimal demonstrations
	Case study III - Knowledge transfer in learning from demonstration

	Conclusions

	Safe chance constrained reinforcement learning for batch process control
	Introduction
	Safe Reinforcement Learning
	Uncertainty aware modelling and control
	Contribution

	Problem statement
	Methodology
	Gaussian processes for data-driven dynamic modelling
	Safe chance constrained policy optimisation with Gaussian processes

	Case Study
	A microalgal lutein photo‐production dynamic process
	Safe chance constrained policy optimisation
	Benchmark for process optimisation
	Key performance indicators

	Results and discussion
	Results of safe chance constrained policy optimisation
	Comparison to benchmark methods

	Conclusion

	Distributional reinforcement learning for scheduling of chemical production processes
	Introduction
	Online production scheduling: optimisation and simulation
	Online production scheduling and Reinforcement Learning
	Contribution

	Problem statement
	Methodology
	Identifying discrete control decisions
	Constraint handling
	Stochastic search policy optimisation
	Optimizing for the distribution of returns

	Case studies
	Problem definition
	Benchmark
	Experiments

	Results and discussion
	Policy training
	Problem instance 1
	Problem instance 2
	Computational time cost in policy identification and decision-making
	The effects of inaccurate estimation of plant uncertainties

	Conclusions

	Distributional reinforcement learning for optimisation of multi-echelon supply chains
	Introduction
	Preliminaries
	Introduction to Reinforcement Learning
	Reinforcement Learning and stochastic search optimisation
	Introduction to Distributional Reinforcement Learning

	Methodology
	Stochastic search for Reinforcement Learning (SS-RL)

	Case studies
	Virtual machine packing
	Asset allocation
	Supply chain inventory management

	Conclusions

	Conclusions and future work
	Bibliography
	Appendices for Background and Literature Review
	Derivation of the state value function
	Dynamic programming: policy iteration and value iteration
	Markov Decision Processes
	Linear programming formulations for determining the optimal state value function
	Maximum entropy optimisation

	Appendices for research item: Using process data to generate an optimal control policy via apprenticeship and reinforcement learning
	The Policy Gradient Theorem
	Long-short term memory (LSTM) policy networks
	The principle of maximum entropy and maximum entropy Inverse Reinforcement Learning
	Policy characterisation
	Approximate Process Model
	Generation of demonstrated trajectories and control bounds
	Case study I and II hyperparameters
	Case study III hyperparameters
	Case study data requirements and computational time

	Appendices for research item: safe chance constrained reinforcement learning
	Gaussian process state space modelling
	Training of Gaussian process models
	Obtaining function realisations from GP state space models

	Validation of Gaussian process models used in case study
	Proximal policy optimisation, The advantage function and entropy regularisation
	The advantage function
	Entropy regularisation
	Entropy regularised proximal policy optimisation

	Evaluating joint constraint satisfaction empirically
	Further Information on Benchmark
	Hyperparameters for Learning in Case Study

	Appendices for research item: distributional reinforcement learning for scheduling of chemical production processes
	Particle swarm and simulated annealing (PSO-SA) hybrid algorithm
	Particle swarm optimisation
	Simulated annealing
	Search space reduction
	Policy network structure selection

	Definition of the production scheduling problem
	Problem definition
	Formulating discrete-time scheduling problems as Markov decision processes
	A forecasting framework for handling future plant uncertainty
	Defining the initial system state
	Defining the set of feasible controls

	Definition of experimental data used in computational experiments
	Results for distributional formulation: problem instance 2
	Misspecification of plant uncertainty
	The probability of constraint satisfaction

	Appendices for research objective: Distributional reinforcement learning for optimisation of multi-echelon supply chains
	Simulated annealing
	Evolution strategy
	Particle swarm optimisation
	Artificial bee colony
	Recurrent Neural Network
	Results of sensitivity analysis

