10,077 research outputs found

    Constructing IGA-suitable planar parameterization from complex CAD boundary by domain partition and global/local optimization

    Get PDF
    In this paper, we propose a general framework for constructing IGA-suitable planar B-spline parameterizations from given complex CAD boundaries consisting of a set of B-spline curves. Instead of forming the computational domain by a simple boundary, planar domains with high genus and more complex boundary curves are considered. Firstly, some pre-processing operations including B\'ezier extraction and subdivision are performed on each boundary curve in order to generate a high-quality planar parameterization; then a robust planar domain partition framework is proposed to construct high-quality patch-meshing results with few singularities from the discrete boundary formed by connecting the end points of the resulting boundary segments. After the topology information generation of quadrilateral decomposition, the optimal placement of interior B\'ezier curves corresponding to the interior edges of the quadrangulation is constructed by a global optimization method to achieve a patch-partition with high quality. Finally, after the imposition of C1=G1-continuity constraints on the interface of neighboring B\'ezier patches with respect to each quad in the quadrangulation, the high-quality B\'ezier patch parameterization is obtained by a C1-constrained local optimization method to achieve uniform and orthogonal iso-parametric structures while keeping the continuity conditions between patches. The efficiency and robustness of the proposed method are demonstrated by several examples which are compared to results obtained by the skeleton-based parameterization approach

    Urn Models and Beta-splines

    Get PDF
    Some insight into the properties of beta-splines is gained by applying the techniques of urn models. Urn models are used to construct beta-spline basis functions and to derive the basic properties of these blending functions and the corresponding beta-spline curves. Only the simple notion of linear geometric continuity and with the most elementary beta parameter are outlined. Non-linear geometric continuity leads to additional beta parameters and to more complicated basis functions. Whether urn models can give us any insight into these higher order concepts still remains to be investigated

    Polynomial-based non-uniform interpolatory subdivision with features control

    Get PDF
    Starting from a well-known construction of polynomial-based interpolatory 4-point schemes, in this paper we present an original affine combination of quadratic polynomial samples that leads to a non-uniform 4-point scheme with edge parameters. This blending-type formulation is then further generalized to provide a powerful subdivision algorithm that combines the fairing curve of a non-uniform refinement with the advantages of a shape-controlled interpolation method and an arbitrary point insertion rule. The result is a non-uniform interpolatory 4-point scheme that is unique in combining a number of distinctive properties. In fact it generates visually-pleasing limit curves where special features ranging from cusps and flat edges to point/edge tension effects may be included without creating undesired undulations. Moreover such a scheme is capable of inserting new points at any positions of existing intervals, so that the most convenient parameter values may be chosen as well as the intervals for insertion. Such a fully flexible curve scheme is a fundamental step towards the construction of high-quality interpolatory subdivision surfaces with features control

    Recent Results on Near-Best Spline Quasi-Interpolants

    Full text link
    Roughly speaking, a near-best (abbr. NB) quasi-interpolant (abbr. QI) is an approximation operator of the form Qaf=αAΛα(f)BαQ_af=\sum_{\alpha\in A} \Lambda_\alpha (f) B_\alpha where the BαB_\alpha's are B-splines and the Λα(f)\Lambda_\alpha (f)'s are linear discrete or integral forms acting on the given function ff. These forms depend on a finite number of coefficients which are the components of vectors aαa_\alpha for αA\alpha\in A. The index aa refers to this sequence of vectors. In order that Qap=pQ_a p=p for all polynomials pp belonging to some subspace included in the space of splines generated by the BαB_\alpha's, each vector aαa_\alpha must lie in an affine subspace VαV_\alpha, i.e. satisfy some linear constraints. However there remain some degrees of freedom which are used to minimize aα1\Vert a_\alpha \Vert_1 for each αA\alpha\in A. It is easy to prove that max{aα1;αA}\max \{\Vert a_\alpha \Vert_1 ; \alpha\in A\} is an upper bound of Qa\Vert Q_a \Vert_{\infty}: thus, instead of minimizing the infinite norm of QaQ_a, which is a difficult problem, we minimize an upper bound of this norm, which is much easier to do. Moreover, the latter problem has always at least one solution, which is associated with a NB QI. In the first part of the paper, we give a survey on NB univariate or bivariate spline QIs defined on uniform or non-uniform partitions and already studied by the author and coworkers. In the second part, we give some new results, mainly on univariate and bivariate integral QIs on {\sl non-uniform} partitions: in that case, NB QIs are more difficult to characterize and the optimal properties strongly depend on the geometry of the partition. Therefore we have restricted our study to QIs having interesting shape properties and/or infinite norms uniformly bounded independently of the partition

    Geometrically nonlinear isogeometric analysis of laminated composite plates based on higher-order shear deformation theory

    Full text link
    In this paper, we present an effectively numerical approach based on isogeometric analysis (IGA) and higher-order shear deformation theory (HSDT) for geometrically nonlinear analysis of laminated composite plates. The HSDT allows us to approximate displacement field that ensures by itself the realistic shear strain energy part without shear correction factors. IGA utilizing basis functions namely B-splines or non-uniform rational B-splines (NURBS) enables to satisfy easily the stringent continuity requirement of the HSDT model without any additional variables. The nonlinearity of the plates is formed in the total Lagrange approach based on the von-Karman strain assumptions. Numerous numerical validations for the isotropic, orthotropic, cross-ply and angle-ply laminated plates are provided to demonstrate the effectiveness of the proposed method

    Polynomial cubic splines with tension properties

    Get PDF
    In this paper we present a new class of spline functions with tension properties. These splines are composed by polynomial cubic pieces and therefore are conformal to the standard, NURBS based CAD/CAM systems

    TiGL - An Open Source Computational Geometry Library for Parametric Aircraft Design

    Get PDF
    This paper introduces the software TiGL: TiGL is an open source high-fidelity geometry modeler that is used in the conceptual and preliminary aircraft and helicopter design phase. It creates full three-dimensional models of aircraft from their parametric CPACS description. Due to its parametric nature, it is typically used for aircraft design analysis and optimization. First, we present the use-case and architecture of TiGL. Then, we discuss it's geometry module, which is used to generate the B-spline based surfaces of the aircraft. The backbone of TiGL is its surface generator for curve network interpolation, based on Gordon surfaces. One major part of this paper explains the mathematical foundation of Gordon surfaces on B-splines and how we achieve the required curve network compatibility. Finally, TiGL's aircraft component module is introduced, which is used to create the external and internal parts of aircraft, such as wings, flaps, fuselages, engines or structural elements
    corecore