304 research outputs found

    Foundations of Software Science and Computation Structures

    Get PDF
    This open access book constitutes the proceedings of the 23rd International Conference on Foundations of Software Science and Computational Structures, FOSSACS 2020, which took place in Dublin, Ireland, in April 2020, and was held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020. The 31 regular papers presented in this volume were carefully reviewed and selected from 98 submissions. The papers cover topics such as categorical models and logics; language theory, automata, and games; modal, spatial, and temporal logics; type theory and proof theory; concurrency theory and process calculi; rewriting theory; semantics of programming languages; program analysis, correctness, transformation, and verification; logics of programming; software specification and refinement; models of concurrent, reactive, stochastic, distributed, hybrid, and mobile systems; emerging models of computation; logical aspects of computational complexity; models of software security; and logical foundations of data bases.

    Foundations of Software Science and Computation Structures

    Get PDF
    This open access book constitutes the proceedings of the 23rd International Conference on Foundations of Software Science and Computational Structures, FOSSACS 2020, which took place in Dublin, Ireland, in April 2020, and was held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020. The 31 regular papers presented in this volume were carefully reviewed and selected from 98 submissions. The papers cover topics such as categorical models and logics; language theory, automata, and games; modal, spatial, and temporal logics; type theory and proof theory; concurrency theory and process calculi; rewriting theory; semantics of programming languages; program analysis, correctness, transformation, and verification; logics of programming; software specification and refinement; models of concurrent, reactive, stochastic, distributed, hybrid, and mobile systems; emerging models of computation; logical aspects of computational complexity; models of software security; and logical foundations of data bases.

    Spin-cobordism and fermionic d=2 anomalies

    Get PDF
    The aim of this work is to improve our description of global anomalies and the tools we have at our disposal for their computation. In particular, we focus on general fermionic quantum field theories with a global finite group symmetry G^f in 2-dimensions, with a special regard for the torus spacetime. The modular transformation properties of the family of partition functions with different backgrounds is determined by the ’t Hooft anomaly of G^f. For a general G^f, possibly non-abelian or twisted, we provide a method to determine the modular transformations directly from the bulk 3d invertible topological quantum field theory (iTQFT) corresponding to the anomaly by inflow. We also describe a method of evaluating the character map from the real representation ring of G^f to the group which classifies anomalies. Physically the value of the map is given by the anomaly of free fermions in a given representation. We assume classification of the anomalies/iTQFTs by spin-cobordisms. As a byproduct, we provide explicit combinatorial expressions for corresponding spin-bordism invariants of abelian symmetry groups G^f in terms of surgery representation of arbitrary closed spin 3-manifolds. As an application, we compute the constraints that ’t Hooft anomaly puts on the spectrum of infrared conformal field theories for various symmetry groups. In particular, we provide a first of such analysis for discrete non-abelians G^f or with a non-trivial twist of the Z_2^f subgroup

    Non-abelian cubic vertices for higher-spin fields in AdS(d)

    No full text
    We use the Fradkin-Vasiliev procedure to construct the full set of non-abelian cubic vertices for totally symmetric higher spin gauge fields in anti-de Sitter space. The number of such vertices is given by a certain tensor-product multiplicity. We discuss the one-to-one relation between our result and the list of non-abelian gauge deformations in flat space obtained elsewhere via the cohomological approach. We comment about the uniqueness of Vasiliev's simplest higher-spin algebra in relation with the (non)associativity properties of the gauge algebras that we classified. The gravitational interactions for (partially)-massless (mixed)-symmetry fields are also discussed. We also argue that those mixed-symmetry and/or partially-massless fields that are described by one-form connections within the frame-like approach can have nonabelian interactions among themselves and again the number of nonabelian vertices should be given by tensor product multiplicities

    Computer Science Logic 2018: CSL 2018, September 4-8, 2018, Birmingham, United Kingdom

    Get PDF

    Programming Languages and Systems

    Get PDF
    This open access book constitutes the proceedings of the 31st European Symposium on Programming, ESOP 2022, which was held during April 5-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 21 regular papers presented in this volume were carefully reviewed and selected from 64 submissions. They deal with fundamental issues in the specification, design, analysis, and implementation of programming languages and systems
    • …
    corecore