

Edinburgh Research Explorer

30th International Conference on Concurrency Theory (CONCUR
2019)

Citation for published version:
Fokkink, WJ & van Glabbeek, RJ (eds) 2019, 30th International Conference on Concurrency Theory
(CONCUR 2019). Leibniz International Proceedings in Informatics (LIPIcs), vol. 140, Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, Germany, Dagstuhl, Germany.
https://doi.org/10.4230/LIPIcs.CONCUR.2019.0

Digital Object Identifier (DOI):
10.4230/LIPIcs.CONCUR.2019.0

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 04. Apr. 2023

https://doi.org/10.4230/LIPIcs.CONCUR.2019.0
https://doi.org/10.4230/LIPIcs.CONCUR.2019.0
https://www.research.ed.ac.uk/en/publications/9edd47d9-ea5c-44f8-99dd-33504b20237f

30th International Conference on
Concurrency Theory

CONCUR 2019, August 27–30, 2019,
Amsterdam, the Netherlands

Edited by

Wan Fokkink
Rob van Glabbeek

LIPIcs – Vo l . 140 – CONCUR 2019 www.dagstuh l .de/ l ip i c s

Editors

Wan Fokkink
Vrije Universiteit Amsterdam, the Netherlands
w.j.fokkink@vu.nl

Rob van Glabbeek
Data61, CSIRO, Sydney, Australia
rvg@cs.stanford.edu

ACM Classification 2012
Theory of computation → Concurrency

ISBN 978-3-95977-121-4

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-121-4.

Publication date
August, 2019

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
https://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.CONCUR.2019.0

ISBN 978-3-95977-121-4 ISSN 1868-8969 https://www.dagstuhl.de/lipics

mailto:w.j.fokkink@vu.nl
mailto:rvg@cs.stanford.edu
https://www.dagstuhl.de/dagpub/978-3-95977-121-4
https://www.dagstuhl.de/dagpub/978-3-95977-121-4
https://portal.dnb.de
https://creativecommons.org/licenses/by/3.0/legalcode
https://doi.org/10.4230/LIPIcs.CONCUR.2019.0
https://www.dagstuhl.de/dagpub/978-3-95977-121-4
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Chair, Gran Sasso Science Institute and Reykjavik University)
Christel Baier (TU Dresden)
Mikolaj Bojanczyk (University of Warsaw)
Roberto Di Cosmo (INRIA and University Paris Diderot)
Javier Esparza (TU München)
Meena Mahajan (Institute of Mathematical Sciences)
Dieter van Melkebeek (University of Wisconsin-Madison)
Anca Muscholl (University Bordeaux)
Luke Ong (University of Oxford)
Catuscia Palamidessi (INRIA)
Thomas Schwentick (TU Dortmund)
Raimund Seidel (Saarland University and Schloss Dagstuhl – Leibniz-Zentrum für Informatik)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

CONCUR 2019

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

Contents

Preface
Wan Fokkink and Rob van Glabbeek . 0:ix

Invited Contributions

Safety Verification for Deep Neural Networks with Provable Guarantees
Marta Z. Kwiatkowska . 1:1–1:5

Synthesis of Safe, Optimal and Compact Strategies for Stochastic Hybrid Games
Kim G. Larsen . 2:1–2:5

Program Invariants
Joël Ouaknine . 3:1–3:1

Concurrent Algorithms and Data Structures for Model Checking
Jaco van de Pol . 4:1–4:1

Markov Decision Processes

Of Cores: A Partial-Exploration Framework for Markov Decision Processes
Jan Křetínský and Tobias Meggendorfer . 5:1–5:17

Combinations of Qualitative Winning for Stochastic Parity Games
Krishnendu Chatterjee and Nir Piterman . 6:1–6:17

Near-Linear Time Algorithms for Streett Objectives in Graphs and MDPs
Krishnendu Chatterjee, Wolfgang Dvořák, Monika Henzinger, and Alexander Svozil 7:1–7:16

Life Is Random, Time Is Not: Markov Decision Processes with Window Objectives
Thomas Brihaye, Florent Delgrange, Youssouf Oualhadj, and Mickael Randour . . . 8:1–8:18

Probabilistic systems

Computing Probabilistic Bisimilarity Distances for Probabilistic Automata
Giorgio Bacci, Giovanni Bacci, Kim G. Larsen, Radu Mardare, Qiyi Tang,
and Franck van Breugel . 9:1–9:17

Asymmetric Distances for Approximate Differential Privacy
Dmitry Chistikov, Andrzej S. Murawski, and David Purser . 10:1–10:17

Event Structures for Mixed Choice
Marc de Visme . 11:1–11:16

Reachability

Verification of Flat FIFO Systems
Alain Finkel and M. Praveen . 12:1–12:17

30th International Conference on Concurrency Theory (CONCUR 2019).
Editors: Wan Fokkink and Rob van Glabbeek

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:vi Contents

The Complexity of Subgame Perfect Equilibria in Quantitative Reachability Games
Thomas Brihaye, Véronique Bruyère, Aline Goeminne, Jean-François Raskin,
and Marie van den Bogaard . 13:1–13:16

On the Complexity of Reachability in Parametric Markov Decision Processes
Tobias Winkler, Sebastian Junges, Guillermo A. Pérez, and Joost-Pieter Katoen . 14:1–14:17

Timed Basic Parallel Processes
Lorenzo Clemente, Piotr Hofman, and Patrick Totzke . 15:1–15:16

Automata

Revisiting Local Time Semantics for Networks of Timed Automata
R. Govind, Frédéric Herbreteau, B. Srivathsan, and Igor Walukiewicz 16:1–16:15

Approximate Learning of Limit-Average Automata
Jakub Michaliszyn and Jan Otop . 17:1–17:16

Alternating Weak Automata from Universal Trees
Laure Daviaud, Marcin Jurdziński, and Karoliina Lehtinen . 18:1–18:14

Good for Games Automata: From Nondeterminism to Alternation
Udi Boker and Karoliina Lehtinen . 19:1–19:16

Games

Determinacy in Discrete-Bidding Infinite-Duration Games
Milad Aghajohari, Guy Avni, and Thomas A. Henzinger . 20:1–20:17

Energy Mean-Payoff Games
Véronique Bruyère, Quentin Hautem, Mickael Randour, and Jean-François Raskin 21:1–21:17

Equilibrium Design for Concurrent Games
Julian Gutierrez, Muhammad Najib, Giuseppe Perelli, and Michael Wooldridge . . . 22:1–22:16

Partial Order Reduction for Reachability Games
Frederik Meyer Bønneland, Peter Gjøl Jensen, Kim G. Larsen, Marco Muñiz,
and Jiří Srba . 23:1–23:15

Synthesis

Synthesis of Data Word Transducers
Léo Exibard, Emmanuel Filiot, and Pierre-Alain Reynier . 24:1–24:15

Register-Bounded Synthesis
Ayrat Khalimov and Orna Kupferman . 25:1–25:16

Translating Asynchronous Games for Distributed Synthesis
Raven Beutner, Bernd Finkbeiner, and Jesko Hecking-Harbusch 26:1–26:16

Contents 0:vii

VASS and concurrent programming

Long-Run Average Behavior of Vector Addition Systems with States
Krishnendu Chatterjee, Thomas A. Henzinger, and Jan Otop . 27:1–27:16

Reachability for Bounded Branching VASS
Filip Mazowiecki and Michał Pilipczuk . 28:1–28:13

Reasoning About Distributed Knowledge of Groups with Infinitely Many Agents
Michell Guzmán, Sophia Knight, Santiago Quintero, Sergio Ramírez,
Camilo Rueda, and Frank Valencia . 29:1–29:15

Robustness Against Transactional Causal Consistency
Sidi Mohamed Beillahi, Ahmed Bouajjani, and Constantin Enea 30:1–30:18

Broadcast and fault-tolerance

Expressive Power of Broadcast Consensus Protocols
Michael Blondin, Javier Esparza, and Stefan Jaax . 31:1–31:16

Reconfiguration and Message Losses in Parameterized Broadcast Networks
Nathalie Bertrand, Patricia Bouyer, and Anirban Majumdar . 32:1–32:15

Verification of Randomized Consensus Algorithms Under Round-Rigid Adversaries
Nathalie Bertrand, Igor Konnov, Marijana Lazić, and Josef Widder 33:1–33:15

A Sound Foundation for the Topological Approach to Task Solvability
Jérémy Ledent and Samuel Mimram . 34:1–34:15

Coalgebra and model checking

Game-Based Local Model Checking for the Coalgebraic µ-Calculus
Daniel Hausmann and Lutz Schröder . 35:1–35:16

Graded Monads and Graded Logics for the Linear Time – Branching Time Spectrum
Ulrich Dorsch, Stefan Milius, and Lutz Schröder . 36:1–36:16

Bialgebraic Semantics for String Diagrams
Filippo Bonchi, Robin Piedeleu, Pawel Sobocinski, and Fabio Zanasi 37:1–37:17

Session types and Kleene algebra

A Sound Algorithm for Asynchronous Session Subtyping
Mario Bravetti, Marco Carbone, Julien Lange, Nobuko Yoshida,
and Gianluigi Zavattaro . 38:1–38:16

Domain-Aware Session Types
Luís Caires, Jorge A. Pérez, Frank Pfenning, and Bernardo Toninho 39:1–39:17

Reordering Derivatives of Trace Closures of Regular Languages
Hendrik Maarand and Tarmo Uustalu . 40:1–40:16

Kleene Algebra with Observations
Tobias Kappé, Paul Brunet, Jurriaan Rot, Alexandra Silva, Jana Wagemaker,
and Fabio Zanasi . 41:1–41:16

CONCUR 2019

Preface

This volume contains the proceedings of the 30st Conference on Concurrency Theory, which
was held in Amsterdam, The Netherlands, on August 27–30, 2019. CONCUR 2019 was
organized by CWI. At its 30th anniversary the CONCUR conference series has returned to
its place of birth, as the first two instalments, in 1990 and 1991, took place in Amsterdam.

CONCUR is a forum for the development and dissemination of leading research in
concurrency theory and its applications. Its aim is to bring together researchers, developers,
and students to exchange and discuss latest theoretical developments and learn about
challenging practical problems. CONCUR is the reference annual event for researchers in
the field.

The principal topics include basic models of concurrency such as abstract machines,
domain-theoretic models, game-theoretic models, process algebras, graph transformation
systems, Petri nets, hybrid systems, mobile and collaborative systems, probabilistic systems,
real-time systems, biology-inspired systems, and synchronous systems; logics for concurrency
such as modal logics, probabilistic and stochastic logics, temporal logics, and resource logics;
verification and analysis techniques for concurrent systems such as abstract interpretation,
atomicity checking, model checking, race detection, pre-order and equivalence checking,
run-time verification, state-space exploration, static analysis, synthesis, testing, theorem
proving, type systems, and security analysis; distributed algorithms and data structures:
design, analysis, complexity, correctness, fault tolerance, reliability, availability, consistency,
self-organisation, self-stabilisation, protocols. Also the theoretical foundations of more
applied topics like architectures, execution environments, and software development for
concurrent systems such as geo-replicated systems, communication networks, multiprocessor
and multi-core architectures, shared and transactional memory, resource management and
awareness, compilers and tools for concurrent programming, programming models such as
component-based, object- and service-oriented can be found at CONCUR.

This edition of the conference attracted 93 full paper submissions. We thank the authors
for their interest in CONCUR 2018. After careful reviewing and discussions, the Program
Committee selected 37 papers for presentation at the conference. Each submission was
reviewed by at least three reviewers who wrote detailed evaluations and gave insightful
comments. We warmly thank the members of the Program Committee and the additional
reviewers for their excellent work, including the constructive discussions. The full list of
reviewers is available as part of these proceedings.

The conference programme was greatly enriched by the invited presentations by Marta
Kwiatkowska (University of Oxford, UK), Kim G. Larsen (Aalborg University, Denmark),
Joël Ouaknine (Max Planck Institute for Software Systems, Germany) and Jaco van de Pol
(Aarhus University, Denmark). The abstracts of their talks are available as part of these
proceedings.

This year, the conference was jointly organised with the 17th International Conference
on Formal Modelling and Analysis of Timed Systems (FORMATS 2019) and the 24th
International Conference on Formal Methods for Industrial Critical Systems (FMICS 2019).
Additionally, the event was enriched by six satellite events: the Combined 26th International
Workshop on Expressiveness in Concurrency and 16th Workshop on Structural Operational
Semantics (EXPRESS/SOS 2019), the 8th IFIP WG 1.8 Workshop on Trends in Concurrency
Theory (TRENDS 2019), the 9th Young Researchers Workshop on Concurrency Theory
(YR-CONCUR 2019), the 4th International Workshop on Timing Performance Engineering
30th International Conference on Concurrency Theory (CONCUR 2019).
Editors: Wan Fokkink and Rob van Glabbeek

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:x Preface

for Safety Critical Systems (TIPS 2019), the 3rd International Workshop on Methods and
Tools for Distributed Hybrid Systems (DHS 2019), and the 2nd International Workshop on
Recent Advances in Concurrency and Logic (RADICAL 2019).

As usual, the CONCUR proceedings are available for open access via LIPIcs. We thank
the authors and the participants for making this year’s CONCUR a success.

Wan Fokkink (Vrije Universiteit Amsterdam, The Netherlands)
Rob van Glabbeek (Data61, CSIRO, Sydney, Australia)

Committees

Programme Committee

Christel Baier

Jiri Barnat

Benedikt Bollig

Borzoo Bonakdarpour

Ilaria Castellani

Taolue Chen

Rance Cleaveland

Yuxin Deng

Josée Desharnais

Adrian Francalanza

Wan Fokkink (co-chair)

Ansgar Fehnker

David de Frutos-Escrig

Yuxi Fu

Rob van Glabbeek (co-chair)

Alexey Gotsman

Radu Grosu

Ichiro Hasuo

Marieke Huisman

Barbara König

Gerald Lüttgen

Bas Luttik

Anca Muscholl

Uwe Nestmann

Jun Pang

Jean-François Raskin

Grigore Rosu

Jiri Srba

Simone Tini

Frank Valencia

James Worrell

Gianluigi Zavattaro

Steering Committee

Javier Esparza

Pedro D’Argenio

Wan Fokkink

Joost-Pieter Katoen

Catuscia Palamidessi

Davide Sangiorgi

Jiri Srba

General Chair

Jos Baeten

Workshop Chair

Bas Luttik

30th International Conference on Concurrency Theory (CONCUR 2019).
Editors: Wan Fokkink and Rob van Glabbeek

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://tu-dresden.de/ing/informatik/thi/alg/die-professur/inhaber-in
https://www.fi.muni.cz/~xbarnat/
https://www.benedikt-bollig.org/
http://web.cs.iastate.edu/~borzoo/
http://www-sop.inria.fr/members/Ilaria.Castellani/
http://www.dcs.bbk.ac.uk/~taolue/
https://www.cs.umd.edu/~rance/
https://basics.sjtu.edu.cn/~yuxin/
http://www.vrrc.ulaval.ca/fileadmin/ulaval_ca/Images/recherche/bd/chercheur/fiche/1169117.html
http://staff.um.edu.mt/afra1/
https://www.cs.vu.nl/~wanf/
http://wwwhome.ewi.utwente.nl/~fehnkera/
http://www.mat.ucm.es/imi/People/deFrutos_Escrig_David_b.htm
https://basics.sjtu.edu.cn/~yuxi/
https://theory.stanford.edu/~rvg/
http://software.imdea.org/~gotsman/
https://ti.tuwien.ac.at/cps/people/grosu
http://group-mmm.org/~ichiro/
http://wwwhome.ewi.utwente.nl/~marieke/
http://www.ti.inf.uni-due.de/people/koenig/
https://www.uni-bamberg.de/en/swt/team/prof-dr-gerald-luettgen/
https://www.win.tue.nl/~luttik/
http://www.labri.fr/perso/anca/
https://www.mtv.tu-berlin.de/nestmann/
http://satoss.uni.lu/members/jun/
http://di.ulb.ac.be/verif/jfr/
http://fsl.cs.illinois.edu/index.php/Grigore_Rosu
http://people.cs.aau.dk/~srba/
https://disat.uninsubria.it/~simone.tini/
http://www.lix.polytechnique.fr/Labo/Frank.Valencia
http://www.cs.ox.ac.uk/people/james.worrell/home.html
https://www.unibo.it/sitoweb/gianluigi.zavattaro/en
https://www7.in.tum.de/~esparza/
https://www.researchgate.net/profile/Pedro_DArgenio
https://www.cs.vu.nl/~wanf/
http://www-i2.informatik.rwth-aachen.de/~katoen/
http://www.lix.polytechnique.fr/Labo/Catuscia.Palamidessi/
http://www.cs.unibo.it/sangio/
http://people.cs.aau.dk/~srba/
https://www.cwi.nl/people/jos-baeten
https://www.win.tue.nl/~luttik/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

External Reviewers

Samy Abbes
Luca Aceto
Antonis Achilleos
C. Aiswarya
S. Akshay
Étienne André
Alasdair Armstrong
Paolo Baldan
Jaroslav Bendík
Nikola Beneš
Giovanni Bernardi
Raphaël Berthon
Laura Bocchi
Filippo Bonchi
Patricia Bouyer
Luboš Brim
Paul Brunet
Frederik M. Bønneland
Marco Carbone
Valentina Castiglioni
Ivana Černá
Andrea Cerone
Marek Chalupa
Minas Charalambides
Xiaohong Chen
Corina Cirstea
Lorenzo Clemente
Thomas Colcombet
Silvia Crafa
Cas Cremers
Sandeep Dasgupta
Marc de Visme
Giorgio Delzanno
Laurent Doyen
Jannik Dreier
Jérémy Dubut
Richard Eggert
Nathanael Fijalkov
János Flesch
Simon Fowler
Dan Frumin
Hongfei Fu
Ignacio Fábregas
Maurizio Gabbrielli
Pierre Ganty

Patrick Gardy
Gilles Geeraerts
Raffaella Gentilini
Paola Giannini
Thomas Given-Wilson
Shibashis Guha
Julian Gutierrez
Peter Habermehl
Ernst Moritz Hahn
Daniel Hirschkoff
Ross Horne
Justin Hsu
Mingzhang Huang
Md. Ariful Islam
Guilhem Jaber
Stefan Jaksic
Wojtek Jamroga
Christian Johansen
Sebastiaan Joosten
Vincent Jugé
Marcin Jurdzinski
Tobias Kappé
Isabella Kaufmann
Bartek Klin
Alexander Knapp
Sophia Knight
Siddharth Krishna
Jean Krivine
Satoshi Kura
Ori Lahav
Yngve Lamo
Ivan Lanese
Julien Lange
Ruggero Lanotte
Sophie Lathouwers
Henrich Lauko
Stéphane Le Roux
Mathieu Lehaut
Karoliina Lehtinen
Huan Long
Florian Lorber
Michele Loreti
Anna Lukina
Nicolas Markey
Johannes Marti

30th International Conference on Concurrency Theory (CONCUR 2019).
Editors: Wan Fokkink and Rob van Glabbeek

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:xiv External Reviewers

Richard Mayr
Michael Mendler
Philipp J. Meyer
Jan Midtgaard
Lukasz Mikulski
Marius Mikučionis
Arthur Milchior
Andrzej Mizera
Joshua Moerman
Jean-Francois Monin
Benjamin Monmege
Marco Muniz
David Müller
Thomas Neele
Wytse Oortwijn
Youssouf Oualhadj
Luca Padovani
Miguel Palomino
Samuel Pastva
Soumya Paul
Adriano Peron
Kirstin Peters
Anna Philippou
Jakob Piribauer
Nir Piterman
Chris Poskitt
Damien Pous
Vinayak Prabhu
M. Praveen
Tobias Prehn
Guillermo Pérez
Jorge A. Pérez
Karin Quaas
Tim Quatmann
Yasmeen Rafiq
Sergio Rajsbaum
Steven Ramsay
Mickael Randour
Vishal Jagannath Ravi
Christina Rickmann
Chloe Rispal
Camilo Rueda
Claudio Sacerdoti Coen
Mohsen Safari
Prakash Saivasan
Matteo Sammartino
Arnaud Sangnier
Zdeněk Sawa

Sylvain Schmitz
Olivier Serre
Pawel Sobocinski
Ana Sokolova
Marcelo Sousa
Gheorghe Stefanescu
Nathalie Sznajder
Vasco T. Vasconcelos
Toru Takisaka
Max Tschaikowski
Takeshi Tsukada
Andrea Turrini
Irek Ulidowski
Franck van Breugel
Marie Van Den Bogaard
Ingo van Duijn
Georg Weissenbacher
Tim Willemse
Sascha Wunderlich
Ming Xu
Xian Xu
Qizhe Yang
Eugene Yip
Margherita Zorzi

Safety Verification for Deep Neural Networks with
Provable Guarantees
Marta Z. Kwiatkowska
Department of Computer Science, University of Oxford, UK
http://www.cs.ox.ac.uk/marta.kwiatkowska/
marta.kwiatkowska@cs.ox.ac.uk

Abstract
Computing systems are becoming ever more complex, increasingly often incorporating deep learning
components. Since deep learning is unstable with respect to adversarial perturbations, there is a
need for rigorous software development methodologies that encompass machine learning. This paper
describes progress with developing automated verification techniques for deep neural networks to
ensure safety and robustness of their decisions with respect to input perturbations. This includes
novel algorithms based on feature-guided search, games, global optimisation and Bayesian methods.

2012 ACM Subject Classification Theory of computation → Logic and verification; Computing
methodologies → Neural networks

Keywords and phrases Neural networks, robustness, formal verification, Bayesian neural networks

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2019.1

Category Invited Paper

Funding Marta Z. Kwiatkowska: This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant
agreement No. 834115) and the EPSRC Programme Grant on Mobile Autonomy (EP/M019918/1).

1 Introduction

Computing devices have become ubiquitous and ever present in our lives: smartphones
help us stay in touch with family and friends, GPS-enabled apps offer directions literally
at our fingertips, and voice-controlled assistants are now able to execute simple commands.
Artificial Intelligence is making great strides, promising many more exciting applications
with an increased level of autonomy, from wearable medical devices to robotic care assistants
and self-driving cars.

Deep learning, in particular, is revolutionising AI. Deep neural networks (DNNs) have
been developed for a variety of tasks, including computer vision, face recognition, malware
detection, speech recognition and text analysis. While the accuracy of neural networks has
greatly improved, they are susceptible to adversarial examples [17, 1]. An adversarial example
is an input which, though initially classified correctly, is misclassified after a minor, perhaps
imperceptible, perturbation. Figure 1 from [19] shows an image of a traffic light correctly
classified by a convolutional neural network, which is then misclassified after changing only
a few pixels. This illustrative example, though somewhat artificial, since in practice the
controller would rely on additional sensor input when making a decision, highlights the
need for appropriate mechanisms and frameworks to prevent the occurrence of similar issues
during deployment.

Clearly, the excitement surrounding the potential of AI and autonomous computing
technologies is well placed. Autonomous devices make decisions on their own and on users’
behalf, powered by software that today often incorporates machine learning components.
Since autonomous device technologies are increasingly often incorporated within safety-

© Marta Z. Kwiatkowska;
licensed under Creative Commons License CC-BY

30th International Conference on Concurrency Theory (CONCUR 2019).
Editors: Wan Fokkink and Rob van Glabbeek; Article No. 1; pp. 1:1–1:5

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-9022-7599
http://www.cs.ox.ac.uk/marta.kwiatkowska/
mailto:marta.kwiatkowska@cs.ox.ac.uk
https://doi.org/10.4230/LIPIcs.CONCUR.2019.1
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

1:2 Safety Verification for Deep Neural Networks

Figure 1 from [19]. Adversarial examples generated on Nexar challenge data (dashboard camera
images). (a) Green light classified as red with confidence 56% after one pixel change. (b) Green
light classified as red with confidence 76% after one pixel change. (c) Red light classified as green
with 90% confidence after one pixel change.

critical applications, they must trustworthy. However, software faults can have disastrous
consequences, potentially resulting in fatalities. Given the complexity of the scenarios and
uncertainty in the environment, it is important to ensure that software incorporating machine
learning components is robust and safe.

2 Overview of progress in automated verification for neural networks

Robustness (or resilience) of neural networks to adversarial perturbations is an active topic
of investigation. Without claiming to be exhaustive, this paper provides a brief overview of
existing research directions aimed at improving safety and robustness of neural networks.
Local (also called pointwise) robustness is defined with respect to an input point and
its neighbourhood as the invariance of the classification over the neighbourhood. Global
robustness is usually estimated as the expectation of local robustness over the test dataset
weighted by the input distribution.

2.1 Heuristic search for adversarial examples
A number of approaches have been proposed to search for adversarial examples to exhibit
their lack of robustness, typically by transforming the search into an optimisation problem,
albeit without providing guarantees that adversarial examples do not exist if not found.
In [17], search for adversarial examples is performed by minimising the L2 distance between
the images while maintaining the misclassification. Its improvement, Fast Gradient Sign
Method (FGSM), uses a cost function to direct the search along the gradient. In [5], the
optimisation problem proposed in [17] is adapted to attacks based on other norms, such as
L0 and L∞. Instead of optimisation, JSMA [13] uses a loss function to create a “saliency
map” of the image, which indicates the importance of each pixel in the classification decision.
[19] introduces a game-based approach for finding adversarial examples by extracting the
features of the input image using the SIFT [9] method. Then, working on a mixture of
Gaussians representation of the image, the two players respectively select a feature and a
pixel in the feature to search for an adversarial attack. This method is able to find the
adversarial example in Figure 1 in a matter of seconds.

M.Z. Kwiatkowska 1:3

2.2 Automated verification approaches

In contrast to heuristic search for adversarial examples, verification approaches aim to provide
formal guarantees on the robustness of DNNs. An early verification approach [14] encodes
the entire network as a set of constraints and reduces the verification to the satisfiability
problem. [8] improves on [14] by by extending the approach to work with piecewise linear
ReLU functions, scaling up to networks with 300 ReLU nodes. [7] develops a verification
framework that employs discretisation and a layer-by-layer refinement to exhaustively explore
a finite region of the vector spaces associated with the input layer or the hidden layers, and
scales to work with larger networks. [15] presents a verification approach based on computing
the reachable set of outputs using global optimisation. In [12], techniques based on abstract
interpretation are formulated, whereas [11] employ robust optimisation.

Several approaches analyse the robustness of neural networks by considering the maximal
size of the perturbation that will not cause a misclassification. For a given input point, the
maximal safe radius is defined as the largest radius centred on that point within which no
adversarial examples exist. Solution methods include encoding as a set of constraints and
reduction to satisfiability or optimisation [18]. In [20], the game-based approach of [19] is
extended to anytime computation of upper and lower bounds on the maximum safe radius
problem, providing a theoretical guarantee that it can reach the exact value. The method
works by “gridding” the input space based on the Lipschitz constant and checking only the
“corners” of the grid. Lower bound computation employs A? search.

Since verification for state-of-the-art neural networks is an NP problem, testing methods
that ensure high levels of coverage have also been developed [16].

2.3 Towards probabilistic verification for deep neural networks

All works listed above assume a trained network with fixed weights and therefore yield
deterministic robustness guarantees. Since neural networks have a natural probabilistic
interpretation, they lend themselves to frameworks for computing probabilistic guarantees on
their robustness. Bayesian neural networks (BNNs) are neural networks with distributions
over their weights, which can capture the uncertainty within the learning model [10]. The
neural network can thus return an uncertainty estimate (typically computed pointwise, see
[6]) along with the output, which is important for safety-critical applications.

In [3], probabilistic robustness is considered for BNNs, using a probabilistic generalisation
of the usual statement of (deterministic) robustness to adversarial examples [7], namely the
computation of the probability (induced by the distribution over the BNN weights) of the
classification being invariant over the neighbourhood around a given input point. Since
the computation of the posterior probability for a BNN is intractable, the method employs
statistical model checking [21], based on the observation that each sample taken from the
(possibly approximate) posterior weight distribution of the BNN induces a deterministic
neural network. The latter can thus be analysed using existing verification techniques for
deterministic networks mentioned above (e.g. [7, 8, 15]).

A related safety and robustness verification approach, which offers formal guarantees, has
also been developed for Gaussian process (GP) models, for regression [4] and classification
[2]. In contrast to DNNs, where trade offs between robustness and accuracy have been
observed [11, 3], robustness of GPs increases with training. More research is needed to
explore these phenomena.

CONCUR 2019

1:4 Safety Verification for Deep Neural Networks

3 Conclusion

The pace of development in Artificial Intelligence has increased sharply, stimulated by the
advances and wide acceptance of the machine learning technology. Unfortunately, recent
forays of technology companies into real-world applications have exposed the brittleness
of deep learning. There is a danger that tacit acceptance of deep learning will lead to
flawed AIs deployed in critical situations, at a considerable cost. Machine learning plays
a fundamental role in enabling artificial agents, but developments so far have focused on
‘narrow’ AI tasks, such as computer vision and speech recognition, which lack the ability
to reason about interventions, counterfactuals and ‘what if’ scenarios. To achieve “strong”
AI, greater emphasis is necessary on rigorous modelling and verification technologies that
support such reasoning, as well as development of novel synthesis techniques that guarantee
the correctness of machine learning components by construction. Importantly, automated
methods that provide probabilistic guarantees which properly take account of the learning
process have a role to play and need to be investigated.

References
1 Battista Biggio and Fabio Roli. Wild patterns: Ten years after the rise of adversarial machine

learning. Pattern Recognition, 84:317–331, 2018.
2 Arno Blaas, Luca Laurenti, Andrea Patane, Luca Cardelli, Marta Kwiatkowska, and Stephen J.

Roberts. Robustness Quantification for Classification with Gaussian Processes. CoRR
abs/1905.11876, 2019. arXiv:1905.11876.

3 Luca Cardelli, Marta Kwiatkowska, Luca Laurenti, Nicola Paoletti, Andrea Patane, and
Matthew Wicker. Statistical Guarantees for the Robustness of Bayesian Neural Networks. In
IJCAI 2019, 2018. See arXiv:1809.06452.

4 Luca Cardelli, Marta Kwiatkowska, Luca Laurenti, and Andrea Patane. Robustness guarantees
for Bayesian inference with Gaussian processes. In AAAI 2019, 2018. See arXiv:1809.06452.

5 Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In
Security and Privacy (SP), 2017 IEEE Symposium on, pages 39–57. IEEE, 2017.

6 Yarin Gal. Uncertainty in deep learning. PhD thesis, University of Cambridge, 2016.
7 Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. Safety verification of deep

neural networks. In CAV, pages 3–29. Springer, 2017.
8 Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer. Reluplex: An

efficient SMT solver for verifying deep neural networks. In CAV, pages 97–117. Springer, 2017.
9 David G Lowe. Distinctive image features from scale-invariant keypoints. International journal

of computer vision, 60(2):91–110, 2004.
10 David JC MacKay. A practical Bayesian framework for backpropagation networks. Neural

computation, 4(3):448–472, 1992.
11 A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. Towards Deep Learning Models

Resistant to Adversarial Attacks. arXiv e-prints, June 2017. arXiv:1706.06083.
12 Matthew Mirman, Timon Gehr, and Martin Vechev. Differentiable Abstract Interpretation

for Provably Robust Neural Networks. In ICML 2018, pages 3578–3586, 2018.
13 Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik, and

Ananthram Swami. The limitations of deep learning in adversarial settings. In Security and
Privacy (EuroS&P), 2016 IEEE European Symposium on, pages 372–387. IEEE, 2016.

14 Luca Pulina and Armando Tacchella. An abstraction-refinement approach to verification of
artificial neural networks. In CAV, pages 243–257. Springer, 2010.

15 Wenjie Ruan, Xiaowei Huang, and Marta Kwiatkowska. Reachability analysis of deep neural
networks with provable guarantees. In IJCAI, pages 2651–2659. AAAI Press, 2018.

16 Youcheng Sun, Min Wu, Wenjie Ruan, Xiaowei Huang, Marta Kwiatkowska, and Daniel
Kroening. Concolic Testing for Deep Neural Networks. In ASE 2018, pages 109–119, 2018.

http://arxiv.org/abs/1905.11876
https://arxiv.org/abs/1809.06452
https://arxiv.org/abs/1809.06452
http://arxiv.org/abs/1706.06083

M.Z. Kwiatkowska 1:5

17 Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian
Goodfellow, and Rob Fergus. Intriguing properties of neural networks. In ICLR, 2014.

18 Vincent Tjeng, Kai Xiao, and Russ Tedrake. Evaluating Robustness of Neural Networks with
Mixed Integer Programming. CoRR abs/1711.07356, 2017. arXiv:1711.07356.

19 Matthew Wicker, Xiaowei Huang, and Marta Kwiatkowska. Feature-guided black-box safety
testing of deep neural networks. In TACAS, pages 408–426. Springer, 2018.

20 Min Wu, Matthew Wicker, Wenjie Ruan, Xiaowei Huang, and Marta Kwiatkowska. A
Game-Based Approximate Verification of Deep Neural Networks with Provable Guarantees.
Theoretical Computer Science, 2018. To appear. See arXiv:1807.03571.

21 Håkan LS Younes, Marta Kwiatkowska, Gethin Norman, and David Parker. Numerical vs.
statistical probabilistic model checking. International Journal on Software Tools for Technology
Transfer, 8(3):216–228, 2006.

CONCUR 2019

http://arxiv.org/abs/1711.07356
https://arxiv.org/abs/1807.03571

Synthesis of Safe, Optimal and Compact
Strategies for Stochastic Hybrid Games
Kim G. Larsen
Department of Computer Science, Aalborg University, DK
kgl@cs.aau.dk

Abstract
Uppaal-Stratego is a recent branch of the verification tool Uppaal allowing for synthesis of safe
and optimal strategies for stochastic timed (hybrid) games. We describe newly developed learning
methods, allowing for synthesis of significantly better strategies and with much improved convergence
behaviour. Also, we describe novel use of decision trees for learning orders-of-magnitude more
compact strategy representation. In both cases, the seek for optimality does not compromise safety.

2012 ACM Subject Classification Theory of computation → Timed and hybrid models; Theory of
computation → Verification by model checking; Theory of computation → Online learning theory;
Theory of computation → Reinforcement learning

Keywords and phrases Timed automata, Stochastic hybrid grame, Symbolic synthesis, Reinforcement
learning, Q-learning, M-learning

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2019.2

Category Invited Paper

Funding Kim G. Larsen is partly funded by the ERC-Project LASSO.

1 UPPAAL Stratego

Cyber-physical systems are often safety-critical and hence strong guarantees on their safety
are paramount. Besides, resource efficiency and the quality of the delivered service are strong
requirements and the behavior needs also to be optimized with respect to these objectives,
of course, within the bounds of what is still safe. In order to achieve this, controllers of
such systems can be either implemented manually or automatically synthesized. In the
former case, due to the complexity of the system, coming up with a controller that is safe
is difficult, even more so with the additional optimization requirement. In the latter case,
the synthesis may succeed with significantly less effort, though the requirement on both
safety and optimality is still a challenge for current synthesis methods. However, due to
the size of the systems, the produced controllers may be very complex, hard to understand,
implement, modify, or even just output. Indeed, even for moderately sized systems, we can
easily end up with gigabytes-long descriptions of their controllers (in the algorithmic context
called strategies).

In [5, 6], we introduced Uppaal-Stratego, a branch of Uppaal allowing for synthesis of
safe and optimal strategies for stochastic (priced) timed games (STG). The process of using
Uppaal-Stratego is depicted in Fig. 1. First, the STG G is abstracted into a 2-player
(non-stochastic) timed game T G, ignoring any stochasticity of the behaviour. Next, the
Uppaal-Tiga [3] is used to synthesize a safe strategy σsafe for T G and the safety specification
ϕ. After that, the safe strategy is applied on G to obtain G � σsafe. It is now possible to
perform reinforcement learning on G � σsafe in order to iteratively learn a sub-strategy σfast
that will optimize the expectated value of given quantitative cost, given as a run-based
expressions (formally defining a random variable over runs).

© Kim G. Larsen;
licensed under Creative Commons License CC-BY

30th International Conference on Concurrency Theory (CONCUR 2019).
Editors: Wan Fokkink and Rob van Glabbeek; Article No. 2; pp. 2:1–2:5

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kgl@cs.aau.dk
https://doi.org/10.4230/LIPIcs.CONCUR.2019.2
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2:2 Safe, Optimal and Compact Strategies for Hybrid Games

G � σsafeG

T G σsafe

σopt

synthesis
ϕ

abstraction

learning
cost

Figure 1 Uppaal-Stratego original workflow.

2 Better and Faster Learning

Though Uppaal-Stratego on a number of practical examples [10, 11, 13, 12, 7] has already
demonstrated its ability to learn near-optimal strategies, we have recently improved Uppaal-
Stratego in a number of ways. Firstly, the run-based reinforcement learning method used
in Uppaal-Stratego is a continuous-time extension of the method in [8]. This method
is known to be possibly caught in local optima and not necessarily converge towards the
overall optimal strategy. In recent work [9], we show that we can significantly improve with
respect to this existing method of Uppaal-Stratego both in terms of the quality of the
the learned strategy, as well as in obtaining overall improved convergence characteristics as a
function of the data size. The new learning methods in [9] are refinement based learning
methods for continuous models: one based on Q-learning [15] and one related to Real Time
Dynamic Programming [14, 2].

3 Compact Strategies

Aiming at using the synthesized strategies as control programs to be executed on small
embedded platforms an important issue is how to encode compactly the synthesized strategies.
For this purpose algorithmic methods have been devised to take into account both compos-
itionality [4] as well as partial observability. Although neural network representations of
strategies are attractive from a memory foot-print point of view, they may easily destroy
the guarantee of safety. In [1], we introduce a new alternative method for learning compact
representations of strategies in the form of decision trees. These decision trees are much
smaller, more understandable, and can easily be exported as code that can be loaded into
embedded systems. Despite the size compression and actual differences to the original
strategy, we provide guarantees on both safety and optimality of the decision-tree strategy.
On the top, we showed how to obtain yet smaller representations, which are still guaranteed
safe, but achieve a desired trade off between size and optimality. Finally, we consider two
case studies, one of them the cruise control from [13, 12], showing size reductions of two
orders of magnitude, and quantify the additional size-performance trade-off.

We summarize the end-to-end work flow of Uppaal-Stratego+ for obtaining a safe,
optimal and compact strategy from the model, a safety specification and an optimization
query, see Fig. 2. Uppaal-Tiga is used to generate the most-permissive safety strategy σsafe
for the given safety specification ϕ. Now we can either use the standard Uppaal-Stratego
workflow to generate the optimal strategy σopt and then learn a decision tree for this, as
depicted on the right path of Fig. 2; or take the new approach following the left branch in
Fig. 2. Here, we first learn a DT T k,p

σsafe
from σsafe using so-called minimum splitting size k

and p rounds of safe pruning. This DT is smaller than the one representing σsafe exactly,

K.G. Larsen 2:3

SOC

G

T G

σsafe G � σsafe

σopt

Topt

T k,p
σsafe

G � T k,p
σsafe

σk,popt

T k,p
opt

Uppaal-Tiga ϕ

Stratego learning Stratego learning

DT learning exact

DT learn
k,p

DT learning exact

Figure 2 Uppaal-Stratego+workflow. The dark orange nodes are the additions to the original
workflow, which now involve DT learning, the yellow-shaded area delimits the desired safe, optimal,
and compact strategy representations.

and the described strategy is less permissive. By restricting the game to this strategy and
using Uppaal-Stratego to get the optimal strategy, we get a smaller, but less performant
strategy σk,popt that is then output as DT T k,p

opt . In both cases, the resulting DT is safe by
construction since we allow the DT to predict only pure actions (actions allowed by all
configurations in a leaf). We convert these trees into a nested-if-statements-code, which can
easily be loaded onto embedded systems.

4 On-line Learning

Finally, on-line methods for strategy synthesis/learning has been successfully applied in
diverse domains such as heating systems [11] and intelligent traffic control [7]. The on-line
method has the distinct advantages of not needing to store any strategy (as it is constantly
computed during operation) but may be too slow to meet response-frequency of a given
domain (e.g. in the order of milli-seconds for switched controllers for power electronics or
adaptive cruice controls). Thus, we are investigating ways of making the on-line computations
more efficient.

References

1 Pranav Ashok, Jan Kretinsky, Kim Guldstrand Larsen, Adrien Le Coent, Jakob Haahr
Taankvist, and Maximilian Weininger. SOS: Safe, Optimal and Small Strategies for Stochastic
Hybrid Games. In To appear in Proceedings of QEST, 2019.

CONCUR 2019

2:4 Safe, Optimal and Compact Strategies for Hybrid Games

2 Andrew G. Barto, Steven J. Bradtke, and Satinder P. Singh. Learning to Act Using Real-
time Dynamic Programming. Artif. Intell., 72(1-2):81–138, January 1995. doi:10.1016/
0004-3702(94)00011-O.

3 Gerd Behrmann, Agnès Cougnard, Alexandre David, Emmanuel Fleury, Kim Guldstrand
Larsen, and Didier Lime. UPPAAL-Tiga: Time for Playing Games! In Werner Damm and
Holger Hermanns, editors, Computer Aided Verification, 19th International Conference, CAV
2007, Berlin, Germany, July 3-7, 2007, Proceedings, volume 4590 of Lecture Notes in Computer
Science, pages 121–125. Springer, 2007. doi:10.1007/978-3-540-73368-3_14.

4 Adrien Le Coënt, Laurent Fribourg, Nicolas Markey, Florian De Vuyst, and Ludovic Chamoin.
Compositional synthesis of state-dependent switching control. Theor. Comput. Sci., 750:53–68,
2018. doi:10.1016/j.tcs.2018.01.021.

5 Alexandre David, Peter Gjøl Jensen, Kim Guldstrand Larsen, Axel Legay, Didier Lime,
Mathias Grund Sørensen, and Jakob Haahr Taankvist. On Time with Minimal Expected Cost!
In Franck Cassez and Jean-François Raskin, editors, Automated Technology for Verification
and Analysis - 12th International Symposium, ATVA 2014, Sydney, NSW, Australia, November
3-7, 2014, Proceedings, volume 8837 of Lecture Notes in Computer Science, pages 129–145.
Springer, 2014. doi:10.1007/978-3-319-11936-6_10.

6 Alexandre David, Peter Gjøl Jensen, Kim Guldstrand Larsen, Marius Mikucionis, and
Jakob Haahr Taankvist. Uppaal Stratego. In Christel Baier and Cesare Tinelli, editors, Tools
and Algorithms for the Construction and Analysis of Systems - 21st International Conference,
TACAS 2015, Held as Part of the European Joint Conferences on Theory and Practice of Soft-
ware, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings, volume 9035 of Lecture Notes
in Computer Science, pages 206–211. Springer, 2015. doi:10.1007/978-3-662-46681-0_16.

7 Andreas Berre Eriksen, Harry Lahrmann, and Kim Guldstrand Larsen andJakob Haahr Taank-
vist. Controlling Signalized Intersections using Machine Learning. In World Conference on
Transport Research, 2019.

8 David Henriques, João Martins, Paolo Zuliani, André Platzer, and Edmund M. Clarke.
Statistical Model Checking for Markov Decision Processes. In Ninth International Conference
on Quantitative Evaluation of Systems, QEST 2012, London, United Kingdom, September
17-20, 2012, pages 84–93. IEEE Computer Society, 2012. doi:10.1109/QEST.2012.19.

9 Manfred Jaeger, Peter G. Jensen, Kim G. Larsen, Axel Legay, Sean Sedwards, and Jakob H.
Taankvist. Teaching Stratego to Play Ball> Optimal Synthesis fo Continuous Space MDPs.
In To appear in Proceedings of ATVA, 2019.

10 Shyam Lal Karra, Kim Guldstrand Larsen, Florian Lorber, and Jirí Srba. Safe and Time-
Optimal Control for Railway Games. In Simon Collart Dutilleul, Thierry Lecomte, and
Alexander B. Romanovsky, editors, Reliability, Safety, and Security of Railway Systems.
Modelling, Analysis, Verification, and Certification - Third International Conference, RSSRail
2019, Lille, France, June 4-6, 2019, Proceedings, volume 11495 of Lecture Notes in Computer
Science, pages 106–122. Springer, 2019. doi:10.1007/978-3-030-18744-6_7.

11 Kim G. Larsen, Marius Mikucionis, Marco Muñiz, Jirí Srba, and Jakob Haahr Taankvist.
Online and Compositional Learning of Controllers with Application to Floor Heating. In
Marsha Chechik and Jean-François Raskin, editors, Tools and Algorithms for the Construction
and Analysis of Systems - 22nd International Conference, TACAS 2016, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2016, Eindhoven,
The Netherlands, April 2-8, 2016, Proceedings, volume 9636 of Lecture Notes in Computer
Science, pages 244–259. Springer, 2016. doi:10.1007/978-3-662-49674-9_14.

12 Kim Guldstrand Larsen, Adrien Le Coënt, Marius Mikucionis, and Jakob Haahr Taankvist.
Guaranteed Control Synthesis for Continuous Systems in Uppaal Tiga. In Roger D. Chamber-
lain, Walid Taha, and Martin Törngren, editors, Cyber Physical Systems. Model-Based Design
- 8th International Workshop, CyPhy 2018, and 14th International Workshop, WESE 2018,
Turin, Italy, October 4-5, 2018, Revised Selected Papers, volume 11615 of Lecture Notes in
Computer Science, pages 113–133. Springer, 2018. doi:10.1007/978-3-030-23703-5_6.

https://doi.org/10.1016/0004-3702(94)00011-O
https://doi.org/10.1016/0004-3702(94)00011-O
https://doi.org/10.1007/978-3-540-73368-3_14
https://doi.org/10.1016/j.tcs.2018.01.021
https://doi.org/10.1007/978-3-319-11936-6_10
https://doi.org/10.1007/978-3-662-46681-0_16
https://doi.org/10.1109/QEST.2012.19
https://doi.org/10.1007/978-3-030-18744-6_7
https://doi.org/10.1007/978-3-662-49674-9_14
https://doi.org/10.1007/978-3-030-23703-5_6

K.G. Larsen 2:5

13 Kim Guldstrand Larsen, Marius Mikucionis, and Jakob Haahr Taankvist. Safe and Optimal
Adaptive Cruise Control. In Roland Meyer, André Platzer, and Heike Wehrheim, editors,
Correct System Design - Symposium in Honor of Ernst-Rüdiger Olderog on the Occasion of His
60th Birthday, Oldenburg, Germany, September 8-9, 2015. Proceedings, volume 9360 of Lecture
Notes in Computer Science, pages 260–277. Springer, 2015. doi:10.1007/978-3-319-23506-6_
17.

14 Alexander L. Strehl, Lihong Li, and Michael L. Littman. Incremental Model-based Learners
With Formal Learning-Time Guarantees. CoRR, 2012. arXiv:1206.6870.

15 Christopher John Cornish Hellaby Watkins. Learning from delayed rewards. PhD thesis, King’s
College, Cambridge, 1989.

CONCUR 2019

https://doi.org/10.1007/978-3-319-23506-6_17
https://doi.org/10.1007/978-3-319-23506-6_17
http://arxiv.org/abs/1206.6870

Program Invariants
Joël Ouaknine
Max Planck Institute for Software Systems, Saarbrücken, Germany
Oxford University, UK
https://people.mpi-sws.org/~joel/
joel@mpi-sws.org

Abstract
Automated invariant generation is a fundamental challenge in program analysis and verification,
going back many decades, and remains a topic of active research. In this talk I’ll present a select
overview and survey of work on this problem, and discuss unexpected connections to other fields
including algebraic geometry, group theory, and quantum computing. (No previous knowledge of
these topics will be assumed.)

This is joint work with Ehud Hrushovski, Amaury Pouly, and James Worrell.

2012 ACM Subject Classification Theory of computation → Invariants

Keywords and phrases Automated invariant generation, program analysis and verification

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2019.3

Category Invited Talk

© Joël Ouaknine;
licensed under Creative Commons License CC-BY

30th International Conference on Concurrency Theory (CONCUR 2019).
Editors: Wan Fokkink and Rob van Glabbeek; Article No. 3; pp. 3:1–3:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://people.mpi-sws.org/~joel/
mailto:joel@mpi-sws.org
https://doi.org/10.4230/LIPIcs.CONCUR.2019.3
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Concurrent Algorithms and Data Structures for
Model Checking
Jaco van de Pol
Aarhus University, Denmark
University of Twente, The Netherlands
http://www.cs.au.dk/~jaco
jaco@cs.au.dk

Abstract
Model checking is a successful method for checking properties on the state space of concurrent,
reactive systems. Since it is based on exhaustive search, scaling this method to industrial systems
has been a challenge since its conception. Research has focused on clever data structures and
algorithms, to reduce the size of the state space or its representation; smart search heuristics, to
reveal potential bugs and counterexamples early; and high-performance computing, to deploy the
brute force processing power of clusters of compute-servers. The main challenge is to combine these
approaches – brute-force alone (when implemented carefully) can bring a linear speedup in the
number of processors. This is great, since it reduces model-checking times from days to minutes.
On the other hand, proper algorithms and data structures can lead to exponential gains. Therefore,
the parallelization bonus is only real if we manage to speedup clever algorithms.

There are some obstacles though: many linear-time graph algorithms depend on a depth-first
exploration order, which is hard to parallelize. Examples include the detection of strongly connected
components (SCC) and the nested depth-first-search (NDFS) algorithm. Both are used in model
checking LTL properties. Symbolic representations, like binary decision diagrams (BDDs), reduce
model checking to “pointer-chasing”, leading to irregular memory-access patterns. This poses severe
challenges on achieving actual speedup in (clusters of) modern multi-core computer architectures.

This talk presents some of the solutions found over the last 10 years, which led to the high-
performance model checker LTSmin [2]. These include parallel NDFS (based on the PhD thesis of
Alfons Laarman [3]), the parallel detection of SCCs with concurrent Union-Find (based on the PhD
thesis of Vincent Bloemen [1]), and concurrent BDDs (based on the PhD thesis of Tom van Dijk [4]).

Finally, I will sketch a perspective on moving forward from high-performance model checking to
high-performance synthesis algorithms. Examples include parameter synthesis for stochastic and
timed systems, and strategy synthesis for (stochastic and timed) games.

2012 ACM Subject Classification Software and its engineering → Model checking; Theory of
computation → Verification by model checking; Theory of computation → Parallel algorithms

Keywords and phrases model checking, parallel algorithms, concurrent datastructures

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2019.4

Category Invited Talk

References
1 Vincent Bloemen. Strong Connectivity and Shortest Paths for Checking Models. PhD thesis,

University of Twente, Enschede, Netherlands, 2019. URL: https://research.utwente.nl/
en/publications/strong-connectivity-and-shortest-paths-for-checking-models.

2 Gijs Kant, Alfons Laarman, Jeroen Meijer, Jaco van de Pol, Stefan Blom, and Tom van Dijk.
LTSmin: High-performance language-independent model checking. In TACAS, volume 9035 of
Lecture Notes in Computer Science, pages 692–707. Springer, 2015.

3 Alfons Laarman. Scalable multi-core model checking. PhD thesis, University of Twente,
Enschede, Netherlands, 2014. URL: http://eprints.eemcs.utwente.nl/25673/.

4 Tom van Dijk. Sylvan: multi-core decision diagrams. PhD thesis, University of Twente,
Enschede, Netherlands, 2016. URL: http://purl.utwente.nl/publications/100676.

© Jaco van de Pol;
licensed under Creative Commons License CC-BY

30th International Conference on Concurrency Theory (CONCUR 2019).
Editors: Wan Fokkink and Rob van Glabbeek; Article No. 4; pp. 4:1–4:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-4305-0625
http://www.cs.au.dk/~jaco
mailto:jaco@cs.au.dk
https://doi.org/10.4230/LIPIcs.CONCUR.2019.4
https://research.utwente.nl/en/publications/strong-connectivity-and-shortest-paths-for-checking-models
https://research.utwente.nl/en/publications/strong-connectivity-and-shortest-paths-for-checking-models
http://eprints.eemcs.utwente.nl/25673/
http://purl.utwente.nl/publications/100676
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Of Cores: A Partial-Exploration Framework for
Markov Decision Processes
Jan Křetínský
Technical University of Munich, Germany
jan.kretinsky@in.tum.de

Tobias Meggendorfer
Technical University of Munich, Germany
tobias.meggendorfer@in.tum.de

Abstract
We introduce a framework for approximate analysis of Markov decision processes (MDP) with
bounded-, unbounded-, and infinite-horizon properties. The main idea is to identify a “core” of an
MDP, i.e., a subsystem where we provably remain with high probability, and to avoid computation on
the less relevant rest of the state space. Although we identify the core using simulations and statistical
techniques, it allows for rigorous error bounds in the analysis. Consequently, we obtain efficient
analysis algorithms based on partial exploration for various settings, including the challenging case
of strongly connected systems.

2012 ACM Subject Classification Theory of computation → Verification by model checking; Theory
of computation → Random walks and Markov chains

Keywords and phrases Markov Decision Processes, Reachability, Approximation

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2019.5

Related Version A full version of the paper is available at https://arxiv.org/abs/1906.06931.

Funding This work has been partially supported by the Czech Science Foundation grant No. 18-
11193S and the German Research Foundation (DFG) project KR 4890/2 “Statistical Unbounded
Verification”.

1 Introduction

Markov decision processes (MDP) are a well established formalism for modelling, analysis and
optimization of probabilistic systems with non-determinism, with a large range of application
domains [18]. Classical objectives such as reachability of a given state or the long-run average
reward (mean payoff) can be solved by a variety of approaches. In theory, the most suitable
approach is linear programming as it provides exact answers (rational numbers with no
representation imprecision) in polynomial time. However, in practice for systems with more
than a few thousand states, linear programming is not very usable, see, e.g., [2]. As an
alternative, one can apply dynamic programming, typically value iteration (VI) [4], the
default method in the probabilistic model checkers PRISM [13] and Storm [9].

Despite better practical scalability of VI, systems with more than a few million states still
remain out of reach of the analysis not only because of time-outs, but now also memory-outs,
see, e.g., [6]. There are various heuristics designed to deal with so large state spaces, including
abstractions, e.g., [8, 11], or a dual approach based on restricting the analysis to a part of the
state space. Examples of the latter approach are asynchronous VI in probabilistic planning,
e.g., [17], or projections in approximate dynamic programming, e.g., [5]. In both, only a
certain subset of states is considered for analysis, leading to speed ups in orders of magnitude.
These are best-effort solutions, which can only guarantee convergence to the true result in
the limit, with no error bounds at any finite time. Surprisingly, this was the case with the

© Jan Křetínský and Tobias Meggendorfer;
licensed under Creative Commons License CC-BY

30th International Conference on Concurrency Theory (CONCUR 2019).
Editors: Wan Fokkink and Rob van Glabbeek; Article No. 5; pp. 5:1–5:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-8122-2881
mailto:jan.kretinsky@in.tum.de
https://orcid.org/0000-0002-1712-2165
mailto:tobias.meggendorfer@in.tum.de
https://doi.org/10.4230/LIPIcs.CONCUR.2019.5
https://arxiv.org/abs/1906.06931
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 Of Cores: A Partial-Exploration Framework for Markov Decision Processes

standard VI as well until recently, when an error bound (and thus a stopping criterion) was
given independently in [10, 6]. The error bound follows from the under- and (newly obtained)
over-approximations converging to the true value. This resulted not only in error bounds
on VI, but opened the door to error bounds for other techniques, including those where
even convergence is not guaranteed. For instance, while VI iteratively approximates the
value of all states, the above-mentioned asynchronous VI evaluates states at different paces.
Thus convergence is often unclear and even the rate of convergence is unknown and very
hard to analyze. However, it is not too hard to extend the error bound technique for VI to
asynchronous VI. A prime example is the modification of BRTDP [17] to reachability [6]
with error bounds. These ideas are further developed for, e.g., settings with long-run average
reward [2] or continuous time [1].

While these solutions are efficient, they are ad-hoc, sharing the idea of simulation /
learning-based partial exploration of the system, but not the correctness proof. In this paper,
we build the foundations for designing such frameworks and provide a new perspective on
these approaches, leading to algorithms for settings where previous ideas cannot apply.

The previous algorithms use (i) simulations to explore the state space and (ii) planning
heuristics and machine learning to analyze the experience and to bias further simulations to
areas that seem more relevant for the analysis of the given property (e.g., reaching a state
s42), where (iii) the exact VI computation takes place and yields results with a guaranteed
error bound. In contrast, this paper identifies a general concept of a “core” of the MDP,
independently of the particular objective (which states to reach) and, to a certain extent, even
of the type of property (reachability, mean payoff, linear temporal logic formulae, etc.). This
core intuitively consists of states that are important for the analysis of the MDP, whereas the
remaining parts of the state space affect the result only negligibly. To this end, the defining
property of a core is that the system stays within the core with high probability.

There are several advantages of cores, compared to the tailored techniques. Since the
core is agnostic of any particular property, it can be re-used for multiple queries. Thus, the
repetitive effort spent by the simulations and heuristics to explore the relevant parts of the
state space by the previous algorithms can be saved. Furthermore, identifying the core can
serve to better understand the typical behaviour of the system. Indeed, the core is typically
a lot smaller than the system (and thus more amenable to understand) and only contains the
more likely behaviours, even for real-world models as shown in the experimental evaluation.
Finally, the general concept of core provides a unified argument for the correctness of the
previous algorithms since – implicitly – they gradually construct a core. This abstract
view thus allows for easier development of further partial-exploration techniques within
this framework.

More importantly, making the notion of core explicit naturally leads us to identify a
new standpoint and approach for the more complicated case of strongly connected systems,
where the previous algorithms as well as cores cannot help. In technical terms, minimal cores
are closed under end components. Consequently, the minimal core for a strongly connected
system is the whole system. And indeed, it is impossible to give guarantees on infinite-horizon
behaviour whenever a single state is ignored. In order to provide some feasible analysis
for this case, we introduce the n-step core. It is defined by the system staying there with
high probability for some time. However, instead of n-step analysis, we suggest to observe
the “stability” of the core, i.e. the tendency of the probability to leave this core if longer
and longer runs are considered. We shall argue that this yields (i) rigorous bounds for
N -step analysis for N � n more efficiently than a direct N -step analysis, and (ii) finer
information on the “long run” behaviour (for different lengths) than the summary for the

J. Křetínský and T. Meggendorfer 5:3

infinite run, which, n.b., never occurs in reality. This opens the door towards a rigorous
analysis of “typical” behaviour of the system, with many possible applications in the design
and interpretation of complex systems.

Our contribution can be summarized as follows:
We introduce the notion of core, study its basic properties, in its light re-interpret previous
results in a unified way, and discuss its advantages.
We stipulate a new view on long-run properties as rather corresponding to long runs
than an infinite one. Then a modified version of cores allows for an efficient analysis of
strongly connected systems, where other partial-exploration techniques necessarily fail.
We show how these modified cores can aid in design and interpretation of systems.
We provide efficient algorithms for computing both types of cores and evaluate them on
several examples.

2 Preliminaries

In this section, we recall basics of probabilistic systems and set up the notation. We assume
familiarity with the central ideas of measure theory. As usual, N and R refers to the (positive)
natural numbers and real numbers, respectively. For any set S, we use S to denote its
complement. A probability distribution on a finite set X is a mapping p : X → [0, 1], such
that

∑
x∈X p(x) = 1. Its support is denoted by supp(p) = {x ∈ X | p(x) > 0}. D(X) denotes

the set of all probability distributions on X. An event happens almost surely (a.s.) if it
happens with probability 1.

I Definition 1. A Markov chain (MC) is a tuple M = (S, s0, δ), where S is a countable set
of states, s0 ∈ S is the initial state, and δ : S → D(S) is a transition function that for each
state s yields a probability distribution over successor states.

I Definition 2. A Markov decision process (MDP) is a tuple of the form M = (S, s0, A,Av,∆),
where S is a finite set of states, s0 ∈ S is the initial state, A is a finite set of actions,
Av : S → 2A \ {∅} assigns to every state a non-empty set of available actions, and ∆ :
S ×A→ D(S) is a transition function that for each state s and (available) action a ∈ Av(s)
yields a probability distribution over successor states. Furthermore, we assume w.l.o.g. that
actions are unique for each state, i.e. Av(s)∩Av(s′) = ∅ for s 6= s′ (which can be achieved by
replacing A with S ×A and adapting Av and ∆ appropriately).

For ease of notation, we overload functions mapping to distributions f : Y → D(X) by
f : Y ×X → [0, 1], where f(y, x) := f(y)(x). For example, instead of δ(s)(s′) and ∆(s, a)(s′)
we write δ(s, s′) and ∆(s, a, s′), respectively.

An infinite path ρ in a Markov chain is an infinite sequence ρ = s0s1 . . . ∈ Sω, such that
for every i ∈ N we have that δ(si, si+1) > 0. A finite path (or history) % = s0s1 . . . sn ∈ S∗ is a
finite prefix of an infinite path. Similarly, an infinite path in an MDP is some infinite sequence
ρ = s0a0s1a1 . . . ∈ (S × A)ω, such that for every i ∈ N, ai ∈ Av(si) and ∆(si, ai, si+1) > 0.
Finite paths % are defined analogously as elements of (S ×A)∗ × S. We use ρi and %i to refer
to the i-th state in the given (in)finite path.

A strategy on an MDP is a function π : (S × A)∗ × S → D(A), which given a finite
path % = s0a0s1a1 . . . sn yields a probability distribution π(%) ∈ D(Av(sn)) on the actions
to be taken next. We denote the set of all strategies of an MDP by Π. Fixing any
strategy π induces a Markov chain Mπ = (Sπ, sπ0 , δπ), where the states are given by
Sπ = (S × A)∗ × S and, for some state % = s0a0 . . . sn ∈ Sπ, the successor distribution is
defined as δπ(%, %an+1sn+1) = π(%, an+1) ·∆(sn, an+1, sn+1).

CONCUR 2019

5:4 Of Cores: A Partial-Exploration Framework for Markov Decision Processes

Any Markov chain M induces a unique measure PM over infinite paths [3, p. 758]. Assuming
we fixed some MDPM, we use Pπs to refer to the probability measure induced by the Markov
chainMπ with initial state s. Whenever π or s are clear from the context, we may omit
them, in particular, Pπ refers to Pπs0

. See [18, Sec. 2.1.6] for further details. For a given
MDP M and measurable event E, we use the shorthand Pmax[E] := supπ∈Π Pπ [E] and
Pmax
s [E] := supπ∈Π Pπs [E] to refer to the maximal probability of E over all strategies (starting

in s). Analogously, Pmin[E] and Pmin
s [E] refer to the respective minimal probabilities.

A pair (T,B), where ∅ 6= T ⊆ S and ∅ 6= B ⊆
⋃
s∈T Av(s), is an end component of

an MDP M if (i) for all s ∈ T, a ∈ B ∩ Av(s) we have supp(∆(s, a)) ⊆ T , and (ii) for all
s, s′ ∈ T there is a finite path % = sa0 . . . ans

′ ∈ (T × B)∗ × T , i.e. the path stays inside
T and only uses actions in B. Intuitively, an end component describes a set of states for
which a particular strategy exists such that all possible paths remain inside these states.
By abuse of notation, we identify an end component with the respective set of states, e.g.,
s ∈ E = (T,B) means s ∈ T . An end component (T,B) is a maximal end component (MEC)
if there is no other end component (T ′, B′) such that T ⊆ T ′ and B ⊆ B′. The set of MECs
of an MDPM is denoted by MEC(M) and can be obtained in polynomial time [7].

In the following, we will primarily deal with unbounded and bounded variants of reach-
ability queries. Essentially, for a given MDP and set of states, the task is to determine
the maximal probability of reaching them, potentially within a certain number of steps.
Technically, we are interested in determining Pmax[♦T] and Pmax[♦≤nT], where T is the set
of target states and ♦T (♦≤nT) refers to the measurable set of runs that visit T at least
once (in the first n steps). The dual operators �T and �≤nT refer to the set of runs which
remain inside T forever or for the first n steps, respectively. See [3, Sec. 10.1.1] for further
details. Our techniques are easily extendable to other related objectives like long run average
reward (mean payoff) [18], LTL formulae or ω-regular objectives [3]. We briefly comment on
this in Section 3.3.

We are interested in finding approximate solutions efficiently, i.e. trading precision for
speed of computation. In our case, “approximate” means ε-optimal for some given precision
ε > 0, i.e. the value we determine has an absolute error of less than ε. For example, given
a reachability query Pmax[♦T] and precision ε, we are interested in finding a value v with
|Pmax[♦T]− v| < ε.

3 The Core Idea

In this section, we present the novel concept of cores, inspired by the approach of [6], where
a specific reachability query was answered approximately through heuristic based methods.
Omitted proofs can be found in [12, App. A.1]. We first establish a running example to
motivate our work and explain the difference to previous approaches.

Consider a flight of an air plane. The controller, e.g. the pilot and the flight computer,
can take many decisions to control the plane. The system as a whole can be in many different
states. One may be interested in the maximal probability of arriving safely. This intuitively
describes how likely it is to arrive, assuming that the pilot acts optimally and the computer is
bug-free. Of course, this probability may be less than 100%, since some components may fail
even under optimal conditions. See Figure 1 for a simplified MDP modelling this example.

The key observation in [6] is that some extreme situations may be very unlikely and we
can simply assume the worst case for them without losing too much precision. This allows us
to completely ignore these situations. For example, consider the unlikely event of hazardous
bit flips during the flight due to cosmic radiation. This event might eventually lead to a

J. Křetínský and T. Meggendorfer 5:5

origin

starting landing

destination

bits flipped recovery

crash!

start landcrash plane crash
plane

recover
fly 1 - ττ

Figure 1 A simplified model of a flight, where τ = 10−10 is the probability of potentially hazardous
bit flips occurring during the flight. The “recovery” node represents a complex recovery procedure,
comprising many states.

crash or it might have no influence on the evolution of the system at all. Since this event is
so unlikely to occur, we can simply assume that it always leads to a crash and still get a
very precise result. Consequently, we do not need to explore the corresponding part of the
state space (the “recovery” part), saving resources. As shown in the experimental evaluation
in Section 5, many real-world models indeed exhibit a similar structure.

In [6], the state space was explored relative to a particular reachability objective, storing
upper and lower bounds on each state for the objective in consideration. We make use
of the same principle idea, but approach it from a different perspective, agnostic of any
objective. We are interested in finding all relevant states of the system, i.e. all states which
are reasonably likely to be reached. Such a set of states is an intrinsic property of the
system, and we show that this set is both sufficient and necessary to answer any non-trivial
reachability query ε-precisely. In particular, once computed, this set can be reused for
multiple queries.

3.1 Infinite-Horizon Cores
First, we define the notion of an ε-core. Intuitively, an ε-core is a set of states which can
only be exited with probability less than ε.

I Definition 3 (Core). Let M be an MDP and ε > 0. A set Sε ⊆ S is an ε-core if
Pmax[♦Sε] < ε, i.e. the probability of ever exiting Sε is smaller than ε.

When ε is clear from the context, we may refer to an ε-core by “core”. Observe that the core
condition is equivalent to Pmin[�Sε] ≥ 1− ε.

The set of all states S trivially is a core for any ε. Naturally, we are interested in finding
a core which is as small as possible, which we call a minimal core.

I Definition 4 (Minimal Core). LetM be an MDP and ε > 0. S∗ε ⊆ S is a minimal ε-core
if it is inclusion minimal, i.e. S∗ε is an ε-core and there exists no ε-core S′ε (S∗ε .

When ε is clear from the context, we may refer to a minimal ε-core by “minimal core”. In the
running example, a minimal core for ε = 10−6 would contain all states except the “bit flipped”
state and the “recovery” subsystem, since they are reached only with probability τ < ε.
I Remark 5. We note that this idea may seem similar to the one of [19], but is subtly
different. In that work, the authors consider a classical reachability problem using value
iteration. They approximate the exit probability of a fixed set S? to bound the error on the
computed reachability.
In the following, we derive basic properties of cores, show how to efficiently construct them,
and relate them to the approaches of [2, 6].

CONCUR 2019

5:6 Of Cores: A Partial-Exploration Framework for Markov Decision Processes

First, we observe that finding a core of a given size (for a non-trivial ε) is NP-complete.

I Theorem 6. For 0 < ε < 1
4 , {(M, k) | M has an ε-core of size k} is NP-complete.

Observe that this result only implies that finding minimal cores is hard. In the following
section, we introduce a learning-based approach which quickly identifies reasonably sized cores.

I Theorem 7. LetM be an MDP and ε > 0. A set Sε ⊆ S is an ε-core ofM if and only if
for every subset of states R ⊆ S we have that 0 ≤ Pmax[♦R]− Pmax[♦(R ∩ Sε) ∩�Sε] < ε.

This theorem shows that for any reachability objective R, we can determine Pmax[♦R] up to
ε precision by determining the reachability of R on the sub-model induced by any ε-core, i.e.
by only considering runs which remain inside Sε. This also shows that, in general, cores are
necessary to determine reachability up to precision ε.

We emphasize that this does not imply that identifying a core is necessary for all queries.
For example, we have that Pmax

s0
[♦{s0}] = 1 even without constructing any core. Nevertheless,

for any non-trivial property, i.e. a reachability query with value less than 1−ε, a computation
restricted to a subset which does not satisfy the core property cannot give ε-guarantees on its
results – only lower bounds can be proven. Thus, a set of states satisfying the core property
has to be considered for non-trivial properties. In particular, the approach of [6] implicitly
builds a core for such properties.

Of course, one could simply construct the whole state set S for the computation, which
trivially satisfies the core condition. But, using the methods presented in the following section,
we can efficiently identify a considerably smaller core. In particular, we observe in Section 5
that for some models we are able to identify a very small core orders of magnitude faster
than the construction of the state set S, speeding up subsequent computations drastically.

3.2 Learning a Core
We introduce a sampling based algorithm which builds a core. In the interest of space, we only
briefly describe the algorithm. Further discussion can be found in [12, App. A.2] and [6]. The
algorithm is structurally very similar to the one presented in [6]. Nevertheless, we present it
explicitly here since (i) it is significantly simpler and (ii) we introduce modifications later on.

We assume that the model is described by an initial state and a successor function,
yielding all possible actions and the resulting distribution over successor states. This allows
us to only construct a small fraction of the state space and achieve sub-linear runtime
for some models.

During the execution of the algorithm, the system is traversed by following the successor
function, starting from the initial state. Each state encountered is stored in a set of explored
states, all other, not yet visited states are unexplored. Unexplored successors of explored
states are called partially explored. Furthermore, the algorithm stores for each (explored)
state s an upper bound U(s) on the probability of reaching some unexplored state starting
from s. The algorithm gradually grows the set of explored states and simultaneously updates
these upper bounds, until the desired threshold is achieved in the initial state, i.e. U(s0) < ε,
and thus the set of explored states provably satisfies the core property. In particular, the
upper bound is updated by sampling a path according to SamplePath and back-propagating
the values along that path using Bellman backups.

SamplePath samples paths following some heuristic. In particular, it does not have to
follow the transition probabilities given by the successor function. For example, a successor
might be sampled with probability proportional to its upper bound times the transition

J. Křetínský and T. Meggendorfer 5:7

Algorithm 1 LearnCore.
Input: MDPM, precision ε > 0, upper bounds U , state set Sε with s0 ∈ Sε
Output: Sε s.t. Sε is an ε-core
1: while U(s0) ≥ ε do
2: %← SamplePath(s0, U) . Generate path
3: Sε ← Sε ∪ % . Expand core
4: UpdateECs(Sε, U)
5: for s in % in reverse order do . Back-propagate values
6: U(s)← maxa∈A(s)

∑
s′∈S ∆(s, a, s′) · U(s′)

7: return Sε

probability. The intuition behind this approach is that all states which are unlikely to be
reached are not relevant and hence do not need to be included in the core. By trying to
reach unexplored states the algorithm likely only reaches states which indeed are important.

UpdateECs identifies MECs of the currently explored sub-system and “collapses” them
into a single representative state. This is necessary to ensure convergence of the upper
bounds to the correct value – technically this process removes spurious fixed points of U .

For (a.s.) termination, we only require that the sampling heuristic is “(almost surely)
fair”. This means that (i) any partially explored state is reached eventually (a.s.), in order to
explore a sufficient part of the state space, and (ii) any explored state with U(s) > 0 is visited
infinitely often (a.s.), in order to back-propagate values accordingly. Further, we require that
the initial upper bounds are consistent with the given state set, i.e. U(s) ≥ Pmax

s [♦Sε]. This
is trivially satisfied by U(·) = 1. Note that in contrast to [6], the set whose reachability we
approximate dynamically changes and, further, only upper bounds are computed.

I Theorem 8. Algorithm 1 is correct and terminates (a.s.) if SamplePath is (a.s.) fair
and the given upper bounds U are consistent with the given set Sε.

Proof Sketch. Correctness: By assumption U(s) initially is a correct upper bound for the
“escape” probability, i.e. U(s) ≥ Pmax

s [♦Sε]. Each update (a Bellman backup) preserves
correctness, independent of the sampled path. Hence, if U(s0) < ε, we have Pmax

s [♦Sε] < ε.
Termination: As we assumed that SamplePath is (a.s.) fair, eventually (a.s.) the whole

model will be explored, and all MECs will be collapsed by UpdateECs. Then, all states are
visited infinitely often (a.s.), and thus all upper bounds will eventually converge to 0. J

As Algorithm 1 is correct and terminates for any faithful upper bounds and initial state
set, we can restart the algorithm and interleave it with other approaches refining the upper
bounds. For example, one could periodically update the upper bounds using, e.g., strategy
iteration. Further, we can reuse the computed upper bounds and state set to compute a core
for a tighter precision.

3.3 Using Cores for Verification
We explain how a core can be used for verification and how our approach differs from existing
ones. Clearly, we can compute reachability or safety objectives on a given core ε-precisely.
In this case, our approach is not too different from the one in [6]. Yet, we argue that our
approach yields a stronger result. Due to cores being an intrinsic object, we are able to reuse
and adapt this idea easily to many other objectives. Observe that a dedicated adaption may
still yield slightly better performance, but requires significantly more work. For example, see
[2] for an adaption to mean payoff.

CONCUR 2019

5:8 Of Cores: A Partial-Exploration Framework for Markov Decision Processes

To see how we can connect our idea to mean payoff, we briefly explain this objective
and then recall an observation of [2]. First, rational rewards are assigned to each state,
which are obtained on each visit. Then, the mean payoff of a particular run is the limit
average reward obtained from the visited states. The mean payoff under a particular strategy
then is obtained by integrating over the set of all runs. As mentioned by [2], a mean payoff
objective can be decomposed into a separate analysis of each (explored) MEC and a (weighted)
reachability query

optimal mean payoff = sup
π∈Π

∑
M∈MEC(M)

mean payoff of π in M · Pπ [♦�M] .

Since we can bound the reachability on unexplored MECs by the core property, we can easily
bound the error on the computed mean payoff (assuming we know an a-priori lower and
upper bound on the reward function). Consequently, we can approximate the optimal mean
payoff by only analysing the corresponding core.

Similarly, LTL queries and parity objectives can be answered by a decomposition into
analysis of MECs and their reachability. Intuitively, given a MEC one can decide whether the
MEC is “winning” or “losing” for these objectives. The overall probability of satisfying the
objective then equals the probability of reaching a winning MEC [3]. Again, we can bound the
reachability of unexplored MECs and thus the error we incur when only analysing the core.

In general, many verification tasks can be decomposed into a reachability query and
analysis of specific parts of the system. Since our framework is agnostic of the verification
task in question, it can be transparently plugged in to obtain significant speed-ups.

We highlight that our approach is directly applicable to models with infinite state space,
since finite cores still may exist for these models.

4 Beyond Infinite Horizon

In the previous section, we have seen that MECs play an essential role for many objectives.
Hence, we study the interplay between cores and MECs.

I Proposition 9. LetM ∈ MEC(M) be a MEC. If there is a state s ∈M with Pmax[♦{s}] ≥ ε
then M ⊆ Sε for every ε-core Sε.

Proof. Recall that for s, s′ ∈M , we have Pmax
s [♦{s′}] = 1, thus Pmax[♦{s}] = Pmax[♦{s′}] ≥

ε and thus s′ ∈ Sε. J

This implies that sufficiently reachable MECs always need to be contained in a core entirely.
Many models comprise only a few or even a single MEC, e.g., restarting protocols like
mutual exclusion or biochemical models of reversible reactions. Together with the result of
Theorem 7, i.e. constructing a core is necessary for ε-precise answers, this shows that in
general we cannot hope for any reduction in state space, even when only requiring ε-optimal
solutions for any of the discussed properties. In particular, the approach of [6] necessarily
has to explore the full model. Yet, real-world models often exhibit a particular structure,
with many states only being visited infrequently. Since we necessarily have to give up on
something to obtain further savings, we propose an extension of our idea, motivated by a
modification of our running example.

Instead of a one-way trip, consider the plane going back and forth between the origin and
the destination, as shown in Figure 2. Clearly, the plane eventually will suffer from a bit flip,
independently of the strategy. Furthermore, assuming that there is a non-zero probability of
not being able to recover from the error, the plane will eventually crash.

J. Křetínský and T. Meggendorfer 5:9

s0

s1 s2

s3

s4 complex

s5

return

1 - ττ

Figure 2 An adaptation of the model from Figure 1, with an added return trip, represented by
the “return” node. State and action labels have been omitted in the interest of space.

We make two observations. First, any core needs to contain at least parts of the recovery
sub-system, since it is reached with probability 1. Thus, this (complex) sub-system has to be
constructed. Second, the witness strategy is meaningless, since any strategy is optimal – the
crash cannot be avoided in the long run. In particular, deliberately crashing the plane has
the same long run performance as flying it “optimally”. In practice, we often actually are
interested in the performance of such a model for a long, but not necessarily infinite horizon.

To this end, one could compute the step bounded variants of the objectives, but this
incurs several problems: (i) choosing a sensible step bound n, (ii) computational overhead
(a precise computation has a worst-case complexity of |∆| · n even for reachability), and
(iii) all states reachable within n steps have to be constructed (which equals the whole state
space for practically all models and reasonable choices of n). In the following, we present a
different approach to this problem, again based on the idea of cores.

4.1 Finite-Horizon Cores
We introduce finite-horizon cores, which are completely analogous to (infinite-horizon) cores,
only with a step bound attached to them.

I Definition 10 (Finite-Horizon Core). LetM be an MDP, ε > 0, and n ∈ N. A set Sε,n ⊆ S
is an n-step ε-core if Pmax[♦≤nSε,n] < ε and it is a minimal n-step ε-core if it is additionally
inclusion minimal.

As before, whenever n or ε are clear from the context, we may drop the corresponding part
of the name. Again, similar properties hold and we omit the completely analogous proof.

I Theorem 11. LetM be an MDP, ε > 0, and n ∈ N. Then Sε,n ⊆ S is an n-step ε-core
if and only if for all R ⊆ S we have 0 ≤ Pmax[♦≤nR]− Pmax[♦≤n(R ∩ Sε,n) ∩�≤nSε,n] < ε.

These finite-horizon cores are much smaller than their “infinite” counterparts on some models,
even for large n. For instance, in our modified running example of Figure 2, omitting
the “complex” states gives an n-step core even for very large n (depending on τ). On the
other hand, finding such finite cores seems to be harder in practice. Naively, one could
apply the core learning approach of Algorithm 1 to a modified model where the number of
steps is encoded into the state space, i.e. S′ = S × {0, . . . , n}. Unfortunately, this yields
abysmal performance, since we store and back-propagate |S| · n values instead of only |S|.
Nevertheless, we can efficiently approximate them by enhancing our previous approach with
further observations.

4.2 Learning a Finite Core
In Algorithm 2, we present our learning variant for the finite-horizon case. This algorithm
is structurally very similar to the previous Algorithm 1. The fundamental difference is
in Line 6, where the bounds are updated. One key observation is that the probability of

CONCUR 2019

5:10 Of Cores: A Partial-Exploration Framework for Markov Decision Processes

Algorithm 2 LearnFiniteCore.
Input: MDPM, precision ε > 0, step bound n, upper bounds GetBound / UpdateBound,

state set Sε,n with s0 ∈ Sε,n
Output: Sε,n s.t. Sε,n is an n-step ε-core
1: while GetBound(s0, n) ≥ ε do
2: %← SamplePath(s0, n,GetBound) . Generate path
3: Sε,n ← Sε,n ∪ % . Update Core
4: for i ∈ [n− 1, n− 2, . . . , 0] do . Back-propagate values
5: s← %i, r ← n− i
6: UpdateBound

(
s, r,maxa∈A(s)

∑
s′∈S ∆(s, a, s′) ·GetBound(s′, r − 1)

)
7: return Sε,n

10 20 30 40 50

0.5

1

(a) True bounds.

10 20 30 40 50

0.5

1

(b) Simple approx.

10 20 30 40 50

0.5

1

(c) Adaptive approx.

Figure 3 An example for the different approximation approaches. The graphs depict the
probability of exiting the core on the y axis within a given amount of steps on the x axis by a solid
line and the corresponding approximation returned by GetBounds by a dashed line. From left to
right, we have example bounds, which agree with the dense representation, followed by our sparse
approach, which over-approximates the bounds, but requires less memory, and finally an adaptive
approach, which closely resembles the precise bounds while consuming less memory.

reaching some set R within k steps is at least as high as reaching it within k − 1 steps,
i.e. Pmax

s [♦≤kR] < ε is non-decreasing in k for any s and R ⊆ S. Therefore, we can use
function over-approximations to store upper bounds sparsely and avoid storing n values for
each state. To allow for multiple implementations, we thus delegate the storage of upper
bounds to an abstract function approximation, namely GetBound and UpdateBound.
This approximation scheme is supposed to store and retrieve the upper bound of reaching
unexplored states for each state and number of remaining steps. We only require it to give a
consistent upper bound, i.e. whenever we call UpdateBound(s, r, p), GetBound(s, r′) will
return at least p for all r′ ≥ r. Moreover, we require the trivial result GetBound(s, 0) = 0
for all states s. In the following Section 4.3, we list several possible instantiations.

I Theorem 12. Algorithm 2 is correct if UpdateBound–GetBound are consistent and
correct w.r.t. the given state set Sε,n. Further, if UpdateBound stores all values precisely
and SamplePath samples any state reachable within n steps infinitely often (a.s.), the
algorithm terminates (a.s.).

Sketch. Correctness: As before, the upper bound function is only updated through Bellman
backups, which preserve correctness.

Termination: Given that the upper bound function stores all values precisely, the algorithm
is an instance of asynchronous value iteration, which is guaranteed to converge [18]. J

J. Křetínský and T. Meggendorfer 5:11

200 400
rmin

rmax

steps

bounds
50-step
200-step
True value

Figure 4 A schematic plot for an average reward extrapolation analysis on step bounded cores.
The solid line represents the true value, while the dotted and dashed lines are the respective upper
and lower bounds computed for a 50 and 200-step core. Note that the second dashed line (lower
bound on the 200 core) coincides with the solid line (true value).

4.3 Implementing the function approximation
Several instances of the UpdateBound–GetBound approach are outlined in Figure 3.
The first, trivial implementation is dense storage, i.e. explicitly storing a table mapping
S × {0, . . . , n− 1} → [0, 1]. This table representation consumes an unnecessary amount of
memory, since we do not need exact values in order to just guide the exploration. Hence, in
our implementation, we use a simple sparse approach where we only store the value every K
steps, where K manually chosen. This is depicted in Figure 3b for K = 10 – every black
dot represents a stored value, the dashed lines represent the value returned by GetBounds.
The adaptive approach of Figure 3c adaptively chooses which values to store and is left for
future work.

4.4 Stability and its applications
In this section, we explain the idea of a core’s stability. Given an n-step core Sε,n, we can
easily compute the probability Pmax[♦≤NSε,n] of exiting the core within N > n steps using,
e.g., value iteration. The rate of increase of this exit probability intuitively gives us a measure
of quality for a particular core. Should it rapidly approach 1 for increasing N , we know
that the system’s behaviour may change drastically within a few more steps. If instead this
probability remains small even for large N , we can compute properties with a large step
bound on this core with tight guarantees. We define stability as the whole function mapping
the step bound N to the exit probability, since this gives a more holistic view on the system’s
behaviour than a singular value. In the following, we give an overview of how finite cores
and the idea of stability can be used for analysis and interpretation, helping to design and
understand complex systems.

As we have argued above, infinite-horizon properties may be deceiving, since (unrecover-
able) errors often are bound to happen eventually. Consequently, one might be interested
in a “very large”-horizon analysis instead. Unfortunately, such an analysis scales linearly
both with the number of transitions and the horizon. Considering that many systems have
millions of states, an analysis with a horizon of only 10,000 steps is already out of reach for
existing tools. We first show how stable cores can be used for efficient extrapolation to such
large horizons.

For simplicity, we consider reachability and argue how to transfer this idea to other
objectives. We apply the ideas of interval iteration as used in, e.g., [10, 6], as follows.
Intuitively, since we have no knowledge of the partially explored states, we simply assume the
worst / best case for them, i.e. assign a lower bound of 0 and upper bound of 1. Furthermore,
any explored target state is assigned a lower and upper bound of 1. By applying interval
iteration, we can obtain bounds on the N -step and even unbounded reachability. Through

CONCUR 2019

5:12 Of Cores: A Partial-Exploration Framework for Markov Decision Processes

the core property, the bounds for N ≤ n necessarily are smaller than ε. But, for larger N ,
there are no formal guarantees given by the core property. It might be the case that the core
is left with probability 1 in n+ 1 steps. Nevertheless, in practice this allows us to get good
approximations even for much larger bounds. Often the computation of an n-step core and
subsequent approximation of the desired property is even faster than directly computing the
N -step property, as shown in the evaluation.

For LTL and parity objectives, we can simply preprocess the obtained n-core by identifying
the winning MECs and then applying the reachability idea, to obtain bounds on the
satisfaction probability on the core. In the case of mean-payoff, we again require lower
and upper bounds on the rewards rmin and rmax of the system in order to properly initialize
the unknown values. Then, with the same approach, we can compute bounds on the n-step
average reward by simply assign the lower and upper bounds rmin and rmax to all unexplored
states instead of 0 and 1. See Figure 4 for a schematic plot of this analysis. Here, the 50-step
core is too coarse for any reasonable analysis, it is unstable and can be exited with high
probability. On the other hand, the 200-step core is very stable and accurately describes
the system’s behaviour for a longer period of time. Noticeably, it also contains a MEC
guaranteeing a lower bound on the average reward, hence the lower bound actually agrees
with the true value. Since the system may be significantly larger than the bounded cores
or even infinitely large, this analysis potentially is much more efficient than analysis of the
whole system, as shown in the experimental evaluation.

Note that we cannot use this method to obtain arbitrarily precise results. Given some
n-step core and some (step bounded) property, there is a maximal precision we can achieve,
depending on the property and the structure of the model. Hence, this method primarily is
useful to quickly obtain an overview of a system’s behaviour instead of verifying a particular
property. As we have argued, one cannot avoid constructing a particular part of the state
space in order to obtain an ε-precise result. Nevertheless, this may provide valuable insights
in a system, quickly giving a good overview of its behaviour or potential design flaws.

We highlight that the presented algorithm can incrementally refine cores. For example, if
a 100-step core does not yield a sufficiently precise extrapolation, the algorithm can reuse the
computed core in order to construct a 200-step core. By applying this idea in an interactive
loop, one can extract a condensed representation of the systems behaviour automatically,
with the possibility for further refinements until the desired level of detail has been obtained.

5 Experimental Evaluation

In this section we give practical results for our algorithms on some examples, both the
hand-crafted plane model and hand-picked models from case studies.

5.1 Implementation Details
We implemented our approach in Java, using PRISM [13] as a library for parsing its modelling
language and basic computations. The implementation supports Markov chains, continuous-
time Markov chains (CTMC, via embedding or uniformization [18, Ch. 11.5]) and Markov
decision processes. Further, we implemented our own version of some utility classes, e.g.,
explicit MDP representation and MEC decomposition.

Inspired by the results of [6], we considered the following sampling heuristics. Given
a state s, each heuristic first selects an action a which maximizes the expected upper
bound. If there are multiple such actions, one of them is randomly selected. Then, a
successor is chosen as follows: The RN (Random) heuristics samples a successors according

J. Křetínský and T. Meggendorfer 5:13

Table 1 Summary of our experimental results on several models and configurations for the infinite
horizon core learning. The “PRISM” column shows the total number of states and construction time
when explored with the explicit engine. The following columns show the size and total construction
time of a 10−6-core for each of the sampling heuristics.

Model Param. PRISM RN GD MX
zeroconf 100; 5; 0.1 496,291 8.4s 17,805 2.3s 1,072 0.4s 1,450 0.5s
(N; K; loss) 100; 10; 0.1 3.0 · 106 55s 11,900 1.7s 1,006 0.3s 1,730 0.5s

100; 15; 0.1 4.7 · 106 159s 16,997 2.4s 1,067 0.4s 2,002 0.7s
airplane 100; ff 10,208 0.4s 6 0.1s 6 0.1s 6 0.1s
(size; return) 10000; ff MEMOUT 6 0.1s 6 0.1s 6 0.1s
brp 20; 10 2,933 0.2s 2,352 0.3s 2,568 0.4s 2,675 0.5s
(N; MAX) 20; 100 26,423 0.6s 7,060 0.6s 3,421 0.4s 3,679 0.5s

20; 1000 261,323 0.6s 7,624 0.6s 5,118 0.4s 3,912 0.5s
wlan — 345,000 4.5s 344,835 52s 344,996 50s 344,997 52s

to ∆(s, a). The GD (Guided) approach samples a successor weighted by the respective upper
bound, i.e. randomly select a state with probability proportional to U(s′) · ∆(s, a, s′) or
GetBound(s′, r) ·∆(s, a, s′), respectively. Finally, MX (Max) samples a successor s′ with
probability proportional only to its upper bound U(s′) or GetBound(s′, r), respectively.

Recall that our algorithms can be restarted with faithful upper bounds and thus we
can interleave it with other computations. In our implementation we alternate between the
guided exploration of Algorithm 2 and precise computation on the currently explored set of
states, guaranteeing convergence in the finite setting.

5.2 Models
In our evaluation, we considered the following models. All except the airplane model are
taken from the PRISM case studies [16]. airplane is our running example from Figure 1
and Figure 2, respectively. The parameter return controls whether a return trip is possible,
size quadratically influences the size of the “recovery” region. zeroconf [14] describes the
IPv4 Zeroconf Protocol with N hosts, the number K of probes to send, and a probability of
a message loss. wlan [15] is a model of two WLAN stations in a fixed network topology
sending messages on the shared medium. brp is a DTMC modelling a file transfer of N chunks
with bounded number MAX of retries per chunk. Finally, cyclin is a CTMC modelling the cell
cycle control in eukaryotes with N molecules. We analyse this model using uniformization.

5.3 Results
We evaluated our implementation on an i7-4700MQ 4x2.40 GHz CPU with 16 GB RAM. We
used a default precision of 10−6 for all experiments. The results for the infinite and finite
construction are summarized in Table 1 and Table 2, respectively. We briefly discuss them
in the following sections. Note that the results may vary due to the involved randomization.

5.3.1 Infinite Cores
As already explained in [6], the zeroconf model is very well suited for this type of analysis,
since a lot of the state space is hardly reachable. In particular, most states are a result of
collisions and several message losses, which is very unlikely. Consequently, a very small part

CONCUR 2019

5:14 Of Cores: A Partial-Exploration Framework for Markov Decision Processes

Table 2 Summary of our experimental results on several models and configurations for the
finite-horizon 10−6-core learning with 100 step bound; using the notation from Table 1.

Model Param. PRISM RN GD MX
airplane 100; tt 20,413 0.6s 11 0.3s 11 0.3s 554 0.6s
(size; return) 10000; tt MEMOUT 11 0.3s 11 0.3s 603 0.6s
wlan — 345,000 4.4s 36,718 15s 37,284 11s 36,825 12s
cyclin 4 431,101 12s 9,122 1,649s 4,380 3.9s 99,325 93s
(N) 5 2.3 · 106 78s 26,925 8,840s 11,419 13s 817,058 1,462s

250 500 750 1,000

0.025
0.05

250 500 750 1,000

0.5

1

Figure 5 Stability analysis of the wlan (left) and cyclin(N = 4) (right) 100-step core built with
the GD heuristic. The graphs show the probability of exiting the respective core within the given
amount of steps. Note that the y axis of the wlan graph is scaled for readability.

of the model already satisfies the core property. In particular, the size of the core remains
practically constant when increasing the parameter K, as only unimportant states are added
to the system. Observe that the order of magnitude of explored states is very similar to
the experiments from [6]. The same holds true for the airplane model, where a significant
number of states is dedicated to recovering from an unlikely error. Hence, a small core
exists independently of the total size of the model. The brp model shows applicability of
the approach to Markov chains. In line with the other results, when scaling up the maximal
number of allowed errors, the size of the core changes sub-linearly, since repeated errors are
increasingly unlikely. In case of the wlan model, we observe that all our methods essentially
construct the full model.

Comparison to [6]. We also executed the tool presented in [6] where applicable (only MDP
are supported). We tested the tool both with a bogus false property, i.e. approximating
the probability of reaching the empty set, which corresponds to constructing a core, and an
actual property. We used the MAX_DIFF heuristic of [6], which is similar to GD. Especially on
the false property, our tool consistently outperformed the previous one in terms of time
and memory by up to several orders of magnitude. We suspect that this is mostly due to a
more efficient implementation. The number of explored states was similar, as to be expected
in light of Theorem 7 and its discussed consequences.

5.3.2 Finite Cores
As expected, the finite core construction yields good results on the airplane model, con-
structing only a small fraction of the state space. Interestingly, the MX heuristic explores
significantly more states, which is due to this heuristic ignoring probabilities when selecting
a successor and thus sampling a few paths in the recovery region. Also on the real-world
models wlan and cyclin, the constructed 100-step core is significantly smaller than the
whole model. For wlan, the construction of the respective cores unfortunately takes longer
than building the whole model. We conjecture that a more fine-tuned implementation can

J. Křetínský and T. Meggendorfer 5:15

Method Time States
model bounds

50 steps 0.4s 1.0s 2,137
100 steps 0.9s 3.5s 6,151
200 steps 4.0s 15.3s 22,989
Complete 8.7s 242.4s 431,101 250 500 750

0.025

0.05
50-step
100-step
200-step
True val

Figure 6 Overview of an extrapolation analysis for cyclin(N = 4). We computed several
step-bounded cores with precision 10−3. On these, we computed bounds of a reachability query with
increasing step bound. The table on the left lists the time for model construction + computation
of the bounds for 1000 steps and the size of the constructed model. The plot on the right shows
the upper and lower bounds computed for each core together with the true value. Observe that for
growing step-size of the core, the approximation naturally gets more precise.

overcome this issue. In any case, model checking on the explored sub-system supposedly
terminates significantly faster since only a much smaller state space is investigated, and the
core can be re-used for more queries.

Finally, we applied the idea of stability from Section 4.2 on the wlan and cyclin models,
with results outlined in Figure 5. Interestingly, for the wlan model, the escape probability
stabilizes at roughly 0.017 and we obtain the exact same probability for all heuristics, even
for N = 10,000. This suggests that by building the 100-step core we identified a very stable
sub-system of the whole model. Additionally, we observe that at 200-400 steps, the behaviour
of the system significantly changes. For the cyclin model, we instead observe a continuous
rise of the exit probability. Nevertheless, even with 500 additional steps, the core still is only
exited with a probability of roughly 6% and thus closely describes the system’s behaviour.

On the cyclin model, we also applied our idea of extrapolation. The results are
summarized in Figure 6. To show how performant this approach is, we reduced the precision
of the core computation to 10−3. Despite this coarse accuracy, we are able to compute
accurate bounds on a 1000-step reachability query over 10 times faster by only building the
200-step core instead of constructing the full model. These results suggest that our idea of
using the cores for extrapolation in order to quickly gain understanding of a model has a
vast potential.

5.3.3 Heuristics
Overall, we see that the unguided, random sampling heuristic RN often is severely outper-
formed by the guided approaches GD and MX, both in terms of runtime and constructed
states. Surprisingly, the differences between GD and MX often are small, considering that MX
is significantly more “greedy” by completely ignoring the actual transition probabilities. We
conjecture that this greediness is the reason for the abysmal performance of MX on the cyclin
model, where GD seems to strike the right balance between exploration and exploitation.
Altogether, the results show that a sophisticated heuristic increases performance by orders of
magnitude and further research towards optimizing these heuristic may prove beneficial.

6 Conclusion

We have presented a new framework for approximate verification of probabilistic systems
via partial exploration and applied it to both Markov chains and Markov decision processes.
Our evaluation shows that, depending on the structure of the model, this approach can yield

CONCUR 2019

5:16 Of Cores: A Partial-Exploration Framework for Markov Decision Processes

significant state space savings and thus reduction in model checking times. Our central idea –
finding relevant sub-parts of the state space – can easily be extended to further models, e.g.,
stochastic games, and objectives, e.g., mean payoff. We have also shown how this idea can
be transferred to the step-bounded setting and derived the notion of stability. This in turn
allows for an efficient analysis of long-run properties and strongly connected systems.

Future work includes implementing a more sophisticated function approximation for the
step-bounded case, e.g., as depicted in Figure 3c. Here, an adaptive method could yield
further insight in the model by deriving points of interest, i.e. an interval of remaining
steps where the exit probability significantly changes. These breakpoints might indicate a
significant change in the systems behaviour, e.g., the probability of some error occurring not
being negligible any more, yielding interesting insights into the structure of a particular model.
For example, in the bounds of Figure 3, the regions around 20 and 40 steps, respectively,
seems to be of significance.

Moreover, a more sophisticated sampling heuristic to be used in SamplePath could be of
interest. For example, one could apply an advanced machine learning technique here, which
also considers state labels or previous decisions and their outcomes.

In the spirit of [6], our approach also could be extended to a PAC algorithm for black-box
systems. Extensions to stochastic games and continuous time systems are also possible.

Further interesting variations are cores for discounted objectives [20] or cost-bounded
cores, a set of states which is left with probability smaller than ε given that at most k cost
is incurred. This generalizes both the infinite (all edges have cost 0) and the step bounded
cores (all edges have cost 1) and allows for a wider range of analysis.

References
1 Pranav Ashok, Yuliya Butkova, Holger Hermanns, and Jan Křetínskỳ. Continuous-Time

Markov Decisions Based on Partial Exploration. In ATVA, pages 317–334. Springer, 2018.
2 Pranav Ashok, Krishnendu Chatterjee, Przemyslaw Daca, Jan Kretínský, and Tobias Meggen-

dorfer. Value Iteration for Long-Run Average Reward in Markov Decision Processes. In CAV,
pages 201–221, 2017. doi:10.1007/978-3-319-63387-9_10.

3 Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. MIT Press, 2008.
4 Richard Bellman. A Markovian decision process. Journal of Mathematics and Mechanics,

pages 679–684, 1957.
5 Dimitri P. Bertsekas. Dynamic Programming and Optimal Control, Vol. II: Approximate

Dynamic Programming. Athena Scientific, 2012.
6 Tomás Brázdil, Krishnendu Chatterjee, Martin Chmelik, Vojtech Forejt, Jan Křetínský,

Marta Z. Kwiatkowska, David Parker, and Mateusz Ujma. Verification of Markov Decision
Processes Using Learning Algorithms. In ATVA, pages 98–114. Springer, 2014. doi:10.1007/
978-3-319-11936-6_8.

7 Costas Courcoubetis and Mihalis Yannakakis. The Complexity of Probabilistic Verification. J.
ACM, 42(4):857–907, 1995. doi:10.1145/210332.210339.

8 Pedro R. D’Argenio, Bertrand Jeannet, Henrik Ejersbo Jensen, and Kim Guldstrand Larsen.
Reduction and Refinement Strategies for Probabilistic Analysis. In PAPM-PROBMIV, pages
57–76. Springer, 2002.

9 Christian Dehnert, Sebastian Junges, Joost-Pieter Katoen, and Matthias Volk. A storm is
coming: A modern probabilistic model checker. In CAV, pages 592–600. Springer, 2017.

10 Serge Haddad and Benjamin Monmege. Reachability in MDPs: Refining convergence of value
iteration. In International Workshop on Reachability Problems, pages 125–137. Springer, 2014.

11 Ernst Moritz Hahn, Holger Hermanns, Björn Wachter, and Lijun Zhang. PASS: abstraction
refinement for infinite probabilistic models. In TACAS, pages 353–357. Springer, 2010.

http://dx.doi.org/10.1007/978-3-319-63387-9_10
http://dx.doi.org/10.1007/978-3-319-11936-6_8
http://dx.doi.org/10.1007/978-3-319-11936-6_8
http://dx.doi.org/10.1145/210332.210339

J. Křetínský and T. Meggendorfer 5:17

12 Jan Křetínský and Tobias Meggendorfer. Of Cores: A Partial-Exploration Framework for
Markov Decision Processes. arXiv e-prints, June 2019. arXiv:1906.06931.

13 M. Kwiatkowska, G. Norman, and D. Parker. PRISM: Probabilistic symbolic model checker.
In TOOLS, pages 200–204, 2002.

14 Marta Kwiatkowska, Gethin Norman, David Parker, and Jeremy Sproston. Performance
analysis of probabilistic timed automata using digital clocks. FMSD, 29(1):33–78, 2006.

15 Marta Kwiatkowska, Gethin Norman, and Jeremy Sproston. Probabilistic model checking of
the IEEE 802.11 wireless local area network protocol. In Process Algebra and Probabilistic
Methods: Performance Modeling and Verification, pages 169–187. Springer, 2002.

16 Marta Z. Kwiatkowska, Gethin Norman, and David Parker. The PRISM Benchmark Suite.
In QEST, pages 203–204. IEEE Computer Society, 2012. The models are accessible at
http://www.prismmodelchecker.org/casestudies/.

17 H Brendan McMahan, Maxim Likhachev, and Geoffrey J Gordon. Bounded real-time dynamic
programming: RTDP with monotone upper bounds and performance guarantees. In ICML,
pages 569–576. ACM, 2005.

18 M.L. Puterman. Markov decision processes: Discrete stochastic dynamic programming. John
Wiley and Sons, 1994.

19 Tim Quatmann and Joost-Pieter Katoen. Sound Value Iteration. In CAV (1), volume 10981
of LNCS, pages 643–661. Springer, 2018.

20 Aaron Sidford, Mengdi Wang, Xian Wu, and Yinyu Ye. Variance Reduced Value Iteration and
Faster Algorithms for Solving Markov Decision Processes. In SODA, pages 770–787. SIAM,
2018.

CONCUR 2019

http://arxiv.org/abs/1906.06931
http://www.prismmodelchecker.org/casestudies/

Combinations of Qualitative Winning for
Stochastic Parity Games
Krishnendu Chatterjee
IST Austria, Klosterneuburg, Austria

Nir Piterman
University of Gothenburg, Sweden
University of Leicester, UK

Abstract
We study Markov decision processes and turn-based stochastic games with parity conditions. There
are three qualitative winning criteria, namely, sure winning, which requires all paths to satisfy the
condition, almost-sure winning, which requires the condition to be satisfied with probability 1, and
limit-sure winning, which requires the condition to be satisfied with probability arbitrarily close
to 1. We study the combination of two of these criteria for parity conditions, e.g., there are two
parity conditions one of which must be won surely, and the other almost-surely. The problem
has been studied recently by Berthon et al. for MDPs with combination of sure and almost-sure
winning, under infinite-memory strategies, and the problem has been established to be in NP∩co-NP.
Even in MDPs there is a difference between finite-memory and infinite-memory strategies. Our
main results for combination of sure and almost-sure winning are as follows: (a) we show that
for MDPs with finite-memory strategies the problem is in NP ∩ co-NP; (b) we show that for turn-
based stochastic games the problem is co-NP-complete, both for finite-memory and infinite-memory
strategies; and (c) we present algorithmic results for the finite-memory case, both for MDPs and
turn-based stochastic games, by reduction to non-stochastic parity games. In addition we show
that all the above complexity results also carry over to combination of sure and limit-sure winning,
and results for all other combinations can be derived from existing results in the literature. Thus
we present a complete picture for the study of combinations of two qualitative winning criteria for
parity conditions in MDPs and turn-based stochastic games.

2012 ACM Subject Classification Theory of computation → Logic and verification

Keywords and phrases Two Player Games, Stochastic Games, Parity Winning Conditions

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2019.6

Related Version A full version of the paper is available [18], https://arxiv.org/abs/1804.03453.

Funding Krishnendu Chatterjee: This research is funded by Austrian Science Fund (FWF) NFN
Grant S11407-N23 (RiSE/SHiNE), and Vienna Science and Technology Fund (WWTF) Project
ICT15-003.
Nir Piterman: This research is funded by the ERC consolidator grant D-SynMA under the European
Union’s Horizon 2020 research and innovation programme (grant agreement No 772459).

1 Introduction

Stochastic games and parity conditions. Two-player games on graphs are an important
model to reason about reactive systems, such as, reactive synthesis [21, 32] and open reactive
systems [2]. To reason about probabilistic behaviors of reactive systems, such games are
enriched with stochastic transitions, and this gives rise to models such as Markov decision
processes (MDPs) [25, 33] and turn-based stochastic games [22]. While these games provide
the model for stochastic reactive systems, the specifications for such systems that describe the

© Krishnendu Chatterjee and Nir Piterman;
licensed under Creative Commons License CC-BY

30th International Conference on Concurrency Theory (CONCUR 2019).
Editors: Wan Fokkink and Rob van Glabbeek; Article No. 6; pp. 6:1–6:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.CONCUR.2019.6
https://arxiv.org/abs/1804.03453
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 Combinations of Qualitative Winning for Stochastic Parity Games

Table 1 Summary of Results for Sure-Almost-sure as well as Sure-Limit-sure Winning for Parity
Conditions. New results are boldfaced. The reductions give algorithmic results from algorithms for
non-stochastic games.

Model Finite-memory Infinite-memory
MDPs NP ∩ co-NP NP ∩ co-NP [5]

Reduction to non-stochastic parity games
Turn-based co-NP-complete co-NP-complete
stochastic game Reduction to non-stochastic games

with conjunction of parity conditions

desired non-terminating behaviors are typically ω-regular conditions [35]. The class of parity
winning conditions can express all ω-regular conditions, and has emerged as a convenient and
canonical specification for algorithmic studies in the analysis of stochastic reactive systems.

Qualitative winning criteria. In the study of stochastic games with parity conditions, there
are three basic qualitative winning criteria, namely, (a) sure winning, which requires all
possible paths to satisfy the parity condition; (b) almost-sure winning, which requires the
parity condition to be satisfied with probability 1; and (c) limit-sure winning, which requires
the parity condition to be satisfied with probability arbitrarily close to 1. For MDPs and
turn-based stochastic games with parity conditions, almost-sure winning coincides with limit-
sure winning, however, almost-sure winning is different from sure winning [9]. Moreover, for
all the winning criteria above, if a player can ensure winning, she can do so with memoryless
strategies, that do not require to remember the past history of the game. All the above
decision problems belong to NP ∩ co-NP, and the existence of polynomial-time algorithm is
a major open problem.

Combination of multiple conditions. While traditionally MDPs and stochastic games have
been studied with a single condition with respect to different winning criteria, in recent studies
combinations of winning criteria has emerged as an interesting problem. An example is the
beyond worst-case synthesis problem that combines the worst-case adversarial requirement
with probabilistic guarantee [7]. Consider the scenario that there are two desired conditions,
one of which is critical and cannot be compromised at any cost, and hence sure winning must
be ensured, whereas for the other condition the probabilistic behavior can be considered.
Since almost-sure and limit-sure provide the strongest probabilistic guarantee, this gives rise
to stochastic games where one condition must be satisfied surely, and the other almost-surely
(or limit-surely). The setting of two objectives have been considered in several prior works;
such as in [1], where the primary objective is parity objective and the secondary objective is
a quantitative mean-payoff objective; and in [5], where both the primary and the secondary
objectives are different parity objectives, but for MDPs.

Previous results and open questions. While MDPs and turn-based stochastic games with
parity conditions have been widely studied in the literature (e.g., [23, 24, 3, 14, 15, 9]), the
study of combination of different qualitative winning criteria is recent. The problem has been
studied only for MDPs with sure winning criteria for one parity condition, and almost-sure
winning criteria (also probabilistic threshold guarantee) for another parity condition, and it
has been established that even in MDPs infinite-memory strategies are required, and the
decision problem lies in NP ∩ co-NP [5]. While the existence of infinite-memory strategies

K. Chatterjee and N. Piterman 6:3

Table 2 Conjunctions of various qualitative winning criteria.

Criterion 1 Criterion 2 Solution Method
Sure ψ1 Sure ψ2 Sure (ψ1 ∧ ψ2)
Sure ψ1 Almost-sure ψ2 This work
Sure ψ1 Limit-sure ψ2 This work

Almost-sure ψ1 Almost-sure ψ2 Almost-sure (ψ1 ∧ ψ2)
Almost-sure ψ1 Limit-sure ψ2 Almost-sure (ψ1 ∧ ψ2)
Limit-sure ψ1 Limit-sure ψ2 Almost-sure (ψ1 ∧ ψ2)

represent the general theoretical problem, many important questions have been left open
for the problem where both objectives are parity objectives. For example, (i) the analysis
for games, which is relevant in reactive synthesis, and (ii) finite-memory strategy synthesis,
which represents the synthesis of practical controllers (such as Mealy or Moore machines).
In this work we present answers to these open questions, with optimal complexity results.

Our results. In this work our main results are as follows:
1. For MDPs with finite-memory strategies, we show that the combination of sure winning

and almost-sure winning for parity conditions also belong to NP∩ co-NP, and we present
a linear reduction to parity games. Our reduction implies a quasi-polynomial time
algorithm, and also polynomial time algorithm as long as the number of indices for the
sure winning parity condition is logarithmic. Note that no such algorithmic result is
known for the infinite-memory case for MDPs.

2. For turn-based stochastic games, we show that the combination of sure and almost-sure
winning for parity conditions is a co-NP-complete problem, both for finite-memory as
well as infinite-memory strategies. For the finite-memory strategy case we present a
reduction to non-stochastic games with conjunction of parity conditions, which implies a
fixed-parameter tractable algorithm, as well as a polynomial-time algorithm as long as
the number of indices of the parity conditions are logarithmic.

3. Finally, while for turn-based stochastic parity games almost-sure and limit-sure winning
coincide, we show that in contrast, while ensuring one parity condition surely, limit-sure
winning does not coincide with almost-sure winning even for MDPs. However, we show
that all the above complexity results established for combination of sure and almost-sure
winning also carry over to sure and limit-sure winning.

Our main results are summarized in Table 1. In addition to our main results, we also argue
that our results complete the picture of all possible conjunctions of two qualitative winning
criteria as follows: (a) conjunctions of sure (or almost-sure) winning with conditions ψ1 and ψ2
is equivalent to sure (resp., almost-sure) winning with the condition ψ1 ∧ψ2 (the conjunction
of the conditions); (b) by determinacy and since almost-sure and limit-sure winning coincide
for ω-regular conditions, if the conjunction of ψ1 ∧ ψ2 cannot be ensured almost-surely, then
the opponent can ensure that at least one of them is falsified with probability bounded
away from zero; and thus conjunction of almost-sure winning with limit-sure winning, or
conjunctions of limit-sure winning coincide with conjunction of almost-sure winning. This
is illustrated in Table 2 and shows that we present a complete picture of conjunctions of
two qualitative winning criteria in MDPs and turn-based stochastic games. Full proofs are
available in a technical report [18].

CONCUR 2019

6:4 Combinations of Qualitative Winning for Stochastic Parity Games

Related work. We have already mentioned the most important related works above. We
discuss other related works here. MDPs with multiple Boolean as well as quantitative
objectives have been widely studied in the literature [17, 24, 26, 6, 16]. For non-stochastic
games combination of various Boolean objectives is conjunction of the objectives, and such
games with multiple quantitative objectives have been studied in the literature [36, 11].
For turn-based stochastic games, the general analysis of multiple quantitative objectives is
intricate, and they have been only studied for special cases, such as, reachability objectives [20]
and almost-sure winning [4, 10]. However none of these above works consider combinations
of qualitative winning criteria. The problem of beyond worst-case synthesis has been studied
for MDPs with various quantitative objectives [7, 34], such as long-run average, shortest
path, and for parity objectives [5]. In particular [5] studies the problem of satisfying one
parity objective surely and maximizing the probability of satisfaction of another parity
objective in MDPs with infinite-memory strategies. We extend the literature of the study
of beyond worst-case synthesis problem for parity objectives by considering combinations
of qualitative winning in both MDPs and turn-based stochastic games, and the distinction
between finite-memory and infinite-memory strategies. Thus in contrast to [5] we do not
consider optimal probability of satisfaction, but consider turn-based stochastic games as well
as finite-memory strategies.

2 Background

For a countable set S let D(S) = {d : S → [0, 1] | ∃T ⊆ S such that |T | ∈ N,∀s /∈ T . d(s) =
0 and Σs∈T d(s) = 1} be the set of discrete probability distributions with finite support over
S. A distribution d is pure if there is some s ∈ S such that d(s) = 1.

A stochastic turn-based game is G = (V, (V0, V1, Vp), E, κ), where V is a finite set of
configurations, V0, V1, and Vp form a partition of V to Player 0, Player 1, and stochastic
configurations, respectively, E ⊆ V × V is the set of edges, and κ : Vp → D(V) is a
probabilistic transition for configurations in Vp such that κ(v, v′) > 0 implies (v, v′) ∈ E.
If either V0 = ∅ or V1 = ∅ then G is a Markov Decision Process (MDP). If both V0 = ∅
and V1 = ∅ then G is a Markov Chain (MC). If Vp = ∅ then G is a turn-based game
(non-stochastic). For an MC M , an initial configuration v, and a measurable set of paths
W ⊆ V ω, let ProbMv

(W) denote the measure of W .
A set of plays W ⊆ V ω is a parity condition if there is a parity priority function

α : V → {0, . . . , d}, with d as its index, such that a play π = v0, v1, . . . is in W iff
min{c ∈ {0, . . . , d} | ∃∞i . α(vi) = c} is even. A parity condition with d = 1 is a Büchi
condition identified with the set B = α−1(0). A parity condition with d = 2 and α−1(0) = ∅
is a co-Büchi condition identified with the set C = α−1(1).

A strategy σ for Player 0 is σ : V ∗ · V0 → D(V), such that σ(w · v)(v′) > 0 implies
(v, v′) ∈ E. A strategy π for Player 1 is defined similarly. A strategy is pure if it uses
only pure distributions. Let w range over V ∗ and v over V . A strategy for Player 0
uses memory m if there is a domain M of size m with an initial value m0 ∈ M and
two functions σs : M × V0 → D(V) and σu : M × V → M such that for v ∈ V0 we have
σ(v) = σs(m0, v0) and σ(w ·v) = σs(mw, v), wheremv0 = σm(v0,m0) andmw·v = σm(mw, v).
Two strategies σ and π for both players and an initial configuration v ∈ V induce a Markov
chain v(σ, π) = (S(v), (∅, ∅, S(v)), E′, κ′), where S(v) = {v} · V ∗, E′ = {(w,w · v)}, and if
v ∈ V0 we have κ′(wv) = σ(wv), if v ∈ V1 we have κ′(wv) = π(wv) and if v ∈ Vp then for
every w ∈ V ∗ and v′ ∈ V we have κ′(wv,wvv′) = κ(v, v′). We denote the set of strategies
for Player 0 by Σ and the set of strategies for Player 1 by Π.

K. Chatterjee and N. Piterman 6:5

For a game G, an ω-regular set of plays W , and a configuration v, the value of W from
v for Player 0, denoted val0(W, v), and for Player 1, denoted val1(W, v), are val0(W, v) =
sup
σ∈Σ

inf
π∈Π

Probv(σ,π)(W) and val1(W, v) = sup
π∈Π

inf
σ∈Σ

(
1− Probv(σ,π)(W)

)
.

We say that Player 0 wins W surely from v if ∃σ ∈ Σ . ∀π ∈ Π . v(σ, π) ⊆ W , where
by v(σ, π) ⊆W we mean that all paths in v(σ, π) are in W . We say that Player 0 wins W
almost surely from v if ∃σ ∈ Σ . ∀π ∈ Π . Probv(σ,π)(W) = 1. We say that Player 0 wins W
limit surely from v if ∀r < 1 . ∃σ ∈ Σ . ∀π ∈ Π . Probv(σ,π)(W) ≥ r. In a given setup (e.g,
almost-sure) if Player 0 cannot win we say that Player 1 wins. A strategy σ for Player 0 is
optimal if val0(W, v) = inf

π∈Π
Probv(σ,π)(W). Optimality for Player 1 is defined similarly.

A game with condition W is determined if for every configuration v we have val0(W, v) +
val1(W, v) = 1.

3 Sure-Almost-Sure MDPs

Berthon et al. considered the case of MDPs with two parity conditions and finding a strategy
that has to satisfy one of the conditions surely and satisfy a given probability threshold with
respect to the other [5]. Here we consider the case that the second condition has to hold
with probability 1. We consider winning conditions composed of two parity conditions. The
goal of Player 0 is to have one strategy such that she can win surely for the sure winning
condition and almost-surely for the almost-sure winning condition. The authors of [5] show
that optimal strategies exist in this case and that it can be decided whether Player 0 can
win. Here we revisit their claim that Player 0 may need infinite memory in order to win
in such an MDP. We then show that checking whether she can win using a finite-memory
strategy is simpler than deciding if there is a general winning strategy.

Given a set of configurations V , a sure-almost-sure winning condition is W = (Ws,Was),
where Ws ⊆ V ω and Was ⊆ V ω are two parity winning conditions. A sure-almost-sure (SAS)
MDP is G = (V, (V0, Vp), E, κ,W), where all components are as before and where W is a
sure-almost-sure winning condition. Strategies for Player 0 are defined as before. We say
that Player 0 wins from configuration v if the same strategy σ is winning surely with respect
to Ws and almost-surely with respect to Was.

I Theorem 1 ([5]). In a finite SAS parity MDP deciding whether a configuration v is winning
for Player 0 is in NP ∩ co-NP. Furthermore, there exists an optimal infinite-state strategy
for the joint goal.

There exist SAS MDPs where Player 0 wins but not with finite-memory.

I Theorem 2 ([5]). For SAS MDPs finite-memory strategies do not capture winning.

In the proof (in [18]) we revisit the MDP in Figure 1 (due to [5]) and repeat their argument
showing that there is an infinite-memory strategy that can win both the sure (visit {l, r}
infinitely often) and almost-sure (visit {r} finitely often) winning conditions. Intuitively,
longer and longer attempts to reach l at c ensure infinitely many visits to {l, r} and finitely
many visits to r with probability 1. We present a detailed proof that every finite-memory
strategy winning almost-surely is losing with respect to the sure winning condition.

The following theorem is proven by a chain of reductions (see proof in [18]). First, reduce
the winning in an SAS MDP to the winning in an SAS MDP where the almost-sure winning
condition is a Büchi condition. Second, we reduce the winning in an SAS MDP with a Büchi
almost-sure winning condition to the winning in a (non-stochastic) game with the winning

CONCUR 2019

6:6 Combinations of Qualitative Winning for Stochastic Parity Games

l
(0, 2)

p

(1, 2)
c

(1, 2)
r

(0, 1)1
2

1
2

Figure 1 An SAS MDP where Player 0 requires infinite memory to win [5]. Configuration p is
probabilistic and configurations l, c, and r are Player 0 configurations. The parity is induced by
the following priorities αs(l) = αs(r) = 0, αs(p) = αs(c) = 1, and αas(r) = 1 and αas(l) = αas(c) =
αas(p) = 2.

condition a conjunction of parity and Büchi. This is a special case of Theorem 8. Third, we
reduce the winning in a game with a winning condition that is the conjunciton of parity and
Büchi to winning in a parity game. Formally, we have the following.

I Theorem 3. In order to decide whether it is possible to win an SAS MDP with n locations
and indices ds and das with finite memory it is sufficient to solve a (non-stochastic) parity
game with O(n · ds · das) configurations and index ds. Furthermore, ds is a bound on the size
of the required memory in case of a win.

I Corollary 4. Consider an SAS MDP with n configurations, sure winning condition of
index ds, and almost-sure winning condition of index das. Checking whether Player 0 can
win with finite-memory can be computed in quasi-polynomial time. In case that ds ≤ logn it
can be decided in polynomial time.

Proof. This is a direct result of Theorem 3 and the quasi-polynomial algorithm for solving
parity games in [8, 30]. J

4 Sure-Almost-Sure Parity Games

We now turn our attention to sure-almost-sure parity games.
A sure-almost-sure (SAS) parity game is G = (V, (V0, V1, Vp), E, κ,W), where all com-

ponents are as before and W consists of two parity conditions Ws ⊆ V ω and Was ⊆ V ω.
Strategies and the resulting Markov chains are as before. We say that Player 0 wins G from
configuration v if she has a strategy σ such that for every strategy π of Player 1 we have
v(σ, π) ⊆Ws and Probv(σ,π)(Was) = 1. That is, Player 0 has to win for sure (on all paths)
with respect to Ws and with probability 1 with respect to Was. Otherwise, Player 1 wins.

4.1 Determinacy
We start by showing that SAS parity games are determined.

I Theorem 5. SAS parity games are determined.

In the proof (in [18]) we use a reduction similar to Martin’s proof that Blackwell games
are determined [31]. We reduce SAS games to turn-based two-player games in a way that
preserves winning.

4.2 General Winning
We show that determining whether Player 0 has a (general) winning strategy in an SAS
parity game is co-NP-complete and that for Player 1 memoryless strategies are sufficient and
that deciding her winning is NP-complete.

K. Chatterjee and N. Piterman 6:7

v
pas(v)

(ṽ, 0)pas(v) (ṽ, 2)
pas(v)

(v̂, 0)0 (v̂, 1) 1 (v̂, 2) 2 (v̂, 3) 3 (v̂, 4)
4

(ṽ, 4)
pas(v) · · ·

· · ·

(ṽ, p
pas(v)

as(v)+1)

(v̂, p
pas(v)

as(v))

succ(v) succ(v) succ(v) succ(v) succ(v) succ(v)

Figure 2 Gadget replacing probabilistic configurations for a configuration with odd parity.

I Theorem 6. In an SAS parity game Player 1 has optimal memoryless strategies.

The proof (in [18]) is by an inductive argument over the number of configurations of
Player 1 (similar to that done in [28, 27, 10]).

I Corollary 7. Consider an SAS parity game. Deciding whether Player 1 wins is NP-complete
and whether Player 0 wins is co-NP-complete.

Proof. Consider the case of Player 1. The optimal strategy for Player 1 is memoryless.
Fixing Player 1’s strategy in the game results in an SAS MDP. According to Theorem 1, the
winning for Player 0 in SAS MDPs is in NP∩co-NP. The NP algorithm is as follows: it guess
the memoryless strategy of Player 1 in the game, and the required polynomial witness of the
SAS MDP, and use the polynomial-time verification procedure of the SAS MDP given the
witness.1 Hardness is by considering SAS games with no stochastic configurations [13].

Consider the case of Player 0. Membership in co-NP follows from dualizing the previous
argument about membership in NP and determinacy. Hardness follows from considering
SAS games with no stochastic configurations [13]. J

4.3 Winning with Finite Memory
We show that in order to check whether Player 0 can win with finite memory it is enough to
use the standard reduction from almost-sure winning in two-player stochastic parity games
to sure winning in two-player parity games [15].

I Theorem 8. In a finite SAS parity game with n locations and das almost-sure index
deciding whether a node v is winning for Player 0 with finite memory can be decided by a
reduction to a two-player (non-stochastic) game with O(n · das) locations, where the winning
condition is the intersection of two parity conditions of indices ds and das.

The proof has the following steps: Given an SAS parity game G, we construct a non-
stochastic game G′ with conjunction of two objectives with a mapping between configurations
of G and G′. We show that we can win from a configuration in G if and only if we can

1 Note that we do not require a general NP algorithm with NP ∩co-NP oracle (such algorithms can
make polynomially many queries to the oracle, as well as adaptive queries where queries can depend
on answers of previous queries). Instead we have a NP algorithm with a single query to a NP∩co-NP
oracle, and outputs the answer of the oracle, and thus can be implemented by a single NP algorithm.

CONCUR 2019

6:8 Combinations of Qualitative Winning for Stochastic Parity Games

win from its mapped configuration in G′. In one direction, we show that given winning
strategy in G′, we can construct winning strategy in G (from the mapped configurations).
The construction of the winning strategy is based on the translation of a ranking function in
G′ to an almost-sure ranking function in G. Such a ranking function ensures winning the
SAS objective in G. In the other direction, we show that given a winning strategy in G, we
can construct a winning strategy in G′ (from the mapped configurations). As before, the
construction of the winning strategy is based on the translation of a ranking function in G
to a ranking function in G′.

Proof. Let G = (V, (V0, V1, Vp), E, κ,W). Let pas : V → [0..das] be the parity priority
function that induces Was and ps : V → [0..ds] be the parity priority function that induces
Ws. Without loss of generality assume that both ds and das are even.

Given G we construct the game G′ where every configuration v ∈ Vp is replaced by the
gadget in Figure 2. That is, G′ = (V ′, (V ′0 , V ′1), E′, κ′,W ′), with the following components:

V ′0 = V0 ∪
{

(ṽ, 2i), (v̂, 2j − 1)
∣∣∣∣ v ∈ Vp, 2i ∈ [0..pas(v) + 1],
and 2j − 1 ∈ [1..pas(v)]

}
V ′1 = V1 ∪ {v, (v̂, 2i) | v ∈ Vp and 2i ∈ [0..pas(v)]}
E′ = {(v, w) | (v, w) ∈ E ∩ (V0 ∪ V1)2} ∪ {(v, w) | (v, w) ∈ E ∩ (V0 ∪ V1)× Vp} ∪
{((v̂, j), w) | (v, w) ∈ E ∩ Vp × (V0 ∪ V1)} ∪ {((v̂, j), w) | (v, w) ∈ E ∩ V 2

p } ∪
{(v, (ṽ, 2i)) | v ∈ Vp} ∪ {((ṽ, 2i), (v̂, j)) | v ∈ Vp and j ∈ {2i, 2i− 1}}
W ′ = W ′s ∩W ′as, where W ′s and W ′as are the parity winning sets that are induced by the
following priority functions.

p′as(t) =

pas(t) t ∈ V0 ∪ V1
pas(v) t ∈ {v, (ṽ, 2i)}
j t = (v̂, j)

p′s(t) =
{
ps(t) t ∈ V0 ∪ V1
ps(v) t ∈ {v, (ṽ, 2i), (v̂, j)}

We show that Player 0 surely wins from a configuration v ∈ V0 ∪ V1 in G′ iff she wins
from v in G with a pure finite-memory strategy and she wins from v ∈ V ′ in G′ iff she wins
from v in G with a pure finite-memory strategy.

The game G′ is a linear game whose winning condition (for Player 0) is an intersection of
two parity conditions. It is known that such games are determined and that the winning
sets can be computed in NP ∩ co-NP [13]. Indeed, the winning condition for Player 0
can be expressed as a Streett condition, and hence her winning can be decided in co-NP.
The winning condition for Player 1 can be expressed as a Rabin condition, and hence her
winning can be decided in NP. It follows that V ′ can be partitioned to W ′0 and W ′1, the
winning regions of Player 0 and Player 1, respectively. Furthermore, Player 0 has a pure
finite-memory winning strategy for her from every configuration in W ′0 and Player 1 has a
pure memoryless winning strategy for her from every configuration in W ′1. Let σ′0 denote
the winning strategy for Player 0 on W ′0 and π′1 denote the winning strategy for Player 1
on W ′1. Let M be the memory domain used by σ′0. As σ′0 is pure, we can think about it as
σ′0 ⊆ V ′ ×M → V ′ ×M , where for every m ∈M and v ∈ V ′0 there is a unique w ∈ V and
m′ ∈M such that ((v,m), (w,m′)) ∈ σ′ and for every m ∈M and v ∈ V ′1 and w such that
(v, w) ∈ E′ there is a unique m′ such that ((v,m), (w,m′)) ∈ σ′0. We freely say σ′0 chooses v′
from (v,m) for the unique v′ such that (v,m, v′,m′) ∈ σ′0 for some m′ and σ′0 updates the
memory to m′. Similarly, a pure strategy in G can be described as σ ⊆ (V ×M)2 where
stochastic configurations are handled like Player 1 configuration in term of memory update
for all successors as above. By abuse of notation we refer to the successor of a configuration
v in G′ and mean either w or w according to the context.

K. Chatterjee and N. Piterman 6:9

⇐ We show that every configuration v ∈ W ′0 that is winning for Player 0 in G′ is in the
winning region W0 of Player 0 in G. Consider the strategy σ′0 ⊆ (V ′×M)2. We construct
a winning strategy σ0 ⊆ (V ×M)2, induced by σ′0 as follows:

For a configuration-memory (cm) pair (v,m) ∈ V0 ×M there is a unique cm pair
(v′,m′) such that (v,m, v′,m′) ∈ σ′0. We set (v,m, v′,m′) ∈ σ0.
For a cm pair (v,m) ∈ V1×M and for every successor w of v there is a unique memory
value m′ such that (v,m,w,m′) ∈ σ′0. We set (v,m,w,m′) ∈ σ0.
Consider a cm pair (v,m) ∈ Vp ×M . As v is a Player 1 configuration in G′, for every
configuration (ṽ, 2i) there is a uniqye m′ such that (v,m, (ṽ, 2i),m′) ∈ σ′0.
∗ If for some i we have that the choice from (ṽ, 2i) according to σ′0 is (v̂, 2i− 1). Then,

let i0 be the minimal such i and let w0 be the successor of v such that the choice of
σ′0 from (v̂, 2i0− 1) is w0. We update in σ0 the tuple (v,m,w0,m

′), where m′ is the
memory resulting from taking the path v, (ṽ, 2i0), (v̂, 2i0− 1), w0 in G′ based on σ′0.
We update in σ0 the tuple (v,m,w′,mw′) for w′ 6= w0, where mw′ is the memory
resulting from taking the path v, (ṽ, 2i0 − 2), (v̂, 2i0 − 2), w′. Notice that as i0 is
chosen to be the minimal the choice from (ṽ, 2i0 − 2) to (v̂, 2i0 − 2) is compatible
with σ′0, where 2i0 − 2 could be 0.

∗ If for all i we have that the choice from (ṽ, 2i) according to σ′0 is (v̂, 2i). Then,
for every w successor of v we update in σ0 the tuple (v,m,w,m′), where m′ is the
memory resulting from taking the path v, (ṽ, pas(v)), (v̂, pas), w.

Notice that if pas(v) is odd then the first case always holds as the only successor of
(ṽ, pas(v) + 1) is (v̂, pas(v)).

The resulting strategy σ0 includes no further decisions for Player 0. Consider the winning
condition Ws. Every path in G that is consistent with σ0 (with proper memory updates)
corresponds to a path in G′ that is consistent with σ′0 (with the same memory updates)
and agrees on the parities of all configurations according to ps. Indeed, every configuration
of the form (ṽ, 2i) or (v̂, j) in G′ has the same priority according to ps as v (and v in
G). As every path consistent with σ′0 is winning according to W ′s then every path in G
consistent with σ is winning according to Ws.
We turn our attention to consider only the parity condition pas in both G′ and G. We
think about G′ as a parity game with the winning condition W ′as and about G as a
stochastic parity game with the winning condition Was. As σ′0 is winning, all paths in G′
(with proper memory updates) are winning for Player 0 according to W ′as.
We recall some definitions and results from [15]. For k ≤ das, let k denote k if k is odd and
k − 1 if k is even. A parity ranking for Player 0 is ~r : V ′ ×M → [n]das/2 ∪ {∞} for some
n ∈ N, where [n] denotes {0, . . . , n}. For a configuration v, Let ~r(v) = (r1, . . . , rd) and
~r(v′) = (r′1, . . . , r′d), where d = das/2. For v, we denote by ~rk(v) the prefix (r1, r3, . . . , rk)
of ~r(v). We write ~r(v) ≤k ~r(v′) if the prefix (r1, . . . rk) is at most (r′1, . . . , r′k) according
to the lexicographic ordering. Similarly, we write ~r(v) <k ~r(v′) if (r1, . . . rk) is less than
(r′1, . . . , r′k) according to the lexicographic ordering.
A parity ranking is good if (i) for every vertex v ∈ V0 and memory m ∈ M there is
a vertex w ∈ succ(v) and m′ ∈ M such that ~r(w,m′) ≤p(v) ~r(v,m) and if p(v) is odd
then ~r(w,m′) <p(v) ~r(v,m) and (ii) for every vertex v ∈ V1, memory m ∈M , and vertex
w ∈ succ(v) it holds that there is a m′ ∈ M such that ~r(w,m′) ≤p(v) ~r(v,m) and if
p(v) is odd then ~r(w,m′) <p(v) ~r(v,m). It is well known that in a parity game (here
G′ combined with the strategy σ′0) there is a good parity ranking such that for every
v ∈ W ′0 and memory m ∈ M we have ~r(v,m) 6= ∞ [29]. Let ~r be the good parity
ranking for G′. Consider the same ranking for G with the same memory M . For a cm

CONCUR 2019

6:10 Combinations of Qualitative Winning for Stochastic Parity Games

pair (v,m) ∈ Vp ×M , we write Probv,m(~r≤k
) for the probability (according to κ) of

successors w of v such that for some memory values mw we have ~r(w,mw) ≤k ~r(v,m)
and Probv,m(~r<k

) for the probability of successors w of v such that for some memory
values mw we have ~r(w,mw) <k ~r(v,m).
I Definition 9 (Almost-sure ranking [14]). A ranking function ~r : V ×M → [n]das/2∪{∞}
for Player 0 is an almost-sure ranking if there is an ε ≥ 0 such that for every pair (v,m)
with r(v,m) 6=∞, the following conditions hold:

If v ∈ V0 there exists a successor w and memory m′ such that ~r(w,m′) ≤p(v) ~r(v,m)
and if p(v) is odd then ~r(w,m′) <p(v) ~r(v,m).
If v ∈ V1 then for every successor w of v there is a memory m′ such that ~r(w,m′) ≤p(v)
~r(v,m) and if p(v) is odd then ~r(w,m′) <p(v) ~r(v,m).
If v ∈ Vp and p(v) is even then either Probv,m(~r≤p(v)−1) = 1 or∨

j=2i+1∈[1..p(v)]

(Probv,m(~r≤j−2) = 1 ∧ Probv,m(~r<j
) ≥ ε)

If v ∈ Vp and p(v) is odd then
∨

j=2i+1∈[1..p(v)]

(
Probv,m(~r≤j−2) = 1 ∧ Probv,m(~r<j

) ≥ ε
)

I Lemma 10 ([14]). A stochastic parity game has an almost-sure ranking iff Player 0
can win for the parity objective with probability 1 from every configuration v such that for
some m we have ~r(v,m) 6=∞.
The following lemma specializes a similar lemma in [14] for our needs.
I Lemma 11. The good ranking of G′ with M induces an almost-sure ranking of G
with M .

Proof. Let ε be the minimal probability of a transition in G. As G is finite ε exists.
For configurations in V0 ∪ V1 the definitions of good parity ranking and almost-sure
ranking coincide.
Consider a configuration v ∈ Vp a memory m ∈M and the matching configuration v. Let
p = pas(v). Consider the pair (v,m) in V ×M and (v,m) in V ′ ×M . We consider the
cases where p is even and when p is odd.

Suppose that p is even. If there is some minimal i such that the choice of σ′0 from
((ṽ, 2i),m′) in G′ is ((v̂, 2i− 1),m′′). Then, there is some w ∈ succ(v) and some m′′′
such that ~r(w,m′′′) <2i−1 ~r((v̂, 2i − 1),m′′) ≤p ~r((ṽ, 2i),m′) ≤p ~r(v,m). It follows
that Probv,m(~r<2i−1) ≥ ε. Furthermore, as i is minimal it follows that i 6= 0 and that
the choice of σ′0 from ((ṽ, 2i−2), n) is ((v̂, 2i−2), n′) and (ṽ, 2i−2) belongs to Player 1
in G′. Then, for every successor w of (v̂, 2i− 2) and for every memory value n′ there
is a memory value n′′′ such that

~r(w, n′′′) ≤2i−2 ~r((v̂, 2i− 2), n′′) ≤p ((ṽ, 2i− 2), n′) ≤p (v,m).

It follows that Probv,m(~r≤2i−2) = 1.
If there is no such i, then the choice of σ′0 from ((ṽ, p),m′) in G′ is ((v̂, p),m′′) and for
every w ∈ succ(v) there is some m′′′ such that

~r(w,m′′′) ≤p ~r((v̂, p),m′′) ≤p ~r((ṽ, p),m′) ≤p ~r(v,m).

If follows that Probv,m(~r≤p) = 1.
Suppose that p is odd. In this case there must be some minimal i such that the choice
of σ′0 from ((ṽ, 2i),m′) is ((v̂, 2i− 1),m′′). We can proceed as above. J

K. Chatterjee and N. Piterman 6:11

As Player 0 has no further choices in G, it follows that the strategy σ0 defined above is
winning in G. That is, sure winning w.r.t. Ws and almost-sure winning w.r.t. Was.

⇒ In the proof (in [18]) we show how to use a winning finite-memory strategy in G to induce
a strategy in G′ and use a ranking argument to show that this strategy is winning. J

I Corollary 12. Consider an SAS turn-based stochastic parity game. Deciding whether
Player 0 can win with finite-memory is co-NP-complete. Deciding whether Player 1 can win
against finite-memory is NP-complete.

Proof. Upper bounds follow from the reductions to Streett and Rabin winning conditions.
Completeness follows from the case where the game has no stochastic configurations [13]. J

I Remark 13. The complexity established above in the case of finite-memory is the same as
that established for the general case in Corollary 7. However, this reduction gives us a clear
algorithmic approach to solve the case of finite-memory strategies. Indeed, in the general
case, the proof of the NP upper bound requires enumeration of all memoryless strategies, and
does not present an algorithmic approach, regardless of the indices of the different winning
conditions. In contrast our reduction for the finite-memory case to non-stochastic games
with conjunction of parity conditions and recent algorithmic results on non-stochastic games
with ω-regular conditions of [8] imply the following:

For the finite-memory case, we have a fixed parameter tractable algorithm that is
polynomial in the number of the game configurations and exponential only in the indices
to compute the SAS winning region.
For the finite-memory case, if both indices are constant or logarithmic in the number of
configurations, we have a polynomial time algorithm to compute the SAS winning region.

5 Sure-Limit-Sure Parity Games

In this section we extend our results to the case where the unsure goal is required to be met
with limit-sure certainty, rather than almost-sure certainty.

Sure-limit-sure parity games. A sure-limit-sure (SLS) parity game is, as before, G =
(V, (V0, V1, Vp), E, κ,W). We denote the second winning condition with the subscript ls, i.e.,
Wls. We say that Player 0 wins G from configuration v if she has a sequence of strategies
σi ∈ Σ such that for every i for every strategy π of Player 1 we have v(σi, π) ⊆ Ws and
Probv(σi,π)(Wls) ≥ 1− 1

i . That is, Player 0 has a sequence of strategies that are sure winning
(on all paths) with respect to Ws and ensure satisfaction probabilities approaching 1 with
respect to Wls.

5.1 Limit-Sure vs Almost-Sure
In MDPs and stochastic turn-based games with parity conditions almost-sure and limit-sure
winning coincide [9]. In contrast to the above result we present an example MDP where
in addition to surely satisfying one parity condition limit-sure winning with another parity
condition can be ensured, but almost-sure winning cannot be ensured. In other words, in
conjunction with sure winning, limit-sure winning does not coincide with almost-sure winning
even for MDPs. Such a result was established in [5] for MDPs with infinite-memory strategies.
We show the same holds for finite-memory strategies.

CONCUR 2019

6:12 Combinations of Qualitative Winning for Stochastic Parity Games

l
(0, 1)

c

(1, 1)
p

(1, 1)
r

(0, 0)

1
2

1
2

Figure 3 An MDP where Player 0 can ensure sure winning and win limit-surely but cannot
win almost-surely. Configuration p is probabilistic and configurations l, c, and r are Player 0
configurations. The winning conditions are induced by the following priorities αs(l) = αs(r) = 0,
αs(p) = αs(c) = 1, and αls(r) = 0 and αls(l) = αls(c) = αls(p) = 1.

I Theorem 14. While satisfying one parity condition surely, the almost-sure winning set
for another parity condition is a strict subset of limit-sure winning set, even in the context
of MDPs with finite-memory strategies.

Proof. Consider the MDP in Figure 3. Clearly, Player 0 wins surely with respect to both
parity conditions in configuration r and Player 0 cannot win the condition Wls on l. In order
to win Ws the cycle between p and c has to be taken finitely often. Then, the edge from
c to l must be taken eventually. However, l is a sink that is losing with respect to Wls. It
follows, that Player 0 cannot win almost-surely with respect to Wls while winning surely
with respect to Ws.

On the other hand, for every ε > 0 there is a finite-memory strategy that is sure winning
with respect to Ws and wins with probability at least 1 − ε with respect to Wls. Indeed,
Player 0 has to choose the edge from c to p at least N times, where N is large enough such
that 1

2N < ε, and then choose the edge from c to l. Then, Player 0 wins surely with respect
to Ws (every play eventually reaches either l or r) and with probability more than 1− ε with
respect to Wls.

To summarize, Player 0 wins surely w.r.t. Ws and limit-surely w.r.t. Wls from both c
and p but cannot win almost-surely w.r.t. Wls from c and p. J

5.2 Solving SLS MDPs and Games
We first note that Player 1 has optimal memoryless strategies similar to the SAS case. The
proof (in [18]) reuses the proof of Theorem 6.

I Theorem 15. In an SLS parity game Player 1 has optimal memoryless strategies.

SLS MDPs. We now present the solution to winning in SLS MDPs. Given an SLS MDP G

with winning conditions Ws and Wls, we call the induced SAS MDP the MDP with winning
conditions Ws and Wls, where the latter is interpreted as an almost-sure winning condition.
We use the induced SAS MDP in the solution of the SLS MDP. The memory used in the
SLS part has to match the memory used for winning in the SAS part. That is, if Player 0 is
restricted to finite-memory in the SLS part of the game she has to consider finite-memory
strategies in the induced SAS MDP.

I Theorem 16. In a finite SLS parity MDP deciding whether a node v is winning for
Player 0 can be reduced to the limit-sure reachability while maintaining sure-parity. The
target of the limit-sure reachability is the winning region of the induced SAS partiy MDP.

Proof. SAS winning region A. Consider an MDP G = (V, (V0, Vp), E, κ,W), where W =
(Ws,Wls). Consider G as an SAS MDP and compute the set of configurations from which
Player 0 can win G. Let A ⊆ V denote this winning region and B = V \A be the complement

K. Chatterjee and N. Piterman 6:13

region. Clearly, A is closed under probabilistic moves. That is, if v ∈ Vp ∩A then for every
v′ such that (v, v′) ∈ E we have v′ ∈ A. Furthermore, under Player 0’s winning strategy,
Player 0 does not use edges going back from A to B. It follows that we can consider A
as a sink in G.
Reduction to limit-sure reachability. We present the argument for finite-memory strategies for
Player 0, and the argument for infinite-memory strategies is similar. Consider an arbitrary
finite-memory strategy σ ∈ Σ, and consider the Markov chain that is the result of restricting
Player 0 moves according to σ.

Bottom SCC property. Let S be a bottom SCC (SCC that is only reachable from itself)
that intersects with B in the Markov chain. As explained above, it cannot be the case
that this SCC intersects A (since we consider A as sink due to the closed property). Thus
the SCC S must be contained in B. Thus, either S must be losing according to Ws or
the minimal parity in S according to Wls is odd, as otherwise in the region S Player 0
ensures sure winning wrt Ws and almost-sure winning wrt Wls, which means that S
belongs to the SAS winning region A. This contradicts that S is contained in B.
Reachability to A. In a Markov chain bottom SCCs are reached with probability 1,
and from the above item it follows that the probability to satisfy the Wls goal along
with ensuring Ws while reaching bottom SCCs in B is zero. Hence, the probability to
satisfy Wls along with ensuring Ws is at most the probability to reach A. On the other
hand, after reaching A, the SAS goal can be ensured by switching to an appropriate SAS
strategy in the winning region A, which implies that the SLS goal is ensured. Hence it
follows that the SLS problem reduces to limit-sure reachability to A, while ensuring the
sure parity condition Ws. J

I Remark 17. Note that for finite-memory strategies the argument above is based on
bottom SCCs. The SAS region for MDPs wrt to infinite-memory strategies is achieved by
characterizing certain strongly connected components (called Ultra-good end-components [5,
Definition 5]), and hence a similar argument as above also works for infinite-memory strategies
to show that SLS for infinite-memory strategies for two parity conditions reduces to limit-sure
reachability to the SAS region while ensuring the sure parity condition (however, in this case
the SAS region has to be computed for infinite-memory strategies).

Limit-sure reachability and sure parity in games. We consider the problem of Player 0
ensuring limit-sure reachability to target set A while preserving sure parity. We present the
solution for games (which subsumes the case of MDPs).

I Theorem 18. Consider an SLS Game, where the limit-sure condition is to reach a target
set A that is also winning for the sure condition. Player 0’s winning region is the limit-sure
reachability region to A within the winning region of the sure parity condition.

In one direction, in the limit-sure reachability to A within the sure winning region, the
limit-sure reachability strategy can be played to enforce high probability of winning for the
limit-sure winning condition and then revert to the sure-winning strategy. The combination
delivers an arbitrarily high probability of reaching A as well as sure winning. In the other
direction, a strategy that wins limit-sure reachability to A and sure-winning with respect
to the sure condition is clearly restricted to the sure-winning region. At the same time, it
ensures limit-sure reachability to A. Hence, the analysis of such games is simplified into two
steps; first compute the sure winning region for the sure objective, and in this subgame only
consider reachability to the limit-sure target set.

CONCUR 2019

6:14 Combinations of Qualitative Winning for Stochastic Parity Games

Proof. WLOG we replace the region A by a single configuration t with a self loop and an
even priority with respect to Ws. Consider an SLS game, with a configuration t of sink
target state, such that the limit-sure goal is to reach t, and t has even priority with respect
to Ws. We now present solution to this limit-sure reachability with sure parity problem. The
computational steps are as follows:

First, compute the sure winning region w.r.t the parity condition in the game. Let X be
this winning region. Note that t ∈ X as t is a sink state with even priority for Ws.
Second, restrict the game to X and compute limit-sure reachability region to t, and let
the region be Y . Note that the game restricted to X is a turn-based stochastic game
where almost-sure and limit-sure reachability coincide.

Let us denote by Z the desired winning region (i.e., from where sure parity can be ensured
along with limit-sure reachability to t). We argue that Y computes the desired winning
region Z as follows:

First, note that since the sure parity condition Ws must be ensured, the sure winning
region X must never be left. Thus without loss of generality, we can restrict the game to
X. By definition Y is the region in X to ensure limit-sure reachability to t. As Z ensures
both limit-sure reachability to t as well as sure parity, it follows that Z is a subset of Y .
Second, for any ε > 0, there is a strategy in Y to ensure that t is reached with probability
at least 1− ε within Nε steps staying in X (since in the subgame restricted to X, almost-
sure reachability to t can be ensured). Consider a strategy that plays the above strategy
for Nε steps, and if t is not reached, then switches to a sure winning strategy for Ws

(such a strategy exists since X is never left, and parity conditions are independent of
finite prefixes). It follows that from Y both limit-sure reachability to t as well as sure
parity condition Ws can be ensured. Hence Y ⊆ Z.

Thus, Y = Z as required. J

I Corollary 19. Consider an SLS turn-based stochastic parity game. Deciding whether
Player 0 wins is co-NP-complete. Deciding whether Player 1 wins is NP-complete. Consider
an SLS turn-based MDP with n locations and indices ds and dls. Checking whether Player 0
can win with finite-memory can be computed in quasi-polynomial time. In case that ds ≤ logn
it can be decided in polynomial time.

Proof. It follows from above that to solve SLS MDPs, the following computation steps are
sufficient: (a) solve SAS MDP, (b) compute sure winning region for parity condition, and (c)
compute almost-sure (=limit-sure) reachability in MDPs. The second step is a special case
of the first step, and the third step can be achieved in polynomial time [12, 19]. Hence it
follows that all the complexity and algorithmic upper bounds we established for the SAS
MDPs carry over to SLS MDPs. For games, since Player 1 has memoryless optimal strategies
(Theorem 15) and the complexity of SAS MDPs and SLS MDPs coincide, the complexity
upper bounds for SAS games carry over to SLS games. Finally, since the complexity lower
bound results for SAS parity games follow from games with no stochastic transitions, they
apply to SLS parity games as well. J

6 Conclusions and Future Work

In this work we consider MDPs and turn-based stochastic games with two parity winning
conditions, with combinations of qualitative winning criteria. In particular, we study the
case where one winning condition must be satisfied surely, and the other almost-surely (or
limit-surely). We present results for MDPs with finite-memory strategies, and turn-based

K. Chatterjee and N. Piterman 6:15

stochastic games with finite-memory and infinite-memory strategies. Our results establish
complexity results, as well as algorithmic results for finite-memory strategies by reduction to
non-stochastic games. Some interesting directions for future work are as follows. First, while
our results establish algorithmic results for finite-memory strategies, whether similar results
can be established for infinite-memory strategies is an interesting open question. Second,
the study of the synthesis problem for turn-based stochastic games with combinations of
quantitative objectives is another interesting direction of future work. If we consider more
than two conjuncts with only two types, i.e., sure and almost-sure, or sure and limit-sure, then
solution of the game reduces to a conjunction of two conditions. The problem of conjunctions
with more than two types and general Boolean combinations of winning conditions are
interesting directions for future work.

References
1 S. Almagor, O. Kupferman, and Y. Velner. Minimizing Expected Cost Under Hard Boolean

Constraints, with Applications to Quantitative Synthesis. In 27th International Conference on
Concurrency Theory, volume 59 of LIPIcs, pages 9:1–9:15. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2016.

2 R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-time temporal logic. J.ACM,
49(5):672–713, 2002.

3 C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press, 2008.
4 N. Basset, M.Z. Kwiatkowska, U. Topcu, and C. Wiltsche. Strategy Synthesis for Stochastic

Games with Multiple Long-Run Objectives. In Proc. 21st Int. Conf. on Tools and Algorithms
for the Construction and Analysis of Systems, volume 9035 of Lecture Notes in Computer
Science, pages 256–271. Springer, 2015.

5 R. Berthon, M. Randour, and J.-F. Raskin. Threshold Constraints with Guarantees for Parity
Objectives in Markov Decision Processes. In 44th International Colloquium on Automata,
Languages, and Programming, volume 80 of LIPIcs, pages 121:1–121:15. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2017.

6 T. Brázdil, V. Brozek, K. Chatterjee, V. Forejt, and A. Kucera. Two Views on Multiple
Mean-Payoff Objectives in Markov Decision Processes. In Proc. 26rd IEEE Symp. on Logic in
Computer Science, pages 33–42. IEEE Computer Society Press, 2011.

7 V. Bruyère, E. Filiot, M. Randour, and J.-F. Raskin. Meet your expectations with guarantees:
Beyond worst-case synthesis in quantitative games. Inf. Comput., 254:259–295, 2017.

8 C. Calude, S. Jain, B. Khoussainov, W. Li, and F. Stephan. Deciding Parity Games in
Quasipolynomial Time. In Proc. 49th ACM Symp. on Theory of Computing, pages 252–263.
ACM Press, 2017.

9 K. Chatterjee. Stochastic ω-regular Games. PhD thesis, University of California at Berkeley,
2007.

10 K. Chatterjee and L. Doyen. Perfect-Information Stochastic Games with Generalized Mean-
Payoff Objectives. In Proc. 31st IEEE Symp. on Logic in Computer Science, pages 247–256.
ACM Press, 2016.

11 K. Chatterjee, L. Doyen, M. Randour, and J.-F. Raskin. Looking at mean-payoff and total-
payoff through windows. Information and Computation, 242:25–52, 2015.

12 K. Chatterjee and M. Henzinger. Faster and Dynamic Algorithms For Maximal End-Component
Decomposition And Related Graph Problems In Probabilistic Verification. In SODA’11. SIAM,
2011.

13 K. Chatterjee, T.A. Henzinger, and N. Piterman. Generalized Parity Games. In Proc. 10th
Int. Conf. on Foundations of Software Science and Computation Structures, volume 4423 of
Lecture Notes in Computer Science, pages 153–167, Braga, Porgugal, 2007. Springer.

CONCUR 2019

6:16 Combinations of Qualitative Winning for Stochastic Parity Games

14 K. Chatterjee, M. Jurdziński, and T.A. Henzinger. Simple Stochastic Parity Games. In Proc.
12th Annual Conf. of the European Association for Computer Science Logic, Lecture Notes in
Computer Science, pages 100–113. Springer, 2003.

15 K. Chatterjee, M. Jurdziński, and T.A. Henzinger. Quantitative Stochastic Parity Games. In
Symposium on Discrete Algorithms, pages 114–123. SIAM, 2004.

16 K. Chatterjee, Z. Komárková, and J. Kretínský. Unifying Two Views on Multiple Mean-Payoff
Objectives in Markov Decision Processes. In Proc. 30th IEEE Symp. on Logic in Computer
Science, pages 244–256. IEEE Computer Society Press, 2015.

17 K. Chatterjee, R. Majumdar, and T.A. Henzinger. Markov Decision Processes with multiple
objectives. In Proc. 23rd Symp. on Theoretical Aspects of Computer Science, volume 3884 of
Lecture Notes in Computer Science, pages 325–336. Springer, 2006.

18 K. Chatterjee and N. Piterman. Combinations of Qualitative Winning for Stochastic Parity
Games. Technical report, arXiv, 2018. arXiv:1804.03453.

19 Krishnendu Chatterjee and Monika Henzinger. Efficient and Dynamic Algorithms for Alter-
nating Büchi Games and Maximal End-Component Decomposition. J. ACM, 61(3):15:1–15:40,
2014.

20 T. Chen, V. Forejt, M.Z. Kwiatkowska, A. Simaitis, and C. Wiltsche. On Stochastic Games
with Multiple Objectives. In 38th Int. Symp. on Mathematical Foundations of Computer
Science, volume 8087 of Lecture Notes in Computer Science, pages 266–277. Springer, 2013.

21 A. Church. Logic, arithmetics, and automata. In Proc. Int. Congress of Mathematicians, 1962,
pages 23–35. Institut Mittag-Leffler, 1963.

22 A. Condon. The complexity of stochastic games. Information and Computation, 96:203–224,
1992.

23 C. Courcoubetis and M. Yannakakis. The Complexity of Probabilistic Verification. jacm,
42(4):857–907, 1995.

24 K. Etessami, M.Z. Kwiatkowska, M.Y. Vardi, and M. Yannakakis. Multi-Objective Model
Checking of Markov Decision Processes. Logical Methods in Computer Science, 4(4), 2008.

25 Jerzy Filar and Koos Vrieze. Competitive Markov decision processes. Springer, 1996.
26 V. Forejt, M.Z. Kwiatkowska, G. Norman, D. Parker, and H. Qu. Quantitative Multi-objective

Verification for Probabilistic Systems. In Proc. 17th Int. Conf. on Tools and Algorithms for
the Construction and Analysis of Systems, volume 6605 of Lecture Notes in Computer Science,
pages 112–127. Springer, 2011.

27 H. Gimbert and E. Kelmendi. Two-Player Perfect-Information Shift-Invariant Submixing
Stochastic Games Are Half-Positional. CoRR, abs/1401.6575, 2014. arXiv:1401.6575.

28 H. Gimbert and W. Zielonka. Games Where You Can Play Optimally Without Any Memory.
In 16th Int. Conf. on Concurrency Theory, volume 3653 of Lecture Notes in Computer Science,
pages 428–442. Springer, 2005.

29 M. Jurdziński. Small Progress Measures for Solving Parity Games. In Proc. 17th Symp. on
Theoretical Aspects of Computer Science, volume 1770 of Lecture Notes in Computer Science,
pages 290–301, Lille, France, 2000. Springer.

30 M. Jurdzinski and R. Lazic. Succinct progress measures for solving parity games. In 32nd
Annual ACM/IEEE Symposium on Logic in Computer Science, pages 1–9, Reykjavik, Iceland,
2017. IEEE Computer Society Press.

31 D.A. Martin. The Determinacy of Blackwell Games. The Journal of Symbolic Logic, 63(4):1565–
1581, 1998.

32 A. Pnueli and R. Rosner. On the Synthesis of a Reactive Module. In Proc. 16th ACM Symp.
on Principles of Programming Languages, pages 179–190. ACM Press, 1989.

33 Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.
Wiley, 1st edition, 1994.

34 M. Randour, J.-F. Raskin, and O. Sankur. Variations on the Stochastic Shortest Path Problem.
In Proc. 16th Int. Conf. on Verification, Model Checking, and Abstract Interpretation, volume
8931 of Lecture Notes in Computer Science, pages 1–18. Springer, 2015.

http://arxiv.org/abs/1804.03453
http://arxiv.org/abs/1401.6575

K. Chatterjee and N. Piterman 6:17

35 W. Thomas. Automata on infinite objects. Handbook of Theoretical Computer Science, pages
133–191, 1990.

36 Y. Velner, K. Chatterjee, L. Doyen, T.A. Henzinger, A. Rabinovich, and J.-F. Raskin. The
complexity of multi-mean-payoff and multi-energy games. Information and Computation,
241:177–196, 2015.

CONCUR 2019

Near-Linear Time Algorithms for Streett
Objectives in Graphs and MDPs
Krishnendu Chatterjee
IST Austria, Klosterneuburg, Austria
krish.chat@ist.ac.at

Wolfgang Dvořák
Institute of Logic and Computation, TU Wien, Austria
dvorak@dbai.tuwien.ac.at

Monika Henzinger
Theory and Application of Algorithms, University of Vienna, Austria
monika.henzinger@univie.ac.at

Alexander Svozil
Theory and Application of Algorithms, University of Vienna, Austria
alexander.svozil@univie.ac.at

Abstract
The fundamental model-checking problem, given as input a model and a specification, asks for the
algorithmic verification of whether the model satisfies the specification. Two classical models for
reactive systems are graphs and Markov decision processes (MDPs). A basic specification formalism
in the verification of reactive systems is the strong fairness (aka Streett) objective, where given
different types of requests and corresponding grants, the requirement is that for each type, if the
request event happens infinitely often, then the corresponding grant event must also happen infinitely
often. All ω-regular objectives can be expressed as Streett objectives and hence they are canonical in
verification. Consider graphs/MDPs with n vertices, m edges, and a Streett objectives with k pairs,
and let b denote the size of the description of the Streett objective for the sets of requests and grants.
The current best-known algorithm for the problem requires time O(min(n2,m

√
m logn)+b logn). In

this work we present randomized near-linear time algorithms, with expected running time Õ(m+ b),
where the Õ notation hides poly-log factors. Our randomized algorithms are near-linear in the size
of the input, and hence optimal up to poly-log factors.

2012 ACM Subject Classification Mathematics of computing→ Combinatorial algorithms; Software
and its engineering → Formal software verification

Keywords and phrases model checking, graph games, Streett games

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2019.7

Funding A. S. is fully supported by the Vienna Science and Technology Fund (WWTF) through
project ICT15-003. K.C. is supported by the Austrian Science Fund (FWF) NFN Grant No S11407-
N23 (RiSE/SHiNE) and an ERC Starting grant (279307: Graph Games). For M.H the research
leading to these results has received funding from the European Research Council under the European
Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement no. 340506.

1 Introduction

In this work we present near-linear (hence near-optimal) randomized algorithms for the strong
fairness verification in graphs and Markov decision processes (MDPs). In the fundamental
model-checking problem, the input is a model and a specification, and the algorithmic
verification problem is to check whether the model satisfies the specification. We first
describe the models and the specifications we consider, then the notion of satisfaction, and
then previous results followed by our contributions.

© Krishnendu Chatterjee, Wolfgang Dvořák, Monika Henzinger, and Alexander Svozil;
licensed under Creative Commons License CC-BY

30th International Conference on Concurrency Theory (CONCUR 2019).
Editors: Wan Fokkink and Rob van Glabbeek; Article No. 7; pp. 7:1–7:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:krish.chat@ist.ac.at
mailto:dvorak@dbai.tuwien.ac.at
mailto:monika.henzinger@univie.ac.at
mailto:alexander.svozil@univie.ac.at
https://doi.org/10.4230/LIPIcs.CONCUR.2019.7
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 Near-Linear Time Algorithms for Streett Objectives in Graphs and MDPs

Models: Graphs and MDPs. Graphs and Markov decision processes (MDPs) are two
classical models of reactive systems. The states of a reactive system are represented by
the vertices of a graph, the transitions of the system are represented by the edges and non-
terminating trajectories of the system are represented as infinite paths of the graph. Graphs
are a classical model for reactive systems with nondeterminism, and MDPs extend graphs
with probabilistic transitions that represent reactive systems with both nondeterminism
and uncertainty. Thus graphs and MDPs are the standard models of reactive systems with
nondeterminism, and nondeterminism with stochastic aspects, respectively [15, 2]. Moreover
MDPs are used as models for concurrent finite-state processes [16, 28] as well as probabilistic
systems in open environments [26, 23, 17, 2].

Specification: Strong fairness (aka Streett) objectives. A basic and fundamental specific-
ation formalism in the analysis of reactive systems is the strong fairness condition. The strong
fairness conditions (aka Streett objectives) consist of k types of requests and corresponding
grants, and the requirement is that for each type if the request happens infinitely often, then
the corresponding grant must also happen infinitely often. Beyond safety, reachability, and
liveness objectives, the most standard properties that arise in the analysis of reactive systems
are Streett objectives, and chapters of standard textbooks in verification are devoted to it
(e.g., [15, Chapter 3.3], [24, Chapter 3], [1, Chapters 8, 10]). In addition, ω-regular objectives
can be specified as Streett objectives, e.g., LTL formulas and non-deterministic ω-automata
can be translated to deterministic Streett automata [25] and efficient translations have been
an active research area [6, 18, 22]. Consequently, Streett objectives are a canonical class of
objectives that arise in verification.

Satisfaction. The notions of satisfaction for graphs and MDPs are as follows: For graphs,
the notion of satisfaction requires that there is a trajectory (infinite path) that belongs to
the set of paths specified by the Streett objective. For MDPs the satisfaction requires that
there is a strategy to resolve the nondeterminism such that the Streett objective is ensured
almost-surely (with probability 1). Thus the algorithmic model-checking problem of graphs
and MDPs with Streett objectives is a central problem in verification, and is at the heart
of many state-of-the-art tools such as SPIN, NuSMV for graphs [20, 14], PRISM, LiQuor,
Storm for MDPs [23, 13, 17].

Our contributions are related to the algorithmic complexity of graphs and MDPs with
Streett objectives. We first present previous results and then our contributions.

Previous results. The most basic algorithm for the problem for graphs is based on repeated
SCC (strongly connected component) computation, and informally can be described as follows:
for a given SCC, (a) if for every request type that is present in the SCC the corresponding
grant type is also present in the SCC, then the SCC is identified as “good”, (b) else vertices
of each request type that have no corresponding grant type in the SCC are removed, and the
algorithm recursively proceeds on the remaining graph. Finally, reachability to good SCCs is
computed. The algorithm for MDPs is similar where the SCC computation is replaced with
maximal end-component (MEC) computation, and reachability to good SCCs is replaced
with probability 1 reachability to good MECs. The basic algorithms for graphs and MDPs
with Streett objective have been improved in several works, such as for graphs in [19, 10], for
MEC computation in [7, 8, 9], and MDPs with Streett objectives in [5]. For graphs/MDPs
with n vertices, m edges, and k request-grant pairs with b denoting the size to describe the
request grant pairs, the current best-known bound is O(min(n2,m

√
m logn) + b logn).

K. Chatterjee, W. Dvořák, M. Henzinger, and A. Svozil 7:3

Our contributions. In this work, our main contributions are randomized near-linear time
(i.e. linear times a polylogarithmic factor) algorithms for graphs and MDPs with Streett
objectives. In detail, our contributions are as follows:

First, we present a near-linear time randomized algorithm for graphs with Streett object-
ives where the expected running time is Õ(m+ b), where the Õ notation hides poly-log
factors. Our algorithm is based on a recent randomized algorithm for maintaining the
SCC decomposition of graphs under edge deletions, where the expected total running
time is near linear [4].
Second, by exploiting the results of [4] we present a randomized near-linear time algorithm
for computing the MEC decomposition of an MDP where the expected running time
is Õ(m). We extend the results of [4] from graphs to MDPs and present a randomized
algorithm to maintain the MEC decomposition of an MDP under edge deletions, where
the expected total running time is near linear [4].
Finally, we use the result of the above item to present a near-linear time randomized
algorithm for MDPs with Streett objectives where the expected running time is Õ(m+ b).

All our algorithms are randomized and since they are near-linear in the size of the input,
they are optimal up to poly-log factors. An important open question is whether there are
deterministic algorithms that can improve the existing running time bound for graphs and
MDPs with Streett objectives. Our algorithms are deterministic except for the invocation of
the decremental SCC algorithm presented in [4].

Table 1 Summary of Results.

Problem New Running Time Old Running Time
Streett Objectives on Graphs Õ(m+ b) Õ(min(n2,m

√
m) + b) [11, 19]

Almost-Sure Reachability Õ(m) O(m · n2/3) [5, 9]
MEC Decomposition Õ(m) O(m · n2/3) [9]
Decremental MEC Decomposition Õ(m) O(nm) [9]
Streett Objectives on MDPs Õ(m+ b) Õ(min(n2,m

√
m) + b) [5]

2 Preliminaries

A Markov decision process (MDP) P =((V,E), 〈V1, VR〉, δ) consists of a finite set of vertices
V partitioned into the player-1 vertices V1 and the random vertices VR, a finite set of edges
E ⊆ (V × V), and a probabilistic transition function δ. The probabilistic transition function
maps every random vertex in VR to an element of D(V), where D(V) is the set of probability
distributions over the set of vertices V . A random vertex v has an edge to a vertex w ∈ V ,
i.e. (v, w) ∈ E iff δ(v)[w] > 0. An edge e = (u, v) is a random edge if u ∈ VR otherwise it is
a player-1 edge. W.l.o.g. we assume δ(v) to be the uniform distribution over vertices u with
(v, u) ∈ E.

Graphs are a special case of MDPs with VR = ∅. The set In(v) (Out(v)) describes the
set of predecessors (successors) of a vertex v. More formally, In(v) is defined as the set
{w ∈ V | (w, v) ∈ E} and Out(v) = {w ∈ V | (v, w) ∈ E}. When U is a set of vertices,
we define E(U) to be the set of all edges incident to the vertices in U . More formally,
E(U) = {(u, v) ∈ E | u ∈ U ∨ v ∈ U}. With G[S] we denote the subgraph of a graph
G = (V,E) induced by the set of vertices S ⊆ V . Let GraphReach(S) be the set of vertices
in G that can reach a vertex of S ⊆ V . The set GraphReach(S) can be found in linear time
using depth-first search [27]. When a vertex u can reach another vertex v and vice versa, we
say that u and v are strongly connected.

CONCUR 2019

7:4 Near-Linear Time Algorithms for Streett Objectives in Graphs and MDPs

A play is an infinite sequence ω = 〈v0, v1, v2, . . .〉 of vertices such that each (vi−1, vi) ∈ E
for all i ≥ 1. The set of all plays is denoted with Ω. A play is initialized by placing a token
on an initial vertex. If the token is on a vertex owned by player-1, he moves the token along
one of the outgoing edges, whereas if the token is at a random vertex v ∈ VR, the next vertex
is chosen according to the probability distribution δ(v). The infinite sequence of vertices
(infinite walk) formed in this way is a play.

Strategies are recipes for player 1 to extend finite prefixes of plays. Formally, a player-1
strategy is a function σ : V ∗ ·V1 7→ V which maps every finite prefix ω ∈ V ∗ ·V1 of a play that
ends in a player-1 vertex v to a successor vertex σ(ω) ∈ V , i.e., (v, σ(ω)) ∈ E. A player-1
strategy is memoryless if σ1(ω) = σ1(ω′) for all ω, ω′ ∈ V ∗ · V1 that end in the same vertex
v ∈ Vi, i.e., the strategy does not depend on the entire prefix, but only on the last vertex.
We write Σ for the set of all strategies for player 1.

The outcome of strategies is defined as follows: In graphs, given a starting vertex, a
strategy for player 1 induces a unique play in the graph. In MDPs, given a starting vertex v
and a strategy σ ∈ Σ, the outcome of the game is a random walk wσv for which the probability
of every event is uniquely defined, where an event A ⊆ Ω is a measurable set of plays [28].
For a vertex v, strategy σ ∈ Σ and an event A ⊆ Ω, we denote by Prσv (A) the probability
that a play belongs to A if the game starts at v and player 1 follows σ.

An objective φ ⊆ Ω for player 1 is an event, i.e., objectives describe the set of winning
plays. A play ω ∈ Ω satisfies the objective if ω ∈ φ. In MDPs, a player-1 strategy σ ∈ Σ is
almost-sure (a.s.) winning from a starting vertex v ∈ V for an objective φ iff Prσv (φ) = 1. The
winning set 〈〈1〉〉a.s.(φ) for player 1 is the set of vertices from which player 1 has an almost-sure
winning strategy. We consider Reachability objectives and k-pair Streett objectives.

Given a set T ⊆ V of vertices, the reachability objective Reach(T) requires that some
vertex in T be visited. Formally, the sets of winning plays are Reach(T) = {〈v0, v1, v2, . . .〉 ∈
Ω | ∃k ≥ 0 s.t. vk ∈ T}. We say v can reach u almost-surely (a.s.) if v ∈ 〈〈1〉〉a.s.(Reach({u})).

The k-pair Streett objective consists of k-Streett pairs
(L1, U1), (L2U2), . . . , (Lk, Uk) where all Li, Ui ⊆ V for 1 ≤ i ≤ k. An infinite path satisfies
the objective iff for all 1 ≤ i ≤ k some vertex of Li is visited infinitely often, then some
vertex of Ui is visited infinitely often.

Given an MDP P = (V,E, 〈V1, VR〉, δ), an end-component is a set of vertices X ⊆ V

s.t. (1) the subgraph induced by X is strongly connected (i.e., (X,E ∩X ×X) is strongly
connected) and (2) all random vertices have their outgoing edges in X. More formally, for
all v ∈ X ∩ VR and all (v, u) ∈ E we have u ∈ X. In a graph, if (1) holds for a set of
vertices X ⊆ V we call the set X strongly connected subgraph (SCS). An end-component,
SCS respectively, is trivial if it only contains a single vertex with no edges. All other
end-components, SCSs respectively, are non-trivial. A maximal end-component (MEC) is
an end-component which is maximal under set inclusion. The importance of MECs is as
follows: (i) it generalizes strongly connected components (SCCs) in graphs (with VR = ∅) and
closed recurrent sets of Markov chains (with V1 = ∅); and (ii) in a MEC X, player-1 can
almost-surely reach all vertices u ∈ X from every vertex v ∈ X. The MEC-decomposition of
an MDP is the partition of the vertex set into MECs and the set of vertices which do not
belong to any MEC. The condensation of a graph G denoted by CONDENSE(G) is the graph
where all vertices in the same SCC in G are contracted. The vertices of CONDENSE(G) are
called nodes to distinguish them from the vertices in G.

Let C be a strongly connected component (SCC) of G = (V,E). The SCC C is a bottom
SCC if no vertex v ∈ C has an edge to a vertex in V \C, i.e., no outgoing edges. Consider an
MDP P = (V,E, 〈V1, VR〉, δ) and notice that every bottom SCC C in the graph G = (V,E)
is a MEC because no vertex (and thus no random vertex) has an outgoing edge.

K. Chatterjee, W. Dvořák, M. Henzinger, and A. Svozil 7:5

A decremental graph algorithm allows the deletion of player-1 edges while maintaining the
solution to a graph problem. It usually allows three kinds of operations: (1) preprocessing,
which is computed when the initial input is first received, (2) delete, which deletes a player-1
edge and updates the data structure, and (3) query, which computes the answer to the
problem. The query time is the time needed to compute the answer to the query. The update
time of a decremental algorithm is the cost for a delete operation. We sometimes refer to
the delete operations as update operation. The running time of a decremental algorithm
is characterized by the total update time, i.e., the sum of the update times over the entire
sequence of deletions. Sometimes a decremental algorithm is randomized and assumes an
oblivious adversary who fixes the sequence of updates in advance. When we use a decremental
algorithm which assumes such an oblivious adversary as a subprocedure the sequence of
deleted edges must not depend on the random choices of the decremental algorithm.

3 Decremental SCCs

We first recall the result about decremental strongly connected components maintenance
in [4] (cf. Theorem 1 below) and then augment the result for our purposes.

I Theorem 1 (Theorem 1.1 in [4]). Given a graph G = (V,E) with m edges and n vertices,
we can maintain a data structure A that supports the operations

delete(u, v): Deletes the edge (u, v) from the graph G.
query(u, v): Returns whether u and v are in the same SCC in G,

in total expected update time O(m log4 n) and with worst-case constant query time. The
bound holds against an oblivious adversary.

The preprocessing time of the algorithm is O(m+ n) using [27]. To use this algorithm we
extend the query and update operations with three new operations described in Corollary 2.

I Corollary 2. Given a graph G = (V,E) with m edges and n vertices, we can maintain a
data structure A that supports the operations

rep(u) (query-operation): Returns a reference to the SCC containing the vertex u.
deleteAnnounce(E) (update-operation): Deletes the set E of edges from the graph G. If the
edge deletion creates new SCCs C1, . . . , Ck the operation returns a list Q = {C1, . . . , Ck}
of references to the new SCCs.
deleteAnnounceNoOutgoing(E) (update-operation): Deletes the set E of edges from the
graph G. The operation returns a list Q = {C1, . . . , Ck} of references to all new SCCs
with no outgoing edges.

in total expected update time O(m log4 n) and worst-case constant query time for the first
operation. The bound holds against an oblivious adaptive adversary.

The first function is available in the algorithm described in [4]. The second function can be
implemented directly from the construction of the data structure maintained in [4]. The
key idea for the third function is that when an SCC splits, we consider the new SCCs. We
distinguish between the largest of them and the others which we call small SCCs. We then
consider all edges incident to the small SCCs: Note that as the new outgoing edges in the
large SCC are also incident to a small SCC we can also determine the outgoing edges of the
large SCC. Observe that whenever an SCC splits all the small SCCs are at most half the size
of the original SCC. That is, each vertex can appear only O(logn) times in small SCCs during
the whole algorithm. As an edge is only considered if one of the incident vertices is in a small
SCC each edge is considered O(logn) times and the additional running time is bounded by
O(m logn). Furthermore, we define Td as the running time of the best decremental SCC
algorithm which supports the operations in Corollary 2. Currently, Td = O(m log4 n).

CONCUR 2019

7:6 Near-Linear Time Algorithms for Streett Objectives in Graphs and MDPs

4 Graphs with Streett Objectives

In this section, we present an algorithm which computes the winning regions for graphs with
Streett objectives. The input is a directed graph G = (V,E) and k Streett pairs (Lj , Uj)
for j = 1, . . . , k. The size of the input is measured in terms of m = |E|, n = |V |, k and
b =

∑k
j=1(|Lj |+ |Uj |) ≤ 2nk.

Algorithm Streett and good component detection. Let C be an SCC of G. In the good
component detection problem, we compute (a) a non-trivial SCS G[X] ⊆ C induced by the
set of vertices X, such that for all 1 ≤ j ≤ k either Lj ∩X = ∅ or Uj ∩X 6= ∅ or (b) that no
such SCS exists. In the first case, there exists an infinite path that eventually stays in X and
satisfies the Streett objective, while in the latter case, there exists no path which satisfies
the Streett objective in C. From the results of [1, Chapter 9, Proposition 9.4] the following
algorithm, called Algorithm Streett, suffices for the winning set computation:
1. Compute the SCC decomposition of the graph;
2. For each SCC C for which the good component detection returns an SCS, label the SCC

C as satisfying.
3. Output the set of vertices that can reach a satisfying SCC as the winning set.
Since the first and last step are computable in linear time, the running time of Algorithm
Streett is dominated by the detection of good components in SCCs. In the following, we
assume that the input graph is strongly connected and focus on the good component detection.

Bad vertices. A vertex is bad if there is some 1 ≤ j ≤ k such that the vertex is in Lj but it
is not strongly connected to any vertex of Uj . All other vertices are good. Note that a good
vertex might become bad if a vertex deletion disconnects an SCS or a vertex of a set Uj . A
good component is a non-trivial SCS that contains only good vertices.

Decremental strongly connected components. Throughout the algorithm, we use the
algorithm described in Section 3 to maintain the SCCs of a graph when deleting edges. In
particular, we use Corollary 2 to obtain a list of the new SCCs which are created by removing
bad vertices. Note that we can “remove” a vertex by deleting all its incident edges. Because
the decremental SCC algorithm assumes an oblivious adversary we sort the list of the new
SCCs as otherwise the edge deletions performed by our algorithm would depend on the
random choices of the decremental SCC algorithm.

Data structure. During the course of the algorithm, we maintain a decomposition of the
vertices in G = (V,E): We maintain a list Q of certain sets S ⊆ V such that every SCC
of G is contained in some S stored in Q. The list Q provides two operations: Q.add(X)
enqueues X to Q; and Q.deque() dequeues an arbitrary element X from Q. For each set
S in the decomposition, we store a data structure D(S) in the list Q. This data structure
D(S) supports the following operations
1. Construct(S): initializes the data structure for the set S
2. Remove(S,B) updates S to S \B for a set B ⊆ V and returns D(S) for the new set S.
3. Bad(S) returns a reference to the set {v ∈ S | ∃j with v ∈ Lj and Uj ∩ S = ∅}
4. SCCs(S) returns the set of SCCs currently in G[S]. We implement SCCs(S) as a balanced

binary search tree which allows logarithmic and updates and deletions.

K. Chatterjee, W. Dvořák, M. Henzinger, and A. Svozil 7:7

In [19] an implementation of this data structure with functions (1)-(3) is described that
achieves the following running times. For a set of vertices S ⊆ V , let bits(S) be defined as∑k
j=1(|S ∩ Lj |+ |S ∩ Uj |).

I Lemma 3 (Lemma 2.1 in [19]). After a one-time preprocessing of time O(k), the data struc-
ture D(S) can be implemented in time O(bits(S) + |S|) for Construct(S), time O(bits(B) +
|B|) for Remove(S,B) and constant running time for Bad(S).

We augment the data structure with the function SCCs(S) which runs in total time of a
decremental SCC algorithm supporting the first function in Corollary 2.

Algorithm Description. The key idea is that the algorithm maintains the list Q of data
structures D(S) as described above when deleting bad vertices. Initially, we enqueue the
data structure returned by Construct(V) to Q. As long as Q is non-empty, the algorithm
repeatedly pulls a set S from Q and identifies and deletes bad vertices from G[S]. If no edge
is contained in G[S], the set S is removed as it can only induce trivial SCCs. Otherwise,
the subgraph G[S] is either determined to be strongly connected and output as a good
component or we identify and remove an SCC with at most half of the vertices in G[S].
Consider Figure 1 for an illustration of an example run of Algorithm 1.

L1

U1

L4

L3

L2

U3

U2 L1

U1

L4

L3

L2

U3

U2

4

2

3

1

L1

U1

L4

L3

L2

U3

U2

4

2

3

5

6

L1

U1

L4

L3

L2

U3

U2

4

2

3

5

6

Figure 1 Illustration of one run of Algorithm 1: The vertex in the set L4 is a bad vertex and
we remove it from the SCC yielding four new SCCs. First, we look in the SCC containing L3.
The vertex in L3 is a bad vertex because there is no vertex in U3 in this SCC. Again two SCCs
are created after its removal. The next SCC we process is the SCC containing L1. It is a good
component because the vertex in L1 has a vertex in U1 in the same SCC. No bad vertices are
removed and the whole SCC is identified as a good component.

Outline correctness and running time. In the following, when we talk about the input
graph Ĝ we mean the unmodified, strongly connected graph which we use to initialize
Algorithm 1. In contrast, with the current graph G we refer to the graph where we already
deleted vertices and their incident edges in the course of finding a good component. For the
correctness of Algorithm 1, we show that if a good component exists, then there is a set S
stored in list Q which contains all vertices of this good component.

To obtain the running time bound of Algorithm 1, we use the fact that we can maintain
the SCC decomposition under deletions in O(Td) total time. With the properties of the data
structure described in Lemma 3 we get a running time of Õ(n+ b) for the maintenance of the
data structure and identification of bad vertices over the whole algorithm. Combined, these
ideas lead to a total running time of Õ(Td + n+ b) which is Õ(m+ b) using Corollary 2.

I Lemma 4. Algorithm 1 runs in expected time Õ(m+ b).

CONCUR 2019

7:8 Near-Linear Time Algorithms for Streett Objectives in Graphs and MDPs

Algorithm 1: Algorithm GoodComp.
Input: Strongly connected graph G = (V,E) and Streett pairs (Lj , Uj) for j = 1, . . . , k
Output: a good component in G if one exists

1 Invoke an instance A of the decremental SCC algorithm; Initialize Q as a new list.;
2 D(V) = Construct(V); D(V).SCCs(V)← {A.rep(x)} for some x ∈ V ;
3 Q.add(D(V));
4 while Q is not empty do
5 D(S)← Q.deque();
6 while D(S).Bad(S) is not empty do
7 B ← D(S).Bad(S); D(S)← D(S).Remove(S,B);

// obtain SCCs after deleting bad vertices from S

8 D(S).SCCs(S)← D(S).SCCs(S) \
(⋃

b∈B
{A.rep(b)}

)
;

9 D(S).SCCs(S)← D(S).SCCs(S) ∪ A.deleteAnnounce(E(B));
10 if G[S] contains at least one edge then
11 Initialize K as a new list;
12 for X ← D(S).SCCs(S) do
13 if X = S then output G[S]; // good component found
14 if |X| ≤ |S|

2 then K.add(X);
15 Sort the SCCs in K by vertex id (look at all the vertices in each SCC of K);
16 R← ∅; // Build D(X) for SCCs X in K and remove X from S,D(S) and

SCCs(S)
17 for X ← K.deque() do
18 R← R ∪X; D(X) = Construct(X);
19 D(X).SCCs(X)← {A.rep(x)} for some x ∈ X;
20 D(S).SCCs(S)← D(S).SCCs(S) \ {A.rep(x)} for some x ∈ X;
21 Q.add(D(X));
22 if D(S).SCCs(S) 6= ∅ then Q.add(D(S).Remove(S,R)) ;

23 return No good component exists.

Proof. The preprocessing and initialization of the data structure D and the removal of
bad vertices in the whole algorithm takes time O(m + k + b) using Lemma 3. Since each
vertex is deleted at most once, the data structure can be constructed and maintained in
total time O(m). Announcing the new SCCs after deleting the bad vertices at Line 9 is in
O(Td) = Õ(m) total time by Corollary 2. Consider an iteration of the while loop at Line 4:
A set S is removed from Q. Let us denote by n′ the number of vertices of S. If G[S] does
not contain any edge after the removal of bad vertices, then S is not considered further
by the algorithm. Otherwise, the for-loop at Line 12 considers all new SCCs. Note the
we can implement the for-loop in a lockstep fashion: In each step for each SCC we access
the i-th vertex and as soon as all of the vertices of an SCC are accessed we add it to the
list K. When only one SCC is left we compute its size using the original set S and the
sizes of the other SCCs. If its size is at most |S|/2 we add it to K. Note that this can be
done in time proportional to the number of vertices in the SCCs in S of size at most |S|/2.
The sorting operation at Line 15 takes time O(|K| log |K|) plus the size of all the SCCs in
K, that is

∑
Ki∈K |Ki|. Note that O(|K| log |K|) = O((

∑
Ki∈K |Ki|) log(

∑
Ki∈K |Ki|)). Let

Ki ∈ K be an SCC stored in K. Note that during the algorithm each vertex can appear at
most log(n) times in the list K. This is by the fact that K only contains SCCs that are at
most half the size of the original set S. We obtain a running time bound of O(n(logn)2)
for Lines 12-15.

K. Chatterjee, W. Dvořák, M. Henzinger, and A. Svozil 7:9

Consider the second for-loop at Line 17: Let |X| = n1. The operations Remove(·) and
Construct(·) are called once per found SCC G[X] with X 6= S and take by Lemma 3
O(|X| + bits(X)) time. Whenever a vertex is in X, the size of the set in Q containing v
originally is reduced by at least a factor of two due to the fact that |X| = n1 ≤ n′/2. This
happens at most dlogne times. By charging O(1) to the vertices in X and, respectively, to
bits(X), the total running time for Lines 21 & 22 can be bounded by O((n + b) logn) as
each vertex and bit is only charged O(logn) times. Combining all parts yields the claimed
running time bound of O(Td + b logn+ n log2 n) = Õ(m+ b). J

The correctness of the algorithm is similar to the analysis given in [11, Lemmas 3.6 & 3.7]
except that we additionally have to prove that SCCs(S) holds the SCCs of G[S]. Lemma 5
shows that we maintain SCCs(S) properly for all the data structures in Q.

I Lemma 5. After each iteration of the outer while-loop every non-trivial SCC of the
current graph is contained in one of the subgraphs G[S] for which the data structure D(S) is
maintained in Q and SCCs(S) stores a list of all SCCs contained in S.

We prove the next Lemma by showing that we never remove edges of vertices of good
components.

I Lemma 6. After each iteration of the outer while-loop every good component of the
input graph is contained in one of the subgraphs G[S] for which the data structure D(S) is
maintained in the list Q.

I Proposition 7. Algorithm 1 outputs a good component if one exists, otherwise the algorithm
reports that no such component exists.

Proof. First consider the case where Algorithm 1 outputs a subgraph G[S]. We show that
G[S] is a good component: Line 10 ensures only non-trivial SCSs are considered. After the
removal of bad vertices from S in Lines 6-9, we know that for all 1 ≤ j ≤ k that Uj ∩S 6= ∅ if
S∩Lj 6= ∅. Due to Line 13 there is only one SCC in G[S] and thus G[S] is a good component.
Second, if Algorithm 1 terminates without a good component, by Lemma 6, we have that
the initial graph has no good component and thus the result is correct as well. J

The running time bounds for the decremental SCC algorithm of [4] (cf. Corollary 2)
only hold against an oblivious adversary. Thus we have to show that in our algorithm the
sequence of edge deletions does not depend on the random choices of the decremental SCC
algorithm. The key observation is that only the order of the computed SCCs depends on the
random choices of the decremental SCC and we eliminate this effect by sorting the SCCs.

I Proposition 8. The sequence of deleted edges does not depend on the random choices of
the decremental SCC Algorithm but only on the given instance.

Due to Lemma 4, Lemma 7 and Proposition 8 we obtain the following result.

I Theorem 9. In a graph, the winning set for a k-pair Streett objective can be computed in
Õ(m+ b) expected time.

5 Algorithms for MDPs

In this section, we present expected near-linear time algorithms for computing a MEC
decomposition, deciding almost-sure reachability and maintaining a MEC decomposition in
a decremental setting. In the last section, we present an algorithm for MDPs with Streett
objectives by using the new algorithm for the decremental MEC decomposition.

CONCUR 2019

7:10 Near-Linear Time Algorithms for Streett Objectives in Graphs and MDPs

Random attractor. First, we introduce the notion of a random attractor attrR(T) for a set
T ⊆ V . The random attractor A = attrR(T) is defined inductively as follows: A0 = T and
Ai+1 = Ai ∪ {v ∈ VR | Out(v) ∩Ai 6= ∅} ∪ {v ∈ V1 | Out(v) ⊆ Ai} for all i > 0. Given a set
T , the random attractor includes all vertices (1) in T , (2) random vertices with an edge to
Ai, (3) player-1 vertices with all outgoing edges in Ai. Due to [21, 3] we can compute the
random attractor A = attrR(S) of a set S in time O(

∑
v∈A In(v)).

5.1 Maximal End-Component Decomposition
In this section, we present an expected near linear time algorithm for MEC decomposition.
Our algorithm is an efficient implementation of the static algorithm presented in [9, p. 29]:
The difference is that the bottom SCCs are computed with a dynamic SCC algorithm instead
of recomputing the static SCC algorithm. A similar algorithm was independently proposed
in an unpublished extended version of [12].

Algorithm Description. The MEC algorithm described in Algorithm 2 repeatedly removes
bottom SCCs and the corresponding random attractor. After removing bottom SCCs the
new SCC decomposition with its bottom SCCs is computed using a dynamic SCC algorithm.

Algorithm 2: MEC Algorithm.
Input: MDP P = (V,E, 〈V1, VR〉, δ), decremental SCC algorithm A

1 Invoke an instance A of the decremental SCC algorithm;
2 Compute the SCC-decomposition of G = (V,E): C = {C1, . . . , C`} ;
3 Let M = ∅; Q← {Ci ∈ C | Ci has no outgoing edges};
4 while Q is not empty do
5 C ← ∅;
6 for Ck ∈ Q do C ← C ∪ Ck; M ←M ∪ {Ck} ;
7 A← attrR(C);
8 Q← A.deleteAnnounceNoOutgoing(E(A));
9 return M ;

Correctness follows because our algorithm just removes attractors of bottom SCCs and
marks bottom SCCs as MECs. This is precisely the second static algorithm presented in [9,
p. 29] except that the bottom SCCs are computed using a dynamic data structure. By using
the decremental SCC algorithm described in Subsection 3 we obtain the following lemma.

I Lemma 10. Algorithm 2 returns the MEC-decomposition of an MDP P in expected
time Õ(m).

Proof. The running time of algorithm A is in total time O(Td) = Õ(m) by Theorem 1 and
Corollary 2. Initially, computing the SCC decomposition and determining the SCCs with
no outgoing edges takes time O(m+ n) by using [27]. Each time we compute the attractor
of a bottom SCC Ck at Line 7 we remove it from the graph by deleting all its edges and
never process these edges and vertices again. Since we can compute the attractor A at Line 7
in time O(

∑
v∈A In(A)), we need O(m+ n) total time for computing the attractors of all

bottom SCCs. Hence, the running time is dominated by the decremental SCC algorithm A,
which is O(Td) = Õ(m). J

The algorithm uses O(m+ n) space due to the fact that the decremental SCC algorithm
A uses O(m+ n) space and Q only contains vertices.

K. Chatterjee, W. Dvořák, M. Henzinger, and A. Svozil 7:11

I Theorem 11. Given an MDP the MEC-decomposition can be computed in Õ(m) expected
time. The algorithm uses O(m+ n) space.

Note that we can use the decremental SCC Algorithm A of [4] even though this algorithm
only works against an oblivious adversary as the sequence of deleted edges does not depend
on the random choices of the decremental SCC Algorithm.

5.2 Almost-Sure Reachability
In this section, we present an expected near linear-time algorithm for the almost-sure
reachability problem. In the almost-sure reachability problem, we are given an MDP P and
a target set T and we ask for which vertices player 1 has a strategy to reach T almost surely,
i.e., 〈〈1〉〉a.s.(Reach(T)). Due to [5, Theorem 4.1] we can determine the set 〈〈1〉〉a.s.(Reach(T))
in time O(m+ MEC) where MEC is the running time of the fastest MEC algorithm. We use
Theorem 11 to compute the MEC decomposition and obtain the following theorem.

I Theorem 12. Given an MDP and a set of vertices T we can compute 〈〈1〉〉a.s.(Reach(T))
in Õ(m) expected time.

5.3 Decremental Maximal End-Component Decomposition
We present an expected near-linear time algorithm for the MEC-decomposition which supports
player-1 edge deletions and a query that answers if two vertices are in the same MEC. We
need the following lemma from [7] to prove the correctness of our algorithm. Given an SCC
C we consider the set U of the random vertices in C with edges leaving C. The lemma states
that for all non-trivial MECs X in P the intersection with U is empty, i.e., attrR(U)∩X = ∅.

I Lemma 13 (Lemma 2.1(1), [7]). Let C be an SCC in P . Let U = {v ∈ C ∩ VR |
E(v)∩ (V \C) 6= ∅} be the random vertices in C with edges leaving C. Let Z = attrR(U)∩C.
Then for all non-trivial MECs X in P we have Z ∩X = ∅ and for any edge (u, v) with u ∈ X
and v ∈ Z, u must belong to V1.

The pure MDP graph PP of an MDP P = (V,E, 〈V1, VR〉, δ) is the graph which contains
only edges in non-trivial MECs of P . More formally, the pure MDP graph PP is defined
as follows: Let M1, . . .Mk be the set of MECs of P . PP = (V P , EP , 〈V P1 , V PR 〉, δP) where
V P = V, V P1 = V1, V

P
R = VR, EP =

⋃k
i=1{(u, v) ∈ E ∩ (Mi ×Mi)} and for each v ∈ VR:

δP (v) the uniform distribution over vertices u with (v, u) ∈ EP .
Throughout the algorithm, we maintain the pure MDP graph PP for an input MDP P .

Note that every non-trivial SCC in PP is also a MEC due to the fact that there are only
edges inside of MECs. Moreover, a trivial SCC {v} is a MEC iff v ∈ V1. Note furthermore
that when a player-1 edge of an MDP P is deleted, existing MECs might split up into several
MECs but no new vertices are added to existing MECs.

Initially, we compute the MEC-decomposition in Õ(m) expected time using the algorithm
described in Section 5.1. Then we remove every edge that is not in a MEC. The resulting
graph is the pure MDP graph PP . Additionally, we invoke a decremental SCC algorithm
A which is able to (1) announce new SCCs under edge deletions and return a list of their
vertices and (2) is able to answer queries that ask whether two vertices v, u belong to the
same SCC. When an edge (u, v) is deleted, we know that (i) the MEC-decomposition stays
the same or (ii) one MEC splits up into new MECs and the rest of the decomposition stays
the same. We first check if u and v are in the same MEC, i.e., if it exists in PP . If not,
we are done. Otherwise, u and v are in the same MEC C and either (1) the MEC C does

CONCUR 2019

7:12 Near-Linear Time Algorithms for Streett Objectives in Graphs and MDPs

C2

C1

attrR(U2)

C2

C1

Figure 2 We delete an edge which splits the MEC into two new SCCs C1 and C2. The SCC C2

is not a MEC. We thus compute and remove the attractor of U2 and the resulting SCC is a MEC.

not split or (2) the MEC C splits. In the case of (1) the SCCs of the pure MDP graph
PP remain intact and nothing needs to be done. In the case of (2) we need to identify the
new SCCs C1, . . . , Ck in PP using the decremental SCC algorithm A. Let, w.l.o.g., C1 be
the SCC with the most vertices. We iterate through every edge of the vertices in the SCCs
C2, . . . , Ck. By considering all the edges, we identify all SCCs (including C1) which are also
MECs. We remove all edges (y, z) where y and z are not in the same SCC to maintain the
pure MDP graph PP . For the SCCs that are not MECs let U be the set of random vertices
with edges leaving its SCC. We compute and remove A = attrR(U) (these vertices belong to
no MEC due to Lemma 13) and recursively start the procedure on the new SCCs generated
by the deletion of the attractor. The algorithm is illustrated in Figure 2.
Lemma 14 describes the key invariants of the while-loop at Line 3. We prove it with a
straightforward induction on the number of iterations of the while-loop and apply Lemma 13.

I Lemma 14. Assume that A maintains the pure MDP graph PP before the deletion of
e = (u, v) then the while-loop at Line 3 maintains the following invariants:
1. For the graph stored in A and all lists of SCCs {C1, . . . , Ck} in K there are only edges

inside the SCCs or between the SCCs in the list, i.e., for each (x, y) ∈
⋃k
j=0 E[Cj] we

have x, y ∈
⋃k
j=0 Cj.

2. If a non-trivial SCC of the graph in A is not a MEC of the current MDP it is in K.
3. If M is a MEC of the current MDP then we do not delete an edge of M in the while-loop.

I Proposition 15. Algorithm 3 maintains the pure MDP graph PP in the data structure A
under player-1 edge deletions.

Proof. We show that after deleting an edge using Algorithm 3 (i) every non-trivial SCC is a
MEC and vice-versa, and (ii) there are no edges going from one MEC to another. Initially,
we compute the pure MDP graph and both conditions are fulfilled.

When we delete an edge and the while-loop at Line 3 terminates (i) is true due to
Lemma 14(2,3). That is, as we never delete edges within MECs they are still strongly
connected and when the while-loop terminates, K = ∅ which means that all SCCs are MECs.

For (ii) notice that each SCC is once processed as a List J . Consider an arbitrary SCC
Ci and the corresponding list of SCCs J = {C1, . . . , Ck} of the iteration in which Ci was
identified as a MEC. By Lemma 14(1) there are no edges to SCCs not in the list. Additionally,
due to Line 10 we remove all edges from Ci to other SCCs in J . J

Now that we maintain the pure MDP graph PP in A, we can answer MEC queries of the
form: query(u, v): Returns whether u and v are in the same MEC in P , by an SCC query
A.query(u, v) on the pure MDP graph PP .

K. Chatterjee, W. Dvořák, M. Henzinger, and A. Svozil 7:13

Algorithm 3: Decremental MEC-update.
Input: Player-1 Edge e = (u, v)

1 if A.query(u, v) = true then
2 List K ← {A.deleteAnnounce((u, v))};
3 while K 6= ∅ do
4 pull a list J of SCCs from K and let C1 be the largest SCC;
5 {C1, . . . Ck} ← Sort all SCCs in J except C1 by the smallest vertex id.;
6 MECC1 = True, U1 ← ∅;
7 for i = 2; i ≤ k; i++ do
8 MECCi = True, Ui ← ∅;
9 for e = (s, t) where e ∈ E(Ci) do

10 if (s /∈ Ci) ∨ (t /∈ Ci) then A.delete(e) ;
11 if (s ∈ VR ∧ t /∈ Ci) then MECCi = False; Ui ← Ui ∪ {s} ;
12 if (s ∈ VR ∧ s ∈ C1) then MECC1 = False; U1 ← U1 ∪ {s} ;
13 if MECCi = False then
14 A← attrR(Ui) ∩ Ci;
15 J ← A.deleteAnnounce(E(A)) \

(⋃
a∈A
A.rep(a)

)
;

16 if J 6= ∅ then K ← K ∪ {J} ;
17 if MECC1 = False then
18 A← attrR(U1) ∩ C1;
19 J ← A.deleteAnnounce(E(A)) \

(⋃
a∈A
A.rep(a)

)
;

20 if J 6= ∅ then K ← K ∪ {J} ;

The key idea for the running time of Algorithm 3 is that we do not look at edges of the
largest SCCs but the new SCC decomposition by inspecting the edges of the smaller SCCs.
Note that we identify the largest SCC by processing the SCCs in a lockstep manner. This
can only happen dlogne times for each edge. Additionally, when we sort the SCCs, we only
look at the vertex ids of the smaller SCCs and when we charge this cost to the vertices we
need O(n log2 n) additional time.

I Proposition 16. Algorithm 3 maintains the MEC-decomposition of P under player-1 edge
deletions in expected total time Õ(m). Algorithm 3 answers queries that ask whether two
vertices v, u belong to the same MEC in O(1). The algorithm uses O(m+ n) space.

Due to the fact that the decremental SCC algorithm we use in Corollary 2 only works
for an oblivious adversary, we prove the following proposition. The key idea is that we sort
SCCs returned by the decremental SCC Algorithm. Thus, the order in which new SCCs are
returned does only depend on the given instance.

I Proposition 17. The sequence of deleted edges does not depend on the random choices of
the decremental SCC Algorithm but only on the given instance.

The algorithm presented in [4] fulfills all the conditions of Proposition 16 due to Corollary 2.
Therefore we obtain the following theorem due to Proposition 15 and Proposition 16.

I Theorem 18. Given an MDP with n vertices and m edges, the MEC-decomposition can
be maintained under the deletion of O(m) player-1 edges in total expected time Õ(m) and we
can answer queries that ask whether two vertices v, u belong to the same MEC in O(1) time.
The algorithm uses O(m+ n) space. The bound holds against an oblivious adversary.

CONCUR 2019

7:14 Near-Linear Time Algorithms for Streett Objectives in Graphs and MDPs

5.4 MDPs with Streett Objectives

Similar to graphs we compute the winning region of Streett objectives with k pairs (Li, Ui)
(for 1 ≤ i ≤ k) for an MDP P as follows:
1. We compute the MEC-decomposition of P .
2. For each MEC, we find good end-components, i.e., end-components where Li ∩X = ∅ or

Ui ∩X 6= ∅ for all 1 ≤ i ≤ k and label the MEC as satisfying.
3. We output the set of vertices that can almost-surely reach a satisfying MECs.
For 2., we find good end-components similar to how we find good components as in Section 4.
The key idea is to use the decremental MEC-Algorithm described in Section 5.3 instead of
the decremental SCC Algorithm. We modify the Algorithm presented in Section 4 as follows
to detect good end-components: First, we use the decremental MEC-algorithm instead of the
decremental SCC Algorithm. Towards this goal, we augment the decremental MEC-algorithm
with a function to return a list of references to the new MECs when we delete a set of edges.
Second, the decremental MEC-algorithm does not allow the deletion of arbitrary edges, but
only player-1 edges. To overcome this obstacle, we create an equivalent instance where we
remove player-1 edges when we remove “bad” vertices.

I Lemma 19. Given an MDP P = (V,E, 〈V1, VR〉, δ) with m edges and n vertices, we can
maintain a data structure that supports the operation

deleteAnnounce(E): Deletes the set of E of player-1 edges (u, v) from the MDP P . If the
edge deletion creates new MECs C1, . . . , Ck the operation returns a list Q = {C1, . . . , Ck}
of references to the new non-trivial MECs.

in total expected update time Õ(m). The bound holds against an oblivious adaptive adversary.

Deleting bad vertices. As the decremental MEC-algorithm only allows deletion of player-
1 edges, we first modify the original instance P = (V,E, 〈V1, VR〉, δ) to a new instance
P ′ = (V ′, E′, 〈V ′1 , V ′R〉, δ′) such that we can remove bad vertices by deleting player-1 edges
only. In P ′ each vertex v ∈ Vx for x ∈ {1, R} is split into two vertices vin ∈ V ′1 and vout ∈ V ′x
such that E′ = {(uout, vin) | (u, v) ∈ E} ∪ {(vin, vout) | v ∈ V } and L′i = {vin ∈ V ′ | v ∈ Li}
and U ′i = {vout ∈ V ′ | v ∈ Ui} for all 1 ≤ i ≤ k. The new probability distribution
is δ′(vout)[win] = δ(v)[w] for v ∈ VR and w ∈ Out(v). Note that for each v ∈ VR the
corresponding vertex vout ∈ V ′R has the same probabilities to reach the representation vout
of a vertex as v. The described reduction allows us to remove bad vertices from MECs by
removing the player-1 edge (vin, vout).

The key idea for the following lemma is that for each original vertex v ∈ V either both
vin and vout are part of a good end-component or none of them. Note that the only way that
vin and vout are strongly connected is when the other vertex is also in the strongly connected
component because vin (vout) has only one outgoing (incoming) edges to vout (from vin).

I Lemma 20. There is a good end-component in the modified instance P ′ iff there is a good
component in the original instance P .

On the modified instance P ′ the algorithm for MDPs is identical to Algorithm 1 except that
we use a dynamic MEC algorithm instead of a dynamic SCC algorithm.

I Theorem 21. In an MDP the winning set for a k-pair Street objectives can be computed
in Õ(m+ b) expected time.

K. Chatterjee, W. Dvořák, M. Henzinger, and A. Svozil 7:15

References
1 R. Alur and T.A. Henzinger. Computer-Aided Verification. unpublished., 2004. URL: https:

//web.archive.org/web/20041207121830/http://www.cis.upenn.edu/group/cis673/.
2 C. Baier and J.P. Katoen. Principles of model checking. MIT Press, 2008.
3 C. Beeri. On the Membership Problem for Functional and Multivalued Dependencies in

Relational Databases. ACM Trans. Database Syst., 5(3):241–259, 1980. doi:10.1145/320613.
320614.

4 A. Bernstein, M. Probst, and C. Wulff-Nilsen. Decremental Strongly-Connected Components
and Single-Source Reachability in Near-Linear Time. In STOC, pages 365–376, 2019. doi:
10.1145/3313276.3316335.

5 K. Chatterjee, W. Dvořák, M. Henzinger, and V. Loitzenbauer. Model and Objective Separation
with Conditional Lower Bounds: Disjunction is Harder than Conjunction. In LICS, pages
197–206, 2016. doi:10.1145/2933575.2935304.

6 K. Chatterjee, A. Gaiser, and J. Kretínský. Automata with Generalized Rabin Pairs for
Probabilistic Model Checking and LTL Synthesis. In CAV, pages 559–575, 2013. doi:
10.1007/978-3-642-39799-8_37.

7 K. Chatterjee and M. Henzinger. Faster and Dynamic Algorithms for Maximal End-Component
Decomposition and Related Graph Problems in Probabilistic Verification. In SODA, pages
1318–1336, 2011. doi:10.1137/1.9781611973082.101.

8 K. Chatterjee and M. Henzinger. An O(n2) Time Algorithm for Alternating Büchi Games. In
SODA, pages 1386–1399, 2012. URL: http://portal.acm.org/citation.cfm?id=2095225&
CFID=63838676&CFTOKEN=79617016.

9 K. Chatterjee and M. Henzinger. Efficient and Dynamic Algorithms for Alternating Büchi
Games and Maximal End-Component Decomposition. J. ACM, 61(3):15.1–15.40, 2014. doi:
10.1145/2597631.

10 K. Chatterjee, M. Henzinger, and V. Loitzenbauer. Improved Algorithms for One-Pair and
k-Pair Streett Objectives. In LICS, pages 269–280, 2015. doi:10.1109/LICS.2015.34.

11 K. Chatterjee, M. Henzinger, and V. Loitzenbauer. Improved Algorithms for Parity and Streett
objectives. Logical Methods in Computer Science, 13(3):1–27, 2017. doi:10.23638/LMCS-13(3:
26)2017.

12 S. Chechik, T. D. Hansen, G. F. Italiano, J. Lacki, and N. Parotsidis. Decremental Single-
Source Reachability and Strongly Connected Components in Õ(m

√
n) Total Update Time. In

FOCS, pages 315–324, 2016. doi:10.1109/FOCS.2016.42.
13 F. Ciesinski and C. Baier. LiQuor: A Tool for Qualitative and Quantitative Linear Time

Analysis of Reactive Systems. In QEST, pages 131–132, 2006. doi:10.1109/QEST.2006.25.
14 A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. NUSMV: A new Symbolic Model Checker.

International Journal on Software Tools for Technology Transfer (STTT), 2(4):410–425, 2000.
doi:10.1007/s100090050046.

15 E. M. Clarke, Jr., O. Grumberg, and D. A. Peled. Model Checking. MIT Press, Cambridge,
MA, USA, 1999.

16 C. Courcoubetis and M. Yannakakis. The Complexity of Probabilistic Verification. J. ACM,
42(4):857–907, 1995. doi:10.1145/210332.210339.

17 C. Dehnert, S. Junges, J.P. Katoen, and M. Volk. A Storm is Coming: A Modern Probabilistic
Model Checker. In CAV, pages 592–600, 2017. doi:10.1007/978-3-319-63390-9_31.

18 J. Esparza and J. Kretínský. From LTL to Deterministic Automata: A Safraless Compositional
Approach. In CAV, pages 192–208, 2014. doi:10.1007/978-3-319-08867-9_13.

19 M. Rauch Henzinger and J. A. Telle. Faster Algorithms for the Nonemptiness of Streett
Automata and for Communication Protocol Pruning. In SWAT, pages 16–27, 1996. doi:
10.1007/3-540-61422-2_117.

20 G. J. Holzmann. The Model Checker SPIN. IEEE Trans. Softw. Eng., 23(5):279–295, 1997.
doi:10.1109/32.588521.

CONCUR 2019

https://web.archive.org/web/20041207121830/http://www.cis.upenn.edu/group/cis673/
https://web.archive.org/web/20041207121830/http://www.cis.upenn.edu/group/cis673/
http://dx.doi.org/10.1145/320613.320614
http://dx.doi.org/10.1145/320613.320614
http://dx.doi.org/10.1145/3313276.3316335
http://dx.doi.org/10.1145/3313276.3316335
http://dx.doi.org/10.1145/2933575.2935304
http://dx.doi.org/10.1007/978-3-642-39799-8_37
http://dx.doi.org/10.1007/978-3-642-39799-8_37
http://dx.doi.org/10.1137/1.9781611973082.101
http://portal.acm.org/citation.cfm?id=2095225&CFID=63838676&CFTOKEN=79617016
http://portal.acm.org/citation.cfm?id=2095225&CFID=63838676&CFTOKEN=79617016
http://dx.doi.org/10.1145/2597631
http://dx.doi.org/10.1145/2597631
http://dx.doi.org/10.1109/LICS.2015.34
http://dx.doi.org/10.23638/LMCS-13(3:26)2017
http://dx.doi.org/10.23638/LMCS-13(3:26)2017
http://dx.doi.org/10.1109/FOCS.2016.42
http://dx.doi.org/10.1109/QEST.2006.25
http://dx.doi.org/10.1007/s100090050046
http://dx.doi.org/10.1145/210332.210339
http://dx.doi.org/10.1007/978-3-319-63390-9_31
http://dx.doi.org/10.1007/978-3-319-08867-9_13
http://dx.doi.org/10.1007/3-540-61422-2_117
http://dx.doi.org/10.1007/3-540-61422-2_117
http://dx.doi.org/10.1109/32.588521

7:16 Near-Linear Time Algorithms for Streett Objectives in Graphs and MDPs

21 N. Immerman. Number of Quantifiers is Better Than Number of Tape Cells. J. Comput. Syst.
Sci., 22(3):384–406, 1981. doi:10.1016/0022-0000(81)90039-8.

22 Z. Komárková and J. Kretínský. Rabinizer 3: Safraless Translation of LTL to Small Determin-
istic Automata. In ATVA, pages 235–241, 2014. doi:10.1007/978-3-319-11936-6_17.

23 M. Z. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of Probabilistic
Real-Time Systems. In CAV, pages 585–591, 2011. doi:10.1007/978-3-642-22110-1_47.

24 Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Progress (Draft), 1996.
URL: http://theory.stanford.edu/~zm/tvors3.html.

25 S. Safra. On the Complexity of ω-Automata. In FOCS, pages 319–327, 1988. doi:10.1109/
SFCS.1988.21948.

26 R. Segala. Modeling and Verification of Randomized Distributed Real-Time Systems. PhD
thesis, MIT, 1995.

27 R. Tarjan. Depth-First Search and Linear Graph Algorithms. SIAM J. Comput., 1(2):146–160,
1972.

28 M. Y. Vardi. Automatic Verification of Probabilistic Concurrent Finite-State Programs. In
FOCS, pages 327–338, 1985. doi:10.1109/SFCS.1985.12.

http://dx.doi.org/10.1016/0022-0000(81)90039-8
http://dx.doi.org/10.1007/978-3-319-11936-6_17
http://dx.doi.org/10.1007/978-3-642-22110-1_47
http://theory.stanford.edu/~zm/tvors3.html
http://dx.doi.org/10.1109/SFCS.1988.21948
http://dx.doi.org/10.1109/SFCS.1988.21948
http://dx.doi.org/10.1109/SFCS.1985.12

Life Is Random, Time Is Not: Markov Decision
Processes with Window Objectives
Thomas Brihaye
UMONS – Université de Mons, Belgium

Florent Delgrange
UMONS – Université de Mons, Belgium
RWTH Aachen, Germany

Youssouf Oualhadj
LACL – UPEC, Paris, France

Mickael Randour
F.R.S.-FNRS & UMONS – Université de Mons, Belgium

Abstract
The window mechanism was introduced by Chatterjee et al. [17] to strengthen classical game
objectives with time bounds. It permits to synthesize system controllers that exhibit acceptable
behaviors within a configurable time frame, all along their infinite execution, in contrast to the
traditional objectives that only require correctness of behaviors in the limit. The window concept
has proved its interest in a variety of two-player zero-sum games, thanks to the ability to reason
about such time bounds in system specifications, but also the increased tractability that it usually
yields. In this work, we extend the window framework to stochastic environments by considering
the fundamental threshold probability problem in Markov decision processes for window objectives.
That is, given such an objective, we want to synthesize strategies that guarantee satisfying runs
with a given probability. We solve this problem for the usual variants of window objectives, where
either the time frame is set as a parameter, or we ask if such a time frame exists. We develop a
generic approach for window-based objectives and instantiate it for the classical mean-payoff and
parity objectives, already considered in games. Our work paves the way to a wide use of the window
mechanism in stochastic models.

2012 ACM Subject Classification Software and its engineering → Formal methods; Theory of
computation → Logic and verification; Theory of computation → Markov decision processes

Keywords and phrases Markov decision processes, window mean-payoff, window parity

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2019.8

Related Version Full version available at https://arxiv.org/abs/1901.03571.

Funding Research supported by F.R.S.-FNRS, Grant n◦ F.4520.18 (ManySynth), and F.R.S.-FNRS
mobility funding for scientific missions (Y. Oualhadj in UMONS, 2018).
Mickael Randour : F.R.S.-FNRS Research Associate.

1 Introduction

Game-based models for controller synthesis. Two-player zero-sum games [28, 35] and
Markov decision processes (MDPs) [26, 4, 36] are two popular frameworks to model decision
making in adversarial and uncertain environments respectively. In the former, a system
controller and its environment compete antagonistically, and synthesis aims at building
strategies for the controller ensuring a specified behavior against all possible strategies of
the environment. In the latter, the system is faced with a given stochastic model of its
environment, and the focus is on satisfying a given level of expected performance, or a

© Thomas Brihaye, Florent Delgrange, Youssouf Oualhadj, and Mickael Randour;
licensed under Creative Commons License CC-BY

30th International Conference on Concurrency Theory (CONCUR 2019).
Editors: Wan Fokkink and Rob van Glabbeek; Article No. 8; pp. 8:1–8:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.CONCUR.2019.8
https://arxiv.org/abs/1901.03571
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Life Is Random, Time Is Not: Markov Decision Processes with Window Objectives

specified behavior with a sufficient probability. Classical objectives studied in both settings
include parity, a canonical way of encoding ω-regular specifications, and mean-payoff, which
evaluates the average payoff per transition in the limit of an infinite run in a weighted graph.

Window objectives in games. The traditional parity and mean-payoff objectives share two
shortcomings. First, they both reason about infinite runs in their limit. While this elegant
abstraction yields interesting theoretical properties and makes for robust interpretation, it is
often beneficial in practical applications to be able to specify a parameterized time frame in
which an acceptable behavior should be witnessed. Second, both parity and mean-payoff
games belong to UP ∩ coUP [34, 27], but despite recent breakthroughs [16, 22], they are
still not known to be in P. Furthermore, the latest results [21, 25] indicate that all existing
algorithmic approaches share inherent limitations that prevent inclusion in P.

Window objectives address the time frame issue as follows. In their fixed variant, they
consider a window of size bounded by λ ∈ N0 (given as a parameter) sliding over an infinite
run and declare this run to be winning if, in all positions, the window is such that the (mean-
payoff or parity) objective is locally satisfied. In their bounded variant, the window size is not
fixed a priori, but a run is winning if there exists a bound λ for which the condition holds.
Window objectives have been considered both in direct versions, where the window property
must hold from the start of the run, and prefix-independent versions, where it must hold from
some point on. Window games were initially studied for mean-payoff [17] and parity [14].
They have since seen diverse extensions and applications: e.g., [5, 3, 11, 15, 32, 38].

Window objectives in MDPs. Our goal is to lift the theory of window games to the
stochastic context. With that in mind, we consider the canonical threshold probability
problem: given an MDP, a window objective defining a set of acceptable runs E, and a
probability threshold α, we want to decide if there exists a controller strategy (also called
policy) to achieve E with probability at least α. It is well-known that many problems in
MDPs can be reduced to threshold problems for appropriate objectives: e.g., maximizing
the expectation of a prefix-independent function boils down to maximizing the probability to
reach the best end-components for that function (see examples in [4, 13, 37]).

Example. Before going further, let us consider an example. Take the MDP depicted in
Fig. 1(a): circles depict states and dots depict actions, labeled by letters. Each action
yields a probability distribution over successor states: for example, action b leads to s2 with
probability 0.5 and s3 with the same probability. This MDP is actually a Markov chain (MC)
as the controller has only one action available in each state: this process is purely stochastic.

We consider the parity objective here: each state is associated with a non-negative integer
priority and a run is winning if the minimum one amongst those seen infinitely often is even.
Clearly, any run in this MC is winning: either it goes through s3 infinitely often and the
min. priority is 0, or it does not, and the min. priority seen infinitely often is 2. Hence the
controller not only wins almost-surely (with probability one), but even surely (on all runs).

Now, consider the window parity objective that informally asks for the minimum priority
inside a window of size bounded by λ to be even, with this window sliding all along the
infinite run. Fix any λ ∈ N0. It is clear that every time s1 is visited, there will be a fixed
strictly positive probability ε > 0 of not seeing 0 before λ steps: this probability is 1/2λ−1.
Let us call this seeing a bad window. Since we are in a bottom strongly connected component
of the MC, we will almost-surely visit s1 infinitely often [4]. Using classical probability
arguments (Borel-Cantelli), one can easily be convinced that the probability to see bad

T. Brihaye, F. Delgrange, Y. Oualhadj, and M. Randour 8:3

(a)

s1

1
s2

2

s3

0

a

bc

1

1 0.5

0.5

(b) s

1
t

0
a

b

0.5
0.5 1

Figure 1 Markov chains where (a) parity is surely satisfied but all window parity objectives have
probability zero, and (b) there is no uniform bound over all runs, in contrast to the game setting.

windows infinitely often is one. Hence the probability to win the window parity objective is
zero. This canonical example illustrates the difference between traditional parity and window
parity: the latter is more restrictive as it asks for a strict bound on the time frame in which
each odd priority should be answered by a smaller even priority.

Note that in practice, such a behavior is often wished for. For example, consider a
computer server having to grant requests to clients. A classical parity objective can encode
that requests should eventually be granted. However, it is clear that in a desired controller,
requests should not be placed on hold for an arbitrarily long time. The existence of a finite
bound on this holding time can be modeled with a bounded window parity objective, while a
specific bound can also be set as a parameter using a fixed window parity objective.

Our contributions. We study the threshold probability problem in MDPs for window ob-
jectives based on parity and mean-payoff, two prominent formalisms in qualitative and
quantitative (resp.) analysis of systems. We consider the different variants of window objec-
tives mentioned above: fixed vs. bounded, direct vs. prefix-independent. A nice feature of our
approach is that we provide a unified view of parity and mean-payoff window objectives: our
algorithm can actually be adapted for any window-based objective if an appropriate black-box
is provided for a restricted sub-problem. This has two advantages: (i) conceptually, our
approach permits a deeper understanding of the essence of the window mechanism, not biased
by technicalities of the specific underlying objective; (ii) our framework can easily be extended
to other objectives for which a window version could be defined. This point is of great
practical interest too, as it opens the perspective of a modular, generic software tool suite
for window objectives.

For the sake of space, we use acronyms below: DFW for direct fixed window, FW for
(prefix-independent) fixed window, DBW for direct bounded window, and BW for (prefix-
independent) bounded window. Our main contributions are as follows.
1. We solve DFW MDPs through reductions to safety MDPs over well-chosen unfoldings.

This results in polynomial-time and pseudo-polynomial-time algorithms for the parity
and mean-payoff variants respectively. We prove these complexities to be almost tight
(Thm. 5), the most interesting case being the PSPACE-hardness of DFW mean-payoff
objectives, even in the case of acyclic MDPs.
We also show that no upper bound can be established on the window size needed to win
in general (Ex. 3), in stark contrast to the two-player games situation (Rmk. 2).

2. We use similar reductions to prove that finite memory suffices in the prefix-independent
case (Thm. 4). In this case, we can do better than using unfoldings to solve the problem.
We study end-components (ECs), the crux for all prefix-independent objectives in MDPs:
we show that ECs can be classified based on their two-player zero-sum game interpretation
(Sect. 5). Using the result on finite memory, we prove that in ECs classified as good,
almost-sure satisfaction of window objectives can be ensured, whereas it is impossible to

CONCUR 2019

8:4 Life Is Random, Time Is Not: Markov Decision Processes with Window Objectives

satisfy them with non-zero probability in other ECs (Lem. 10). We also establish tight
complexity bounds for this classification problem (Thm. 15). This EC classification is
(conceptually and complexity-wise) the cornerstone to deal with general MDPs.

3. Our general algorithm is developed in Sect. 6: we prove P-completeness for all prefix-
independent variants but for the BW mean-payoff one (Thm. 17), where we show that the
problem is in NP ∩ coNP and as hard as mean-payoff games, a canonical “hard” problem
for that complexity class.

4. For all variants, we prove tight memory bounds: see Thm. 5 for the direct fixed variants,
Thm. 17 for the prefix-independent fixed and bounded ones. In all cases, pure strategies
(i.e., without randomness) suffice.

5. We leave out DBW objectives from our analysis as we show they are not well-behaved.
We illustrate their behavior in Sect. 3 and discuss their pitfalls in Sect. 7.

Along the way, we develop side results that help drawing a line between MDPs and games
w.r.t. window objectives: e.g., the existence of a uniform bound in the bounded case (Rmk. 2).

In the game setting, window objectives are all in polynomial time, except for the BW
mean-payoff variant, in NP ∩ coNP. Despite clear differences in behaviors, the situation is
almost the same here. The only outlier case is the DFW mean-payoff one, whose complexity
rises significantly (Thm. 5): the loss of prefix-independence permits to emulate shortest
path problems on MDPs, famously hard to solve efficiently (e.g., [30, 37, 9, 31]). In the
almost-sure case, however, DFW mean-payoff MDPs collapse to P (Rmk. 6).

In games, window objectives permit to avoid long-standing NP∩coNP complexity barriers
for parity [14] and mean-payoff [17]. Since both are known to be in P for the threshold
probability problem in MDPs [20, 37], the main interest of window objectives resides in
their modeling power. Still, they may turn out to be more efficient in practice too, as
polynomial-time algorithms for parity and mean-payoff, based on linear programming, are
often forsaken in favor of exponential-time value or strategy iteration ones (e.g., [2]).

Related work. We already mentioned many related articles, hence we only briefly discuss
some remaining models here. Window parity games are strongly linked to the concept
of finitary ω-regular games: see, e.g., [19], or [14] for a complete list of references. The
window mechanism can be used to ensure a certain form of (local) guarantee over runs:
different techniques have been considered in MDPs, notably variance-based [10] or worst-
case-based [13, 7] methods.

Finally, let us mention the recent work of Bordais et al. [8], considering a seemingly
related question: the authors define a value function based on the window mean-payoff
mechanism and consider maximizing its expected value (which is different from the expected
window size we discuss in Sect. 7). While there are similarities in our works w.r.t. technical
tools, the two approaches are quite different and have their own strengths: we focus on
deep understanding of the window mechanism through a generic approach for the canonical
threshold probability problem for all window-based objectives, here instantiated as mean-
payoff and parity; whereas Bordais et al. focus on a particular optimization problem for a
function relying on the window mechanism. We mention three examples illustrating the
conceptual gap. First, in [8], the studied function takes the same value for direct and
prefix-independent bounded window mean-payoff objectives, whereas we show in Sect. 3 that
the classical definitions of window objectives induce a striking difference between both (in
the MDP of Ex. 3, the prefix-independent version is satisfied for window size one, whereas
no uniform bound on all runs can be defined for the direct case). Second, we prove PSPACE-
hardness for the DFW mean-payoff case, whereas the best lower bound known for the related
problem in [8] is PP. Lastly, recall that we also deal with window parity objectives while the
function of [8] is strictly built on mean-payoff.

T. Brihaye, F. Delgrange, Y. Oualhadj, and M. Randour 8:5

Outline. Sect. 2 defines the problem under study. In Sect. 3, we introduce window objectives,
discuss their status in games, and illustrate their behavior in MDPs. Sect. 4 is devoted to
the fixed variants and the aforementioned reductions. In Sect. 5, we analyze the case of ECs
and develop the classification procedure. We build on it in Sect. 6 to solve the general case.
Finally, in Sect. 7, we discuss the limitations of our work, as well as interesting extensions
within arm’s reach (e.g., multi-objective threshold problem, expected value problem). Full
details and proofs can be found in the full version of this paper [12].

2 Preliminaries

Markov decision processes. Given a set S, let D(S) be the set of rational probability
distributions over S. Given ι ∈ D(S), let Supp(ι) = {s ∈ S | ι(s) > 0} be its support. A
finite Markov decision process (MDP) is a tupleM = (S,A, δ) where S is a finite set of states,
A is a finite set of actions and δ : S ×A→ D(S) is a partial function called the probabilistic
transition function. The set of actions available in s ∈ S (i.e., for which δ(s, a) is defined) is
A(s). We assume w.l.o.g. that MDPs are deadlock-free: for all s ∈ S, A(s) 6= ∅. An MDP
where for all s ∈ S, |A(s)| = 1 is a fully-stochastic process called a Markov chain (MC).

A run of M is an infinite sequence ρ = s0a0 . . . an−1sn . . . of states and actions such
that δ(si, ai, si+1) > 0 for all i ≥ 0. The prefix up to the n-th state of ρ is the finite
sequence ρ[0, n] = s0a0 . . . an−1sn. The suffix of ρ starting from the n-th state of ρ is the
run ρ[n,∞] = snansn+1an+1 Moreover, we denote by ρ[n] the n-th state sn of ρ. Finite
prefixes of runs of the form h = s0a0 . . . an−1sn are called histories. We resp. denote the sets
of runs and histories of an MDPM by Runs(M) and Hists(M).

Strategies, induced MC and events. A strategy σ is a function Hists(M) → D(A) such
that for all h ∈ Hists(M) ending in s, we have Supp(σ(h)) ⊆ A(s). The set of all strategies
is Σ. A strategy is pure if all histories are mapped to Dirac distributions, i.e., the support is
a singleton. A strategy σ can be encoded by a stochastic state machine with outputs, called
Mealy machine. We say that σ is finite-memory if this machine is finite, and memoryless if it
has only one state, i.e., it only depends on the last state of the history. We see such strategies
as functions s 7→ D(A(s)) for s ∈ S. The entity choosing the strategy is called the controller.

An MDPM, a strategy σ, and a state s determine a Markov chainMσ
s . When considering

the probabilities of events in Mσ
s , we will often consider sets of runs of M. Thus, given

E ⊆ (SA)ω, we denote by PσM,s[E] the probability of the runs of Mσ
s whose projection

toM is in E, i.e., the probability of event E whenM is executed with initial state s and
strategy σ. For the sake of readability, we make similar abuse of notation – identifying runs
in the induced MC with their projections in the MDP – throughout our paper.

Note that every measurable set (event) has a uniquely defined probability [40] (Carathéo-
dory’s extension theorem induces a unique probability measure on the Borel σ-algebra over
cylinders of (SA)ω). When non-ambiguous, we drop some subscripts of PσM,s.

We say that an event E ⊆ (SA)ω is sure, written SσM,s[E], if and only if Runs(Mσ
s) ⊆ E

and that E is almost-sure, written ASσM,s[E], if and only if PσM,s[E] = 1.

Limiting behavior. Fix an MDP M = (S,A, δ). A sub-MDP of M is an MDP M′ =
(S′, A′, δ′) with S′ ⊆ S, ∅ 6= A′(s) ⊆ A(s) for all s ∈ S′, Supp(δ(s, a)) ⊆ S′ for all s ∈ S′, a ∈
A′(s), δ′ = δ|S′×A′ . Such a sub-MDPM′ is an end-component (EC) ofM if and only if the
underlying graph ofM′ is strongly connected, i.e., there is a run between any pair of states
in S′. Given an ECM′ = (S′, A′, δ′) ofM, we say that its sub-MDPM′′ = (S′′, A′′, δ′′),

CONCUR 2019

8:6 Life Is Random, Time Is Not: Markov Decision Processes with Window Objectives

S′′ ⊆ S′, A′′ ⊆ A′, is a sub-EC ofM′ ifM′′ is also an EC. We let EC(M) denote the set of
ECs ofM, which may be of exponential size as ECs need not be disjoint. The counterparts
of ECs in MCs are bottom strongly-connected components (BSCCs).

The union of two ECs with non-empty intersection is an EC: hence we can define the
maximal ECs (MECs) of an MDP, i.e., the ECs that cannot be extended. We let MEC(M)
denote the set of MECs ofM, of polynomial size (because MECs are pair-wise disjoint) and
computable in polynomial time [18].

Given some run ρ = s0a0s1a1 . . . ∈ Runs(M), let inf(ρ) = {s ∈ S | ∀ i ≥ 0, ∃ j > i, sj =
s} denote the states visited infinitely-often along ρ, and let infAct(ρ) = {a ∈ A | ∀ i ≥
0, ∃ j > i, aj = a} similarly denote the actions taken infinitely-often along ρ. Let limitSet(ρ)
denote the pair (inf(ρ), infAct(ρ)). Note that this pair may induce a well-defined sub-MDP
M′ = (inf(ρ), infAct(ρ), δ|inf(ρ)×infAct(ρ)), but in general it need not be the case. A folklore
result in MDPs (e.g., [4]) is the following: for any state s of MDPM, for any strategy σ ∈ Σ,
we have that ASσM,s[{ρ ∈ Runs(Mσ

s) | limitSet(ρ) ∈ EC(M)}], that is, under any strategy,
the limit behavior of the MDP almost-surely coincides with an EC. This property is a key
tool in the analysis of MDPs with prefix-independent objectives, as it essentially says that
we only need to identify the “best” ECs and maximize the probability to reach them.

Weights, priorities and complexity. In this paper, we always assume an MDP with either
(i) a weight function w : A → Z of largest absolute weight W , or (ii) a priority function
p : S → {0, 1, . . . , d}, with d ≤ |S|+ 1 (w.l.o.g.). This choice is left implicit when the context
is clear, to offer a unified view of mean-payoff and parity variants of window objectives.

Regarding complexity, we make the classical assumptions of the field: we consider the
model size |M| to be polynomial in |S| and the binary encoding of weights and probabilities
(e.g., V = log2W), whereas we consider the largest priority d, as well as the upcoming
window size λ, to be encoded in unary. When a problem is polynomial in W , we say that it
is pseudo-polynomial: it would be polynomial if weights would be given in unary.

Objectives. An objective for an MDPM = (S,A, δ) is a measurable set of runs E ⊆ (SA)ω.
We consider window objectives based on mean-payoff and parity objectives. Let us discuss
those classical objectives.

Mean-Payoff is a quantitative objective for which we consider weighted MDPs. Let
ρ ∈ Runs(M) be a run of such an MDP. The mean-payoff of prefix ρ[0, n] is MP(ρ[0, n]) =
1
n

∑n−1
i=0 w(ai), for n > 0. This is naturally extended to runs by considering the limit

behavior. The mean-payoff of ρ is MP(ρ) = lim infn→∞MP(ρ[0, n]). Given a threshold
ν ∈ Q, the mean-payoff objective accepts all runs whose mean-payoff is above the
threshold, i.e., MeanPayoff(ν) = {ρ ∈ Runs(M) | MP(ρ) ≥ ν}. Note that ν can be taken
equal to zero w.l.o.g., and the mean-payoff function can be equivalently (in the classical
one-dimension setting) defined using lim sup.
Parity is a qualitative objective for which we consider MDPs with a priority function.
It requires that the smallest priority seen infinitely often along a run be even, i.e.,
Parity = {ρ ∈ Runs(M) | mins∈inf(ρ) p(s) = 0 (mod 2)}.

Decision problem. Given an MDPM = (S,A, δ), an initial state s, a threshold α ∈ [0, 1]∩Q,
and an objective E, the threshold probability problem is to decide whether there exists a
strategy σ ∈ Σ such that PσM,s [E] ≥ α or not.

Furthermore, if it exists, we want to build such a strategy. The related problems for both
mean-payoff and parity are in P and pure memoryless strategies suffice [37, 20].

T. Brihaye, F. Delgrange, Y. Oualhadj, and M. Randour 8:7

3 Window objectives

Good Windows. Given a weighted MDPM and λ > 0, we define the good window mean-
payoff objective GWmp(λ) =

{
ρ ∈ Runs(M) | ∃ l < λ, MP

(
ρ[0, l + 1]

)
≥ 0

}
, requiring the

existence of a window of size bounded by λ and starting at the first position of the run, over
which the mean-payoff is at least equal to zero (w.l.o.g.).

Similarly, given an MDPM with priority function p, we define the good window parity
objective, GWpar(λ) =

{
ρ ∈ Runs(M) | ∃ l < λ,

(
p(ρ[l]) mod 2 = 0 ∧ ∀ k < l, p(ρ[l]) <

p(ρ[k])
)}
, requiring the existence of a window of size bounded by λ and starting at the first

position of the run, for which the last priority is even and is the smallest within the window.
We use subscripts mp and par for mean-payoff and parity variants respectively. So, given

Ω = {mp, par} and a run ρ ∈ Runs(M), we say that an Ω-window is closed in at most λ
steps from ρ[i] if ρ[i,∞] is in GWΩ(λ). If a window is not yet closed, we call it open.

Fixed variants. Given λ > 0, we define the direct fixed window objective DFWΩ(λ) =
{ρ ∈ Runs(M) | ∀ j ≥ 0, ρ[j,∞] ∈ GWΩ(λ)} , asking for all Ω-windows to be closed within λ
steps along the run. We also define the fixed window objective FWΩ(λ) = {ρ ∈ Runs(M) |
∃ i ≥ 0, ρ[i,∞] ∈ DFWΩ(λ)}, that is the prefix-independent version of the previous one: it
requires it to be eventually satisfied.

Bounded variant. The bounded window objective BWΩ = {ρ ∈ Runs(M) | ∃λ > 0, ρ ∈
FWΩ(λ)}, requires the existence of a λ for which the fixed window objective is satisfied. Note
that this bound need not be uniform along all runs in general. A direct variant may also be
defined, but turns out to be ill-suited in the stochastic context: we illustrate it in Ex. 3 and
discuss its pitfalls in Sect. 7. Hence we focus on the prefix-independent version here.

I Example 1. We first go back to the example of Sect. 1, depicted in Fig. 1(a). Let M
be this MDP. Fix run ρ = (s1 a s2 b s3 c)ω. We have that ρ 6∈ FWpar(λ = 2) – a fortiori,
ρ 6∈ DFWpar(λ = 2) – as the window that opens in s1 is not closed after two steps (because
s1 has odd priority 1, and 2 is not smaller than 1 so does not suffice to answer it). If we
now set λ = 3, we see that this window closes on time, as 0 is encountered within three
steps. As all other windows are immediately closed, we have ρ ∈ DFWpar(λ = 3) – a fortiori,
ρ ∈ FWpar(λ = 3) and ρ ∈ BWpar.

Regarding the probability of these objectives, however, we have already argued that, for
all λ > 0, PM,s1 [FWpar(λ)] = 0, whereas PM,s1 [Parity] = 1 since s3 is almost-surely visited
infinitely often but any time bound is almost-surely exceeded infinitely often too. Observe
that BWpar =

⋃
λ>0 FWpar(λ), hence we also have that PM,s1 [BWpar] = 0 (by countable

additivity). Similar reasoning holds for window mean-payoff, by taking the weight function
w = {a 7→ −1, b 7→ 0, c 7→ 1}.

I Remark 2. Window mean-payoff and window parity objectives were considered in two-player
zero-sum games [17, 14]. This setting is equivalent to deciding if there exists a strategy in
an MDP such that the objective is surely satisfied, i.e., by all consistent runs. Interestingly,
in games, if the controller can win the bounded window objective, then a uniform bound
exists, i.e., there exists a window size λ sufficiently large such that the bounded version
coincides with the fixed one. Recall that this is not granted by definition. This uniform
bound is pseudo-polynomial for mean-payoff and equal to the number of states for parity.
We illustrate in the following example that in MDPs, a uniform bound need not exist.

CONCUR 2019

8:8 Life Is Random, Time Is Not: Markov Decision Processes with Window Objectives

I Example 3. Consider the MCM in Fig. 1(b). For any λ > 0, there is probability 1/2λ−1

that objective DFWpar(λ) is not satisfied. Hence, for all λ > 0, PM,s[DFWpar(λ)] < 1.
Now let DBWpar =

⋃
λ>0 DFWpar(λ) be the direct bounded window objective evoked

above. We claim that PM,s[DBWpar] = 1. Indeed, any run ending in t belongs to DBWpar, as
it belongs to DFWpar(λ) for λ equal to the length of the prefix up to t. Since t is almost-surely
reached (as it is the only BSCC of the MC), we conclude that DBWpar is indeed satisfied
almost-surely.

Essentially, the difference stems from the fairness of probabilities. In a game, the opponent
controls the successor choice after action a and always goes back to s, resulting in objective
DBWpar being lost. However, in this MC, s is almost-surely left eventually, but we cannot
guarantee when: hence there exists a window bound for each run, but there is no uniform
bound over all runs.

This MC also illustrates the difference between sure and almost-sure satisfaction: we
have ASM,s[FWpar(λ = 1)] but not SM,s[FWpar(λ = 1)], because of run ρ = (s a)ω. Again
the same reasoning holds for mean-payoff variants, for example with w = {a 7→ −1, b 7→ 1}.

We leave out the direct bounded objective from now on. We will come back to it in
Sect. 7 and motivate why this objective is not well-behaved. In the following, we focus on
direct and prefix-independent fixed window objectives and prefix-independent bounded ones.

4 Fixed case: better safe than sorry

We start with the fixed variants of window objectives. Our main goal here is to establish that
pure finite-memory strategies suffice in all cases. As a by-product, we also obtain algorithms
to solve the corresponding decision problems. Still, for the prefix-independent variants, we
will obtain better complexities using the upcoming generic approach (Sect. 6).

Our tools are natural reductions from direct (resp. prefix-independent) window problems
on MDPs to safety (resp. co-Büchi) problems on unfoldings based on the window size λ (i.e.,
larger arenas incorporating information on open windows).

Unfoldings. We use identical unfoldings for both direct and prefix-independent objectives.
LetM be an MDP and λ > 0 be the window size. We build a new MDPMλ, the unfolding
ofM for mean-payoff (resp. parity), with an extended state space S̃: each state ofMλ is
of the form s̃ = (s, l, x) so that s keeps track of the current state ofM, l of the size of the
current open window, and x of the current sum of weights (resp. the minimum priority) in
the window: the last two values are therefore reset whenever a window is closed or stays open
for λ steps. The remaining components ofMλ are then extended fromM in a natural way.

A key underlying property used here is the so-called inductive property of windows [17, 14]:
for all runs ρ = s0a0s1a1 . . . ofM, fix a window starting in position i ≥ 0 and let j be the
position in which this window gets closed, assuming it does. Then, all windows in positions
from i to j also close in j. The validity of this property is easy to check by contradiction (if
it would not hold, the window in i would close before j). This property is fundamental in
our reduction: without it we would have to keep track of all open windows in parallel, which
would result in a blow-up exponential in λ.

Reductions. A safety (resp. co-Büchi) objective consists of runs avoiding at all times
(resp. eventually avoiding) a given set of states B. InMλ, B is composed of states (s, l, x)
where l = λ and x < 0 for the mean-payoff variant or l = λ − 1 and x mod 2 = 1 for the
parity variant, that exactly correspond to windows staying open for λ steps.

T. Brihaye, F. Delgrange, Y. Oualhadj, and M. Randour 8:9

We state that the safety and co-Büchi objectives inMλ are probability-wise equivalent
to the direct fixed window and fixed window ones inM. For any strategy σ inM, s ∈ S
and its corresponding state s̃ ∈ S̃, there exists a strategy σ̃ inMλ such that the probability
of satisfying the direct fixed (resp. fixed) window objective of maximal window size λ in
Mσ

s equals the probability of satisfying the safety (resp. co-Büchi) objective inMσ̃
λ,s̃, and

conversely. To obtain a strategy σ inM from a strategy σ̃ inMλ, we have to integrate in
the memory of σ the additional information encoded in S̃: hence the memory required by σ
is the one used by σ̃ with a blow-up polynomial in |S̃|. These reductions, along with the fact
that pure memoryless strategies suffice for safety and co-Büchi objectives in MDPs [4], yield
sufficiency of finite-memory strategies, a key ingredient in our generic approach (Lem. 10).

I Theorem 4. Pure finite-memory strategies suffice for the threshold probability problem for
all fixed window objectives. That is, given MDPM = (S,A, δ), initial state s ∈ S, window
size λ > 0, Ω ∈ {mp, par}, objective E ∈ {DFWΩ(λ),FWΩ(λ)} and threshold probability
α ∈ [0, 1] ∩ Q, if there exists a strategy σ ∈ Σ such that PσM,s[E] ≥ α, then there exists a
pure finite-memory strategy σ′ such that Pσ′

M,s[E] ≥ α.

These reductions also yield algorithms for the fixed window case. We only use them for
the direct variants, as the approach we develop in Sect. 6 proves to be more efficient for the
prefix-independent one, for two reasons: first, we may restrict the co-Büchi-like analysis to
ECs; second, we use a more tractable analysis than the co-Büchi unfolding for mean-payoff.

We complement the corresponding upper bounds with almost-matching lower bounds,
showing that our approach is close to optimal, complexity-wise.

I Theorem 5. The threshold probability problem is
(a) P-complete for direct fixed window parity objectives, and pure polynomial-memory optimal

strategies can be constructed in polynomial time. Furthermore, polynomial memory is in
general necessary.

(b) in EXPTIME and PSPACE-hard for direct fixed window mean-payoff objectives (already for
acyclic MDPs), and pure pseudo-polynomial-memory optimal strategies can be constructed
in pseudo-polynomial time. Furthermore, pseudo-polynomial memory is in general
necessary.

Upper bounds. The algorithm is simple: given M and λ > 0, build Mλ and solve the
corresponding safety problem. This can be done in polynomial time in |Mλ| and pure
memoryless strategies suffice overMλ [4]. For parity,Mλ is of size polynomial in |M|, d
and λ. Since both d (anyway bounded by O(|S|)) and λ are assumed to be given in unary, it
yields the result. For mean-payoff,Mλ is of size polynomial in |M|, W and λ. Since weights
are assumed to be encoded in binary, we only have a pseudo-polynomial-time algorithm.

Lower bounds. We give some insights about the reductions yielding the results for lower
complexity bounds. We begin with P-hardness (item (a)). Roughly, we reduce two-player
reachability games [6, 33] to direct fixed window parity MDPs, using two key ingredients:
(i) if winning is possible in the game, it is possible in bounded time: we deduce a sufficient
window size λ from it; (ii) almost-sure winning for DFWΩ(λ) objectives is equivalent to sure
winning (if a losing run exists, it is witnessed by a finite prefix of strictly positive probability).

Regarding memory, the proof established for direct fixed window parity games in [14]
carries over easily to our setting by replacing the states of the opponent by stochastic actions,
in the natural way. Hence the lower bound is trivial to establish.

CONCUR 2019

8:10 Life Is Random, Time Is Not: Markov Decision Processes with Window Objectives

Consider now PSPACE-hardness (item (b)). We proceed via a reduction from the
threshold probability problem for shortest path objectives [30, 37]. Given an MDPM with
state space S, a lower probability bound α and an upper bound ` ∈ N on the cumulative
sum of weights of actions through runs of the system, this problem asks whether there exists
a strategy allowing to visit a target set T ⊆ S with probability at least α and cost at most `
(note that weights are assumed to be strictly positive in this setting). The problem is known
to be PSPACE-hard, even for acyclic MDPs [30].

We establish a reduction from this problem, in the acyclic case, to a threshold probability
problem for DFWmp(λ = |S|), maintaining the acyclicity of the underlying graph. From
M, we build a new MDP M′ by taking the opposite of all weights; adding the bound `

when entering the target; and making the target cost-free. The result follows from three
key ingredients: (i) the sum of weights over a prefix inM′ that is not yet in T is strictly
negative, and the opposite of the sum over the same prefix inM; (ii) due to the addition of
` on entering T , any run ofM′ sees all its windows closed if and only if T is reached with a
cost less than ` inM; (iii) using the acyclicity, if a run reaches T , it does so within λ steps.

The need for pseudo-polynomial memory is also proved through this reduction. Indeed,
there is a chain of reductions from subset-sum games [39, 24] to our setting, via the shortest
path problem [30]. Subset-sum games require pseudo-polynomial-memory strategies.

I Remark 6. As noted above, almost-surely winning coincides with surely winning for the
direct fixed window objectives. Therefore, the threshold probability problem for DFWmp(λ)
collapses to P if α = 1 [17].

5 The case of end-components

We have solved the case of direct fixed window objectives: it remains to consider prefix-
independent fixed and bounded variants. The analysis of MDPs with prefix-independent
objectives crucially relies on ECs (Sect. 2): they are almost-surely reached in the long run.

First, we study what happens in ECs: how to play optimally and what can be achieved.
In Sect. 6, we will use this knowledge as the cornerstone of our algorithm for general MDPs.
The main result here is a strong link between ECs and two-player games: intuitively, either
the probability to win a window objective in an EC is zero, or it is one and there exists a
sub-EC where the controller can actually win surely, i.e., as in a two-player game played on
this sub-EC. We start by defining the notion of λ-safety, that will characterize such sub-ECs.

I Definition 7 (λ-safety). LetM be an MDP, Ω ∈ {mp, par}, λ > 0, and C = (SC , AC , δC) ∈
EC(M), we say that C is λ-safeΩ if there exists a strategy σ ∈ Σ in C such that, from all
s ∈ SC, SσC,s[DFWΩ(λ)].

Classifying an EC as λ-safeΩ or not boils down to interpreting it as a two-player game (the
duality between MDPs and games is further explored in [13, 7]). The uncertainty becomes
adversarial: on entering a state s of the MDP, the controller chooses an action a following its
strategy and the opponent then chooses a successor s′ such that s′ ∈ Supp(δ(s, a)) without
taking into account the exact values of probabilities. In such a view, the opponent tries to
prevent the controller from achieving its objective. A winning strategy for the controller in
the game interpretation is a strategy that ensures the objective regardless of its opponent’s
strategy. An EC is thus said to be λ-safeΩ if and only if its two-player interpretation admits a
winning strategy for DFWΩ(λ). W.l.o.g., all our strategies are uniform in the game-theoretic
sense: we use it in our statements.

T. Brihaye, F. Delgrange, Y. Oualhadj, and M. Randour 8:11

I Proposition 8. LetM be an MDP, Ω ∈ {mp, par}, λ > 0, and C = (SC , AC , δC) ∈ EC(M)
be λ-safeΩ. Then, there exists a pure polynomial-memory strategy σΩ,λ,C

safe in C such that

S
σΩ,λ,C

safe
C,s [DFWΩ(λ)] for all s ∈ SC.

The proof is straightforward by definition of λ-safety and pure polynomial-memory strategies
being sufficient in direct fixed window games, both for mean-payoff [17] and parity [14].

As sketched above, the existence of sub-ECs that are λ-safe is crucial in order to satisfy
any window objective in an EC. We thus introduce the notion of good ECs.

I Definition 9. LetM be an MDP, Ω ∈ {mp, par}, and C ∈ EC(M), we say that
C is λ-goodΩ, for λ > 0, if it contains a sub-EC C′ which is λ-safeΩ.
C is BW-goodΩ if it contains a sub-EC C′ which is λ-safeΩ for some λ > 0.

Any BW-goodΩ EC is λ-goodΩ for an appropriate λ > 0. Yet, we use a different
terminology as in the BW case, we do not fix λ a priori: this is important complexity-wise.

We now establish that goodΩ ECs are exactly the ones where window objectives can be
satisfied with non-zero probability, and actually, with probability one.

I Lemma 10 (Zero-one law). Let M be an MDP, Ω ∈ {mp, par} and C = (SC , AC , δC) ∈
EC(M). The following assertions hold.
(a) For all λ > 0,

(i) either C is λ-goodΩ and there exists a strategy σ in C such that ASσC,s[FWΩ(λ)] for
all s ∈ SC,

(ii) or for all s ∈ SC and for all strategy σ in C, PσC,s[FWΩ(λ)] = 0.
(b) (i) Either C is BW-goodΩ and there exists a strategy σ in C such that ASσC,s[BWΩ] for

all s ∈ SC, or
(ii) for all s ∈ SC, for all strategy σ in C, PσC,s[BWΩ] = 0.

We sketch the proof by focusing on case (a). Roughly, (i) holds thanks to the two following
facts. First, C is an EC in which there exists a strategy almost-surely visiting all states
of its state space. Second, there is a λ-safeΩ sub-EC in C in which there exists a strategy
surely satisfying DFWΩ(λ). Combining these two strategies yields the result. For case (ii),
recall that finite-memory strategies suffice for FWΩ(λ) objectives by Thm. 4. Hence, we fix
a finite-memory strategy in C, yielding a finite induced MC where runs almost-surely end
up in a BSCC B [4]. There is no λ-safeΩ sub-EC, so there exists a run ρ̂ in B such that
ρ̂ 6∈ DFWΩ(λ). From ρ̂, we extract a history ĥ that contains a window open for λ steps.
Since all states in B are almost-surely visited infinitely often, ĥ also happens infinitely often
with probability one and the probability to win FWΩ(λ) when reaching B is thus zero. Since
this holds for any BSCC induced by σ, we obtain the claim.

Items (b)(i) and (b)(ii) can then be shown by using the fact that BWΩ =
⋃
λ>0 FWΩ(λ).

I Remark 11. An interesting consequence of Lem. 10 is the existence of uniform bounds on
λ in ECs, in contrast to the general MDP case, as seen in Sect. 3. This is indeed natural, as
we established that winning with positive probability within an EC coincides with winning
surely in a sub-EC; sub-EC that can be seen as a two-player zero-sum game where uniform
bounds are granted by [17, 14].

Lem. 10 establishes that interesting strategies exist in goodΩ ECs. Let us describe them.

I Proposition 12. LetM be an MDP, Ω ∈ {mp, par}, and C = (SC , AC , δC) ∈ EC(M).
If C is λ-goodΩ, for λ > 0, then there exists a pure polynomial-memory strategy σΩ,λ,C

good

such that AS
σΩ,λ,C

good
C,s [FWΩ(λ)] for all s ∈ SC.

CONCUR 2019

8:12 Life Is Random, Time Is Not: Markov Decision Processes with Window Objectives

If C is BW-goodΩ, then there exists a pure memoryless strategy σΩ,BW,C
good such that

AS
σΩ,BW,C

good
C,s [BWΩ] for all s ∈ SC.

Intuitively, such strategies first mimic a pure memoryless strategy reaching a safeΩ sub-EC
almost-surely, then switch to a strategy surely winning in this sub-EC, which is lifted from
the game interpretation.

We may already sketch a general solution to the threshold probability problem based on
Lem. 10 and the well-known fact that ECs are almost-surely reached under any strategy: an
optimal strategy must maximize the probability to reach goodΩ ECs. It is therefore crucial
to be able to identify such ECs efficiently. However, an MDP may contain an exponential
number of ECs. Fortunately, the next lemma states that we do not have to test them all.

I Lemma 13. LetM be an MDP and C ∈ EC(M). If C is λ-goodΩ (resp. BW-goodΩ), then
it is also the case of any super-EC C′ ∈ EC(M) containing C.

I Corollary 14. LetM be an MDP and C ∈ MEC(M) be a maximal EC. If C is not λ-goodΩ
(resp. BW-goodΩ), then neither is any of its sub-EC C′ ∈ EC(M).

The interest of Cor. 14 is that the number of MECs is bounded by |S| for any MDP
M = (S,A, δ) because they are all disjoint. Furthermore, decomposingM in MECs can be
done efficiently (e.g., quadratic time [18]). So, we know classifying MECs is sufficient and
MECs can easily be identified: it remains to discuss how to classify a MEC as goodΩ or not.

LetM = (S,A, δ). Recall that a MEC C = (SC , AC , δC) ∈ MEC(M) is λ-goodΩ (resp. BW-
goodΩ) if and only if it contains a λ-safeΩ sub-EC. This is equivalent to having a non-empty
winning set for the controller in the two-player game over C – naturally defined as above.
This winning set contains all states in SC from which the controller has a surely winning
strategy. This set, if non-empty, contains at least one sub-EC of C, as otherwise the opponent
could force the controller to leave it and win the game (by prefix-independence). Thus,
testing if a MEC is goodΩ boils down to solving its two-player game interpretation [17, 14].

I Theorem 15 (MEC classification). LetM be an MDP and C ∈ MEC(M). The following
assertions hold.
(a) Deciding if C is λ-goodΩ, for λ > 0, is in P for Ω ∈ {mp, par} and a corresponding pure

polynomial-memory strategy σΩ,λ,C
good can be constructed in polynomial time.

(b) Deciding if C is BW-goodmp is in NP ∩ coNP and a corresponding pure memoryless
strategy σmp,BW,C

good can be constructed in pseudo-polynomial time.
(c) Deciding if C is BW-goodpar is in P and a corresponding pure memoryless strategy

σpar,BW,C
good can be constructed in polynomial time.

6 General MDPs

We have all the ingredients to establish an algorithm in the general case. Given an MDP
M, a state s and a window objective FWΩ(λ) for λ > 0 (resp. BWΩ), we (i) compute the
MEC decomposition ofM; (ii) classify each MEC as λ-goodΩ (resp. BW-goodΩ) or not; and
(iii) compute an optimal strategy from s to reach the union of goodΩ MECs: the probability
of reaching such MECs is exactly the maximum probability for the window objective.

The fixed and bounded versions are presented in Fig. 2. Sub-procedure MaxReachability(s,
T) computes the maximum probability to reach the set T from s (in polynomial time [4]).
The overall complexity of the algorithm is dominated by the classification step.

T. Brihaye, F. Delgrange, Y. Oualhadj, and M. Randour 8:13

Algorithm 1 FixedWindow(M, s,Ω, λ).
Input: MDPM, state s, Ω ∈ {mp, par}, λ > 0
Output: Maximum probability of FWΩ(λ) from s
1 T ← ∅
2 for all C = (SC , AC , δC) ∈ MEC(M) do
3 if C is λ-goodΩ then
4 T ← T] SC
5 ν = MaxReachability(s, T)
6 return ν

Algorithm 2 BoundedWindow(M, s,Ω).
Input: MDPM, state s, Ω ∈ {mp, par}
Output: Maximum probability of BWΩ from s
1 T ← ∅
2 for all C = (SC , AC , δC) ∈ MEC(M) do
3 if C is BW-goodΩ then
4 T ← T] SC
5 ν = MaxReachability(s, T)
6 return ν

Figure 2 Algorithms computing the max. probability of prefix independent window objectives.

I Lemma 16. Alg. 1 and Alg. 2 are correct: given an MDPM = (S,A, δ), an initial state s ∈
S, Ω ∈ {mp, par}, λ > 0, we have that FixedWindow(M, s,Ω, λ) = maxσ∈Σ PσM,s[FWΩ(λ)]
and BoundedWindow(M, s,Ω) = maxσ∈Σ PσM,s[BWΩ].

The proof is straightforward based on our previous results: (i) using prefix-independence
and almost-sure reachability of MECs, we know that the highest probability (of satisfying the
objective) is obtained when the “best” MECs are reached; (ii) by Lem. 10, this probability is
one in goodΩ ECs and zero in the others; (iii) maximizing the probability to reach goodΩ
ECs is exactly how our algorithms operate.

I Theorem 17. The threshold probability problem is
(a) P-complete for fixed window parity and fixed window mean-payoff objectives, and pure

polynomial-memory optimal strategies can be constructed in polynomial time. Further-
more, polynomial memory is in general necessary.

(b) P-complete for bounded window parity objectives, and pure memoryless optimal strategies
can be constructed in polynomial time;

(c) in NP ∩ coNP and as hard as mean-payoff games for bounded window mean-payoff objec-
tives, and pure memoryless optimal strategies can be constructed in pseudo-polynomial
time.

The results follow from Thm. 15 and the MEC classification in the BW-goodmp case
being the only non-polynomial operation of our algorithms. Plugging pure memoryless
optimal strategies for reaching goodΩ MECs (granted by [4]) to our MEC strategies yields
the upper bounds on memory. Hardness is essentially obtained through the two-player game
interpretation of ECs [14, 17].

7 Limitations and perspectives

We summarized our results and compared them to the state of the art in Sect. 1. Here, we
discuss the limitations of our work and some extensions within arm’s reach.

Direct bounded window objectives. We left out a window objective considered in games [17,
14]: the direct bounded one, DBWΩ =

⋃
λ>0 DFWΩ(λ). It is maybe not the most natural

as it is not prefix-independent, yet allows to close the windows of a run in an arbitrarily
large number of steps bounded along the run. This variant gives rise to complex behaviors
in MDPs, notably due to its interaction with the almost-sure reachability of ECs.

Consider the MDP in Fig. 3 and objective DBWmp. A window opens due to a. The only
way to close it is to use b up to the point where the running sum becomes non-negative.
When it does, all windows are closed and the controller may switch to s5. Observe that

CONCUR 2019

8:14 Life Is Random, Time Is Not: Markov Decision Processes with Window Objectives

s1 s2

c,−1 d, 1

s3 s4

a,−1
f, 0

b, 0

e, 0 s5
1 1

1 1

0.5 0.5
1

Figure 3 There exists a strategy σ ensuring ASσM,s1 [DBWmp] but it requires infinite memory as
it needs to use b up to the point where the running sum becomes non-negative, then switch to e.

taking b repeatedly induces a symmetric random walk [29]. Classical probability results
ensure that a non-negative sum will be obtained almost-surely, but the number of times b is
played must remain unbounded (as for any bounded number, there exists a strictly positive
probability to obtain only −1’s for example). Thus, there exists an infinite-memory strategy
σ such that ASσM,s1 [DBWmp], but no finite-memory one can do as good.

Now, let δ(s2, b) = {s3 7→ 0.6, s4 7→ 0.4}: the random walk becomes asymmetric, with a
strictly positive chance to diverge toward −∞. While the best possible strategy is still the
one defined above, it only satisfies the objective with probability strictly less than one.

What do we observe? First, infinite-memory strategies are required, which is a problem
for practical applications. Second, even for qualitative questions (is the probability zero or
one?), the actual probabilities of the MDP must be considered, not only the existence of
a transition. This is in stark contrast to most problems in MDPs [4]: in that sense, the
direct bounded window objective is not well-behaved. This is due to the above connection
with random walks. It is well-known that complex random walks are difficult to tackle for
verification and synthesis: e.g., even simple asymmetric random walks are not decisive MCs,
a large and robust class of MCs where reachability questions can be answered [1].

Markov chains. Our work focuses on the threshold probability problem for MDPs, and the
corresponding strategy synthesis problem. Better complexities could possibly be obtained
for MCs, where there are no non-deterministic choices. To achieve this, a natural direction
would be to focus on the classification of ECs (Sect. 5), the bottleneck of our approach: for
MCs, this classification would involve one-player window games (for the opponent), whose
complexity has yet to be explored and would certainly be lower than for two-player games.

However, complexity is unlikely to be much lower: all parity variants are already in P, and
the high complexity of DFWmp would remain: a construction similar to the PSPACE-hardness
(Thm. 5) easily shows this problem to be PP-hard, already for acyclic MCs (again using [30]).

Expected value problem. Given an MDPM and an initial state s, we may be interested in
synthesizing a strategy σ that minimizes the expected window size for a fixed window objective
(say FWΩ(λ)), which we straightforwardly define as EσM,s,Ω(λ) =

∑∞
λ>0 λ · PσM,s[FWΩ(λ) \

FWΩ(λ− 1)], with FWΩ(0) = ∅. This meets the natural desire to build strategies that strive
to maintain the best time bounds possible in their local environment (e.g., EC ofM). Note
that this is totally different from the value function used in [8].

For prefix-independent variants, we already have all the necessary machinery to solve this
problem. First, we refine the classification process to identify the best window size achievable
in each MEC, if any. Indeed, if a MEC is λ-good, it necessarily is for some λ between one and
the upper bound derived from the game-theoretic interpretation (Rmk. 11): we determine the
smallest value of λ for each MEC via a binary search coupled with the classification procedure.
Second, using classical techniques (e.g., [37]), we contract each MEC to a single-state EC,
and give it a weight that represents the best window size we can ensure in it (hence this

T. Brihaye, F. Delgrange, Y. Oualhadj, and M. Randour 8:15

weight may be infinite if a MEC is not BW-good). Finally, we construct a global strategy
that favors reaching MECs with the lowest weights, for example by synthesizing a strategy
minimizing the classical mean-payoff value. Note that if λ-good MECs cannot be reached
almost-surely, the expected value will be infinite, as wanted. Observe that such an approach
maintains tractability, as we end up with a polynomial-time algorithm.

Direct variants require more involved techniques, as the unfoldings of Sect. 4 are strongly
linked to the window size λ, and cannot be easily combined for different values of λ.

Multi-objective problems. Window games have been studied in the multidimension setting,
where several weight (resp. priority) functions are given, and the objective is the intersection
of all one-dimension objectives [17, 14]. Again, our generic approach supports effortless
extension to this setting. In the direct case, unfoldings of Sect. 4 can be generalized to multiple
dimensions, as in [17, 14]. For prefix-independent variants, the EC classification needs to
be adapted to handle multidimension window games, which we can solve using [17, 14].
Then, we also need to consider a multi-objective reachability problem [37]. While almost all
cases of multidimension window games are EXPTIME-complete, decidability of the bounded
mean-payoff case is still open, but however known to be non-primitive recursive hard.

Tool support. Thanks to its low complexity and its adequacy w.r.t. applications, our
window framework lends itself well to tool development. We are currently building a tool
suite for MDPs with window objectives based on the main results of this paper along with
the aforementioned extensions. Our aim is to provide a dedicated extension of Storm, a
cutting-edge probabilistic model checker [23].

References
1 Parosh Aziz Abdulla, Noomene Ben Henda, and Richard Mayr. Decisive Markov Chains.

Logical Methods in Computer Science, 3(4), 2007. doi:10.2168/LMCS-3(4:7)2007.
2 Pranav Ashok, Krishnendu Chatterjee, Przemyslaw Daca, Jan Kretínský, and Tobias Meggen-

dorfer. Value Iteration for Long-Run Average Reward in Markov Decision Processes. In
Rupak Majumdar and Viktor Kuncak, editors, Computer Aided Verification - 29th In-
ternational Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017, Proceedings,
Part I, volume 10426 of Lecture Notes in Computer Science, pages 201–221. Springer, 2017.
doi:10.1007/978-3-319-63387-9_10.

3 Christel Baier. Reasoning About Cost-Utility Constraints in Probabilistic Models. In
Mikolaj Bojanczyk, Slawomir Lasota, and Igor Potapov, editors, Reachability Problems
- 9th International Workshop, RP 2015, Warsaw, Poland, September 21-23, 2015, Pro-
ceedings, volume 9328 of Lecture Notes in Computer Science, pages 1–6. Springer, 2015.
doi:10.1007/978-3-319-24537-9_1.

4 Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT press, 2008.
5 Christel Baier, Joachim Klein, Sascha Klüppelholz, and Sascha Wunderlich. Weight monitoring

with linear temporal logic: complexity and decidability. In Thomas A. Henzinger and Dale
Miller, editors, Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer
Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS), CSL-LICS ’14, Vienna, Austria, July 14 - 18, 2014, pages 11:1–
11:10. ACM, 2014. doi:10.1145/2603088.2603162.

6 Catriel Beeri. On the Membership Problem for Functional and Multivalued Dependencies in
Relational Databases. ACM Trans. Database Syst., 5(3):241–259, 1980. doi:10.1145/320613.
320614.

CONCUR 2019

https://doi.org/10.2168/LMCS-3(4:7)2007
https://doi.org/10.1007/978-3-319-63387-9_10
https://doi.org/10.1007/978-3-319-24537-9_1
https://doi.org/10.1145/2603088.2603162
https://doi.org/10.1145/320613.320614
https://doi.org/10.1145/320613.320614

8:16 Life Is Random, Time Is Not: Markov Decision Processes with Window Objectives

7 Raphaël Berthon, Mickael Randour, and Jean-François Raskin. Threshold Constraints with
Guarantees for Parity Objectives in Markov Decision Processes. In Ioannis Chatzigiannakis,
Piotr Indyk, Fabian Kuhn, and Anca Muscholl, editors, 44th International Colloquium on
Automata, Languages, and Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland,
volume 80 of LIPIcs, pages 121:1–121:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2017. doi:10.4230/LIPIcs.ICALP.2017.121.

8 Benjamin Bordais, Shibashis Guha, and Jean-François Raskin. Expected Window Mean-Payoff.
CoRR, abs/1812.09298, 2018. arXiv:1812.09298.

9 Patricia Bouyer, Mauricio González, Nicolas Markey, and Mickael Randour. Multi-weighted
Markov Decision Processes with Reachability Objectives. In Andrea Orlandini and Martin
Zimmermann, editors, Proceedings Ninth International Symposium on Games, Automata,
Logics, and Formal Verification, GandALF 2018, Saarbrücken, Germany, 26-28th September
2018., volume 277 of EPTCS, pages 250–264, 2018. doi:10.4204/EPTCS.277.18.

10 Tomás Brázdil, Krishnendu Chatterjee, Vojtech Forejt, and Antonín Kucera. Trading per-
formance for stability in Markov decision processes. J. Comput. Syst. Sci., 84:144–170, 2017.
doi:10.1016/j.jcss.2016.09.009.

11 Tomás Brázdil, Vojtech Forejt, Antonín Kucera, and Petr Novotný. Stability in Graphs and
Games. In Josée Desharnais and Radha Jagadeesan, editors, 27th International Conference on
Concurrency Theory, CONCUR 2016, August 23-26, 2016, Québec City, Canada, volume 59
of LIPIcs, pages 10:1–10:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016. doi:
10.4230/LIPIcs.CONCUR.2016.10.

12 Thomas Brihaye, Florent Delgrange, Youssouf Oualhadj, and Mickael Randour. Life is Random,
Time is Not: Markov Decision Processes with Window Objectives. CoRR, abs/1901.03571,
2019. arXiv:1901.03571.

13 Véronique Bruyère, Emmanuel Filiot, Mickael Randour, and Jean-François Raskin. Meet
your expectations with guarantees: Beyond worst-case synthesis in quantitative games. Inf.
Comput., 254:259–295, 2017. doi:10.1016/j.ic.2016.10.011.

14 Véronique Bruyère, Quentin Hautem, and Mickael Randour. Window parity games: an
alternative approach toward parity games with time bounds. In Domenico Cantone and
Giorgio Delzanno, editors, Proceedings of the Seventh International Symposium on Games,
Automata, Logics and Formal Verification, GandALF 2016, Catania, Italy, 14-16 September
2016., volume 226 of EPTCS, pages 135–148, 2016. doi:10.4204/EPTCS.226.10.

15 Véronique Bruyère, Quentin Hautem, and Jean-François Raskin. On the Complexity of
Heterogeneous Multidimensional Games. In Josée Desharnais and Radha Jagadeesan, editors,
27th International Conference on Concurrency Theory, CONCUR 2016, August 23-26, 2016,
Québec City, Canada, volume 59 of LIPIcs, pages 11:1–11:15. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2016. doi:10.4230/LIPIcs.CONCUR.2016.11.

16 Cristian S. Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, and Frank Stephan. Deciding
parity games in quasipolynomial time. In Hamed Hatami, Pierre McKenzie, and Valerie
King, editors, Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 252–263. ACM,
2017. doi:10.1145/3055399.3055409.

17 Krishnendu Chatterjee, Laurent Doyen, Mickael Randour, and Jean-François Raskin. Looking
at mean-payoff and total-payoff through windows. Inf. Comput., 242:25–52, 2015. doi:
10.1016/j.ic.2015.03.010.

18 Krishnendu Chatterjee and Monika Henzinger. Efficient and Dynamic Algorithms for Alter-
nating Büchi Games and Maximal End-Component Decomposition. J. ACM, 61(3):15:1–15:40,
2014. doi:10.1145/2597631.

19 Krishnendu Chatterjee, Thomas A. Henzinger, and Florian Horn. Finitary winning in omega-
regular games. ACM Trans. Comput. Log., 11(1):1:1–1:27, 2009. doi:10.1145/1614431.
1614432.

https://doi.org/10.4230/LIPIcs.ICALP.2017.121
http://arxiv.org/abs/1812.09298
https://doi.org/10.4204/EPTCS.277.18
https://doi.org/10.1016/j.jcss.2016.09.009
https://doi.org/10.4230/LIPIcs.CONCUR.2016.10
https://doi.org/10.4230/LIPIcs.CONCUR.2016.10
http://arxiv.org/abs/1901.03571
https://doi.org/10.1016/j.ic.2016.10.011
https://doi.org/10.4204/EPTCS.226.10
https://doi.org/10.4230/LIPIcs.CONCUR.2016.11
https://doi.org/10.1145/3055399.3055409
https://doi.org/10.1016/j.ic.2015.03.010
https://doi.org/10.1016/j.ic.2015.03.010
https://doi.org/10.1145/2597631
https://doi.org/10.1145/1614431.1614432
https://doi.org/10.1145/1614431.1614432

T. Brihaye, F. Delgrange, Y. Oualhadj, and M. Randour 8:17

20 Krishnendu Chatterjee, Marcin Jurdzinski, and Thomas A. Henzinger. Quantitative stochastic
parity games. In J. Ian Munro, editor, Proceedings of the Fifteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2004, New Orleans, Louisiana, USA, January 11-
14, 2004, pages 121–130. SIAM, 2004. URL: http://dl.acm.org/citation.cfm?id=982792.
982808.

21 Wojciech Czerwinski, Laure Daviaud, Nathanaël Fijalkow, Marcin Jurdzinski, Ranko Lazic,
and Pawel Parys. Universal trees grow inside separating automata: Quasi-polynomial lower
bounds for parity games. CoRR, abs/1807.10546, 2018. arXiv:1807.10546.

22 Laure Daviaud, Marcin Jurdzinski, and Ranko Lazic. A pseudo-quasi-polynomial algorithm
for mean-payoff parity games. In Anuj Dawar and Erich Grädel, editors, Proceedings of the
33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, Oxford, UK,
July 09-12, 2018, pages 325–334. ACM, 2018. doi:10.1145/3209108.3209162.

23 Christian Dehnert, Sebastian Junges, Joost-Pieter Katoen, and Matthias Volk. A Storm is
Coming: A Modern Probabilistic Model Checker. In Rupak Majumdar and Viktor Kuncak,
editors, Computer Aided Verification - 29th International Conference, CAV 2017, Heidelberg,
Germany, July 24-28, 2017, Proceedings, Part II, volume 10427 of Lecture Notes in Computer
Science, pages 592–600. Springer, 2017. doi:10.1007/978-3-319-63390-9_31.

24 John Fearnley and Marcin Jurdzinski. Reachability in two-clock timed automata is PSPACE-
complete. Inf. Comput., 243:26–36, 2015. doi:10.1016/j.ic.2014.12.004.

25 Nathanaël Fijalkow, Pawel Gawrychowski, and Pierre Ohlmann. The complexity of mean
payoff games using universal graphs. CoRR, abs/1812.07072, 2018. arXiv:1812.07072.

26 Jerzy Filar and Koos Vrieze. Competitive Markov decision processes. Springer, 1997.
27 Thomas Gawlitza and Helmut Seidl. Games through Nested Fixpoints. In Ahmed Bouajjani

and Oded Maler, editors, Computer Aided Verification, 21st International Conference, CAV
2009, Grenoble, France, June 26 - July 2, 2009. Proceedings, volume 5643 of Lecture Notes in
Computer Science, pages 291–305. Springer, 2009. doi:10.1007/978-3-642-02658-4_24.

28 Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata, Logics, and Infinite
Games: A Guide to Current Research [outcome of a Dagstuhl seminar, February 2001], volume
2500 of Lecture Notes in Computer Science. Springer, 2002. doi:10.1007/3-540-36387-4.

29 Charles M. Grinstead and J. Laurie Snell. Introduction to probability. American Mathematical
Society, 1997.

30 Christoph Haase and Stefan Kiefer. The Odds of Staying on Budget. In Magnús M. Halldórsson,
Kazuo Iwama, Naoki Kobayashi, and Bettina Speckmann, editors, Automata, Languages, and
Programming - 42nd International Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015,
Proceedings, Part II, volume 9135 of Lecture Notes in Computer Science, pages 234–246.
Springer, 2015. doi:10.1007/978-3-662-47666-6_19.

31 Arnd Hartmanns, Sebastian Junges, Joost-Pieter Katoen, and Tim Quatmann. Multi-cost
Bounded Reachability in MDP. In Dirk Beyer and Marieke Huisman, editors, Tools and
Algorithms for the Construction and Analysis of Systems - 24th International Conference,
TACAS 2018, Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings, Part II,
volume 10806 of Lecture Notes in Computer Science, pages 320–339. Springer, 2018. doi:
10.1007/978-3-319-89963-3_19.

32 Paul Hunter, Guillermo A. Pérez, and Jean-François Raskin. Looking at mean payoff through
foggy windows. Acta Inf., 55(8):627–647, 2018. doi:10.1007/s00236-017-0304-7.

33 Neil Immerman. Number of Quantifiers is Better Than Number of Tape Cells. J. Comput.
Syst. Sci., 22(3):384–406, 1981. doi:10.1016/0022-0000(81)90039-8.

34 Marcin Jurdzinski. Deciding the Winner in Parity Games is in UP ∩ co-UP. Inf. Process.
Lett., 68(3):119–124, 1998. doi:10.1016/S0020-0190(98)00150-1.

35 Mickael Randour. Automated Synthesis of Reliable and Efficient Systems Through Game
Theory: A Case Study. In Proc. of ECCS 2012, Springer Proceedings in Complexity XVII,
pages 731–738. Springer, 2013. doi:10.1007/978-3-319-00395-5_90.

CONCUR 2019

http://dl.acm.org/citation.cfm?id=982792.982808
http://dl.acm.org/citation.cfm?id=982792.982808
http://arxiv.org/abs/1807.10546
https://doi.org/10.1145/3209108.3209162
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1016/j.ic.2014.12.004
http://arxiv.org/abs/1812.07072
https://doi.org/10.1007/978-3-642-02658-4_24
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1007/978-3-662-47666-6_19
https://doi.org/10.1007/978-3-319-89963-3_19
https://doi.org/10.1007/978-3-319-89963-3_19
https://doi.org/10.1007/s00236-017-0304-7
https://doi.org/10.1016/0022-0000(81)90039-8
https://doi.org/10.1016/S0020-0190(98)00150-1
https://doi.org/10.1007/978-3-319-00395-5_90

8:18 Life Is Random, Time Is Not: Markov Decision Processes with Window Objectives

36 Mickael Randour, Jean-François Raskin, and Ocan Sankur. Variations on the Stochastic
Shortest Path Problem. In Deepak D’Souza, Akash Lal, and Kim Guldstrand Larsen, editors,
Verification, Model Checking, and Abstract Interpretation - 16th International Conference,
VMCAI 2015, Mumbai, India, January 12-14, 2015. Proceedings, volume 8931 of Lecture Notes
in Computer Science, pages 1–18. Springer, 2015. doi:10.1007/978-3-662-46081-8_1.

37 Mickael Randour, Jean-François Raskin, and Ocan Sankur. Percentile queries in multi-
dimensional Markov decision processes. Formal Methods in System Design, 50(2-3):207–248,
2017. doi:10.1007/s10703-016-0262-7.

38 Stéphane Le Roux, Arno Pauly, and Mickael Randour. Extending Finite-Memory Determinacy
by Boolean Combination of Winning Conditions. In Sumit Ganguly and Paritosh K. Pandya,
editors, 38th IARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science, FSTTCS 2018, December 11-13, 2018, Ahmedabad, India, volume 122 of
LIPIcs, pages 38:1–38:20. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018. doi:
10.4230/LIPIcs.FSTTCS.2018.38.

39 Stephen D. Travers. The complexity of membership problems for circuits over sets of integers.
Theor. Comput. Sci., 369(1-3):211–229, 2006. doi:10.1016/j.tcs.2006.08.017.

40 Moshe Y. Vardi. Automatic Verification of Probabilistic Concurrent Finite-State Programs.
In Proc. of FOCS, pages 327–338. IEEE, 1985.

https://doi.org/10.1007/978-3-662-46081-8_1
https://doi.org/10.1007/s10703-016-0262-7
https://doi.org/10.4230/LIPIcs.FSTTCS.2018.38
https://doi.org/10.4230/LIPIcs.FSTTCS.2018.38
https://doi.org/10.1016/j.tcs.2006.08.017

Computing Probabilistic Bisimilarity Distances for
Probabilistic Automata
Giorgio Bacci
Department of Computer Science, Aalborg University, DK
grbacci@cs.aau.dk

Giovanni Bacci
Department of Computer Science, Aalborg University, DK
giovbacci@cs.aau.dk

Kim G. Larsen
Department of Computer Science, Aalborg University, DK
kgl@cs.aau.dk

Radu Mardare
Department of Computer Science, Aalborg University, DK
mardare@cs.aau.dk

Qiyi Tang
Department of Computing, Imperial College, London, UK
qiyi.tang@imperial.ac.uk

Franck van Breugel
DisCoVeri Group, Dept. of Electrical Engineering and Computer Science, York University, Canada
franck@eecs.yorku.ca

Abstract

The probabilistic bisimilarity distance of Deng et al. has been proposed as a robust quantitative
generalization of Segala and Lynch’s probabilistic bisimilarity for probabilistic automata. In this
paper, we present a novel characterization of the bisimilarity distance as the solution of a simple
stochastic game. The characterization gives us an algorithm to compute the distances by applying
Condon’s simple policy iteration on these games. The correctness of Condon’s approach, however,
relies on the assumption that the games are stopping. Our games may be non-stopping in general,
yet we are able to prove termination for this extended class of games. Already other algorithms have
been proposed in the literature to compute these distances, with complexity in UP ∩ coUP and
PPAD. Despite the theoretical relevance, these algorithms are inefficient in practice. To the best of
our knowledge, our algorithm is the first practical solution. In the proofs of all the above-mentioned
results, an alternative presentation of the Hausdorff distance due to Mémoli plays a central rôle.

2012 ACM Subject Classification Theory of computation → Program verification; Theory of com-
putation → Models of computation; Mathematics of computing → Probability and statistics

Keywords and phrases Probabilistic automata, Behavioural metrics, Simple stochastic games, Simple
policy iteration algorithm

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2019.9

Related Version A full version of the paper is available at http://arxiv.org/abs/1907.01768.

Funding Giovanni Bacci and Kim G. Larsen are funded by the ERC-Project LASSO, Radu Mardare
is funded by the ASAP Project, Franck van Breugel is supported by Natural Sciences and Engineering
Research Council of Canada.

© Giorgio Bacci, Giovanni Bacci, Kim G. Larsen, Radu Mardare, Qiyi Tang, and Franck van Breugel;
licensed under Creative Commons License CC-BY

30th International Conference on Concurrency Theory (CONCUR 2019).
Editors: Wan Fokkink and Rob van Glabbeek; Article No. 9; pp. 9:1–9:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:grbacci@cs.aau.dk
mailto:giovbacci@cs.aau.dk
mailto:kgl@cs.aau.dk
mailto:mardare@cs.aau.dk
mailto:qiyi.tang@imperial.ac.uk
mailto:franck@eecs.yorku.ca
https://doi.org/10.4230/LIPIcs.CONCUR.2019.9
http://arxiv.org/abs/1907.01768
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 Computing Probabilistic Bisimilarity Distances for Probabilistic Automata

1 Introduction

In [18], Giacalone et al. observed that for reasoning about the behaviour of probabilistic
systems, rather than equivalences, a notion of distance is more reasonable in practice since it
permits to capture the degree of difference between two states. This observation motivated
the study of behavioural pseudometrics, that generalize behavioural equivalences in the sense
that, when the distance is zero then the two states are behaviourally equivalent.

The systems we consider in this paper are labelled probabilistic automata. This model
was introduced by Segala [32] to capture both nondeterminism (hence, concurrency) and
probabilistic behaviours. The labels on states are used to express that certain properties of
interest hold in particular states. Below we consider an example of probabilistic automaton
describing two gamblers, f and b, deciding on which team to bet on in a football match.

f

t

b

h
1
2

1
2

51
100

49
100

1

1

1 1

1 1

Typically the two gamblers know the team to bet on, but occasionally they prefer to toss a
coin to make a decision. This is represented by the three probabilistic transitions in the state
f . The first two take f to state h (head) or t (tail) with probability one, the last takes f to
states h and t with probability 1

2 each. The difference between f and b is that the former
uses a fair coin while the latter uses a biased coin landing on heads with slightly higher
probability. Once the decision is taken, it is not changed anymore. This is seen on states h
and t which have a single probabilistic transition taking the state to itself with probability
one. The states h and t have distinct labels, here represented by colours.

A behavioural pseudometric for probabilistic automata capturing this difference is the
probabilistic bisimilarity distance by Deng et al. [12], introduced as a robust generalization of
Segala and Lynch’s probabilistic bisimilarity [33]. The key ingredients of this pseudometric
are the Hausdorff metric [19] and the Kantorovich metric [22], respectively used to capture
nondeterministic and probabilistic behaviour. In the example above, the behaviours of the
states h and t are very different since their labels are different. As a result, their probabilistic
bisimilarity distance is one. On the other hand, the behaviours of the states f and b are very
similar, which is reflected by the fact that their probabilistic bisimilarity distance is 1

100 .
The first attempt to compute the above distance is due to Chen et al. [9], who proposed a

doubly exponential-time procedure to approximate the distances up to any degree of accuracy.
The complexity was later improved to PSPACE by Chattarjee et al. [6, 7]. Their solutions
exploit the decision procedure for the existential fragment of the first-order theory of reals.
It is worth noting that [9, 6] consider the pseudometric that does not discount the future
(a.k.a. undiscounted distance) which entails additional algorithmic challenges. Later, Fu [16]
showed that the distances have rational values and that computing the discounted distance
can be done in polynomial time by using a value-iteration procedure in combination with the
continued fraction algorithm [31, Section 6]. As for the undiscounted distance, he showed that

G. Bacci, G. Bacci, K. G. Larsen, R. Mardare, Q. Tang, and F. van Breugel 9:3

the threshold problem, i.e., deciding whether the distance is smaller than a given rational,
is in NP ∩ coNP1. Van Breugel and Worrell [40] have later shown that the problem is in
PPAD, which is short for polynomial parity argument in a directed graph. Notably, their
proof exploits a characterization of the distance as a simple stochastic game. Despite the
theoretical relevance of the above algorithms, their implementations are inefficient in practice
since they require the use of exact computer arithmetic making it difficult to handle models
with more than five states. In this paper, we propose an alternative approach that is inspired
by the successful implementations of similar pseudometrics on Markov chains [1, 37, 38].

Our solution is based on a novel characterization of the probabilistic bisimilarity distance as
the solution of a simple stochastic game. Stochastic games were introduced by Shapley [34]. A
simplified version of these games, called simple stochastic games, were studied by Condon [11].
Several algorithms have been proposed to compute the value function of a simple stochastic
game, many using policy iteration. Condon [10] proposed an algorithm, known as simple
policy iteration, that switches only one non-optimal choice per iteration. The correctness of
Condon’s algorithm, however, relies on the assumption that the game is stopping.

It turns out that the simple stochastic games characterizing the probabilistic bisimilarity
distances are stopping only when the distances discount the future. In the case the distance
is non-discounting, the corresponding games may not be stopping. To recover correctness of
the policy iteration procedure we adapt Condon’s simple policy iteration algorithm by adding
a non-local update of the strategy of the min player and an extra termination condition based
on a notion of “self-closed” relation due to Fu [16]. The practical efficiency of our algorithm
has been evaluated on a significant set of randomly generated probabilistic automata. The
results show that our algorithm performs better than the corresponding iterative algorithms
proposed for the discounted distances in [16], even though the theoretical complexity of our
proposal is exponential in the worst case (cf. [37]) whereas Fu’s is polynomial.

The implementation of the algorithms exploits a coupling structure characterization of
the distance that allows us to skip the construction of the simple stochastic game which may
result in an exponential blow up of the memory required for storing the game. Finally, we
remark that in the proofs of most of the above mentioned results a dual representation of
the Hausdorff distance due to Mémoli [26] plays a central rôle.

2 Preliminaries and Notation

The set of functions f from X to Y is denoted by Y X . We denote by f [x/y] ∈ Y X the update
of f at x ∈ X with y ∈ Y , defined by f [x/y](x′) = y if x′ = x, otherwise f [x/y](x′) = f(x′).

A (1-bounded) pseudometric on a set X is a function d : X × X → [0, 1] such that,
d(x, x) = 0, d(x, y) = d(y, x), and d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

Kantorovich lifting. A (discrete) probability distribution on X is a function µ : X → [0, 1]
such that

∑
x∈X µ(x) = 1, and its support is supp(µ) = {x ∈ X | µ(x) > 0}. We denote by

D(X) the set of probability distributions on X. A pseudometric d on X can be lifted to a
pseudometric on probability distributions in D(X) by means of the Kantorovich lifting [41].

The Kantorovich lifting of d ∈ [0, 1]X×X on distributions µ, ν ∈ D(X) is defined by

K(d)(µ, ν) = min
{∑

x,y∈X d(x, y) · ω(x, y) | ω ∈ Ω(µ, ν)
}
, (Kantorovich lifting)

1 The same proof can be adapted to show that the decision problem is in UP ∩ coUP [17]. Recall that
UP contains those problems in NP with a unique accepting computation.

CONCUR 2019

9:4 Computing Probabilistic Bisimilarity Distances for Probabilistic Automata

where Ω(µ, ν) denotes the set of measure-couplings for the pair (µ, ν), i.e., distributions
ω ∈ D(X × X) such that, for all x ∈ X,

∑
y∈X ω(x, y) = µ(x) and

∑
y∈X ω(y, x) = ν(x).

It is a well known fact that the Kantorovich lifting can be equivalently defined by ranging
ω over the set of vertices V (Ω(µ, ν)) of the polytope Ω(µ, ν). Thus, a minimum is always
attained at a vertex. Furthermore, if the set X is finite, the set V (Ω(µ, ν)) is finite too.

Hausdorff lifting. A pseudometric d on X can be lifted to nonempty subsets of X by
means of the Hausdorff lifting. The Hausdorff lifting of d ∈ [0, 1]X×X on nonempty subsets
A,B ⊆ X is defined by

H(d)(A,B) = max {supa∈A infb∈B d(a, b), supb∈B infa∈A d(a, b)} . (Hausdorff lifting)

Following Mémoli [26, Lemma 3.1], the Hausdorff lifting has a dual characterization in
terms of set-couplings2. Given A,B ⊆ X, a set-coupling for (A,B) is a relation R ⊆ X ×X
with left and right projections respectively equal to A and B, i.e., {a | ∃b ∈ X. a R b} = A

and {b | ∃a ∈ X. a R b} = B. We write R(A,B) for the set of the set-couplings for (A,B).

I Theorem 1. H(d)(A,B) = inf{sup(a,b)∈R d(a, b) | R ∈ R(A,B)}.

Clearly, for A,B finite, inf and sup in Theorem 1 can be replaced by min and max, respectively.

3 Probabilistic Automata and Probabilistic Bisimilarity Distance

In this section we recall the definitions of probabilistic automaton, Segala and Lynch’s
probabilistic bisimulation [33], and probabilistic bisimilarity distance of Deng et al. [12].

I Definition 2. A probabilistic automaton (PA) is a tuple A = (S,L,→, `) consisting of
a nonempty finite set S of states, a finite set of labels L, a finite total transition relation
→ ⊆ S ×D(S), and a labelling function ` : S → L.

Note that for simplicity we assume the transition relation → to be total, that is, for all
s ∈ S, there exists a µ ∈ D(S) such that (s, µ) ∈ →. For the remainder of this paper we fix
a probabilistic automaton A = (S,L,→, `). We write s→ µ to denote (s, µ) ∈ → and use
δ(s) to denote the set {µ | s→ µ} of successor distributions of s.

Next we recall the notion of probabilistic bisimilarity due to Segala and Lynch [33] for
probabilistic automata. Their definition exploits the notion of lifting of a relation R ⊆ S × S
on states to a relation R̃ ⊆ D(S)×D(S) on probability distributions on states, originally
introduced by Jonsson and Larsen [20], and defined by µ R̃ ν if there exists a measure-coupling
ω ∈ Ω(µ, ν) such that supp(ω) ⊆ R.

I Definition 3. A relation R ⊆ S × S is a probabilistic bisimulation if whenever s R t,
`(s) = `(t),
if s→ µ then there exists t→ ν such that µ R̃ ν, and
if t→ ν then there exists s→ µ such that µ R̃ ν.

Two states s, t ∈ S are probabilistic bisimilar, written s ∼ t, if they are related by some
probabilistic bisimulation.

2 Mémoli uses the terminology “correspondence.” To avoid confusion, we adopted the same terminology
used in [29, Section 10.6].

G. Bacci, G. Bacci, K. G. Larsen, R. Mardare, Q. Tang, and F. van Breugel 9:5

Intuitively, two states are probabilistic bisimilar if they have the same label and each transition
of the one state to a distribution µ can be matched by a transition of the other state to a
distribution ν assigning the same probability to states that behave the same, and vice versa.
Probabilistic bisimilarity is an equivalence relation and the largest probabilistic bisimulation.

Deng et al. [12] proposed a family of 1-bounded pseudometrics dλ, parametric on a
discount factor λ ∈ (0, 1], called probabilistic bisimilarity pseudometrics. The pseudometrics
dλ are defined as the least fixed-point of the functions ∆λ : [0, 1]S×S → [0, 1]S×S

∆λ(d)(s, t) =
{

1 if `(s) 6= `(t)
λ · H(K(d))(δ(s), δ(t)) otherwise .

The well-definition of dλ follows by Knaster-Tarski’s fixed point theorem, given the fact that
∆λ is a monotone function on the complete partial order of [0, 1]-valued functions on S × S
ordered point-wise by d v d′ iff for all s, t ∈ S, d(s, t) ≤ d′(s, t).

The fact that probabilistic bisimilarity distances provide a quantitative generalization of
bisimilarity is captured by the following theorem due to Deng et al. [12, Corollary 2.14].

I Theorem 4. For all λ ∈ (0, 1], dλ(s, t) = 0 if and only if s ∼ t.

4 Probabilistic Bisimilarity Distance as a Simple Stochastic Game

A simple stochastic game (SSG) consists of a finite directed graph whose vertices are
partitioned into sets of 0-sinks, 1-sinks, max vertices, min vertices, and random vertices. The
game is played by two players, the max player and the min player, with a single token. At
each step of the game, the token is moved from a vertex to one of its successors. At a min
vertex the min player chooses the successor, at a max vertex the max player chooses the
successor, and at a random vertex the successor is chosen randomly according to a prescribed
probability distribution. The max player wins a play of the game if the token reaches a 1-sink
and the min player wins if the play reaches a 0-sink or continues forever without reaching
a sink. Since the game is stochastic, the max player tries to maximize the probability of
reaching a 1-sink whereas the min player tries to minimize that probability.

I Definition 5. A simple stochastic game is a tuple (V,E, P) consisting of
a finite directed graph (V,E) such that
V is partitioned into the sets: V0 of 0-sinks, V1 of 1-sinks, Vmax of max vertices, Vmin
of min vertices, and Vrnd of random vertices;
the vertices in V0 and V1 have outdegree zero and all other vertices have outdegree at
least one, and

a function P : Vrnd → D(V) such that for all v ∈ Vrnd and w ∈ V , P (v)(w) > 0 iff
(v, w) ∈ E.

A strategy, also known as policy, for the min player is a function σmin : Vmin → V

that assigns the target of an outgoing edge to each min vertex, that is, for all v ∈ Vmin,
(v, σmin(v)) ∈ E. Likewise, a strategy for the max player is a function σmax : Vmax → V that
assigns the target of an outgoing edge to each max vertex. These strategies are known as
pure stationary strategies. We can restrict ourselves to these strategies since both players of
a simple stochastic game have optimal strategies of this type (see, for example, [25]).

Such strategies determine a sub-game in which each max vertex and each min vertex has
outdegree one (see [11, Section 2] for details). Such a game can naturally be viewed as a
Markov chain. We write φσmin,σmax : V → [0, 1] for the function that gives the probability of
a vertex in this Markov chain to reach a 1-sink.

CONCUR 2019

9:6 Computing Probabilistic Bisimilarity Distances for Probabilistic Automata

t

u v

1
2

1
2

1

1 1

R = {(1t,1u), (1
2 1u + 1

2 1v,1u)},

R′ = {(1u,1u)}.

(t, u)

R

(
1t,1u

) (1
2 1u + 1

2 1v,1u
)

1(t,u) 1
2 1(u,u) + 1

2 1(v,u)

(u, u) (v, u)R′(1u,1u)

1(u,u)

1

1

1
2

1
2

Figure 1 (Top left:) A probabilistic automaton and (Right:) the associated simple stochastic
game constructed as in Definition 8 for λ = 1 (only the portion reachable from (t, u) is shown),
where 1x denotes the Dirac distribution concentrated at x.

The value function φ : V → [0, 1] of a SSG is defined as minσmin maxσmax φσmin,σmax . It is
folklore that the value function of a simple stochastic game can be characterised as the least
fixed point of the following monotone function (see, for example, [21, Section 2.2 and 2.3]).

I Definition 6. The function Φ: [0, 1]V → [0, 1]V is defined by

Φ(f)(v) =

0 if v ∈ V0

1 if v ∈ V1

max(v,w)∈E f(w) if v ∈ Vmax

min(v,w)∈E f(w) if v ∈ Vmin∑
(v,w)∈E P (v)(w) f(w) if v ∈ Vrnd

I Proposition 7. The function Φ is monotone and nonexpansive.

A Probabilistic Bisimilarity Game. Fix a probabilistic automaton A and λ ∈ (0, 1]. We
will characterise the probabilistic bisimilarity distance as values of a simple stochastic game,
which we call the probabilistic bisimilarity game, where the min player tries to show that two
states are probabilistic bisimilar, while the max player tries to prove the opposite.

In our probabilistic bisimilarity game, there is a vertex (s, t) for each pair states s and t
in A. If `(s) 6= `(t) then the vertex (s, t) is a 1-sink. Otherwise, (s, t) is a min vertex. In
this vertex, the min player selects a set R ∈ R(δ(s), δ(t)) of pairs of transitions. This set R
captures potential matchings of transitions from state s and state t. Subsequently, the max
player chooses a pair of transitions from the set R. Once the max player has chosen a pair
(µ, ν) from the set R corresponding to the transitions s→ µ and t→ ν, the min player can
choose a measure-coupling ω ∈ Ω(µ, ν). To ensure that the game graph is finite, we restrict
our attention to the vertices V (Ω(µ, ν)) of the polytope Ω(µ, ν). Such a measure-coupling ω
captures a matching of the probability distributions µ and ν. Recall that a coupling is a
probability distribution on S × S. From a random vertex ω, the game proceeds to vertex
(u, v) with probability λ ·ω(u, v) and to the 0-sink vertex ⊥ with probability 1−λ. Intuitively,

G. Bacci, G. Bacci, K. G. Larsen, R. Mardare, Q. Tang, and F. van Breugel 9:7

the choices of R ∈ R(δ(s), δ(t)) and then (µ, ν) ∈ R, performed respectively by the min and
the max player, correspond to the min and max of Theorem 1; analogously, the selection of
ω ∈ V (Ω(µ, ν)) by the min player models the min in the definition of the Kantorovich lifting.

Formally, our probabilistic bisimilarity game for the automaton A is defined as follows.

I Definition 8. Let λ ∈ (0, 1]. The probabilistic bisimilarity game (V,E, P) is defined by
V0 = {⊥},
V1 =

{
(s, t) ∈ S × S | `(s) 6= `(t)

}
,

Vmax =
⋃{
R(δ(s), δ(t)) | (s, t) ∈ Vmin

}
,

Vmin =
{

(s, t) ∈ S × S | `(s) = `(t)
}
∪
⋃{

R | R ∈ Vmax
}
,

Vrnd =
⋃{

V (Ω(µ, ν)) | (µ, ν) ∈ Vmin
}
,

E =
{

((s, t), R) | (s, t) ∈ Vmin ∧R ∈ R(δ(s), δ(t))
}
∪{

(R, (µ, ν)) | R ∈ Vmax ∧ (µ, ν) ∈ R
}
∪{

((µ, ν), ω) | (µ, ν) ∈ Vmin ∧ ω ∈ V (Ω(µ, ν))
}
∪{

(ω, (u, v)) | ω ∈ Vrnd ∧ (u, v) ∈ supp(ω)
}
∪
{

(ω,⊥) | ω ∈ Vrnd
}
,

and, for all ω ∈ Vrnd and (s, t) ∈ supp(ω), P (ω)((s, t)) = λ · ω(s, t) and P (ω)(⊥) = 1− λ.

By construction of the probabilistic bisimilarity game, there is a direct correspondence
between the function Φ from Definition 6 associated to the probabilistic bisimilarity game
and the function ∆λ from Section 3 associated to the probabilistic automaton. From this
correspondence it is straightforward that the respective least fixed points of Φ and ∆λ agree,
that is, the probabilistic bisimilarity distances of a probabilistic automaton are the values of
the corresponding vertices of the probabilistic bisimilarity game.

I Theorem 9. For all s, t ∈ S, dλ(s, t) = φ(s, t).

The proof is similar to that of [40, Theorem 14].

Consider a state pair (s, t) with s ∼ t. By Theorem 4, dλ(s, t) = 0. Hence, from
Theorem 9 we can conclude that φ(s, t) = 0. Therefore, by pre-computing probabilistic
bisimilarity, (s, t) can be represented as a 0-sink, rather than a min vertex. For example, in
Figure 1 this amounts to turn (u, u) into a 0-sink and disconnect it from its successors.

Games similar to the above introduced probabilistic bisimilarity game have been presented
in [14, 40, 15, 24]. The game presented by van Breugel and Worrell in [40] is most closely
related to our game. They also consider probabilistic automata and map a probabilistic
automaton to a simple stochastic game. The only difference is that they use the original
definition of the Hausdorff distance, whereas we use Mémoli’s alternative characterization.
The games described in [14, 15, 24] are not stochastic. Desharnais, Laviolette and Tracol
[14] define an ε-probabilistic bisimulation game for probabilistic automata, where ε > 0
captures the maximal amount of difference in behaviour that is allowed. Their measure of
difference in behaviour is incomparable to our probabilistic bisimilarity distances (see [14,
Section 6]). König and Mika-Michalski [24] generalize the game of Desharnais et al. in a
categorical setting so that it is applicable to a large class of systems including probabilistic
automata. Fijalkow, Klin and Panangaden [15] consider a more restricted class of systems,
namely systems with probabilities but without nondeterminism. In the games in [14, 15, 24]
players choose sets of states, a phenomenon that one does not encounter in our game.

CONCUR 2019

9:8 Computing Probabilistic Bisimilarity Distances for Probabilistic Automata

5 A Coupling Characterisation of the Bisimilarity Distance

In this section we provide an alternative characterisation for the probabilistic bisimilarity
distance dλ based on the notion of coupling structure for a probabilistic automaton. This
characterisation generalises the one by Chen et al. [8, Theorem 8] (see also [1, Theorem 8]) for
the bisimilarity pseudometric of Desharnais et al. [13] for Markov chains. Our construction
exploits Mémoli’s dual characterisation of the Hausdorff distance (Theorem 1).
I Definition 10. A coupling structure for A is a tuple C = (f, ρ) consisting of

a map f : D(S)×D(S)→ D(S×S) such that, for all µ, ν ∈ D(S), f(µ, ν) ∈ Ω(µ, ν), and
a map ρ : S × S → 2D(S)×D(S), such that for all s, t ∈ S, ρ(s, t) ∈ R(δ(s), δ(t)).

For convenience, the components f and ρ of a coupling structure will be respectively called
measure-coupling map and set-coupling map.

A coupling structure C = (f, ρ) induces a probabilistic automaton AC on S × S with
transition relation →C ⊆ (S × S)×D(S × S), defined as (s, t)→C f(µ, ν) if (µ, ν) ∈ ρ(s, t).

Let λ ∈ (0, 1]. For each C we define the function ΓCλ : [0, 1]S×S → [0, 1]S×S as

ΓCλ(d)(s, t) =
{

1 if `(s) 6= `(t)
λ ·max{

∑
u,v∈S d(u, v) · ω(u, v) | (s, t)→C ω} otherwise.

One can easily verify that ΓCλ is well-defined and monotonic. Thus, by Knaster-Tarski’s
fixed point theorem, ΓCλ has a least fixed point, denoted by γCλ . As in [1], we call γCλ the
λ-discounted discrepancy w.r.t. C or simply λ-discrepancy.
I Remark 11. Note that, γC1 (s, t) is the maximal probability of reaching a pair of states
(u, v) in the probabilistic automaton AC such that `(u) 6= `(v) by starting from the state
pair (s, t). It is well known that the maximal reachability probability can be computed
in polynomial-time as the optimal solution of a linear program (see [5, Chapter 10] or [30,
Chapter 6]). The linear program can be trivially generalized to compute γCλ , for any λ ∈ (0, 1].
I Lemma 12. Let λ ∈ (0, 1]. Then, ∆λ(γCλ) v γCλ for all coupling structures C of A.

The next lemma shows that the probabilistic bisimilarity distance can be characterised
as the λ-discrepancy for a vertex coupling structure, that is, a coupling structure C = (f, ρ)
such that f(µ, ν) ∈ V (Ω(µ, ν)) for all µ, ν ∈ D(S).
I Lemma 13. Let λ ∈ (0, 1]. Then, dλ = γCλ for some vertex coupling structure C.
I Theorem 14. Let λ ∈ (0, 1]. Then, the following hold:
1. dλ = u{γCλ | C coupling structure for A};
2. s ∼ t iff γCλ(s, t) = 0 for some vertex coupling structure C for A.
Proof. (1) follows by Knaster-Tarski’s fixed point theorem, Lemmas 12, and 13; (2) follows
by Theorem 4 and Lemma 13. J

Note that together with Lemma 13, Theorem 14.1 states that dλ can obtained as the
minimal λ-discrepancy obtained by ranging over the subset of vertex coupling structures.
I Remark 15 (On the relation with probabilistic bisimilarity games). The coupling structure char-
acterization of the distance is strongly related to the simple stochastic game characterization
presented in Section 4. Indeed, the notion of vertex coupling structure captures essentially
the strategies for the min player on a probabilistic bisimilarity game in the following sense:
the measure-coupling map component describes the strategy on the vertices of the form
(µ, ν) ∈ R for some R ∈ Vmax, while the set-coupling map deals with the description of the
strategy on the min vertices (s, t) ∈ S × S. The discrepancy γC1 captures the value w.r.t an
optimal strategy for the max player when the min player has fixed their strategy a priori.

G. Bacci, G. Bacci, K. G. Larsen, R. Mardare, Q. Tang, and F. van Breugel 9:9

6 Computing the Bisimilarity Distance

We describe a procedure for computing the bisimilarity distances based on Condon’s simple
policy iteration algorithm [10]. Our procedure extends a similar one proposed in [37, 1]
for computing the bisimilarity distance of Desharnais et al. [13] for Markov chains. The
extension takes into account the additional presence of nondeterminism in the choice of
the transitions.

Condon’s simple policy iteration algorithm computes the values of a simple stochastic
game provided that the game is stopping, i.e., for each pair of strategies for the min and max
players the token reaches a 0-sink or 1-sink vertex with probability one.

As we have shown in Theorem 9, the probabilistic bisimilarity distances are the values of
the corresponding vertices in the simple stochastic game given in Definition 8. Thus, if we
prove that the game is stopping we can apply Condon’s simple policy iteration algorithm to
compute the probabilistic bisimilarity distances.

I Proposition 16. For λ ∈ (0, 1), the simple stochastic game in Definition 8 is stopping.

However, for λ = 1 the game in Definition 8 may not be stopping as shown below.

I Example 17. Consider the probabilistic automaton in Figure 1 and its associated prob-
abilistic bisimilarity game. By choosing a strategy σmax for the max player such that
σmax(R) = (1t,1u), the vertex (t, u) has probability zero to reach a sink. This can be seen
in Figure 1, since there are no paths using the edge (R, (1t,1u)) leading to a sink.

In [37], by imposing the bisimilar state pairs to be 0-sinks, for the case of Markov chains
the simple stochastic game was proven to be stopping. This method does not generalize to
probabilistic automata. Indeed, Example 17 provides a counterexample even when bisimilar
state pairs are 0-sinks.

In the remainder of the section, we provide a general algorithm to compute the bisimilarity
distance for every λ ∈ (0, 1], by adapting Condon’s simple policy iteration algorithm. Our
solution will exploit the coupling characterization of the distance discussed in Section 5.
This allows us to skip the construction of the simple stochastic game which may have size
exponential in the number of states of the automaton.

6.1 Simple Policy Iteration Strategy
Condon’s algorithm iteratively updates the strategies of the min and max players in turn, on
the basis of the current over-approximation of the value of the game. Next we show how
Condon’s policy updates can be performed directly on coupling structures.

For the update of the coupling structure, will use measure-coupling maps of the form
k(d)(µ, ν) ∈ V (Ω(µ, ν)) and a set-coupling h(d)(s, t) ∈ R(δ(s), δ(t)) such that

k(d)(µ, ν) ∈ argmin
{∑

u,v∈S ω(u, v) · d(u, v) | ω ∈ V (Ω(µ, ν))
}
, and (1)

h(d)(s, t) ∈ argmin
{

max(µ,ν)∈RK(d)(µ, ν) | R ∈ R(δ(s), δ(t))
}
. (2)

for d : S × S → [0, 1], µ, ν ∈ D(S), and s, t ∈ S.
The following lemma explains how the above ingredients can be used by the min player

to improve their strategy.

I Lemma 18. Let C = (f, ρ). If there exist s, t ∈ S such that ∆λ(γCλ)(s, t) < γCλ(s, t) then,
γDλ < γCλ for a coupling structure D = (k(γCλ), ρ[(s, t)/R]), where R = h(γCλ)(s, t).

CONCUR 2019

9:10 Computing Probabilistic Bisimilarity Distances for Probabilistic Automata

Algorithm 1: Simple policy iteration algorithm computing dλ for λ ∈ (0, 1).
1 Initialise C = (f, ρ) as an arbitrary vertex coupling structure for A
2 while ∃(s, t).∆λ(γCλ)(s, t) < γCλ(s, t) do
3 R← h(γCλ)(s, t)
4 C ←

(
k(γCλ), ρ[(s, t)/R]

)
/* update coupling structure */

5 end
6 return γCλ /* γCλ = dλ */

Lemma 18 suggests that C = (f, ρ) can be improved by replacing the measure-coupling
map f with k(γCλ) and updating the set-coupling map ρ at (s, t) with R = h(γCλ)(s, t).

Note that a measure-coupling k(d)(µ, ν) satisfying (1) can be computed by solving a linear
program and ensuring that the optimal solution is a vertex of the polytope Ω(µ, ν) [28, 23].
A set-coupling h(d)(s, t) satisfying (2) is the following:

R = {(µ, φ(µ)) | µ ∈ δ(s)} ∪ {(ψ(ν), ν) | ν ∈ δ(t)} ∈ R(δ(s), δ(t)) , (3)

where φ, ψ are such that φ(µ) ∈ argminν∈δ(t)K(d)(µ, ν) and ψ(ν) ∈ argminµ∈δ(s)K(d)(µ, ν).
The following lemma justifies our choice of h(d)(s, t).

I Lemma 19. Let R be as in (3). Then H(K(d))(δ(s), δ(t)) = max(µ,ν)∈RK(d)(µ, ν).

I Remark 20. The update procedure entailed by Lemma 18 can be performed in polynomial-
time in the size of the probabilistic automaton A. Indeed, k(d)(µ, ν) can be obtained by
solving a transportation problem in polynomial time [28, 23]. As for h(d)(s, t), one can
obtain φ(µ) (resp. ψ(ν)) by computing K(d)(µ, ν) in polynomial time and selecting the ν
(resp. µ) ranging over δ(t) (resp. δ(s)) that achieves the minimum.

Discounted case. The simple policy iteration algorithm for computing dλ in the case λ < 1
is presented in Algorithm 1. The procedure starts by computing an initial vertex coupling
structure C0 (line 1), e.g., by using the North-West corner method in polynomial time (see
[35, pg. 180]). Then it continues by iteratively generating a sequence C0, C1, . . . , Cn of vertex
coupling structures where dλ = γCn

λ . At each iteration, the current coupling structure Ci
is tested for optimality (line 2) by checking whether the corresponding λ-discrepancy γCi

λ

is a fixed point for ∆λ. If there exists (s, t) ∈ S violating the equality γCi

λ = ∆λ(γCi

λ), it
constructs Ci+1 by updating Ci at (s, t) as prescribed by Lemma 18 (line 4). This guarantees
that γCi

λ = γ
Ci+1
λ , i.e., a strict improvement of the λ-discrepancy towards the minimal one.

Termination follows by the fact that there are only finitely many vertex coupling structures
for A. Furthermore, the correctness of the output of the algorithm is due to the fact that,
∆λ has a unique fixed point when 0 ≤ λ < 1.

I Theorem 21. Let λ ∈ (0, 1). Algorithm 1 is terminating and computes dλ.

Undiscounted case. For λ = 1, the termination condition of the simple policy-iteration
algorithm of Section 6.1 is not sufficient to guarantee correctness, since Algorithm 1 may
terminate prematurely by returning a fixed point of ∆1 that is not the minimal one.

Towards a way to obtain a stronger termination condition, we introduce the notion of
self-closed relations w.r.t. a fixed point for ∆1, originally due to [16].

G. Bacci, G. Bacci, K. G. Larsen, R. Mardare, Q. Tang, and F. van Breugel 9:11

I Definition 22. A relation M ⊆ S × S is self-closed w.r.t. d = ∆1(d) if, whenever s M t,
`(s) = `(t) and d(s, t) > 0,
if s→ µ and d(s, t) = minν′∈δ(t)K(d)(µ, ν′) then there exists t→ ν and ω ∈ Ω(µ, ν) such
that d(s, t) =

∑
u,v∈S d(u, v) · ω(u, v) and supp(ω) ⊆M ,

if t→ ν and d(s, t) = minµ′∈δ(s)K(d)(µ′, ν) then there exists s→ µ and ω ∈ Ω(µ, ν) such
that d(s, t) =

∑
u,v∈S d(u, v) · ω(u, v) and supp(ω) ⊆M .

Two states are self-closed w.r.t d, written s ≈d t, if they are related by some self-closed
relation w.r.t. d.

It can be easily shown that ≈d is the largest self-closed relation w.r.t. d. Note that the
concept of self-closeness above is defined only for fixed points of ∆1. As remarked in [16],
the largest self-closed relation ≈d can be computed in polynomial time by using partition
refinement techniques similar to those employed to compute the largest bisimilarity relation.

The next lemma states that if for a fixed point d = ∆1(d) the relation ≈d is nonempty,
then d is not the least fixed point of ∆1.

I Lemma 23. Let d = ∆1(d). If there exists a nonempty self-closed relation M w.r.t. d, then
there exists dM < d such that ∆1(dM) v dM . Moreover, dM can be computed in polynomial
time in the size of the probabilistic automaton A.

The proof of Lemma 23 is essentially that of [16, Theorem 3]. Given a nonempty self-closed
relation M w.r.t. d, the above result can be used to obtain a prefix point of ∆1, namely dM ,
that improves d towards the search of the least fixed point. The prefix point dM of Lemma 23
is obtained from d by subtracting a constant θ > 0 from all the distances computed at pairs
of states in M :

dM (s, t) =
{
d(s, t)− θ if (s, t) ∈M ,

d(s, t) if (s, t) /∈M ,

where θ is the maximal value satisfying the following set of inequalities

θ ≤ d(s, t)− min
ν′∈δ(t)

K(d)(µ, ν′) for all (s, t) ∈M and µ ∈ δ(s),

θ ≤ d(s, t)− min
µ′∈δ(s)

K(d)(µ′, ν) for all (s, t) ∈M and ν ∈ δ(t),

θ ≤ d(s, t) for all (s, t) ∈M .

The fact that dM is a prefix point follows since M is a self-closed relation.

The following lemma provides us with a termination condition for the simple policy
iteration algorithm to compute d1. Indeed, according to it, if d is a fixed point of ∆1, we
can assert that d is equal to bisimilarity distance d1 by simply checking that the maximal
self-closed relation w.r.t. d is empty.

I Lemma 24. If d = ∆1(d) and ≈d = ∅, then d = d1.

Algorithm 2 extends the procedure described in Section 6.1 by encapsulating the policy
iteration update (lines 4–7) into an outer-loop (lines 3–15) that is responsible to check whether
the fixed point γCi

1 returned is the minimal one. According to Lemma 12, ∆1(γCi
1) v γCi

1 .
Hence, when we reach line 8, we have that ∆1(γCi

1) = γCi
1 . Therefore, by Lemmas 23 and 24,

γCi
1 = d1 if and only if M = ≈

γ
Ci
1

is empty. If M is empty, we set the variable isMin to
true (line 10) causing the outer-loop to terminate. Otherwise, we construct d = (γCi

1)M as in

CONCUR 2019

9:12 Computing Probabilistic Bisimilarity Distances for Probabilistic Automata

Algorithm 2: Simple policy iteration algorithm computing d1.
1 Initialise C = (f, ρ) as an arbitrary vertex coupling structure for A
2 isMin← false
3 while ¬isMin do
4 while ∃(s, t).∆1(γC1)(s, t) < γC1 (s, t) do
5 R← h(γC1)(s, t)
6 C ←

(
k(γC1), ρ[(s, t)/R]

)
/* update coupling structure */

7 end
8 Let M ← ≈γC

1
/* note that γC1 = ∆1(γC1) */

9 if M = ∅ then
10 isMin← true /* γC1 = d1 */
11 else
12 Compute d = (γC1)M as in Lemma 23
13 Re-initialise C as a vertex coupling structure s.t. ΓC1 (d) = ∆1(d)
14 end
15 end
16 return γC1

Lemma 23 (line 12) and re-start the inner-loop from a vertex coupling structure Ci+1 such
that ΓCi+1

1 (d) = ∆1(d) (line 13) (e.g., by using Ci+1 = (k(d), ρ) where ρ(s, t) = h(d)(s, t) for
all s, t ∈ S). As proven in Theorem 25, γCi

1 = γ
Ci+1
1 . This guarantees a strict improvement of

the discrepancy towards the minimal one. Termination of Algorithm 2 is justified by similar
arguments as for the discounted case.

I Theorem 25. Algorithm 2 is terminating and computes d1.

6.2 Experimental Results
In this section, we evaluate the performance of the simple policy iteration algorithms on
a collection of randomly generated probabilistic automata. All the algorithms have been
implemented in Java and the source code is publicly available3.

The performance of Algorithm 1 has been compared with an implementation of the value
iteration algorithm proposed by Fu [16, Section 4]. This algorithm works as follows. Starting
from the bottom element, it iteratively applies ∆λ to the current distance function generating
the increasing chain 0 v ∆λ(0) v ∆2

λ(0) v · · · v ∆k−1
λ (0) v ∆k

λ(0).
For each input instance, the comparison involves the following steps:

1. We run Algorithm 1, storing execution time, the number of solved transportation problems,
and the number of coupling structures generated during the execution (i.e., the number
of times a λ-discrepancy has been computed);

2. Then, on the same instance, we execute the value iteration algorithm until the running time
exceeds that of step 1. We report the execution time, the number of solved transportation
problems, and the number of iterations.

3. Finally, we report the error maxs,t∈S |dλ(s, t)−d(s, t)| between the distance dλ computed
in step 1 and the approximate result d obtained in step 2.

3 https://bitbucket.org/discoveri/probabilistic-bisimilarity-distances-probabilistic-
automata

https://bitbucket.org/discoveri/probabilistic-bisimilarity-distances-probabilistic- automata
https://bitbucket.org/discoveri/probabilistic-bisimilarity-distances-probabilistic- automata

G. Bacci, G. Bacci, K. G. Larsen, R. Mardare, Q. Tang, and F. van Breugel 9:13

Table 1 Comparison between Simple Policy and Value Iteration Algorithm. Average performance
conducted on 100 randomly generated automata with number of states n = 10..50, nondeterministic
out-degree k = 1..3, and probabilistic out-degree p = 2..3. Discount λ = 0.8; accuracy 0.000001.

n = |S|
Simple Policy Iteration Value Iteration Error

time (sec) # TP # C time (sec) # TP # Iter

10 0.254 356.3 23.2 0.291 733.3 4.3 0.06005
11 0.383 454 29 0.426 987 4.8 0.04971
12 0.549 564.5 35.3 0.613 1226.5 5 0.05156
13 0.742 678.5 42.6 0.820 1480 5.5 0.05252
14 1.099 809.6 50 1.212 1877.5 5.8 0.04841
15 1.668 957.8 58.6 1.879 2160.8 6 0.05431
20 4.405 1883.3 111 6.892 4661 7.8 0.03198
30 42.392 4570.2 251.2 44.263 14625.4 11 0.02026
40 160.725 8569.5 474.5 169.457 30713.6 14.4 0.00459
50 473.598 13877 748.6 490.575 56155.2 16,8 0.01224

0

200

400

600

800

1000

1200

10 15 20 30 40 50

Ti
m
e	
(S
ec
on
ds
)

p=2,k=1

p=2,k=2

p=2,k=3

p=3,k=1

p=3,k=2

p=3,k=3

Figure 2 Average performance for the Simple Policy Iteration Algorithm conducted on 100
randomly generated automata varying number of states n = 10..50, nondeterministic out-degree
k = 1..3, and probabilistic out-degree p = 2..3. Discount factor λ = 0.8; accuracy 0.000001.

This has been done for a collection of automata varying from 10 to 50 states. For each
n = 10, . . . , 50, we considered 100 randomly generated probabilistic automata, varying
probabilistic out-degree and nondeterministic out-degree. Table 1 reports the average results
of the comparison. Our algorithm is able to compute the solution before value iteration can
under-approximate it with an error ranging from 0.004 to 0.06 which is a non negligible error
considering that we fixed λ = 0.8 and the distance has values in [0, 1].

Furthermore in Figure 2 we observe that the execution time of the simple policy iteration
algorithm is particularly influenced by the degree of nondeterminism of the automaton. This
may be explained by the fact that the current implementation uses a linear program for
computing the λ-discrepancy (cf. Remark 11) which has O(n2k2) variables and O(n2k2)
constraints where n and k are the number of states and the nondeterministic out-degree of
the automaton, respectively.

Algorithm 2 extends the simple policy iteration algorithms proposed in [1, 37] for Markov
chains. As pointed out in [36], implementations based on the decision procedure for the
existential fragment of the first-order theory of the reals fail to handle Markov chains with a
handful of states. For probabilistic automata, the algorithms in [6, 7] suffer from the same

CONCUR 2019

9:14 Computing Probabilistic Bisimilarity Distances for Probabilistic Automata

Table 2 Average performance of Algorithm 2 conducted on 100 randomly generated automata
with number of states n = 10..50, nondeterministic out-degree k = 1..3, and probabilistic out-degree
p = 2..3. Discount λ = 1; accuracy 0.000001.

n = |S| time (sec) # TP # C # outer-loops

10 0.310 392.6 23.8 1
11 0.460 509 30.3 1
12 0.665 651.5 37.2 1
13 0.921 807 44.5 1
14 1.205 952.6 51.5 1
15 1.657 1158.2 59.8 1
20 7.633 2278.5 108.8 1
30 29.430 4880.2 207 1
40 121.855 8245.3 340.3 1
50 381.563 12938 532.5 1

problem. The performance of Algorithm 2 is comparable to that of Algorithm 1 (cf. Table 2).
Despite the fact that the simple policy algorithm is not guaranteed to be sound when the
discount factor equals one, our experiments show that in practice a single iteration of the
outer-loop of Algorithm 2 is often sufficient to yield the correct solution.

7 Conclusion and Future Work

We presented a novel characterization of the probabilistic bisimilarity distance of Deng et
al. [12] as the solution of a simple stochastic game. Starting from it, we designed algorithms
for computing the distances based on Condon’s simple policy iteration algorithm. The
correctness of Condon’s approach relies on the assumption that the input game is stopping.
This may not be the case for our probabilistic bisimilarity games when the discount factor is
one. We overcame this problem by means of an improved termination condition based on
the notion of self-closed relation due to Fu [17].

As in [37], our simple policy iteration algorithm has exponential worst-case time complexity.
Nevertheless, experiments show that our method can compete in practice with the value
iteration algorithm by Fu [17] which has theoretical polynomial-time complexity for λ < 1.
To the best of our knowledge, our algorithm is the first practical solution for computing the
bisimilarity distance when λ = 1, performing orders of magnitude faster than the existing
solutions based on the existential fragment of the first-order theory of the reals [6, 7, 9].

As future work, we plan to improve upon the current implementation in the line of [38], by
exploiting the fact that bisimilar states and probabilistic distance one [39] can be efficiently
pre-computed before to start the policy iteration. We believe that this would yield a significant
cut down in the time required to compute the discrepancy at each iteration which turned
out to be the bottleneck of our algorithms.

More efficient algorithms might lead to the speedup of verification tools for concurrent
probabilistic systems, as behavioral distances relate to the satisfiability of logical properties.
For the case of Markov chains, in [8, 2] the variational difference between two states with
respect to their probability of satisfying linear-time properties (eg., LTL formulas) is shown to
be bound by the (undiscounted) probabilistic bisimilarity distance. Some preliminary results
show that a similar bound holds also for probabilistic automata, though with additional
subtleties that arise by the need of resolving the non-determinism.

G. Bacci, G. Bacci, K. G. Larsen, R. Mardare, Q. Tang, and F. van Breugel 9:15

We also plan to extend the work on approximated minimization [3, 4] to the case of
probabilistic automata and explore the possible relation between the probabilistic bisimilarity
distance with more expressive logics for concurrent probabilistic systems [6, 7, 27].

References
1 Giorgio Bacci, Giovanni Bacci, Kim G. Larsen, and Radu Mardare. On-the-Fly Exact

Computation of Bisimilarity Distances. In 19th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, TACAS 2013, volume 7795 of LNCS,
pages 1–15, 2013. doi:10.1007/978-3-642-36742-7_1.

2 Giorgio Bacci, Giovanni Bacci, Kim G. Larsen, and Radu Mardare. Converging from Branching
to Linear Metrics on Markov Chains. In 12th International Colloquium Theoretical Aspects of
Computing, ICTAC 2015, volume 9399 of Lecture Notes in Computer Science, pages 349–367.
Springer, 2015. doi:10.1007/978-3-319-25150-9_21.

3 Giovanni Bacci, Giorgio Bacci, Kim G. Larsen, and Radu Mardare. On the Metric-Based
Approximate Minimization of Markov Chains. In 44th International Colloquium on Automata,
Languages, and Programming, ICALP 2017, volume 80 of LIPIcs, pages 104:1–104:14. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017. doi:10.4230/LIPIcs.ICALP.2017.104.

4 Giovanni Bacci, Giorgio Bacci, Kim G. Larsen, and Radu Mardare. On the metric-based
approximate minimization of Markov Chains. J. Log. Algebr. Meth. Program., 100:36–56, 2018.

5 Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. MIT Press, 2008.
6 Krishnendu Chatterjee, Luca de Alfaro, Rupak Majumdar, and Vishwanath Raman. Algorithms

for Game Metrics. In IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science, FSTTCS 2008, volume 2 of LIPIcs, pages 107–118. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2008. doi:10.4230/LIPIcs.FSTTCS.2008.1745.

7 Krishnendu Chatterjee, Luca de Alfaro, Rupak Majumdar, and Vishwanath Raman. Algorithms
for Game Metrics (Full Version). Logical Methods in Computer Science, 6(3), 2010. doi:
10.2168/LMCS-6(3:13)2010.

8 Di Chen, Franck van Breugel, and James Worrell. On the Complexity of Computing Prob-
abilistic Bisimilarity. In 15th International Conference on Foundations of Software Science
and Computational Structures, FOSSACS 2012, volume 7213 of Lecture Notes in Computer
Science, pages 437–451. Springer, 2012. doi:10.1007/978-3-642-28729-9_29.

9 Taolue Chen, Tingting Han, and Jian Lu. On Behavioral Metric for Probabilistic Systems:
Definition and Approximation Algorithm. In 4th International Conference on Fuzzy Systems
and Knowledge Discovery, FSKD 2007, pages 21–25. IEEE Computer Society, 2007. doi:
10.1109/FSKD.2007.426.

10 Anne Condon. On Algorithms for Simple Stochastic Games. In Advances In Computational
Complexity Theory, volume 13 of DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, pages 51–72. DIMACS/AMS, 1990.

11 Anne Condon. The Complexity of Stochastic Games. Inf. Comput., 96(2):203–224, 1992.
doi:10.1016/0890-5401(92)90048-K.

12 Yuxin Deng, Tom Chothia, Catuscia Palamidessi, and Jun Pang. Metrics for Action-labelled
Quantitative Transition Systems. Electr. Notes Theor. Comput. Sci., 153(2):79–96, 2006.
doi:10.1016/j.entcs.2005.10.033.

13 Josee Desharnais, Vineet Gupta, Radha Jagadeesan, and Prakash Panangaden. Metrics for
Labelled Markov Processes. Theor. Comput. Sci., 318(3):323–354, 2004. doi:10.1016/j.tcs.
2003.09.013.

14 Josée Desharnais, François Laviolette, and Mathieu Tracol. Approximate Analysis of Prob-
abilistic Processes: Logic, Simulation and Games. In 5th International Conference on the
Quantitative Evaluaiton of Systems, QEST 2008, pages 264–273. IEEE Computer Society,
2008. doi:10.1109/QEST.2008.42.

CONCUR 2019

http://dx.doi.org/10.1007/978-3-642-36742-7_1
http://dx.doi.org/10.1007/978-3-319-25150-9_21
http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.104
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2008.1745
http://dx.doi.org/10.2168/LMCS-6(3:13)2010
http://dx.doi.org/10.2168/LMCS-6(3:13)2010
http://dx.doi.org/10.1007/978-3-642-28729-9_29
http://dx.doi.org/10.1109/FSKD.2007.426
http://dx.doi.org/10.1109/FSKD.2007.426
http://dx.doi.org/10.1016/0890-5401(92)90048-K
http://dx.doi.org/10.1016/j.entcs.2005.10.033
http://dx.doi.org/10.1016/j.tcs.2003.09.013
http://dx.doi.org/10.1016/j.tcs.2003.09.013
http://dx.doi.org/10.1109/QEST.2008.42

9:16 Computing Probabilistic Bisimilarity Distances for Probabilistic Automata

15 Nathanaël Fijalkow, Bartek Klin, and Prakash Panangaden. Expressiveness of Probabilistic
Modal Logics, Revisited. In 44th International Colloquium on Automata, Languages, and
Programming, ICALP 2017, volume 80 of LIPIcs, pages 105:1–105:12. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2017. doi:10.4230/LIPIcs.ICALP.2017.105.

16 Hongfei Fu. Computing Game Metrics on Markov Decision Processes. In 39th International
Colloquium on Automata, Languages, and Programming, ICALP 2012, volume 7392 of Lecture
Notes in Computer Science, pages 227–238. Springer, 2012. doi:10.1007/978-3-642-31585-5_
23.

17 Hongfei Fu. personal communication, 2013.
18 Alessandro Giacalone, Chi-Chang Jou, and Scott A. Smolka. Algebraic Reasoning for Probab-

ilistic Concurrent Systems. In Proceedings of the IFIP WG 2.2/2.3 Working Conference on
Programming Concepts and Methods, pages 443–458. North-Holland, 1990.

19 Felix Hausdorff. Grundzüge der Mengenlehre. Verlag Von Veit & Comp, Leipzig, 1914.
20 Bengt Jonsson and Kim G. Larsen. Specification and Refinement of Probabilistic Processes.

In 6th Annual Symposium on Logic in Computer Science, LICS 1991, pages 266–277. IEEE
Computer Society, 1991. doi:10.1109/LICS.1991.151651.

21 Brendan Juba. On the Hardness of Simple Stochastic Games. Master’s thesis, Carnegie Mellon
University, Pittsburgh, PA, USA, May 2005.

22 Leonid Vitalevich Kantorovich. On the transfer of masses (in Russian). Doklady Akademii
Nauk, 5(5-6):1–4, 1942. Translated in Management Science, 1958.

23 Peter Kleinschmidt and Heinz Schannath. A Strongly Polynomial Algorithm for the Trans-
portation Problem. Math. Program., 68:1–13, 1995. doi:10.1007/BF01585755.

24 Barbara König and Christina Mika-Michalski. (Metric) Bisimulation Games and Real-Valued
Modal Logics for Coalgebras. In 29th International Conference on Concurrency Theory,
CONCUR 2018, volume 118 of LIPIcs, pages 37:1–37:17. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2018. doi:10.4230/LIPIcs.CONCUR.2018.37.

25 Thomas Liggett and Steven A. Lippman. Stochastic Games with Perfect Information and
Time Average Payoff. SIAM Review, 11(4):604–607, 1969. doi:10.1137/1011093.

26 Facundo Mémoli. Gromov-Wasserstein Distances and the Metric Approach to Object
Matching. Foundations of Computational Mathematics, 11(4):417–487, 2011. doi:10.1007/
s10208-011-9093-5.

27 Matteo Mio. On the Equivalence of Game and Denotational Semantics for the Probabilistic
µ-calculus. Logical Methods in Computer Science, 8(2), 2012. doi:10.2168/LMCS-8(2:7)2012.

28 James B. Orlin. On the Simplex Algorithm for Networks and Generalized Networks, pages
166–178. Springer Berlin Heidelberg, 1985. doi:10.1007/BFb0121050.

29 Gabriel Peyré and Marco Cuturi. Computational Optimal Transport. Foundations and Trends
in Machine Learning, 11(5-6):355–607, 2019. doi:10.1561/2200000073.

30 Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.
John Wiley & Sons, Inc., New York, NY, USA, 1st edition, 1994.

31 Alexander Schrijver. Theory of Linear and Integer Programming. Wiley-Interscience series in
Discrete Mathematics and Optimization. Wiley, 1999.

32 Roberto Segala. Modeling and Verification of Randomized Distributed Real-time Systems. PhD
thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 1995.

33 Roberto Segala and Nancy A. Lynch. Probabilistic Simulations for Probabilistic Processes. In
5th International Conference on Concurrency Theory, CONCUR 1994, volume 836 of Lecture
Notes in Computer Science, pages 481–496. Springer, 1994. doi:10.1007/978-3-540-48654-1_
35.

34 Lloyd S. Shapley. Stochastic Games. Proceedings of the National Academy of Sciences,
39(10):1095–1100, 1953. doi:10.1073/pnas.39.10.1095.

35 James K. Strayer. Linear Programming and its Applications. Undergraduate Texts in Math-
ematics. Springer-Verlag, New York, NY, USA, 1989. doi:10.1007/978-1-4612-1009-2.

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.105
http://dx.doi.org/10.1007/978-3-642-31585-5_23
http://dx.doi.org/10.1007/978-3-642-31585-5_23
http://dx.doi.org/10.1109/LICS.1991.151651
http://dx.doi.org/10.1007/BF01585755
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.37
http://dx.doi.org/10.1137/1011093
http://dx.doi.org/10.1007/s10208-011-9093-5
http://dx.doi.org/10.1007/s10208-011-9093-5
http://dx.doi.org/10.2168/LMCS-8(2:7)2012
http://dx.doi.org/10.1007/BFb0121050
http://dx.doi.org/10.1561/2200000073
http://dx.doi.org/10.1007/978-3-540-48654-1_35
http://dx.doi.org/10.1007/978-3-540-48654-1_35
http://dx.doi.org/10.1073/pnas.39.10.1095
http://dx.doi.org/10.1007/978-1-4612-1009-2

G. Bacci, G. Bacci, K. G. Larsen, R. Mardare, Q. Tang, and F. van Breugel 9:17

36 Qiyi Tang. Computing Probabilistic Bisimilarity Distances. PhD thesis, York University,
Toronto, Canada, August 2018.

37 Qiyi Tang and Franck van Breugel. Computing Probabilistic Bisimilarity Distances via
Policy Iteration. In 27th International Conference on Concurrency Theory, CONCUR 2016,
volume 59 of LIPIcs, pages 22:1–22:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2016. doi:10.4230/LIPIcs.CONCUR.2016.22.

38 Qiyi Tang and Franck van Breugel. Deciding Probabilistic Bisimilarity Distance One for
Labelled Markov Chains. In 30th International Conference on Computer Aided Verification,
CAV 2018, volume 10981 of Lecture Notes in Computer Science, pages 681–699. Springer, 2018.
doi:10.1007/978-3-319-96145-3_39.

39 Qiyi Tang and Franck van Breugel. Deciding Probabilistic Bisimilarity Distance One for Prob-
abilistic Automata. In Sven Schewe and Lijun Zhang, editors, 29th International Conference
on Concurrency Theory, CONCUR 2018, volume 118 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 9:1–9:17. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018.
doi:10.4230/LIPIcs.CONCUR.2018.9.

40 Franck van Breugel and James Worrell. The Complexity of Computing a Bisimilarity
Pseudometric on Probabilistic Automata. In Horizons of the Mind. A Tribute to Prakash
Panangaden —Essays Dedicated to Prakash Panangaden on the Occasion of His 60th Birth-
day, volume 8464 of Lecture Notes in Computer Science, pages 191–213. Springer, 2014.
doi:10.1007/978-3-319-06880-0_10.

41 Cédric Villani. Optimal Transport: Old and New. Grundlehren der mathematischen Wis-
senschaften. Springer, 2008.

CONCUR 2019

http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.22
http://dx.doi.org/10.1007/978-3-319-96145-3_39
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.9
http://dx.doi.org/10.1007/978-3-319-06880-0_10

Asymmetric Distances for Approximate
Differential Privacy
Dmitry Chistikov
Centre for Discrete Mathematics and its Applications (DIMAP) & Department of Computer
Science, University of Warwick, UK

Andrzej S. Murawski
Department of Computer Science, University of Oxford, UK

David Purser
Centre for Discrete Mathematics and its Applications (DIMAP) & Department of Computer
Science, University of Warwick, UK

Abstract
Differential privacy is a widely studied notion of privacy for various models of computation, based
on measuring differences between probability distributions. We consider (ε, δ)-differential privacy in
the setting of labelled Markov chains. For a given ε, the parameter δ can be captured by a variant
of the total variation distance, which we call lvα (where α = eε).

First we study lvα directly, showing that it cannot be computed exactly. However, the associated
approximation problem turns out to be in PSPACE and #P-hard. Next we introduce a new
bisimilarity distance for bounding lvα from above, which provides a tighter bound than previously
known distances while remaining computable with the same complexity (polynomial time with
an NP oracle). We also propose an alternative bound that can be computed in polynomial time.
Finally, we illustrate the distances on case studies.

2012 ACM Subject Classification Theory of computation → Probabilistic computation

Keywords and phrases Bisimilarity distances, Differential privacy, Labelled Markov chains

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2019.10

Funding Andrzej S. Murawski: Royal Society Leverhulme Trust Senior Research Fellowship and the
International Exchanges Scheme (IE161701)
David Purser : UK EPSRC Centre for Doctoral Training in Urban Science (EP/L016400/1)

Acknowledgements The authors would like to thank the reviewers for their helpful comments.

1 Introduction

Differential privacy [14] is a security property that ensures that a small perturbation of the
input leads to only a small perturbation in the output, so that observing the output makes it
difficult to discern whether a particular piece of information was present in the input. It has
been shown that various bisimilarity distances can bound the differential privacy of a labelled
Markov chain, by bounding for example the ε [6, 31] and δ [9] privacy parameters. Bisimilarity
distances [17, 11] were introduced as a metric analogue of probabilistic bisimulation [23], to
overcome the problem that bisimilarity is too sensitive to minor changes in probabilities.

We further the study of bounds to δ by defining new bisimilarity distances. The bisimilarity
distance of [9], inspired by the work of [31], transpired to be computable in polynomial time
with an NP oracle. The work of [31] defined distances using the Kantorovich metric and the
associated bisimilarity distance based on a fixed point; and considered the effect of replacing
the absolute value function with another metric. For the purposes of (ε, δ)-differential privacy
the distance required is not a metric, nor even a pseudometric, so their methods are adapted
in [9] to account for this; resulting in a distance function bdα which can be used to bound

© Dmitry Chistikov, Andrzej S. Murawski, and David Purser;
licensed under Creative Commons License CC-BY

30th International Conference on Concurrency Theory (CONCUR 2019).
Editors: Wan Fokkink and Rob van Glabbeek; Article No. 10; pp. 10:1–10:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.CONCUR.2019.10
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 Asymmetric Distances for Approximate Differential Privacy

tvα(s, s
′)

lvα(s, s
′)

not computable

lvα(s
′, s)

ldα(s
′, s)

FPNP

ldα(s, s
′)

FPNP

max{ldα(s, s′), ldα(s′, s)}
FPNP

lgdα(s
′, s)

FP

lgdα(s, s
′)

FP

max{lgdα(s, s′), lgdα(s′, s)}
FP

bdα(s, s
′)

FPNP

Figure 1 Partial order of distances, such that a → b ⇐⇒ a ≤ b. FP is the functional
counterpart of P, where the value of the function can be computed in polynomial time. FPNP

indicates polynomial time with NP oracle. tvα and bdα are introduced in [9] and recalled in
Sections 3 and 6, respectively. The remaining distances are the contribution of this paper.

the δ parameter in differential privacy from above. The function, however, retained the
symmetry property that bdα(s, s′) = bdα(s′, s). In this paper we further study distances
to bound differential privacy in labelled Markov chains, but drop this symmetry property
and discover a tighter bound, which can be computed with the same cost. We also define a
weaker bisimilarity distance for bounding δ that can be computed in polynomial time.

The privacy parameter in question, δ, can be expressed as a variant of the total variation
distance tvα. In particular we define lvα as a single component of tvα (which is a maximum
over two functions). This distance is a way of measuring the maximum difference of
probabilities between any two states. Total variation distance is usually expressed using
absolute difference, but for differential privacy a skew is introduced into this distance. These
exact distances transpire to be very difficult to compute: we confirm that the threshold
distance problem, which asks whether the distance is below a given threshold, is undecidable
and approximating it is #P-hard. We also show that for finite words it can be approximated
in PSPACE. These results match the results of [22] for standard total variation distances.

We then bound the distance lvα from above by a distance ldα which will turn out to
be computable, in a similar manner to how bdα bounds tvα in [9]. We show that ldα can
be computed in polynomial time with an NP oracle (that is, with the same complexity as
bdα). We further generalise ldα to a new distance lgdα, computable in polynomial time.
This new distance, is no smaller than ldα, and we conjecture it might be equal. We can
then take max{ldα(s, s′), ldα(s′, s)} and max{lgdα(s, s′), lgdα(s′, s)} as sound upper bounds
on δ. Thus we have defined the first non-trivial estimate of the δ parameter that can be
computed in polynomial time (trivially, always returning 1 is technically correct). Our results
show that taking the maximum over two ldα is a better approximation than bdα from [9].
We confirm this using several case studies, where we also demonstrate, on a randomised
response mechanism, that the estimates based on ldα can beat standard differential privacy
composition theorems. The relationships between distances are summarised in Figure 1.

Research into behavioural pseudometrics has a long history going back to Giacalone et
al. [17]. Our work lies in the tradition of bisimulation pseudometrics based on the Kantorovich
distance started by Desharnais et al. [11, 12], and builds upon subsequent work on computing

D. Chistikov, A. S. Murawski, and D. Purser 10:3

them [29]. Chatzikokolakis et al. [6] generalised the pseudometric framework to handle
ε-differential privacy, and indeed arbitrary metrics, but did not consider the complexity of
calculating the distances. We introduced a distance in [9] for (ε, δ)-differential privacy, which
is improved upon in this paper. As concerns approximation, we are not aware of any related
work on distances other than the total variation distance [8, 22].

2 Preliminaries

Given a finite set X, let Dist(X) be the set of all stochastic vectors in RX . If X is a set of
symbols then X∗ is the set of all sequences of symbols in X, X+ all sequences of length at
least one, and Xω all infinite sequences.

I Definition 1 (labelled Markov chains (LMC’s)). A labelled Markov chain M is a tuple
〈S,Σ, µ, `〉, where S is a finite set of states, Σ is a finite alphabet, µ : S → Dist(S) is the
transition function and ` : S → Σ is the labelling function.

We assume that all transition probabilities are rational, represented as a pair of binary
integers. size(M) is the number of bits required to represent 〈S,Σ, µ, `〉, including the bit
size of the probabilities. We will write µs for µ(s).

In what follows, we study probabilities associated with infinite sequences of labels
generated by LMC’s. We specify the relevant probability spaces next using standard measure
theory [5, 2]. Let us start with the definition of cylinder sets.

I Definition 2. A subset C ⊆ Σω is a cylinder set if there exists u ∈ Σ∗ such that C consists
of all infinite sequences from Σω whose prefix is u. We then write Cu to refer to C.

Cylinder sets play a prominent role in measure theory in that their finite unions can be
used as a generating family (an algebra) for the set FΣ of measurable subsets of Σω (the
cylindrical σ-algebra). Where clear from context we will omit Σ in the subscript of F . What
will be important for us is that any measure ν on (Σω,FΣ) is uniquely determined by its
values on cylinder sets [5, Chapter 1, Section 2][2, Section 10.1]. Next we show how to assign
a measure νs on (Σω,FΣ) to an arbitrary state of an LMCM.

I Definition 3. Given M = 〈S,Σ, µ, `〉, let µ+ : S+ → [0, 1] and `+ : S+ → Σ+ be the
natural extensions of the functions µ and ` to S+, i.e. µ+(s0 · · · sk) =

∏k−1
i=0 µsi(si+1) and

`+(s0 · · · sk) = `(s0) · · · `(sk), where k ≥ 0 and si ∈ S (0 ≤ i ≤ k). Note that, for any
s ∈ S, we have µ+(s) = 1. Given s ∈ S, let Pathss(M) be the subset of S+ consisting of all
sequences that start with s.

I Definition 4. LetM = 〈S,Σ, µ, `〉 and s ∈ S. We define νs : FΣ → [0, 1] to be the unique
measure on (Σω,FΣ) such that for any cylinder Cu we have νs(Cu) =

∑
µ+(p) where the

summation is over p ∈ Pathss(M) such that `+(p) = u.

I Example 5 (transition-labelled LMC’s). Like in [29, 7, 1, 27, 9], Definition 1 features
labelled states. However, Markov chains with labelled transitions can also be described in
the framework of that definition.

In particular, suppose we are given a chainM of the form 〈S,Σ, T 〉, where S is a finite set
of states, Σ is a finite alphabet and T : S → Dist(S ×Σ) is the transition function. We write
each transition as q p−→

a
q′, meaning that T (q)(q′, a) = p. From this transition-labelled LMC,

we create an equivalent state-labelled Markov chainM′: for each state and each label, add
new state (q, a) labelled with a, such that, when q p−→

b
q′, we have µ(q,a)((q′, b)) = p for every

CONCUR 2019

10:4 Asymmetric Distances for Approximate Differential Privacy

a ∈ Σ. Technically, this delays reading of the first character until the second state visited.
To account for this, introduce an additional character, say `, so that νs(Cw) = ν′(s,`)(C`w),
where ν and ν′ refer to the measures associated withM andM′ respectively (Definition 4).

I Example 6 (finite-word LMC’s). We can also describe labelled Markov chains over finite
words. These chains have a set of final states F , which have no outgoing transitions. We
require positive probability of reaching a final state from every reachable state. We define the
function νs(w) =

∑
µ+(p), where the summation is over p ∈ Pathss(M) such that `+(p) = w

and p|w| ∈ F , so that we only consider paths which end in a final state. The function can be
extended to sets of words E ⊆ Σ∗ (which are countable) by νs(E) =

∑
w∈E νs(w).

Such machines can also be represented by infinite-word Markov chains. One can simulate
the end of the word by an additional character, say $ such that, for q ∈ F , µq(q) = 1 and
`(q) = $, so that the only trace that can be observed from q is $ω. Then, for a word w ∈ Σ∗,
we rather study w$$$. . . , corresponding to the cylinder Cw$. In the translated infinite-word
model, the event Cu corresponds to the event {w ∈ Σ∗ | prefix(w) = u} in the original
finite-word model. Some of our arguments will be carried out in the finite-word setting, as
hardness results that apply to these chains also apply to infinite-word Markov chains. Other
arguments will only be possible in the finite-word setting.

Let us return to the general definition of Markov chains (Definition 1). Our aim will
be to compare states from the point of view of differential privacy. Any two states s, s′
can be viewed as indistinguishable if νs(E) = νs′(E) for every E ∈ F . More generally,
the difference between them can be quantified using the total variation distance, defined
by tv(ν, ν′) = supE∈F |ν(E) − ν′(E)|. GivenM = 〈S,Σ, µ, `〉 and s, s′ ∈ S, we shall write
tv(s, s′) to refer to tv(νs, νs′). Ensuring such pairs of measures (νs, νs′) are “similar” is
essential for privacy, so that it is difficult to observe which of the states was the originating
position. To measure probabilities relevant to differential privacy, we will need to study a
more general variant lvα of the above distance, which we introduce shortly.

3 (ε, δ)-Differential Privacy

Differential privacy is a mathematically rigorous definition of privacy due to Dwork et al [14];
the aim is to ensure that inputs which are related in some sense lead to very similar outputs.
Formally it requires that for two related states there only ever be a small change in output
probabilities, and therefore discerning which of the two states was actually used is difficult,
maintaining their privacy. We rely on the definition of approximate differential privacy in
the context of labelled Markov chains, as per [9].

I Definition 7. Let M = 〈S,Σ, µ, `〉 be a labelled Markov chain and let R ⊆ S × S be a
symmetric relation. Given ε ≥ 0 and δ ∈ [0, 1], we say thatM is (ε, δ)-differentially private
w.r.t. R if, for every s, s′ ∈ S such that (s, s′) ∈ R, we have νs(E) ≤ eε · νs′(E) + δ for every
measurable set E ∈ F .

What it means for two states to be related, as specified by R, is to a large extent domain-
specific. In general, R makes it possible to spell out which states should not appear too
different and, consequently, should enjoy a quantitative amount of privacy.

Note that each state s ∈ S can be viewed as defining a random variable Xs with
outcomes from Σω such that P[Xs ∈ E] = νs(E). Then the above can be rewritten as
P[Xs ∈ E] ≤ eε P[Xs′ ∈ E] + δ, which matches the definition from [14], where one would
consider Xs, Xs′ neighbouring in some natural sense. In the typical database scenario, one

D. Chistikov, A. S. Murawski, and D. Purser 10:5

would relate database states that differ by exactly one entry. In our setting, we refer to
states of a machine, for which we would like it to be indiscernible as to which was the start
state, assuming that the states are hidden and the traces are observable.

When δ = 0, we use the term ε-differential privacy, which amounts to measuring the
ratio between the probabilities of possible outcomes. When one cannot expect to achieve this
pure ε-differential privacy, the relaxed approximate differential privacy is used [24]. When
ε = 0, δ is captured exactly by the statistical distance (total variation distance) tv .

Our aim is to capture the value of δ required to satisfy the differential privacy property
for a given ε. That is, given a LMC M, a symmetric relation R and α = eε ≥ 1, we
want to determine the smallest δ such that M is (ε, δ)-differentially private with respect
to R. We can measure the difference between two measures ν, ν′ on (Σω,F) as follows:
tvα(ν, ν′) = supE∈F ∆α(ν(E), ν′(E)) where ∆α(a, b) = max{a − αb, b − αa, 0} [3]. When
used on νs, νs′ and α = eε, tvα(s, s′) gives the required δ between states s, s′ [9].

In this paper we observe that significant simplification occurs by splitting the two main
parts of the maximum, taking only the “left variant”. Whilst ∆α is symmetric, we break
this property to introduce a new distance function Λα (similarly to [4]). Then we define an
analogous total variation distance lvα, which will be our main object of study.

I Definition 8 (Asymmetric skewed total variation distance). Let α ≥ 1. Given two measures
ν, ν′ on (Σω,F), let lvα(ν, ν′) = supE∈F Λα(ν(E), ν′(E)), where Λα(a, b) = max{a− αb, 0}.

We will write lvα(s, s′) for lvα(νs, νs′). Note that it is not required to take the maximum
with zero, that is lvα(ν, ν′) = supE∈F ν(E) − αν′(E), since there is always an event such
that ν′(E) = 0, in particular ν(∅) = 0. Observe that ∆α and Λα are not metrics as
∆α(a, b) = 0 6=⇒ a = b, and in fact not even pseudometrics as the triangle inequality does
not hold. Our new distance Λα (and lvα) is not symmetric, while ∆α and tvα are.

If α = 1, then lv1 = tv1 = tv, since if ν, ν′ are probability measures and we have
ν(E) = 1−ν(E) then supE∈F |ν(E)−ν′(E)| = supE∈F ν(E)−ν′(E) = supE∈F ν′(E)−ν(E),
i.e., despite the use of the absolute value in the definition of tv, it is not required.

We can reformulate differential privacy in terms of tvα and lvα.

I Proposition 9. Given a labelled Markov chainM and a symmetric relation R ⊆ S × S,
the following properties are equivalent for α = eε:
M is (ε, δ)-differentially private w.r.t. R,
max(s,s′)∈R tvα(s, s′) ≤ δ, and
max(s,s′)∈R lvα(s, s′) ≤ δ.

We now focus on computing lvα, since this will allow us to determine the “level” of
differential privacy for a given ε. Henceforth we will refer to eε as α. For the purposes of our
complexity arguments, we will only use rational α with O(size(M))-bit representation.

4 lvα is not computable

tv(s, s′) turns out to be surprisingly difficult to compute: the threshold distance problem
(whether the distance is strictly greater than a given threshold) is undecidable, and the
non-strict variant of the problem (“greater or equal”) is not known to be decidable [22]. The
undecidability result is shown by reduction from the emptiness problem for probabilistic
automata to the threshold distance problem for finite-word transition-labelled Markov chains.
Recall that such chains are a special case of our more general definition of infinite-word
state-labelled Markov chains. Thus, the problem is undecidable in this case also.

CONCUR 2019

10:6 Asymmetric Distances for Approximate Differential Privacy

M

`(q)
q

`(q′)

q′

B
s

B
s′

C
⊥

1

1

α

α− 1

α 1

Figure 2 Markov chainM′ in the reduction from tv(q, q′) to lvα(s, s′).

Since tv = lv1, we know that lv1(s, s′) > θ is undecidable. We show that this is not
special, that is, the problem remains undecidable for any fixed α > 1. In other words, no
value of the privacy parameter ε makes it possible to compute the optimal δ exactly.

I Theorem 10. Finding a value of tv reduces in polynomial time to finding a value of lvα.

Proof. Given a labelled Markov chain M = 〈Q,Σ, µ, `〉, and states q, q′ for which we
require the answer tv(q, q′), we construct a new labelled Markov chain M′, for which
lvα(s, s′) = tv(q, q′).

We defineM′ = 〈Q∪{s, s′,⊥},Σ′, µ′, `′〉, with `′(s) = `′(s′) = B, `′(⊥) = C, `′(x) = `(x)
for all x ∈ Q, Σ′ = Σ ∪ {B,C},

µ′s(q) = 1, µ′s′(q′) = 1
α
, µ′s′(⊥) = α− 1

α
, and µ′x(y) = µx(y) for all x, y ∈ Q.

The reduction, sketched in Figure 2, adds three new states, so can be done in polynomial
time. We claim lvα(s, s′) = tv(q, q′).

Consider E ∈ FΣ, observe that νq(E) = νs(E′) and νq′(E) = ανs′(E′), where E′ =
{Bw | w ∈ E} ∈ FΣ′ . Then νq(E)− νq′(E) = νs(E′)− ανs′(E′) and lvα(s, s′) ≥ tv(q, q′).

Conversely, consider an event E′ ∈ FΣ′ . Since the character C can only be reached from
s′, any word using it contributes negatively to the difference. Hence intersecting the event
with BΣω, to remove C, can only increase the difference. The character B must occur (only)
as the first character of every (useful) word in E′. Let E = {w | Bw ∈ E′ ∩ BΣω} ∈ FΣ,
then νq(E)− νq′(E) ≥ νs(E′)− ανs′(E′). Thus tv(q, q′) ≥ lvα(s, s′). J

Since an oracle to solve decision problems for lvα would solve problems for tv , we obtain
the following result.

I Corollary 11. lvα(s, s′) > θ is undecidable for α ≥ 1.

It is not clear that lvα reduces easily to tv . Arguments along the lines of the proof of Theo-
rem 10 may not result in a Markov chain due to non-stochastic transitions, or modifications
to the s→ q branch may result in new maximising events.

D. Chistikov, A. S. Murawski, and D. Purser 10:7

5 Approximation of lvα

Given that lvα cannot be computed exactly, we turn to approximation: the problem, given
γ > 0, of finding some x such that |x − lvα(s, s′)| ≤ γ. For α = 1, it is known that
approximating tv = lv1 is possible in PSPACE but #P-hard [8, 22]. We show that the
case α = 1 is not special; that is, when α > 1, lvα can also be approximated and the same
complexity bounds apply.

I Remark. Typically one might suggest being ε close (|x− lvα(s, s′)| ≤ ε). To avoid confusion
with the differential privacy parameter, we refer to γ close.

I Theorem 12. For finite-word Markov chains, approximation of lvα(s, s′) within γ can be
performed in PSPACE and is #P-hard.

Proof (sketch). For the upper bound, we show that the ith bit of an x such that |x −
lvα(s, s′)| ≤ γ can be found in PSPACE. The approach, inspired by [22], is to consider
the maximising event of lvα(s, s′) = supE⊆Σ∗ νs(E) − ανs′(E), which turns out to be
W = {w | νs(w) ≥ ανs′(w)}, so that lvα(s, s′) = νs(W) − ανs′(W). This choice of the
maximising event only applies to finite-word Markov chains, thus the proof does not extend
in full generality to infinite-word Markov chains. The shape of the event is the key difference
between our proof and [22], which uses events of the form {w | νs(w) ≥ νs′(w)}.

Let W denote the complement of W and let νs(W) be approximated by a number X and
νs′(W) by a number Y . Normally, one would expect X to be close to νs(W) and Y to be
close to νs′(W). Here, the trick is to require only that νs(W) +ανs′(W) be close to X +αY .
It is then argued that, for specific X,Y with this property, one can find any bit of X + αY .

For the lower bound, we note that approximating tv is #P-hard [22], by a reduction from
#NFA, a #P-complete problem [20]. That is, given a non-deterministic finite automaton A
and n ∈ N in unary, determine |Σn ∩ L(A)|, the number of accepted words of A of length n.
Since tv can be reduced to lvα (Theorem 10), approximating lvα is #P-hard as well. The
hardness result applies to finite-word transition-labelled Markov chains, thus also to the
more general infinite-word labelled Markov chains. J

6 A least fixed point bound ldα

We seek to bound lvα from above by a computable quantity, and will introduce a distance
function ldα for this. We first introduce a variant of the Kantorovich lifting as a technique to
measure the distance between probability distributions on a set X, given a distance function
between objects of X. We show that lvα can be reformulated using such a distance over the
(infinite) trace distributions νs, νs′ . We then define an alternative distance function between
states, ldα, as the fixed point of the Kantorovich lifting of distances from individual states
to (finite) state distributions. We will observe that it is possible to compute and acts as a
sound bound on lvα.

We use this distance to determine (ε, δ)-differential private w.r.t. relation R by bounding
δ with max(s,s′)∈R ldα(s, s′). We will show this can be achieved in polynomial time with
access to an NP oracle, by computing ldα(s, s′) exactly in this time (|R| is polynomial with
respect to the size ofM). This suggests a complexity lower than approximation (which is
#P-hard by Theorem 12).

CONCUR 2019

10:8 Asymmetric Distances for Approximate Differential Privacy

I Definition 13 (Asymmetric Skewed Kantorovich Lifting). For a set X, given d : X ×X →
[0, 1] a distance function and measures µ, µ′, we define

KΛ
α (d)(µ, µ′) = sup

f :X→[0,1]
∀x,x′∈X Λα(f(x),f(x′))≤d(x,x′)

Λα(
∫
X

fdµ,

∫
X

fdµ′)

where f ranges over functions which are measurable w.r.t. µ and µ′.

I Remark. The (standard) Kantorovich distance lifts a distance function d over the ground
objects X to a distance between measures µ, µ′ on the set X. This is equivalent to replacing
Λα with the absolute distance function (abs(a, b) = |a−b|). We note that KΛ

α (d) is equivalent
to the standard Kantorovich distance for α = 1 and d symmetric [21, 10]. If |X| < ∞
(for example when X is a finite set of states, S), we have

∫
X
fdµ =

∑
x∈X f(x)µ(x).

Chatzikokolakis et al. [6] considered the case where the absolute value function was replaced
by any metric d′. Our lifting KΛ

α does not quite fit in this framework, since Λα is not metric.
The interest in KΛ

α is that it allows us to reformulate the definition of the distance function
lvα. Our goal is to measure the difference between measures over infinite traces νs, νs′ , and
so we lift a distance function over infinite words (d : Σω × Σω → [0, 1]). In particular, we lift
the discrete metric 16= (the indicator function over inequality with 16=(w,w′) = 1 for w 6= w′,
and 0 otherwise).

I Lemma 14. lvα(s, s′) = KΛ
α (16=)(νs, νs′).

Since computing lvα, or now KΛ
α (16=)(νs, νs′), is difficult, we introduce an upper bound

on lvα, inspired by bisimilarity distances, which we will call ldα. This will be the least
fixed point of ΓΛ

α, a function which measures (relative to a distance function d) the distance
between the transition distributions of s, s′ where s, s′ share a label, or 1 when they do not.

I Definition 15. Let ΓΛ
α : [0, 1]S×S → [0, 1]S×S be defined as follows.

ΓΛ
α(d)(s, s′) =

{
KΛ
α (d)(µs, µs′) `(s) = `(s′)

1 otherwise

The utility of this function is that we are not now using the Kantorovich lifting over infinite
trace distributions, but rather over finite transition distributions (µs ∈ Dist(S)).

Note that [0, 1]S×S equipped with the pointwise order, written v, is a complete lattice
and that Γα is monotone with respect to that order (larger d permit more functions, thus
larger supremum). Consequently, ΓΛ

α has a least fixed point [28]. We take our distance to be
exactly that point.

I Definition 16. Let ldα : S × S → [0, 1] be the least fixed point of ΓΛ
α.

To provide a guarantee of privacy we require a sound upper bound on lvα.

I Theorem 17. lvα(s, s′) ≤ ldα(s, s′) for every s, s′ ∈ S.

The proof of Theorem 17 proceeds similarly to Lemma 2 in [9]. We will see, however, that
this upper bound on lvα is stronger (or at least no worse) than the bound obtained in [9].
Recall from [9] that bdα is defined as the least fixed point of

Γ∆
α (d)(s, s′) =

{
K∆
α (d)(µs, µs′) `(s) = `(s′)

1 otherwise

where K∆
α (d) behaves as KΛ

α (d), but uses ∆α(a, b) = max{a − αb, b − αa, 0} rather than
Λα(a, b) = max{a− αb, 0}.

D. Chistikov, A. S. Murawski, and D. Purser 10:9

LD-threshold(s, s′, θ) = ∃(di,j)i,j∈S
∧
i,j∈S

(0 ≤ di.j ≤ 1) ∧ ds,s′ ≤ θ

∧
∧

q,q′∈S

{
dq,q′ = 1 `(q) 6= `(q′)
couplingConstraint(d, q, q′) `(q) = `(q′)

couplingConstraint(d, q, q′) = ∃(ωi,j)i,j∈S ∃(γi)i∈S ∃(τi)i∈S ∃(ηi)i∈S

∑
i,j∈S

ωi,j · di,j +
∑
i

ηi ≤ dq,q′ ∧
∧
i,j∈S

(0 ≤ ωi,j ≤ 1) ∧
∧
i∈S

0 ≤ γi ≤ 1
0 ≤ τi ≤ 1
0 ≤ ηi ≤ 1

∧
∧
i∈S

(
∑
j∈S

ωi,j − γi + τi + ηi = µq(i)) ∧
∧
j∈S

(
∑
i∈S

ωi,j + τj − γj
α

≤ µq′(j))

Figure 3 NP Formula for LD-threshold.

I Theorem 18. max{ldα(s, s′), ldα(s′, s)} ≤ bdα(s, s′) for every s, s′ ∈ S.

Proof. Given a matrix A, let AT be its transpose. Consider bdα and ldα as matrices. bdα is
the least fixed point of Γ∆

α so Γ∆
α (bdα)(s, s′) = bdα(s, s′). Also notice that ΓΛ

α(bdα)(s, s′) ≤
Γ∆
α (bdα)(s, s′), since KΛ

α (bdα) v K∆
α (bdα). To see this, note that, because bdα = bdT

α, the
relevant set of functions is the same, but the objective function in the supremum is smaller.

Hence ΓΛ
α(bdα) v bdα, i.e. bdα is also a pre-fixed point of ΓΛ

α. Since ldα is the least pre-
fixed point of ΓΛ

α then we know ldα v bdα. By symmetry, bdα = bdT
α giving ldα v bdT

α and
then ldT

α v bdα. We conclude max{ldα(s, s′), ldα(s′, s)} ≤ bdα(s, s′) for every s, s′ ∈ S. J

I Remark. Example 32 on page 13 demonstrates the inequality in Theorem 18 can be strict.
The standard variant of the Kantorovich metric is often presented in its dual formulation.

In the case of finite distributions, the asymmetric skewed Kantorovich distance exhibits a
dual form. This is obtained through the standard recipe for dualising linear programming.
Interestingly, this technique yields a linear optimisation problem over a polytope independent
of d, and that will prove useful in the computation of ldα.

I Lemma 19. Let X be finite and given d : X×X → [0, 1] a distance function, µ, µ′ ∈ Dist(X)
we have

KΛ
α (d)(µ, µ′) = min

(ω,η)∈Ωα
µ,µ′

(∑
s,s′∈X

ωs,s′ · d(s, s′) +
∑
s∈X

ηs

)
, where

Ωαµ,µ′ =

(ω, η) ∈ [0, 1]X×X × [0, 1]X |
∃γ, τ ∈ [0, 1]X
∀i :

∑
j ωi,j + τi − γi + ηi = µ(i)

∀j :
∑
i ωi,j + τj−γj

α ≤ µ′(j)

 .

When we refer to distance between states (X = S) we write Ωαs,s′ to mean Ωαµs,µs′ . We take
V (Ωαs,s′) to be the vertices of the polytope.

I Theorem 20. ldα can be computed in polynomial time with access to an NP oracle.

We first show that the LD-threshold problem, which asks if ldα(s, s′) ≤ θ, is in NP. This
is achieved through the formula shown in Figure 3, based on Lemma 19 and [30] which used
a similar formula to approximate bisimilarity distances. The problem can be solved in NP

CONCUR 2019

10:10 Asymmetric Distances for Approximate Differential Privacy

as each of the variables can be shown to be satisfied in the optimal solution with rational
numbers that are of polynomial size (see [9, Theorems 1 and 2]). It suffices to guess these
numbers (non-deterministically) and verify the correctness of the formula in polynomial time.

Since the threshold problem can be solved in NP, we can approximate the value using
binary search with polynomial overhead to arbitrary accuracy γ, thus we find a value x such
that |x− ldα(s, s′)| ≤ γ. In fact, one can find the exact value of ldα(s, s′) in polynomial time
assuming the oracle. We can show the value of ldα is rational and its size is polynomially
bounded, one can find it by approximation to a carefully chosen level of precision and then
finding the relevant rational with the continued fraction algorithm [18, Section 5.1][16].

7 A greatest fixed point bound lgdα
In the previous section we have used the least fixed point of ΓΛ

α, which finds the fixed point
closest to our objective lvα. We now consider relaxing this requirement so that we can find a
fixed point in polynomial time. We will introduce lgdα, expressing the greatest fixed point
and represent it as a linear program that can be solved in polynomial time. Relaxing to any
fixed point could of course be much worse than ldα, so we first refine our fixed point function
(ΓΛ
α) to reduce the potential gap. We do this by characterising the elements which are zero

in ldα and fixing these as such; so that they cannot be larger in the greatest fixed point.

Refinement of ΓΛ
α

In the case of standard bisimulation distances the kernel of ld1, that is {(s, s′) | ld1(s, s′) = 0},
is exactly bisimilarity. We consider the kernel for ldα and define a new relation ∼α, which
we call skewed bisimilarity, which captures zero distance.

I Definition 21. Let a relation R ⊆ S × S have the property

(s, s′) ∈ R ⇐⇒ ∃ (ω, η) ∈ Ωαs,s′ s.t. (ωu,v > 0 =⇒ (u, v) ∈ R) ∧ ∀u ηu = 0.

Arbitrary unions of such relations also maintain the property, thus a largest such relation
exists. Let ∼α be the largest relation with this property.

I Remark. When α = 1 the formulation corresponds to an alternative characterisation of
bisimilarity [19, 27], so ∼1 = ∼.

I Lemma 22. ldα(s, s′) = 0 if and only if s ∼α s′.

Since ldα(s, s′) = 0 implies lvα(s, s′) = 0, this also provides a way to show that δ is zero,
that is, to show ε-differential privacy holds. However, note this is not a complete method to
do this, and there are bisimilarity distances focused on finding ε [6].

I Lemma 23. If s ∼α s′ then lvα(s, s′) = 0.

We need to be able to quickly and independently compute which pairs of states are
related by ∼α. In fact we can do this in polynomial time using a closure procedure, which
will terminate after polynomially many rounds.

I Proposition 24. ∼α can be computed in polynomial time in size(M).

Proof. We present a standard refinement algorithm, let A0 = S × S and compute Ai+1 =
{(s, s′) ∈ Ai | ∃(ω, η) ∈ Ωα

s,s′ : η = 0 ∧ (ωu,v > 0 =⇒ (u, v) ∈ Ai)}. To find this, define
1!Ai , a matrix such that 1!Ai(s, s′) = 0 if (s, s′) ∈ Ai and 1 otherwise. Apply ΓΛ

α to 1!Ai ,

D. Chistikov, A. S. Murawski, and D. Purser 10:11

which amounts to computing n2 linear programs. Take Ai+1 to be indices of the matrix
where ΓΛ

α(1!Ai) is zero. At each step, we remove at least one element, or stabilise so that the
set will not change in subsequent rounds. After n2 steps it is either stable or empty.

An2 ⊆∼α: after convergence we have some set such that (s, s′) ∈ An2 =⇒ ∃(ω, η) ∈
Ωαs,s′ : η = 0 ∧ (ωu,v > 0 =⇒ (u, v) ∈ An2). ∼α is the largest such set, so it contains An2 .
∼α⊆ An2 : by induction we start with ∼α⊆ A0 and only remove pairs not in ∼α. J

Recall that ldα was defined as the least fixed point of ΓΛ
α. Let us refine ΓΛ

α so the gap
between the least fixed point and the greatest is as small as possible. We do this by fixing
the known values of the least fixed point in the function, in particular the zero cases. We let

Γ′Λα (d)(s, s′) =
{

0 s ∼α s′

ΓΛ
α(d)(s, s′) otherwise

and observe that ldα is also the least fixed point of Γ′Λα .

I Lemma 25. ldα is the least fixed point of Γ′Λα .

Definition and Computation of lgdα
Towards a more efficiently computable function, we now study the greatest fixed point.

I Definition 26. We let lgdα be the greatest fixed point of Γ′Λα .

It is equivalent to consider the greatest post-fixed point. It turns out that when α = 1,
lgd1 = ld1 [7]. We do not know if this holds for α > 1, although conjecture that it might.
Whilst it may not necessarily be as tight a bound on lvα as ldα, we can also use lgdα to
bound lvα, thus the δ parameter of (ε, δ)-differential privacy. Because ldα(s, s′) ≤ lgdα(s, s′)
for every s, s′ ∈ S, then Theorem 17 implies that lvα(s, s′) ≤ lgdα(s, s′), for every s, s′ ∈ S.

We will show that lgdα can be computed in polynomial time using the ellipsoid method
for solving a linear program of exponential size, matching the result of [7] for standard
bisimilarity distances. Whilst we will not need to express the entire linear program in one go,
we may need any one constraint at a time, so we need to be able to express each constraint,
in polynomially many bits. We show that the representation of vertices of Ωαs,s′ is small.

I Lemma 27. Each (ω, η) ∈ V (Ωα
s,s′) are rational numbers requiring a number of bits

polynomial in size(M).

Proof. Consider the polytope:

Ω′αµ,µ′ =
{

(ω, τ, γ, η) ∈ [0, 1]S×S × ([0, 1]S)3 | ∀i :
∑
j ωi,j + τi − γi + ηi = µ(i)

∀j :
∑
i ωi,j + τj−γj

α ≤ µ′(j)

}

Each vertex is the intersection of hyperplanes defined in terms of µ, µ′ (rationals given in
the inputM), thus vertices of Ω′αµ,µ′ are rationals with representation size polynomial in the
input. Vertices of Ωαµ,µ′ = {(ω, η) | ∃τ, γ (ω, τ, γ, η) ∈ Ω′αµ,µ′} require only fewer bits. J

The following linear program (LP) expresses the greatest post-fixed point. It has polyno-
mially many variables but exponentially many constraints (for each s, s′ one constraint for
each ω ∈ V (Ωα

s,s′)). Since linear programs can be solved in polynomial time, the greatest
fixed point can be found in exponential time using the exponential size linear program.

CONCUR 2019

10:12 Asymmetric Distances for Approximate Differential Privacy

I Proposition 28. lgdα is the optimal solution, d ∈ [0, 1]S×S of the following linear program:
maxd∈[0,1]S×S

∑
(u,v)∈S×S du,v subject to: for all s, s′ ∈ S:

ds,s′ = 0 whenever s ∼α s′,
ds,s′ = 1 whenever `(s) 6= `(s′),
ds,s′ ≤

∑
(u,v)∈S×S

ωu,vdu,v +
∑
u∈S

ηu for all (ω, η) ∈ V (Ωαs,s′) otherwise.

Proof. The s ∼α s′ and `(s) 6= `(s′) cases follow by definition. Observe that by the definition
of lgdα as a post-fixed point it is required that d(s, s′) ≤ Γ′Λα (d)(s, s′) = KΛ

α (d)(s, s′) =
min(ω,η)∈Ωα

s,s′

∑
(u,v)∈S×S ωu,vdu,v +

∑
u∈S ηu or equivalently, for all (ω, η) ∈ Ωαs,s′ : d(s, s′) ≤∑

(u,v)∈S×S ωu,vdu,v +
∑
u∈S ηu J

In the spirit of [7], we can solve the exponential-size linear program given in Proposition 28
using the ellipsoid method, in polynomial time. Whilst the linear program has exponentially
many constraints, it has only polynomially many variables. Therefore, the ellipsoid method
can be used to solve the linear program in polynomial time, provided a polynomial-time
separation oracle can be given [26, Chapter 14]. Separation oracle takes as argument
d ∈ [0, 1]S×S , a proposed solution to the linear program and must decide whether d satisfies
the constraints or not. If not then it must provide θ ∈ Q|S×S| as a separating hyperplane
such that, for every d′ that does satisfy the constraints,

∑
u,v du,vθu,v <

∑
u,v d

′
u,vθu,v.

Our separation oracle will perform the following: for every s, s′ ∈ S check that d(s, s′) ≤
min(ω,η)∈Ωα

s,s′
ω · d + η · 1. This is done by solving min(ω,η)∈Ωα

s,s′
ω · d + η · 1 using linear

programming. If every check succeeds, return yes. If some check fails for s, s′ return no and

θu,v =
{
ωu,v − 1 (u, v) = (s, s′)
ωu,v otherwise

where (ω, η) = argmin
(ω,η)∈V (Ωα

s,s′
)
d · ω + η · 1.

I Lemma 29. θ is a separating hyperplane, i.e., it separates the unsatisfying d and all
satisfying d′.

I Theorem 30. lgdα can be found in polynomial time in the size ofM.

Proof. Checking d(s, s′) ≤ minω,η∈Ωα
s,s′

ω · d+ η · 1 is polynomial time. The linear program
is of polynomial size, so runs in polynomial time in the size of the encoding of the linear
program. Similarly finding θ is polynomial time by running essentially the same linear
program and reading off the minimising result.

Because pairs (ω, η) are in V (Ωαs,s′), they are polynomial size in the size ofM, independent
of d, by Lemma 27. Note that, unlike in Chen et al. [7], the oracle procedure is not strongly
polynomial, so the time to find θ may depend on the size of d, but the output θ and d remain
polynomial in the size of the initial system.

We conclude there is a procedure for computing lgdα running in polynomial time [26,
Theorem 14.1, Page 173]. There exists a polynomial ψ where the ellipsoid algorithm solves the
linear program in time T ·ψ(size(M)), where T is the time the separation algorithm takes on
inputs of size ψ(size(M)). Since the T ∈ poly(ψ(size(M))) and ψ(size(M)) ∈ poly(size(M))
then T ∈ poly(size(M)). Overall we have T · ψ(size(M)) ∈ poly(size(M)). J

D. Chistikov, A. S. Murawski, and D. Purser 10:13

a

0

a

1

no

ok

b

no

no b

no

53
100

47
100 1

47
100

53
1001

47
100

53
100

1

53
100

47
100

1

(a) Labelled Markov chain.

1 1.027 1.054 1.081 1.109 1.136 1.163 1.19 1.217 1.244 1.272
0

0.02

0.04

0.06

0.08

0.1

0.12

α = eε

E
st
im

at
e
fo
r
δ

bdα ldα lgdα lvα

(b) Calculated approximations of δ given ε.

Figure 4 PIN Checker example: each state denotes its label, transition probabilities on arrows.

8 Examples

I Example 31 (PIN Checker). We demonstrate our methods are a sound technique for
determining the δ privacy parameter (given eε, where ε is the other privacy parameter).
We take as an example, in Figure 4, a PIN checking system from [32, 31]. Intuitively, the
machine accepts or rejects a code (a or b). Instead of accepting a code deterministically, it
probabilistically decides whether to accept. The machine allows an attempt with the other
code if it is not accepted. We model the system that accepts more often on the the pin-code
a, from state 0, and the system that accepts more often from code b, from state 1. The chain
simulates attempts to gain access to the system by trying code a then b until the system
accepts (reaching the “end” state). Pen-and-paper analysis can determine that the system
is (ln(2809

2209), 0)-differentially private, or at the other extreme (0, 200
2503)-differentially private

(2809
2209 ≈ 1.27, 200

2503 ≈ 0.0799). The true privacy, lvα is shown along the orange line (N).
In the blue line (•) we see the estimate bdα as defined in [9]; which correctly bounds

the true privacy, but is unresponsive to α. Using the methods introduced in this paper we
compute ldα on the red line (�) and lgdα on the black line (�), which coincide. We observe
that this is an improvement and is within approximately 1.5 times the true privacy for
α ≤ 1.035. In this example observe that ldα = lgdα; suggesting lgdα, which can be computed
in polynomial time is as good as ldα. Our results do eventually suffer, as increasing α cannot
find a better δ, despite a lower value existing.

I Example 32 (Randomised Response). The randomised response mechanism allows a data
subject to reveal a secret answer to a potentially humiliating or sensitive question honestly
with some degree of plausible deniability. This is achieved by flipping a biased coin and
providing the wrong answer with some probability based on the coin toss. If there are two
answers a or b, answering truthfully with probability β

1+β and otherwise with 1
1+β leads to

ε-differential privacy where eε = β and such a bound is tight (there is no smaller ε′ such that
answering in this way gives ε′-differential privacy). However, it can be (ε′, δ)-differentially
private for ε′ < ε and some δ.

Let us consider the single-input, single-output randomised response mechanism shown
in Figure 5a with β = 2, hence ln(2)-differentially private, alternatively it is (ln(6

5), 4
15)-

differential privacy (ln(6
5) ≈ ln(2)

4). We consider the application of composing automata to
determine more complex properties automatically.

Differential privacy enjoys multiple composition theorems [15]. When applied to disjoint
datasets, differential privacy allows the results of (ε, δ)-differentially private mechanism applied
to each independently to be combined with no additional loss in privacy. Let us consider the

CONCUR 2019

10:14 Asymmetric Distances for Approximate Differential Privacy

sk

a

sk

b

a

b

·

2
3

1
3

1
3

2
3

1

1

(a) Single-input, single-output.

sk

(b, a)

sk

(a, a)

sk

(a, b)

sk

(b, b)

a

b

a

b

sk

sk a

b

·

2
3

1
3

1
3

2
3

1

1

2
3

1
3

1
3

2
3

1

1

2
3

1
3

1
3

2
3

1

1

(b) Two-input, two-output.

Figure 5 Randomised response. Every second label is the outcome of the randomised response
mechanism and alternately sk (for “skip”). The left most state represents the sensitive input.

two-input, two-output labelled Markov chain (Figure 5b), where we consider each input to
be from two independent respondents, using our methods verifies that the privacy does not
increase on the partitioned data. We consider the adjacency relation as the symmetric closure
of R = {((a, a), (a, b)), ((a, a), (b, a)), ((b, b), (a, b)), ((b, b), (b, a))}. We determine (ln(6

5), 4
15)-

differential privacy by computing max(s,s′)∈R ld6/5(s, s′) = 4
15 , verifying there is no privacy

loss from composition. Because randomised response is finite we can compute lvα for adjacent
inputs in exponential time for comparison. In this instance, our technique provides the
optimal solution, in the sense max(s,s′)∈R ld6/5(s, s′) = max(s,s′)∈R lv6/5(s, s′); indicating
that ldα and lgdα can provide a good approximation.

The basic composition theorems suggest that if a mechanism that is (ε, δ)-differentially
private is used k times, one achieves (kε, kδ)-differential privacy [13]. However, this is not
necessarily optimal. More advanced composition theorems may enable tighter analysis,
although this can can be computationally difficult (#P-complete) [25]. Even this may not
be exact when allowed to look inside the composed mechanisms. If we assume the responses
are from two questions answered by the same respondent and let R′ = R ∪ {((a, a), (b, b))},
naively applying basic composition concludes (ln(36

25), 8
15)-differential privacy. Our methods

can find a better bound than basic composition since max(s,s′)∈R′ ld36/25(s, s′) = 103
225 <

8
15 .

However, in this case, our technique is not optimal either.

9 Conclusion

Our results are summarised in Figure 1 on page 2. We are interested in the value of lvα, but
it is not computable and difficult to approximate. We have defined an upper bound ldα,
showing that it is more accurate than the previously known bound bdα from [9] and just
as easy to compute (in polynomial time with an NP oracle). We also defined a distance
based on the greatest fixed point, lgdα, which has the same flavour but can be computed
in polynomial time. When considering lvα directly, we approximate to arbitrary precision

D. Chistikov, A. S. Murawski, and D. Purser 10:15

in PSPACE and show it is #P-hard (which generalises a known result on tv). It is open
whether the least fixed point bisimilarity distance (or any refinement smaller than lgdα) can
be computed in polynomial time, or even if lgdα = ldα. It is also open whether approximation
can be resolved to be in #P, PSPACE-hard, or complete for some intermediate class.

References

1 Giorgio Bacci, Giovanni Bacci, Kim G. Larsen, and Radu Mardare. On-the-Fly Exact
Computation of Bisimilarity Distances. In Nir Piterman and Scott A. Smolka, editors, Tools
and Algorithms for the Construction and Analysis of Systems - 19th International Conference,
TACAS 2013, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings, volume 7795 of Lecture
Notes in Computer Science, pages 1–15. Springer, 2013. doi:10.1007/978-3-642-36742-7_1.

2 Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press, 2008.
3 Gilles Barthe, Boris Köpf, Federico Olmedo, and Santiago Zanella Béguelin. Probabilistic rela-

tional reasoning for differential privacy. In John Field and Michael Hicks, editors, Proceedings
of the 39th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2012, Philadelphia, Pennsylvania, USA, January 22-28, 2012, pages 97–110. ACM,
2012. doi:10.1145/2103656.2103670.

4 Gilles Barthe and Federico Olmedo. Beyond Differential Privacy: Composition Theorems
and Relational Logic for f-divergences between Probabilistic Programs. In Fedor V. Fomin,
Rusins Freivalds, Marta Z. Kwiatkowska, and David Peleg, editors, Automata, Languages,
and Programming - 40th International Colloquium, ICALP 2013, Riga, Latvia, July 8-12,
2013, Proceedings, Part II, volume 7966 of Lecture Notes in Computer Science, pages 49–60.
Springer, 2013. doi:10.1007/978-3-642-39212-2_8.

5 Patrick Billingsley. Probability and Measure. John Wiley and Sons, 2nd edition, 1986.
6 Konstantinos Chatzikokolakis, Daniel Gebler, Catuscia Palamidessi, and Lili Xu. Generalized

Bisimulation Metrics. In Paolo Baldan and Daniele Gorla, editors, CONCUR 2014 - Concur-
rency Theory - 25th International Conference, CONCUR 2014, Rome, Italy, September 2-5,
2014. Proceedings, volume 8704 of Lecture Notes in Computer Science, pages 32–46. Springer,
2014. doi:10.1007/978-3-662-44584-6_4.

7 Di Chen, Franck van Breugel, and James Worrell. On the Complexity of Computing Probabilis-
tic Bisimilarity. In Lars Birkedal, editor, Foundations of Software Science and Computational
Structures - 15th International Conference, FOSSACS 2012, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2012, Tallinn, Estonia, March
24 - April 1, 2012. Proceedings, volume 7213 of Lecture Notes in Computer Science, pages
437–451. Springer, 2012. doi:10.1007/978-3-642-28729-9_29.

8 Taolue Chen and Stefan Kiefer. On the total variation distance of labelled Markov chains. In
Thomas A. Henzinger and Dale Miller, editors, Joint Meeting of the Twenty-Third EACSL An-
nual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS), CSL-LICS ’14, Vienna, Austria, July 14 -
18, 2014, pages 33:1–33:10. ACM, 2014. doi:10.1145/2603088.2603099.

9 Dmitry Chistikov, Andrzej S. Murawski, and David Purser. Bisimilarity Distances for Ap-
proximate Differential Privacy. In Shuvendu K. Lahiri and Chao Wang, editors, Automated
Technology for Verification and Analysis - 16th International Symposium, ATVA 2018, Los
Angeles, CA, USA, October 7-10, 2018, Proceedings, volume 11138 of Lecture Notes in Com-
puter Science, pages 194–210. Springer, 2018. Full version with proofs can be found at
arXiv:1807.10015. doi:10.1007/978-3-030-01090-4_12.

10 Yuxin Deng and Wenjie Du. The Kantorovich Metric in Computer Science: A Brief Survey.
Electr. Notes Theor. Comput. Sci., 253(3):73–82, 2009. doi:10.1016/j.entcs.2009.10.006.

CONCUR 2019

https://doi.org/10.1007/978-3-642-36742-7_1
https://doi.org/10.1145/2103656.2103670
https://doi.org/10.1007/978-3-642-39212-2_8
https://doi.org/10.1007/978-3-662-44584-6_4
https://doi.org/10.1007/978-3-642-28729-9_29
https://doi.org/10.1145/2603088.2603099
https://arxiv.org/abs/1807.10015
https://doi.org/10.1007/978-3-030-01090-4_12
https://doi.org/10.1016/j.entcs.2009.10.006

10:16 Asymmetric Distances for Approximate Differential Privacy

11 Josee Desharnais, Vineet Gupta, Radha Jagadeesan, and Prakash Panangaden. Metrics for
labelled Markov processes. Theor. Comput. Sci., 318(3):323–354, 2004. doi:10.1016/j.tcs.
2003.09.013.

12 Josee Desharnais, Radha Jagadeesan, Vineet Gupta, and Prakash Panangaden. The Metric
Analogue of Weak Bisimulation for Probabilistic Processes. In 17th IEEE Symposium on
Logic in Computer Science (LICS 2002), 22-25 July 2002, Copenhagen, Denmark, Proceedings,
pages 413–422. IEEE Computer Society, 2002. doi:10.1109/LICS.2002.1029849.

13 Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni Naor.
Our Data, Ourselves: Privacy Via Distributed Noise Generation. In Serge Vaudenay, editor,
Advances in Cryptology - EUROCRYPT 2006, 25th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, St. Petersburg, Russia, May 28 - June 1,
2006, Proceedings, volume 4004 of Lecture Notes in Computer Science, pages 486–503. Springer,
2006. doi:10.1007/11761679_29.

14 Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam D. Smith. Calibrating Noise
to Sensitivity in Private Data Analysis. In Shai Halevi and Tal Rabin, editors, Theory of
Cryptography, Third Theory of Cryptography Conference, TCC 2006, New York, NY, USA,
March 4-7, 2006, Proceedings, volume 3876 of Lecture Notes in Computer Science, pages
265–284. Springer, 2006. doi:10.1007/11681878_14.

15 Cynthia Dwork and Aaron Roth. The Algorithmic Foundations of Differential Privacy.
Foundations and Trends in Theoretical Computer Science, 9(3-4):211–407, 2014. doi:10.1561/
0400000042.

16 Kousha Etessami and Mihalis Yannakakis. On the Complexity of Nash Equilibria and Other
Fixed Points. SIAM J. Comput., 39(6):2531–2597, 2010. doi:10.1137/080720826.

17 Alessandro Giacalone, Chi-Chang Jou, and Scott A. Smolka. Algebraic Reasoning for Proba-
bilistic Concurrent Systems. In Manfred Broy, editor, Programming concepts and methods:
Proceedings of the IFIP Working Group 2.2, 2.3 Working Conference on Programming Concepts
and Methods, Sea of Galilee, Israel, 2-5 April, 1990, pages 443–458. North-Holland, 1990.

18 Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric Algorithms and
Combinatorial Optimization, volume 2 of Algorithms and Combinatorics. Springer, 1988.
doi:10.1007/978-3-642-97881-4.

19 Bengt Jonsson and Kim Guldstrand Larsen. Specification and Refinement of Probabilistic
Processes. In Proceedings of the Sixth Annual Symposium on Logic in Computer Science (LICS
’91), Amsterdam, The Netherlands, July 15-18, 1991, pages 266–277. IEEE Computer Society,
1991. doi:10.1109/LICS.1991.151651.

20 Sampath Kannan, Z Sweedyk, and Steve Mahaney. Counting and random generation of strings
in regular languages. In Proceedings of the sixth annual ACM-SIAM symposium on Discrete
algorithms, pages 551–557. Society for Industrial and Applied Mathematics, 1995.

21 L. V. Kantorovich. On the translocation of masses. Doklady Akademii Nauk SSSR, 37(7-
8):227—-229, 1942.

22 Stefan Kiefer. On Computing the Total Variation Distance of Hidden Markov Models. In
45th International Colloquium on Automata, Languages, and Programming (ICALP 2018),
volume 107 of Leibniz International Proceedings in Informatics (LIPIcs), pages 130:1–130:13,
Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. Full version
with proofs can be found at arXiv:1804.06170. doi:10.4230/LIPIcs.ICALP.2018.130.

23 Kim Guldstrand Larsen and Arne Skou. Bisimulation through Probabilistic Testing. Inf.
Comput., 94(1):1–28, 1991. doi:10.1016/0890-5401(91)90030-6.

24 Sebastian Meiser. Approximate and Probabilistic Differential Privacy Definitions. IACR
Cryptology ePrint Archive, 2018:277, 2018. URL: https://eprint.iacr.org/2018/277.

25 Jack Murtagh and Salil P. Vadhan. The Complexity of Computing the Optimal Composition of
Differential Privacy. In Eyal Kushilevitz and Tal Malkin, editors, Theory of Cryptography - 13th
International Conference, TCC 2016-A, Tel Aviv, Israel, January 10-13, 2016, Proceedings,

https://doi.org/10.1016/j.tcs.2003.09.013
https://doi.org/10.1016/j.tcs.2003.09.013
https://doi.org/10.1109/LICS.2002.1029849
https://doi.org/10.1007/11761679_29
https://doi.org/10.1007/11681878_14
https://doi.org/10.1561/0400000042
https://doi.org/10.1561/0400000042
https://doi.org/10.1137/080720826
https://doi.org/10.1007/978-3-642-97881-4
https://doi.org/10.1109/LICS.1991.151651
https://arxiv.org/abs/1804.06170
https://doi.org/10.4230/LIPIcs.ICALP.2018.130
https://doi.org/10.1016/0890-5401(91)90030-6
https://eprint.iacr.org/2018/277

D. Chistikov, A. S. Murawski, and D. Purser 10:17

Part I, volume 9562 of Lecture Notes in Computer Science, pages 157–175. Springer, 2016.
doi:10.1007/978-3-662-49096-9_7.

26 Alexander Schrijver. Theory of linear and integer programming. Wiley-Interscience series in
discrete mathematics and optimization. Wiley, 1999.

27 Qiyi Tang and Franck van Breugel. Computing Probabilistic Bisimilarity Distances via
Policy Iteration. In Josée Desharnais and Radha Jagadeesan, editors, 27th International
Conference on Concurrency Theory, CONCUR 2016, August 23-26, 2016, Québec City, Canada,
volume 59 of LIPIcs, pages 22:1–22:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2016. doi:10.4230/LIPIcs.CONCUR.2016.22.

28 Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of
Mathematics, 5(2):285–309, 1955.

29 Franck van Breugel. Probabilistic bisimilarity distances. SIGLOG News, 4(4):33–51, 2017.
URL: https://dl.acm.org/citation.cfm?id=3157837.

30 Franck van Breugel, Babita Sharma, and James Worrell. Approximating a Behavioural
Pseudometric Without Discount for Probabilistic Systems. In Helmut Seidl, editor, Foundations
of Software Science and Computational Structures, 10th International Conference, FOSSACS
2007, Held as Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2007, Braga, Portugal, March 24-April 1, 2007, Proceedings, volume 4423 of Lecture
Notes in Computer Science, pages 123–137. Springer, 2007. doi:10.1007/978-3-540-71389-0_
10.

31 Lili Xu. Formal Verification of Differential Privacy in Concurrent Systems. PhD thesis, Ecole
Polytechnique (Palaiseau, France), 2015.

32 Lili Xu, Konstantinos Chatzikokolakis, and Huimin Lin. Metrics for Differential Privacy in
Concurrent Systems. In Erika Ábrahám and Catuscia Palamidessi, editors, Formal Tech-
niques for Distributed Objects, Components, and Systems - 34th IFIP WG 6.1 International
Conference, FORTE 2014, Held as Part of the 9th International Federated Conference on
Distributed Computing Techniques, DisCoTec 2014, Berlin, Germany, June 3-5, 2014. Pro-
ceedings, volume 8461 of Lecture Notes in Computer Science, pages 199–215. Springer, 2014.
doi:10.1007/978-3-662-43613-4_13.

CONCUR 2019

https://doi.org/10.1007/978-3-662-49096-9_7
https://doi.org/10.4230/LIPIcs.CONCUR.2016.22
https://dl.acm.org/citation.cfm?id=3157837
https://doi.org/10.1007/978-3-540-71389-0_10
https://doi.org/10.1007/978-3-540-71389-0_10
https://doi.org/10.1007/978-3-662-43613-4_13

Event Structures for Mixed Choice
Marc de Visme
Univ Lyon, EnsL, UCBL, CNRS, LIP, F-69342, LYON Cedex 07, France

Abstract
In the context of models with mixed nondeterministic and probabilistic choice, we present a concurrent
model based on partial orders, more precisely Winskel’s event structures. We study its relationship
with the interleaving-based model of Segala’s probabilistic automata. Lastly, we use this model to
give a truly concurrent semantics to an extension of CCS with probabilistic choice, and relate this
concurrent semantics to the usual interleaving semantics, thus generalising existing results on CCS,
event structures and labelled transition systems.

2012 ACM Subject Classification Theory of computation → Parallel computing models

Keywords and phrases probability, nondeterminism, concurrency, event structures, CCS

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2019.11

Related Version Full version at https://hal.archives-ouvertes.fr/hal-02167420.

Funding Marc de Visme: Supported by Labex MiLyon (ANR-10-LABX-0070) of Université de
Lyon, within the program “Investissements d’Avenir” (ANR-11-IDEX-0007), operated by the French
National Research Agency (ANR).

1 Introduction

We study models of mixed choice [7], i.e. models representing both probabilistic choice and
nondeterministic choice. The need for such models arises with systems where unconstrained
nondeterministic behaviours coexist with quantified and controlled nondeterministic beha-
viours; for example, parallel threads using random number generators (hence probabilistic
choices) while operating on a shared memory (hence nondeterministic races).

While many different models have been developed through the years, Segala’s probabilistic
automata [13, 14] are a widely used model, both general and practical. They are automata
where transitions are from states to probability distributions on states, hence modelling an
alternation between a nondeterministic choice (the choice of the transition) and a probabilistic
choice (the probability distribution). It is an interleaving model, as it represents “A and B
occur in parallel” by “A then B or B then A”. In this paper, we are interested in models that
are not interleaving, and represent “A and B occur in parallel” by “A and B are causally
unrelated” instead. Those models are called truly concurrent models, and are particularly
useful to study races, concurrency, and causality. We specifically focus on truly concurrent
models based on partial orders, more precisely Winskel’s event structures [9, 11, 17]. We
present here mixed probabilisitic event structures, which are event structures enriched to
model mixed nondeterministic and probabilistic choice. This work is in continuation of works
on event structure models for languages with effects: parallelism [17], probabilities [5, 16],
quantum effects [6], shared weak memory [4], . . .

In order to ensure that mixed probabilistic event structures are an adequate model for
mixed choice, we show how to relate them to the existing model of Segala automata. Indeed,
a mixed probabilistic event structure can be unfolded to a (tree-like) Segala automaton
through a sequentialisation procedure, similar to the unfolding of a partial order into a
tree. This sequentialisation procedure is well-behaved; rather than listing all the ad-hoc

© Marc de Visme;
licensed under Creative Commons License CC-BY

30th International Conference on Concurrency Theory (CONCUR 2019).
Editors: Wan Fokkink and Rob van Glabbeek; Article No. 11; pp. 11:1–11:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.CONCUR.2019.11
https://hal.archives-ouvertes.fr/hal-02167420
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 Event Structures for Mixed Choice

properties it satisfies, we express mixed probabilisitic event structures as a category, such
that sequentialisation forms an adjunction, from which those properties can be deduced.
Sections 3 and 4 are dedicated to the development of this new model for mixed choice.

We apply this model to give a semantics to a language featuring parallelism, nondetermin-
ism and probabilistic choice. Namely, we choose an extension of CCS [10] with probabilistic
choice [2]. Extensions of our work to more complex languages, such as the probabilistic
π-calculus, should be possible using methods similar to [16]. In that paper, Varacca and
Yoshida give a concurrent semantics using event structures to a “deterministic” probabilistic
π-calculus, i.e. they forbid processes with a nondeterministic behaviour, like (a|a|ā) where
two inputs race to interact with an output. We do not have those restrictions, and fully
support both nondeterministic and probabilistic behaviours.

Using partial-order based models to represent parallel processes is not a new idea. Indeed,
the relationship between CCS and event structures is well-studied [17], and recalled in detail
in Section 2. The core result of this relationship is the factorisation theorem (Theorem 9),
which states that if one considers the event structure representing the concurrent semantics
of a process, and unfolds it into a labelled tree, then the result would match the interleaving
semantics of the process. It follows that the concurrent semantics is sound w.r.t. the
interleaving semantics. In Section 4, we lift the known relations between CCS, event
structures, and labelled trees, to relations between Probabilistic CCS, mixed probabilisitic
event structures, and (tree-like) Segala automata; concluding with a factorisation theorem
(Theorem 26).

2 Preliminaries

The process algebra CCS [10] is used to represent concurrent processes communicating with
each other through channels. A process P can evolve into a process Q by performing an
action. The graph having processes as nodes and transitions labelled by actions as edges is
known as the Labelled Transition System (LTS) of the process language. From this graph and
any process P , one can work with the (possibly infinite) labelled tree obtained by unfolding
the graph starting by the node P . We may express the semantics of a process P in terms of
that unfolded tree, the approach we take in this paper.

The LTS of processes yield an interleaving semantics, since they do not distinguish the
process (a|b) that perform a and b in parallel from the process (a.b>b.a) – where > represents
nondeterministic choice – which can perform a and b in any sequential order. Semantics
that do distinguish between the two actions in parallel and the two actions in any sequential
order are called truly concurrent semantics. In this paper, we will consider the usual truly
concurrent semantics of CCS: event structures [9, 11, 17], which are partial orders with a
notion of conflict (Definition 1).

The semantics of CCS in labelled trees and in event structures are both quite straightfor-
ward, except for the parallel composition (P |Q), which is syntactically complex to compute.
It is often practical to use a more abstract approach than syntactically computing (P |Q), and
remark that the parallel composition of CCS arises in both semantics [17] as a categorical
product ×? (for a suitable notion of maps) followed by a restriction.

As stated before, we can recover the interleaving semantics from the truly concurrent
semantics. This means that we can unfold event structures as labelled trees, while preserving
the interpretation of CCS processes. This unfolding consists in finding the best labelled tree
to approximate the behaviour of a given event structure.

In the literature of models of concurrency, following Winskel [12, 17], such unfoldings
are often expressed through a categorical coreflection – a special case of adjunction. The
unfolding of an event structure into a labelled tree, named sequentialisation, is the right

M. de Visme 11:3

adjoint of this adjunction, ensuring that the sequentialisation Seq(E) of an event structure E
gives its best approximation in terms of labelled trees. In particular the sequentialisation of
a product Seq(E ×? F) is the product of the sequentialisations Seq(E)×? Seq(F); hence the
sequentialisation preserves the interpretation of the parallel composition. This adjunction is
a coreflection, meaning that the left adjoint, named inclusion, is such that the composition
(Seq ◦ ↪→) is an isomorphism – in other words, labelled trees can be regarded as a particular
case of event structures.

In this section, we first recall the definition of event structures and their cartesian category.
Then, we recall the syntax of the process algebra CCS, its interleaving semantics using labelled
trees, and its truly concurrent semantics using event structures. Finally, we present the
extension of CCS with probabilistic choice [2], and its interleaving semantics.

2.1 The Category of Event Structures
A (prime) event structure [18] is a representation of computational events of a concurrent
system. Its events are related by a partial order representing causal dependency: if a ≤ b

then b can only occur if a has occurred beforehand; and a conflict relation representing
incompatibility: if a # b then each of a and b can only occur if the other does not.

I Definition 1. An event structure E is a triple E = (|E|,≤E ,#E) where:
|E| is a set whose elements are called events.
≤E is a (partial) order, called causality, such that {b | b ≤E a} is finite for all a ∈ |E|.
#E is a symmetric irreflexive binary1 relation, called conflict.
∀a, b, c ∈ |E|, if a #E b ≤E c then a #E c.

In such a structure, we want to describe the set of states in which the system under
study can exist. We define the set of (finite) configurations of E, written C(E), as the set of
reachable finite sets of events, in other words:

x ∈ C(E) ⇐⇒ x ∈ Pfin(|E|) and ∀a ∈ x, ∀b ∈ |E|,
{
b #E a =⇒ b /∈ x and
b ≤E a =⇒ b ∈ x

We say that a configuration x enables an event a /∈ x, and we write x
a
−−⊂, if x ∪ {a}

is a configuration. There are two canonical configurations associated to an event a ∈ |E|:
the minimal configuration containing it [a] := {b | b ≤E a}, and the minimal configuration
enabling it [a) := [a]\{a}.

The causality ≤E and the conflict #E contain a lot of redundant information: if you
know that a #E b and b ≤E c, then the definition of event structures enforces a #E c. When
representing event structures, we want a concise representation, so instead of ≤E and #E , we
use immediate causality _E (represented by arrows) and minimal conflict E (represented
by wiggly lines), defined as follows:

a _E b ⇐⇒

{
a <E b

∀a ≤E c ≤E b, c ∈ {a, b}
a E b ⇐⇒

a #E b

∀a′ <E a,¬(a′ #E b)
∀b′ <E b,¬(a #E b′)

We can always recover #E and ≤E from _E and E . For example, in Figure 1, we
deduce c #E e and a ≤E e from the minimal conflict and immediate causality.

1 We choose to use binary conflicts for pedagogical reasons. Our work can be extended to non-binary
conflicts as in [19].

CONCUR 2019

11:4 Event Structures for Mixed Choice

a

� !!)

b
_���

c

d
_���
e

C(E) =
{

∅, {a}, {b}, {c}, {a, b},
{a, c}, {a, b, d}, {a, b, d, e}

}

Figure 1 An event structure E.

a1 a2 b1 b2 c1

_���

�
b1,b2 7→b
identity
otherwise

// a1 a2 b c1 c2
_���

c2 d

Figure 2 A total map of event structures.

a b

a1

��

b2

��
b1 a2

Figure 3 Concurrent system, and its interleaving counterpart.

There is a notion of (partial or total) maps of event structures, altogether forming a
category. Formally, a (partial or total) map f from E to E′ is a (partial or total) function
f : |E|⇀ |E′| such that:
configuration preserving for all x ∈ C(E) we have f(x) ∈ C(E′).
local injectivity for all a, b distinct in x ∈ C(E), if f is defined on both then f(a) 6= f(b).

Note that total maps can be interpreted as a form of simulation: if x ∈ C(E) enables an
event e /∈ x, then f(x) ∈ C(E′) enables f(e) /∈ f(x). In the example of Figure 2, the map is
total. It merges b1 and b2 into a single event b, which is allowed since they are in conflict,
and it does not contain the event d in its image, which is allowed because d is not causally
required by any event in the image of the map.

With this notion of maps, we recall the induced notion of isomorphism: E ∼= E′ if and
only if there is a total bijective map f : E → E′ with f−1 also a map of event structures.
In other words, two event structures are isomorphic if and only if they are the same up to
renaming of the events.

I Proposition 2. Event structures and (partial) maps of event structures form a category,
written ES?. We write ∅ for the empty event structure, which is a terminal object2. ES? has
a subcategory ES of event structures with total maps of event structures.

Event structures are used to represent causality and independence, but they can also
be used to represent interleavings. However, concurrent systems and sequential systems
simulating concurrency through interleaving will be represented in drastically different ways
in event structures. Figure 3 shows a concurrent system able to perform two events a and b
in parallel, and its interleaving counterpart where a and b can both happen in any order but
not simultaneously. We can characterise event structures that are fully interleaved, in other
words sequential event structures, as follows:

2 i.e. for every object A, there exists a unique map from A to ∅.

M. de Visme 11:5

a1

_���
a2

, b1

_���
b2

, (a1, b1)

_���
(a2, b2)

, (a1, ?)

_���
6vv�

(a1, b1)

_���

(?, b1)

_��� � ��'
(a2, ?) (a2, b1)

_���

(a2, b2) (a1, b2)

_���

(?, b2)

(?, b2)′ (a2, ?)′

Figure 4 The event structure A, B, A×B and A×? B.

I Definition 3. An event structure E is sequential if it satisfies one of the following equivalent
properties:

E is forest-shaped, with branches being in conflict with each other.
For every a, b ∈ x ∈ C(E), either a ≤E b or b ≤E a.
There exists a (necessarily unique) total map from E to N , where N = (N,≤,∅) is the
event structure with an infinite succession of events.
E is isomorphic to E ×N , where × is the synchronous product defined in Section 2.2.

The first characterisation means that trees are in a one-to-one correspondence with
sequential event structures. Through this correspondence, transitions correspond to events.
For the remainder of this paper, we use sequential event structures to represent trees.

I Proposition 4. Sequential event structures and (partial) maps of event structures form
a subcategory of ES?, written Seq-ES?. It has a subcategory Seq-ES of sequential event
structures with total maps of event structures, with N for terminal object.

2.2 The Categorical Product
In this paper, we exclusively rely on the universal property of categorical products, without
giving any concrete definition for such products. We write ×? for the product in ES? [17],
called asynchronous product, and × for the product in ES [17], called synchronous product.

Informally speaking, both A×?B and A×B explore all the ways to pair up the events of
A with the events of B while respecting causal dependencies and conflicts. The synchronous
product expects all the events to be paired, while the asynchronous product allows events to
remain unpaired, see Figure 4. Note that events of the products are not uniquely determined
by their projections: in Figure 4 both (?, b2) and (?, b2)′ have the same projections.

I Proposition 5. ES? is a cartesian category, with ×? as a product and ∅ as a unit. ES has
a product ×, and its subcategory Seq-ES is a cartesian category with N as unit.

Using the synchronous product ×, we can simply define the sequentialisation as Seq(E) :=
E ×N . It is always a sequential event structure. The asynchronous product ×? will later be
used to define the semantics of the parallel composition of CCS.

I Theorem 6. Seq is a functor from ES? (and ES) to Seq-ES? (and Seq-ES), which is right
adjoint to the inclusion functor, forming coreflections [17].

Seq-ES

↪→
((

⊥ ES
Seq

ii Seq-ES?

↪→
((

⊥ ES?
Seq

jj

CONCUR 2019

11:6 Event Structures for Mixed Choice

Since right adjoints preserve categorical limits, we have that Seq(A×? B) ∼= Seq(A)×?
Seq(B). Since the restriction (Definition 8) is also preserved by Seq, it means that when
interpreting the parallel composition of CCS using the asynchronous product in ES?, then
sequentialising, we get the same result as when interpreting the parallel composition directly
as the asynchronous product in Seq-ES? (i.e. trees).

2.3 Semantics of CCS
We consider the process algebra CCS [1, 3, 10] over a set of channels Chan. A channel
a ∈ Chan can be used by processes as an input a or as an output ā. For convenience, we
assume that ¯̄a = a. On top of these external actions, processes can also perform internal
actions, written τ , and we write A = Chan ∪ {ā | a ∈ Chan} ∪ {τ} for the set of all actions.

I Definition 7. The set P of processes is defined by the following syntax:
P ::= 0 | (P1|P2) | (P1 > P2) | X | µX.P | a.P | ā.P | τ.P | νa.P (for a ∈ Chan)
where the constructs are empty process, parallel composition, nondeterministic choice,

process variable, process recursion, input prefix, output prefix and τ prefix, and restriction,
respectively. We only consider closed processes, in which every variable X is bound by a
recursion µX.

Figure 5a describes the interleaving semantics of the language. The states of the LTS reachable
from a process P can be unfolded into a (potentially infinite) labelled tree represented using
a (potentially infinite) sequential event structure, written JP Kis, with labels in A.

I Definition 8. An event structure with labels in L is an event structure E together with a
total function `E : |E| → L. For L ⊆ L, we define E\L as the restriction of E to the set of
events {e | ∀e′ ≤ e, `E(e′) /∈ L}. In other words, we remove every event with a label in L,
and every event causally dependent on it. Maps of labelled event structures are required to
preserve labels.

We define the labels on Seq(E) from the labels on E as `Seq(E)(e) := `E(π1(e)). We define
the labels of A×? B using the following synchronisation operation • : A ∪ {?} × A ∪ {?} →
A ∪ {0}, where ? stands for “undefined”: `A×?B(e) = `A(π?1(e)) • `B(π?2(e))

a • ā = τ

ā • a = τ
for a ∈ Chan α • ? = α

? • α = α
for α ∈ A α • β = 0 otherwise

Figure 5b describes the concurrent semantics of the language. For any process P , we
write JP Kcs for the (potentially non-sequential, potentially infinite) event structure with
labels in A representing P . See Figure 6 for an example. On top of the previous operations,
we need some additional operations on labelled event structures:

To represent nondeterministic choice, we need to put two event structures in parallel,
while allowing only one of them to be used. For A and B two event structures, we define
A # B as the event structure with |A|] |B| as events, with the same order, conflict and
labels as in A and in B, but with every event of A being in conflict with every event of B.
To represent prefixes, we need to create a new event. We write ↓e:a E for the event
structure with events |E|] {e}, with e labelled by a being the minimal event for ≤↓e:aE ,
everything else being the same as in E.
To represent process recursion, we use a least fixpoint. The order used for that least
fixpoint is given by “substructure maps”, i.e. total maps that are an inclusion on events,
and preserve and reflect order and conflicts.

As claimed before, we can recover the interleaving semantics from the truly concurrent
one. The proof of this theorem relies on the fact that Seq forms a coreflection.

I Theorem 9 (Factorisation [17]). For any process P of CCS, we have JP Kis ∼= Seq(JP Kcs).

M. de Visme 11:7

a.P
a−→ P

P
a−→ P ′

(P >Q) a−→ P ′

a /∈ {c, c̄} P
a−→ P ′

νc.P
a−→ νc.P ′

P
a−→ P ′

(Q> P) a−→ P ′

P
c−→ P ′ Q

c̄−→ Q′

(P |Q) τ−→ (P ′|Q′)
P

a−→ P ′

(P |Q) a−→ (P ′|Q)
P{X ← µX.P} a−→ Q

µX.P
a−→ Q

P
a−→ P ′

(Q|P) a−→ (Q|P ′)

(a) Interleaving semantics, using LTS.

J0Kcs = ∅
J(P1|P2)Kcs = JP1Kcs ×? JP2Kcs\{0}

J(P1 > P2)Kcs = JP1Kcs # JP2Kcs

Ja.P Kcs = ↓P :a JP Kcs

Jνc.P Kcs = JP Kcs\{c, c̄}
JµX.P Kcs = JP{X ← µX.P}Kcs

(b) Concurrent semantics, using event structures.

Figure 5 Semantics of CCS, with a ∈ A and c ∈ Chan.

νc. (a. (c.a> c.b) | b.c̄)
(a) A CCS process.

·
b

��
a

��
·
b ��

·
a
��

·
τ
��

τ

��

·
τ
��

τ

��
·

a
��

·
b ��

·
a
��

·
b ��

· · · ·
(b) Its interleaving semantics:
a labelled tree.

a

_��� ���$

b

?zz� _���
τ

_���

τ

_���
a b

(c) Its concurrent semantics:
a labelled event structure.

Figure 6

2.4 Probabilistic CCS
The goal of this paper is to extend existing results on CCS to Probabilistic CCS, which
is CCS enriched with a probabilistic choice3

∑
i∈I pi · ai.Pi, with I a possibly infinite set,

∀i ∈ I, 0 < pi ≤ 1, ai ∈ A, and
∑
i∈I pi ≤ 1. We also assume the pairs (ai, Pi) to be

pairwise distinct. Notice that we allow sub-probabilistic sums like 1
2 · a.P , but we forbid

unguarded sums like 1
2 · (P1|P2) + 1

2 ·Q. This guard restriction is similar to that found in
the probabilistic π-calculus [8, 16]. The interleaving semantics we present here uses Segala
automata [13, 14], and relies on this absence of unguarded sums to be well-defined. In
this semantics, reductions are interpreted by an alternation of probabilistic choices and
nondeterministic choices. Mathematically, the reduction → is a subset of P × D(A × P),
where D(U) is the set of discrete sub-probability distributions over U . So for every process
P , there is first a nondeterministic choice of P → S, and then a probabilistic choice inside
S = {(pi, ai, Pi) | i ∈ I} of the action ai and the reduced process Pi. Figure 7 describes this
interleaving semantics.

3 Mixed Event Structures

We now develop the main contribution of this paper: an event structure model able to
represent mixed internal and external choices, that we will use in the last section to give a
concurrent semantics to the mixed probabilistic and nondeterministic choices of PCCS.

3 Some papers [2] use a less general sum where the ai are assumed to be equal.

CONCUR 2019

11:8 Event Structures for Mixed Choice

a ∈ A
a.P → {(1, a, P)}

∑
i∈I pi · ai.Pi → {(pi, ai, Pi) | i ∈ I}

P → S

P >Q→ S

Q→ S

P >Q→ S

P{X ← µX.P} → S

µX.P → S

P → {(pi, ai, Pi) | i ∈ I}
νc.P → {(pi, ai, Pi) | i ∈ I, ai /∈ {c, c̄}}

P → {(pi, ai, Pi) | i ∈ I}
P |Q→ {(pi, ai, Pi|Q) | i ∈ I}

P → {(pi, ai, Pi) | i ∈ I} Q→ {(qj , bj , Qj) | j ∈ J}
P |Q→ {(piqj , τ, Pi|Qj) | i ∈ I, j ∈ J, āi = bj}

Q→ {(qj , bj , Qj) | j ∈ J}
P |Q→ {(qj , bj , P |Qj) | j ∈ J}

Figure 7 Interleaving semantics of PCCS, using Segala automata.

3.1 Definition
When trying to represent processes of PCCS in event structures, one could think of simply
using the existing probabilistic event structures [20], which are event structures E together
with a valuation vE : C(E) → (0, 1] satisfying some well-chosen properties (Definition 21).
However, looking at the two processes (1

2a+ 1
2b) and

(
(1

2a) > (1
2b)
)
, we remark that:

They have only two different computational events: “receiving on a” and “receiving on
b”; which means that natural representations using event structures will only have two
events.
Those two computational events cannot occur together, so natural representations using
event structures have those two events in conflict.
Those two computational events are associated with probability half, which means that
the valuation is necessarily v({a}) = 1

2 = v({b})
In other words, if we try to represent them using probabilistic event structures, both of
them will be represented by the same structure. But they have very different interleaving
semantics in Segala automata, so it would not be a sound representation. A similar example
using full probabilistic distributions is

(1
2a+ 1

2b) > (1
2c+ 1

2d)
)
and

(1
2a+ 1

2c) > (1
2b+ 1

2d)
)
.

In order to distinguish these two processes, the solution we propose is to have two kinds
of conflicts: an external conflict, used for the nondeterministic choice >, and an internal
conflict, used for the probabilistic choice +. In this section, we explore in more detail event
structures with two kinds of conflicts, named mixed event structures.

We will keep using the notation # for the union of both conflicts, and we will use the
notation � for internal conflicts and yq xp for external conflicts. Since we have two kinds of
conflicts, we will have two kinds of “configurations”: the usual set of configurations, computed
from #, inside which no conflicts are tolerated, and the set of worlds inside which internal
conflicts � are accepted. These considerations give rise to the following definition.

I Definition 10. A mixed event structure (mes) E is a quadruple (|E|,≤E ,#E ,
y
q
x
pE) where

U(E) = (|E|,≤E ,#E) is an event structure. We write C(E) = C(U(E)) for the set of
configurations. We define E ,_E , [e], [e) as previously.
(|E|,≤E , yq xpE) is an event structure. We write W(E) = C(|E|,≤E , yq xpE) for the set of
worlds.
y
q
x
pE⊆ #E, or equivalently C(E) ⊆ W(E).

We define the internal conflict �E as (#E\yq xpE).

The internal conflict �E is a symmetric irreflexive relation, but (|E|,≤E ,�E) may not be an
event structure. In fact, we will later (Definition 16) consider the special case �E⊆ E . The
operation U turns out to be the right adjoint in a coreflection (Theorem 13) between mes
and event structures. Graphically, we use dashes to represent minimal internal conflict (i.e.

E ∩ �E), wiggly lines to represent the minimal conflict of (|E|,≤E , yq xpE), and arrows to
represent _E . Those are enough to characterise all the conflicts. For example, in Figure 8,
we can deduce c yq xp e in both E1 and E2, in E1 we also have d yq xp e while in E2 we have d � e.

M. de Visme 11:9

a

_���

b

_���

c

d e
C(E1) = {∅, {a}, {b}, {c}, {a, d}, {b, e}}

W(E1) = C(E1) ∪ {{a, b}}

a

_���

b

_���

c

d e
C(E2) = C(E1)

W(E2) =W(E1) ∪ {{a, b, d}, {a, b, e}, {a, b, d, e}}

Figure 8 Mixed event structures E1 and E2.

a a′ � Seq // a1 a′1 b b′ � Seq // b1

_���

b′1

_���
b′2 b2

Figure 9 Image by the sequentialisation of the mes A and B.

Our goal is to extend all the operations previously defined on event structures. So we
want mes to have (a)synchronous products, and a sequentialisation Seq functor forming
a coreflection. In particular, it means sequentialising a mes which is already sequential
(Definition 16) should be an isomorphism, so in Figure 9, Seq(A) ∼= A. Moreover, we want
this extension to be conservative: a mes with � = ∅ (i.e. W = C) should behave as an event
structure. In particular, the sequentialisation of an event structure should be preserved by
the inclusion of event structures into mes. So in Figure 9, Seq(B), where B is seen as a mes,
should be the same as Seq(B) where B is seen as an event structure.

We also want (a)synchronous products of mes to correspond to (a)synchronous products of
event structures. As previously, we use a coreflection to express this preservation. The right
adjoint to the inclusion will be the forgetful functor U . But to talk about the coreflection,
we first need to define the category of mes. We will provide justification for each of the 4
conditions on maps of mes (Definition 11).

Firstly, since we want U to be a functor, then for every map of mes f from A to B, there
corresponds a map of event structures U(f) from U(A) to U(B).

Secondly, since we want U to form a coreflection, for every mes A, we need a map
from U(A) to A which is the identity function on events. This implies that we have an
identity-on-events map from the mes with two events a yq xp b to the mes with two events a � b.
Since we do not want these two mes to be isomorphic, we do not want any identity-on-events
map from a � b to a yq xp b. This leads to the second condition on maps of mes: maps of mes
preserve worlds.

Thirdly, considering Figure 9 again, any total map g from Seq(A) to Seq(B) has to send
the world {a1, a

′
1} to a world, hence necessarily g(a1) = g(a′1). It follows that for Seq to be a

functor, any map f from A to B should respect f(a) = f(a′). So we need to forbid f(a) = b

and f(a′) = b′ from forming a map. Which leads to the following restriction: if a � a′, f
defined on a and a′, and f(a) 6= f(a′), then f(a) � f(a′).

Lastly, due to some more subtle problems in the case of partial maps (see the full version),
we need the domain of the map to be closed under �.

I Definition 11. A map f of mes from E to F is a (possibly partial) function from |E| to
|F | satisfying:
map of event structures f is a map from U(E) to U(F);
world preserving for every w ∈ W(E), f(w) ∈ W(F);
�-preserving for every a �E b where f is defined and f(a) 6= f(b), then f(a) �F f(b); and
�-equidefinability for every a �E b, f is defined on both or none.

CONCUR 2019

https://hal.archives-ouvertes.fr/hal-02167420

11:10 Event Structures for Mixed Choice

a , b1

b2

, (a, b1)

(a, b2)

, (a, ?) (a, b1) (?, b1)

(a, b2) (?, b2)

Figure 10 The mes A, B, A×B and A×? B.

I Proposition 12. Mes and partial maps of mes form a category, written MES?, with the
empty event structure as a terminal object. Mes and total maps of mes form a subcategory,
written MES.

I Theorem 13. The functor U is a left adjoint to the inclusion, forming a coreflection.

ES

↪→
((

⊥ MES
U

gg ES?

↪→
))

⊥ MES?
U

hh

Additionally, the inclusion preserves categorical limits.

See the full version for the proof. This theorem implies that both the forgetful functor U
and the inclusion functor ↪→ preserve (a)synchronous products.

3.2 Products and Sequentiality
From the previous coreflection, we know that mes coming from event structures have
synchronous and asynchronous products. These constructions extend to all mes. The proof
is technical, and can be found in the full version.

I Proposition 14. MES? is a cartesian category, with ×? as a product and ∅ as a unit.
MES has a product ×.

As a remark, since we have U(A×? B) = U(A)×? U(B), we know that the events, order,
and conflict of the mes A×? B are the same as those of the event structure U(A)×? U(B).
And we have a similar property for A×B. One can then characterise the internal conflict:

I Proposition 15. For E1 and E2 two mes, with P = E1×E2 and P? = E1×?E2, we have:

a �P b ⇐⇒ [a] ∪ [b), [a) ∪ [b] ∈ W(P) and ∀i ∈ {1, 2},
{
πi(a) = πi(b), or
πi(a) �Ei πi(b)

a �P?
b ⇐⇒ [a] ∪ [b), [a) ∪ [b] ∈ W(P?) and ∀i ∈ {1, 2},

π?i undef. on {a, b}, or
π?i (a) = π?i (b), or
π?i (a) �Ei π

?
i (b)

This characterisation is recursive, since it refers to worlds and worlds are defined by the
internal conflict. However, this is a well-founded recursion4, so this proposition could be used
as a definition of the (a)synchronous product. Figure 10 is an example of the synchronous
and asynchronous product of two mes.

We now aim to extend the definition of sequentiality to mes. However, a problem arises:
the usual definition of sequentiality “∀a, b ∈ c ∈ C(E) =⇒ a ≤ b or b ≤ a” gives only
a many-to-one correspondence with trees, and is no longer equivalent to the categorical

4 The well-founded relation is (a′, b′) ≺ (a, b) ⇐⇒ a′ ≤E1×?E2 a and b′ ≤E1×?E2 b and (a′, b′) 6= (a, b).

https://hal.archives-ouvertes.fr/hal-02167420
https://hal.archives-ouvertes.fr/hal-02167420

M. de Visme 11:11

definition “there exists a total map from E to N ”. Indeed, since maps are expected to
be �-preserving, the mes E2 from Figure 8 satisfies the first but not the second. So we
strengthen the first definition so that it is equivalent to the second: we require internal
conflicts to be minimal, i.e. � ⊆ . This allow to recover a one-to-one correspondence with
alternating trees (Proposition 20).

I Definition 16. A mes E is sequential if it satisfies one of the following equivalent properties:
E is forest-shaped, with branches being in conflict with each other, and �E ⊆ E.
For every a, b ∈ x ∈ C(E), either a ≤E b or b ≤E a. Moreover, �E ⊆ E.
There exists a (necessarily unique) total map from E to N .
E is isomorphic to E ×N .

Analogously to the correspondence between trees and event structures, alternating trees
(Definition 18) will correspond to sequential mes.

I Proposition 17. We write Seq-MES (resp. Seq-MES?) for the subcategory of MES (resp.
MES?) with only sequential mes. It is a cartesian category, with × (resp. ×?) as a product
and N (resp. ∅) as a terminal object.

Now, we define the sequentialisation as previously: for a mes E, we define the sequential
mes Seq(E) as E ×N . The coreflection (Theorem 6) still holds in the case of mes. A proof
can be found in the full version.

3.3 Labelled Mixed Event Structures
As in the case of event structures, one can add labels to mes. A mes labelled in L is a mes E
together with a labelling function `E : |E| → L. Maps are required to preserve labels, Seq
preserves labels, and we compute the labels of asynchronous product using •.

3.4 Alternating Trees
Just as we can choose a root node of an LTS and unfold it into a tree, so can we choose a
root node in a Segala automaton and unfold it into a Segala tree. We define here labelled
alternating trees which can be understood as “Segala trees, but without probabilities”; the
complete definition of a Segala tree will come later (Definition 24), and we will omit the
definition of Segala automaton [13, 14].

I Definition 18. A labelled alternating tree is a tree such that:
Nodes of even depth (including the root) are called states. All leaves must be states.
Nodes of odd depth are called intermediary positions.
Transitions from intermediary positions to states are labelled. They are called internal
transitions and written 99K` if labelled by `.
Transitions from states to intermediary positions are unlabelled. They are called external
transitions and written →.

Labelled alternating trees can be represented directly by labelled sequential mes. Fig-
ure 11a shows an alternating tree and its representation by a labelled sequential mes. Every
intermediary position of the labelled alternating tree corresponds to a cell (set of events that
are pairwise related by �), and each labelled transition from this intermediary position corres-
ponds to a labelled event of this cell. However, this is not a one-to-one correspondence, since
labelled alternating trees will only generate mes where � is a transitive relation. In particular,
the labelled sequential mes in Figure 11b cannot be built using labelled alternating trees.

CONCUR 2019

https://hal.archives-ouvertes.fr/hal-02167420

11:12 Event Structures for Mixed Choice

·
����

�

a
��

b

��

�

c
��

· · ·

a c

b

(a) A alternating tree and its sequential mes.

a c

b

(b) A sequential mes corresponding to no alternating tree.

Figure 11 Alternating trees and mes.

I Definition 19. A mes E is said to be locally transitive if for every x
a
−−⊂, x

b
−−⊂, and

x
c
−−⊂ with x ∈ C(E) and a, b, c pairwise distinct, we have a �E b �E c⇒ a �E c.

We use this more restricted notion of transitivity because “� is transitive” is not a property
stable under (a)synchronous products, while local transitivity is: the (a)synchronous product
of two locally transitive mes is locally transitive. In fact every definition and result previously
stated still applies if we restrict ourselves to locally transitive mes.

I Proposition 20. There is a one-to-one correspondence between labelled alternating trees
and labelled locally transitive sequential mes. Moreover, for a mes E, Seq(E) corresponds to
an alternating tree if and only if E is locally transitive.

4 Concurrent Semantics of Probabilistic CCS

The goal of this section is to give a concurrent semantics to Probabilistic CCS, with a
factorisation property similar to the one of CCS. We first add a probabilistic valuation to
mes, in order to relate them to Segala trees, used for the interleaving semantics of PCCS.
Then, we describe how to extend the concurrent semantics for CCS into one for PCCS.

4.1 Mixed Probabilisitic Event Structures
We recall some notions of probabilistic event structures [15, 20]. They are event structures
together with a probability valuation v : C(E) → (0, 1], interpreted as the probability of
reaching at least this configuration, such that v(∅) = 1 and a condition of monotonicity
(Definition 21). Simple consequences of the condition of monotonicity are:

The valuation v is decreasing: x ⊆ y =⇒ v(x) ≥ v(y)
Events in conflict have conditional probability whose sum is less than or equal to one:
∀1 ≤ i ≤ n, x

ai

−−⊂ and ∀1 ≤ i < j ≤ n, ai # aj =⇒
∑n
i=1

v(x∪{ai})
v(x) ≤ 1

Events not in conflict respect a variant of the inclusion-exclusion principle:
x, y, x ∩ y, x ∪ y ∈ C(E) =⇒ v(x ∩ y)− v(x)− v(y) + v(x ∪ y) ≥ 0

We want to add similar conditions to mes. We consider a mes with two events a and b. We
aim to use the internal conflict � of mes for probabilistic choices + of PCCS, meaning that if
a � b, we can expect v({a}) + v({b}) ≤ 1, so they respect the monotone condition. However,
since we aim to use the external conflict yq xp for the nondeterministic choice > of PCCS, if
a yq
x
p b, we can have v({a}) = 1 = v({b}), which does not respect the monotone condition.

This guides us to the following condition: within worlds, conflicts are necessarily �, so the
monotone condition has to be respected, however no condition is expected to hold across
different worlds.

I Definition 21. A mixed probabilisitic event structure (mpes) is a mes E together with a
probabilistic valuation vE : C(E)→ (0, 1] such that:

M. de Visme 11:13

Initialised vE(∅) = 1
Monotone For x, y1, . . . , yn ∈ C(E), with ∀1 ≤ i ≤ n, x ⊆ yi, we write:

For ∅ 6= I ⊆ {1, . . . , n}, yI :=
⋃
i∈I yi

For X /∈ C(E), vE(X) := 0
d(x; y1, . . . , yn) := vE(x)−

∑
∅ 6=I⊆{1,...,n}(−1)|I|+1vE(yI)

We then demand that y{1,...,n} ∈ W(E) =⇒ d(x; y1, . . . , yn) ≥ 0

It is labelled if the underlying mes is labelled. It is sequential if the underlying mes is
sequential. A map of mpes is a map of mes f : A ⇀ B such that ∀x ∈ C(A), vA(x) ≤ vB(f(x)).

Unlike [20], we use a valuation that is strictly positive on configurations instead of positive
or null. This choice come from the absence of 0-probability branches in Segala trees.

We write MPES?, MPES, Seq-MPES?, and Seq-MPES for the categories of mpes with
maps restricted to total ones and/or with objects restricted to sequential ones. The empty
mpes ∅ is a terminal object for MPES? and Seq-MPES?, while N = (N,≤,∅,∅, vN : x 7→ 1)
is a terminal object for Seq-MPES.

We now want to extend the (a)synchronous product to mpes, but it is unfortunately not
always possible to preserve the universal property of (a)synchronous products.

I Proposition 22. MPES and MPES? do not have all products.

A counterexample can be found in the full version. While no categorical product can
be defined, both MPES and MPES? have symmetric monoidal products ⊗ and ⊗? which
generalise × and ×? of mes. The underlying problem of the absence of products is a problem
of probabilistic correlation. We fail to define A × B because the correlations between the
events of A and the events of B is unspecified. So when defining A⊗B, we make the most
canonical choice and consider that A and B are probabilistically independent. This choice
is also consistent with the processes of PCCS: when considering (P |Q), the probabilistic
choices inside P are assumed to be independent of the probabilistic choices inside Q.

I Definition 23. For A and B two mpes, we define A⊗? B as follows:
The underlying mes is A×? B, where A and B are seen as mes.
∀x ∈ C(A⊗? B), vA⊗?B(x) = vA(π?1(x)) · vB(π?2(x)).

This is a mpes (proof in the full version). We define A⊗B similarly.

A remarkable property is that when A (or B) respects ∀x ∈ C(A), vA(x) = 1, then A⊗?B
is a product in MPES?, and A ⊗ B too in MPES. The sequentialisation Seq(E) := E ⊗N
still induces a coreflection.

We stated earlier that alternating trees were “Segala trees without probabilities”, and
we will now define Segala trees, and explain their correspondence with locally transitive
sequential mpes.

I Definition 24. A Segala tree labelled by L is an alternating tree labelled by (0, 1]×L, such
that if we have i 99K(pk,ak) sk for 1 ≤ k ≤ n (with sk being distinct), then

∑n
k=1 pk ≤ 1.

I Theorem 25. There is a one-to-one correspondence between Segala trees and labelled
locally transitive sequential mpes.

This correspondence is given by the correspondence between labelled alternating trees
and labelled locally transitive sequential mes, with the probability of a transition 99K(p,a)

corresponding to an event e given by p = v([e])
v([e)) , and reciprocally the valuation of a configura-

tion x being the product of all the probabilities on transitions of the Segala tree along the
branch corresponding to x.

CONCUR 2019

https://hal.archives-ouvertes.fr/hal-02167420
https://hal.archives-ouvertes.fr/hal-02167420

11:14 Event Structures for Mixed Choice

νc.
(
(a.c | b.c̄) >

(1
2d+ 1

2e
))

(a) A PCCS process.

d e

a

���$

b

_���
τ

v({d}) = 1
2

v({e}) = 1
2

v(x) = 1
otherwise

(b) Its concurrent semantics:
a labelled mixed probabilisitic event structure.

·

$$��zz
�

a 1��

�

b 1��

�

d 1
2�� e

1
2

$$·
��

·
��

· ·

�

b 1��

�

a 1��
·
��

·
��

�

τ 1��

�

τ 1��
· ·

(c) Its interleaving semantics:
a Segala tree.

Figure 12

4.2 Concurrent Semantics of PCCS
In order to define the concurrent semantics of PCCS, we first extend the constructors on
event structures used for CCS to mpes.
U(E\L) = U(E)\L; �E\L and vE\L are the restriction of �E and vE to |E\L|.
U(A # B) = U(A) # U(B); �A # B is the disjoint union, and vA # B is the co-pairing.
U(↓e:a E) =↓e:a U(E); �↓e:aE and v↓e:aE are the extension of �E and vE to | ↓e:a E| (so
in particular v↓e:aE({e}) = vE(∅) = 1)
Recursion is still a least fixpoint for the “substructure maps”, i.e. total maps that are an
inclusion on events, and preserve and reflect order, internal and external conflicts, and
the valuation.

This allows us to represent every process of CCS as an mpes, using the same notation as
in Figure 5b (with ⊗ instead of ×). We define the operation + on mpes as follows. For
(pi)i∈I ∈ (0, 1]I and

∑
i∈I pi ≤ 1, we define S =

∑
i∈I pi · Ei with:

U(S) = #i∈IU(Ei) and vS(x) = pi · vEi
(x) if x ∈ C(Ei)

e �S e
′ ⇐⇒ ∃i ∈ I,

{
e �Ei e

′, and
e, e′ ∈ |Ei|

or ∃i 6= j ∈ I,

{
e ∈ |Ei|, and
e′ ∈ |Ej |

The concurrent semantics J_Kcs of PCCS is given by Figure 5b together with this additional
rule: J

∑
i∈I pi · ai.PiKcs :=

∑
i∈I pi · Jai.PiKcs. See Figure 12 for an example.

We note that for every process P of PCCS, JP Kcs is locally transitive, meaning that its
sequentialisation will correspond to a Segala tree. If we write JP Kis for the semantics of the
process P with Segala trees, seen as labelled, locally transitive, sequential mpes, then we
have the following factorisation theorem.

I Theorem 26 (Factorisation). For any process P of PCCS, we have JP Kis ∼= Seq(JP Kcs).

The proof of this theorem relies on the sequentialisation coreflection, which ensures that
the interpretation of the parallel composition is preserved.

This concludes the main contribution of this paper: we have built a concurrent model
able to represent both probabilistic and nondeterministic choices, and used it to give to
PCCS a concurrent semantics compatible with its usual interleaving semantics.

M. de Visme 11:15

As future work, we wish to investigate PCCS without the guard restriction, hence
allowing unguarded probabilistic choice

∑
i∈I pi ·Pi. We are able to give to Unguarded PCCS

a concurrent semantics using potentially non locally transitive mpes, however the relationship
with existing interleaving semantics remains unclear.

References
1 Jos C. M. Baeten. A brief history of process algebra. Theor. Comput. Sci., 335(2-3):131–146,

2005. doi:10.1016/j.tcs.2004.07.036.
2 Christel Baier and Marta Z. Kwiatkowska. Domain equations for probabilistic processes.

Electr. Notes Theor. Comput. Sci., 7:34–54, 1997. doi:10.1016/S1571-0661(05)80465-7.
3 Jan A. Bergstra and Jan Willem Klop. Process Algebra for Synchronous Communication.

Information and Control, 60(1-3):109–137, 1984. doi:10.1016/S0019-9958(84)80025-X.
4 Simon Castellan. Weak memory models using event structures. In Julien Signoles, editor,

Vingt-septièmes Journées Francophones des Langages Applicatifs (JFLA 2016), Saint-Malo,
France, January 2016. URL: https://hal.inria.fr/hal-01333582.

5 Simon Castellan, Pierre Clairambault, Hugo Paquet, and Glynn Winskel. The Concurrent
Game Semantics of Probabilistic PCF. In Proceedings of the 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS ’18, pages 215–224, New York, NY, USA,
2018. ACM. doi:10.1145/3209108.3209187.

6 Pierre Clairambault, Marc de Visme, and Glynn Winskel. Game semantics for quantum
programming. PACMPL, 3(POPL):32:1–32:29, 2019. URL: https://dl.acm.org/citation.
cfm?id=3290345, doi:10.1145/3290345.

7 Jean Goubault-Larrecq. Isomorphism theorems between models of mixed choice. Mathematical
Structures in Computer Science, 27(6):1032–1067, 2017. doi:10.1017/S0960129515000547.

8 Oltea Mihaela Herescu and Catuscia Palamidessi. Probabilistic asynchronous pi-calculus.
CoRR, cs.PL/0109002, 2001. arXiv:cs.PL/0109002.

9 Gilles Kahn, editor. Semantics of Concurrent Computation, Proceedings of the International
Symposium, Evian, France, July 2-4, 1979, volume 70 of Lecture Notes in Computer Science.
Springer, 1979. doi:10.1007/BFb0022459.

10 Robin Milner. Lectures on a Calculus for Communicating Systems. In Seminar on Concurrency,
Carnegie-Mellon University, Pittsburg, PA, USA, July 9-11, 1984, pages 197–220, 1984.
doi:10.1007/3-540-15670-4_10.

11 Mogens Nielsen, Gordon D. Plotkin, and Glynn Winskel. Petri Nets, Event Structures and
Domains. In Gilles Kahn, editor, Semantics of Concurrent Computation, Proceedings of
the International Symposium, Evian, France, July 2-4, 1979, volume 70 of Lecture Notes in
Computer Science, pages 266–284. Springer, 1979. doi:10.1007/BFb0022474.

12 Mogens Nielsen and Erik Meineche Schmidt, editors. Automata, Languages and Programming,
9th Colloquium, Aarhus, Denmark, July 12-16, 1982, Proceedings, volume 140 of Lecture Notes
in Computer Science. Springer, 1982. doi:10.1007/BFb0012751.

13 Roberto Segala. Modeling and verification of randomized distributed real-time systems. PhD
thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 1995. URL: http:
//hdl.handle.net/1721.1/36560.

14 Ana Sokolova and Erik P. de Vink. Probabilistic Automata: System Types, Parallel Composi-
tion and Comparison. In Validation of Stochastic Systems - A Guide to Current Research,
pages 1–43, 2004. doi:10.1007/978-3-540-24611-4_1.

15 Daniele Varacca, Hagen Völzer, and Glynn Winskel. Probabilistic event structures and domains.
Theor. Comput. Sci., 358(2-3):173–199, 2006. doi:10.1016/j.tcs.2006.01.015.

16 Daniele Varacca and Nobuko Yoshida. Probabilistic pi-Calculus and Event Structures. Electr.
Notes Theor. Comput. Sci., 190(3):147–166, 2007. doi:10.1016/j.entcs.2007.07.009.

CONCUR 2019

https://doi.org/10.1016/j.tcs.2004.07.036
https://doi.org/10.1016/S1571-0661(05)80465-7
https://doi.org/10.1016/S0019-9958(84)80025-X
https://hal.inria.fr/hal-01333582
https://doi.org/10.1145/3209108.3209187
https://dl.acm.org/citation.cfm?id=3290345
https://dl.acm.org/citation.cfm?id=3290345
https://doi.org/10.1145/3290345
https://doi.org/10.1017/S0960129515000547
http://arxiv.org/abs/cs.PL/0109002
https://doi.org/10.1007/BFb0022459
https://doi.org/10.1007/3-540-15670-4_10
https://doi.org/10.1007/BFb0022474
https://doi.org/10.1007/BFb0012751
http://hdl.handle.net/1721.1/36560
http://hdl.handle.net/1721.1/36560
https://doi.org/10.1007/978-3-540-24611-4_1
https://doi.org/10.1016/j.tcs.2006.01.015
https://doi.org/10.1016/j.entcs.2007.07.009

11:16 Event Structures for Mixed Choice

17 Glynn Winskel. Event Structure Semantics for CCS and Related Languages. In Mogens
Nielsen and Erik Meineche Schmidt, editors, Automata, Languages and Programming, 9th
Colloquium, Aarhus, Denmark, July 12-16, 1982, Proceedings, volume 140 of Lecture Notes in
Computer Science, pages 561–576. Springer, 1982. doi:10.1007/BFb0012800.

18 Glynn Winskel. Event Structures. In Petri Nets: Central Models and Their Properties,
Advances in Petri Nets 1986, Part II, Proceedings of an Advanced Course, Bad Honnef,
Germany, 8-19 September 1986, pages 325–392, 1986. doi:10.1007/3-540-17906-2_31.

19 Glynn Winskel. Event Structures with Symmetry. Electr. Notes Theor. Comput. Sci., 172:611–
652, 2007. doi:10.1016/j.entcs.2007.02.022.

20 Glynn Winskel. Probabilistic and Quantum Event Structures. In Horizons of the Mind. A
Tribute to Prakash Panangaden - Essays Dedicated to Prakash Panangaden on the Occasion
of His 60th Birthday, pages 476–497, 2014. doi:10.1007/978-3-319-06880-0_25.

https://doi.org/10.1007/BFb0012800
https://doi.org/10.1007/3-540-17906-2_31
https://doi.org/10.1016/j.entcs.2007.02.022
https://doi.org/10.1007/978-3-319-06880-0_25

Verification of Flat FIFO Systems
Alain Finkel
LSV, ENS Paris-Saclay, CNRS, Université Paris-Saclay, France
UMI ReLaX, French-Indian research laboratory in computer sciences, Chennaï, India

M. Praveen
Chennai Mathematical Institute, India
UMI ReLaX, French-Indian research laboratory in computer sciences, Chennaï, India

Abstract
The decidability and complexity of reachability problems and model-checking for flat counter systems
have been explored in detail. However, only few results are known for flat FIFO systems, only in some
particular cases (a single loop or a single bounded expression). We prove, by establishing reductions
between properties, and by reducing SAT to a subset of these properties that many verification
problems like reachability, non-termination, unboundedness are Np-complete for flat FIFO systems,
generalizing similar existing results for flat counter systems. We construct a trace-flattable counter
system that is bisimilar to a given flat FIFO system, which allows to model-check the original flat
FIFO system. Our results lay the theoretical foundations and open the way to build a verification
tool for (general) FIFO systems based on analysis of flat subsystems.

2012 ACM Subject Classification Theory of computation → Parallel computing models

Keywords and phrases Infinite state systems, FIFO, counters, flat systems, reachability, termination,
complexity

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2019.12

Funding The work reported was carried out in the framework of ReLaX, UMI2000 (ENS Paris-Saclay,
CNRS, Univ. Bordeaux, CMI, IMSc). This work was also supported by the grant ANR-17-CE40-0028
of the French National Research Agency ANR (project BRAVAS).
M. Praveen: Partially supported by a grant from the Infosys foundation.

1 Introduction

FIFO systems. Asynchronous distributed processes communicating through First In First
Out (FIFO) channels are used since the seventies as models for protocols [33], distributed
and concurrent programming and more recently for web service choreography interface [12].
Since FIFO systems simulate counter machines, most reachability properties are undecidable
for FIFO systems: for example, the basic task of checking if the number of messages buffered
in a channel can grow unboundedly is undecidable [11].

There aren’t many interesting and useful FIFO subclasses with a decidable reachability
problem. Considering FIFO systems with a unique FIFO channel is not a useful restriction
since they may simulate Turing machines [11]. A few examples of decidable subclasses are
half-duplex systems [13] (but they are restricted to two machines since the natural extension
to three machines leads to undecidability), existentially bounded deadlock free FIFO systems
[26] (but it is undecidable to check if a system is existentially bounded, even for deadlock
free FIFO systems), synchronisable FIFO systems (the property of synchronisability is
undecidable [24] and moreover, it is not clear which properties of synchronisable systems are
decidable), flat FIFO systems [6, 7] and lossy FIFO systems [1] (but one loses the perfect
FIFO mechanism).

© Alain Finkel and M. Praveen;
licensed under Creative Commons License CC-BY

30th International Conference on Concurrency Theory (CONCUR 2019).
Editors: Wan Fokkink and Rob van Glabbeek; Article No. 12; pp. 12:1–12:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.CONCUR.2019.12
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 Verification of Flat FIFO Systems

Flat systems. A flat system [4, 23, 14, 5] is a system with a finite control structure such
that every control-state belongs to at most one loop. Equivalently, the language of the
control structure is included in a bounded language of the form w∗1w

∗
2 ...w

∗
k where every wi is

a non empty word. Analyzing flat systems essentially reduces to accelerating loops (i.e., to
compute finite representations of the effect of iterating each loop arbitrarily many times)
and to connect these finite representations with one another. Flat systems are particularly
interesting since one may under-approximate any system by its flat subsystems.

For counter systems [19, 28], this strategy lead to some tools like FAST [3], LASH, TREX
[2], FLATA [10] which enumerate all flat subsystems till the reachability set is reached.
This strategy is not an algorithm since it may never terminate on some inputs. However
in practice, it terminates in many cases; e.g., in [3], 80% of the examples (including Petri
nets and multi-threaded Java programs) could be effectively verified. The complexity of flat
counter systems is well-known: reachability is Np-complete for variations of flat counter
systems [27, 9, 18], model-checking first-order formulae and linear µ-calculus formulae is
Pspace-complete while model-checking Büchi automata is Np-complete [17]; equivalence
between model-checking flat counter systems and Presburger arithmetic is established in [16].

Flat FIFO systems. We know almost nothing about flat FIFO systems, even the complexity
of reachability is not known. Boigelot et al. [6] used recognizable languages (QDD) for
representing FIFO channel contents and proved that the acceleration of one-counting loops (a
loop is one-counting if it sends messages to only one channel), from an initial QDD, produces
another computable QDD. Bouajjani and Habermehl [7] proved that the acceleration of any
loop can be finitely represented by combining a deterministic flat finite automaton and a
Presburger formula (CQDD) that are both computable. However, surprisingly, no upper
bound for the Boigelot et al.’s and for the Bouajjani et al.’s loop-acceleration algorithms
are known. Just the complexity of the inclusion problem for QDD, CQDD and SLRE
(SLRE are both QDD and CQDD) are partially known (respectively Pspace-complete,
N2Exptime-hard, CoNp-complete) [25]. But the complexity of the reachability problem
for flat FIFO systems was not known. Only the complexity of the control-state reachability
problem was known to be Np-complete for flat FIFO systems [21]. Moreover, other properties
and model-checking have not been studied for flat FIFO systems.

Contributions. We solve the open problem of the complexity of the reachability problem
for flat FIFO systems by showing that it is Np-complete; we extend this result to other
usual verification properties and show that they are also Np-complete. Then we show that
a flat FIFO system can be simulated by a synchronized product of counter systems. This
synchronized product is flattable and its reachability set is semilinear.

2 Preliminaries

We write Z (resp. N) to denote the set of integers (resp. non-negative integers). A finite
alphabet is any finite set Σ. Its elements are referred to as letters; Σ∗ is the set of all
finite sequences of letters, referred to as words. We denote by w1w2 the word obtained
by concatenating w1 and w2; and ε is the empty sequence, which is the unity for the
concatenation operation. We write Σ+ for Σ∗ \ {ε}. If w1 is a prefix of w2, we denote by
w−1

1 w2 the word obtained from w2 by dropping the prefix w1. If w1 is not a prefix of w2,
then w−1

1 w2 is undefined. A word z ∈ Σ∗ is primitive if z /∈ w∗ \ {w} for any w ∈ Σ∗. We

A. Finkel and M. Praveen 12:3

pq!a1 pr!c

pq!a2

pr!c

qp?b
pq!y

qp?b

pq!a1

pq!a2

qp?x

(a) Process P .

pq?a1 rq?d

pq?a2

rq?d

qp!b
pq?y

qp!b

pq?a1

pq?a2

qp!x

(b) Process Q.

pr?c

rq!d

(c) Process R.

Figure 1 FIFO system of Example 2.2.

denote by Parikh(w) : Σ → N the function that maps each letter a ∈ Σ to the number of
times a occurs in w. We denote by wn the concatenation of n copies of w. The infinite word
xω is obtained by concatenating x infinitely many times.

FIFO Systems.

I Definition 2.1 (FIFO systems). A FIFO system S is a tuple (Q,F,M,∆) where Q is a
finite set of control states, F is a finite set of FIFO channels, M is a finite message alphabet
and ∆ ⊆ (Q×Q) ∪ (Q× (F × {!, ?} ×M)×Q) is a finite set of transitions.

We write a transition (q, (c, ?, a), q′) as q c?a−−→ q′; we similarly modify other transitions.
We call q the source state and q′ the target state. Transitions of the form q

c?a−−→ q′

(resp. q c!a−−→ q′) denote retrieve actions (resp. send actions). Transitions of the form q −−→ q′

do not change the channel contents but only change the control state.
The channels in F hold strings in M∗. Given two channel valuations w1,w2 ∈ (M∗)F ,

we denote by w1 ·w2 the valuation obtained by concatenating the contents in w1 and w2
channel-wise. For a letter a ∈M and a channel c ∈ F , we denote by ac the channel valuation
that assigns a to c and ε to all other channels. The semantics of a FIFO system S is given
by a transition system TS whose set of states is Q × (M∗)F , also called configurations.
Every transition q c?a−−→ q′ of S and channel valuation w ∈ (M∗)F results in the transition
(q,ac ·w) c?a−−→ (q′,w) in TS . Every transition q c!a−−→ q′ of S and channel valuation w ∈ (M∗)F

results in the transition (q,w) c!a−−→ (q′,w · ac) in TS . Intuitively, the transition q c?a−−→ q′

(resp. q c!a−−→ q′) retrieves the letter a from the front of the channel c (resp. sends the
letter a to the back of the channel c). A run of S is a (finite or infinite) sequence of
configurations (q0,w0)(q1,w1) · · · such that for every i ≥ 0, there is a transition ti such that
(qi,wi)

ti−−→ (qi+1,wi+1).

I Example 2.2. Let us present a (distributed) FIFO system (from [30]) with three processes
P,Q,R that communicate through four FIFO channels pq, qp, pr, rq. Processes are extended
finite automata where transitions are labeled by sending or receiving operations with FIFO
channels and, for example, channel pq is an unidirectional FIFO channel from process
P to process Q. From this distributed FIFO system, we get a FIFO system as given in
Definition 2.1 by product construction. The control states of the product FIFO system are
triples, containing control states of processes P,Q,R. The product FIFO system can go from
one control state to another if one of the processes goes from a control state to another and
the other two processes remain in their states. For example, the product system has the
transition (q1, q2, q3) pq!a1−−−→ (q′1, q2, q3), if process P has the transition q1

pq!a1−−−→ q′1.

CONCUR 2019

12:4 Verification of Flat FIFO Systems

q0 q1 q2 q3

q4 q5

q6`1 `2

(a) Flat FIFO system.

q0 q1 q2 q3

p0 p1 p2
`1 `2

(b) Path schema denoted by p0(`1)∗p1(l2)∗p2.

Figure 2 Example flat FIFO system and path schema.

For analyzing the running time of algorithms, we assume the size of a system to be the
number of bits needed to specify a system (and source/target configurations if necessary)
using a reasonable encoding. Let us begin to present the reachability problems that we tackle
in this paper.
I Problem (Reachability). Given: A FIFO system S and two configurations (q0,w0) and
(q,w). Question: Is there a run starting from (q0,w0) and ending at (q,w)?
I Problem (Control-state reachability). Given: A FIFO system S, a configuration (q0,w0)
and a control-state q. Question: Is there a channel valuation w such that (q,w) is reachable
from (q0,w0)?
It is folklore that reachability and control-state reachability are undecidable for machines
operating on FIFO channels.

Flat systems. For a FIFO system S = (Q,F,M,∆), its system graph GS is a directed graph
whose set of vertices is Q. There is a directed edge from q to q′ if there is some transition
q

c?a−−→ q′ or q c!a−−→ q′ for some channel c and some letter a, or there is a transition q −−→ q′.
We say that S is flat if in GS , every vertex is in at most one directed cycle. Figure 2a shows
a flat FIFO system.

We call a FIFO system S = (Q,F,M,∆) a path segment from state q0 to state qr if
Q = {q0, . . . , qr}, ∆ = {t1, . . . , tr} and for every i ∈ {1, . . . , r}, qi−1 is the source of ti
and qi is its target. We call a FIFO system S = (Q,F,M,∆) an elementary loop on q0
if Q = {q0, . . . , qr}, ∆ = {t1, . . . , tr+1} and for each i ∈ {1, . . . , r + 1}, ti has source qi−1
and target qi mod (r+1). We call t1 · · · tr+1 the label of the loop. A path schema is a flat
FIFO system comprising of a sequence p0`1p1`2p2 · · · lrpr, where p0, . . . , pr are path segments
and `1, . . . , `r are elementary loops. There are states q0, q1, . . . , qr+1 such that p0 is a path
segment from q0 to q1 and for every i ∈ {1, . . . , r}, pi is a path segment from qi to qi+1 and
`i is an elementary loop on qi. Except qi, none of the other states in `i appear in other path
segments or elementary loops. To emphasize that `1, . . . , `r are elementary loops, we denote
the path schema as p0(`1)∗p1 · · · (`r)∗pr. We use the term elementary loop to distinguish
them from loops in general, which may have some states appearing more than once. All
loops in flat FIFO systems are elementary. Figure 2b shows a path schema, where wavy lines
indicate long path segments or elementary loops that may have many intermediate states
and transitions. This path schema is obtained from the flat FIFO system of Figure 2a by
removing the transitions from q1 to q3, q4 to q5 and q6 to q3.
I Remark 2.3 (Fig. 1). Each process P,Q,R is flat and the cartesian product of the three
automata is almost flat except on one state: there are two loops, one sending y in channel
pq and another one retrieving y from channel pq.

Notations and definitions. For any sequence σ of transitions of a FIFO system and channel
c ∈ F , we denote by yσc (resp. xσc) the sequence of letters sent to (resp. retrieved from) the
channel c by σ. For a configuration (q,w), let w(c) denote the contents of channel c.

A. Finkel and M. Praveen 12:5

Equations on words. We recall some classical results reasoning about words and prove
of one of them, to be used later. Proofs of this and a few other results are omitted. All
the proofs can be found in the full version of this paper, which is on HAL with the same
title. The well-known Levi’s Lemma says that the words u, v ∈ Σ∗ that are solutions of the
equation uv = vu satisfy u, v ∈ z∗ where z is a primitive word. The solutions of the equation
uv = vw satisfy u = xy,w = yx, v = (xy)nx, for some words x, y and some integer n ≥ 0.
The following lemma is used in [25] for exactly the same purpose as here.

I Lemma 2.4. Consider three finite words x, y ∈ Σ+ and w ∈ Σ∗. The equation xω = wyω

holds iff there exists a primitive word z 6= ε and two words x′, x′′ such that x = x′x′′,
x′′x′ ∈ z∗, w ∈ x∗x′ and y ∈ z∗.

3 Complexity of Reachability Properties for Flat FIFO Systems

In this section, we give complexity bounds for the reachability problem for flat FIFO systems.
We also establish the complexity of other related problems, viz. repeated control state
reachability, termination, boundedness, channel boundedness and letter channel boundedness.
We use the algorithm for repeated control state reachability as a subroutine for solving
termination and boundedness. For channel boundedness and letter channel boundedness, we
use another argument based on integer linear programming.

In [21], Esparza, Ganty, and Majumdar studied the complexity of reachability for highly
undecidable models (multipushdown systems) but synchronized by bounded languages in the
context of bounded model-checking. In particular, they proved that control-state reachability
is Np-complete for flat FIFO systems (in fact for FIFO systems controlled by a bounded
language). The Np upper bound is based on a simulation of FIFO path schemas by pushdown
systems. Some constraints need to be imposed on the pushdown systems to ensure the
correctness of the simulation. The structure of path schemas enables these constraints to be
expressed as linear constraints on integer variables and this leads to the Np upper bound.

Surprisingly, the Np upper bound in [21] is given only for the control-state reachability
problem; the complexity of the reachability problem is not established in [21] while it is given
for all other considered models. However, there is a simple linear reduction from reachability
to control-state reachability for FIFO (and Last In First Out) systems [32]. Such reductions
are not known to exist for other models like counter systems and vector addition systems.

We begin by reducing reachability to control-state reachability (personal communication
from Grégoire Sutre [32]) for (general and flat) FIFO systems.

I Proposition 3.1 ([32]). Reachability reduces (with a linear reduction) to control-state
reachability, for general FIFO systems and for flat FIFO systems.

I Remark 3.2. Control-state reachability is reducible to reachability for general FIFO systems.
Suppose Σ = {a1, . . . , ad} and there are p channels. Using the same notations as in the
previous proof, from A and q, one constructs the system BA,q as follows: one adds, to A,
d× p self loops `i,j , each labeled by j?ai, for i ∈ {1, .., d} and j ∈ {1, . . . , p}, all from and
to the control-state q. We infer that q is reachable in A if and only if (by definition) there
exists w such that (q,w) is reachable in A if and only if (q, ε) is reachable in BA,q. Here,
(q, ε) denotes the configuration where q is the control state and all channels are empty. Note
that BA,q is not necessarily flat, even if A is flat.

It is proved in [21, Theorem 7] that control state reachability is in Np for flat FIFO
systems. Combining this with Proposition 3.1, we immediately deduce:

CONCUR 2019

12:6 Verification of Flat FIFO Systems

I Corollary 3.3. Reachability is in Np for flat FIFO systems.

Now we define problems concerned with infinite behaviors.

I Problem (Repeated reachability). Given: A FIFO system S, two configurations (q0,w0)
and (q,w). Question: Is there an infinite run from (q0,w0) such that (q,w) occurs infinitely
often along this run?

I Problem (Cyclicity). Given: A FIFO system S and a configuration (q,w). Question: Is
(q,w) reachable (by a non-empty run) from (q,w)?

I Problem (Repeated control-state reachability). Given: A FIFO system S, a configuration
(q0,w0) and a control-state q. Question: Is there an infinite run from (q0,w0) such that q
occurs infinitely often along this run?

We can easily obtain an Np upper bound for repeated reachability in flat FIFO systems.
A non-deterministic Turing machine first uses the previous algorithm for reachability (Corol-
lary 3.3) to verify that (q,w) is reachable from (q0,w0). Then the same algorithm is used
again to verify that (q,w) is reachable from (q,w) (i.e. cyclic).

I Corollary 3.4. Repeated reachability is in Np for flat FIFO systems.

Let us recall that the cyclicity property is Expspace-complete for Petri nets [8, 20] while
structural cyclicity (every configuration is cyclic) is in Ptime. Let us show that one may
decide the cyclicity property for flat FIFO systems in linear time.

I Lemma 3.5. In a flat FIFO system, a configuration (q,w) is reachable from (q,w) iff
there is an elementary loop labeled by σ, such that (q,w) σ−−→ (q,w).

To decide whether (q,w) ∗−−→ (q,w), one tests whether (q,w) σ−−→ (q,w) for some
elementary loop σ in the flat FIFO system. Since the FIFO system is flat, q can be in at
most one loop, so only one loop need to be tested. This gives a linear time algorithm for
deciding cyclicity.

I Corollary 3.6. Testing cyclicity can be done in linear time for flat FIFO systems.

We are now going to show an NP upper bound for repeated control state reachability.
Let a loop be labeled with σ. Recall that for each channel c, we denote by xσc (resp. yσc)

the projection of σ to letters retrieved from (resp. sent to) the channel c. Let us write σc for
the projection of σ on channel c.

I Remark 3.7. The loop labeled by σ is infinitely iterable from (q,w) iff σc is infinitely
iterable from (q,w(c)), for every channel c. If σ is infinitely iterable from (q,w) then each
projection σc is also infinitely iterable from (q,w(c)). Conversely, suppose σc is infinitely
iterable from (q,w(c)), for every channel c. For all c 6= c′, the actions of σc and σc′ are on
different channels and hence independent of each other. Since σ is a shuffle of {σc | c ∈ F},
we deduce that σ is infinitely iterable from (q,w).

We now give a characterization for a loop to be infinitely iterable.

I Lemma 3.8. Suppose an elementary loop is on a control state q and is labeled by σ. It is
infinitely iterable starting from the configuration (q,w) iff for every channel c, xσc = ε or the
following three conditions are true: σ is fireable at least once from (q,w), (xσc)ω = w(c)·(yσc)ω
and |xσc | ≤ |yσc |.

A. Finkel and M. Praveen 12:7

Proof. Let ` be an elementary loop on a control state q and labeled by σ. If σ is infinitely
iterable starting from the configuration (q,w) then for every channel c, one has |xc| ≤ |yc|.
Otherwise, |xc| > |yc| (the number of letters retrieved is more than the number of letters
sent in each iteration), so the size of the channel content reduces with each iteration, so there
is a bound on the number of possible iterations. Since σ is infinitely iterable from (q,w), the
inequation (xσc)n ≤ w(c) · (yσc)n must hold for all n ≥ 0 (here, ≤ denotes the prefix relation).
If xc 6= ε, we may go at the limit and we obtain (xσc)ω ≤ w(c) · (yσc)ω.

Finally, σ is fireable at least once from (q,w) since it is fireable infinitely from (q,w).
Now conversely, suppose that for every channel c, xσc = ε or the following three conditions

are true: σ is fireable at least once from (q,w), (xσc)ω = w(c) · (yσc)ω and |xσc | ≤ |yσc |. For the
rest of this proof, we fix a channel c and write xσc , yσc ,w(c) as x, y, w to simplify the notation.

If x = ε then σ is infinitely iterable because it doesn’t retrieve anything. So assume
that x 6= ε. We have xω = wyω from the hypothesis. We infer from Lemma 2.4 that there
is a primitive word z 6= ε and words x′, x′′ such that x = x′x′′, x′′x′ ∈ z∗, w ∈ x∗x′ and
y ∈ z∗. Suppose x′′x′ = zj and y = zk. Since |y| ≥ |x| = |x′′x′|, we have k ≥ j. Let us prove
the following monotonicity property: for all n ≥ 0, σ is fireable from any channel content
wzn and the resulting channel content is wzn+(k−j) (this will imply that for all m ≥ 1,
w

σm

−−→ wzm×(k−j), hence that σ is infinitely iterable). We prove the monotonicity property
by induction on n.

For the base case n = 0, we need to prove that w σ−−→ wzk−j . By hypothesis, σ is fireable
at least once from w, hence w σ−−→ w′ for some w′. We have w′ = x−1wy = x−1xrx′zk

for some r ∈ N. Since k ≥ j, we have w′ = x−1xrx′zjzk−j = x−1xrx′(x′′x′)zk−j =
x−1xr(x′x′′)x′zk−j = x−1xr+1x′zk−j = xrx′zk−j = wzk−j .

For the induction step, we have to show that σ is fireable from channel content wzn+1

and the resulting channel content is wzn+1+(k−j). From induction hypothesis, we know
that σ is fireable from channel content wzn. Since y = zk, the channel content after
firing a prefix σ1 of σ is x−1

1 wznzsz1, where x1 is some prefix of x, s ∈ N and z1 is some
prefix of z. By induction on |σ1|, we can verify that σ1 can be fired from wzn+1 and
results in x−1

1 wzn+1zsz1. Hence, σ can be fired from wzn+1 and results in x−1wzn+1y =
x−1xrx′zn+1zk = x−1xrx′zjzn+1+k−j = x−1xrx′x′′x′zn+1+k−j = x−1xr+1x′zn+1+k−j =
wzn+1+k−j . This completes the induction step and hence proves the monotonicity property.

Hence σ is infinitely iterable. J

The proof of Lemma 3.8 provides a complete characterization of the contents of a FIFO
channel when a loop is infinitely iterable. One may observe that the channel acts like a
counter (of the number of occurrences of z).

I Corollary 3.9. With the previous notations, the set of words in channel c that occur
in control-state q is the regular periodic language w(c) · [zk−jc]∗, when the elementary loop
containing q is iterated arbitrarily many times.

I Remark 3.10. One may find other similar results on infinitely iterable loops in many papers
[22, 29, 6, 7, 25]. Our Lemma 3.8 is the same as [25, Proposition 5.1] except that it (easily)
extends it to systems with multiple channels and also provides the converse. Lemma 3.8
simplifies and improves Proposition 5.4. in [7] that used the equivalent but more complex
notion of inc-repeating sequence. Also, the results in [7] don’t give the simple representation
of the regular periodic language.

I Lemma 3.11. The repeated control state reachability problem is in Np for flat FIFO
systems.

CONCUR 2019

12:8 Verification of Flat FIFO Systems

Proof. We describe an Np algorithm. Suppose S is the given flat FIFO system and the
control state q is to be reached repeatedly. Suppose q is in a loop labeled with σ. The
algorithm first verifies that for every channel c, |xσc | ≤ |yσc | – if this condition is violated, the
answer is no. From Lemma 3.8, it is enough to verify that we can reach a configuration (q,w)
such that σ can be fired at least once from (q,w) and for every channel c for which xσc 6= ε,
we have (xσc)ω = w(c) · (yσc)ω. Since the case of xσc = ε can be handled easily, we assume in
the rest of this proof that xσc 6= ε for every c. For verifying that (xσc)ω = w(c) · (yσc)ω, the
algorithm depends on Lemma 2.4: the algorithm guesses x′c, x′′c , zc ∈M∗ such that xσc = x′cx

′′
c

and x′′cx′c, yσc ∈ z∗c . We have |x′c|, |x′′c | ≤ |xσc | and |zc| ≤ |yσc | so the guessed strings are of size
bounded by the size of the input. It remains to verify that we can reach a configuration
(q,w) such that for every channel c, w(c) ∈ (xσc)∗x′c and σ can be fired at least once from
(q,w). For accomplishing these two tasks, we add a channel c′ for every channel c in the
FIFO system S. The following gadgets are appended to the control state q, assuming that
there are p channels and # is a special letter not in the channel alphabet M . We denote
by σ′ the sequence of transitions obtained from σ by replacing every channel c by c′. A
transition labeled with c?xσc ; c′!xσc is to be understood as a sequence of transitions whose
effect is to retrieve xσc from channel c and send xσc to channel c′.

q q′ qf

1!#

1?xσ1 ; 1′!xσ1

1?x′1; 1′!x′1 1?# 2!#

2?xσ2 ; 2′!xσ2

2?x′2; 2′!x′2 2?# p!#

p?xσp ; p′!xσp

p?x′p; p′!x′p p?# σ′

Finally our algorithm runs the Np algorithm to check that the control state qf is reachable.
We claim that the control state q can be visited infinitely often iff our algorithm accepts.
Suppose q can be visited infinitely often. So the loop containing q can be iterated infinitely
often. Hence from Lemma 3.8, we infer that S can reach a configuration (q,w) such that
σ can be fired at least once and for every channel c, |xσc | ≤ |yσc | and (xσc)ω = w(c) · (yσc)ω.
From Lemma 2.4, there exist x′c, x′′c , zc ∈ M∗ such that xσc = x′cx

′′
c , w(c) ∈ (xσc)∗x′c and

x′′cx
′
c, y

σ
c ∈ z∗c . Our algorithm can guess exactly these words x′c, x′′c , zc. It is easy to verify that

from the configuration (q,w), the configuration (q′,w′) can be reached, where w′(c′) = w(c)
for every c. Since σ can be fired from (q,w), σ′ can be fired from (q′,w′) to reach qf . So
our algorithm accepts.

Conversely, suppose our algorithm accepts. Hence the control state qf is reachable.
By construction, we can verify that the run reaching the control state qf has to visit a
configuration (q,w) such that for every channel c, w(c) ∈ (xσc)∗x′c and σ can be fired at least
once from (q,w). Our algorithm also verifies that |xσc | ≤ |yσc |, xσc = x′cx

′′
c and x′′cx′c, yσc ∈ z∗c .

Hence, from Lemma 2.4 and Lemma 3.8, we infer that the loop containing q can be iterated
infinitely often starting from the configuration (q,w). Hence, there is a run that visits q
infinitely often. J

Let us now introduce the non-termination and the unboundedness problems.

I Problem (Non-termination). Given: A FIFO system S and an initial configuration (q0,w0).
Question: Is there an infinite run from (q0,w0)?

I Problem (Unboundedness). Given: A FIFO system S and an initial configuration (q0,w0).
Question: Is the set of configurations reachable from (q0,w0) infinite?

I Corollary 3.12. For flat FIFO systems, the non-termination and unboundedness problems
are in Np.

A. Finkel and M. Praveen 12:9

For a word w and a letter a, |w|a denotes the number of occurrences of a in w. For a
FIFO system, we say that a letter a is unbounded in channel c if for every number B, there
exists a reachable configuration (q,w) with |w(c)|a ≥ B. A channel c is unbounded if at
least one letter a is unbounded in c.
I Problem (Channel-unboundedness). Given: A FIFO system S, an initial configuration
(q0,w0) and a channel c. Question: Is the channel c unbounded from (q0,w0)?
I Problem (Letter-channel-unboundedness). Given: A FIFO system S, an initial configuration
(q0,w0), a channel c and a letter a. Question: Is the letter a unbounded in channel c
from (q0,w0)?

Now we give an Np upper bound for letter channel unboundedness in flat FIFO systems.
We use the following two results in our proof.

I Theorem 3.13 ([21, Theorem 3, Theorem 7]). Let S = p0(`1)∗p1 · · · (`r)∗pr be a FIFO path
schema. We can compute in polynomial time an existential Presburger formula φ(x1, . . . , xr)
satisfying the following property: there is a run of S in which the loop `i is iterated exactly
ni times for every i ∈ {1, . . . , r} iff φ(n1, . . . , nr) is true.

For vectors k,x and matrix A, the expression k ·x denotes the dot product and the expression
Ax denotes the matrix product.

I Theorem 3.14 ([31, Lemma 3]). Suppose A is an integer matrix and k,b are integer
vectors satisfying the following property: for every B ∈ N, there exists a vector x of rational
numbers such that Ax ≥ b and k · x ≥ B. If there is an integer vector x such that Ax ≥ b,
then for every B ∈ N, there exists an integer vector x such that Ax ≥ b and k · x ≥ B.

I Theorem 3.15. Given a flat FIFO system, a letter a and channel c, the problem of
checking whether a is unbounded in c is in Np.

Proof. The letter a is unbounded in c iff there exists a control state q such that for every
number B, there is a reachable configuration with control state q and at least B occurrences
of a in channel c (this follows from definitions since there are only finitely many control
states). A non-deterministic polynomial time Turing machine begins by guessing a control
state q. If there are r loops in the path schema ending at q, the Turing machine computes an
existential Presburger formula φ(x1, . . . , xr) satisfying the following property: φ(n1, . . . , nr)
is true iff there is a run ending at q in which loop i is iterated ni times for every i ∈ {1, . . . , r}.
Such a formula can be computed in polynomial time (Theorem 3.13). Let ki be the number
of occurrences of the letter a sent to channel c by one iteration of the ith loop (ki would be
negative if a is retrieved instead). If loop i is iterated ni times for every i in a run, then at
the end of the run there are k1n1 + · · ·+ krnr occurrences of the letter a in channel c. To
check that a is unbounded in channel c, we have to verify that there are tuples 〈n1, . . . , nr〉
such that φ(n1, . . . , nr) is true and k1n1 + · · ·+ krnr is arbitrarily large. This is easier to do
if there are no disjunctions in the formula φ(x1, . . . , xr). If there are any sub-formulas with
disjunctions, the Turing machine non-deterministically chooses one of the disjuncts and drops
the other one. This is continued till all disjuncts are discarded. This results in a conjunction
of linear inequalities, say Ax ≥ b, where x is the tuple of variables 〈x1, . . . , xr〉. The machine
then tries to maximize k1x1 + · · ·+ krxr over rationals subject to the constraints Ax ≥ b.
This can be done in polynomial time, since linear programming is in polynomial time. If
the value k1x1 + · · · + krxr is unbounded above over rationals subject to the constraints
Ax ≥ b, then the machine invokes the Np algorithm to check if the constraints Ax ≥ b has
a feasible solution over integers. If it does, then k1x1 + · · ·+ krxr is also unbounded above
over integers (Theorem 3.14). Hence, in this case, a is unbounded in channel c. J

CONCUR 2019

12:10 Verification of Flat FIFO Systems

The above result also gives an Np upper bound for channel-unboundedness. We just
guess a letter a and check that it is unbounded in the given channel.

We adapt the proof of Np-hardness for the control state reachability problem from [21]
to prove Np hardness for reachability, repeated control state reachability, unboundedness
and non-termination.

I Lemma 3.16. For flat FIFO systems, reachability, repeated control-state reachability,
non-termination, unboundedness, channel-unboundedness and letter-channel-unboundedness
are NP-hard.

Hence we deduce the main result of this Section.

I Theorem 3.17 (Most properties are NP-complete). For flat FIFO systems, reachability,
repeated reachability, repeated control-state reachability, termination, boundedness, channel-
boundedness and letter-channel-boundedness are NP-complete. Cyclicity can be decided in
linear time.

4 Construction of an Equivalent Counter System

Suppose we want to model check flat FIFO systems against logics in which atomic formulas
are of the form #a

c ≥ k, which means there are at least k occurrences of the letter a in
channel c. There is no easy way of designing an algorithm for this model checking problem
based on the construction in [21], even though we solved reachability and related problems
in previous sections using that construction. That construction is based on simulating FIFO
systems using automata that have multiple reading heads on an input tape. The channel
contents of the FIFO system are represented in the automaton as the sequence of letters
on the tape between two reading heads. There is no way in the automaton to access the
tape contents between two heads, and hence no way to check the number of occurrences of a
specific letter in a channel. CQDDs introduced in [7] represent the entire set of reachable
states and they are also not suitable for model checking. To overcome this problem, we
introduce here a counter system to simulate flat FIFO systems. This has the additional
advantage of being amenable to analysis using existing tools on counter machines.

Counter systems are finite state automata augmented with counters that can store natural
numbers. Let K be a finite set of counters and let guards over K be the set G(K) of positive
Boolean combinations1 of constraints of the form C = 0 and C > 0, where C ∈ K.

I Definition 4.1 (Counter systems). A counter system S is a tuple 〈Q,K,∆〉 where Q is a
finite set of control states and ∆ ⊆ Q×G(K)× {−1, 0, 1}K ×Q is a finite set of transitions.

We may add one or two labeling functions to the tuple 〈Q,K,∆〉 to denote labeled counter
systems. The semantics of a counter system is a transition system with set of states Q×NK ,
called configurations of the counter system. A counter valuation ν ∈ NK satisfies a guard
C = 0 (resp. C > 0) if ν(C) = 0 (resp. ν(C) > 0), written as ν |= C = 0 (resp. ν |= C > 0).
The satisfaction relation is extended to Boolean combinations in the standard way. For every
transition δ = q

u−−→
g
q′ in the counter system, we have transitions (q, ν1) δ−−→ (q′, ν2) in the

associated transition system for every ν1 such that ν1 |= g and ν2 = ν1 + u (addition of

1 In the literature, counter systems can have more complicated guards, such as Presburger constraints.
For our purposes, this restricted version suffices.

A. Finkel and M. Praveen 12:11

vectors is done component-wise). We write a transition (q, C2 = 0, 〈1, 0〉, q′) as q
C++

1−−−−→
C2=0

q′,

denoting addition of 1 to C1 by C++
1 . We denote by −−→ the union ∪δ∈∆

δ−−→. A run of the
counter system is a finite or infinite sequence (q0, ν0) −−→ (q1, ν1) −−→ · · · of configurations,
where each pair of consecutive configurations is in the transition relation.

We assume for convenience that the message alphabet M of a FIFO system is the
disjoint union of M1, . . . ,Mp, where Mc is the alphabet for channel c. In the following, let
S = (Q,F,M,∆) be a flat FIFO system, where the set of channels F = {1, . . . , p} and the
set of transitions ∆ = {t1, . . . , tr}.

The counting abstraction system corresponding to S is a labeled counter system Scount =
(Q,K,∆count, ψ, T), where (Q,K,∆count) is a counter system and ψ, T are labeling functions.
The set of counters K is in bijection with M ×∆ and a counter will be denoted ca,t or shortly
(a, t), for a ∈M and t ∈ ∆. The set ∆count of transitions of Scount and the labeling functions
ψ : ∆count → (M ×∆) ∪ {τ} and T : ∆count → ∆ are defined as follows: for every transition
t ∈ ∆, one adds the following transitions in ∆count :

If t sends a message, t = q1
c!a−−→ q2, then the transition tcount = q1

(a,t)++

−−−−−→ q2 is added
to ∆count ; we define ψ(tcount) = τ and T (tcount) = t.
If t = q1 −−→ q2 doesn’t change any channel content, then the transition tcount = q1 −−→ q2
is added to ∆count ; we define ψ(tcount) = τ and T (tcount) = t.
If t receives a message, t = q1

c?a−−→ q2, then the set of transitions At is added to ∆count

with At = {δa,t′ = q1
(a,t′)−−−−−−−→
(a,t′)>0

q2 | t′ sends a to channel c}. We define ψ(δa,t′) = (a, t′)

and T (δa,t′) = t, for all δa,t′ ∈ At.

The function ψ above will be used for synchronization with other counter systems later
and T will be used to match the traces of this counter system with those of the original
flat FIFO system. In figures, we do not show the labels given by ψ and T . They can be
easily determined. For a transition δa,t′ ∈ ∆count, it decrements the counter (a, t′) and
ψ(δa,t′) = (a, t′). Transitions that don’t decrement any counter are mapped to τ by ψ.

I Example 4.2. Figure 3a shows a flat FIFO system and Fig. 3b shows its counting
abstraction system.

The idea behind the counting abstraction system is to ignore the order of letters stored
in the channels and use counters to remember only the number of occurrences of each letter.
If a transition t sends letter a, the corresponding transition in the counting abstraction
system increments the counter (a, t). If a transition t retrieves a letter a, the retrieved letter
would have been produced by some earlier transition t′; the corresponding transition in the
counting abstraction system will decrement the counter (a, t′). The counting abstraction
system doesn’t exactly simulate the flat FIFO system. For example, if the transition labeled
(a, t1)−− in Fig. 3b is executed, we know that there is at least one occurrence of the letter a
in the channel, since the counter (a, t1) is greater than zero at the beginning of the transition.
However, it is not clear that the letter a is at the front of the channel; there might be an
occurrence of the letter b at the front. This condition can’t be tested using the counting
abstraction system. We use other counter systems to maintain the order of letters.

The order system for channel c is a labeled counter system Sc
order = (Q,K,∆c

order, ψ
c),

where (Q,K,∆c
order) is a counter system and ψc is a labeling function. The set of control

states Q and the set of counters K are the same as in the counting abstraction system. The
set ∆c

order of transitions of Sc
order and the labeling function ψc : ∆c

order → (M ×∆) ∪ {τ} are
defined as follows: for every t ∈ ∆, one adds the following transitions in ∆c

order:

CONCUR 2019

12:12 Verification of Flat FIFO Systems

q1

q2

q3

q4

t1 !a t2 !b

t5

t3 !a t4 ?a

(a) Flat FIFO system.

q1

q2

q3

q4

(a, t1)++
(b, t2)++

(a, t3)++ (a, t1)−−
(a, t3)−−

(b) Counting abstraction system.

q1

q2

q3

q4

(a, t1) (b, t2)

(a, t1) + (b, t2) = 0
τ

(a, t3) τ

(c) Order system.

(q1, q1)

(q2, q1)

(q3, q1)

(q4, q1)

(q3, q2)

(q4, q3)

(q3, q4)(q3, q3)

(a, t1)++ (b, t2)++

τ

(a, t3)++ (a, t1)−−

(a, t1) + (b, t2) = 0

(a, t3)−−

τ

(a, t3)++

(d) Synchronized counter system.

Figure 3 An example flat FIFO system and the equivalent counter system.

If t = q1
c!a−−→ q2, one adds to ∆c

order the transition t′ = q1 → q2 and ψc(t′) = (a, t).
If t = q1

x−−→ q2 where x doesn’t contain a sending operation (of a letter) to channel c,
one adds to ∆c

order the transition t′ = q1 → q2 and ψc(t′) = τ .
While adding the transitions above, if t happens to be the first transition after and outside
a loop in S, we add a guard to the transition t′ that we have given in the above two cases.
Suppose t is the first transition after and outside a loop, and the loop is labeled by σ. We
add the following guard to the transition t′.∑

t′′ occurs in σ
a∈M

(a, t′′) = 0

Figure 3c shows the order system corresponding to the flat FIFO system of Fig. 3a.
We will synchronize the counting abstraction system with the order systems by rendez-

vous on transition labels. Suppose the order system is in state q2 as shown in Fig. 3c. The
only transition going out from q2 is labeled by (b, t2), denoting the fact that the front of the
channel contains b. The counting abstraction system can’t execute the transition labeled with
(a, t1)−− in this configuration, since its ψ-label is (a, t1) and hence it can’t synchronize with
the order system, whose next transition is labeled with (b, t2). The guard (a, t1)+(b, t2) = 0 in
the bottom transition in Fig. 3c ensures that all occurrences of letters produced by iterations
of the first loop are retrieved before those produced by the second loop.

In the following, the label of a transition refers to the image of that transition under
the function ψ (if the transition is in the counting abstraction system) or the function ψc

(if the transition is in the order system for channel c). The synchronized counter system
Ssync = Scount || S1

order || ... || Sc
order || ... || S

p
order is the synchronized (by rendez-vous)

A. Finkel and M. Praveen 12:13

product of the counting abstraction system Scount and the order systems Sc
order for all

channels c ∈ {1, . . . , p}. All counter systems share the same set of counters K and have
disjoint copies of the set of control states Q, so the global control states of the synchronized
counter system are tuples in Qp+1. Transitions labeled with τ need not synchronize with
others. Each transition labeled (by the function ψ or ψc as explained above) with an element
of M × ∆ should synchronize with exactly one other transition that is similarly labeled.
We extend the labeling function T of Scount to Ssync as follows: if a transition t of Scount
participates in a transition ts of Ssync, then T (ts) = T (t). If no transition from Scount
participates in ts, then T (ts) = τ and we call ts a silent transition.

Since we have assumed that the channel alphabets for different channels are mutually
disjoint, synchronizations can only happen between the counting abstraction system and one
of the order systems. For a global control state q ∈ Qp+1, q(0) denotes the local state of the
counting abstraction system and q(c) denotes the local state of the order system for channel
c. The synchronized counter system maintains the channel contents of the flat FIFO system
as explained next.

We now explain that every reachable configuration (q, ν) of Ssync corresponds to a unique
configuration h(q, ν) of the original FIFO system S. The corresponding configuration of S
is (q(0), h1(v1), h2(v2), ...hp(vp)), where the words vc ∈ ∆∗ and morphisms hc : ∆∗ → M∗

are as follows. Fix a channel c. Let vc ∈ ∆∗ be a word labelling a path in S from q(c) to
q(0) such that Parikh(vc)(t) = ν ((a, t)) for every transition t ∈ ∆ that sends some letter to
channel c (and a is the letter that is sent by t). Now, define hc(t) = a if t sends some letter
to channel c (and a is the letter sent) and hc(t) = ε otherwise. The word hc(vc) is unique
since S is flat and so the set of traces of S, interpreted as a language over the alphabet ∆, is
included in a bounded language. Intuitively, the path vc gives the order of letters in channel
c and the counters give the number of occurrences of each letter.

I Example 4.3. Figure 3d shows the reachable states of the synchronized counter system
for the flat FIFO system in Fig. 3a. Initially, both the counting abstraction system and the
order system are in state q1, so the global state is (q1, q1). Then the counting abstraction
system may execute the transition labeled (a, t1)++ and go to state q2 while the order system
stays in state q1, resulting in the global state (q2, q1). Consider the global state q = (q3, q2)
and counter valuation ν with ν((a, t1)) = 2, ν((b, t2)) = 3 and ν((a, t3)) = 1. Then, for the
only channel c = 1, vc = t2(t1t2)2t5t3 and hc(vc) = b(ab)2a.

A relation R between the reachable configurations of the FIFO system S and the
synchronized counter system Ssync is a weak bisimulation if every pair ((q,w), (q, ν)) ∈ R
satisfies the following conditions: (1) for every transition (q,w) t−−→ (q′,w′) in S, there
is a sequence σ of transitions in Ssync such that T (σ) ∈ τ∗tτ∗, (q, ν) σ−−→ (q′, ν′) and
((q′,w′), (q′, ν′)) ∈ R, (2) for every transition (q, ν) ts−−→ (q′, ν′) in Ssync with T (ts) = τ ,
((q,w), (q′, ν′)) ∈ R and (3) for every transition (q, ν) ts−−→ (q′, ν′) in Ssync with T (ts) = t 6= τ ,
(q,w) t−−→ (q′,w′) is a transition in S and ((q′,w′), (q′, ν′)) ∈ R.

I Lemma 4.4. The relation {(h((q, ν)), (q, ν)) | (q, ν) is reachable in Ssync} is a weak bisim-
ulation.

The synchronized counter system Ssync is not flat. E.g., there are two transitions from
q4 to q3 in Fig. 3b. Those two states are in more than one loop, violating the condition of
flatness. However, suppose a run is visiting states q3, q4 of the counting abstraction system
and states q3, q4 of the order system as shown in Fig. 4 (parts of the systems that are no
longer reachable are greyed out). Now the transition labeled (a, t1)−− can’t be used and the

CONCUR 2019

12:14 Verification of Flat FIFO Systems

q1

q2

q3

q4

t1 !a t2 !b

t5

t3 !a t4 ?a

(a) Flat FIFO system.

q1

q2

q3

q4

(a, t3)++ (a, t1)−−
(a, t3)−−

(b) Counting abstraction system (grey part no longer
reachable).

q1

q2

q3

q4

(a, t3) τ

(c) Order system (grey part
no longer reachable).

(q4, q3)

(q3, q4)(q3, q3)

(a, t3)−−

τ

(a, t3)++

(d) Part of synchronized counter system still
reachable.

Figure 4 Flattening.

run is as shown in Fig. 4d, which is a flat counter system. In general, suppose `0, `1, . . . , `r
are the loops in S. There is a flat counter system Sflat whose set of runs is the set of runs ρ
of the synchronized transition system which satisfy the following property: in ρ, all local
states of the counting abstraction system are in some loop `i and for every channel c, all local
states of the order system Sc

order are in some loop `c. This is the intuition for the next result.
Let traces(Ssync) be the set of all runs of Ssync. Let S′ be another counter system with

set of states Q′ and the same set of counters as Ssync and let f : Q′ → Q be a function. We
say that S′ is a f -flattening of Ssync [15, Definition 6] if S′ is flat and for every transition
q

u−−→
g

q′ of S′, f(q) u−−→
g

f(q′) is a transition in Ssync. Further, S′ is a f -trace-flattening of
Ssync [15, Definition 8] if S′ is a f -flattening of Ssync and traces(Ssync) = f(traces(S′)).

I Lemma 4.5. The synchronized counter system Ssync is trace-flattable.

Let Sflat be a trace-flattening of Ssync. In general, the size of Sflat is exponential in
the size of Ssync, which is exponential in the size of S. The weak bisimulation shown in
Lemma 4.4 can be strengthened to bisimulation; see the full version for details. In theory,
problems on flat FIFO systems can be solved by using tools on counter systems (bisimulation
preserves CTL* and trace-flattening preserves LTL [15, Theorem1]). It remains to be seen if
tools can be optimized to make verifying FIFO systems work in practice.

5 Conclusion and Perspectives

We answered the complexity of the main reachability problems for flat FIFO systems which
are Np-complete as for flat counter systems. We also show how to translate a flat FIFO
system into a trace-flattable counter system. This opens the way to model-check general
FIFO systems by enumerating their flat subsystems. For example, if we construct the product
of the three processes shown in Fig. 1, the resulting FIFO system is not flat. It does become
flat if we remove the self loop labeled pq?y. The resulting flat subsystem is unbounded, so it
implies that the original system is also unbounded. Hence, even if the given FIFO system is
not flat, some questions can often be answered by analyzing flat subsystems. This strategy
has worked well for counter systems and offers hope for FIFO systems.

A. Finkel and M. Praveen 12:15

References
1 Parosh Aziz Abdulla, Aurore Collomb-Annichini, Ahmed Bouajjani, and Bengt Jonsson. Using

Forward Reachability Analysis for Verification of Lossy Channel Systems. Formal Methods in
System Design, 25(1):39–65, 2004. doi:10.1023/B:FORM.0000033962.51898.1a.

2 Aurore Annichini, Ahmed Bouajjani, and Mihaela Sighireanu. TReX: A Tool for Reach-
ability Analysis of Complex Systems. In Gérard Berry, Hubert Comon, and Alain Finkel,
editors, Computer Aided Verification, pages 368–372, Berlin, Heidelberg, 2001. Springer Berlin
Heidelberg.

3 Sébastien Bardin, Alain Finkel, Jérôme Leroux, and Laure Petrucci. FAST: Fast Acceleration
of Symbolic Transition systems. In Warren A. Hunt, Jr and Fabio Somenzi, editors, Proceedings
of the 15th International Conference on Computer Aided Verification (CAV’03), volume 2725
of Lecture Notes in Computer Science, pages 118–121, Boulder, Colorado, USA, July 2003.
Springer. URL: http://www.lsv.ens-cachan.fr/Publis/PAPERS/PS/FAST-cav03.ps.

4 Sébastien Bardin, Alain Finkel, Jérôme Leroux, and Philippe Schnoebelen. Flat acceleration
in symbolic model checking. In Doron A. Peled and Yih-Kuen Tsay, editors, Proceedings
of the 3rd International Symposium on Automated Technology for Verification and Analysis
(ATVA’05), volume 3707 of Lecture Notes in Computer Science, pages 474–488, Taipei, Taiwan,
October 2005. Springer. doi:10.1007/11562948_35.

5 Bernard Boigelot. Domain-specific regular acceleration. STTT, 14(2):193–206, 2012. doi:
10.1007/s10009-011-0206-x.

6 Bernard Boigelot, Patrice Godefroid, Bernard Willems, and Pierre Wolper. The Power of QDDs
(Extended Abstract). In Pascal Van Hentenryck, editor, Static Analysis, 4th International
Symposium, SAS ’97, Paris, France, September 8-10, 1997, Proceedings, volume 1302 of
Lecture Notes in Computer Science, pages 172–186. Springer, 1997. doi:10.1007/BFb0032741.

7 Ahmed Bouajjani and Peter Habermehl. Symbolic Reachability Analysis of FIFO-Channel
Systems with Nonregular Sets of Configurations. Theor. Comput. Sci., 221(1-2):211–250, 1999.
doi:10.1016/S0304-3975(99)00033-X.

8 Zakaria Bouziane and Alain Finkel. Cyclic Petri Net Reachability Sets are Semi-Linear Effect-
ively Constructible. In Faron Moller, editor, Proceedings of the 2nd International Workshop
on Verification of Infinite State Systems (INFINITY’97), volume 9 of Electronic Notes in The-
oretical Computer Science, pages 15–24, Bologna, Italy, July 1997. Elsevier Science Publishers.
URL: http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/BF-infinity97.pdf.

9 Marius Bozga, Radu Iosif, and Filip Konecný. Safety Problems are NP-complete for Flat
Integer Programs with Octagonal Loops. CoRR, abs/1307.5321, 2013. arXiv:1307.5321.

10 Marius Bozga, Radu Iosif, Filip Konecný, and Tomás Vojnar. Tool Demonstration of the
FLATA Counter Automata Toolset. In Andrei Voronkov, Laura Kovács, and Nikolaj Bjørner,
editors, Second International Workshop on Invariant Generation, WING 2009, York, UK,
March 29, 2009 and Third International Workshop on Invariant Generation, WING 2010,
Edinburgh, UK, July 21, 2010, volume 1 of EPiC Series in Computing, page 75. EasyChair,
2010. URL: http://www.easychair.org/publications/paper/51875.

11 Daniel Brand and Pitro Zafiropulo. On Communicating Finite-State Machines. J. ACM,
30(2):323–342, 1983. doi:10.1145/322374.322380.

12 Nadia Busi, Roberto Gorrieri, Claudio Guidi, Roberto Lucchi, and Gianluigi Zavattaro.
Choreography and Orchestration Conformance for System Design. In Paolo Ciancarini and
Herbert Wiklicky, editors, Coordination Models and Languages, 8th International Conference,
COORDINATION 2006, Bologna, Italy, June 14-16, 2006, Proceedings, volume 4038 of Lecture
Notes in Computer Science, pages 63–81. Springer, 2006. doi:10.1007/11767954_5.

13 Gérard Cécé and Alain Finkel. Verification of Programs with Half-Duplex Communication.
Information and Computation, 202(2):166–190, November 2005. doi:10.1016/j.ic.2005.05.
006.

14 Normann Decker, Peter Habermehl, Martin Leucker, Arnaud Sangnier, and Daniel Thoma.
Model-checking Counting Temporal Logics on Flat Structures. In 28th International Conference

CONCUR 2019

https://doi.org/10.1023/B:FORM.0000033962.51898.1a
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PS/FAST-cav03.ps
https://doi.org/10.1007/11562948_35
https://doi.org/10.1007/s10009-011-0206-x
https://doi.org/10.1007/s10009-011-0206-x
https://doi.org/10.1007/BFb0032741
https://doi.org/10.1016/S0304-3975(99)00033-X
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/BF-infinity97.pdf
http://arxiv.org/abs/1307.5321
http://www.easychair.org/publications/paper/51875
https://doi.org/10.1145/322374.322380
https://doi.org/10.1007/11767954_5
https://doi.org/10.1016/j.ic.2005.05.006
https://doi.org/10.1016/j.ic.2005.05.006

12:16 Verification of Flat FIFO Systems

on Concurrency Theory, CONCUR 2017, LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2017.

15 S. Demri, A. Finkel, V. Goranko, and G. van Drimmelen. Towards a Model-Checker for
Counter Systems. In Susanne Graf and Wenhui Zhang, editors, Automated Technology for
Verification and Analysis, pages 493–507, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

16 Stéphane Demri, Amit Dhar, and Arnaud Sangnier. Equivalence Between Model-Checking
Flat Counter Systems and Presburger Arithmetic. Theoretical Computer Science, 2017. Special
issue of RP’14, to appear.

17 Stéphane Demri, Amit Kumar Dhar, and Arnaud Sangnier. On the Complexity of Verifying
Regular Properties on Flat Counter Systems. In Fedor V. Fomin, Rūsin, š Freivalds, Marta
Kwiatkowska, and David Peleg, editors, Proceedings of the 40th International Colloquium
on Automata, Languages and Programming (ICALP’13) – Part II, volume 7966 of Lecture
Notes in Computer Science, pages 162–173, Riga, Latvia, July 2013. Springer. doi:10.1007/
978-3-642-39212-2_17.

18 Stéphane Demri, Amit Kumar Dhar, and Arnaud Sangnier. Taming past LTL and flat counter
systems. Inf. Comput., 242:306–339, 2015. doi:10.1016/j.ic.2015.03.007.

19 Stéphane Demri, Alain Finkel, Valentin Goranko, and Govert van Drimmelen. Model-checking
CTL* over Flat Presburger Counter Systems. Journal of Applied Non-Classical Logics,
20(4):313–344, 2010. doi:10.3166/jancl.20.313-344.

20 Frank Drewes and Jérôme Leroux. Structurally Cyclic Petri Nets. Logical Methods in Computer
Science, 11(4), 2015. doi:10.2168/LMCS-11(4:15)2015.

21 Javier Esparza, Pierre Ganty, and Rupak Majumdar. A Perfect Model for Bounded Verification.
In Proceedings of the 2012 27th Annual IEEE/ACM Symposium on Logic in Computer
Science, LICS ’12, pages 285–294, Washington, DC, USA, 2012. IEEE Computer Society.
doi:10.1109/LICS.2012.39.

22 Alain Finkel. Structuration des systèmes de transitions: applications au contrôle du parallélisme
par files fifo, Thèse d’Etat. PhD thesis, Université Paris-Sud, Orsay, 1986.

23 Alain Finkel and Jean Goubault-Larrecq. Forward Analysis for WSTS, Part II: Complete WSTS.
Logical Methods in Computer Science, 8(3:28), September 2012. doi:10.2168/LMCS-8(3:
28)2012.

24 Alain Finkel and Étienne Lozes. Synchronizability of Communicating Finite State Machines
is not Decidable. In Ioannis Chatzigiannakis, Piotr Indyk, Anca Muscholl, and Fabian
Kuhn, editors, Proceedings of the 44th International Colloquium on Automata, Languages
and Programming (ICALP’17), volume 80 of Leibniz International Proceedings in Informatics,
pages 122:1–122:14, Warsaw, Poland, July 2017. Leibniz-Zentrum für Informatik. doi:10.
4230/LIPIcs.ICALP.2017.122.

25 Alain Finkel, S. Purushothaman Iyer, and Grégoire Sutre. Well-Abstracted Transition Systems:
Application to FIFO Automata. Information and Computation, 181(1):1–31, February 2003.
URL: http://www.lsv.ens-cachan.fr/Publis/PAPERS/PS/FPS-ICOMP.ps.

26 Blaise Genest, Dietrich Kuske, and Anca Muscholl. On Communicating Automata with
Bounded Channels. Fundam. Inform., 80(1-3):147–167, 2007. URL: http://content.
iospress.com/articles/fundamenta-informaticae/fi80-1-3-09.

27 Christoph Haase. On the complexity of model checking counter automata. PhD thesis, University
of Oxford, UK, 2012.

28 Radu Iosif and Arnaud Sangnier. How Hard is It to Verify Flat Affine Counter Systems with the
Finite Monoid Property? In Cyrille Artho, Axel Legay, and Doron Peled, editors, Automated
Technology for Verification and Analysis - 14th International Symposium, ATVA 2016, Chiba,
Japan, October 17-20, 2016, Proceedings, volume 9938 of Lecture Notes in Computer Science,
pages 89–105, 2016. doi:10.1007/978-3-319-46520-3_6.

29 Thierry Jéron and Claude Jard. Testing for Unboundedness of FIFO Channels. Theor. Comput.
Sci., 113(1):93–117, 1993. doi:10.1016/0304-3975(93)90212-C.

https://doi.org/10.1007/978-3-642-39212-2_17
https://doi.org/10.1007/978-3-642-39212-2_17
https://doi.org/10.1016/j.ic.2015.03.007
https://doi.org/10.3166/jancl.20.313-344
https://doi.org/10.2168/LMCS-11(4:15)2015
https://doi.org/10.1109/LICS.2012.39
https://doi.org/10.2168/LMCS-8(3:28)2012
https://doi.org/10.2168/LMCS-8(3:28)2012
https://doi.org/10.4230/LIPIcs.ICALP.2017.122
https://doi.org/10.4230/LIPIcs.ICALP.2017.122
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PS/FPS-ICOMP.ps
http://content.iospress.com/articles/fundamenta-informaticae/fi80-1-3-09
http://content.iospress.com/articles/fundamenta-informaticae/fi80-1-3-09
https://doi.org/10.1007/978-3-319-46520-3_6
https://doi.org/10.1016/0304-3975(93)90212-C

A. Finkel and M. Praveen 12:17

30 Julien Lange and Nobuko Yoshida. Verifying Asynchronous Interactions via Communicating
Session Automata. CoRR, abs/1901.09606, 2019. arXiv:1901.09606.

31 Christos H. Papadimitriou. On the Complexity of Integer Programming. J. ACM, 28(4):765–
768, October 1981. doi:10.1145/322276.322287.

32 Gregoire Sutre. Personal communication, 2018.
33 Gregor von Bochmann. Communication protocols and error recovery procedures. Operating

Systems Review, 9(3):45–50, 1975.

CONCUR 2019

http://arxiv.org/abs/1901.09606
https://doi.org/10.1145/322276.322287

The Complexity of Subgame Perfect Equilibria in
Quantitative Reachability Games
Thomas Brihaye
Université de Mons (UMONS), Belgium

Véronique Bruyère
Université de Mons (UMONS), Belgium

Aline Goeminne
Université de Mons (UMONS), Belgium
Université libre de Bruxelles (ULB), Belgium

Jean-François Raskin
Université libre de Bruxelles (ULB), Belgium

Marie van den Bogaard
Université libre de Bruxelles (ULB), Belgium

Abstract
We study multiplayer quantitative reachability games played on a finite directed graph, where the
objective of each player is to reach his target set of vertices as quickly as possible. Instead of the
well-known notion of Nash equilibrium (NE), we focus on the notion of subgame perfect equilibrium
(SPE), a refinement of NE well-suited in the framework of games played on graphs. It is known that
there always exists an SPE in quantitative reachability games and that the constrained existence
problem is decidable. We here prove that this problem is PSPACE-complete. To obtain this result,
we propose a new algorithm that iteratively builds a set of constraints characterizing the set of SPE
outcomes in quantitative reachability games. This set of constraints is obtained by iterating an
operator that reinforces the constraints up to obtaining a fixpoint. With this fixpoint, the set of
SPE outcomes can be represented by a finite graph of size at most exponential. A careful inspection
of the computation allows us to establish PSPACE membership.

2012 ACM Subject Classification Software and its engineering → Formal methods; Theory of
computation → Logic and verification; Theory of computation → Solution concepts in game theory

Keywords and phrases multiplayer non-zero-sum games played on graphs, quantitative reachability
objectives, subgame perfect equilibria, constrained existence problem

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2019.13

Related Version A full version of the paper is available at https://arxiv.org/abs/1905.00784.

Funding Work partially supported by the PDR project Subgame perfection in graph games (F.R.S.-
FNRS), the ARC project Non-Zero Sum Game Graphs: Applications to Reactive Synthesis and
Beyond (Fédération Wallonie-Bruxelles), the EOS project Verifying Learning Artificial Intelligence
Systems (F.R.S.-FNRS & FWO), and the COST Action 16228 GAMENET (European Cooperation
in Science and Technology).

1 Introduction

While two-player zero-sum games played on graphs are the most studied model to formalize
and solve the reactive synthesis problem [26], recent work has considered non-zero-sum
extensions of this mathematical framework, see e.g. [15, 19, 7, 22, 6, 5, 17, 4, 1], see also the
surveys [21, 3, 13]. In the zero-sum game approach, the system and the environment are
considered as monolithic and fully adversarial entities. Unfortunately, both assumptions may
turn to be too strong. First, the reactive system may be composed of several components

© Thomas Brihaye, Véronique Bruyère, Aline Goeminne, Jean-François Raskin, and Marie van den
Bogaard;
licensed under Creative Commons License CC-BY

30th International Conference on Concurrency Theory (CONCUR 2019).
Editors: Wan Fokkink and Rob van Glabbeek; Article No. 13; pp. 13:1–13:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.CONCUR.2019.13
https://arxiv.org/abs/1905.00784
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 The Complexity of Subgame Perfect Equilibria in Quantitative Reachability Games

that execute concurrently and have their own purpose. So, it is natural to model such
systems with multiplayer games with each player having his own objective. Second, the
environment usually has its own objective too, and this objective is usually not the negation
of the objective of the reactive system as postulated in the zero-sum case. Therefore, there
are instances of the reactive synthesis problem for which no solution exists in the zero-sum
setting, i.e. no winning strategy for the system against a completely antagonistic environment,
while there exists a strategy for the system which enforces the desired properties against all
rational behaviors of the environment pursuing its own objective.

While the central solution concept in zero-sum games is the notion of winning strategy,
it is well known that this concept is not sufficient to reason about non-zero-sum games. In
non-zero-sum games, notions of equilibria are used to reason about the rational behavior of
players. The celebrated notion of Nash equilibrium (NE) [24] is one of the most studied. A
strategy profile is an NE if no player has an incentive to deviate, i.e. change his strategy and
obtain a better reward, when this player knows that the other players will be playing their
respective strategies in the profile. A well-known weakness of NE in sequential games, which
include infinite duration games played on graphs, is that they are subject to non-credible
threats: decisions in subgames that are irrational and used to threaten the other players and
oblige them to follow a given behavior. To avoid this problem, the concept of subgame perfect
equilibria (SPE) has been proposed, see e.g. [25]. SPEs are NEs with the additional property
that they are also NEs in all subgames of the original game. While it is now quite well
understood how to handle NEs algorithmically in games played on graphs [28, 29, 12, 17],
this is not the case for SPEs.

Contributions. In this paper, we provide an algorithm to decide in polynomial space the
constrained existence problem for SPEs in quantitative reachability games. A quantitative
reachability game is played by n players on a finite graph in which each player has his own
reachability objective. The objective of each player is to reach his target set of vertices
as quickly as possible. In a series of papers devoted to quantitative reachability games, it
has been shown that SPEs always exist [8], and that the set of SPE outcomes is a regular
language which is effectively constructible [11]. As a consequence of the latter result, the
constrained existence problem for SPEs is decidable.

Unfortunately, the proof that establishes the regularity of the set of possible SPE outcomes
in [11] exploits a well-quasi order for proving termination that cannot be used to obtain a
good upper bound on the complexity for the algorithm. Here, we propose a new algorithm
and we show that this set of outcomes can be represented using an automaton of size at
most exponential. It follows that the constrained existence problem for SPEs is in PSPACE.
We also provide a matching lower-bound showing that this problem is PSPACE-complete.

Our new algorithm iteratively builds a set of constraints that exactly characterize the set
of SPEs in quantitative reachability games. This set of constraints is obtained by iterating
an operator that reinforces the constraints up to obtaining a fixpoint. A careful inspection
of the computation allows us to establish PSPACE membership.

Related work. Algorithms to reason on NEs in graph games are studied in [28] for ω-regular
objectives and in [29, 12] for quantitative objectives. Algorithms to reason on SPEs are
given in [27] for ω-regular objectives. Quantitative reachability objectives are not ω-regular
objectives. Reasoning about NEs and SPEs for ω-regular specifications can also be done
using strategy logics [16, 23]. Other notions of rationality used for reactive synthesis have
been studied in the literature: rational synthesis in cooperative [19] and adversarial [22]

T. Brihaye, V. Bruyère, A. Goeminne, J.-F. Raskin, and M. van den Bogaard 13:3

setting, and their algorithmic complexity in [17]. Extensions with imperfect information have
been investigated in [18]. Synthesis rules based on the notion of admissible strategies have
been studied in [2, 7, 6, 5, 4, 1]. Weak SPEs have been studied in [11, 14, 9] and shown to
be equivalent to SPEs for quantitative reachability objectives. Fixpoint techniques are used
in [20, 11, 14] to establish the existence of (weak) SPEs in some classes of games, however
they cannot be used in our context to get complexity results.

2 Preliminaries

In this section, we recall the notions of quantitative reachability game and subgame perfect
equilibrium. We also state the problem studied in this paper and our main result.

Quantitative reachability games. An arena is a tuple G = (Π, V, (Vi)i∈Π, E) where Π =
{1, 2, . . . , n} is a finite set of n players, V is a finite set of vertices with |V | ≥ 2, (Vi)i∈Π
is a partition of V between the players, and E ⊆ V × V is a set of edges such that for all
v ∈ V there exists v′ ∈ V such that (v, v′) ∈ E. Without loss of generality, we suppose that
|Π| ≤ |V |. We denote by Succ(v) = {v′ | (v, v′) ∈ E} the set of successors of v, for v ∈ V ,
and by Succ∗ the transitive closure of Succ.

A play in G is an infinite sequence of vertices ρ = ρ0ρ1 . . . such that for all k ∈ N,
(ρk, ρk+1) ∈ E. A history is a finite sequence h = h0h1 . . . hk with k ∈ N defined similarly.
The length |h| of h is the number k of its edges. We denote the set of plays by Plays and
the set of histories by Hist (when it is necessary, we use notation PlaysG and HistG to recall
the underlying arena G). Moreover, the set Histi is the set of histories such that their last
vertex v is a vertex of player i, i.e. v ∈ Vi.

Given a play ρ ∈ Plays and k ∈ N, the prefix ρ0ρ1 . . . ρk of ρ is denoted by ρ≤k and its
suffix ρkρk+1 . . . by ρ≥k. A play ρ is called a lasso if it is of the form ρ = h`ω with h` ∈ Hist.
Notice that ` is not necessary a simple cycle. The length of a lasso h`ω is the length of h`.

A quantitative game G = (G, (Costi)i∈Π) is an arena equipped with a cost function profile
Cost = (Costi)i∈Π such that each function Costi : Plays→ R ∪ {+∞} assigns a cost to each
play. In a quantitative game G, an initial vertex v0 ∈ V is often fixed, and we call (G, v0)
an initialized game. A play (resp. a history) of (G, v0) is then a play (resp. a history) of G
starting in v0. The set of such plays (resp. histories) is denoted by Plays(v0) (resp. Hist(v0)).
We also use notation Histi(v0) when these histories end in a vertex v ∈ Vi.

In this article we are interested in quantitative reachability games such that each player
has a target set of vertices that he wants to reach. The cost to pay is equal to the number of
edges to reach the target set, and each player aims at minimizing his cost.

I Definition 1 (Quantitative reachability game). A quantitative reachability game (or simply
a reachability game) is a tuple G = (G, (Fi)i∈Π, (Costi)i∈Π) such that (i) G is an arena,
(ii) for each i ∈ Π, Fi ⊆ V is the target set of player i, and (iii) for each i ∈ Π and each
ρ = ρ0ρ1 . . . ∈ Plays, Costi(ρ) is equal to the least index k such that ρk ∈ Fi, and to +∞ if
no such index exists.

Given a quantitative game G, a strategy for player i is a function σi : Histi → V . It
assigns to each history hv, with v ∈ Vi, a vertex v′ such that (v, v′) ∈ E. In an initialized
game (G, v0), σi needs only to be defined for histories starting in v0. A play ρ = ρ0ρ1 . . . is
consistent with σi if for all ρk ∈ Vi, σi(ρ0 . . . ρk) = ρk+1. A strategy σi is positional if it only
depends on the last vertex of the history, i.e., σi(hv) = σi(v) for all hv ∈ Histi.

CONCUR 2019

13:4 The Complexity of Subgame Perfect Equilibria in Quantitative Reachability Games

A strategy profile is a tuple σ = (σi)i∈Π of strategies, one for each player. Given an
initialized game (G, v0) and a strategy profile σ, there exists a unique play from v0 consistent
with each strategy σi. We call this play the outcome of σ and denote it by 〈σ〉v0 . Let
c = (ci)i∈Π ∈ (N∪ {+∞})|Π|, we say that σ is a strategy profile with cost c or that 〈σ〉v0 has
cost c if ci = Costi(〈σ〉v0) for all i ∈ Π.

Solution concepts and constraint problem. In the multiplayer game setting, the solution
concepts usually studied are equilibria (see [21]). We here recall the concepts of Nash
equilibrium and subgame perfect equilibrium.

Let σ = (σi)i∈Π be a strategy profile in a game (G, v0). When we highlight the role
of player i, we denote σ by (σi, σ−i) where σ−i is the profile (σj)j∈Π\{i}. A strategy
σ′i 6= σi is a deviating strategy of player i, and it is a profitable deviation for him if
Costi(〈σ〉v0) > Costi(〈σ′i, σ−i〉v0).

The notion of Nash equilibrium is classical: a strategy profile σ in an initialized game
(G, v0) is a Nash equilibrium (NE) if no player has an incentive to deviate unilaterally from
his strategy, i.e. no player has a profitable deviation. Formally, σ is an NE if for each i ∈ Π
and each deviating strategy σ′i of player i, we have Costi(〈σ〉v0) ≤ Costi(〈σ′i, σ−i〉v0).

When considering games played on graphs, a useful refinement of NE is the concept of
subgame perfect equilibrium (SPE) which is a strategy profile being an NE in each subgame.
It is well-known that contrarily to NEs, SPEs avoid non-credible threats [21]. Formally,
given a quantitative game G = (G,Cost), an initial vertex v0, and a history hv ∈ Hist(v0),
the initialized game (G�h, v) is called a subgame of (G, v0) such that G�h = (G,Cost�h) and
Costi�h(ρ) = Costi(hρ) for all i ∈ Π and ρ ∈ V ω. Notice that (G, v0) is subgame of itself.
Moreover if σi is a strategy for player i in (G, v0), then σi�h denotes the strategy in (G�h, v)
such that for all histories h′ ∈ Histi(v), σi�h(h′) = σi(hh′). Similarly, from a strategy profile
σ in (G, v0), we derive the strategy profile σ�h in (G�h, v).

I Definition 2 (Subgame perfect equilibrium). A strategy profile σ is a subgame perfect
equilibrium in an initialized game (G, v0) if for all hv ∈ Hist(v0), σ�h is an NE in (G�h, v).

It is proved in [8] that there always exists an SPE in reachability games. In this paper,
we are interested in solving the following constraint problem.

I Definition 3 (Constraint problem). Given (G, v0) an initialized reachability game and two
threshold vectors x, y ∈ (N ∪ {+∞})|Π|, the constraint problem is to decide whether there
exists an SPE in (G, v0) with cost c such that x ≤ c ≤ y, that is, xi ≤ ci ≤ yi for all i ∈ Π.

Our main result is the following one. The paper is devoted to its proof.

I Theorem 4. The constraint problem for initialized reachability games is PSPACE-complete.

I Example 5. A reachability game G with two players is depicted in Figure 1. The circle
(resp. square) vertices are owned by player 1 (resp. player 2). The target sets of both players
are respectively F1 = {v2} (grey vertex) and F2 = {v2, v5} (double circled vertices).

The positional strategy profile σ = (σ1, σ2) is depicted by double arrows, its outcome
in (G, v0) is equal to 〈σ〉v0 = (v0v1v6v7v2)ω with cost (4, 4). Let us explain that σ is an
NE. Player 1 reaches his target set as soon as possible and has thus no incentive to deviate.
Player 2 has no profitable deviation that allows him to reach v5. For instance if he uses a
deviating positional strategy σ′2 such that σ′2(v0) = v4, then the outcome of (σ1, σ

′
2) is equal

to (v0v4)ω with cost (+∞,+∞) which is not profitable for player 2. One can verify that
the strategy profile σ is also an SPE. For instance in the subgame (G�h, v5) with h = v0v4,
we have ρ = 〈σ�h〉v5 = v5v4(v0v1v6v7v2)ω such that Cost�h(ρ) = Cost(hρ) = (8, 2). In this
subgame, with ρ, both players reach their target set as soon as possible. J

T. Brihaye, V. Bruyère, A. Goeminne, J.-F. Raskin, and M. van den Bogaard 13:5

v5 v4 v0 v1 v6 v7

v2

v3

Figure 1 A quantitative reachability game: player 1 (resp. player 2) owns circle (resp. square)
vertices and F1 = {v2} and F2 = {v2, v5}.

Extended game. We here present the extended game of a reachability game, such that the
vertices are enriched with the set of players that have already visited their target sets along a
history (see e.g. [9]). Working with this extended game is essential to prove our main result.

I Definition 6 (Extended game). Let G = (G, (Fi)i∈Π, (Costi)i∈Π) be a reachability game
with an arena G = (Π, V, (Vi)i∈Π, E), and let v0 be an initial vertex. The extended game
of G is equal to X = (X, (FX

i)i∈Π, (Costi)i∈Π) with the arena X = (Π, V X , (V X
i)i∈Π, E

X),
such that:

V X = V × 2Π

((v, I), (v′, I ′)) ∈ EX if and only if (v, v′) ∈ E and I ′ = I ∪ {i ∈ Π | v′ ∈ Fi}
(v, I) ∈ V X

i if and only if v ∈ Vi

(v, I) ∈ FX
i if and only if i ∈ I

for each ρ ∈ PlaysX , Costi(ρ) is equal to the least index k such that ρk ∈ FX
i , and to

+∞ if no such index exists.
The initialized extended game (X , x0) associated with the initialized game (G, v0) is such that
x0 = (v0, I0) with I0 = {i ∈ Π | v0 ∈ Fi}.

Notice the way each target set FX
i is defined: if v ∈ Fi, then (v, I) ∈ FX

i but also
(v′, I ′) ∈ FX

i for all (v′, I ′) ∈ Succ∗(v, I). The extended game of the reachability game of
Figure 1 is depicted in Figure 2 (until Section 3 the reader should not consider the labeling
indicated close to the vertices). We will come back to this example at the end of this section.

Let us state some properties of the extended game. First, notice that for each ρ =
(v0, I0)(v1, I1) . . . ∈ PlaysX(x0), we have the next property called I-monotonicity:

Ik ⊆ Ik+1 for all k ∈ N. (1)

Second, given an initialized game (G, v0) and its extended game (X , x0), there is a
one-to-one correspondence between plays in PlaysG(v0) and plays in PlaysX(x0):

from ρ = ρ0ρ1 . . . ∈ PlaysG(v0), we derive ρX = (ρ0, I0)(ρ1, I1) . . . ∈ PlaysX(x0) such
that Ik is the set of players i that have seen their target set Fi along ρ≤k;
from ρ = (v0, I0)(v1, I1) . . . ∈ PlaysX(x0), we derive ρG = v0v1 . . . ∈ PlaysG(v0) such that
the second components Ik, k ∈ N, are omitted.

Third, given ρ ∈ PlaysG(v0), we have that Cost(ρX) = Cost(ρ), and conversely given
ρ ∈ PlaysX(x0), we have that Cost(ρG) = Cost(ρ). It follows that outcomes of SPE can be
equivalently studied in (G, v0) and in (X , x0), as stated in the next lemma.

I Lemma 7. If ρ is the outcome of an SPE in (G, v0), then ρX is the outcome of an SPE in
(X , x0) with the same cost. Conversely, if ρ is the outcome of an SPE in (X , x0), then ρG is
the outcome of an SPE in (G, v0) with the same cost.

By construction, the arena X of the initialized extended game is divided into different
regions according to the players who have already visited their target set. Let us provide
some useful notions with respect to this decomposition. We will often use them in the
following sections. Let I = {I ⊆ Π | there exists v ∈ V such that (v, I) ∈ Succ∗(x0)} be the

CONCUR 2019

13:6 The Complexity of Subgame Perfect Equilibria in Quantitative Reachability Games

v0, ∅
4

v1, ∅
3

v6, ∅
2

v7, ∅
1

v3, ∅ +∞

v4, ∅
+∞

v5, {2}
+∞

v4, {2}
+∞

v0, {2}
0

v1, {2}
3

v6, {2}
2

v7, {2}
1

v3, {2}+∞

v2, {1, 2} 0

v0, {1, 2}
0

v1, {1, 2}
0

v6, {1, 2}
0

v7, {1, 2}
0

v3, {1, 2}
0

v4, {1, 2}
0

v5, {1, 2}
0

Figure 2 The extended game (X , x0) for the initialized game (G, v0) of Figure 1. The values of a
labeling function λ are indicated close to each vertex.

set of sets I accessible from the initial state x0, and let N = |I| be its size. For I, I ′ ∈ I
with I 6= I ′, if there exists ((v, I), (v′, I ′)) ∈ EX , we say that I ′ is a successor of I and we
write I ′ ∈ Succ(I). Given I ∈ I, XI = (V I , EI) refers to the sub-arena of X restricted to
the vertices {(v, I) ∈ V X | v ∈ V }. We say that XI is the region1 associated with I. Such a
region XI is called a bottom region whenever Succ(I) = ∅.

There exists a partial order on I such that I < I ′ if and only if I ′ ∈ Succ+(I).
We fix an arbitrary total order on I that extends this partial order < as follows:

J1 < J2 < . . . < JN . (2)

(with XJN a bottom region).2 With respect to this total order, given n ∈ {1, . . . , N}, we
denote by X≥Jn = (V ≥Jn , E≥Jn) the sub-arena of X restricted to the vertices {(v, I) ∈ V X |
I ≥ Jn}. This total order together with the I-monotonicity leads to the following lemma.

I Lemma 8 (Region decomposition and section). Let π be a (finite or infinite) path in X .
Then there exists a region decomposition of π as π[`]π[`+ 1] . . . π[m] with 1 ≤ ` ≤ m ≤ N ,
such that for each n, ` ≤ n ≤ m :

π[n] is a (possibly empty) path in X ,
every vertex of π[n] is of the form (v, Jn) for some v ∈ V .

Each path π[n] is called a section. The last section π[m] is infinite if and only if π is infinite.

I Example 9. Let us come back to the game (G, v0) of Figure 1. Its extended game (X , x0) is
depicted in Figure 2 (only the part reachable from the initial vertex x0 = (v0, ∅) is depicted).

The extended game is divided into three different regions: one region associated to I = ∅
that contains x0, a second region associated to I = {2}, and a third bottom region associated
to I = Π. Hence the set I = {∅, {2},Π} is totally ordered as J1 = ∅ < J2 = {2} < J3 = Π.
For all the vertices (v, I) of the region associated with I = {2}, we have (v, I) 6∈ FX

1 and
(v, I) ∈ FX

2 , and for those of the region associated with I = Π, we have (v, I) ∈ FX
1 ∩ FX

2 .
From the SPE σ given in Example 5 with outcome ρ = (v0v1v6v7v2)ω ∈ PlaysG(v0) and

cost (4, 4), we derive the SPE outcome ρX ∈ PlaysX(x0) with the same cost and equal to

(v0, ∅)(v1, ∅)(v6, ∅)(v7, ∅)((v2,Π)(v0,Π)(v1,Π)(v6,Π)(v7,Π))ω (3)

1 In the sequel, we indifferently call region either XI , or V I , or I.
2 We use notation Jn, n ∈ {1, . . . , N}, to avoid any confusion with the sets Ik appearing in a play
ρ = (v0, I0)(v1, I1)

T. Brihaye, V. Bruyère, A. Goeminne, J.-F. Raskin, and M. van den Bogaard 13:7

3 Characterization

In this section, given an initialized reachability game (G, v0), we characterize the set of plays
that are outcomes of SPEs, and we provide an algorithm to construct this set. For this
characterization, by Lemma 7, we can work on the extended game (X , x0) instead of (G, v0).

All along this section, when we refer to a vertex of V X , we use notation v (instead of
(u, I)) and notation I(v) means the second component I of this vertex.

Our algorithm iteratively builds a set of constraints imposed by a labeling function
λ : V X → N ∪ {+∞} such that the plays of the extended game satisfying those constraints
are exactly the SPE outcomes. Let us provide a formal definition of such a function λ with
the constraints that it imposes on plays.

I Definition 10 (λ-consistent play). Let X be the extended game of a reachability game G,
and λ : V X → N ∪ {+∞} be a labeling function. Given v ∈ V X , for all plays ρ ∈ PlaysX(v),
we say that ρ = ρ0ρ1 . . . is λ-consistent if for all n ∈ N and i ∈ Π such that ρn ∈ Vi:

Costi(ρ≥n) ≤ λ(ρn). (4)

We denote by Λ(v) the set of plays ρ ∈ PlaysX(v) that are λ-consistent.

Thus, a play ρ is λ-consistent if for all its suffixes ρ≥n, if player i owns ρn then the
number of edges to reach his target set along ρ≥n is bounded by λ(ρn). Before going into the
details of our algorithm, let us intuitively explain on an example how a well-chosen labeling
function characterizes the set of SPE outcomes.

I Example 11. We consider the extended game (X , x0) of Figure 2, and a labeling function
λ whose values are indicated under or next to each vertex. If v ∈ V X

i is labeled by λ(v) = c,
then if c ∈ N0, this means that player i will only accept outcomes in (X , v) that reach his
target set within c steps, otherwise he would have a profitable deviation. If λ(v) = 0, this
means that player i has already reached his target set, and if λ(v) = +∞, player i has no
profitable deviation whatever outcome is proposed to him.

In Example 9 was given the SPE outcome equal to ρX (3) and with cost (4, 4). We have
λ(v0, ∅) = 4 and player 2 reaches his target set from (v0, ∅) within exactly 4 steps. The
constraints imposed by λ on the other vertices of ρ are respected too. On the other hand,
one can prove that ρ′ = ((v0, ∅)(v4, ∅))ω is the outcome of no SPE. It is not λ-consistent
since player 2 does not reach his target set, and so in particular not within 4 steps. J

Our algorithm roughly works as follows: the labeling function λ that characterizes the set
of SPE outcomes is obtained (i) from an initial labeling function that imposes no constraints,
(ii) by iterating an operator that reinforces the constraints step after step, (iii) up to obtaining
a fixpoint which is the required function λ. Thus, if λk is the labeling function computed
at step k and Λk(v), v ∈ V X , the related sets of λk-consistent plays, initially we have
Λ0(v) = PlaysX(v), and step by step, the constraints imposed by λk become stronger and
the sets Λk(v) become smaller, until a fixpoint is reached.

Initially, we want a labeling function λ0 that imposes no constraint in a way to have
Λ0(v) = PlaysX(v). We define λ0(v) = +∞ except when i ∈ I(v) and v ∈ V X

i where
λ0(v) = 0. Indeed by Definition 6, we have v ∈ FX

i if and only if i ∈ I(v). Hence, given
ρ = ρ0ρ1 . . ., once ρk ∈ FX

i for some k ∈ N then ρn ∈ FX
i for all n ≥ k. It follows that for

all n ≥ k, Costi(ρ≥n) = 0 and the inequality (4) is trivially true. (See also Example 11.)

I Definition 12 (Initial labeling). For all v ∈ V X , let i ∈ Π be such that v ∈ V X
i ,

λ0(v) = 0 if i ∈ I(v) and λ0(v) = +∞ otherwise.

CONCUR 2019

13:8 The Complexity of Subgame Perfect Equilibria in Quantitative Reachability Games

Let us now explain how our algorithm computes the labeling functions λk, k ≥ 1, and the
related sets Λk(v), v ∈ V X . It works in a bottom-up manner, according to the total order
J1 < J2 < . . . < JN of I given in (2). It first iteratively updates the labeling function for all
vertices v of the arena XJN . At some point, the values of λk do not change anymore in XJN

and (λk)k∈N reaches locally (on XJN) a fixpoint. Then it treats the arena X≥JN−1 and in
the same way, it updates locally the values of λk in X≥JN−1 until reaching a (local) fixpoint.
It then repeats this procedure in X≥JN−2 , . . ., X≥J1 = X.

Hence suppose we currently treat the arena X≥Jn and we want to compute λk+1 from λk.
We define the updated function λk+1 as follows (with the convention that 1 + (+∞) = +∞).

I Definition 13 (Labeling update). Let k ≥ 0 and suppose that we treat the arena X≥Jn ,
with n ∈ {1, . . . , N}. For all v ∈ V X ,

if v ∈ V ≥Jn , let i ∈ Π be such that v ∈ V X
i , then

λk+1(v) = 0 if i ∈ I(v) and λk+1(v) = 1 + min
(v,v′)∈EX

sup{Costi(ρ) | ρ ∈ Λk(v′)} otherwise.

if v 6∈ V ≥Jn , then λk+1(v) = λk(v).

I Remark 14. If the sup in Definition 13 is equal to +∞ then there exists ρ ∈ Λk(v′) such
that Costi(ρ) = +∞. Thus the sup can be replaced by a max which belongs to N ∪ {+∞}.
Let us provide some explanations. As this update concerns the arena X≥Jn , we keep
λk+1 = λk outside of this arena. Suppose now that v belongs to the arena X≥Jn and v ∈ V X

i .
We define λk+1(v) = 0 whenever i ∈ I(v) (as already explained for the definition of λ0).
When it is updated, the value λk+1(v) represents what is the best cost that player i can
ensure for himself with a “one-shot” choice by only taking into account plays of Λk(v′)
with v′ ∈ Succ(v). Notice that it makes sense to run the algorithm in a bottom-up fashion
according to the total ordering J1 < . . . < JN since given a play ρ = ρ0ρ1 . . ., if ρ0 is a vertex
of V ≥Jn , then for all k ∈ N, ρk is a vertex of V ≥Jn (by I-monotonicity). Moreover running
the algorithm in this way is essential to prove that the constraint problem is in PSPACE.

We can now provide our algorithm that computes the sequence (λk(v))k∈N. From the
last computed λk, we derive the sets Λk(v), v ∈ V X , that we need for the characterization of
outcomes of SPEs (see Theorem 17 below). Such a characterization already appears in [11]
however with a different algorithm that cannot be used to obtain good complexity upper
bounds for the constraint problem as done in this paper. Nevertheless, the proof of our
characterization and that of [11] are similar.

Algorithm 1: Fixpoint.
k ← 0; n← N ; compute λ0 (see Definition 12)
while n 6= 0 do

repeat
k ← k + 1; compute λk from λk−1 with respect to X≥Jn (see Definition 13)

until λk = λk−1

n← n− 1
end
return λk.

As already announced, the sequence (λk)k∈N computed by this algorithm reaches a
fixpoint – locally on each arena X≥Jn and globally on X – in the following meaning:

T. Brihaye, V. Bruyère, A. Goeminne, J.-F. Raskin, and M. van den Bogaard 13:9

I Proposition 15. There exists a sequence 0 = k∗N < k∗N−1 < . . . < k∗1 = k∗ such that
Local fixpoint: for all Jn ∈ I, all m ∈ N and all v ∈ V ≥Jn : λk∗n+m(v) = λk∗n(v).
Global fixpoint: with k∗ = k∗1 , for all m ∈ N and all v ∈ V X : λk∗+m(v) = λk∗(v).
The global fixpoint λk∗ is also simply denoted by λ∗, and the set Λk∗ is denoted by Λ∗.

The fixpoints follow from the existence of a well-quasi-ordering on the non increasing
sequences (λk(v))k∈N. Proposition 15 indicates that Algorithm 1 terminates. Indeed for each
Jn ∈ I, taking the least index k∗n such that λk∗n+1(v) = λk∗n(v) for every v ∈ X≥Jn shows
that the repeat loop is broken and the variable n decremented by 1. The value n = 0 is
eventually reached and the algorithm stops with the global fixpoint λ∗. Notice that the first
local fixpoint is reached with k∗N = 0 as XJN is a bottom region.

Proposition 15 also shows that when a local fixpoint is reached in the arena X≥Jn+1 and
the algorithm updates the labeling function λk in the arena X≥Jn , the values of λk(v) do not
change anymore for any v ∈ V ≥Jn+1 but can still be modified for some v ∈ V Jn . Recall also
that outside of X≥Jn , the values of λk(v) are still equal to the initial values λ0(v). These
properties will be useful when we will prove that the constraint problem for reachability
games is in PSPACE. They are summarized in the next lemma.

I Lemma 16. Let k be a step of Algorithm 1, let Jn with n ∈ {1, . . . , N}. For all v ∈ V Jn :
if k ≤ k∗n+1, then λk+1(v) = λk(v) = λ0(v),
if k∗n ≤ k, then λk+1(v) = λk(v) = λk∗n(v),

Hence the values of λk(v) and λk+1(v) may be different only when k∗n+1 < k < k∗n.

The following theorem states how we characterize outcomes of SPEs in (X , x0). It also
provides a characterization of the outcomes of SPEs in (G, v0) by Lemma 7.

I Theorem 17 (Characterization). Let (G, v0) be an initialized quantitative game and (X , x0)
be its extended game. Let ρ be a play in PlaysX(x0). Then ρ is the outcome of an SPE in
(X , x0) if and only if for all v ∈ Succ∗(x0), Λ∗(v) 6= ∅ and ρ ∈ Λ∗(x0).

I Example 18. Let us come back to the running example of Figure 2. The different steps
of Algorithm 1 are given in Table 1. The columns indicate the vertices according to their
region, respectively Π, {2}, and ∅. Notice that for the region Π, we only write one column v
as for all vertices (v,Π) the value of λ is equal to 0 all along the algorithm.

Recall that J1 = ∅ < J2 = {2} < J3 = Π = {1, 2}. The algorithm begins with the arena
XJ3 . A fixpoint (λ1 = λ0) is immediately reached because all vertices belong to the target
set of both players in XJ3 . Thus the first local fixpoint is reached with k∗3 = 0.

The algorithm then treats the arena X≥J2 . By Lemma 16, it is enough to consider the
region XJ2 . Let us explain how to compute λ2(v) from λ1(v) on this region. For v = (v7, {2}),
we have that λ2(v) = 1 + min(v,v′)∈EX sup{Cost1(ρ) | ρ ∈ Λ1(v′)} . As the unique successor
of v is (v2, {1, 2}), all λ1-consistent plays beginning in this successor have cost 0. So, we
have that λ2(v) = 1. For the computation of λ2(v6, {2}), the same argument holds since
(v6, {2}) has the unique successor (v7, {2}). The vertex (v1, {2}) has two successors: (v6, {2})
and (v3, {2}). Again, we know that all λ1-consistent plays beginning in (v6, {2}) have cost 2.
From (v3, {2}) however, one can easily check that the play (v3, {2})(v0, {2})((v4, {2}))ω is
λ1-consistent and has cost +∞ for player 1. Thus, we obtain that λ2(v1, {2}) = 3. For the
other vertices of XJ2 , one can see that λ2(v) = λ1(v).

Finally, we can check that the local fixed point is reached in the arena X≥J2 (resp. X≥J1)
with λ3 = λ2 (resp. λ6 = λ5 = λ∗). Therefore the respective fixpoints are reached with
k∗2 = 2 and k∗1 = 5. The labeling function indicated in Figure 2 is the one of λ∗. J

CONCUR 2019

13:10 The Complexity of Subgame Perfect Equilibria in Quantitative Reachability Games

Table 1 The different steps of the algorithm computing λ∗ for the extended game of Figure 2.

Region Π {2} ∅
v v0 v1 v6 v7 v3 v4 v5 v0 v1 v6 v7 v3 v4

λ0 = λ1 0 0 +∞ +∞ +∞ +∞ +∞ +∞ +∞ +∞ +∞ +∞ +∞ +∞
λ2 = λ3 0 0 3 2 1 +∞ +∞ +∞ +∞ +∞ +∞ +∞ +∞ +∞
λ4 0 0 3 2 1 +∞ +∞ +∞ +∞ 3 2 1 +∞ +∞
λ5 = λ∗ 0 0 3 2 1 +∞ +∞ +∞ 4 3 2 1 +∞ +∞

4 Counter graph

In this section, given a labeling function λ, we introduce the concept of counter graph such
that its infinite paths coincide with the plays that are λ-consistent. We then show that the
counter graph associated with the fixpoint function λ∗ computed by Algorithm 1 has an
exponential size, an essential step to prove PSPACE membership of the constraint problem.

For the entire section, we fix a reachability game G = (G, (Fi)i∈Π, (Costi)i∈Π) and
X = (X, (FX

i)i∈Π, (Costi)i∈Π) its associated extended game.
A labeling function λ give constraints on costs of plays from each vertex in X, albeit only

for the owner of this vertex. However, by the property of λ-consistence, constraints for a
player carry over all the successive vertices, whether they belong to him or not. In order to
check efficiently this property, we introduce the counter graph to keep track explicitly of the
accumulation of constraints for all players at each step of a play. We first fix some notation.

I Definition 19 (Maximal finite range). Let λ : V X → N ∪ {+∞} be a labeling function.
We consider restrictions of λ to sub-arenas of V X as follows. Let n ∈ {1, . . . , N}, we
denote by λn : V Jn → N∪ {+∞} the restriction of λ to V Jn . Similarly we denote by λ≥n

(resp. λ>n) the restriction of λ to V ≥Jn (resp. V >Jn).
The maximal finite range of λ, denoted by mR(λ), is equal to mR(λ) = max{c ∈ N |
λ(v) = c for some v ∈ V X} with the convention that mR(λ) = 0 if λ is the constant
function +∞. We extend this notion to restrictions of λ with the convention that
mR(λ>n) = 0 if Jn is a bottom region.

Note that in the definition of maximal finite range, we only consider the finite values of λ.

I Definition 20 (Counter Graph). Let λ : V X → N ∪ {+∞} be a labeling function. Let
K := {0, . . . ,K} ∪ {+∞} with K = mR(λ). The counter graph C(λ) for G and λ is equal to
C(λ) = (Π, V C , (V C

i)i∈Π, E
C), such that:

V C = V X ×K|Π|
(v, (ci)i∈Π) ∈ V C

j if and only if v ∈ V X
j

((v, (ci)i∈Π), (v′, (c′i)i∈Π)) ∈ EC if and only if:
(v, v′) ∈ EX , and

for every i ∈ Π, c′i =

0 if i ∈ I(v′)
ci − 1 if i /∈ I(v′), v′ /∈ V X

i and ci > 1
min(ci − 1, λ(v′)) if i /∈ I(v′), v′ ∈ V X

i and ci > 1.

Intuitively, the counter graph is constructed such that once a value λ(v) is finite for a
vertex v ∈ V X

i along a play in X , the corresponding path in C(λ) keeps track of the induced
constraint by (i) decrementing the counter value ci for the concerned player i by 1 at every
step, (ii) updating this counter if a stronger constraint for player i is encountered by visiting
a vertex v′ with a smaller value λ(v′), and (iii) setting the counter ci to 0 if player i has
indeed reached his target set.

T. Brihaye, V. Bruyère, A. Goeminne, J.-F. Raskin, and M. van den Bogaard 13:11

Note that there may be vertices with no outgoing edges. Indeed, consider a vertex
(v, (ci)i∈Π) ∈ V C such that cj = 1 for some player j. By construction of C(λ), the only
outgoing edges from (v, (ci)i∈Π) must link to vertices (v′, (c′i)i∈Π) such that (v, v′) ∈ EX ,
c′j = 0 and j ∈ I(v′). However, it may be that no successor v′ of v in X is such that j ∈ I(v′).

Note as well that for each vertex v ∈ V X , there exist many different vertices (v, (ci)i∈Π)
in C(λ), one for each counter values profile. However, the intended goal of C(λ) is to monitor
explicitly the constraints accumulated by each player along a play in X regarding λ. Thus,
we will only consider paths in C(λ) that start in vertices (v, (ci)i∈Π) such that the counter
values correspond indeed to the constraint at the beginning of a play in X regarding λ:

I Definition 21 (Starting vertex in C(λ)). Let v ∈ V X . We distinguish one vertex
vC = (v, (ci)i∈Π) in V C , such that for every i ∈ Π, the counter value ci is equal to 0
if i ∈ I(v), to λ(v) if i /∈ I(v) and v ∈ V X

i , and to +∞ otherwise. We call vC the starting
vertex associated with v, and denote by SV(λ) the set of all starting vertices in C(λ).

There exists a correspondence between λ-consistent plays in X and infinite paths from
starting vertices in C(λ), called valid paths, in the following way. On one hand, every play
ρ in X that is not λ-consistent does not appear in the counter graph: the first constraint
regarding λ that is violated along ρ is reflected by a vertex in C(λ) with a counter value
getting to 1 and no outgoing edges. On the other hand, λ-consistent plays in X have a
corresponding infinite path in the counter graph C(λ). This is formalized in the next lemma:

I Lemma 22. There exists a λ-consistent play ρ = ρ0ρ1 . . . in PlaysX(v) with v ∈ V X if, and
only if there exists an associated infinite path π = π0π1 . . . in C(λ) such that π0 = vC ∈ SV(λ)
and ρ is the projection of π on V X (πn is of the form (ρn, (c′i)i∈Π) for all n ∈ N).

Since the edge relation EC in C(λ) respects the edge relation EX in X , the region
decomposition of a path in X given in Lemma 8 can also be applied to a path in C(λ).

In order to prove the PSPACE membership for the constraint problem, we need to show
that the counter graph C(λ∗), with λ∗ the fixpoint function computed by Algorithm 1, has
an exponential size. To this end it is enough to show an exponential upper bound on the
maximal finite range mR(λ∗)(= mR(λk∗1

≥1)) of λ∗. To do so, we prove with Theorem 23, by
induction on the number of computation steps k of Algorithm 1, an exponential upper bound
on mR(λk

`) and mR(λk
≥`) for every region XJ` and every step k.

I Theorem 23. For every k ∈ N and region XJ` , we have

mR(λk
`) ≤ O(|V |(|V |+3)·(|Π|+2)) and mR(λk

≥`) ≤ O(|V |(|V |+3)·(|Π|+2)).

The next corollary will be useful in Section 5 where not only the maximal finite range must
be exponentially bounded, but also the cost of any play satisfying the current constraints.

I Corollary 24. Let v ∈ V X with I(v) = J` with ` < N . Let k ∈ N such that k > k∗`+1.
Suppose there exists c ∈ N such that sup {Costi(ρ) | ρ ∈ Λk(v)} = c. Then, we have:

c ≤ O(|V |(|V |+3)·(|Π|+2)).

Let us give a few ingredients of the induction of Theorem 23. For each region XJ` , the
value mR(λ0

`) is always equal to 0. For the general case, the value mR(λk+1
`) depends on

the values of λk+1
` , which, when finite, are in turn determined by the maximal cost of the

λk-consistent plays starting in region XJ` (see Definition 13). A crucial point to obtain these
bounds is that this maximal cost corresponds to the length of the longest cycle-free prefix of

CONCUR 2019

13:12 The Complexity of Subgame Perfect Equilibria in Quantitative Reachability Games

an infinite path starting in region XJ` in C(λk). Furthermore, we can evaluate this maximal
length in terms of the values of mR(λk

`) and mR(λk
>`), which are bounded by the previous

step of the induction. The following key technical lemma formalizes this idea.

I Lemma 25. Let vC be a starting vertex in SV(λ) associated with v ∈ V X such that
I(v) = J`. Let π be a finite prefix of a valid path in C(λ) such that π0 = vC and π does not
contain any cycle. Then

|π| ≤ |V |+ 2 ·mR(λ`) +
|Π|∑

r=|J`|+1

|V |+ 2 · max
Jj >J`

|Jj |=r

mR(λj).

Proof sketch. Let π be a finite prefix of a valid path in C(λ) as in the statement. Let
π[`] . . . π[m] be its region decomposition according to Lemma 8, graphically represented in
Figure 3. Let ρ be the corresponding path in X and ρ[`] . . . ρ[m] be its region decomposition.
Let us consider a fixed non-empty section π[n].

π[`]0

J`

∞ → c

π[n]0

Jn

π[m]0

Jm

Figure 3 Region decomposition of π.

Suppose first that the counter values at π[n]0 are either 0 or +∞. Let us prove that along
π[n], there can be at most |V | steps before reaching a vertex with a finite positive value of λ:

assume there is a cycle in the corresponding section ρ[n] in X such that from ρ[n]0 and
along the cycle, all the values of λ are either 0 or +∞,
by construction of C(λ), the counter values in the corresponding prefix of π[n] remain
fixed for each vertex of this prefix: as no value of λ is positive and finite, no counter value
can be decremented,
thus, the cycle in ρ[n] is also a cycle in π[n] which is impossible by hypothesis,
thus there is no such cycle in ρ[n], and as there are at most |V | vertices in region XJn ,
ρ[n] can have a prefix of length at most |V | with only values 0 or +∞ for λ, implying
that this is also the case for π[n].

Therefore, we can decompose π[n] into a (possibly empty) prefix of length at most |V |, and
a (possibly empty) suffix where at least one counter value c′i, for some i, is a positive finite
value in its first vertex v′. This frontier between prefix and suffix of π[n] is represented by a
vertical double bar ‖ with caption ∞→ c in Figure 3. This value c′i is bounded by mR(λn),
the maximal finite range of λn. From there, as the corresponding ρ is λ-consistent, player i
reaches his target set in at most c′i steps, and ρ enters a new region, which means that the
section π[n] is over. So, in that case, the length of π[n] can be bounded by |V |+ mR(λn).

Suppose now that at vertex π[n]0, there exists a counter value ci for some player i that
is neither 0 nor +∞. This means that there was a constraint for player i initialized in a
previous section π[n′], with n′ < n, that has carried over to π[n]0, via decrements of at least 1
per step. We know that the initial finite counter value is bounded by mR(λn′), and appeared
before the end of section π[n′]. Thus the length from the end of section π[n′] to the end of
section π[n] is bounded by mR(λn′), as again, once the counter value attains 0 for player i,
the path π has entered the next section.

T. Brihaye, V. Bruyère, A. Goeminne, J.-F. Raskin, and M. van den Bogaard 13:13

Therefore, considering the possible cases for each section, we can bound the total length
of π as follows: |π| ≤

∑m
j=` |V |+ 2 ·mR(λj).

Finally, remark that by I-monotonicity, it is actually the case that only (and at most) |Π|
different non-empty sections can appear in the decomposition of π. Furthermore, for each
n ∈ {`+ 1, . . . , N}, we have mR(λn) ≤ max{mR(λj) | Jj > J`, |Jj | = |Jn|} by Definition 19.
Thus, we obtain the bound stated in Lemma 25. J

5 PSPACE completeness

In this section, we prove that the constraint problem is PSPACE-complete (Theorem 4). Given
a reachability game (G,v0) and two thresholds x, y ∈ (N∪{+∞})|Π|, this problem is to decide
whether there exists an SPE σ in this game such that for all i ∈ Π, xi ≤ Costi(〈σ〉v0) ≤ yi.
As the proof of the PSPACE-hardness (based on a reduction from the QBF problem) is nearly
the same as for qualitative reachability games [10], we only prove the PSPACE-easyness.

I Proposition 26. The constraint problem for quantitative reachability games is in PSPACE.

Let us provide a high level sketch of the proof of our PSPACE procedure. Thanks to
Theorem 17, solving the constraint problem reduces in finding a λ∗-consistent play ρ in
(X , x0) satisfying the constraints. By Lemma 22, the latter problem reduces in finding a
corresponding valid path π in the counter graph C(λ∗), satisfying the constraints. Roughly
speaking, in order to solve our initial problem, it suffices to decide the existence of a valid
path that is a lasso and satisfies the constraints in the counter graph, which is exponential
in the size of our original input. Classical arguments, using Savitch’s Theorem can thus be
used to prove the PSPACE membership. Nevertheless, the detailed proof is more intricate
for two reasons. The first reason is that the counter graph is based on the labeling function
λ∗. We thus also have to prove that this function λ∗ can be computed in PSPACE. The
second reason is that, a priori, although we know that the counter graph is of exponential
size, we do not know explicitly its size. This is problematic when using classical NPSPACE
algorithms that guess some path in a graph of exponential size, where a counter bounded by
the size of the graph is needed to guarantee the termination of the procedure. In order to
overcome this, we also need a PSPACE procedure to obtain the actual size of the counter
graph. Recall that, as |C(λ∗)| = |V | · 2|Π| · (K∗ + 1)|Π| with K∗ = mR(λ∗), we only have to
determine the value of K∗. This is possible thanks to Proposition 27.

I Proposition 27. Given a quantitative game (G, v0), for all k ∈ N, for all J` with ` ∈
{1, . . . , N}, the set {λk(v) | v ∈ V J`} and the value mR(λk

≥`) can be computed in PSPACE.

Proof sketch. The whole procedure works by induction on k, the steps in the computation of
the labeling function λ∗. Moreover, it exploits the structural evolution of the local fixpoints
formalized in Proposition 15: once a step is fixed, we proceed region by region, beginning
with the bottom region JN and then proceeding bottom-up by following the total order on I.

Let XJ` be a region, we aim at proving that {λk+1(v) | v ∈ V J`} and mR(λk+1
≥`) are

computable in PSPACE, assuming that (i) we know {λk(v) | v ∈ V J`}, and (ii) we can
compute {λk(v) | v ∈ V J′} for all J ′ > J` and mR(λk

≥`) in PSPACE.
We first focus on the computation of λk+1 from λk. Let k∗` (resp. k∗`+1) be the step where

the fixpoint is reached for region XJ` (resp. XJ`+1). Recall that k∗`+1 < k∗` . When k ≤ k∗`+1
(resp. k > k∗`), we have that λk+1(v) = λk(v), for each v ∈ V J` , by Lemma 16. The tricky
case in when k∗`+1 < k ≤ k∗` 3, let us focus on it.

3 Notice the little difference with the inequalities given in Lemma 16. When k = k∗` , we still need to
compute λk+1 to realize that the fixpoint is effectively reached.

CONCUR 2019

13:14 The Complexity of Subgame Perfect Equilibria in Quantitative Reachability Games

In this case, the computation of λk+1(v) from λk(v), for all v ∈ V Jn , relies on the
maximum of the cost of the λk-consistent plays (see Definition 13). Computing this maximum
is equivalent to guess the existence of lassoes with a certain cost in the counter graph C(λk

≥`).
The size of these lassoes depends on the size of C(λk

≥`) equal to |V | · 2|Π| · (K + 1)|Π| where
K = mR(λk

≥`). Moreover, each lasso is guessed region by region. As we can compute in
PSPACE the value K and the sets {λk(v) | v ∈ V J′} for all J ′ ≥ J` by induction hypothesis,
we can also compute in PSPACE the maximum of the cost of the λk-consistent plays and thus
the set {λk+1(v) | v ∈ V J`}. The correctness of this approach relies on Proposition 15 which
ensures that the values of λ∗ have already reached a fixpoint for all the v ∈ V J′ such that
J ′ > J`. Once we have computed {λk+1(v) | v ∈ V J`} in PSPACE, it is clear that mR(λk+1

≥`)
can also be computed in PSPACE because mR(λk+1

≥`) = max{mR(λk+1
`),mR(λk+1

≥`+1)} (notice
that mR(λk+1

≥`+1) = mR(λk
≥`+1) because k > k∗`+1 and thus XJ`+1 has already reached its

local fixpoint and so the induction hypothesis can be used).
Notice that all these arguments hold because: (i) the value of mR(λk

≥`) and any value
of λk(v) with v ∈ V ≥` (or of λk+1(v) with v ∈ V `) can be encoded in polynomial size
memory (by Theorem 23); (ii) the value of the maximal cost of λk-consistent plays is at
most exponential in the inputs (by Corollary 24); (iii) any set {λk(v) | v ∈ V J′}, J ′ ≥ J`

(or the set {λk+1(v) | v ∈ V J`}) is composed of at most |V | values which can be encoded
with polynomial size memory by (i), and (iv) we have a polynomial number of such values to
keep in memory. J

Proof of Proposition 26. Let (G, v0) be an initialized reachability game and let x, y ∈ (N ∪
{+∞})|Π| be two thresholds. Let (X , x0) be its extended game with x0 = (v0, I0). Let C(λ∗≥I0

)
be the counter graph restricted to the arena X≥I0 and so |C(λ∗≥I0

)| = |V | · 2|Π| · (K0 + 1)|Π|
with K0 = mR(λ∗≥I0

). Let us recall that K0 can be computed (resp. encoded) in PSPACE
thanks to Proposition 27 (resp. Theorem 23).

We have to guess a lasso π = hgω in the counter graph C(λ∗≥I0
) such that its corresponding

play ρX in the extended game satisfies the constraints, i.e., xi ≤ Costi(ρX) ≤ yi for all i ∈ Π.
The length L of π is at most max(max{yi | yi < +∞}, |C(λ∗≥I0

)|) + 2 · |C(λ∗≥I0
)| as the cycle

of π can appear after the constraints yi < +∞ are satisfied.
In order to have a PSPACE procedure, we cannot guess π entirely and we have to proceed

region by region. If I0 = J` for some ` ∈ {1, . . . , N}, we consider the region decomposition
π[`]π[`+ 1] . . . π[t] of π, with t ∈ {`, . . . , N}, where some sections π[m] may be empty.

We first guess the first vertex of the cycle g and then we guess successively π[`]π[`+ 1]
and so on. To guess π[m] with ` ∈ {m, . . . , t}, assuming it is not empty, we guess one by
one its vertices. To guess a vertex (v′, Jm, (c′i)i∈Π) we only have to keep its predecessor in
memory and to know the value λ∗(v′, Jm). So, we need to know {λ∗(v) | v ∈ V Jm}. Thanks
to Proposition 27, we can obtain this set in polynomial size memory and once we move to
another region, we can forget this set and compute the new one.

Additionally, we have a counter CL to count the length of π and for each player i ∈ Π we
have a counter Ci keeping track the current cost of player i along π. For all i ∈ Π, we have
that Ci, CL ≤ L. Henceforth, all these counters can be encoded with polynomial size memory.
Moreover, in addition to these counters, we currently maintain: (i) the first vertex of g, (ii)
the current vertex we are guessing, (iii) its predecessor and, (iv) the set {λ∗(v) | v ∈ V Jm}
(only |V | values which can be encoded in polynomial size memory by Theorem 23) if we are
guessing π[m]. As for (ii) and (iii) a vertex in the counter graph is composed of a vertex
of V , a subset I of Π and |Π| counter values which are at most exponential in the input
(Theorem 23), all this procedure can be done in PSPACE. J

T. Brihaye, V. Bruyère, A. Goeminne, J.-F. Raskin, and M. van den Bogaard 13:15

References
1 Nicolas Basset, Ismaël Jecker, Arno Pauly, Jean-François Raskin, and Marie van den Bogaard.

Beyond Admissibility: Dominance Between Chains of Strategies. In CSL, volume 119 of
LIPIcs, pages 10:1–10:22. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018.

2 Dietmar Berwanger. Admissibility in Infinite Games. In STACS, volume 4393 of LNCS, pages
188–199. Springer, 2007.

3 Romain Brenguier, Lorenzo Clemente, Paul Hunter, Guillermo A. Pérez, Mickael Randour,
Jean-François Raskin, Ocan Sankur, and Mathieu Sassolas. Non-Zero Sum Games for Reactive
Synthesis. In LATA, volume 9618 of LNCS, pages 3–23. Springer, 2016.

4 Romain Brenguier, Arno Pauly, Jean-François Raskin, and Ocan Sankur. Admissibility in
Games with Imperfect Information (Invited Talk). In CONCUR, volume 85 of LIPIcs, pages
2:1–2:23. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017.

5 Romain Brenguier, Guillermo A. Pérez, Jean-Francois Raskin, and Ocan Sankur. Admissibility
in Quantitative Graph Games. In FSTTCS, volume 65 of LIPIcs, pages 42:1–42:14, 2016.

6 Romain Brenguier, Jean-François Raskin, and Ocan Sankur. Assume-admissible synthesis.
In CONCUR, LIPIcs 42, pages 100–113. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2015.

7 Romain Brenguier, Jean-François Raskin, and Mathieu Sassolas. The complexity of admissib-
ility in Omega-regular games. In CSL-LICS, pages 23:1–23:10. ACM, 2014.

8 Thomas Brihaye, Véronique Bruyère, Julie De Pril, and Hugo Gimbert. On Subgame Perfection
in Quantitative Reachability Games. Logical Methods in Computer Science, 9(1), 2012.

9 Thomas Brihaye, Véronique Bruyère, Aline Goeminne, and Jean-François Raskin. Constrained
Existence Problem for Weak Subgame Perfect Equilibria with ω-Regular Boolean Objectives.
In GandALF, pages 16–29, 2018.

10 Thomas Brihaye, Véronique Bruyère, Aline Goeminne, and Jean-François Raskin. Constrained
existence problem for weak subgame perfect equilibria with omega-regular Boolean objectives.
CoRR, abs/1806.05544, 2018.

11 Thomas Brihaye, Véronique Bruyère, Noémie Meunier, and Jean-François Raskin. Weak
Subgame Perfect Equilibria and their Application to Quantitative Reachability. In CSL,
volume 41 of LIPIcs, pages 504–518. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2015.

12 Thomas Brihaye, Julie De Pril, and Sven Schewe. Multiplayer Cost Games with Simple Nash
Equilibria. In LFCS, volume 7734 of Lecture Notes in Computer Science, pages 59–73. Springer,
2013.

13 Véronique Bruyère. Computer Aided Synthesis: A Game-Theoretic Approach. In DLT, volume
10396 of LNCS, pages 3–35. Springer, 2017.

14 Véronique Bruyère, Stéphane Le Roux, Arno Pauly, and Jean-François Raskin. On the
Existence of Weak Subgame Perfect Equilibria. In FOSSACS, volume 10203 of LNCS, pages
145–161, 2017.

15 K. Chatterjee, T. A. Henzinger, and M. Jurdzinski. Games with secure equilibria. Theoretical
Computer Science, 365:67–82, 2006.

16 Krishnendu Chatterjee, Thomas A. Henzinger, and Nir Piterman. Strategy logic. Inf. Comput.,
208(6):677–693, 2010.

17 Rodica Condurache, Emmanuel Filiot, Raffaella Gentilini, and Jean-François Raskin. The
Complexity of Rational Synthesis. In ICALP, volume 55 of LIPIcs, pages 121:1–121:15. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016.

18 Emmanuel Filiot, Raffaella Gentilini, and Jean-François Raskin. Rational Synthesis Under
Imperfect Information. In LICS, pages 422–431. ACM, 2018.

19 Dana Fisman, Orna Kupferman, and Yoad Lustig. Rational Synthesis. In TACAS, volume
6015 of LNCS, pages 190–204. Springer, 2010.

CONCUR 2019

13:16 The Complexity of Subgame Perfect Equilibria in Quantitative Reachability Games

20 János Flesch, Jeroen Kuipers, Ayala Mashiah-Yaakovi, Gijs Schoenmakers, Eilon Solan, and
Koos Vrieze. Perfect-Information Games with Lower-Semicontinuous Payoffs. Mathematics of
Operation Research, 35:742–755, 2010.

21 Erich Grädel and Michael Ummels. Solution Concepts and Algorithms for Infinite Multiplayer
Games. In New Perspectives on Games and Interaction, volume 4, pages 151–178. Amsterdam
University Press, 2008.

22 Orna Kupferman, Giuseppe Perelli, and Moshe Y. Vardi. Synthesis with Rational Environments.
In EUMAS, LNCS 8953, pages 219–235. Springer, 2014.

23 Fabio Mogavero, Aniello Murano, and Moshe Y. Vardi. Reasoning About Strategies. In
FSTTCS 2010, volume 8 of LIPIcs, pages 133–144. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, 2010.

24 J. F. Nash. Equilibrium points in n-person games. In PNAS, volume 36, pages 48–49. National
Academy of Sciences, 1950.

25 Martin J. Osborne. An introduction to game theory. Oxford Univ. Press, 2004.
26 A. Pnueli and R. Rosner. On the Synthesis of a Reactive Module. In POPL, pages 179–190.

ACM Press, 1989.
27 Michael Ummels. Rational Behaviour and Strategy Construction in Infinite Multiplayer Games.

In FSTTCS, volume 4337 of LNCS, pages 212–223. Springer, 2006.
28 Michael Ummels. The Complexity of Nash Equilibria in Infinite Multiplayer Games. In

FOSSACS, volume 4962 of LNCS, pages 20–34. Springer, 2008.
29 Michael Ummels and Dominik Wojtczak. The Complexity of Nash Equilibria in Limit-Average

Games. In CONCUR, volume 6901 of LNCS, pages 482–496. Springer, 2011.

On the Complexity of Reachability
in Parametric Markov Decision Processes
Tobias Winkler
RWTH Aachen University, Germany
tobias.winkler1@rwth-aachen.de

Sebastian Junges
RWTH Aachen University, Germany
sebastian.junges@cs.rwth-aachen.de

Guillermo A. Pérez
University of Antwerp, Belgium
guillermoalberto.perez@uantwerpen.be

Joost-Pieter Katoen
RWTH Aachen University, Germany
katoen@cs.rwth-aachen.de

Abstract
This paper studies parametric Markov decision processes (pMDPs), an extension to Markov decision
processes (MDPs) where transitions probabilities are described by polynomials over a finite set
of parameters. Fixing values for all parameters yields MDPs. In particular, this paper studies
the complexity of finding values for these parameters such that the induced MDP satisfies some
reachability constraints. We discuss different variants depending on the comparison operator in
the constraints and the domain of the parameter values. We improve all known lower bounds for
this problem, and notably provide ETR-completeness results for distinct variants of this problem.
Furthermore, we provide insights in the functions describing the induced reachability probabilities,
and how pMDPs generalise concurrent stochastic reachability games.

2012 ACM Subject Classification Theory of computation → Probabilistic computation; Theory of
computation → Logic and verification; Theory of computation → Markov decision processes

Keywords and phrases Parametric Markov decision processes, Formal verification, ETR, Complexity

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2019.14

Related Version https://arxiv.org/abs/1904.01503

Funding This work has been supported by the DFG RTG 2236 “UnRAVeL”, and the ERC Advanced
Grant 787914 “FRAPPANT”.

Acknowledgements We would like to thank Krishnendu Chatterjee for his pointer to CSRGs.

1 Introduction

Markov decision processes (MDPs) are the model to reason about sequential processes under
(stochastic) uncertainty and non-determinism. Markov chains (MCs) are MDPs without non-
determinism. Often, probability distributions in these models are difficult to assess precisely
during design time of a system. This shortcoming has led to interval MCs [15, 35, 50, 54]
and interval MDPs (also known as Bounded-parameter MDPs) [27,42,58], which allow for
interval-labelled transitions. Analysis under interval Markov models is often too pessimistic:
The actual probabilities on the transitions are considered to be non-deterministically and
locally chosen. Intuitively, consider the probability of a coin-flip yielding heads in some
stochastic environment. In interval models, the probability may vary with the local memory
state of an agent acting in this environment. Such behaviour is unrealistic. Parametric

© Tobias Winkler, Sebastian Junges, Guillermo A. Pérez, and Joost-Pieter Katoen;
licensed under Creative Commons License CC-BY

30th International Conference on Concurrency Theory (CONCUR 2019).
Editors: Wan Fokkink and Rob van Glabbeek; Article No. 14; pp. 14:1–14:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tobias.winkler1@rwth-aachen.de
https://orcid.org/0000-0003-0978-8466
mailto:sebastian.junges@cs.rwth-aachen.de
https://orcid.org/0000-0002-1200-4952
mailto:guillermoalberto.perez@uantwerpen.be
https://orcid.org/0000-0002-6143-1926
mailto:katoen@cs.rwth-aachen.de
https://doi.org/10.4230/LIPIcs.CONCUR.2019.14
https://arxiv.org/abs/1904.01503
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 On the Complexity of Reachability in Parametric Markov Decision Processes

MCs/MDPs [19,23,28,39] (pMCs, pMDPs) overcome this limitation by adding dependencies
(or couplings) between various transitions – they add global restrictions to the selection of the
probability distributions. Intuitively, the probability of flipping heads can be arbitrary, but
should be independent of an agent’s local memory. Such couplings are similar to restrictions
on schedulers in decentralised/partially observable MDPs, considered in e.g., [5, 26,51].

Technically, pMDPs label their transitions with polynomials over a finite set of parameters.
Fixing all parameter values yields MDPs. The synthesis problem considered in this paper
asks to find parameter values such that the induced MDPs satisfy reachability constraints.
Such reachability constraints state that the probability – under some/all possible ways to
resolve non-determinism in the MDP – to reach a target state is (strictly) above or below a
threshold. A sample synthesis problem is thus: “Are there parameter values such that for all
possible ways to resolve the non-determinism, the probability to reach a target state exceeds
1
2?” Variants of the synthesis problem are obtained by varying the reachability constraints,
and the domain of the parameter values. Parameter synthesis is supported by the model
checkers PRISM [38] and Storm [22], and dedicated tools PARAM [29] and PROPhESY [21].
The complexity of the decision problems corresponding to parameter synthesis is mostly open.

This paper significantly extends complexity results for parameter synthesis in pMCs and
pMDPs. Table 1 on page 5 gives an overview of new results: Most prominently, it establishes
ETR-completeness of reachability problems for pMCs with non-strict comparison operators,
and establishes NP-hardness for pMCs with strict comparison operators. For pMDPs with
demonic non-determinism, it establishes ETR-completeness for any comparison operator.
For angelic non-determinism, mostly the synthesis problems are equivalent to their pMC
counterparts. When considering pMDPs with a fixed number of variables, we establish
uniform NP upper bounds for parameter synthesis under angelic or demonic non-determinism.
These results are partially based on properties of pMDPs scattered in earlier work, and use a
strong connection between polynomial inequalities and parameter synthesis.

Finally, pMDPs are interesting generalisations of other models: [37] shows that parameter
synthesis in pMCs is equivalent to the synthesis of finite-state controllers (with a-priori fixed
bounds) of partially observable MDPs (POMDPs) [46] under reachability constraints. Thus,
as a side product we improve complexity bounds [10,56] for (a-priori fixed) memory bounded
strategies in POMDPs. In this paper, we show how pMDPs generalise concurrent stochastic
reachability games [12,20, 52]. We finish the paper by drawing some connections with robust
schedulers, i.e. the question of how to optimally resolve non-determinism taking into account
the uncertainty in the stochastic dynamics. Proofs are given in the related technical report.

Related work. Various results in this paper extend work by Chonev [16], who studied
a model of augmented interval Markov chains. These coincide with parametric Markov
chains. The work also builds upon results by Hutschenreiter et al. [33], in particular upon
the result that pMCs with an a-priori fixed number of parameters can be checked in P.
Furthermore, they study the complexity of PCTL model checking of pMCs. The complexity
of finite-state controller synthesis in POMDPs has been studied in [10, 56]. Some of the
proofs for ETR-completeness presented here reuse ideas from [48].

Methods (and implementations) to analyse pMCs by computing their characteristic
solution function are considered in [19, 21, 23–25, 29, 33, 34]. Sampling-based approaches
to find feasible instantiations in pMDPs are considered by [14, 28], while [3, 18] utilise
optimisation methods. Finally, [44] presents a method to prove the absence of solutions
in pMDPs by iteratively considering simple stochastic games [17]. Some other works on
Markov models with structurally equivalent yet parameterised dynamics include [8, 9, 13, 53].
Parameter synthesis with statistical guarantees has been explored in, e.g., [6]. Further work
on parameter synthesis in Markov models has been surveyed in [36].

T. Winkler, S. Junges, G. A. Pérez, and J.-P. Katoen 14:3

2 Preliminaries

Let X be a finite set of variables. Let Q[X] and Q(X) denote the set of all rational-coefficient
polynomial and rational functions on X, respectively. A rational function f/g can be
represented as a pair (f, g) of polynomials. In turn, a polynomial can be represented as a sum
of terms, where each term is given by a coefficient and a monomial. The (total) degree of a
polynomial is the maximum over the sum of the exponents in the monomials. A polynomial
is quadratic (respectively, quadric), if its total degree is two (four) or less. For a rational
function f(x1, . . . , xk) ∈ Q(X) and an instantiation val : X → R we write f [val] for the value
f(val(x1), . . . , val(xk)). We use ./ to denote either of {≤, <,≥, >} and � for either {≥, >}
(and � analogously). With ./, we denote the complement, e.g. ≤ = >.

Consider a finite set S. Let Distr(S) denote the set of all distributions over S, and
supp(δ) ⊆ S the support {s ∈ S | δ(s) > 0} of distribution δ ∈ Distr(S).

2.1 Parametric Markov models
IDefinition 1 (pMDP). A parametric Markov Decision ProcessM is a tuple (S,X,Act, sι, P)
with S a (finite) set of states, X a finite set of parameters, Act a finite set of actions,
sι ∈ S the initial state, and P : S ×Act× S → Q[X]∪R the probabilistic transition function.

Parameter-free pMDPs coincide with standard MDPs, as in [43]. We define Act(s) = {a ∈
Act | ∃s′ ∈ S. P (s, a, s′) 6= 0}. If |Act(s)| = 1 for all s ∈ S, thenM is a parametric Markov
chain (pMC). We denote its transitions with P (s, s′) and omit the actions.

A pMDP is simple if and only if non-constant probabilities labelling transitions (s, a, s′)
are of the form x or 1 − x, and the sum of outgoing transitions from a state-action pair
always is (equivalent to) 1. Formally, simple pMDPs satisfy the following two properties:

P (s, a, s′) ∈ {x, 1− x | x ∈ X} ∪ R for all s, s′ ∈ S and a ∈ Act; and∑
s′∈S P (s, a, s′) = 1 for all s ∈ S and a ∈ Act(s).

I Definition 2 (Instantiation). Let M = (S,X,Act, sι, P) be a pMDP. An instantiation
val : X → R is well-defined if the induced functions P (s, a, ·) are distributions over S, i.e.

∀s, s′ ∈ S,∀a ∈ Act. 0 ≤ P (s, a, s′)[val] ∈ R ∧
∑
ŝ∈S

P (s, a, ŝ)[val] = 1.

Let M[val] denote the parameter-free MDP in which P (s, a, s′) has been replaced by
P (s, a, s′)[val]. We denote with P val

=0 := {(s, a, s′) ∈ S × Act × S | P (s, a, s′) 6= 0 ∧
P (s, a, s′)[val] = 0} the transitions of M that become 0 in M[val]. A well-defined in-
stantiation val is graph-preserving if the topology of the pMDP is preserved, i.e. if P val

=0 = ∅.
The (well-defined) parameter space Pwd

M for M is {val : X → R | val is well defined}
and the graph-preserving parameter space Pgp

M := {val : X → R | val is graph-preserving}.
In simple pMDPs, the well-defined (respectively, graph-preserving) parameter space is the
set of instantiations val : X → [0, 1] (respectively, val : X → (0, 1)). We omit the subscript
from Pgp

M and Pwd
M when the pMDPM is understood from the context.

A graph-consistent region R forM is a subset of Pwd such that all instantiations in R
induce the same graph, i.e., P val

=0 = P val′

=0 for all val, val ′ ∈ R.
I Remark 3. For any simple pMDP, Pwd can be partitioned into 3|X| many graph-consistent
regions R. For any graph-consistent region, we can (in linear time) construct a simple
pMDP M′ such that the graph-consistent region R corresponds to Pgp

M′ . Essentially, the
construction merely removes the transitions P val

=0 for val ∈ R, and adjusts the probabilities
of some other transitions to 1 to ensure simplicity. A complete construction is given in [36].

CONCUR 2019

14:4 On the Complexity of Reachability in Parametric Markov Decision Processes

Reachability, schedulers and induced Markov chains. Consider a parameter-free MCM
and a state s0. A run of M from s0 is an infinite sequence of states s0s1 . . . such that
P (si, si+1) > 0 for all i ≥ 0. We denote by Runss0 the set of all runs ofM that start with
the state s0. The probability of a measurable event E ⊆ Runss0 is defined using a standard
cylinder construction [2, 43]. Let PrM(♦T) denote the probability to eventually reach T
from the initial state ofM; and PrM(s→ ♦T) denote the probability to eventually reach T
starting from state s. We omit the subscriptM if it is clear from the context.

To define reachability in pMDPs, we need to eliminate the non-determinism. We do so
by means of a scheduler (a.k.a. a policy or strategy).

I Definition 4 (Scheduler). A randomised (memoryless) scheduler is a function σ : S →
Distr(Act) s.t. supp(σ(s)) ⊆ Act(s). A scheduler is deterministic if |supp(σ(s))| = 1 (i.e.
σ(s) is Dirac) for every s ∈ S. We refer to deterministic schedulers as schedulers.

We denote the set of randomised schedulers with RΣ, and (deterministic) schedulers with Σ.
For pMDP M = (S,X,Act, sι, P) and σ ∈ RΣM, the induced pMC Mσ is defined as

(S,X, sι, P ′) with P ′(s, s′) =
∑
a∈Act σ(s)(a) · P (s, a, s′). For simple pMDPs, the induced

pMC of a deterministic scheduler is simple. Under randomised schedulers, the induced pMC
can be transformed into a simple pMC (e.g. [37]). We abbreviate PrMσ by PrσM.
I Remark 5. Deterministic schedulers dominate randomised schedulers for reachability
properties [43], i.e. for each MDP there exists a deterministic scheduler σ s.t. PrσM(♦T) =
supσ′∈RΣ Prσ

′

M(♦T). Therefore, in the remainder, we focus on deterministic schedulers.

I Definition 6 (Solution function). For a pMC M and a state s, let the solution function
solM,T

s : Pwd
M → [0, 1] be defined as solM,T

s [val] := PrM[val](s → ♦T). For a pMDP M, let
minsolM,T

s [val] := minσ∈Σ solM
σ,T

s [val] = minσ∈Σ PrσM[val](s→ ♦T). We define maxsolM,T
s

analogously as the maximum.

Let solM,T denote solM,T
sι with the convention that T is omitted whenever it is clear from

the context. On Pgp, solM is described by a rational function over the parameters [19,39],
and is computable in O

(
poly(|S| · d)|X|

)
, where d is the maximal degree of polynomials in

M’s transitions [33]. The number of resulting monomials is polynomial in |S| and d but
exponential in |X|. Furthermore, the degree of f and g in the resulting function f/g is
upper-bounded by `(d) – where ` is a linear function.1 For acyclic pMCs, solM is described
by a polynomial.

2.2 Existential theory of the reals
Many results in this paper are based on results from the existential theory of the reals [4]. We
give a brief recap. We consider the first-order theory of the reals: the set of all valid sentences
in the first-order language (R,+, ·, 0, 1, <). The existential theory of the reals restricts
the language to (purely) existentially quantified sentences. The complexity of deciding
membership, i.e. whether a sentence is (true) in the theory of the reals, is in PSPACE [7]
and NP-hard. A careful analysis of its complexity is given in [45]. In particular, deciding
membership for sentences with an a-priori fixed upper bound on the number of variables is in
polynomial time. ETR denotes the complexity class [48] of problems with a polynomial-time
many-one reduction to deciding membership in the existential theory of the reals.

1 Importantly, this means that if the coefficients and exponents were written in binary for the given pMC
then linearly more bits suffice to do the same for the computed rational function.

T. Winkler, S. Junges, G. A. Pérez, and J.-P. Katoen 14:5

Table 1 The complexity landscape for reachability in simple pMDPs. All problems are in ETR.

Fixed # Arbitrary # parameters
parameters well-defined graph-preserving

pM
C

∃Reach≥/≤ in P [33] — ETR-complete [Thm. 27] —
∃Reach> ” NP-hard [Thm. 33] ∃Reach>wd-complete [Lem. 32]

∃Reach< ” NP-hard [Thm. 33] ∃Reach>wd-complete [Lem. 9]

pM
D
P

∃∃Reach≥/≤ in NP [Thm. 13] — ETR-complete — (trivial)

∃∃Reach> ” — ∃Reach>wd-complete [Lem. 34, Cor. 36] —
∃∃Reach< ” ∃Reach<wd-complete [Lem. 34] ∃Reach>wd-hard (trivial)

∃∀Reach./ in NP [Thm. 14] — ETR-complete [Thm. 37] —

3 Problem landscape

In this section, we introduce the family of decision problems of our main interest. Let a
simple pMDPM with all constants rational, and a set T of target states be the given input.
We analyse the decision problems according to whether the set X of parameters fromM has
bounded size – with a-priori fixed bound – or arbitrary size.

It remains for us to fix an encoding for rational functions. Henceforth, we assume the
coefficients, exponents and constants are all given as binary-encoded integer pairs.

Decision problems. The first problem is the existence of so-called robust parameter values
or lack thereof. More precisely, the question is whether some instantiation of M is such
that its maximal or minimal probability of eventually reaching T compares with 1

2 in some
desired way. In symbols, for Q1,Q2 ∈ {∃,∀} and ./ ∈ {≤, <,>,≥}, let

Q1Q2Reach./wd
def⇐⇒ Q1 val ∈ Pwd,Q2 σ ∈ Σ. PrσM[val](♦T) ./ 1

2

be the problem of interest. We write Q1Q2Reach./gp whenever Q1 quantifies over graph-
preserving instantiations. We write Q1Q2Reach./∗ to denote both the wd and gp variants.
Furthermore, ifM is a pMC we omit the second quantifier, e.g. ∃Reach<∗ . Table 1 surveys
the results.

I Proposition 7. For every Q1,Q2 ∈ {∃,∀} and ./ ∈ {≤, <,>,≥}, Q1Q2Reach./∗ are
decidable in ETR.

Proof. Both ∃∀Reach./∗ and ∃∃Reach./∗ are in ETR (for an encoding, see Appendix B in the
technical report). It follows that ∃Reach./∗ are also in ETR. J

Problems with fixed threshold. In the above-defined problems, we have fixed a threshold
of 1

2 . This is no loss of generality as any given rational threshold can be reduced to 1
2 :

I Remark 8. An arbitrary threshold 0 < λ < 1, λ ∈ Q, is reducible to 1
2 by the constructions

depicted in Fig. 1: If λ ≤ 1
2 then we prepend a transition with probability p = 2λ to the

initial state and with probability 1− p to a sink state. Otherwise, if λ > 1
2 , we prepend a

transition with probability q = 2(1 − λ) to the initial state and 1 − q to the target state.
Conversely, the 1

2 threshold may analogously be reduced to an arbitrary threshold 0 < λ < 1.

CONCUR 2019

14:6 On the Complexity of Reachability in Parametric Markov Decision Processes

sι M ⊥
2λ

1− 2λ

(a) λ ≤ 1
2

sι M T
2(1− λ)

1− 2(1− λ)

PrM(♦T)

(b) λ > 1
2

Figure 1 Reductions to reachability threshold λ = 1
2 , cf. Remark 8.

Considerations for the comparison relations.

I Lemma 9. For every Q1,Q2 ∈ {∃,∀}, there are polynomial-time Karp reductions
among the problems Q1Q2Reach>gp and Q1Q2Reach<gp and
among the problems Q1Q2Reach≥gp and Q1Q2Reach≤gp.

The above claim only holds when restricted to graph-preserving parameter spaces.

Semi-continuity. The following theorem formalises an observation in [37, Thm. 5].

I Theorem 10. For each simple pMCM, the function solM is lower semi-continuous, and
continuous on Pgp

M. For acyclic simple pMCsM, solM is continuous on Pwd
M .

Continuity on Pgp
M follows as solM is a rational function bounded by [0, 1] on all well-defined

points [44]. Graph non-preserving instantiations might yield additional sink states in the
induced MC, therefore, the probability may drop when changing a parameter instantiation,
e.g. p = 0 with an single outgoing transition with probability p and a self-loop with probability
1− p.The semi-continuity is the main reason that we do not have symmetric entries for upper
and lower bounds in Table 1.
The following result follows immediately from properties of (semi-)continuous functions.

I Corollary 11. For all pMDPs, the functions minsolM and maxsolM are lower semi-
continuous and have a minimum. For acyclic pMDPs, these functions are continuous.

I Corollary 12. For acyclic pMCs, solM is described by a polynomial even on Pwd
M .

4 Fixing the number of parameters

In this section, we assume that the number of parameters is fixed. We focus ourselves
on graph-preserving instantiations, as the analysis of pMDP M and Pwd

M corresponds to
analysing constantly many pMDPsM′ on Pgp

M′ , cf. Rem. 3.

Upper bounds. Below, we establish NP membership for all variants.

I Lemma 13. In the fixed parameter case, ∃∃Reach./∗ is in NP.

Proof. Guess a memoryless scheduler. Construct the induced pMC, and verify it in P. J

I Theorem 14. In the fixed parameter case, ∃∀Reach./∗ is in NP.

In the non-parametric case, a scheduler σ of an MDP is calledminimal if it minimises Prσ(♦T),
i.e. if σ ∈ argminσ′∈Σ Prσ

′
(♦T). Consider the probabilities xs = Prσ(s→ ♦T) for s ∈ S. It

is well-known (see, e.g., [43]) that σ is minimal if and only if xs ≤
∑
s′∈S P (s, a, s′) · xs′

holds for all s ∈ S and a ∈ Act(s). (There is a similar condition for maximal schedulers.)

T. Winkler, S. Junges, G. A. Pérez, and J.-P. Katoen 14:7

The minimality criterion can be lifted to the parametric case: Suppose R ⊆ Pwd is a graph-
consistent region and let fs = solM

σ

s . Then σ is somewhere minimal on R if and only if there
exists some val ∈ R such that

fs[val] ≤
∑
s′∈S

P (s, a, s′) · fs′ [val] (1)

for all s ∈ S and a ∈ Act. (For everywhere minimal strategies, a universal quantification over
val yields the correct criterion).

I Lemma 15. In the fixed parameter case, checking whether a given strategy is somewhere
(resp. everywhere) minimal (resp. maximal) on Pwd is in P.

Proof sketch. Condition (1) can be reformulated as the ETR formula with |X|many variables

Ψ = ∃val : ΦR(val) −→ Φσ(val) (2)

where ΦR(val) is a formula which is true if and only if val ∈ R and

Φσ(val) =
∧
s∈S

∧
a∈Act

(
gs[val] ·

∏
s′ 6=s

hs′ [val] ≤
∑
s′∈S

P (s, a, s′) · gs′ [val] ·
∏
s′′ 6=s′

hs′′ [val]
)

(3)

where gs/hs = fs for gs, hs ∈ Q[val]. (W.l.o.g. it holds that hs[val] > 0 for all val ∈ R.) J

Proof sketch of Thm. 14. Consider ./ = ≥: Guess a somewhere minimal scheduler. Check
its minimality similar to Lem. 15, but extended to simultaneously ensure that the induced
pMC satisfies the threshold. The other relations in ./ are analogous. J

Sets of optimal schedulers. For the problems ∀∀Reach./∗ and ∀∃Reach./∗ (with fixed para-
meters) we already have coNP-membership (as we considered their complements before). It
is tempting to assume that their NP-membership can be established analogous to above,
relying on everywhere optimal schedulers which, according to Lem. 15, can also be verified in
polynomial time. However, such schedulers do not necessarily exist. What we need instead
is a set of somewhere optimal schedulers covering the entire parameter space – a so called
optimal-scheduler set (OSS).

I Definition 16 (Optimal scheduler set). A set Ω ⊆ Σ is called an optimal scheduler set
(OSS) on R ⊆ Pwd if

∀val ∈ R,∃σ ∈ Ω. PrσM[val](♦T) = max
σ′∈Σ

Prσ
′

M[val](♦T),

i.e. Ω contains a maximal scheduler for every point in the region R. The notion can be
analogously defined for minimal schedulers.

An OSS of minimal cardinality is called a minimal optimal scheduler set (MOSS). For many
applications it is appropriate to describe a region R via a quantifier-free ETR-formula ΦR
with |X| free variables such that Sat(ΦR) = R. In that case, we have the following:

I Theorem 17. In the fixed parameter case, checking whether a given Ω ⊆ Σ constitutes an
OSS on R = Sat(ΦR) can be done in time polynomial in the size ofM, Ω and ΦR.

Proof. For every σ ∈ Ω, we construct the formulas Φσ as in (3) in polynomial time. Then,
we check whether the fixed-parameter ETR-formula

∃val : ΦR(val) −→
∧
σ∈Ω
¬Φσ(val)

is unsatisfiable (also in polynomial time). If yes, return true and otherwise false. J

CONCUR 2019

14:8 On the Complexity of Reachability in Parametric Markov Decision Processes

Checking whether a set is a MOSS then additionally requires consideration of all the subsets
with one element removed (again in polynomial time).

I Lemma 18. If the size of a MOSS on Pwd is polynomially bounded for fixed-parameter
pMDPs, then ∃∃Reach./∗ and ∃∀Reach./∗ are in coNP.

The proof considers the complement of ∃∀Reach./∗ , that is ∀∃Reach.̄/∗ . Under the assumption
in the lemma, it now suffices to guess a MOSS and verify ∃Reach.̄/∗ on the induced pMCs in
polynomial time, showing that the complement is in NP.
In the arbitrary parameter case, we obtain an exponential lower bound on the MOSS size:

I Lemma 19. There exists a family (Mn)n∈N of simple pMDPs with n+2 states s.t. |Ω| ≥ 2n
for any OSS Ω on Pwd, i.e., the size of a MOSS can grow exponentially in the pMDP’s size.

This lemma, and what follows below, consider the unbounded parameter case, i.e., from now
on, parameters are part of the input.

5 The expressiveness of simple pMCs

We investigate the relation between polynomial inequalities and the ∃Reach problems. The
first lemma in this section is a key ingredient for our complexity analysis later on.

I Lemma 20 (Chonev’s trick [16, Remark 7]). Let f ∈ Q[X] be a polynomial, µ ∈ Q and
0 < λ < 1. There exists a simple acyclic pMC M with a target state T such that for all
val : X → [0, 1] and all comparison relations ./ ∈ {<,≤,≥, >,=} it holds that

f [val] ./ µ⇐⇒ PrM[val](♦T) ./ λ.

Moreover, if d is the total degree of f , t the number of terms in f and κ a bound on the
(bit-)size of the coefficients and the thresholds µ, λ, then M can be constructed in time
O(poly(d, t, κ)).

I Example 21. Consider the inequality −2x2y + y > 5. We reformulate this to: 2 ·
((1− x)xy + (1− x)y + (1− y)− 1)+y > 5 and then to 2·(1−x)xy+2·(1−x)y+2·(1−y)+y >
7. Observe that both sides now only contain positive coefficients. Furthermore, observe that
we wrote the left-hand side as sum of products over {x, 1− x, y, 1− y}. After rescaling (with
1
8), we can construct the pMCM depicted in Fig. 2a and set λ = 7

8 .

Checking a bound on a given polynomial over X thus is equivalent to checking a bound on a
reachability probability in a simple acyclic pMC over X. For the fixed parameter case, this
gives rise to the following equivalence relating arbitrary pMCs to simple acyclic pMCs.

I Theorem 22. For any non-simple pMCM with Pgp
M = (0, 1)X there exists a simple acyclic

pMCM′ such that

{val ∈ Pgp
M | PrM[val](♦T) ./ λ} = {val ∈ Pgp

M′ | PrM′[val](♦T) ./ λ}.

In the fixed parameter case,M′ can be computed in polynomial time.

The proof is constructive: one first computes the (rational function) solM, reformulates that
as a polynomial constraint, and casts that into a simple acyclic pMC using Lemma 20.

The goal of the rest of this section is to prove a result which is, in a sense, a stronger
version of Lemma 20. In particular, we want to describe polynomials by solM for an acyclic
pMC. We call a polynomial f ∈ Q[X] adequate if 0 < f [val] < 1 for all val : X → (0, 1) and
0 ≤ f [val] ≤ 1 for all val : X → [0, 1]. Note that solM is an adequate polynomial if M is
both simple and acyclic, and there is no acyclic pMCM (with a single parameter) such that
solM is not adequate – except where solM = 0 or solM = 1.

T. Winkler, S. Junges, G. A. Pérez, and J.-P. Katoen 14:9

2/8

2/8

2/8

1/8

1− x x y

1− x y

1− y

y

(a) The reachability probability inM[val] is
at least 7

8 iff (−2x2y + y)[val] ≥ 5.

x
1−
x

x
1−
x x

1−
x

x
1−
x x

1−
x x

1−
x

1/4
11/12 11/12

1/4

(b) The reachability probability from source
to target equals f = 2x · (1− x) + 1

4 .

Figure 2 Examples for the strong connection between polynomial (inequalities) and pMCs.
Transitions to the sink are not depicted for conciseness.

I Theorem 23. Let f ∈ Q[x] be a (univariate) adequate polynomial. There exists a simple
acyclic pMCM with a target state T such that f = solM.

Our construction of a pMC for some adequate polynomial is based on the following result:

I Lemma 24 (Handelman’s theorem [30]). Let β1 ≥ 0, . . . , β` ≥ 0 be linear constraints that
define a compact convex polyhedron P ⊆ Rn with interior. If a polynomial f ∈ R[x1, . . . , xn]
is strictly positive on P , then f may be written as

f =
k∑
i=1

λihi (4)

where hi = β
ei,1
1 · . . . · βei,`` for some natural exponents ei,j and real coefficients λi > 0.

Form (4) is called a Handelman representation of f w.r.t. β1, . . . , β`. The next lemma states
the existence of a specific Handelman representation which we can map to a pMC.

I Lemma 25. Let f ∈ Q[x] be an adequate polynomial. There exists an n ≥ 0 such that

f =
n∑
k=0

pk ·
(
n

k

)
· xn−k · (1− x)k with pk ∈ [0, 1] for all 0 ≤ k ≤ n (5)

I Example 26. Consider f = 2x · (1− x) + 1
4 which is strictly positive on [0, 1] and already

in a Handelman representation. Following the proof of Lem. 25, we find that

f = 1
4

(
0
3

)
x3 + 11

12

(
1
3

)
x2(1− x) + 11

12

(
2
3

)
x(1− x)2 + 1

4

(
3
3

)
(1− x)3

The construction (described in the proof of Thm. 23) yields the pMC depicted in Fig. 2b.

6 The complexity of reachability in pMCs

We improve lower bounds for ∃Reach problems. The results depend on the comparison type:

Nonstrict inequalities. This paragraph is devoted to proving the following theorem:

I Theorem 27. ∃Reach≤∗ , ∃Reach≥∗ are all ETR-complete (even for acyclic pMCs).

CONCUR 2019

14:10 On the Complexity of Reachability in Parametric Markov Decision Processes

sx1 s′x1
sx2 s′x2

. . . s′xn sι
1−x1 x1 1−x2 xn

x1 1−x1 x2 1−xn

Figure 3 Gadget for the proof of Lemma 32.

I Definition 28. The decision problem modified-closed-bounded-4-feasibility (mb4FEAS-c)
asks: Given a (non-negative) quadric polynomial f , ∃val : X → [0, 1] s.t. f [val] ≤ 0? The
modified-open-bounded-4-feasibility (mb4FEAS-o) is analogously defined with val ranging
over (0, 1).

This problem easily reduces to its ≥-variant by multiplying f with −1.

I Lemma 29. The problems mb4FEAS-c and mb4FEAS-o are ETR-hard.

Essentially, one reduces from the existence of common roots of quadratic polynomials lying
in a unit ball, which is known to be ETR-complete [47, Lemma 3.9]. The reduction to
mb4FEAS follows the reduction2 between unconstrained variants (i.e., variants in which the
position of the root is not constrained) of the same decision problems [48, Lemma 3.2].
I Remark 30. Observe that there may be exactly one satisfying assignment to mb4FEAS-o/c,
which may be irrational. In contrast, if there exists a satisfying assignment for f > 0, then
there exist infinitely many satisfying (rational) assignments. To the best of our knowledge,
the complexity of a variant of mb4FEAS-o/c with strict bounds is open. Therefore, we
have no ETR-hardness for ∃Reach with strict bounds. In general, conjunctions of strict
inequalities are also ETR-complete [48]. We exploit this in the proof of Thm. 37 on page 12.

Proof of Thm. 27. The reduction from mb4FEAS-c to ∃Reach≤wd is a straightforward ap-
plication of Lemma 20 with µ = 0 and λ = 1

2 . For ∃Reach≤gp, we reduce from the open
variant and notice that as the construction in Lemma 20 preserves all satisfying instantiations
val : X → [0, 1] it, in particular, also preserves them on the graph-preserving parameter space.
For ≥, we apply Lemma 20 on −f . J

The tight complexity class shows that the assumption of simplicity is not a real restriction.
Furthermore, a similar construction can be used for (sufficiently large3, linear) subsets of the
parameter space. In particular, methods [18, 44] targeted at a variant of ∃Reach considering
a so-called ε-preserving parameter space ([ε, 1− ε]k) target an ETR-complete problem.

Strict inequalities. In this paragraph, the main result is:

I Theorem 31. ∃Reach>* and ∃Reach<* are NP-hard.

The gadget in Fig. 3 ensures that for any graph non-preserving instantiation, the probability
to reach the target is 0, while it does not affect reachability probabilities for graph-preserving
instantiations. Together with semi-continuity of the solution function, we deduce that
assuming graph-preservation is equivalent to not making this assumption:

I Lemma 32. There are polynomial-time Karp reductions among ∃Reach>gp and ∃Reach>wd.

2 Essentially the polynomial f in mb4FEAS is constructed by taking the sum-of-squares of the quadratic
polynomials, and further operations are adequatly shifting the polynomial.

3 The bounds should be at least δ apart, where δ requires at most single-exponentially many bits.

T. Winkler, S. Junges, G. A. Pérez, and J.-P. Katoen 14:11

s0 s1

s2

1
1−x1

x1
0.4

0.6

(a) simple pMDP.

s0 s1

s2s3

1−x1

x1
0.4

0.6

1

1

(b) intermediate step.

s0 s1

s2s3

s4

s4

1−x1

x1

0.4

0.6

1

1

1

1

(c) simple bin.-dec.

s0 s1

s2s3

s4

s4

1−x1

x1

0.4

0.6

1−xs3

xs3

1−xs0

xs0

(d) simple pMC.

Figure 4 From simple pMDP to simple pMC.

We may thus turn our attention to well-defined parameter spaces: The decision problem

∃Reach≥1
wd

def⇐⇒ ∃val ∈ Pwd
M . PrM[val](♦T) ≥ 1

is NP-complete [16, Thm. 3]. A more refined analysis of the 3SAT-reduction yields:

I Theorem 33. ∃Reach>wd and ∃Reach<wd are NP-hard.

Proof of Thm. 31. Lem. 32, Thm. 33, and Lem. 9 together imply Thm. 31. J

This concludes our complexity analysis for pMCs.

7 The complexity of reachability in pMDPs

7.1 Exists-exists reachability
By definition, every pMC is a pMDP. Conversely, from any pMDP we can construct a pMC
such that their ∃∃Reach./wd problems coincide. A similar construction relates pMCs to the
existence of optimal randomised memoryless strategies in partially observable MDPs [37].

I Lemma 34. There are polynomial-time Karp reductions among ∃Reach./wd and ∃∃Reach./wd.

We outline the steps in Fig. 4 and in the description below.

Binary-decision pMDPs. The first step of the translation consists in restricting the non-
determinism resolved by a scheduler to (at most) two options from every state. A binary-
decision pMDP is a pMDP such that |Act(s)| ≤ 2 for all states s ∈ S and if |Act(s)| = 2 then
∀a ∈ Act(s),∀s′ ∈ S, P (s, a, s′) ∈ {0, 1}. Any pMDP can be transformed (in polynomial
time) into a binary-decision pMDP by introducing auxiliary states and simulating k-ary
non-deterministic choice using a binary-tree-like scheme in which all non-Dirac transitions
are pushed to the leaves (see, e.g., [37, 44,49]). Such a construction preserves simplicity.

From non-determinism to parameters. For a given binary-decision pMDP M, we may
replace all non-determinism by parameters, inspired by [28, 37]. We introduce fresh variables
XS = {xs | s ∈ S}. InM, for any state s with Act(s) = {a, a′} we replace

the unique transition P (s, a, s′) = 1 by P (s, a, s′) = xs
the unique transition P (s, a′, s′) = 1 by P (s, a′, s′) = 1− xs .

The outcome is a simple pMCM′. To translate instantiations into schedulers, and vice versa,
it is helpful to consider randomised schedulers. Observe that, by Rem. 5, instantiations
which translate into such schedulers are always dominated by deterministic ones.
Using the previously described construction, we obtain the following.

CONCUR 2019

14:12 On the Complexity of Reachability in Parametric Markov Decision Processes

. . .M(f1)λ=1/2,µ=0 M(fm)λ=1/2,µ=0

1 1

Figure 5 Construction for the proof of Thm. 37.

I Lemma 35. For all simple pMDPsM one can construct in polynomial time a (linearly
larger) simple pMCM′ s.t.(

∃val ∈ Pwd
M ,∃σ ∈ Σ. PrσM[val](♦T) ./ 1

2

)
⇐⇒

(
∃val ∈ Pwd

M′ . PrM′[val](♦T) ./ 1
2

)
.

I Corollary 36. There are polynomial-time Karp reductions among ∃∃Reach>gp and ∃Reach>wd.

Proof. Minor adaptions in the proofs of Lemma 34 and Lemma 32. J

7.2 Exists-forall reachability
Contrary to pMCs, we obtain ETR-completeness in pMDPs for any comparison relation:

I Theorem 37. ∃∀Reach./∗ are all ETR-complete (even for acyclic pMDPs with a single
non-deterministic state).

For the strict relations, we use a different problem to reduce from.

I Definition 38. The decision problem bounded-conjunction-of-inequalities (bcon4INEQ-c)
asks: Given a family of quadric polynomials f1, . . . , fm, ∃val : X → [0, 1] s.t.

∧m
i=1 fi[val] < 0?

The open variant (bcon4INEQ-o) can be defined analogously.

By a reduction from mb4FEAS (adapted from [48, Thm 4.1]):

I Lemma 39. The bcon4INEQ-o/c problems are ETR-hard.

Proof sketch of Thm. 37. ETR-hardness for non-strict inequalities follows from Thm. 27.
For strict inequalities, we reduce from bcon4INEQ-o/c: Generalise the construction from
Thm. 27: Build a pMDP as in Fig. 5 with pMCsM(fi)λ=1/2,µ=0 created by Lemma 20. J

Relation to stochastic games

We argue that pMDPs are – in a sense – a generalisation of Concurrent Stochastic Reachability
Games (CSRG), a model which has been extensively studied [11,12,20,31,52].

Playing a stochastic game. A CSRG is a two-player game G played on a finite set S of
states. The objective of player I is to reach a target states T ⊆ S while player II has to
avoid ever reaching a state in T . A play of G begins in an initial state sι and proceeds as
follows: In state s, both players I and II concurrently select an action a ∈ As (resp. b ∈ Bs),
the finite set of actions available to player I (resp. II) in state s. The game then picks a
successor state s′ according to a fixed probability distribution P (·|s, a, b) over S, and the
play continues in s′. The transition from s to s′ is called a round of G. Player I wins G once
a state in T is reached. Otherwise, if a target is never reached, then II wins.

T. Winkler, S. Junges, G. A. Pérez, and J.-P. Katoen 14:13

A strategy σ of a player is, in essence, a scheduler. However, strategies in a CSRG map
state-action sequences s0(a0, b0) . . . sk−1(ak−1, bk−1)sk to a probability distribution over the
actions Ask (resp. Bsk) available in the current state sk. We call σ a stationary strategy
if it does not depend on the history but only on the current state, i.e. it is a randomised
memoryless scheduler. Let Σi denote the set of stationary strategies for player i ∈ {I, II}.

Instantiations and MDPs. The instantiation Gσ of G with a stationary strategy for player
I is the structure obtained by forcing player I to follow σ. Notice that Gσ is a finite MDP
M. Its transition probability function PM is obtained by letting

PM(s, b, s′) =
∑
a∈As

σ(a|s)P (s′|s, a, b) (6)

for all s, s′ ∈ S and actions b ∈ Bs of player II. (Instantiations are defined completely
symmetrically for strategies of player II.) Conversely, every MDP may be viewed as a CSRG
where |As| = 1 (or |Bs| = 1) for all s ∈ S, i.e. one of the players does never have any choice.

Value of a CSRG. Let Prσ,τG (♦T) be the probability that T is reached if player I plays accord-
ing to σ and player II according to τ . The value of G is defined as V (G) := supσ infτ Prσ,τG (♦T)
where the sup and inf range over all strategies of both players respectively. Intuitively, it is
the maximal winning probability of player I that can be guaranteed against all strategies of
player II. The existence of stationary optimal strategies for player II [32, 41] allows us to
encode a CSRG in a pMDP by replacing the universal player II with parameters:

I Theorem 40. For any given CSRG G, there exists a simple pMDPM such that

V (G) = min
τ∈ΣII

max
σ∈ΣI

Prσ,τG (♦T) = min
val∈Pwd

max
σ∈Σ

PrσM[val](♦T)

andM can be computed in polynomial time (in the size of G).

As a direct consequence, we obtain CSRG-hardness.

I Corollary 41. Determining whether V (G) � λ, for λ ∈ Q, reduces to ∃∀Reach�
wd.

It follows from [11, Thms. 6 and 12] that optimal rational instantiations may be complex.

I Theorem 42. There are pMDPs for which rational optimal and ε-optimal parameter values
minimising the value maxσ∈Σ PrσM[val](♦T) require exponentially-many bits to be written as
a binary-encoded integer-pair.

8 Robust reachability

In this section, we briefly consider pMDPs in which we focus on obtaining (robust) schedulers
rather than (robust) parameter values: We swap the quantification order from theQ1Q2Reach
problem. Intuitively, we ask whether some scheduler gives guarantees on the maximal or
minimal probability of all instantiations of the pMDP eventually reaching T . Formally, for
each Q1,Q2 ∈ {∃,∀} and ./ ∈ {≤, <,>,≥}, let

Q1Q2RobReach./wd
def⇐⇒ Q1σ ∈ Σ, Q2val ∈ Pwd. PrσM[val](♦T) ./ 1

2 .

We adopt the same conventions as for the Q1Q2Reach problem when considering graph-
preserving instantiations. Variants which use the same quantifier twice, or consider pMCs
yield the same results as for Reach./, and are therefore omitted.

CONCUR 2019

14:14 On the Complexity of Reachability in Parametric Markov Decision Processes

Robust strategies have been widely studied in the field of operations research (see,
e.g., [40, 57]) and are the main focus of reinforcement learning [55]. It is known that the
robust-reachability problem as defined above is not the most general question one can ask.
Indeed, we restrict our attention to memoryless schedulers while, in general, optimal robust
schedulers require memory and randomisation [1].

Our interest in the robust-reachability problem is twofold. First, it naturally corresponds
to the quantifier-swapped version of the reachability problem. Second, memoryless schedulers
are desirable in practice for their comprehensibility and ease of implementation.

I Theorem 43. In the fixed parameter case, ∃∀RobReach</>∗ are NP-complete. NP-hardness
holds even for acyclic pMDPs with a single parameter.

Proof sketch. Membership in NP is analogous to Lem. 13. NP-hardness is based on a
reduction from 3-SAT, with a construction similar to Fig. 5. J

I Proposition 44. The decision problems ∃∀RobReach./∗ are NP-hard and coNP-hard, and
in PSPACE. For non-strict inequalities, the problems are coETR-hard.

Proof. NP-hardness follows from Thm. 43, coNP/coETR-hardness follows from Thm. 31,
Thm. 33, and Thm. 27, respectively. Iterating over all (finitely many) schedulers, check each
scheduler in ETR or in coETR (and thus in PSPACE). J

Consequently, it is unlikely that either of the problems are in ETR or coETR, as then ETR
and coETR would coincide (which is not impossible, but unlikely [48]).

9 Conclusions

We have studied the complexity of various reachability problems for simple pMCs and pMDPs.
All the problems we have considered are easily seen to be solvable in PSPACE via reductions
to the existential theory of the reals. We have complemented this observation with lower
bounds, i.e. ETR hardness for several versions of the problem both for (tree-like) pMCs
and pMDPs. These lower bounds naturally extend to general pMCs and pMDPs, and to
expected reward measures.

We have given an NP decision procedure for pMDPs with a fixed number of parameters.
The exact complexity of pMDP reachability problems with this restriction remains open, and
our upper bounds do not straightforwardly generalise beyond simple pMDPs (see Rem. 3).

Finally, we have established a tight connection between polynomials and pMCs (even
beyond [16]). However, our results do not allow us to conclude whether there always are
“small” pMCs for every polynomial. Such a result would provide more evidence of ETR being
the right framework to solve problems for our parametric models.

References
1 Sebastian Arming, Ezio Bartocci, and Ana Sokolova. SEA-PARAM: exploring schedulers in

parametric MDPs. In QAPL@ETAPS, volume 250 of EPTCS, pages 25–38, 2017.
2 Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press, 2008.
3 Ezio Bartocci, Radu Grosu, Panagiotis Katsaros, C. R. Ramakrishnan, and Scott A. Smolka.

Model Repair for Probabilistic Systems. In TACAS, volume 6605 of LNCS, pages 326–340.
Springer, 2011.

4 Saugata Basu, Richard Pollack, and Marie-Françoise Roy. Existential theory of the reals.
Algorithms in Real Algebraic Geometry, pages 505–532, 2006.

T. Winkler, S. Junges, G. A. Pérez, and J.-P. Katoen 14:15

5 Daniel S. Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilberstein. The Complexity
of Decentralized Control of Markov Decision Processes. Math. Oper. Res., 27(4):819–840, 2002.

6 Luca Bortolussi and Simone Silvetti. Bayesian Statistical Parameter Synthesis for Linear
Temporal Properties of Stochastic Models. In TACAS (2), volume 10806 of LNCS, pages
396–413. Springer, 2018.

7 John F. Canny. Some Algebraic and Geometric Computations in PSPACE. In STOC, pages
460–467. ACM, 1988.

8 Milan Ceska, Frits Dannenberg, Nicola Paoletti, Marta Kwiatkowska, and Lubos Brim. Precise
parameter synthesis for stochastic biochemical systems. Acta Inf., 54(6):589–623, 2017.

9 Krishnendu Chatterjee. Robustness of Structurally Equivalent Concurrent Parity Games. In
FOSSACS, volume 7213 of LNCS, pages 270–285. Springer, 2012.

10 Krishnendu Chatterjee, Martin Chmelik, and Jessica Davies. A Symbolic SAT-Based Algorithm
for Almost-Sure Reachability with Small Strategies in POMDPs. In AAAI, pages 3225–3232.
AAAI Press, 2016.

11 Krishnendu Chatterjee, Kristoffer Arnsfelt Hansen, and Rasmus Ibsen-Jensen. Strategy
Complexity of Concurrent Safety Games. In MFCS, volume 83 of LIPIcs, pages 55:1–55:13.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017.

12 Krishnendu Chatterjee and Thomas A. Henzinger. A survey of stochastic omega-regular games.
J. Comput. Syst. Sci., 78(2):394–413, 2012.

13 Taolue Chen, Yuan Feng, David S. Rosenblum, and Guoxin Su. Perturbation Analysis in
Verification of Discrete-Time Markov Chains. In CONCUR, volume 8704 of LNCS, pages
218–233. Springer, 2014.

14 Taolue Chen, Ernst Moritz Hahn, Tingting Han, Marta Z. Kwiatkowska, Hongyang Qu, and
Lijun Zhang. Model Repair for Markov Decision Processes. In TASE, pages 85–92. IEEE
Computer Society, 2013.

15 Taolue Chen, Tingting Han, and Marta Z. Kwiatkowska. On the complexity of model checking
interval-valued discrete time Markov chains. Inf. Process. Lett., 113(7):210–216, 2013.

16 Ventsislav Chonev. Reachability in Augmented Interval Markov Chains. CoRR, abs/1701.02996,
2017. arXiv:1701.02996.

17 Anne Condon. Computational models of games. ACM distinguished dissertations. MIT Press,
1989.

18 Murat Cubuktepe, Nils Jansen, Sebastian Junges, Joost-Pieter Katoen, and Ufuk Topcu.
Synthesis in pMDPs: A Tale of 1001 Parameters. In ATVA, volume 11138 of LNCS, pages
160–176. Springer, 2018.

19 Conrado Daws. Symbolic and Parametric Model Checking of Discrete-Time Markov Chains.
In ICTAC, volume 3407 of LNCS, pages 280–294. Springer, 2004.

20 Luca de Alfaro, Thomas A. Henzinger, and Orna Kupferman. Concurrent reachability games.
Theor. Comput. Sci., 386(3):188–217, 2007.

21 Christian Dehnert, Sebastian Junges, Nils Jansen, Florian Corzilius, Matthias Volk, Harold
Bruintjes, Joost-Pieter Katoen, and Erika Ábrahám. PROPhESY: A PRObabilistic ParamEter
SYnthesis Tool. In CAV (1), volume 9206 of LNCS, pages 214–231. Springer, 2015.

22 Christian Dehnert, Sebastian Junges, Joost-Pieter Katoen, and Matthias Volk. A Storm is
Coming: A Modern Probabilistic Model Checker. In CAV (2), volume 10427 of LNCS, pages
592–600. Springer, 2017.

23 Karina Valdivia Delgado, Scott Sanner, and Leliane Nunes de Barros. Efficient solutions to
factored MDPs with imprecise transition probabilities. Artif. Intell., 175(9-10):1498–1527,
2011.

24 Antonio Filieri, Giordano Tamburrelli, and Carlo Ghezzi. Supporting Self-Adaptation via
Quantitative Verification and Sensitivity Analysis at Run Time. IEEE Trans. Software Eng.,
42(1):75–99, 2016.

25 Paul Gainer, Ernst Moritz Hahn, and Sven Schewe. Accelerated Model Checking of Parametric
Markov Chains. In ATVA, volume 11138 of LNCS, pages 300–316. Springer, 2018.

CONCUR 2019

http://arxiv.org/abs/1701.02996

14:16 On the Complexity of Reachability in Parametric Markov Decision Processes

26 Sergio Giro, Pedro R. D’Argenio, and Luis María Ferrer Fioriti. Distributed probabilistic
input/output automata: Expressiveness, (un)decidability and algorithms. Theor. Comput.
Sci., 538:84–102, 2014.

27 Robert Givan, Sonia Leach, and Thomas Dean. Bounded-parameter Markov decision processes.
Artif. Intell., 122(1-2):71–109, 2000.

28 Ernst Moritz Hahn, Tingting Han, and Lijun Zhang. Synthesis for PCTL in Parametric
Markov Decision Processes. In NASA Formal Methods, volume 6617 of LNCS, pages 146–161.
Springer, 2011.

29 Ernst Moritz Hahn, Holger Hermanns, and Lijun Zhang. Probabilistic reachability for
parametric Markov models. STTT, 13(1):3–19, 2010.

30 David Handelman. Representing polynomials by positive linear functions on compact convex
polyhedra. Pacific Journal of Mathematics, 132(1):35–62, 1988.

31 Kristoffer Arnsfelt Hansen, Michal Koucký, and Peter Bro Miltersen. Winning Concurrent
Reachability Games Requires Doubly-Exponential Patience. In LICS, pages 332–341. IEEE
Computer Society, 2009.

32 CJ Himmelberg, Thiruvenkatachari Parthasarathy, TES Raghavan, and FS Van Vleck. Exist-
ence of p-equilibrium and optimal stationary strategies in stochastic games. Proceedings of the
American Mathematical Society, 60(1):245–251, 1976.

33 Lisa Hutschenreiter, Christel Baier, and Joachim Klein. Parametric Markov Chains: PCTL
Complexity and Fraction-free Gaussian Elimination. In GandALF, volume 256 of EPTCS,
pages 16–30, 2017.

34 Nils Jansen, Florian Corzilius, Matthias Volk, Ralf Wimmer, Erika Ábrahám, Joost-Pieter
Katoen, and Bernd Becker. Accelerating Parametric Probabilistic Verification. In QEST,
volume 8657 of LNCS, pages 404–420. Springer, 2014.

35 Bengt Jonsson and Kim Guldstrand Larsen. Specification and Refinement of Probabilistic
Processes. In LICS, pages 266–277. IEEE Computer Society, 1991.

36 Sebastian Junges, Erika Abraham, Christian Hensel, Nils Jansen, Joost-Pieter Katoen,
Tim Quatmann, and Matthias Volk. Parameter Synthesis for Markov Models. CoRR,
abs/1903.07993, 2019. arXiv:1903.07993.

37 Sebastian Junges, Nils Jansen, Ralf Wimmer, Tim Quatmann, Leonore Winterer, Joost-Pieter
Katoen, and Bernd Becker. Finite-State Controllers of POMDPs using Parameter Synthesis.
In UAI, pages 519–529. AUAI Press, 2018.

38 Marta Z. Kwiatkowska, Gethin Norman, and David Parker. PRISM 4.0: Verification of
probabilistic real-time systems. In CAV, volume 6806 of LNCS, pages 585–591. Springer, 2011.

39 Ruggero Lanotte, Andrea Maggiolo-Schettini, and Angelo Troina. Parametric probabilistic
transition systems for system design and analysis. Formal Asp. Comput., 19(1):93–109, 2007.

40 Arnab Nilim and Laurent El Ghaoui. Robust Control of Markov Decision Processes with
Uncertain Transition Matrices. Operations Research, 53(5):780–798, 2005.

41 Thiruvenkatachari Parthasarathy. Discounted and positive stochastic games. Bulletin of the
American Mathematical Society, 77(1):134–136, 1971.

42 Alberto Puggelli, Wenchao Li, Alberto L. Sangiovanni-Vincentelli, and Sanjit A. Seshia.
Polynomial-Time Verification of PCTL Properties of MDPs with Convex Uncertainties. In
CAV, volume 8044 of LNCS, pages 527–542. Springer, 2013.

43 Martin L. Puterman. Markov Decision Processes. Wiley, 1995.
44 Tim Quatmann, Christian Dehnert, Nils Jansen, Sebastian Junges, and Joost-Pieter Katoen.

Parameter Synthesis for Markov Models: Faster Than Ever. In ATVA, volume 9938 of LNCS,
pages 50–67, 2016.

45 James Renegar. On the Computational Complexity and Geometry of the First-Order Theory
of the Reals, Part I: Introduction. Preliminaries. The Geometry of Semi-Algebraic Sets. The
Decision Problem for the Existential Theory of the Reals. J. Symb. Comput., 13(3):255–300,
1992.

http://arxiv.org/abs/1903.07993

T. Winkler, S. Junges, G. A. Pérez, and J.-P. Katoen 14:17

46 Stuart J. Russell and Peter Norvig. Artificial Intelligence - A Modern Approach. Pearson
Education, 2010.

47 Marcus Schaefer. Realizability of Graphs and Linkages, pages 461–482. Springer New York,
2013.

48 Marcus Schaefer and Daniel Stefankovic. Fixed Points, Nash Equilibria, and the Existential
Theory of the Reals. Theory Comput. Syst., 60(2):172–193, 2017.

49 Roberto Segala and Andrea Turrini. Comparative Analysis of Bisimulation Relations on
Alternating and Non-Alternating Probabilistic Models. In QEST, pages 44–53. IEEE Computer
Society, 2005.

50 Koushik Sen, Mahesh Viswanathan, and Gul Agha. Model-Checking Markov Chains in the
Presence of Uncertainties. In TACAS, volume 3920 of LNCS, pages 394–410. Springer, 2006.

51 Sven Seuken and Shlomo Zilberstein. Formal models and algorithms for decentralized decision
making under uncertainty. Autonomous Agents and Multi-Agent Systems, 17(2):190–250, 2008.

52 Lloyd S. Shapley. Stochastic Games. PNAS, 39(10):1095–1100, 1953.
53 Eilon Solan. Continuity of the value of competitive Markov decision processes. Journal of

Theoretical Probability, 16(4):831–845, 2003.
54 Jeremy Sproston. Qualitative Reachability for Open Interval Markov Chains. In RP, volume

11123 of LNCS, pages 146–160. Springer, 2018.
55 Richard S. Sutton and Andrew G. Barto. Reinforcement learning - an introduction. Adaptive

computation and machine learning. MIT Press, 1998.
56 Nikos Vlassis, Michael L. Littman, and David Barber. On the Computational Complexity of

Stochastic Controller Optimization in POMDPs. TOCT, 4(4):12:1–12:8, 2012.
57 Wolfram Wiesemann, Daniel Kuhn, and Berç Rustem. Robust Markov Decision Processes.

Math. Oper. Res., 38(1):153–183, 2013.
58 Di Wu and Xenofon D. Koutsoukos. Reachability analysis of uncertain systems using bounded-

parameter Markov decision processes. Artif. Intell., 172(8-9):945–954, 2008.

CONCUR 2019

Timed Basic Parallel Processes
Lorenzo Clemente
University of Warsaw, Poland

Piotr Hofman
University of Warsaw, Poland

Patrick Totzke
University of Liverpool, UK

Abstract
Timed basic parallel processes (TBPP) extend communication-free Petri nets (aka. BPP or commut-
ative context-free grammars) by a global notion of time. TBPP can be seen as an extension of timed
automata (TA) with context-free branching rules, and as such may be used to model networks of
independent timed automata with process creation. We show that the coverability and reachability
problems (with unary encoded target multiplicities) are PSPACE-complete and EXPTIME-complete,
respectively. For the special case of 1-clock TBPP, both are NP-complete and hence not more
complex than for untimed BPP. This contrasts with known super-Ackermannian-completeness and
undecidability results for general timed Petri nets. As a result of independent interest, and basis for
our NP upper bounds, we show that the reachability relation of 1-clock TA can be expressed by a
formula of polynomial size in the existential fragment of linear arithmetic, which improves on recent
results from the literature.

2012 ACM Subject Classification Theory of computation → Timed and hybrid models

Keywords and phrases Timed Automata, Petri Nets

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2019.15

Related Version An accompanying technical report is available at https://arxiv.org/abs/1907.
01240 [17].

Funding Lorenzo Clemente: Partially supported by Polish NCN grant 2017/26/D/ST6/00201.
Piotr Hofman: Partially supported by Polish NCN grant 2016/21/D/ST6/01368.

Acknowledgements Many thanks to Rasmus Ibsen-Jensen for helpful discussions and pointing us
towards [29].

1 Introduction

We study safety properties of unbounded networks of timed processes, where time is global
and elapses at the same rate for every process. Each process is a timed automaton (TA) [7]
controlling its own set of private clocks, not accessible to the other processes. A process can
dynamically create new sub-processes, which are thereafter independent from each other and
their parent, and can also terminate its execution and disappear from the network.

While such systems can be conveniently modelled in timed Petri nets (TdPN), verification
problems for this model are either undecidable or prohibitively complex: The reachability
problem is undecidable even when individual processes carry only one clock [41] and the
coverability problem is undecidable for two or more clocks. In the one-clock case coverability
remains decidable but its complexity is hyper-Ackermannian [6, 28].

These hardness results however require unrestricted synchronization between processes,
which motivates us to study of the communication-free fragment of TdPN, called timed basic
parallel processes (TBPP) in this paper. This model subsumes both TA and communication-

© Lorenzo Clemente, Piotr Hofman, and Patrick Totzke;
licensed under Creative Commons License CC-BY

30th International Conference on Concurrency Theory (CONCUR 2019).
Editors: Wan Fokkink and Rob van Glabbeek; Article No. 15; pp. 15:1–15:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-0578-9103
https://orcid.org/0000-0001-9866-3723
https://orcid.org/0000-0001-5274-8190
https://doi.org/10.4230/LIPIcs.CONCUR.2019.15
https://arxiv.org/abs/1907.01240
https://arxiv.org/abs/1907.01240
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 Timed Basic Parallel Processes

free Petri nets (a.k.a. BPP [14, 24]). The general picture that we obtain is that extending
communication-free Petri nets by a global notion of time comes at no extra cost in the
complexity of safety checking, and it improves on the prohibitive complexities of TdPN.

Our contributions. We show that the TBPP coverability problem is PSPACE-complete,
matching same complexity for TA [7, 25], and that the more general TBPP reachability
problem is EXPTIME-complete, thus improving on the undecidability of TdPN. The lower
bounds already hold for TBPP with two clocks if constants are encoded in binary; EXPTIME-
hardness for reachability with no restriction on the number of clocks holds for constants
in {0, 1}. The upper bounds are obtained by reduction to TA reachability and reachability
games [30], and assume that process multiplicities in target configurations are given in unary.

In the single-clock case, we show that both TBPP coverability and reachability are
NP-complete, matching the same complexity for (untimed) BPP [24]. This paves the way
for the automatic verification of unbounded networks of 1-clock timed processes, which
is currently lacking in mainstream verification tools such as UPPAAL [34] and KRONOS
[46]. The NP lower bound already holds when the target configuration has size 2; when
it has size one, 1-clock TBPP coverability becomes NL-complete, again matching the same
complexity for 1-clock TA [33] (and we conjecture that 1-clock reachability is in PTIME under
the same restriction).

As a contribution of independent interest, we show that the ternary reachability relation of
1-clock TA can be expressed by a formula of existential linear arithmetic (∃LA) of polynomial
size. By ternary reachability relation we mean the family of relations {→pq} s.t. µ

δ→pq ν

holds if from control location p and clock valuation µ ∈ Rk≥0 it is possible to reach control
location q and clock valuation ν ∈ Rk≥0 in exactly δ ∈ R≥0 time. This should be contrasted
with analogous results (cf. [27]) which construct formulas of exponential size, even in the
case of 1-clock TA. Since the satisfiability problem for ∃LA is decidable in NP, we obtain a
NP upper bound to decide ternary reachability →pq. We show that the logical approach
is optimal by providing a matching NP lower bound for the same problem. Our NP upper
bounds for the 1-clock TBPP coverability and reachability problems are obtained as an
application of our logical expressibility result above, and the fact that ∃LA is in NP; as a
further technical ingredient we use polynomial bounds on the piecewise-linear description of
value functions in 1-clock priced timed games [29].

Related research. Starting from the seminal PSPACE-completeness result of the nonempti-
ness problem for TA [7] (cf. also [25]), a rich literature has emerged considered more challen-
ging verification problems, including the symbolic description of the reachability relation
[20, 22, 31, 23, 27]. There are many natural generalizations of TA to add extra modelling cap-
abilities, including time Petri Nets [36, 38] (which associate timing constraints to transitions)
the already mentioned timed Petri nets (TdPN) [41, 6, 28] (where tokens carry clocks which
are tested by transitions), networks of timed processes [5], several variants of timed pushdown
automata [12, 21, 8, 43, 2, 40, 9, 19, 18], timed communicating automata [32, 16, 4, 15], and
their lossy variant [1], and timed process calculi based on Milners CCS (e.g. [10]). While
decision problems for TdPN have prohibitive complexity/are undecidable, it has recently been
shown that structural safety properties are PSPACE-complete using forward accelerations [3].

Outline. In Section 2 we define TBPP and their reachability and coverability decision
problems. In Section 3 we show that the reachability relation for 1-clock timed automata
can be expressed in polynomial time in an existential formula of linear arithmetic, and that

L. Clemente, P. Hofman, and P. Totzke 15:3

the latter logic is in NP. We apply this result in Sec. 4 to show that the reachability and
coverability problems for 1-clock TBPP is NP-complete. Finally, in Section 5 we study the
case of TBPP with k ≥ 2 clocks, and in Section 6 we draw conclusions. Full proofs can be
found in the technical report [17].

2 Preliminaries

Notations. We use N and R≥0 to denote the sets of nonnegative integers and reals, respect-
ively. For c ∈ R≥0 we write int(c) ∈ N for its integer part and frac(c) def= c − int(c) for its
fractional part. For a set X , we use X ∗ to denote the set of finite sequences over X and X⊕
to denote the set of finite multisets over X , i.e., functions NX . We denote the empty multiset
by ∅, we denote the union of two multisets α, β ∈ NX by α+ β, which is defined point-wise,
and by α ≤ β we denote the natural partial order on multisets, also defined point-wise. The
size of a multiset α ∈ NX is |α| =

∑
X∈X α(X). We overload notation and we let X ∈ X

denote the singleton multiset of size 1 containing element X. For example, if X,Y ∈ X , then
the multiset consisting of 1 occurrence of X and 2 of Y will be denoted by α = X + Y + Y ;
it has size |α| = 3.

Clocks. Let C be a finite set of clocks. A clock valuation is a function µ ∈ RC≥0 assigning a
nonnegative real to every clock. For t ∈ R≥0, we write µ+ t for the valuation that maps clock
x ∈ C to µ(x) + t. For a clock x ∈ C and a clock or constant e ∈ C ∪ N let µ[x := e] be the
valuation ν s.t. ν(x) = µ(e) and ν(z) = µ(z) for every other clock z 6= x (where we assume
µ(k) = k for a constant k ∈ N); for a sequence of assignments R = (x1 := e1; · · · ;xn := en)
let µ[R] = µ[x1 := e1] · · · [xn := en]. A clock constraint is a conjunction of linear inequalities
of the form c ./ k, where c ∈ C, k ∈ N, and ./ ∈ {<,≤,=,≥, >}; we also allow true for the
trivial constraint which is always satisfied. We write µ |= ϕ to denote that the valuation µ
satisfies the constraint ϕ.

Timed basic parallel processes. A timed basic parallel process (TBPP) consists of finite
sets C, X , and R of clocks, nonterminal symbols, and rules. Each rule is of the form

X
ϕ;R==⇒ α

where X ∈ X is a nonterminal, ϕ is a clock constraint, R is a sequence of assignments of
the form x := e, where e is either a constant in N or a clock in C, and α ∈ X⊕ is a finite
multiset of successor nonterminals1. Whenever the test ϕ ≡ true is trivial, or R is the empty
sequence, we just omit the corresponding component and just write X ϕ=⇒ α, X R=⇒ α, or
X =⇒ α. Finally, we say that we reset the clock xi if we assign it to 0.

Henceforth, we assume w.l.o.g. that the size |α| is at most 2. A rule with α = ∅ is called
a vanishing rule, and a rule with |α| = 2 is called a branching rule. We will write k-TBPP to
denote the class of TBPP with k clocks.

A process is a pair (X,µ) ∈ X × RC≥0 comprised of a nonterminal X and a clock
valuation µ, and a configuration α is a multiset of processes, i.e., α ∈ (X × RC≥0)⊕. For
a process P = (X,µ) and t ∈ R≥0, we denote by P + t the process (X,µ + t), and for a

1 We note that clock updates x := k with k ∈ N can be encoded with only a polynomial blow-up by
replacing them with x := 0, while recording in the finite control the last update k, and replacing a
test x ./ h with x ./ h − k. We use them as a syntactic sugar to simplify the presentation of some
constructions.

CONCUR 2019

15:4 Timed Basic Parallel Processes

configuration α = P1 + · · ·+ Pn, we denote by α+ t the configuration Q1 + · · ·+Qn, where
Q1 = P1 + t, . . . , Qn = Pn + t. The semantics of a TBPP (C,X ,R) is given by an infinite
timed transition system (C,→), where C = (X × RC≥0)⊕ is the set of configurations, and
→⊆ C × R≥0 × C is the transition relation between configurations. There are two kinds
of transitions:

Time elapse: For every configuration α ∈ C and t ∈ R≥0, there is a transition α t−→ α + t

in which all clocks in all processes are simultaneously increased by t. In particular, the
empty configuration stutters: ∅ t−→ ∅, for every t ∈ R≥0.

Discrete transitions: For every configuration γ = α+ (X,µ) +β ∈ C and rule X ϕ;R==⇒ Y +Z

s.t. µ |= ϕ there is a transition γ 0−−→ α+(Y, ν)+(Z, ν)+β, where ν = µ[R]. Analogously,

rules X ϕ;R==⇒ Y and X ϕ;R==⇒ ∅ induce transitions γ 0−−→ α+ (Y, ν) + β and γ 0−−→ α+ β.

A run starting in α and ending in β is a sequence of transitions α = α0
t1−−→ α1 · · ·

tn−−→ αn = β.
We write α t−−→ β whenever there is a run as above where the sum of delays is t = t1 + · · ·+ tn,
and we write α ∗−−→ β whenever α t−−→ β for some t ∈ R≥0.

TBPP generalise several known models: A timed automaton (TA) [7] is a TBPP without
branching rules; in the context of TA, we will sometimes call nonterminals with the more
standard name of control locations. Untimed basic parallel processes (BPP) [14, 24] are TBPP
over the empty set of clocks X = ∅. TBPP can also be seen as a structural restriction of
timed Petri nets [6, 28] where each transition consumes only one token at a time.

TBPP are related to alternating timed automata (ATA) [37, 35]: Branching in TBPP
rules corresponds to universal transitions in ATA. However, ATA offer additional means of
synchronisation between the different branches of a run tree: While in a TBPP synchronisation
is possible only through the elapse of time, in an ATA all branches must read the same timed
input word.

Decision problems. We are interested in checking safety properties of TBPP in the form of
the following decision problems. The reachability problem asks whether a target configuration
is reachable from a source configuration.

Input: A TBPP (C,X ,R), an initial X ∈ X and target nonterminals T1, . . . , Tn ∈ X .
Question: Does (X,~0) ∗−−→ (T1,~0) + · · ·+ (Tn,~0) hold?

It is crucial that we reach all processes in the target configurations at the same time, which
provides an external form of global synchronisation between processes.

Motivated both by complexity considerations and applications for safety checking, we
study the coverability problem, where it suffices to reach some configuration larger than the
given target in the multiset order. For configurations α, β ∈ (X × RC≥0)⊕, let α ∗−−→·≥ β

whenever there exists γ ∈ (X × RC≥0)⊕ s.t. α ∗−−→ γ ≥ β.

Input: A TBPP (C,X ,R), an initial X ∈ X and target nonterminals T1, . . . , Tn ∈ X .
Question: Does (X,~0) ∗−−→·≥ (T1,~0) + · · ·+ (Tn,~0)?

The simple reachability/coverability problems are as above but with the restriction that
the target configuration is of size 1, i.e., a single process. Notice that this is a proper
restriction, since reachability and coverability do not reduce in general to their simple variant.
Finally, the non-emptiness problem is the special case of the reachability problem where the
target configuration α is the empty multiset ∅.

L. Clemente, P. Hofman, and P. Totzke 15:5

In all decision problems above the restriction to zero-valued clocks in the initial process
is mere convenience, since we could introduce a new initial nonterminal Y and a transition
Y

x1:=µ(x1);...;xn:=µ(xn)===============⇒ X initialising the clocks to the initial values provided by the (rational)
clock valuation µ ∈ QC≥0. Similarly, if we wanted to reach the final configuration α = (X1, µ1)+
(X2, µ2) with µ1, µ2 ∈ QC≥0, then we could add two nonterminals Y1, Y2 and two new rules

X1
x1=µ1(x1)∧···∧xn=µ1(xn);x1:=0;...;xn:=0===========================⇒ Y1 and X2

x1=µ2(x1)∧···∧xn=µ2(xn);x1:=0;...;xn:=0===========================⇒ Y2

and check whether X ∗−−→ (Y1,~0) + (Y2,~0) holds. (It is standard to transform TBPP with
constraints of the form xi = k with k ∈ Q≥0 in the form xi = k with k ∈ N.) Similarly, the
restriction of having just one initial nonterminal process is also w.l.o.g., since if we wanted to
check reachability from (X1,~0) + (X2,~0) we could just add a new initial nonterminal X and
a branching rule X =⇒ X1 +X2.

For complexity considerations we will assume that all constants appearing in clock
constraints are given in binary encoding, and that the multiplicities of target processes
are in unary.

3 Reachability Relations of One-Clock Timed Automata

In this section we show that the reachability relation of 1-clock TA is expressible as an
existential formula of linear arithmetic of polynomial size. Since the latter fragment is in NP,
this gives an NP algorithm to check whether a family of TA can reach the respective final
locations at the same time. This result will be applied in Sec. 4 to show that coverability and
reachability of 1-TBPP are in NP. We first show that existential linear arithmetic is in NP
(which is an observation of independent interest), and then how to express the reachability
relation of 1-TA in existential linear arithmetic in polynomial time.

The set of terms t is generated by the following abstract grammar

s, t ::= x | k | btc | frac(t) | −t | s+ t | k · t,

where x is a rational variable, k ∈ Z is an integer constant encoded in binary, btc represents
the integral part of t, and frac(t) its fractional part. Linear arithmetic (LA) is the first order
language with atomic proposition of the form s ≤ t [45], we denote by ∃LA its existential
fragment, and by qf-LA its quantifier-free fragment. Linear arithmetic generalises both
Presburger arithmetic (PA) and rational arithmetic (RA), whose existential fragments are
known to be in NP [39, 26]. This can be generalised to ∃LA. (The same result can be derived
from the analysis of [11, Theorem 3.1]).

I Theorem 1. The existential fragment ∃LA of LA is in NP.

Let A = (C,X ,R) be a k-TA. The ternary reachability relation of A is the family of
relations {→XY }X,Y ∈X , where each →XY⊆ RC≥0 × R≥0 × RC≥0 is defined as: µ δ→XY ν

iff (X,µ) δ−−→ (Y, ν). We say that the reachability relation is expressed by a family of LA
formulas {ϕXY }X,Y ∈X if

µ
δ→XY ν iff (µ, δ, ν) |= ϕXY (~x, t, ~y), for every X,Y ∈ X , µ, ν ∈ RC≥0, δ ∈ R≥0.

In the formula ϕXY (~x, t, ~y), ~x are k variables representing the clock values in location X at
the beginning of the run, ~y are k variables representing the clock values in location Y at the
end of the run, and t is a single variable representing the total time elapsed during the run.
In the rest of this section, we assume that the TA has only one clock X = {x}.

CONCUR 2019

15:6 Timed Basic Parallel Processes

The main result of this section is that 1-TA reachability relations are expressible by ∃LA
formulas constructible in polynomial time.

I Theorem 2. Let A be a 1-TA. The reachability relation {→XY }X,Y ∈X is expressible as a
family of formulas {ϕXY }X,Y ∈X of existential linear arithmetic ∃LA in polynomial time.

In the rest of the section we prove the theorem above. We begin with some preliminaries.

Interval abstraction. We replace the integer value of the clock x by its interval [33]. Let
0 = k0 < k1 < · · · < kn < kn+1 =∞ be all integer constants appearing in constraints of A,
and let the set of intervals be the following totally ordered set:

Λ = {{k0} < (k0, k1) < {k1} < · · · < (kn−1, kn) < {kn} < (kn, kn+1)} .

Clearly, we can resolve any constraint of A by looking at the interval λ ∈ Λ. We write λ |= ϕ

whenever v |= ϕ for some v ∈ λ (whose choice does not matter by the definition of λ).

The construction. Let A = ({x} ,X ,R) be a TA. In order to simplify the presentation
below, we assume w.l.o.g. that the only clock updates are resets x := 0 (cf. footnote 1). We
build an NFA B = (Σ, Q,→) where Σ contains symbols (r, ε) and (r,Xλ) for every transition
r ∈ R of A and interval λ ∈ Λ, and an additional symbol τ representing time elapse, and
Q = X × Λ is a set of states of the form (X,λ), where X ∈ X is a control location of
A and λ ∈ Λ is an interval. Transitions →⊆ Q × Σ × Q are defined as follows. A rule
r = X

ϕ;R==⇒ Y ∈ R of A generates one or more transitions in B of the form

(X,λ) (r,a)−−−→ (Y, µ)

whenever λ |= ϕ and any of the following two conditions is satisfied:
the clock is not reset i.e R is equal x := x, and µ = λ, a = ε, or
the clock is reset x := 0, µ = {0}, and the automaton emits a tick a = Xλ.

A time elapse transition is simulated in B by transitions of the form

(X,λ) τ−−→ (X,µ), λ ≤ µ (the total ordering on intervals).

Reachability relation of A. For a set of finite words L ⊆ Σ∗, let ψL(~y) be a formula of
existential Presburger arithmetic with a free integral variable yλ for every interval λ ∈ Λ
counting the number of symbols of the form (r,Xλ), for some r ∈ R. The formula ψL can be
computed from the Parikh image of L: By [44, Theorem 4], a formula ψ̃L(~z) of existential
Presburger arithmetic can be computed in linear time from an NFA (or even a context-free
grammar) recognising L, and then one just defines ψL(~y) ≡ ∃~z ·ψ̃L(~z)∧

∧
λ∈Λ yλ =

∑
r∈R zr,λ.

Let Lcd be the regular language recognised by B by making c initial and d final, and let
Λ = {λ0, . . . , λ2n+1} contain 2n + 2 intervals. Let ψcd(x, t, x′) be a formula of existential
Presburger arithmetic computing the total elapsed time t, given the initial x and final x′
values of the unique clock:

ψcd(x, t, x′) ≡ ∃y0, . . . , y2n+1 · ψLcd
(by0c, . . . , by2n+1c) ∧

∃z0, . . . , z2n+1 ·
∧
λi∈Λ

(zi ∈ yi · λi) ∧ t = x′ − x+
∑
λi∈Λ

zi, where

z ∈ y · λ ≡
{
a · y < z < b · y if λ = (a, b),
z = a · y if λ = {a} .

L. Clemente, P. Hofman, and P. Totzke 15:7

Intuitively, yi represents the total number of times the clock is reset while in interval λi, and
zi represents the sum of the values of the clock when it is reset in interval λi. For control
locations X,Y of A, let

ϕXY (x, t, x′) ≡
∨

λ,µ∈Λ

{x ∈ λ ∧ x′ ∈ µ ∧ ψcd(x, t, x′) | c = (X,λ), d = (Y, µ)}.

The correctness of the construction is stated below.

I Lemma 3. For every configurations (X,u) and (Y, v) of A and total time elapse δ ≥ 0,

u
δ→XY v iff (u, δ, v) |= ϕXY (x, t, x′).

We conclude this section by applying Theorem 2 to solve the 1-TA ternary reachability
problem. The ternary reachability problem takes as input a TA A as above, with two
distinguished control locations X,Y ∈ X , and a total duration δ ∈ Q (encoded in binary),
and asks whether (~0) δ→XY (~0). The result below shows that computing 1-TA reachability
relations is optimal in order to solve the ternary reachability problem.

I Theorem 4. The ternary reachability problem for 1-TA is NP-complete.

Proof. For the upper bound, apply Theorem 2 to construct in polynomial time a formula of
∃LA expressing the reachability relation and check satisfiability in NP thanks to Theorem 1.

The lower bound can be seen by reduction from SubsetSum. Let S = {a1, . . . , ak} ⊆ N
and a ∈ N be the input to the subset sum problem, whereby we look for a subset S ′ ⊆ S
s.t. a =

∑
b∈S′ b. We construct a TA with a single clock x and locations X = {X0, . . . , Xk},

where X0 is the initial location and Xk the target. A path through the system describes a
subset by spending exactly 0 or ai time in location Xi (see Figure 1). In the constructed
automaton, (X1, 0) a−−→ (Xk, 0) iff the subset sum instance was positive. J

X0 X1 X2 Xk−1 Xk

x = a1;x := 0

x = 0

x = a2;x := 0

x = 0

x = ak;x := 0

x = 0

Figure 1 Reduction from subset sum to 1-TA (ternary) reachability. We have (X0, 0) t−−→ (Xk, 0)
iff t =

∑
b∈S′ b for some subset S ′ ⊆ {a1, . . . , ak}.

4 One-Clock TBPP

As a warm-up we note that the simple coverability problem for 1-TBPP, where the target
has size one, is inter-reducible with the reachability problem for 1-clock TA and hence
NL-complete [33].

I Theorem 5. The simple coverability problem for 1-clock TBPP is NL-complete.

Proof. The lower bound is trivial since 1-TBPP generalize 1-TA. For the other direction we
can transform a given TBPP into a TA by replacing branching rules of the form X

ϕ,R==⇒ Y +Z

with two rules X ϕ,R==⇒ Y and X ϕ,R==⇒ Z. In the constructed TA we have (X,µ) ∗−−→ (Y, ν) if,

and only if, (X,µ) ∗−−→ (Y, ν) + γ for some γ in the original TBPP. J

CONCUR 2019

15:8 Timed Basic Parallel Processes

The construction above works because the target is a single process and so there are no
constraints on the other processes in γ, which were produced as side-effects by the branching
rules. The (non-simple) 1-TBPP coverability problem is in fact NP-complete. Indeed, even for
untimed BPP, coverability is NP-hard, and this holds already when target sets are encoded
in unary (which is the setting we are considering here) [24]. We show that for 1-TBPP this
lower bound already holds if the target has fixed size 2.

I Lemma 6. Coverability is NP-hard for 1-TBPP already for target sets of size ≥ 2.

Proof. We proceed by reduction from subset sum as in Theorem 4. The only difference
will be that here, we use one extra process to keep track of the total elapsed time. Let
S = {a1, . . . , ak} ⊆ N and t ∈ N be the input to the subset sum problem. We construct
a 1-TBPP with nonterminals X = {S,X0, . . . , Xk, Y }, where S is the initial nonterminal
and Y will be used to keep track of the total time elapsed. The rules are as in the proof
of Theorem 4, and additionally we have an initial branching rule S x=0==⇒ X0 + Y . We have

(S, 0) ∗−−→·≥ (Xk, 0) + (Y, t) if, and only if, t =
∑
b∈B b for some subset S ′ ⊆ S. J

In the remainder of this section we will argue (Theorem 11) that a matching NP upper
bound even holds for the reachability problem for 1-TBPP. Let us first motivate the key idea
behind the construction. Consider the following TBPP coverability query:

(S, 0) ∗−−→·≥ (A, 0) + (B, 0). (†)

If (†) holds, then there is a derivation tree witnessing that (S, 0) ∗−−→ (A, 0) + (B, 0) + γ for
some configuration γ. The least common ancestor of leaves (A, 0) and (B, 0) is some process
(C, c) ∈ (X × R≥0). Consider the TA A obtained from the TBPP by replacing branching
rules X ϕ;R==⇒ Xi +Xj with linear rules X ϕ;R==⇒ Xi and X

ϕ;R==⇒ Xj , and let the reachability
relation of A be expressed by ∃LA formulas {ϕXY }X,Y ∈X , which are of polynomial size
by Theorem 2. Then our original coverability query (†) is equivalent to satisfiability the
following ∃LA formula:

ψ ≡ ∃t0, t1, c ∈ R · (ϕSC(0, t0, c) ∧ ϕCA(c, t1, 0) ∧ ϕCB(c, t1, 0)) .

More generally, for any coverability query (S, 0) ∗−−→·≥ α the number of common ancestors
is linear in |α|, and thus we obtain a ∃LA formula ψ of polynomial size, whose satisfiability
we can check in NP thanks to Theorem 1.

I Theorem 7. The coverability problem for 1-clock TBPP is NP-complete.

In order to witness reachability instances we need to refine the argument above to restrict
the TA in such a way that they do not accidentally produce processes that cannot be removed
in time. To illustrate this point, consider a 1-TBPP with rules

X
x=0==⇒ Y + Z and Z

x>0==⇒ ∅.

Clearly (X, 0) ∗−−→ (Y, 0) holds in the TA with rules X x=0==⇒ Y and X x=0==⇒ Z instead of the
branching rule above. In the TBPP however, (X, 0) cannot reach (Y, 0) because the branching
rule produces a process (Z, 0), which needs a positive amount of time to be rewritten to ∅.

L. Clemente, P. Hofman, and P. Totzke 15:9

I Definition 8. For a nonterminal X let VanishX ⊆ R2 be the binary predicate such that

VanishX(x, t) if (X,x) t−−→ ∅

Intuitively, VanishX(x, t) holds if the configuration (X,x) can vanish in time at most t.
The time it takes to remove a processes (Z, z) can be computed as the value of a one-

clock priced timed game [13, 29]. These are two-player games played on 1-clock TA where
players aim to minimize/maximize the cost of a play leading up to a designated target state.
Nonnegative costs may be incurred either by taking transitions, or by letting time elapse.
In the latter case, the incurred cost is a linear function of time, determined by the current
control-state. Bouyer et al. [13] prove that such games admit ε-optimal strategies for both
players, so have well-defined cost value functions determining the best cost as a function
of control-states and clock valuation. They prove that these value functions are in fact
piecewise-linear. Hansen et al. [29] later show that the piecewise-linear description has only
polynomially many line segments and can be computed in polynomial time2. We derive the
following lemma.

I Lemma 9. A qf-LA formula expressing VanishX is effectively computable in polyno-
mial time. More precisely, there is a set I of polynomially many consecutive intervals
{a0}(a0, a1){a1}(a1, a2){a2}, . . . (ak,∞) so that

VanishX(x, t) ≡
∨

0≤i≤k
(x = ai ∧ t ≥i ci) ∨ (ai < x < ai+1 ∧ t ≥i ci − bix),

where the ai, ci ∈ R can be represented using polynomially many bits, ≥i∈ {≥, >} and
bi ∈ {0, 1}, for all 0 ≤ i < k.

Proof (Sketch). One can construct a one-clock priced timed game in which minimizer’s
strategies correspond to derivation trees. To do this, let unary rules X ϕ;R==⇒ Y carry over

as transitions between (minimizer) states X,Y ; vanishing rules X ϕ=⇒ ∅ are replaced by
transitions leading to a new target state ⊥, which has a clock-resetting self-loop. Branching
rules X ϕ;R==⇒ Y + Z can be implemented by rules X ϕ=⇒ [Y,Z, ϕ], [Y, Z, ϕ] ϕ;R==⇒ Y and

[Y,Z, ϕ] ϕ;R==⇒ Z, where X,Y, Z are minimizer states and [Y, Z, ϕ] is a maximizer state. The
cost of staying in a state is 1, transitions carry no costs. Moreover, we need to prevent
maximizer from elapsing time from the states she controls. For this reason, we consider an
extension of price timed games where maximizer cannot elapse time. In the constructed
game, minimizer has a strategy to reach (⊥, 0) from (X,x) at cost t iff (X,x) t−−→ ∅. The
result now follows from [29, Theorem 4.11] (with minor adaptations in order to consider the
more restrictive case where maximizer cannot elapse time) that computes value functions
for the cost of reachability in priced timed games. These are piecewise-linear with only
polynomially many line segments of slopes 0 or 1 which allows to present VanishX in qf-LA
as stated. J

Lemma 9 allows us to compute a polynomial number of intervals I sufficient to describe
the VanishX predicates. We will call a pair (X, I) ∈ X ×I a region here. A crucial ingredient
for our construction will be timed automata that are restricted in which regions they are
allowed to produce as side-effects. To simplify notations let us assume w.l.o.g. that the given

2 This observation was already made, without proof, in [42, Sec. 7.2.2].

CONCUR 2019

15:10 Timed Basic Parallel Processes

TBPP has no resets along branching rules. Let I(r) ∈ I denote the unique interval containing
r ∈ R≥0, and for a subset S ⊆ X × I of regions write “Z ∈ S” for the clock constraint
expressing that (Z, I(x)) ∈ S. More precisely,

Z ∈ S ≡
∨

(Z,(ai,ai+1))∈S

ai < x < ai+1 ∨
∨

(Z,{ai}))∈S

ai = x.

I Definition 10. Let S ⊆ X × I be a set of regions for the 1-TBPP ({x},X ,R). We define
a timed automaton TAS = ({x},X ,RS) so that RS contains all of the rules in R with rhs
of size 1 and none of the vanishing rules. Moreover, every branching rule X ϕ=⇒ Y + Z in R
introduces

a rule X ϕ′=⇒ Y guarded by ϕ′ def= ϕ ∧ Z ∈ S, and

a rule X ϕ′=⇒ Z guarded by ϕ′ def= ϕ ∧ Y ∈ S.

I Theorem 11. The reachability problem for 1-clock TBPP is in NP.

Proof. Suppose that there is a derivation tree witnessing a positive instance of the reachability
problem and so that all branches leading to targets have duration τ . We can represent a
node by a triple (A, a, â) ∈ (X × R × R), where (A, a) is a TBPP process and the third
component â is the total time elapsed so far. Call a node (A, a, â) productive if it lies on a
branch from root to some target node. Naturally, every node (A, a, â) has a unique region
(A, I(a)) associated with it. For a productive node let us write

S(A, a, â)

for the set of regions of nodes which are descendants of (A, a, â) which are non-productive
but have a productive parent. See Figure 2 (left) for an illustration. Observe that

1. The sets S(A, a, â) can only decrease along a branch from root to a target.
2. If (A, a, â) has a productive descendant (C, c, ĉ) such that S(A, a, â) = S(C, c, ĉ), then

(A, a) ĉ−â−−−→ (C, c) in the timed automaton TAS .
3. Suppose (A, a, â) has only one productive child (C, c, ĉ) and that S(A, a, â) ⊃ S(C, c, ĉ).

Then it must also have another child (B, b, b̂) s.t. VanishB(b, τ − b̂) holds.
The first two conditions are immediate from the definitions of S and TAS . To see the
third, note that the S(A, a, â) ⊃ S(C, c, ĉ) implies that (A, a, â) has some non-productive
descendant (B, b, b̂) whose region (B, I(b)) is not in S(C, c, ĉ). Since (C, c, ĉ) is the only
productive child, that descendant must already be a child of (A, a, â). Finally, observe
that every non-productive node (B, b, b̂) satisfies VanishB(b, τ − b̂), as otherwise one of
its descendants is present at time τ , and thus must be a target node, contradicting the
non-productivity assumption.

The conditions above allow us to use labelled trees of polynomial size as reachability
witnesses: These witnesses are labelled trees as above where only as polynomial number of
checkpoints along branches from root to target are kept: A checkpoint is either the least
common ancestor of two target nodes (in which case a corresponding branching rule must
exist), or otherwise it is a triple of nodes as described by condition (3), where a region
(B, I(b)) is produced for the last time. The remaining paths between checkpoints are positive
reachability instances of timed automata TAS , as in condition (2), where the bottom-most
automata TAS satisfy that if (U, I) ∈ S then (z, 0) ∈ VanishU for all z ∈ I. Cf. Figure 2
(right). Notice that the existence of a witness of this form is expressible as a polynomially
large ∃LA formula thanks to Lemma 9 and Theorem 2.

L. Clemente, P. Hofman, and P. Totzke 15:11

(A, a, â)

(B, b, b̂) (C, c, ĉ)

(U, 0, 0)

(A, a, â)

(B, b, b̂)

(T1, 0, τ) (T2, 0, τ)

(C, c, ĉ)

(T3, 0, τ)

Figure 2 Left: Nodes on the red branch are productive, grey sub-trees are non-productive.
S(A, a, â) contains the regions of nodes in the dotted region. It holds that S(A, a, â) ⊇ S(C, c, ĉ)
and the inequality is strict iff (B, I(b)) ∈ S(C, c, ĉ). Right: small reachability witnesses contain
checkpoint where two productive branches split (in blue) or where the allowed side-effects S strictly
decrease (red). The intermediate paths are runs of S-restricted TA.

Clearly, every full derivation tree gives rise to a witness of this form. Conversely, assume
a witness tree as above exists. One can build a partial derivation tree by unfolding all
intermediate TA paths between consecutive checkpoints. It remains to show that whenever
some TAS uses a rule A ϕ=⇒ C originating from a TBPP rule A ϕ=⇒ B + C to produce a
productive node (C, c, ĉ) then the node (B, b, b̂) produced as side-effect can vanish in time
τ − b̂, i.e., we have to show that then VanishB(b, τ − b̂).

W.l.o.g. let VanishB(x, t) ≡ t ≥ d− xf (the case with > is analogous) for some d ∈ R≥0
and f ∈ {0, 1}. Observe that the region (B, I(b)) is in S by definition of TAS and that the
witness contains a later node (B, b′, b̂′) with VanishB(b′, τ − b̂′), and thus

τ − b̂′ ≥ d− b′f.

Notice also that b′ ≥ b+ b̂′ − b̂ as in the worst-case no reset appears on the path between
the parent of (B, b, b̂) and (B, b′, b̂′). Together with the inequality above we derive that
τ − b̂ ≥ d− bf , meaning that indeed VanishB(b, τ − b̂) holds, as required. J

5 Multi-Clock TBPP

In this section we consider the complexities of coverability and reachability problems for
TBPP with multiple clocks. For the upper bounds we will reduce to the reachability problem
for TA [7] and to solving reachability games for TA [30].

I Theorem 12. The coverability problem for k-TBPP with k ≥ 2 clocks is PSPACE-complete.

Proof. The lower bound already holds for the reachability problem of 2-clock TA [25] and
hence for the simple TBPP coverability. For the upper bound, consider an instance where
A = (C,X ,R) is a k-TBPP and T1, . . . , Tm are the target nonterminals. We reduce to the
reachability problem for TA B = (C′,X ′,R′) with exponentially many control states X ′,
but only |C′| = O(k · |X | ·m) many clocks. The result then follows by the classical region
construction of [7], which requires space logarithmic in the number of nonterminals and

CONCUR 2019

15:12 Timed Basic Parallel Processes

polynomial in the number of clocks. The main idea of this construction is to introduce
(exponentially many) new nonterminals and rules to simulate the original behaviour on
bounded configurations only.

Let n = m + 2. We have a clock xX,i ∈ C′ for every original clock x ∈ C, nonterminal
X ∈ X , and index 1 ≤ i ≤ n, and a nonterminal of the form [α] ∈ R′ for every multiset
α ∈ X⊕ of size at most |α| ≤ n. Since we are solving the coverability problem, we do not need
to address vanishing rules X ϕ;R==⇒ ∅ in R, which are ignored. We will use clock assignments
SX,i ≡

∧
i≤j≤n−1 xX,j := xX,j+1 shifting by one position the clocks corresponding to

occurrences j = i, i+ 1, . . . , n− 1 of X. We have three families of rules:
1. (unary rules). For each rule X

ϕ;R==⇒ Y in R and multiset β ∈ X⊕ of the form
β = γ +X + δ of size |β| ≤ n, for some γ, δ ∈ X⊕, we have a corresponding rule in R′

[β]
ϕ|X,i;R|X,i;Y,j ;SX,i

=============⇒ [γ + Y + δ]

for every occurrence 1 ≤ i ≤ β(X) of X in β and for j = β(Y) + 1, where ϕ|X,i is
obtained from ϕ by replacing each clock x with xX,i, and R|X,i;Y,j is obtained from R by
replacing every assignment x := y by xY,j := xX,i, and x := 0 by xY,j := 0.

2. (branching rules). Let X =⇒ Y +Z in R be a branching rule. We assume w.l.o.g. that
it has no tests and no assignments, and that X,Y, Z are pairwise distinct. We add rules
in R′

[α+X] R;SX,i====⇒ [β], with β = α+ Y + Z and |β| ≤ n,

for all 1 ≤ i ≤ α(X) and α ∈ X⊕, where R ≡
∧
x∈C xY,β(Y) := xX,i ∧ xZ,β(Z) := xX,i

copies each clock xX,i into xY,β(Y) and xZ,β(Z), and SX,i was defined earlier.
3. (shrinking rules). We also add rules that remove unnecessary nonterminals: For every

β = α+X ∈ X⊕ with |β| ≤ n and index 1 ≤ i ≤ β(X) denoting which occurrence of X
in β we want to remove, we have a rule [α+X] Si=⇒ [α] in R′.

It remains to argue that (X,~0) ∗−−→ (T1,~0) + · · ·+ (Tn,~0) in A if, and only if, ([X],~0) ∗−−→
([T1 + · · · + Tn],~0) in B. This can be proven via induction on the depth of the derivation
tree, where the induction hypothesis is that every configuration α of size at most n can be
covered in with a derivation tree of depth d in A if, and only if, in the timed automaton B
the configuration [α] can be reached via a path of length at most d. J

I Theorem 13. The reachability problem for TBPP is EXPTIME-complete. Moreover,
EXPTIME-hardness already holds for k-TBPP emptiness, if 1) k ≥ 2 is any fixed number of
clocks, or 2) k is part of the input but only 0 or 1 appear as constants in clock constraints.

In the remainder of this section contains a proof of this result, in three steps: In the first step
(Lemma 14) we show an EXPTIME upper bound for the special case of simple reachability,
i.e., when the target configuration has size 1. As a second step (Lemma 15) we reduce general
case to simple reachability and thereby prove the upper bound claimed in Theorem 13. As a
third step (Lemma 16), we prove the corresponding lower bound.

I Lemma 14 (Simple reachability). The simple reachability problem for TBPP is in EXPTIME.
More precisely, the complexity is exponential in the number of clocks and the maximal clock
constant, and polynomial in the number of nonterminals.

L. Clemente, P. Hofman, and P. Totzke 15:13

Proof (Sketch). We reduce to TA reachability games, where two players (Min and Max)
alternatingly determine a path of a TA, by letting the player who owns the current nonterminal
pick time elapse and a valid successor configuration. Min and Max aim to minimize/maximize
the time until the play first visits a target nonterminal T . TA reachability games can be
solved in EXPTIME, with the precise time complexity claimed above [30, Theorem 5]. The
idea of the construction is to let Min produce a derivation tree along the branch that leads
to (unique) target process. Whenever she proposes to go along branching rule, Max gets
to claim that the other sibling, not on the main branch, cannot be removed until the main
branch ends. This can be faithfully implemented by storing only the current configuration
on the main branch plus one more configuration (of Max’s choosing) that takes the longest
time to vanish. Min can develop both independently but must apply time delays to both
simultaneously. Min wins the game if she can reach the target nonterminal and before that
moment all the other branches have vanished. J

I Lemma 15. The reachability problem for TBPP is in EXPTIME.

Proof. First notice that the special case of reachability of the empty target set trivially
reduces to the simple reachability problem by adding a dummy nonterminal, which is created
once at the beginning and has to be the only one left at the end. Suppose we have an instance
of the k-TBPP reachability problem with target nonterminals T1, T2, . . . , Tm. We will create
an instance of simple reachability where the number of nonterminals increases exponentially
but the number of clocks is O(k · |X | ·m). In both cases, the claim follows from Lemma 14.

We introduce a nonterminal [β] for every multiset β ∈ X⊕ of size |β| ≤ n := m+ 2, and
we have the same three family of rules as in proof of Theorem 12, where the last family 3. is
replaced by the family below:
3’. We add extra branching rules in order to maintain nonterminals [β] corresponding to small

multisets |β| ≤ n. Let β ∈ X⊕ of size |β| ≤ n and consider a partitioning β = β1 + β2,
for some β1, β2 ∈ X⊕. We identify β with the set β = {(X, i) | X ∈ X , 1 ≤ i ≤ β(X)}
of pairs (X, i), where i denotes the i-th occurrence of X in β (if any), and similarly for
β1, β2. We add a branching rule

[β] =⇒ (β, f, β1) + (β, f, β2),

where (β, f, βi) are intermediate locations, for every bijection f : β → β1 ∪ β2 assigning
an occurrence of X in β to an occurrence of X either in β1 or β2. We then have clock
reassigning (non-branching) rules

(β, f, β1) S1=⇒ [β1] and (β, f, β2) S2=⇒ [β2],

where S1 ≡
∧
x∈C

∧
X∈X

∧
1≤i≤β1(X) xX,i := xf−1(X,i) and similarly for S2. J

I Lemma 16. The non-emptiness problem for TBPP is EXPTIME-hard already in discrete
time, for 1) TBPP with constants in {0, 1} (where the number of clocks is part of the input),
and 2) for k-TBPP for every fixed number of clocks k ≥ 2.

6 Conclusion

We introduced basic parallel processes extended with global time and studied the complexities
of several natural decision problems, including variants of the coverability and reachability
problems. Table 1 summarizes our findings.

CONCUR 2019

15:14 Timed Basic Parallel Processes

The exact complexity status of the simple reachability problem for 1-TBPP is left open.
An NP upper bound holds from the (general) reachability problem (by Theorem 11) and
PTIME-hardness comes from the emptiness problem for context-free grammars. We conjecture
that a matching polynomial-time upper bound holds.

Also left open for future work are succinct versions the coverability and reachability
problems, where the target size is given in binary. A reduction from subset-sum games [25]
shows that the succinct coverability problem for 1-TBPP is PSPACE-hard. This implies that
our technique showing the NP-membership for the non-succinct version of the coverability
problem (cf. Theorem 7) does not extend to the succinct variant, and new ideas are needed.

Table 1 Results on TBPP and 1-clock TBPP. The decision problems are complete for the stated
complexity class. Simple Coverability/Reachability refer to the variants where the target has size 1.

Emptiness Simple
Coverability

Coverability Simple
Reachability

Reachability

TBPP EXPTIME
[Lem 16], [30]

PSPACE
[Thm 12]

PSPACE
[Thm 12]

EXPTIME
[Thm 14]

EXPTIME
[Thm 13]

1-TBPP PTIME
[33]

NL
[33]

NP
[Thm 7]

PTIME / NP NP
[Thm 11]

References
1 P. A. Abdulla, M. F. Atig, and J. Cederberg. Timed Lossy Channel Systems. In IARCS

Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS), 2012. doi:10.4230/LIPIcs.FSTTCS.2012.374.

2 P. A. Abdulla, M. F. Atig, and J. Stenman. Dense-Timed Pushdown Automata. In ACM/IEEE
Symposium on Logic in Computer Science (LICS), 2012. doi:10.1109/LICS.2012.15.

3 Parosh Aziz Abdulla, Mohamed Faouzi Atig, Radu Ciobanu, Richard Mayr, and Patrick Totzke.
Universal Safety for Timed Petri Nets is PSPACE-complete. In International Conference on
Concurrency Theory (CONCUR), 2018. doi:10.4230/LIPIcs.CONCUR.2018.6.

4 Parosh Aziz Abdulla, Mohamed Faouzi Atig, and Shankara Narayanan Krishna. Perfect Timed
Communication Is Hard. In International Conference on Formal Modeling and Analysis of
Timed Systems (FORMATS), 2018.

5 Parosh Aziz Abdulla and Bengt Jonsson. Model checking of systems with many identical
timed processes. Theoretical Computer Science, 2003. doi:10.1016/S0304-3975(01)00330-9.

6 Parosh Aziz Abdulla and Aletta Nylén. Timed Petri Nets and BQOs. In Applications and
Theory of Petri Nets and Concurrency (PETRI NETS), 2001.

7 Rajeev Alur and David L. Dill. A theory of timed automata. Theor. Comput. Sci., 1994.
doi:10.1016/0304-3975(94)90010-8.

8 M. Benerecetti, S. Minopoli, and A. Peron. Analysis of Timed Recursive State Machines. In
International Symposium on Temporal Representation and Reasoning (TIME), 2010. doi:
10.1109/TIME.2010.10.

9 Massimo Benerecetti and Adriano Peron. Timed recursive state machines: Expressiveness and
complexity. Theoretical Computer Science, 2016. doi:10.1016/j.tcs.2016.02.021.

10 Beatrice Bérard, Anne Labroue, and Philippe Schnoebelen. Verifying Performance Equivalence
for Timed Basic Parallel Processes. In International Conference on Foundations of Software
Science and Computational Structures (FoSSaCS), 2000.

11 Bernard Boigelot, Sébastien Jodogne, and Pierre Wolper. An Effective Decision Procedure
for Linear Arithmetic over the Integers and Reals. ACM Trans. Comput. Logic, 2005. doi:
10.1145/1071596.1071601.

https://doi.org/10.4230/LIPIcs.FSTTCS.2012.374
https://doi.org/10.1109/LICS.2012.15
https://doi.org/10.4230/LIPIcs.CONCUR.2018.6
https://doi.org/10.1016/S0304-3975(01)00330-9
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1109/TIME.2010.10
https://doi.org/10.1109/TIME.2010.10
https://doi.org/10.1016/j.tcs.2016.02.021
https://doi.org/10.1145/1071596.1071601
https://doi.org/10.1145/1071596.1071601

L. Clemente, P. Hofman, and P. Totzke 15:15

12 Ahmed Bouajjani, Rachid Echahed, and Riadh Robbana. On the Automatic Verification
of Systems with Continuous Variables and Unbounded Discrete Data Structures. In Hybrid
Systems (HS), 1994.

13 Patricia Bouyer, Kim G. Larsen, Nicolas Markey, and Jacob Illum Rasmussen. Almost Optimal
Strategies in One Clock Priced Timed Games. In IARCS Annual Conference on Foundations
of Software Technology and Theoretical Computer Science (FSTTCS), 2006.

14 Søren Christensen. Decidability and Decomposition in Process Algebras. PhD thesis, School of
Informatics, University of Edinburgh, 1993.

15 Lorenzo Clemente. Decidability of Timed Communicating Automata. arXiv e-prints, 2018.
arXiv:1804.07815.

16 Lorenzo Clemente, Frédéric Herbreteau, Amelie Stainer, and Grégoire Sutre. Reachability of
Communicating Timed Processes. In International Conference on Foundations of Software
Science and Computational Structures (FoSSaCS), 2013. doi:10.1007/978-3-642-37075-5_6.

17 Lorenzo Clemente, Piotr Hofman, and Patrick Totzke. Timed Basic Parallel Processes. arXiv
e-prints, July 2019. arXiv:1907.01240.

18 Lorenzo Clemente and Sławomir Lasota. Binary reachability of timed pushdown automata via
quantifier elimination. In International Colloquium on Automata, Languages and Programming
(ICALP), 2018. doi:10.4230/LIPIcs.ICALP.2018.118.

19 Lorenzo Clemente, Sławomir Lasota, Ranko Lazić, and Filip Mazowiecki. Timed pushdown
automata and branching vector addition systems. In ACM/IEEE Symposium on Logic in
Computer Science (LICS), 2017.

20 Hubert Comon and Yan Jurski. Timed Automata and the Theory of Real Numbers. In
International Conference on Concurrency Theory (CONCUR), 1999.

21 Zhe Dang. Binary Reachability Analysis of Pushdown Timed Automata with Dense Clocks.
In Computer Aided Verification (CAV), 2001.

22 C. Dima. Computing reachability relations in timed automata. In ACM/IEEE Symposium on
Logic in Computer Science (LICS), 2002. doi:10.1109/LICS.2002.1029827.

23 Catalin Dima. A Class of Automata for Computing Reachability Relations in Timed Systems.
In Verification of Infinite State Systems with Applications to Security (VISSAS), 2005.

24 Javier Esparza. Petri Nets, Commutative Context-Free Grammars, and Basic Parallel Processes.
Fundamenta Informaticae, 1997.

25 John Fearnley and Marcin Jurdziński. Reachability in two-clock timed automata is PSPACE-
complete. Information and Computation, 2015. doi:10.1016/j.ic.2014.12.004.

26 Jeanne Ferrante and Charles Rackoff. A Decision Procedure for the First Order Theory of
Real Addition with Order. SIAM Journal on Computing, 1975.

27 Martin Fränzle, Karin Quaas, Mahsa Shirmohammadi, and James Worrell. Effective Definabil-
ity of the Reachability Relation in Timed Automata. arXiv e-prints, 2019. arXiv:1903.09773.

28 Serge Haddad, Sylvain Schmitz, and Philippe Schnoebelen. The Ordinal Recursive Complexity
of Timed-Arc Petri Nets, Data Nets, and Other Enriched Nets. In ACM/IEEE Symposium on
Logic in Computer Science (LICS), 2012. doi:10.1109/LICS.2012.46.

29 Thomas Dueholm Hansen, Rasmus Ibsen-Jensen, and Peter Bro Miltersen. A Faster Algorithm
for Solving One-Clock Priced Timed Games. In International Conference on Concurrency
Theory (CONCUR), 2013.

30 Marcin Jurdziński and Ashutosh Trivedi. Reachability-time Games on Timed Automata. In
International Colloquium on Automata, Languages and Programming (ICALP), 2007.

31 Pavel Krčál and Radek Pelánek. On Sampled Semantics of Timed Systems. In IARCS
Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS), 2005.

32 Pavel Krcal and Wang Yi. Communicating timed automata: the more synchronous, the more
difficult to verify. In Computer Aided Verification (CAV), 2006. doi:10.1007/11817963_24.

33 F. Laroussinie, N. Markey, and Ph. Schnoebelen. Model Checking Timed Automata with One
or Two Clocks. In International Conference on Concurrency Theory (CONCUR), 2004.

CONCUR 2019

http://arxiv.org/abs/1804.07815
https://doi.org/10.1007/978-3-642-37075-5_6
http://arxiv.org/abs/1907.01240
https://doi.org/10.4230/LIPIcs.ICALP.2018.118
https://doi.org/10.1109/LICS.2002.1029827
https://doi.org/10.1016/j.ic.2014.12.004
http://arxiv.org/abs/1903.09773
https://doi.org/10.1109/LICS.2012.46
https://doi.org/10.1007/11817963_24

15:16 Timed Basic Parallel Processes

34 Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a Nutshell. International Journal
on Software Tools for Technology Transfer (STTT), 1997. doi:10.1007/s100090050010.

35 Slawomir Lasota and Igor Walukiewicz. Alternating timed automata. ACM Trans. Comput.
Logic, 2008. doi:10.1145/1342991.1342994.

36 Philip Meir Merlin. A Study of the Recoverability of Computing Systems. PhD thesis, University
of California, Irvine, 1974.

37 J. Ouaknine and J. Worrell. On the decidability of metric temporal logic. In ACM/IEEE
Symposium on Logic in Computer Science (LICS), 2005. doi:10.1109/LICS.2005.33.

38 Louchka Popova. On Time Petri Nets. Journal of Information Processing and Cybernetics,
1991.

39 Mojżesz Presburger. Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer
Zahlen, in welchem die Addition als einzige Operation hervortritt. Comptes Rendus Premier
Congrès des Mathématicienes des Pays Slaves, 1930.

40 Karin Quaas. Verification for Timed Automata extended with Unbounded Discrete Data
Structures. Logical Methods in Computer Science, 2015. doi:10.2168/LMCS-11(3:20)2015.

41 Valentin Valero Ruiz, Fernando Cuartero Gomez, and David de Frutos Escrig. On Non-
Decidability of Reachability for Timed-Arc Petri Nets. In International Workshop on Petri
Nets and Performance Models (PNPM), 1999.

42 Ashutosh Trivedi. Competative Optimisation on Timed Automata. PhD thesis, University of
Warwick, 2009.

43 Ashutosh Trivedi and Dominik Wojtczak. Recursive Timed Automata. In International
Symposium on Automated Technology for Verification and Analysis (ATVA), 2010.

44 Kumar Neeraj Verma, Helmut Seidl, and Thomas Schwentick. On the Complexity of Equational
Horn Clauses. In International Conference on Automated Deduction (CADE), 2005. doi:
10.1007/11532231_25.

45 Volker Weispfenning. Mixed Real-integer Linear Quantifier Elimination. In International
Symposium on Symbolic and Algebraic Computation (ISSAC), 1999. doi:10.1145/309831.
309888.

46 Sergio Yovine. KRONOS: a verification tool for real-time systems. International Journal on
Software Tools for Technology Transfer, 1997. doi:10.1007/s100090050009.

https://doi.org/10.1007/s100090050010
https://doi.org/10.1145/1342991.1342994
https://doi.org/10.1109/LICS.2005.33
https://doi.org/10.2168/LMCS-11(3:20)2015
https://doi.org/10.1007/11532231_25
https://doi.org/10.1007/11532231_25
https://doi.org/10.1145/309831.309888
https://doi.org/10.1145/309831.309888
https://doi.org/10.1007/s100090050009

Revisiting Local Time Semantics for Networks of
Timed Automata
R. Govind
Chennai Mathematical Institute, India
Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400, Talence, France
govindr@cmi.ac.in

Frédéric Herbreteau
Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400, Talence, France
fh@labri.fr

B. Srivathsan
Chennai Mathematical Institute, India
sri@cmi.ac.in

Igor Walukiewicz
Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400, Talence, France
igw@labri.fr

Abstract
We investigate a zone based approach for the reachability problem in timed automata. The challenge
is to alleviate the size explosion of the search space when considering networks of timed automata
working in parallel. In the timed setting this explosion is particularly visible as even different
interleavings of local actions of processes may lead to different zones. Salah et al. in 2006 have
shown that the union of all these different zones is also a zone. This observation was used in an
algorithm which from time to time detects and aggregates these zones into a single zone.

We show that such aggregated zones can be calculated more efficiently using the local time
semantics and the related notion of local zones proposed by Bengtsson et al. in 1998. Next, we point
out a flaw in the existing method to ensure termination of the local zone graph computation. We fix
this with a new algorithm that builds the local zone graph and uses abstraction techniques over
(standard) zones for termination. We evaluate our algorithm on standard examples. On various
examples, we observe an order of magnitude decrease in the search space. On the other examples,
the algorithm performs like the standard zone algorithm.

2012 ACM Subject Classification Theory of computation → Verification by model checking

Keywords and phrases Timed automata, verification, local-time semantics, abstraction

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2019.16

Related Version A full version of this paper is available at [10], http://arxiv.org/abs/1907.02296.

Funding Work supported by UMI 2000 ReLaX, ANR project TickTac, and project IoTTTA –
CEFIPRA Indo-French program in ICST – DST/CNRS ref. 2016-01. Author B. Srivathsan is
partially funded by grants from Infosys Foundation, India and Tata Consultancy Services, India.

1 Introduction

Timed automata [1] are a popular model for real-time systems. They extend finite state
automata with real valued variables called clocks. Constraints on clock values can be used as
guards for transitions, and clocks can be reset to zero during transitions. Often, it is more
natural to use a network of timed automata which operate concurrently and synchronize on
joint actions. We study the reachability problem for networks of timed automata: given a
state of the timed automaton network, is there a run from the initial state to the given state.

© R. Govind, Frédéric Herbreteau, B. Srivathsan, and Igor Walukiewicz;
licensed under Creative Commons License CC-BY

30th International Conference on Concurrency Theory (CONCUR 2019).
Editors: Wan Fokkink and Rob van Glabbeek; Article No. 16; pp. 16:1–16:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:govindr@cmi.ac.in
mailto:fh@labri.fr
mailto:sri@cmi.ac.in
mailto:igw@labri.fr
https://doi.org/10.4230/LIPIcs.CONCUR.2019.16
http://arxiv.org/abs/1907.02296
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 Revisiting Local Time Semantics for Networks of Timed Automata

p0

p1

q0

q1

a
{x}

b
{y}

A1 A2

t ≥ 0
x̃ = ỹ = 0

t ≥ x̃
x̃ ≥ ỹ = 0

t ≥ ỹ
ỹ ≥ x̃ = 0

t ≥ ỹ
ỹ ≥ x̃ ≥ 0

t ≥ x̃
x̃ ≥ ỹ ≥ 0

a b

b a

t1 ≥ x̃ = 0
t2 ≥ ỹ = 0

t1 ≥ x̃ ≥ 0
t2 ≥ ỹ = 0

t1 ≥ x̃ = 0
t2 ≥ ỹ ≥ 0

t1 ≥ x̃ ≥ 0
t2 ≥ ỹ ≥ 0

a b

b a

Network 〈A1, A2〉 Global zone graph Local zone graph

Figure 1 Illustration of commutativity in the local zone graph.

A widely used technique to solve the reachability problem constructs a zone graph [7]
whose nodes are (state, zone) pairs consisting of a state of the automaton and a zone
representing a set of clock valuations [8]. This graph may not be finite, so in order to
guarantee termination of an exploration algorithm, various sound and complete abstraction
techniques are used [7, 2, 12, 9].

Dealing with automata operating in parallel poses the usual state-space explosion problem
arising due to different interleavings. Consider an example of a network with two processes
in Figure 1. Actions a and b are local to each process. Variables x, y are clocks and {x}
denotes that clock x is reset in transition a. The (global) zone graph maintains the set of
configurations reached after each sequence of actions. Although a and b are local actions,
there is an intrinsic dependence between the two processes happening due to time. Hence,
the zone reached after executing sequence ab contains configurations where x is reset before
y and the zone after ba contains configurations where y is reset before x. So the sequences
ab and ba lead to different zones. The number of different interleavings of sequences of local
actions increases exponentially when their length grows, or when more processes get involved.
Every interleaving can potentially lead to a different zone.

Salah et al. [17] have shown a surprising property that the union of all zones reached
by the interleavings of a sequence of actions is also a zone. We call it an aggregated zone.
Their argument is based on the fact that for a given sequence one can write a zone-like
constraint defining all the runs on the interleavings of the sequence. Then the aggregated
zone is obtained simply by projecting this big constraint on relevant components. This
approach requires to work with sets of constraints whose size grows with the length of a
sequence. This is both inefficient and limited to finite sequences. They use this observation
in an algorithm where, when all the interleavings of a sequence σ have been explored, the
resulting zones are aggregated to a single zone and further exploration is restricted to this
aggregated zone. This requires detecting from time to time whether aggregation can happen.
This is an obstacle in using aggregated zones in efficient reachability-checking algorithms.
Another limitation of this approach is that it works only for acyclic automata.

Another approach by Bengtsson et al. [4] involves making time local to each process. This
local time approach is based on a very elegant idea: make time in every process progress
independently, and synchronize local times of processes when they need to perform a common
action. In consequence, the semantics has the desired property: two actions whose process
domains are disjoint are commutative. In the example above, depending on the local time in
processes A1 and A2, the sequence ab may result, on a global time scale, in a occurring before
b, as well as b occurring before a. As a result, the set of valuations reached after ab does not
remember the order in which a and b occurred. Thus, sequences ab and ba lead to the same
set of configurations: those obtained after doing a and b concurrently. Similar to standard
zones, we now have local zones and a local zone graph having (state, local zone) pairs. Due

R. Govind, F. Herbreteau, B. Srivathsan, and I. Walukiewicz 16:3

to the above argument, the local zone graph has a nice property – if a run σ from an initial
zone reaches a local zone, then all the runs equivalent to σ lead to the same local zone.
Local zone graphs are therefore ideal for handling interleavings. However, substantially more
involved abstraction techniques are needed for local zones to make the local zone graph finite.
A subsumption relation between local zones was defined in [4] but no algorithm was proposed
and there was no effective way to use local time semantics. Later Minea [15] proposed a
widening operator on local zones to construct finite local zone graphs.

Summary of results in the paper:
We show that the aggregated zone of interleavings of σ in the standard zone graph is
obtained by synchronizing valuations in the local zone obtained after σ (Theorem 18).
Hence computing the local zone graph gives a more direct and efficient algorithm than
Salah et al. to compute aggregated zones. Moreover, this algorithm is not restricted to
acyclic timed automata.
We point out a flaw in the abstraction procedure of Minea to get a finite local zone graph
(Section 5).
We propose a different algorithm to get a finite local zone graph. This gives a new
reachability algorithm for networks of timed automata, which works with local zones
but uses subsumption on standard zones (Definition 19 and Theorem 20). Instead
of subsumptions between local zones, we use subsumptions between the synchronized
valuations inside these local zones. This helps us to exploit the (well-studied) subsumptions
over standard zones [7, 2, 12, 9]. Moreover, this subsumption is much more aggressive
than the standard one since, thanks to local-time semantics, the (aggregated) zone used
in the subsumption represents all the valuations reachable not only by the execution that
we are exploring but also by all the executions equivalent to it.
We report on experiments performed with a prototype implementation of the algorithm
(Table 1). The algorithm performs surprisingly well on some examples, and it is never
worse than the standard zone graph algorithm.

Related work. The basis of this work is local-time semantics and local zones developed by
Bengtsson et. al. [4]. The authors have left open how to use this semantics to effectively
compute the local zone graph since no efficient procedure was provided to ensure its finiteness.
To that purpose, Minea [16, 15] has proposed a subsumption operation on local zones, and
an algorithm using this operation. Unfortunately, as we exhibit here, the algorithm has a
flaw that is not evident to repair. Lugiez et. al. [14] also use local time but their method is
different. They use constraints to check if local clocks of an execution can be synchronized
sufficiently to obtain a standard run.

Aggregated zones are crucial to obtain an efficient verification procedure for networks of
timed automata. Coming to the same state with different zones inflicts a huge blowup in the
zone graph, since the same paths are explored independently from each of these zones. This
has also been observed in the context of multi-threaded program verification in [18]. Solving
this problem in the context of program analysis requires to over approximate the aggregated
state. Fortunately, in the context of timed automata, the result of aggregating these zones in
still a zone [17]. Efficient computation of aggregated zones is thus an important advance in
timed automata verification as demonstrated by our experimental results in Section 6. A full
version of this paper is available at [10].

CONCUR 2019

16:4 Revisiting Local Time Semantics for Networks of Timed Automata

2 Networks of timed automata

We start by defining networks of timed automata and two semantics for them: a global-time
semantics (the usual one) and a local-time semantics (introduced in [4]). Then, we recall the
fact that they are equivalent, and state some interesting properties of local-time semantics
w.r.t. concurrency that were observed in [4]. Let N denote the set of natural numbers and
R≥0 the set of non-negative reals. Let X be a finite set of variables called clocks. Let φ(X)
denote a set of clock constraints generated by the following grammar: φ := x ∼ c | φ ∧ φ
where x ∈ X, c ∈ N, and ∼ ∈ {<,≤,=,≥, >}.

I Definition 1 (Network of timed automata). A network of timed automata with k processes,
is a k-tuple of timed automata A1, . . . , Ak. Each process Ap = 〈Qp,Σp, Xp, q

init
p , Tp〉 has a

finite set of states Qp, a finite alphabet of actions Σp, a finite set of clocks Xp, an initial
state qinit

p , and transitions Tp ⊆ Σp ×Qp × φ(Xp)× 2Xp ×Qp. We require that the sets of
states, and the sets of clocks are pairwise disjoint: Qp1 ∩Qp2 = ∅, and Xp1 ∩Xp2 = ∅ for
p1 6= p2. We write Proc for the set of all processes.

A network is a parallel composition of timed automata. Its semantics is that of the timed
automaton obtained as the “synchronized product” of the processes. For an action b, a
b-transition of a process p is an element of Tp with b in the first component. Synchronization
happens on two levels: (i) via time that advances the same way in all the processes, and (ii)
via common actions, for example if b ∈ Σ1 ∩ Σ2, then processes 1 and 2 need to synchronize
by doing a b-transition. We define the domain of an action b: dom(b) = {p : b ∈ Σp} as the
set of processes that must synchronize to do b. We will use some abbreviations: Q = Πk

p=1Qp,
Σ =

⋃k
p=1 Σp and X =

⋃k
p=1Xp.

The semantics of a network is governed by the value of clocks at each instant. We choose
to represent these values using offsets as this allows a uniform presentation of the global-time
semantics below and the local-time semantics in Section 2.1. For every clock x, we introduce
an offset variable x̃. The value of x̃ is the time-stamp at which x was last reset. In addition,
we consider a variable t which tracks the global time: essentially t is a clock that is never
reset. We now make this notion precise. Let X̃p = {x̃ | x ∈ Xp} and X̃ =

⋃k
p=1 X̃p. A global

valuation v is a function v : X̃ ∪ {t} 7→ R≥0 such that v(t) ≥ v(x̃) for all variables x̃. In this
representation, the value of clock x corresponds to v(t)− v(x̃), denoted v(x)1.

Recall that offset variable x̃ stores the last time-stamp at which clock x has been reset.
Hence, a delay in offset representation increases the value of reference clock t and leaves offset
variables x̃ unchanged. Formally: for δ ∈ R≥0, we denote by v + δ the valuation defined by:
(v + δ)(t) = v(t) + δ and (v + δ)(x̃) = v(x̃) for all x̃. Similarly, resetting the clocks in R ⊆ X,
yields a global valuation [R]v defined by: ([R]v)(t) = v(t), and ([R]v)(x̃) is v(t) if x ∈ R, and
v(x̃) otherwise. Given a global valuation v and a clock constraint g, we write v |= g if every
constraint in g holds after replacing x with its value v(x) = v(t)− v(x̃).

A configuration of the network is a pair (q, v) where q ∈ Q is a global state, and v is a
global valuation. We will write q(p) to refer to the p-th component of the state q.

I Definition 2 (Global-time semantics). The semantics of a network N is given by a transition
system whose states are configurations (q, v). The initial configuration is (qinit , vinit) where
qinit(p) = qinit

p is the tuple of initial states, and vinit(y) = 0 for y ∈ X̃ ∪ {t}.

1 Usually, semantics of timed automata is described using valuations of the form v. Here, we have chosen
v which uses offsets since it extends naturally to the local-time setting. Translations between these two
kinds of valuations is straightforward, as shown.

R. Govind, F. Herbreteau, B. Srivathsan, and I. Walukiewicz 16:5

There are two kinds of transitions, which we call steps: global delay, and action steps. A
global delay by the amount δ ∈ R≥0 gives a step (q, v) δ==⇒st (q, v + δ). An action step on
action b gives (q, v) b==⇒st (q′, v′) if there is a set of b-transitions {(qp, gp, Rp, q′p)}p∈dom(b) of
the respective processes such that:

processes from dom(b) change states: qp = q(p), q′p = q′(p), for p ∈ dom(b), and
q(p) = q′(p) for p 6∈ dom(b);
all the guards are satisfied: v � gp, for p ∈ dom(b);
all resets are performed: v′ = [

⋃
p∈dom(b)Rp]v;

A run of an automaton from a configuration (q0, v0) is a sequence of steps starting in
(q0, v0). For a sequence u = b1 . . . bn of actions, we write (q0, v0) u==⇒ (qn, v′n) if there is a run

(q0, v0) δ0==⇒st (q0, v
′
0) b1==⇒st (q1, v1) δ1==⇒st (q1, v

′
1) . . . bn==⇒st (qn, vn) δn==⇒st (qn, v′n)

for some delays δ0, . . . , δn ∈ R≥0.

I Definition 3 (Reachability problem). The reachability problem is to decide, given a network
N and a state q, whether there is a run reaching q; or in other words, whether there exists a
sequence of transitions u such that (qinit , vinit) u==⇒ (q, v) for some valuation v.

The reachability problem for networks of timed automata is Pspace-complete [1].

2.1 Local-time semantics
The definition of a network of automata suggests an independence relation between actions:
a pair of actions with disjoint domains (i.e. involving distinct processes) should commute.
We say that two sequences of actions are equivalent, written u ∼ w if one can be obtained
from the other by repeatedly permuting adjacent actions with disjoint domains.

I Lemma 4. For two equivalent sequences u ∼ w: if there are two runs (q, v) u==⇒ (qu, vu),
and (q, v) w==⇒ (qw, vw) then qu = qw.

Observe that in the above lemma we cannot assert that vu = vw. Even further, the
existence of (q, v) u==⇒ (qu, vu) does not imply that a run from (q, v) on w is feasible. This
happens due to global time delays, i.e., delays that involve all the processes. For example,
consider actions a and b on disjoint processes with a having guard x ≤ 1 and b having guard
y ≥ 2. Then from the initial valuation one can execute ab but not ba.

One solution to get commutativity between actions with disjoint domains is to consider
local-time semantics [4]. In this semantics, time elapses independently in every process, and
time elapse is synchronized before executing a synchronized action. This way, two actions
with disjoint domains become commutative. In the example from the previous paragraph,
while the process executing b elapses 2 time units, the other process is allowed to not elapse
time at all and hence ba becomes possible. Moreover, for the reachability problem, local-time
semantics is equivalent to the standard one.

In the local-time semantics, we replace the clock t which was tracking the global time,
with individual reference clocks tp for each process Ap which track the local time of each
process. We set X̃ ′p = X̃p ∪ {tp} and X̃ ′ =

⋃
p X̃
′
p. A local valuation v is a valuation over the

set of clocks X̃ ′ such that v(tp) ≥ v(x̃) for all processes p ∈ Proc and all clocks x̃ ∈ X̃p. This
restriction captures the intuition that tp is a reference clock for process p, and it is never
reset. In this setting, the value v(tp) − v(x̃) of clock x is defined relative to the reference
clock tp of process p that owns x, i.e. x ∈ Xp. We will use the notation v for local valuations
to distinguish from global valuations v.

CONCUR 2019

16:6 Revisiting Local Time Semantics for Networks of Timed Automata

We introduce a new operation of local time elapse. For a process p ∈ Proc and δ ∈ R≥0,
operation v +p δ adds δ to v(tp), the value of the reference clock tp of process p, and leaves
the other variables unchanged. Formally, (v +p δ)(tp) = v(tp) + δ and (v +p δ)(y) = v(y) for
all y ∈ X̃ ′ \ {tp}. A local valuation v satisfies a clock constraint g, denoted v |= g if every
constraint in g holds after replacing x by its value v(tp)− v(x̃) where p is the process such
that x ∈ Xp. We denote by [R]v the valuation obtained after resetting the clocks in R ⊆ X
and defined by: ([R]v)(tp) = v(tp) for every reference clock tp, ([R]v)(x̃) = v(x̃) if x 6∈ R, and
([R]v)(x̃) = v(tp) if x ∈ R and p is the process such that x ∈ Xp.

I Definition 5 (Local steps of a timed automata network). There are two kinds of local steps
in a network N : local delay, and local action. A local delay δ ∈ R≥0 in process p ∈ Proc is
a step (q, v) p,δ−−→st (q, v +p δ). For an action b, we have a step (q, v) b−−→st (q′, v′) if there is
a set of b-transitions of respective processes {(qp, gp, Rp, q′p)}p∈dom(b) such that:

qp = q(p), q′p = q′(p), for p ∈ dom(b), and q(p) = q′(p) for p 6∈ dom(b);
start times are synchronized: v(tp1) = v(tp2), for every p1, p2 ∈ dom(b);
guards are satisfied: v � gp, for every p ∈ dom(b);
resets are performed: v′ = [

⋃
p∈dom(b)Rp]v;

The main difference with respect to global semantics is the presence of local time delay.
As a result, every process can be in a different local time as emphasized by the reference
clocks in each process. In consequence, in local action steps we require that when processes
do a common action their local times should be the same. Of course a standard delay
δ on all processes can be simulated by a sequence of delays on every process separately,
as 1,δ−−→st · · ·

k,δ−−→st. For a sequence of local delays ∆ = (p1, δ1) . . . (pn, δn) we will write
(q, v) ∆−−→st (q, v′) to mean (q, v) p1,δ1−−−→st (q, v1) p2,δ2−−−→st · · ·

(pn,δn)−−−−−→st (q, v′).

I Definition 6 (Local run). A local run from a configuration (q0, v0) is a sequence of local
steps. For a sequence of actions u = b1 . . . bn, we write (q0, v0) u−−→ (qn, v′n) if for some
sequences of local delays ∆0, . . . ,∆n there is a local run

(q0, v0) ∆0−−→st (q0, v′0) b1−−→st (q1, v1) ∆1−−→st · · ·
bn−−→st (qn, vn) ∆n−−→st (qn, v′n)

Observe that a run may start and end with a sequence of delays. In the next section we
will make a link between local and global runs. For this we will first examine independence
properties of local runs which are much better than for global runs (cf. Lemma 4).

I Lemma 7 (Independence). Suppose dom(a) ∩ dom(b) = ∅. If (q, v) ab−−→ (q′, v′) then
(q, v) ba−−→ (q′, v′). If (q, v) a−−→ (qa, va) and (q, v) b−−→ (qb, vb) then (q, v) ab−−→ (qab, vab) for
some qab and vab.

Recall that two sequences of actions are equivalent, written u ∼ w if one can be obtained
from the other by repeatedly permuting adjacent actions with disjoint domains. Directly
from the previous lemma we obtain.

I Lemma 8. If (q0, v0) u−−→ (qn, vn) and u ∼ w then (q0, v0) w−−→ (qn, vn).

With local-time semantics two equivalent sequences not only reach the same state qn,
but also the same local valuation vn (in contrast with Lemma 4 for global-time semantics).

R. Govind, F. Herbreteau, B. Srivathsan, and I. Walukiewicz 16:7

2.2 Comparing local and global runs
We have presented two semantics for networks of timed automata: global-time and local-time.
Local runs have more freedom as time can elapse independently in every process. Yet, with
respect to state reachability the two concepts turn out to be equivalent.

I Definition 9. A local valuation v is synchronized if for every pair of processes p1, p2, the
values of their reference clocks are equal: v(tp1) = v(tp2).

For a synchronized local valuation v, let global(v) be the global valuation v such that
v(x̃) = v(x̃) and v(t) = v(t1) = · · · = v(tk). Conversely, to every global valuation v, we
associate the synchronized local valuation local(v) = v where v(x̃) = v(x̃) and v(tp) = v(t)
for every reference clock tp.

I Lemma 10. If (q, v) u−−→ (q′, v′) is a local run where v and v′ are synchronized local valu-
ations, there exists a global run (q, global(v)) w==⇒ (q′, global(v′)) for some w ∼ u. Conversely,
if (q, v) u==⇒ (q′, v′) is a global run, then there is a local run (q, local(v)) u−−→ (q′, local(v′)).

The reachability problem with respect to local semantics is defined as before: q is
reachable if there is a local run (qinit , vinit) u−−→ (q, v) for some v where vinit = local(vinit). By
adding some local delays at the end of the run we can always assume that v is synchronized.
Lemma 10 thus implies that the reachability problem in local semantics is equivalent to the
standard one in global semantics.

3 Zone graphs

We introduce zones, a standard approach for solving reachability in timed automata. Zones
are sets of valuations that can be represented efficiently using simple constraints.

Let us fix a network N of timed automata with k processes. Recall that each process
p has a set of clocks Xp and corresponding offset variables X̃p. The set of clocks in N is
X =

⋃k
i=1Xp. Similarly, the set of offset variables in N is X̃ =

⋃k
i=1 X̃p.

3.1 Standard zone-based algorithm for reachability
Recall that in the global-time semantics, N has a reference clock t. A global zone is a set
of global valuations described by a conjunction of constraints of the form y1 − y2 / c where
y1, y2 ∈ X̃ ∪ {t}, / ∈ {<,≤} and c ∈ Z. Since global valuations need to satisfy v(x̃) ≤ v(t)
for every offset variable x̃ ∈ X̃, a global zone satisfies x̃ ≤ t for every x̃ ∈ X̃.

Let g be a guard and R a set of clocks. We define the following operations on zones:
Zg = {v | v |= g} is the set of global valuations satisfying g, [R]Z := {[R]v | v ∈ Z} and
−→
Z := {v | ∃v′ ∈ Z, ∃δ ∈ R≥0 s. t. v = v′ + δ}. From [4], Zg, [R]Z and −→Z are all zones. We
say that a zone is time-elapsed if Z = −→Z .

The semantics of a network of timed automata can be described in terms of global zones.
For an action b, consider a set of b-transitions of respective processes {(qp, gp, Rp, q′p)}p∈dom(b).
Let R =

⋃
p∈dom(b)Rp, and g =

∧
p∈dom(b) gp. Then we have a transition (q, Z) b==⇒ (q′, Z ′)

where Z ′ =
−−−−−−−−→
[R](Z ∩ Zg) provided that q(p) = qp, q′(p) = q′p if p ∈ dom(b), and q′(p) = q(p)

otherwise, and Z ′ is not empty. We write =⇒ for the union over all b==⇒.
The global zone graph ZG(N) of a timed automaton network N is a transition system

whose nodes are of the form (q, Z) where q ∈ Q and Z is a time-elapsed global zone. The
transition relation is given by =⇒. The initial node is (qinit , Zinit) where qinit is the tuple of

CONCUR 2019

16:8 Revisiting Local Time Semantics for Networks of Timed Automata

initial states and Zinit =
−−−−→
{vinit} where vinit is the initial global valuation. The zone graph

ZG(N) is known to be sound and complete with respect to reachability. This means that a
state q is reachable by a run of N iff a node (q, Z) for some non-empty Z is reachable from
(qinit , Zinit) in the zone graph. As zone graphs may be infinite, an abstraction operator is
used to obtain a finite quotient.

An abstraction operator a : P (RX≥0)→ P (RX≥0) [2] is a function from sets of valuations
to sets of valuations such that W ⊆ a(W) and a(a(W)) = a(W). Simulation relations
between valuations are a convenient way to construct abstraction operators that are correct
for reachability. A time-abstract simulation is a relation between valuations that depends on
a given network N . We say that v1 can be simulated by v2, denoted v1 4 v2 if for every state
q of N , and every delay-action step (q, v1) δ1==⇒ b==⇒ (q′, v′1) there is a delay δ2 ∈ R≥0 such that
(q, v2) δ2==⇒ b==⇒ (q′, v′2) and v′1 4 v′2. The simulation relation can be lifted to global zones: we
say that Z is simulated by Z ′, written as Z 4 Z ′ if for all v ∈ Z there exists a v′ ∈ Z ′ such
that v 4 v′. An abstraction a based on 4 is defined as a(W) = {v | ∃v′ ∈W with v 4 v′}.
The abstraction a is finite if its range is finite. Given two nodes (q, Z) and (q′, Z ′) of ZG(N),
(q, Z) is subsumed by (q′, Z ′), denoted (q, Z) va (q′, Z ′), if q = q′ and Z ⊆ a(Z ′).

I Remark 11. Our definition of zones slightly differs from the standard definition in the
literature (e.g. [5]) since we use offset variables to represent clock valuations. Yet, finite
time-abstract simulations from the literature [2, 12] can be adapted to our settings as a
simulation over standard valuations v can be expressed as a simulation over global valuations
v since for every clock x, v(x) = v(t)− v(x̃), and zones over valuations v can be translated
to zones over standard valuations v.

A finite abstraction a allows to construct a finite global zone graph with subsumption
for a network of timed automata N . The construction starts from the initial node of
ZG(N). Using, say, a breadth-first-search (BFS), for every constructed node we examine
all its successors in ZG(N), and keep only those that are maximal w.r.t. to va relation.
Computing such a zone graph with subsumption gives an algorithm for the reachability
problem. However, the global zone graph, and hence the algorithm above, are sensitive to
the combinatorial explosion arising from parallel composition. Global time makes any two
actions potentially dependent – the same is still true on the level of zones. Zone graphs based
on the local-time semantics, as presented next, solve this problem.

3.2 Local zone graphs
The goal of this section is to introduce a concept similar to global zones and global zone
graphs for local-time semantics. Recall that in the local-time semantics, each process p has a
reference clock tp.

A local zone is a zone over local valuations: a set of local valuations defined by constraints
y1 − y2 / c where y1, y2 ∈ X̃ ∪ {t1, . . . tk}. Recall that a local valuation v needs to satisfy:
v(x̃) ≤ v(tp) for every process p and every x̃ ∈ X̃p. This means that a local zone satisfies
x̃ ≤ tp for every process p and every x̃ ∈ X̃p. We will use Z, eventually with subscripts, to
range over local zones, and distinguish from global zones Z. Local zones are closed under all
basic operations involved in a local step of a network of timed automata, namely: local time
elapse, intersection with a guard, and reset of clocks [4]. That is, for every local zone Z:

the set local-elapse(Z) = {v +1 δ1 +2 · · ·+k δk | v ∈ Z, δ1, . . . , δk ∈ R≥0} is a local zone.
for every guard g the set Zg = {v | v � g} is a local zone.
for every set of clocks R ⊆ X, the set [R]Z = {[R]v | v ∈ Z} is a local zone.

Local zones can be implemented using DBMs. Hence, they can be computed and stored as
efficiently as standard zones.

R. Govind, F. Herbreteau, B. Srivathsan, and I. Walukiewicz 16:9

The operations of local time elapse, guard intersection, and reset, enable us to describe
a local step (q,Z) b−−→ (q′,Z′) on the level of local zones. This is done in the same way
as for global zones. Observe that a local step is indexed only by an action, as the time is
taken care of by the local time elapse operation. Formally, for an action b consider a set
of b-transitions {(qp, gp, Rp, q′p)}p∈dom(b) of respective processes. Then we have a transition
(q,Z) b==⇒ (q′,Z′) for Z′ = local-elapse([R](Z ∩ Zg ∩ Zsync)) where Zg =

⋂
p∈dom(b) Zgp ,

Zsync = {v | v(tp1) = v(tp2) for p1, p2 ∈ dom(b)} and R = [
⋃
p∈dom(b)Rp]. Intuitively, Z′ is

the set of valuations obtained through reset and then local-time elapse, from valuations in Z
that satisfy the guard and such that the processes involved in action b are synchronised. We
extend b−−→ to (q,Z) u−−→ (q′,Z′) for a sequence of actions u in the obvious way.

Using local zones, we construct a local zone graph and show that it is sound and complete
for reachability testing. The only missing step is to verify the pre/post properties of runs on
local zones. We say a local zone is time-elapsed if Z = local-elapse(Z).

I Lemma 12 (Pre and post properties of runs on local zones). Let u be a sequence of actions.
If (q, v) u−−→ (q′, v′) and v ∈ Z for some time-elapsed local zone Z then (q,Z) u−−→ (q′,Z′)
and v′ ∈ Z′ for some local zone Z′.
If (q,Z) u−−→ (q′,Z′) and v′ ∈ Z′ then (q, v) u−−→ (q′, v′), for some v ∈ Z.

I Definition 13 (Local zone graph). For a network of timed automata N the local zone
graph of N , denoted LZG(N), is a transition system whose nodes are of the form (q,Z)
where Z is a time elapsed local zone, and whose transitions are steps (q,Z) b−−→ (q′,Z′). The
initial node (qinit ,Zinit) consists of the initial state qinit of the network and the local zone
Zinit = local-elapse({vinit}).

Directly from Lemma 12 we obtain the main property of local zone graphs stated in [4].
This allows us to use local zone graphs for reachability testing.

I Theorem 14. For a given network of timed automata N , there is a run of the network
reaching a state q iff for some non-empty local zone Z, node (q,Z) is reachable in LZG(N)
from its initial node.

Notice that LZG(N) may still be infinite and it cannot be used directly for reachability
checking. The solution in Remark 11 does not apply to local zones due to the multiple
reference clocks. This problem will be addressed in Section 5. We first focus on important
properties of the local-time zone graph w.r.t. concurrency.

4 Why are local zone graphs better than global zone graphs?

The important feature about local zone graphs, as noticed in [4], is that two transitions on
actions with disjoint domains commute (see Figure 1).

I Lemma 15 (Commutativity on local zones [4]). Suppose dom(a)∩dom(b) = ∅. If (q,Z) ab−−→
(q′,Z′) then (q,Z) ba−−→ (q′,Z′).

From the above lemma, we get the following property.

I Corollary 16. If (q,Z) u−−→ (q′,Z′) and u ∼ w, then (q,Z) w−−→ (q′,Z′)

Thus starting from a local zone, all equivalent interleavings of a sequence of actions u
end up in the same local zone. This is in stark contrast to the global zone graph, where each
interleaving results in a possibly different global zone. Let

MZ(q, Z, u) = {v′ | ∃v ∈ Z, ∃w, w ∼ u and (q, v) w==⇒ (q′, v′)}

CONCUR 2019

16:10 Revisiting Local Time Semantics for Networks of Timed Automata

denote the union of all these global zones. Salah et al. [17] have shown that, surprisingly,
MZ(q, Z, u) is always a global zone. We call it aggregated zone, and the notation MZ is in
the memory of Oded Maler. In the same work, this observation was extended to an algorithm
for acyclic timed automata that from time to time merged zones reached by equivalent paths
to a single global zone. We prove below that this aggregated zone can, in fact, be obtained
directly in the local zone graph: the aggregated (global) zone is exactly the set of synchronized
valuations obtained after executing u in the local zone semantics. Here we need some notation:
let Z be a global zone and Z a local zone; define sync(Z) = {v ∈ Z | v is synchronized};
local(Z) = {local(v) | v ∈ Z} and global(sync(Z)) = {global(v) | v ∈ sync(Z)}.

I Lemma 17. For every global zone Z and local zone Z: sync(Z) and local(Z) are local zones
and global(sync(Z)) is a global zone.

Proof. sync(Z) is the local zone Z ∧
∧
i,j(ti = tj); local(Z) is the local zone obtained

by replacing t with some ti in each constraint, and adding the constraints
∧
i,j(ti = tj);

global(sync(Z)) is obtained by replacing each ti with t in each constraint of Z. J

I Theorem 18. Consider a state q, a sequence of actions u and a time elapsed global
zone Z. Consider the local zone Z = local-elapse(local(Z)). If (q,Z) u−−→ (q′,Z′), we have
MZ(q, Z, u) = global(sync(Z′)), otherwise MZ(q, Z, u) = ∅.

Proof. Pick v′ ∈MZ(q, Z, u). There exists w ∼ u, v ∈ Z and a global run (q, v) w==⇒ (q′, v′).
From Lemma 10, there exists a local run (q, local(v)) w−−→ (q′, local(v′)). By assump-
tion, local(v) ∈ Z. Hence from the pre property of local zones (Lemma 12), there ex-
ists (q,Z) w−−→ (q′,Zw) such that local(v′) ∈ Zw. As local(v′) is synchronized, we get
local(v′) ∈ sync(Zw). But, by Corollary 16, Zw = Z′. This proves local(v′) ∈ sync(Z′) and
hence v′ ∈ global(sync(Z′)).

For the other direction take v′ ∈ global(sync(Z′)). As (q,Z) u−−→ (q′,Z′), by post property
of local zones (Lemma 12) there is a local run (q, vu) u−−→ (q′, local(v′)) for some vu ∈ Z.
Since vu ∈ Z, it is obtained by a local time elapse from some v ∈ local(Z). Hence v is
synchronized and global(v) ∈ Z. From Lemma 10 we get that for some w ∼ u there is a
global run (q, global(v)) w==⇒ (q′, v′). Hence v′ ∈MZ(q, Z, u). J

Theorem 18 gives an efficient way to compute aggregated zones: it is sufficient to compute
local zone graphs. Computing local zone graphs is not more difficult than computing global
zone graphs. But, surprisingly, the combinatorial explosion due to interleaving does not
occur in local zone graphs, thanks to the theorem above. Hence, this gives an incentive to
work with local zone graphs instead of global zone graphs.

This contrasts with the aggregation algorithm in [17] which requires to store all the
paths to a global zone and detect situations where zones can be merged, that is, when
all the equivalent permutations have been visited. Another important limitation of the
algorithm in [17] is that it can only be applied to acyclic zone graphs. If local zone graphs
can be computed for general timed automata (which contain cycles), we can get to use the
aggregation feature for all networks (and not only acyclic ones). To do this, there is still a
major problem left: local zone graphs could be infinite when the automata contain cycles.

5 Making local zone graphs finite

The standard approach to make a global zone graph finite is to use a subsumption operation
between global zones [2, 12]. Such a subsumption operation is usually based on a finite
index simulation between (global) valuations parameterized by certain maximum constants

R. Govind, F. Herbreteau, B. Srivathsan, and I. Walukiewicz 16:11

occurring in guards. We first discuss technical problems that arise when we lift these
simulations to local valuations. In the paper introducing local time semantics and local
zone graphs [4] a notion of a catch-up equivalence between local valuations is defined. This
equivalence is a finite index simulation. So one could, in theory, construct a finite local zone
graph using catch-up subsumption as a finite abstraction. Unfortunately, the question of
effective algorithms for catch-up subsumption was left open in [4], and, to the best of our
knowledge, there is no efficient procedure for catch-up subsumption.

Another finite abstraction of the local zone graph was proposed by Minea [15, 16]. We
however believe that Minea’s approach carries a flaw, and a different idea is needed to get
finiteness. Minea’s approach is founded on an equivalence between local valuations in the
lines of the region equivalence [1]. Let cmax be the maximum constant appearing among
the guards of a timed automata network. Two local valuations v1 and v2 are said to be
equivalent, written as v1 'reg v2 if for all variables α, β ∈ X̃ ∪ {t1, . . . , tk} (note that all
reference clocks are included):

either bv1(α)− v1(β)c = bv2(α)− v2(β)c,
or bv1(α)− v1(β)c > cmax and bv2(α)− v2(β)c > cmax,
or bv1(α)− v1(β)c < −cmax and bv2(α)− v2(β)c < −cmax.

It is claimed (in Proposition 6 of [15]) that this equivalence is preserved over local time
elapse: for every process p, and for δ ≥ 0 there exists δ′ ≥ 0 such that v1 +p δ 'reg v2 +p δ

′.
However, this is not true, as we now exhibit a counter-example. Consider 2 processes with
clocks X1 = {x}, X2 = {y}. This gives X̃ = {x̃, ỹ} and T = {t1, t2}. Let cmax = 3. Define
local valuations v1 : x̃ = 0, t1 = 0, ỹ = 0, t2 = 4 and v2 : x̃ = 0, t1 = 0, ỹ = 0, t2 = 5.

Note that the differences in v1 are either 0, 4 or −4 and the corresponding differences
in v2 are 0, 5 or −5. Hence by definition, v1 'reg v2. Consider valuation v1 +1 2 obtained
from v1 by local delay of 2 units in component 1, that is v1 +1 2 : x̃ = 0, t1 = 2, ỹ = 0, t2 = 4
Observe that in v1 +1 2, the difference t1 − x̃ = 2 and t2 − t1 = 2 which are both smaller
than cmax. We claim there is no local delay δ′ such that v1 +1 2 'reg v2 +1 δ

′. Valuation
v2 +1 δ

′ is given by x̃ = 0, t1 = δ′, ỹ = 0, t2 = 5. If v1 +1 2 'reg v2 +1 δ
′, we need δ′ = 2 (due

to difference t1 − x̃) and 5− δ′ = 2 (due to difference t2 − t1). This is not possible.
The main problem is that the above equivalence “forgets” actual values when the difference

between reference clocks is above cmax. Even if this difference is bigger than the maximum
constant, local delays can bring them within the constant cmax. Such a situation does not
arise in the global semantics, as there is a single reference clock.

In [15] a widening operator on local zones based on 'reg is used for finiteness: given a
canonical representation of a zone Z, the maximized zone with respect to cmax is obtained by
changing every constraint y1 − y2 / c to y1 − y2 <∞ if c > cmax, and to y1 − y2 < −cmax if
c < −cmax. In the local zone graph construction, each local zone is maximized and inclusion
between maximized zones is used for termination. Figure 2 gives an example of a network
〈A1, A2〉 where the maximized local zone graph is unsound. This is shown by making use of
the valuations v1 and v2 above. We also add an extra clock z in component A2 for convenience.
Note that cmax = 3. Although clock y does not appear in A2, one can assume that there are
other transitions from q0 that deal with y (we avoid illustrating these transitions explicitly).
In the discussion below, v1, v2 are valuations restricted to x̃, ỹ, t1 and t2. In order to reach
the state p2, the synchronization action c needs to be taken: transition sequence a1c requires
c to be taken at global time 4, and transition sequence b1b2c requires c at global time 5.
Hence c is not enabled in the network. This is witnessed by c not being enabled in the
local zone graph (middle picture). Valuation v2 is present in the zone reached after b1b2.

CONCUR 2019

16:12 Revisiting Local Time Semantics for Networks of Timed Automata

p0

p1

p2

q0

q1

q2

q3

a1

c

b1

b2

c

x = 2
{x}

x = 2

z = 2
{z}

z = 3
{z}

x̃ = ỹ = z̃

t1 ≥ x̃, t2 ≥ z̃

ỹ = z̃

x̃− ỹ = 2
t1 ≥ x̃, t2 ≥ z̃

x̃ = ỹ

z̃ − ỹ = 2
t1 ≥ x̃, t2 ≥ z̃

x̃− ỹ = 2
z̃ − ỹ = 2
t1 ≥ x̃, t2 ≥ z̃

x̃ = ỹ

z̃ − ỹ = 5
t1 ≥ x̃, t2 ≥ z̃

x̃− ỹ = 2
z̃ − ỹ = 5
t1 ≥ x̃, t2 ≥ z̃

〈p0, q0〉

〈p1, q0〉 〈p0, q1〉

〈p1, q1〉 〈p0, q2〉

〈p1, q2〉

a1 b1

b1 a1 b2

b2 a1

x̃ = ỹ = z̃

t1 ≥ x̃, t2 ≥ z̃

ỹ = z̃

x̃− ỹ = 2
t1 ≥ x̃, t2 ≥ z̃

x̃ = ỹ

z̃ − ỹ = 2
t1 ≥ x̃, t2 ≥ z̃

x̃− ỹ = 2
z̃ − ỹ = 2
t1 ≥ x̃, t2 ≥ z̃

x̃ = ỹ

z̃ − ỹ = 3
t1 ≥ x̃, t2 ≥ z̃

x̃− ỹ = 2
z̃ − ỹ = 3
t1 ≥ x̃, t2 ≥ z̃

x̃− ỹ = 2, z̃ − ỹ = 3
t1 − x̃ ≥ 2
t2 − ỹ ≥ 3, t2 ≥ z̃

〈p0, q0〉

〈p1, q0〉 〈p0, q1〉

〈p1, q1〉 〈p0, q2〉

〈p1, q2〉 〈p2, q3〉

a1 b1

b1 a1 b2

b2 a1

c

Figure 2 Left: network 〈A1, A2〉; Middle: local zone graph; Right: maximized local zone graph
of [15]. State (p2, q3) is not reachable in local zone graph, but becomes reachable after maximization.

The maximized local zone graph is shown on the right. Zones where maximization makes a
difference are shaded gray. In particular, the zone b1b2 on maximization adds valuation v1,
from which a1c is enabled, giving a zone in the maximized local zone graph with state p2.

5.1 Synchronized valuations for subsumption
A finite abstraction of the differences between reference clocks constitutes the main challenge
in obtaining a finite local zone graph. We propose a different solution which bypasses the
need to worry about such differences: restrict to synchronized valuations for subsumption.

Subsumptions over global zones are well studied [1, 2, 12]. Taking an off-the-shelf finite
abstraction a and a subsumption va between global zones, we want to do the following: given
two local zones Z1 and Z2 we perform a subsumption test global(sync(Z1)) va global(sync(Z2)).
By finiteness of the abstraction, we will get only finitely many local zones Z with incomparable
global(sync(Z)). In order to do this, we need the crucial fact that global(sync(Z)) is a zone
(shown in Lemma 17). Given two configurations s := (q,Z) and s′ := (q′,Z′) of the local zone
graph, we write s va

sync s
′ if q = q′ and global(sync(Z)) va global(sync(Z′)).

I Definition 19 (Local sync graph). Let a be a finite abstraction over global zones. A local
sync graph G of a network of timed automata N based on a, is a tree and a subgraph of
LZG(N) satisfying the following conditions:
C0 every node of G is labeled either covered or uncovered;
C1 the initial node of LZG(N) belongs to G and is labeled uncovered;
C2 every node is reachable from the initial node;
C3 for every uncovered node s, all its successor transitions s a−−→ s′ occurring in LZG(N)

should be present in G;
C4 for every covered node s ∈ G there is an uncovered node s′ ∈ G such that s va

sync s
′. A

covered node has no successors.

The above definition essentially translates to this algorithm: explore the local zone graph
say in a BFS fashion, and subsume (cover) using va

sync (similar to algorithm for global
zone graph as described in page 8). Local sync graphs are not unique, since the final graph
depends on the order of exploration. Every local sync graph based on a finite abstraction
a is finite. Theorem 20 below states that local sync graphs are sound and complete for
reachability, and this algorithm is correct.

R. Govind, F. Herbreteau, B. Srivathsan, and I. Walukiewicz 16:13

I Theorem 20 (Soundness and completeness of local sync graphs). A state q is reachable in
a network of timed automata N iff a node (q,Z), with Z non-empty, is reachable from the
initial node in a local sync graph for N .

Proof. If (q,Z) is reachable in a local sync graph then it is trivially reachable in the local
zone graph and the (backward) implication follows from soundness of local zone graphs
(Theorem 14). For the other direction which proves completeness of local sync graphs, let
us take a global run: (qinit , vinit)

δ1,b1===⇒ (q1, v1) · · · δn,bn====⇒ (qn, vn). Take a local sync graph
G, based on abstraction a coming from a simulation 4. By induction on i, for every (qi, vi)
we will find an uncovered node (qi,Zi) of G, and a synchronized local valuation vi ∈ Zi
such that vi 4 global(vi). This proves completeness, since every reachable (qi, vi) will have a
representative node in the local sync graph.

The induction base is immediate, so let us look at the induction step. Consider the
global step (qi, vi)

δi,bi===⇒ (qi+1, vi+1). Since vi 4 global(vi), there is a delay δ′i such that

(qi, global(vi))
δ′

i,bi===⇒ (qi+1, v
′
i+1) and vi+1 4 v′i+1. As the global delay δ′i can be thought of a

sequence of local delays, we have local run (qi, vi)
bi−−→ (qi+1, v′i+1), where v′i+1 = local(v′i+1).

Note that v′i+1 is synchronized and vi+1 4 global(v′i+1). From the pre-property of local
zones (Lemma 12) there exists a transition (qi,Zi)

bi−−→ (qi+1,Z′i+1) with v′i+1 ∈ Z′i+1, in fact,
v′i+1 ∈ sync(Z′i+1). If (qi+1,Z′i+1) is uncovered, take v′i+1 for vi+1 and Z′i+1 for Zi+1 (needed
by the induction step). Otherwise, from condition C4, there is an uncovered node (qi+1,Z′′i+1)
such that global(sync(Z′i+1)) 4 global(sync(Z′′i+1)). This gives v′′i+1 ∈ sync(Z′′i+1) such that
global(v′i+1) 4 global(v′′i+1). Now take v′′i+1 for vi+1 and Z′′i+1 for Zi+1. J

6 Experiments

We have implemented the construction of local sync graphs in our prototype TChecker [11]
and compared it with two implementations of the usual global zone graph method: TChecker
and UPPAAL [13, 3], the state-of-the-art verification tool for timed automata. The three
implementations use a breadth-first search with subsumption, and the va

sync subsumption in
the case of local sync graph. Table 1 presents results of our experiments on standard models
from the literature (except “Parallel” that is a model we have introduced).

Local sync graphs yield no gain on 3 standard examples (which are not given in Table 1):
“CSMA/CD”, “FDDI” and “Fischer”. In these models, the three algorithms visit and store
the same number of nodes. The reason is that for “CSMA/CD” and “FDDI”, replacing each
local zone Z in the local zone graph by its set of synchronized valuations sync(Z) yields
exactly the zone graph. In the third model, “Fischer”, every control state appears at most
once in the global zone graph. So there is no hope to achieve any gain with our technique.
This is due to the fact that doing ab or ba results in two different control states in the
automaton. So “Fischer” is out of the scope of our technique.

In contrast, we observe significant improvements on other standard models (Table 1).
Observe that due to subsumption, the order in which nodes are visited impacts the total
number of visited nodes. UPPAAL and our prototype TChecker (Global ZG column) may
not visit the same number of nodes despite the fact that they implement the same algorithm.
In our prototype we use the same order of exploration for Global ZG and Local ZG. “CorSSO”
and “Critical region” are standard examples from the literature. “Dining Philosophers”
is a modification of the classical problem where a philosopher releases her left fork if she
cannot take her right fork within a fixed amount of time [14]. “Parallel” is a model we have
introduced, where concurrent processes compete to access a resource in mutual exclusion.

CONCUR 2019

16:14 Revisiting Local Time Semantics for Networks of Timed Automata

Table 1 Experimental results obtained by running UPPAAL and our prototype TChecker (Global
ZG and Local ZG) on a MacBook Pro 2013 with 4 2.4GHz Intel Core i5 and 16 GB of memory. The
timeout is 90 seconds. For each model we report the number of concurrent processes.

Models UPPAAL Global ZG Local ZG
(# processes) visited stored sec. visited stored sec. visited stored sec.
CorSSO 3 64378 61948 1.48 64378 61948 1.41 1962 1962 0.05
CorSSO 4 timeout timeout 23784 23784 0.69
CorSSO 5 timeout timeout 281982 281982 16.71
Critical reg. 4 78049 53697 1.45 75804 53697 2.27 44490 28400 2.40
Critical reg. 5 timeout timeout 709908 389614 75.55
Dining Phi. 7 38179 38179 34.61 38179 38179 7.28 2627 2627 0.32
Dining Phi. 8 timeout timeout 8090 8090 1.65
Dining Phi. 9 timeout timeout 24914 24914 7.10
Dining Phi. 10 timeout timeout 76725 76725 30.20
Parallel 6 11743 11743 4.82 11743 11743 1.09 256 256 0.02
Parallel 7 timeout timeout 576 576 0.04
Parallel 8 timeout timeout 1280 1280 0.11

We observe an order of magnitude gains for most of these four models. The reason is that
in most states when two processes can perform actions a and b, doing ab or ba leads to
the same control-state of the automaton. Hence, a difference between ab and ba (if any) is
encoded in distinct zones Zab and Zba obtained along these two paths in the global zone
graph. In contrast, the two paths result in the same zone Z (containing both Zab and Zba)
in the local sync graph. In consequence, our approach that combines the local zone graph
and abstraction using synchronized zones is very efficient in this situation.

7 Conclusions

We have revisited local-time semantics of timed automata and local zone graphs. We have
discovered a very useful fact that local zones calculate aggregated zones: global zones that
are unions of all the zones obtained by equivalent executions [17]. We have used this fact as a
theoretical foundation for an algorithm constructing local zone graphs and using subsumption
on aggregated zones at the same time.

We have shown that, unfortunately, subsumption operations on local zones proposed in
the literature do not work. We have proposed a new subsumption for local zone graphs based
on standard abstractions for timed automata, applied on synchronized zones. The restriction
to synchronized zones is crucial as standard abstractions cannot handle multiple reference
clocks. A direction for future work is to find abstractions for local zones.

Our algorithm is the first efficient implementation of local time zone graphs and aggregated
zones. Experimental results show an order of magnitude gain with respect to state-of-the-art
algorithms on several standard examples.

As future work, we plan to develop partial-order techniques taking advantage of the high
level of commutativity in local zone graphs. Existing methods are not directly applicable in
the timed setting. In particular, contrary to expectations, actions with disjoint domains may
not be independent (in a partial order sense) in a local zone graph [15]. Thus, it will be very
interesting to understand the structure of local zone graphs better. A recent partial-order
method proposed for timed-arc Petri nets [6] gives a hope that such obstacles can be overcome.
For timed networks with cycles, the interplay of partial-order and subsumption adds another
level of difficulty.

R. Govind, F. Herbreteau, B. Srivathsan, and I. Walukiewicz 16:15

References
1 Rajeev Alur and David L. Dill. A Theory of Timed Automata. Theoretical Computer Science,

126:183–235, 1994.
2 Gerd Behrmann, Patricia Bouyer, Kim G. Larsen, and Radek Pelánek. Lower and Upper

Bounds in Zone-Based Abstractions of Timed Automata. International Journal on Software
Tools for Technology Transfer, 8(3):204–215, 2006.

3 Gerd Behrmann, Alexandre David, Kim Guldstrand Larsen, John Hakansson, Paul Pettersson,
Wang Yi, and Martijn Hendriks. UPPAAL 4.0. In QEST, pages 125–126. IEEE Computer
Society, 2006.

4 Johan Bengtsson, Bengt Jonsson, Johan Lilius, and Wang Yi. Partial Order Reductions for
Timed Systems. In CONCUR, volume 1466 of Lecture Notes in Computer Science, pages
485–500, 1998.

5 Johan Bengtsson and Wang Yi. Timed Automata: Semantics, Algorithms and Tools. In
ACPN 2003, volume 3098 of Lecture Notes in Computer Science, pages 87–124. Springer, 2003.

6 Frederik M. Bønneland, Peter Gjøl Jensen, Kim Guldstrand Larsen, Marco Muñiz, and Jirí
Srba. Start Pruning When Time Gets Urgent: Partial Order Reduction for Timed Systems.
In CAV, volume 10981 of Lecture Notes in Computer Science, pages 527–546. Springer, 2018.

7 Conrado Daws and Stavros Tripakis. Model Checking of Real-Time Reachability Properties
Using Abstractions. In TACAS, volume 1384 of Lecture Notes in Computer Science, pages
313–329. Springer, 1998.

8 D. L. Dill. Timing Assumptions and Verification of Finite-state Concurrent Systems. In
Proceedings of the International Workshop on Automatic Verification Methods for Finite State
Systems, pages 197–212, 1990.

9 Paul Gastin, Sayan Mukherjee, and B. Srivathsan. Fast algorithms for handling diagonal
constraints in timed automata. CoRR, abs/1904.08590, 2019. arXiv:1904.08590.

10 R Govind, Frédéric Herbreteau, B. Srivathsan, and Igor Walukiewicz. Revisiting local time
semantics for networks of timed automata. CoRR, abs/1907.02296, 2019. arXiv:1907.02296.

11 F. Herbreteau and G. Point. TChecker. https://github.com/fredher/tchecker, v0.2 - April
2019.

12 Frédéric Herbreteau, B. Srivathsan, and Igor Walukiewicz. Better Abstractions for Timed
Automata. In LICS, pages 375–384. IEEE Computer Society, 2012.

13 Kim Guldstrand Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a nutshell. STTT,
1(1-2):134–152, 1997.

14 Denis Lugiez, Peter Niebert, and Sarah Zennou. A partial order semantics approach to the
clock explosion problem of timed automata. Theor. Comput. Sci., 345(1):27–59, 2005.

15 Marius Minea. Partial Order Reduction for Model Checking of Timed Automata. In CONCUR,
volume 1664 of Lecture Notes in Computer Science, pages 431–446. Springer, 1999.

16 Marius Minea. Partial Order Reduction for Verification of Timed Systems. PhD thesis, School
of Computer Science, Carnegie Mellon University Pittsburgh, PA 15213, 1999.

17 Ramzi Ben Salah, Marius Bozga, and Oded Maler. On Interleaving in Timed Automata. In
CONCUR, volume 4137 of Lecture Notes in Computer Science, pages 465–476. Springer, 2006.

18 Marcelo Sousa, César Rodríguez, Vijay D’Silva, and Daniel Kroening. Abstract Interpretation
with Unfoldings. In CAV, pages 197–216, 2017.

CONCUR 2019

http://arxiv.org/abs/1904.08590
http://arxiv.org/abs/1907.02296
https://github.com/fredher/tchecker

Approximate Learning of Limit-Average Automata
Jakub Michaliszyn
University of Wrocław, Poland
jmi@cs.uni.wroc.pl

Jan Otop
University of Wrocław, Poland
jotop@cs.uni.wroc.pl

Abstract
Limit-average automata are weighted automata on infinite words that use average to aggregate the
weights seen in infinite runs. We study approximate learning problems for limit-average automata in
two settings: passive and active. In the passive learning case, we show that limit-average automata
are not PAC-learnable as samples must be of exponential-size to provide (with good probability)
enough details to learn an automaton. We also show that the problem of finding an automaton that
fits a given sample is NP-complete. In the active learning case, we show that limit-average automata
can be learned almost-exactly, i.e., we can learn in polynomial time an automaton that is consistent
with the target automaton on almost all words. On the other hand, we show that the problem
of learning an automaton that approximates the target automaton (with perhaps fewer states) is
NP-complete. The abovementioned results are shown for the uniform distribution on words. We
briefly discuss learning over different distributions.

2012 ACM Subject Classification Theory of computation → Automata over infinite objects; Theory
of computation → Quantitative automata

Keywords and phrases weighted automata, learning, expected value

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2019.17

Related Version A full version of the paper is available at https://arxiv.org/abs/1906.11104.

Funding The National Science Centre (NCN), Poland under grant 2017/27/B/ST6/00299.

1 Introduction

Quantitative verification has been proposed to verify non-Boolean system properties such as
performance, energy consumption, fault-tolerance, etc. There are two main challenges in
applying quantitative verification in practice. First, formalization of quantitative properties
is difficult as specifications are given directly as weighted automata, which extend finite
automata with weights on transitions [18, 15]. Quantitative logics, which ease specification,
have either limited expression power or their model-checking problem is undecidable [11, 13].
Second, there is little research on abstraction in the quantitative setting [14], which would
allow us to reduce the size of quantitative models, presented as weighted automata.

We approach both problems using learning of weighted automata. We can apply the
learning framework to facilitate writing quantitative specifications and make it more accessible
to non-experts. For abstraction purposes, we study approximate learning, having in mind
that approximation of a system can significantly reduce its size.

We focus on weighted automata over infinite words which compute the long-run average
of weights [15]. Such automata express interesting quantitative properties [15, 23] and admit
polynomial-time algorithms for basic decision questions [15]. Some of the interesting properties
can be only expressed by non-deterministic automata [15], but every non-deterministic
weighted automaton is approximated by some deterministic weighted automaton on almost
all words [29]. This means that, by allowing some small margin of error, we can focus on

© Jakub Michaliszyn and Jan Otop;
licensed under Creative Commons License CC-BY

30th International Conference on Concurrency Theory (CONCUR 2019).
Editors: Wan Fokkink and Rob van Glabbeek; Article No. 17; pp. 17:1–17:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-5053-0347
mailto:jmi@cs.uni.wroc.pl
https://orcid.org/0000-0002-8804-8011
mailto:jotop@cs.uni.wroc.pl
https://doi.org/10.4230/LIPIcs.CONCUR.2019.17
https://arxiv.org/abs/1906.11104
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 Approximate Learning of Limit-Average Automata

deterministic automata while being able to model important system properties, such as
minimal response time, minimal number of errors, the edit distance problem [23], and the
specification repair framework from [10].

We therefore focus on approximate learning under probabilistic semantics, which cor-
responds to the average-case analysis in quantitative verification [16]. We treat words as
random events and functions defined by weighted automata as random variables. In this
setting, an automaton A′ ε-approximates A if the expected difference between A and A′
(over all words) is bounded by ε. We consider two learning approaches: passive and active.

In passive learning, we think of an automaton as a black-box. This might be a program,
a specification, a working correct system to be replaced or abstracted, or even only some
examples of how the automaton should work. Our goal is to construct a weighted automaton
based on this black-box model by observing only inputs and outputs of the model.

In active learning, we assume presence of an interactive teacher that reveals the values of
given examples and verifies whether a provided automaton is as intended; if not, the teacher
responses with a witness, which is a word showing the difference between the constructed
automaton and the intended automaton. This does not necessary mean that the teacher is
familiar with the weighted automata formalism – to provide a witness, they may simply run
the constructed automaton in parallel with the black-box and, if at any point their behaviors
differ, provide the appropriate input to the learning algorithm.

Our contributions. We start with a discussion on the setting for learning problems. The
first step is to find a suitable representation for samples; not all infinite words have finite
representations. A natural idea is to use ultimately periodic words in samples; we study
such samples. However, the probability distribution over ultimately periodic words is very
different from the uniform distribution over infinite words. Therefore, we also consider
samples consisting of a finite word u labeled with the expected value over all extensions of
u. The probability distribution over such samples is closer to the uniform distribution over
infinite words.

Then we study the passive learning problem. We show that for unique characterization
of an automaton, we need a sample of exponential size. We study the complexity of the
problem of finding an automaton that fits the whole sample. The problem, without additional
restrictions, has a trivial and overfitting solution. To mitigate this, we impose bounds on
automata size, and show that then the problem is NP-complete.

For active learning, we show that the problem of learning an almost-exact automaton can
be solved in polynomial time, and finding an automaton of bounded size that approximates
the target one cannot be done in polynomial time if P 6= NP. We conclude with a discussion
on different probability distributions.

Related work. The probably approximately correct (PAC) learning, introduced in [35], is a
general passive learning framework applied to various objects (DNF/CNF formulas, decision
trees, automata, etc.) [26]. PAC learning of deterministic finite automata (DFA) has been
extensively studied despite negative indicators. First, the sample fitting problem for DFA,
where the task is to construct a minimal-size DFA consistent with a given sample, has been
shown NP-complete [21]. Even approximate sample fitting, where we ask for a DFA at
most polynomially greater than a miniaml-size DFA, remains NP-complete [34]. Second,
it has been shown that existence of a polynomial-time PAC learning algorithm for DFA
would break certain cryptographic systems (such as RSA) and hence it is unlikely [25].
Despite these negative results, it has been empirically shown that DFA can be efficiently

J. Michaliszyn and J. Otop 17:3

learned [27]. In particular, if we assume structural completeness of a sample, then it
determines a minimal DFA [32]. Pitt posed a question whether DFA are PAC-learnable
under the uniform distribution [33], which remains open [2].

Angluin showed that DFA can be learned in polynomial time, if the learning algorithm
can ask membership and equivalence queries [1]. This approach proved to be very fruitful
and versatile. Angluin’s algorithm has been adapted to learn NFA [12], automata over
infinite words [3, 20], nominal automata over infinite alphabets [31], weighted automata over
words [9] and weighted automata over trees [22, 28].

Recently, there has been a renewed interest in learning weighted automata [8, 28, 6, 5, 7].
These results apply to weighted automata over fields [18], which work over finite words. We,
however, consider limit-average automata, which work over infinite words and cannot be
defined using a field or even a semiring. Furthermore, we consider weighted (limit-average)
automata under probabilistic semantics [16, 29], i.e., we consider functions represented by
automata as random variables.

2 The setting

Given a finite alphabet Σ of letters, a word w is a finite or infinite sequence of letters. We
denote the set of all finite words over Σ by Σ∗, and the set of all infinite words over Σ by
Σω. For a word w, we define w[i] as the i-th letter of w, and we define w[i, j] as the subword
w[i]w[i+ 1] . . . w[j] of w. We use the same notation for vectors and sequences; we assume
that sequences start with 0 index.

A deterministic finite automaton (DFA) is a tuple (Σ, Q, q0, F, δ) consisting of the alphabet
Σ, a finite set of states Q, the initial state q0 ∈ Q, a set of final states F , and a transition
function δ : Q× Σ→ Q.

A (deterministic) LimAvg-automaton extends a DFA with a function C : δ → Q that
defines rational weights of transitions. The size of such an automaton A, denoted by |A|, is
the sum of the number of states of A and the lengths of binary encodings of all the weights.

A run π of a LimAvg-automaton A on a word w is a sequence of states π[0]π[1] . . .
such that π[0] is the initial state and for every i > 0 we have δ(π[i − 1], w[i]) = π[i]. We
do not consider ω-accepting conditions and assume that all infinite runs are accepting.
Every run π of A on an infinite word w defines a sequence of weights C(π) of successive
transitions of A, i.e., C(π)[i] = C(π[i − 1], w[i], π[i]). The value of the run π is then
defined as LimAvg(π) = lim supk→∞Avg(C(π)[0, k]), where for finite runs π we have
Avg(C(π)) = Sum(C(π))/|C(π)|. The value of a word w assigned by the automaton A,
denoted by LA(w), is the value of the run of A on w.

We consider three classes of probability measures on words over the alphabet Σ.
Un, for n ∈ N, is the uniform probability distribution on Σn assigning each word the
probability |Σ|−n.
G(λ), for a termination probability λ ∈ Q+ ∩ (0, 1), is such that for u ∈ Σ∗ we have
G(λ)(u) = |Σ|−|u| · (1 − λ)|u| · λ. Observe that the probability of words of the same
length is equal, and the probability of generating a word of length k is (1− λ)k · λ. We
can consider this as process generating finite words, which stops after each step with
probability λ.
U∞ is the uniform probability measure on Σω. Formally, we define U∞ on basic sets
uΣω = {uw | w ∈ Σω} as follows: U∞(uΣω) = |Σ|−|u|. Then, U∞ is the unique extension
on all Borel sets in Σω considered with the product topology [19, 4].

CONCUR 2019

17:4 Approximate Learning of Limit-Average Automata

Automata as random variables. A weighted automaton A defines the measurable function
LA(w) : Σω 7→ R that assigns values to words. We interpret such functions as random
variables w.r.t. the probabilistic measure U∞. Hence, for a given automaton A, we consider
the following quantities:
1. E(A) – the expected value of the random variable LA defined by A w.r.t. the uniform

distribution U∞ on Σω, and
2. E(A | uΣω) – the conditional expected value, defined for U∞ as the expected value of Lu

such that Lu(w) = LA(uw).

We consider automata as generators of random variables; automata defining the same
random variable are equivalent. Formally, LimAvg-automata A1 and A2 are almost equivalent
if and only if for almost all words w we have LA1(w) = LA2(w). Note that almost all words
means all except for words from some Y of probability 0.

LimAvg-automata considered over probability distributions are equivalent to Markov
chains with the long-run average objectives presented in [4, Section 10.5.2].

I Theorem 1 ([4]). Let A be a LimAvg-automaton. (1) If A is strongly connected, then
almost all words have the same value equal to E(A). (2) For almost all words w, the run on
w eventually reaches some bottom strongly connected component (SCC) of A.

Theorem 1 has important consequences. First, we can contract each bottom SCC to a
single state with self-loops of the same weight x being the expected value of that SCC. We
refer to x as the value of that SCC. Such an operation does not affect almost equivalence.
Second, while reasoning about LimAvg-automata, we can neglect all weights except for the
values of bottom SCCs. We will omit weights other than the values of bottom SCCs.

Samples. A sample is a set of labeled examples of some (hidden) function L : Σω → R. In
the classical automata-learning approach words are finite, and hence they can be presented
as examples along with the information whether the word belongs to the hidden language.
Infinite-words, however, cannot be given directly to a learning algorithm. To mitigate this
problem we consider two approaches: one is to restrict examples to ultimately periodic
words, which have finite presentation, and the other is to consider finite words and ask for
conditional expected values. We discuss both approaches below.

To distinguish samples with different types of labeled examples, we call them U -samples,
E-samples and (E,n)-samples.
1. Ultimately periodic words. Consider an example being an ultimately periodic word uvω.

It can presented as a pair of finite words (u, v) and we consider labeled examples (u, v, x),
where u, v ∈ Σ∗ and x = L(uvω). A set of labeled examples (u, v, x) is called an U -sample.
To draw a random U -sample, we consider finite words u, v to be selected independently
at random according to distributions G(λ1) and G(λ2) for some λ1, λ2. For such a set of
pairs of words, we label them according to the function L.

2. Conditional expected values. We consider examples, which are finite words u ∈ Σ∗. A
labeled example is a pair (u, x), where x = E(L | uΣω) is the conditional expected value
of L under the condition that random words start with u. For such labeled examples
we consider E-samples consisting of labeled words of various length, and (E,n)-samples
consisting of words of length n. We assume that finite words for random E-samples
are drawn according to a distribution G(λ) for some λ, and finite words for random
(E,n)-samples are drawn according to the uniform distribution Un.

J. Michaliszyn and J. Otop 17:5

We only consider minimal consistent samples, i.e., samples that do not contain ex-
amples whose value can be computed from other examples in the sample. For instance,
{(a, a, 0), (a, aa, 1)} is an inconsistent U -sample, and {(aa, 0), (ab, 1

2), (a, 1)} is an inconsistent
E-sample over {a, b}.
I Remark 2 (Incompatible distributions). Note that the distribution on ultimately periodic
words differ from the uniform distribution on infinite words. The set of ultimately periodic
words is countable and hence it has probability 0 (according to the distribution U∞).
Moreover, almost all infinite words contain all finite words as infixes, whereas this is not the
case for ultimately periodic words under any probability distribution.
I Remark 3 (Feasibility of conditional expectation). Consider a LimAvg-automaton A com-
puting L : Σω → R. For a finite prefix u, we can compute E(L | uΣω) in polynomial time
in |A| [4]. If we consider A to be a black-box, which can be controlled, then E(L | uΣω)
can be approximated in the following way. We pick random words v1, . . . , vk of length k,
compute partial averages in A of uv1, . . . , uvk and then take the average of these values.
The probability that this process returns a value ε-close to E(L | uΣω) converges to 1 at
exponential rate with k.

3 Passive learning

Passive learning corresponds to a scenario with an uncontrolled working black-box system.
The learner can only observe system’s output, and its goal is to create an approximate model
of the system. This task comprise of two problems. The first problem, characterization,
is to assess whether the observations cover most, if not all, behaviors of the system. The
second one, called sample fitting, is to create a reasonable automaton consistent with the
observations. In this section we discuss both problems.

3.1 Characterization
A sample can cover only small part of the system. It is sometimes argued [27, 32], however,
that if a sample is large enough, then it is likely to cover most, if not all, important
behaviors. We show that for some LimAvg-automata, randomly drawn samples of size less
than exponential are unlikely to demonstrate any probable values.

Let ||S|| denote the sum of the lengths of all the examples in a sample S. A sample
distinguishes two automata if it is consistent with exactly one of them. We show the following.

I Theorem 4. For any n there are two automata An, An of size n+4 such that for almost all
words w we have |LAn

(w)−LAn
(w)| = 2, but a random U -sample, E-sample or (E, k)-sample

(for any k) S distinguishes An and An with the probability at most ||S||2n .

Proof. Consider the alphabet {a, b} and n ∈ N. We construct a LimAvg-automaton An
with n + 4 states. We use n + 2 states to find the first occurrence of the infix anb in the
standard manner. When such an infix is found, the automaton moves to a state qa if the
following letter is a and to a state qb otherwise. In qa it loops with the weight 1 and in qb it
loops with the weight −1. All other weights are 0. So An returns 1 if the first occurrence of
anb if followed by a, −1 if it is followed by b, and 0 if there is no anb. The automaton An
has the same structure as An, but the weights −1 and 1 are swapped.

We first observe that An and An differ over almost all infinite words. Indeed, an infinite
word with probability 1 contains the infix anb, and so on almost all words one of the automata
returns −1 and the other one 1. Consider a sample S (it can be an E-sample, (E, k)-sample

CONCUR 2019

17:6 Approximate Learning of Limit-Average Automata

or U -sample). This sample distinguishes automata An and An only if it contains an example
with the infix anb (in case of U -samples, this means that this infix occurs in uv of some
example (u, v)) - all other examples for both automata are the same. The probability that S
contains anb as an infix of one of its examples is bounded by ||S||2n+1 . Indeed, the number of
positions in all words is ||S|| and the probability that anb occurs on some specific position is
at most 1

2n+1 for all types of samples and any k > 0 (if k < n+ 1, the probability is 0). J

Therefore to be able to distinguish just two automata with probability 1− ε, we need a
sample such that ||S||2n+1 > 1− ε, which for fixed ε < 1 is of exponential size. We show that the
exponential upper bound is sufficient.

U -samples. If automata A1, A2 of size n recognize different languages, then there is a word
uwω such that LA1(uwω) 6= LA2(uwω) and the length of u and w is bounded by n2. Assume
for simplicity that λ = λ1 = λ2. If the sample size is at least |Σ|2n2 · ln |Σ|

2n2

ε ·(1−λ)−2n2 ·λ−2,
then with probability 1− ε a random sample contains all such words, and so distinguishes all
the automata of size n.

E-samples. E-samples do not distinguish almost-equivalent automata, hence we cannot
learn automata exactly. However, exponential samples are enough to learn automata up to
almost equivalence. To see that consider two automata A1 and A2 of size n that are not
almost equivalent. Due to Theorem 1 there is a word u ∈ Σ∗ such that u reaches bottom
SCCs in both A1 and A2, and these bottom SCCs have different expected values. Using
standard pumping argument, we can reduce the size of u to at most n2. So if the sample
size is at least |Σ|n2 · ln |Σ|

n2

ε · (1 − λ)−n2 · λ−1, then with probability 1 − ε it contains all
words u of size n2, and therefore distinguishes all automata of size n.

For (E,n)-samples, the reasoning is the similar, assuming n is quadratic in the size of
the automaton: the sufficient sample size is |Σ|n · ln |Σ|

n

ε .

3.2 Consequences for PAC learning
We discuss the consequences of our results to the probably approximately correct (PAC) model
of learning [35]. In the PAC framework, the learning algorithm should work independently of
the probability distribution on samples. However, variants of the PAC framework have been
considered where the distribution on samples is uniform [24]. In particular, PAC learning of
DFA under the uniform distribution over words is a long-standing open problem [33, 2].

We restrict the classical PAC model and assume that observations are drawn according
to the distributions Un,G(λ) (as discussed in Section 2) and the quality of the learned
automaton is assessed using the uniform distribution over infinite words U∞.

I Problem 5 (PAC learning under fixed distributions). Given ε, δ ∈ Q+, n ∈ N and an oracle
returning random labeled examples consistent with some automaton AT of size n, construct
an automaton A such that with probability 1− ε w e have E(|LA − LAT |) < 1− δ.

As a consequence of Theorem 4, there is no PAC-learning algorithm for LimAvg-automata
with U -samples (resp., E-samples or (E, k)-samples) that uses samples of polynomial size; in
particular, there is no such algorithm working in polynomial time.

I Theorem 6. The class of LimAvg-automata is not PAC-learnable with U-samples, E-
samples or (E, k)-samples.

J. Michaliszyn and J. Otop 17:7

q1 q2 q3 qn. . .
c2: 1

c3: 1
cn: 1c1: 1

a1: 1
a2 . . . an: 0

a1: 0
a2: 1

a3 . . . an: 0

a1, a2: 0
a3: 1

a4 . . . an: 0

a1 . . . an−1: 0
an: 1

Figure 1 The canonical automaton Aϕ from the proof of Theorem 8.

3.3 Sample fitting
Once we have a sample, the problem of finding an automaton fitting the sample can be
solved in polynomial time in a trivial way: we create an automaton that is a tree such that
every word of a given sample leads to a different leaf in this tree, and then we add loops with
appropriate values in the leaves (similarly to a prefix tree acceptor [17] for finite automata).
This solution leads to an automaton that overfits the samples, as it works well only for the
sample and it is unlikely to work well with words not included in the sample. Besides, the
automaton is linear in the size of the sample, not in the size of the black-box system. For
a fixed automaton we can construct arbitrarily large U-samples (or E-samples) consistent
with it and hence the gap between the size of such an automaton and the black-box system
is arbitrarily large. To exclude such solutions, we restrict the size of the automaton to be
constructed. We study the following problem.

I Problem 7 (Sample fitting). Given a sample S and n ∈ N, construct a LimAvg-automaton
with at most n states, which is consistent with S.

The decision version of this problem only asks whether such an automaton exists. We
show that this problem is NP-complete, regardless of the sample representation. For hardness,
we reduce the NP-complete problem SAT0 [17], which is the SAT problem restricted to CNF
formulas such that each clause contains only positive literals or only negative literals.

I Theorem 8. The sample fitting problem is NP-complete for U -samples.

Proof. The membership in NP follows from the following observation: if n is greater than
the total length of the samples, then return yes as the tree-like solution works. Otherwise,
non-deterministically pick an automaton of the size n and check whether it fits the sample.

The NP-hardness proof is inspired by the construction from [17, Theorem 6.2.1]. For a
given instance of the SAT0 problem ϕ =

∧n
i=1 Ci over variables x1, . . . , xn (not all variables

need to occur in ϕ), we construct a U -sample Sϕ such that there is an automaton with n
states fitting Sϕ if and only if ϕ is satisfiable.

We fix the alphabet {ai, ci, di | i = 1, . . . , n} ∪ {b, t}. The sample Sϕ consists of:
S1 (ci, aj , x) for each i, j ∈ {1, . . . , n}, where x is 1 if i = j, and 0 otherwise.
S2 (ci, dj , x) for each i, j ∈ {1, . . . , n}, where x is 1 if xi is in Cj , and 0 otherwise.
S3 (cib, di, 1) for each i ∈ {1, . . . , n}.
S4 (cib, t, x) for each i ∈ {1, . . . , n}, where x is 1 if the clause Ci contains only positive

literals and 0 if it contains only negative literals.

Assume that ϕ is satisfiable and let σ : {x1, . . . , xn} → {0, 1} be a satisfying valuation.
Then, we construct an automaton Aϕ consistent with the sample Sϕ starting from the
structure presented in Figure 1. Then, we add the following transitions:

CONCUR 2019

17:8 Approximate Learning of Limit-Average Automata

q1 q2 qn. . .

qF

qT

c2

cn
a1

a2 . . . an

a2

a1 a3 . . . an

an

a1 . . . an−1

c1

∗: 1

∗

Figure 2 A picture of the canonical automaton from the proof of Theorem 9. All the weights are
0 except from transitions from the state qT .

for each i, a loop in qi on the letter t with the value σ(xi),
for each i, j, a loop in qi on the letter dj with the value 1 if xi is in Cj and 0 otherwise,
for each clause Ci, if Ci is satisfied because of a variable xj , then we add a transition
from qi to qj over b (if there are multiple possible variables, we choose any).

The remaining transitions can be set in arbitrary way. The obtained automaton Aϕ is
consistent with the sample Sϕ.

Now assume that there is an automaton A of n states, which is consistent with the
sample. We show that the valuation σ such that σ(xi) = LA(citω) satisfies ϕ. Let qi be the
state where the automaton A is after reading the word ci. By S1, all the states q1, . . . , qn
are pairwise different. Since there are only n states, q1, . . . , qn are all the states of A. Now
consider any clause Ci. Let qj be the state of A after reading cib. Notice that by S3, the
value of dωi in qj is 1, and by S2, this means that xj is in Ci. If Ci contains only positive
literals, then the value of tω in qj is 1 by S4, which means that σ(xj) = 1 and that Ci is
satisfied. The other case is symmetric. J

I Theorem 9. The sample fitting problem is NP-complete for E-samples.

Proof. The proof is similar to the proof of Theorem 8. For the NP-hardness, the sample now
is obtained from the sample in the proof of Theorem 8 by replacing every triple (u, v, x) by
the pair (uv, x). However, now we ask for an automaton of size n+ 2. If there is a valuation
that satisfies a given set of clauses, then one can construct an automaton based on the one
presented in Figure 2.

On the other hand, if there is an automaton fitting the sample, then it has to have a state
where the expected value of any word is 0, a state where the expected value of any word is
1, and n different states reachable by each c1, . . . , cn. The rest of the proof is virtually the
same as in Theorem 8, except that now we define σ such that σ(xi) is the expected value of
words with the prefix cit. J

The above proofs also work with some natural relaxations of the sample fitting problem.
For example, if we only require the automaton to fit the samples up to some ε < 1

2 , then the
proofs still hold since we use only weights 0 and 1. Another relaxation for the E-samples case
is to allow the automaton to give wrong values for some samples as long as the summarized
probability of the examples with wrong value is less than some ε. However, since all the
words are of the length at most three, the probability of uΣω for each example u is greater
than 1

(3n+2)4 (recall that |Σ| = 3n + 2), which means that for any ε < 1
(3n+2)4 for every

example some its extension must fit and hence the whole sample must fit.

J. Michaliszyn and J. Otop 17:9

4 Active learning

In the active case, the learning algorithm can ask queries to an oracle, which is called the
teacher, which has a (hidden) function L : Σω → R and answers two types of queries:

expectation queries: given a finite word u, the teacher returns E(L | uΣω),
ε-consistency queries: given an automaton A, if LA ε-approximates L, the teacher answers
YES, otherwise it returns a word u such that |E(L | uΣω)− E(LA | uΣω)| > ε.

Observe that if LA does not ε-approximate L, i.e., E(|L − LA|) > ε, a counterexample
for the ε-consistency query exists. Indeed, if L1,L2 are defined by LimAvg-automata and
E(|L1 − L2|) > ε, then there is a word uΣω such that E(|L1 − L2| | uΣω) > ε and L1 (resp.,
L2) returns E(L1 | uΣω) (resp,. E(L2 | uΣω)) on almost all words from uΣω. Therefore,
|E(L1 | uΣω)− E(L2 | uΣω)| = E(|L1 − L2| | uΣω) > ε.

In the active learning case we consider two problems: approximate learning and rigid
approximate learning. We first define approximate learning:

I Problem 10 (Approximate learning). Given ε ∈ Q+ ∪ {0} and a teacher with a (hidden)
function L, construct a LimAvg-automaton A such that LA ε-approximates L and A has
the minimal number of state among such automata.

4.1 Approximate learning
We define a decision problem, called approximate minimization, which can be solved in
polynomial-time having a polynomial-time approximate learning algorithm.

I Problem 11 (Approximate minimization). Given a LimAvg-automaton A, n ∈ N and ε ∈
Q+, the approximate minimization problem asks whether there exists a LimAvg-automaton
A′ with at most n states such that E(|LA − LA′ |) ≤ ε.

An efficient learning algorithm can be used to efficiently compute approximate mini-
mization of a given LimAvg-automaton A; we can run it and compute answers to queries
of the learning algorithm in polynomial time in |A| [4]. We show that the approximate
minimization problem is NP-complete, which means that approximate learning cannot be
done in polynomial time if P 6= NP .

I Theorem 12. The approximate minimization problem is NP-complete.

Proof sketch. The problem is contained in NP as we can non-deterministically pick an
automaton with n states and check whether it ε-approximates A.

For a vector ~v ∈ Rm we define ‖~v‖1 =
∑m
i=1 |~v[i]|. For NP-hardness, consider the

following problem: Binary k-Median Problem (BKMP): given numbers n,m, k, t ∈ N and
a set of Boolean vectors C = {~v1, . . . , ~vn} ⊆ {0, 1}m, decide whether there are vectors
~u1, . . . , ~uk ∈ {0, 1}m and a partition D1, . . . ,Dk of C such that

∑k
j=1

∑
~v∈Dj

‖~v − ~uj‖1 ≤ t?
BKMP has been shown NP-complete in [30]. To ease the reduction, we consider a variant

of BKMP, called Modified BKMP, where we assume that ~0,~1 belong to the instance and the
solution and some additional constraints. The Modified BKMP is also NP-complete.

For C = {~v1, . . . , ~vn} ⊆ {0, 1}m we define LC over the alphabet Σ = {a1, . . . , am} as
follows: for all ai, aj ∈ Σ, w ∈ Σω

if i ≤ n, we set LC(aiajw) = ~vi[j].
if i ∈ {n+ 1,m}, we set LC(aiajw) = ~vn[j].

CONCUR 2019

17:10 Approximate Learning of Limit-Average Automata

Intuitively, we select the vector with the first letter and the vector’s component with the
second letter. This language can be defined with a tree-like LimAvg-automaton AC .

We show that, if an instance (C, k, t) of Modified BKMP has a solution ~u1, . . . , ~uk and
D1, . . . ,Dk, then there exists an automaton A with k + 1 states that t

nm -approximates LC .
Let ~v1 = ~u1 = ~0 and ~v2 = ~u2 = ~1. The automaton A consists of the initial state q0 and the
successors of the initial state, q1, . . . , qk, which correspond to vectors ~u1, . . . , ~uk, i.e., q1 is a
bottom SCC of the value 0, q2 is a bottom SCC of the value 1, and for i > 2 the successors
of qi encode ~ui via δ(qi, aj) = q1 if ~ui[j] = 0 and δ(qi, aj) = q2 otherwise. The successors of
q0 are defined based on the partition D1, . . . ,Dk, i.e., if ~vi belongs to Cj , then δ(q0, ai) = qj .
Observe that A ε-approximates AC .

Conversely, consider A′ with k + 1 states that t
nm -approximates LC . We define vectors

~p1, . . . , ~pm ∈ Rm such that ~pi[j] = E(A′ | aiajΣω). The structure of Modified BKMP, implies
that the initial state of A′ has no self loops and hence it has at most k different successor
states. Therefore, there are at most k different vectors among ~p1, . . . , ~pm. Finally, we observe
that since we consider ‖·‖1, w.l.o.g. we can assume that ~p1, . . . , ~pm ∈ {0, 1}m. Therefore,
these vectors give us a solution to the instance (C, k, t) of Modified BKMP. J

4.2 Rigid approximate learning
One of the drawbacks of the standard approximation is that the counterexamples may be
dubious, if not useless. We illustrate this with an example.

I Example 13 (Dubious counterexamples). Consider a minimal DFA B with 2n states whose
language consists of words of length m for some n < m, and a word v ∈ Σn. We define a
function LB,v : {a, b}ω → R such that for all u,w
LB,v(auw) = 0 if |u| = n and B accepts u,
LB,v(auw) = 0.3 if |u| = n and B rejects u,
LB,v(bw) is 0.4 if the first occurrence of v in w is followed by a, and 1 otherwise.

Fix ε = 0.1. Observe that LB,v can be 0.1-approximated with an automaton A, which is
faithful to LB,v on bΣω and returns 0.15 for all other words. A has n+O(1) states.

Assume that the teacher gives only counterexamples starting with a, and hence ε-
consistency queries do not give any information about the values of words starting with b.
The teacher can do it as long as the algorithm does not know the whole B, which takes Ω(|B|)
queries to learn. Yet even if the algorithm learns the whole B and returns the 0.7 for the
words starting with b, the expected difference is 0.5 · 0.3 = 0.15. It follows that to learn the
approximation, the algorithm needs to learn something about v.

Suppose that the algorithm did not learn the whole B. Then, to learn something non-
trivial about words starting with b, it has to ask an expectation query containing v. Since
the learning algorithm is deterministic, it asks the same expectation queries for different
words v. Therefore, for every learning algorithm there are words v that can be learned only
after asking queries of the total length 2Ω(|v|).

It follows that any learning algorithm has to ask queries of total length Ω(|B|) or 2Ω(|v|),
which totals to 2Ω(n).

In Example 13 we assumed an antagonistic teacher, which misleads the algorithm on
purpose. But even with a stochastic teacher, it is not known whether “fixing” a given random
counterexample is a step towards better approximation. To resolve this issue, we consider a
stronger notion of approximation, called rigid approximation, where we require all conditional
expected values to be ε-close, i.e., for all words u ∈ Σ∗ we have E(|L1 − L2| | uΣω) ≤ ε. In

J. Michaliszyn and J. Otop 17:11

A1:
a b c

0 0.5 1

A2:
a

b c

0.25 1
A3:

a b
c

0 0.75

Aexp:

. . .
a b c

0 1
4n

2
4n

a b c

4
4n

5
4n

6
4n

a b c

4n−4
4n

4n−3
4n

4n−2
4n

Figure 3 The automaton A1 approximated by two minimal non-equivalent automata and the
automaton Aexp approximated by exponentially many non-equivalent automata.

this framework counterexamples are certain, i.e., if for some u ∈ Σ∗, the expectation over
uΣω is more than ε off the intended value, it has to be modified. Formally, we define the
problem as follows:

I Problem 14 (Rigid approximate learning). Given ε ∈ Q+ and a teacher with a (hidden)
function L, construct an automaton A such that LA is a rigid ε-approximation of L and A
has the minimal number of state among such automata.

Even though the counterexamples are certain in this framework, we observe that this
does not eliminate ambiguity. For instance, there can be multiple automata with the minimal
number of states.

I Example 15 (Non-unique minimalization). Consider the automaton A1 depicted in Figure 3
and ε = 1

4 . Any automaton A, which is a rigid ε-approximation of LA1 , has at least two
bottom SCCs and hence it requires at least 3 states. Therefore the automata A2,A3 depicted
in Figure 3, which ε-approximate LA1 , have the minimal number of states. This shows that
there can be multiple correct answers to in the rigid approximate learning problem.

Based on this example, we construct the automaton Aexp parametrized by n ∈ N depicted
in Figure 3, which has O(n) states and there are exponentially many (in n) minimal non-
equivalent automata, which are rigid 1

8n -approximations of LAexp .

As in the approximate learning case, efficient rigid approximate learning enables us to
solve efficiently the following rigid approximate minimization problem.

I Problem 16 (Rigid approximate minimization). Given a LimAvg-automaton A, n ∈ N and
ε ∈ Q+, construct a LimAvg-automaton A′ with at most n states such that for all words
u ∈ Σ∗ we have E(|LA − LA′ | | uΣω) ≤ ε.

First, we consider a naive approach to solve the rigid approximate minimization problem
based on state merging. We start with an input automaton A, merge its states to maintain
the property that the automaton with merged states A′ rigidly ε-approximates LA. We
terminate if the automaton is minimal, i.e., merging any two states of A′ violates the property.
However, it may happen that q1 can be merged either with q2 or q3, but not with both. We
show in the following example that the choice of merged states can have profound impact on
the size of a minimal automaton.

I Example 17 (Minimal automata of different size). Assume n ∈ N and the function L that
returns 0 on words from aΣnaΣω, 1 on bΣnbΣω, and 0.5 otherwise. Let A be a minimal
automaton defining such a language, as depicted in Figure 4.

CONCUR 2019

17:12 Approximate Learning of Limit-Average Automata

A:

AL:

AS :

. . .

. . .

a
* * *

b
* * *

0

0.5

0.5

1

a
b

a
b

* * * *
0.25

0.75

a
b

a
b 0.25

0.75

Figure 4 Minimal automata of different size.

Let ε = 1
4 . To minimize A, we can merge it to the automaton AS with 3 states or to AL

with n+ 3 states. Observe that AS and AL are rigid ε-approximations of LA. For AS , it is
because for every word au we have E(AB | auΣω) ∈ {0, 0.5} and hence it is ε-close to 0.25,
and similarly for ba. For AL, it is because for every u of length at least n+ 2 the expected
value of AL is 0.75 or 0.25 depending on the (n + 2)th letter of u whereas for A it is in
{0.5, 1} or in {0, 0.5}, resp. For shorter u, we simply observe that the difference of expected
values w.r.t. to a word does not exceed the maximal difference in its suffixes.

The automaton AL is minimal, as there are no states that can be merged. Therefore, the
difference and even the ratio between the sizes of both automata are unbounded.

We show that the rigid approximate minimization problem is NP-complete, which implies
that there is no polynomial-time rigid approximate learning algorithm (unless P = NP).

I Theorem 18. The rigid approximate minimization problem is NP-complete.

Proof sketch. The rigid approximate minimization problem is in NP. We show that it is
NP-hard. We define a problem, which is an intermediate step in our reduction.

Given n, k ∈ N and vectors C = {~v1, . . . , ~vn} ⊆ {0, 1
2 , 1}

n, the 1
4 -vector cover problem asks

whether there exist ~u1, . . . , ~uk ∈ Rn such that for every ~v ∈ C there is ~uj with ‖~v − ~uj‖∞ ≤
1
4?

The 1
4 -vector cover problem is NP-complete; the NP-hardness is via reduction from the

dominating set problem. We show that the 1
4 -vector cover problem reduces to the rigid

approximate minimization problem
Let C = {~v1, . . . , ~vn} ⊆ {0, 1

2 , 1}
n. We define LC over the alphabet Σ = {a1, . . . , am} such

that for all ai, aj ∈ Σ, w ∈ Σω we have LC(aiajw) = ~vi[j]. Such LC can be defined with a
a tree-like LimAvg-automaton AC . We show that an instance n, k, C of the 1

4 -vector cover
problem has a solution if and only if AC has a rigid 1

4 -approximation with k + 3 states.
Assume that A′ is an automaton with k+ 3 states such that for all words u ∈ Σ∗ we have

E(|LAC − LA′ | | uΣω) ≤ 1
4 . Let p0 be initial in A; we show that it has at most k different

successors because at least 3 states cannot be successors of p0: p0 itself, and p1, p2 being states
in two different bottom SSCs (that need to exist). Otherwise, if u leads to pi (i = 0, 1, 2)
we have |E(|LC(w)− LC(uw)| | w ∈ Σω) > 1

2 , which contradicts A′ being 1
4 -approximation.

Thus, p0 has at most k different successors; We define vectors ~u1, . . . , ~uk from the successors
of p0. Formally, for i ∈ {1, . . . , n} we define a vector ~yi as ~yi[j] = E(LA′ | aiajΣω). There are
at most k different vectors among ~y1, . . . , ~yn and we take these distinct vectors as ~u1, . . . , ~uk.
The condition E(|LAC − LA′ | | uΣω) ≤ 1

4 implies that ~u1, . . . , ~uk form a solution to n, k, C.
Conversely, assume that the instance n, k, C has a solution. Observe that w.l.o.g. we can

assume that the solution vectors ~u1, . . . , ~uk belong to {0.25, 0.75}n. Based on this solution we
define A′ with k+ 3 states q0, q1, . . . , qk, s1, s2 such that q0 is initial, q1, . . . , qk are successors

J. Michaliszyn and J. Otop 17:13

of q0, and s1, s2 are single-state bottom SCC of the values 0.25 and 0.75. The states q1, . . . , qk
correspond to vectors ~u1, . . . , ~uk, i.e., the successors of qi encode ~ui via δ(qi, aj) = s1 if
~ui[j] = 0.25 and δ(qi, aj) = s2 otherwise. The successors of q0 are defined based on the
matching from the vector cover, i.e., if δ(q0, ai) = qj , then ~uj is 1

4 -close to ~vi. Observe that
A′ is a rigid 1

4 -approximation of AC . J

5 Almost-exact learning

The almost-exact learning the minimal automaton is defined as follows.

I Problem 19 (Almost-exact learning). Given a teacher with a (hidden) function L, construct
a LimAvg-automaton A such that LA is a 0-approximation of L.

Notice that for functions L and LA, the following conditions are equivalent:
LA is a 0-approximation of L.
LA is a rigid 0-approximation of L.

P({w : LA(w) 6= L(w)})=0.
P({w : LA(uw) 6= L(uw)})=0 for each u.

We show that there is a polynomial-time algorithm for almost-exact learning.

I Theorem 20. The almost-exact learning problem for LimAvg-automata can be solved in
polynomial time in the size of the minimal automaton that is almost equivalent with the target
function L and the maximal length of counterexamples returned by the teacher.

Proof. We define a relation ≡0
L on finite words u, v ∈ Σ∗ as follows:

u ≡0
L v if and only if P({w : L(uw) 6= L(vw)}) = 0

Clearly, ≡0
L is an equivalence relation. We show that ≡0

L is a right congruence, i.e., if
u ≡0

L v and a ∈ Σ, then ua ≡0
L va. Indeed, consider X1 = {w : L(uaw) 6= L(vaw)} and

X2 = {w : L(uw) 6= L(vw)}. Note that u ≡0
L v implies P(X2) = 0. For all w, if w ∈ X1,

then aw ∈ X2. Thus, under the uniform distribution we have P(X1) ≤ 1
|Σ|P(X2) = 0 and

hence P(X1) = 0 and ua ≡0
L va.

We now show a counterpart of the Myhill–Nerode theorem: there is a LimAvg-automaton
of n states defining almost-exactly L if and only if the index of ≡0

L is n.
If A defines almost-exactly L, then the index of ≡0

L is bounded by the number of states of
A. Indeed, if for words u, v the automaton A starting from the initial state ends up in the same
state, then for all words w we have L(uw) = L(vw) and hence u ≡0

L v. Conversely, assume
that ≡0

L has a finite index. Then, we construct a LimAvg-automaton A≡0
L
corresponding

to ≡0
L. The states of A≡0

L
are the equivalence classes of ≡0

L and A≡0
L
has a transition from

[u]≡0
L
to [v]≡0

L
over a if and only if [ua]≡0

L
= [v]≡0

L
. Observe that due to Theorem 1, if [u]≡0

L
and [v]≡0

L
are in a bottom SCC, then [u]≡0

L
= [v]≡0

L
. Then, for every bottom SCCs [u]≡0

L
we assign the value of all outgoing transitions (which are self-loops) to E(L | uΣω). For the
remaining transitions we set the weights to 0 (due to Theorem 1 these weights are irrelevant
as they do not change any of the expected values). Observe that A≡0

L
computes L.

A classical result of [1] states that DFA can be learned in polynomial time using mem-
bership and equivalence queries. We adapt this result here. The learning algorithm for
LimAvg-automata maintains a pair (Q, T), where Q, the set of access words, contains
different representatives the right congruence relation, and T , the set of test words, contains
words that approximate the right congruence relation. T defines the relation ≡T such that
u1 ≡T u2 if and only if for all v ∈ T we have P({w | L(u1vw) 6= L(u2vw)}) = 0.

CONCUR 2019

17:14 Approximate Learning of Limit-Average Automata

The algorithm maintains two properties: separability: all different words u1, u2 ∈ Q
belong to different equivalence classes of ≡T , and closedness; for all u1 ∈ Q and a ∈ Σ there is
u2 ∈ Q with u1a ≡T u2. Each separable and closed pair (Q, T) defines a LimAvg-automaton
AQ,T , which can be tested for 0-consistency against the teacher’s function. If the teacher
provides a counterexample u, then it is used to extend Q and T . To do so, we split u into
v1a, v2 such that v1a is the minimal prefix of u such that E(L | v1Σω) 6= E(AQ,T | uΣω). Let
v′1 be a word from Q that is ≡T -equivalent to v1. We take Q′ = Q∪ {v′1a}, T ′ = T ∪ {v2}
and close (Q′, T ′) using expectation queries and test the equivalence again. We repeat this
until we get a LimAvg-automaton defining almost equivalent to L.

Correctness of this algorithm follows from correctness of the algorithm from [1]. J

Non-uniform distributions. So far we only discussed the uniform distribution of words.
Here we briefly discuss whether Theorem 20 can be generalized to arbitrary distributions,
represented by Markov chains. We assume that the Markov chain is given to a learning
algorithm in the input.

A (finite-state discrete-time) Markov chain is a tuple 〈Σ, S, s0, E〉, where Σ is the alphabet
of letters, S is a finite set of states, s0 is an initial state, E : S × Σ× S 7→ [0, 1] is an edge
probability function, which for every s ∈ S satisfies

∑
a∈Σ,s′∈S E(s, a, s′) = 1.

The probability of a finite word u w.r.t. a Markov chainM, denoted by PM(u), is the
sum of probabilities of paths from s0 labeled by u, where the probability of a path is the
product of probabilities of its edges. For basic open sets u · Σω = {uw | w ∈ Σω}, we have
PM(u · Σω) = PM(u), and then the probability measure over infinite words defined byM
is the unique extension of the above measure [19]. We will denote the unique probability
measure defined byM as PM. The uniform distribution can be expressed with a (single-state)
Markov chain and hence all the lower bounds from Section 3 and Section 4 apply here.

A Markov chainM is non-vanishing if for all words u ∈ Σ∗ we have PM(uΣ∗) > 0. The
almost-exact learning over distributions given by non-vanishing Markov chains and overM
and over the uniform distribution coincide. Thus, the former can be solved using Theorem 20.
Indeed, if X is measurable andM is non-vanishing, then PM(X) > 0 if and only if P(X) > 0.

The algorithm for the uniform distribution does not extend to vanishing Markov chains
because the relation ≡0

L is not a right congruence. This cannot be simply fixed as we
show that learning cannot be done in polynomial time, assuming P 6= NP. We define the
almost-exact minimization problem as an instance of the approximate minimization problem
with ε = 0. Having a polynomial-time algorithm for almost-exact learning, we can solve the
almost-exact minimization problem in polynomial time.

I Theorem 21. The almost-exact minimization problem for LimAvg-automata under dis-
tributions given by Markov chains is NP-complete.

Proof. The problem is in NP: we can non-deterministically pick an automaton A′ and check
in polynomial time whether A and A′ are almost equivalent w.r.t. a given Markov chain.

We reduce the sample fitting problem for E-samples, which is NP-complete (Theorem 9),
to the almost-exact minimization problem. Consider an E-sample S based on words u1, . . . , uk.
LetMS be a Markov chain which assigns probability 1

k to uiΣω, for each i, and 0 to words
not starting with any of ui. On each uiΣω,MS defines the uniform distribution. Let AS be
a a tree-like LimAvg-automaton consistent with S. Both,MS and AS are of polynomial
size in S. Observe that every automaton A, which is consistent with S (according to the
uniform distribution over infinite words), is almost equivalent to AS (over PM) and vice
versa. Therefore, there is an automaton of n states almost equivalent to AS (under the
distribution PM) if and only if the sample fitting problem with S and n has a solution. J

J. Michaliszyn and J. Otop 17:15

References
1 Dana Angluin. Learning regular sets from queries and counterexamples. Information and

computation, 75(2):87–106, 1987.
2 Dana Angluin and Dongqu Chen. Learning a Random DFA from Uniform Strings and State

Information. In ALT 2015, pages 119–133, Cham, 2015. Springer International Publishing.
3 Dana Angluin and Dana Fisman. Learning regular omega languages. Theor. Comput. Sci.,

650:57–72, 2016.
4 Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press, 2008.
5 Borja Balle and Mehryar Mohri. Learning Weighted Automata. In CAI 2015, pages 1–21,

2015.
6 Borja Balle and Mehryar Mohri. On the Rademacher Complexity of Weighted Automata. In

ALT 2015, pages 179–193, 2015.
7 Borja Balle and Mehryar Mohri. Generalization bounds for learning weighted automata. Theor.

Comput. Sci., 716:89–106, 2018.
8 Borja Balle, Prakash Panangaden, and Doina Precup. A Canonical Form for Weighted

Automata and Applications to Approximate Minimization. In LICS 2015, pages 701–712,
2015.

9 Amos Beimel, Francesco Bergadano, Nader Bshouty, Eyal Kushilevitz, and Stefano Varricchio.
Learning Functions Represented as Multiplicity Automata. Journal of the ACM, 47, October
1999.

10 Michael Benedikt, Gabriele Puppis, and Cristian Riveros. Regular Repair of Specifications. In
LICS 2011, pages 335–344, 2011.

11 Udi Boker, Krishnendu Chatterjee, Thomas A. Henzinger, and Orna Kupferman. Temporal
Specifications with Accumulative Values. ACM Trans. Comput. Log., 15(4):27:1–27:25, 2014.

12 Benedikt Bollig, Peter Habermehl, Carsten Kern, and Martin Leucker. Angluin-Style Learning
of NFA. In IJCAI 2009, pages 1004–1009, 2009.

13 Patricia Bouyer, Nicolas Markey, and Raj Mohan Matteplackel. Averaging in LTL. In CONCUR
2014, pages 266–280, 2014.

14 Pavol Cerný, Thomas A. Henzinger, and Arjun Radhakrishna. Quantitative abstraction
refinement. In POPL 2013, pages 115–128, 2013.

15 Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger. Quantitative languages.
ACM TOCL, 11(4):23, 2010.

16 Krishnendu Chatterjee, Thomas A. Henzinger, and Jan Otop. Quantitative Automata under
Probabilistic Semantics. In LICS 2016, pages 76–85, 2016.

17 Colin de la Higuera. Grammatical Inference: Learning Automata and Grammars. Cambridge
University Press, New York, NY, USA, 2010.

18 Manfred Droste, Werner Kuich, and Heiko Vogler. Handbook of Weighted Automata. Springer,
1st edition, 2009.

19 W. Feller. An introduction to probability theory and its applications. Wiley, 1971.
20 Dana Fisman. Inferring regular languages and ω-languages. J. Log. Algebr. Meth. Program.,

98:27–49, 2018.
21 E Mark Gold. Complexity of automaton identification from given data. Information and

control, 37(3):302–320, 1978.
22 Amaury Habrard and José Oncina. Learning Multiplicity Tree Automata. In ICGI 2006,

pages 268–280, 2006.
23 Thomas A. Henzinger and Jan Otop. Model measuring for discrete and hybrid systems.

Nonlinear Analysis: Hybrid Systems, 23:166–190, 2017.
24 Jeffrey C Jackson. An efficient membership-query algorithm for learning DNF with respect to

the uniform distribution. Journal of Computer and System Sciences, 55(3):414–440, 1997.
25 Michael Kearns and Leslie Valiant. Cryptographic limitations on learning Boolean formulae

and finite automata. Journal of the ACM (JACM), 41(1):67–95, 1994.

CONCUR 2019

17:16 Approximate Learning of Limit-Average Automata

26 Michael J Kearns, Umesh Virkumar Vazirani, and Umesh Vazirani. An introduction to
computational learning theory. MIT Press, 1994.

27 Kevin J. Lang. Random DFA’s Can Be Approximately Learned from Sparse Uniform Examples.
In COLT 1992, pages 45–52, 1992.

28 Ines Marusic and James Worrell. Complexity of equivalence and learning for multiplicity tree
automata. Journal of Machine Learning Research, 16:2465–2500, 2015.

29 Jakub Michaliszyn and Jan Otop. Non-deterministic Weighted Automata on Random Words.
In CONCUR 2018, volume 118 of LIPIcs, pages 10:1–10:16, 2018.

30 Pauli Miettinen, Taneli Mielikäinen, Aristides Gionis, Gautam Das, and Heikki Mannila. The
discrete basis problem. In European Conference on Principles of Data Mining and Knowledge
Discovery, pages 335–346. Springer, 2006.

31 Joshua Moerman, Matteo Sammartino, Alexandra Silva, Bartek Klin, and Michal Szynwelski.
Learning nominal automata. In POPL 2017, pages 613–625, 2017.

32 José Oncina and Pedro Garcia. Inferring regular languages in polynomial updated time. In
Pattern recognition and image analysis: selected papers from the IVth Spanish Symposium,
pages 49–61. World Scientific, 1992.

33 Leonard Pitt. Inductive inference, DFAs, and computational complexity. In International
Workshop on Analogical and Inductive Inference, pages 18–44. Springer, 1989.

34 Leonard Pitt and Manfred K Warmuth. The minimum consistent DFA problem cannot be
approximated within any polynomial. Journal of the ACM (JACM), 40(1):95–142, 1993.

35 Leslie G Valiant. A theory of the learnable. In Proceedings of the sixteenth annual ACM
symposium on Theory of computing, pages 436–445. ACM, 1984.

Alternating Weak Automata from Universal Trees
Laure Daviaud
City, University of London, UK
Laure.Daviaud@city.ac.uk

Marcin Jurdziński
University of Warwick, UK
Marcin.Jurdzinski@warwick.ac.uk

Karoliina Lehtinen
University of Liverpool, UK
k.lehtinen@liverpool.ac.uk

Abstract
An improved translation from alternating parity automata on infinite words to alternating weak
automata is given. The blow-up of the number of states is related to the size of the smallest universal
ordered trees and hence it is quasi-polynomial, and it is polynomial if the asymptotic number
of priorities is at most logarithmic in the number of states. This is an exponential improvement
on the translation of Kupferman and Vardi (2001) and a quasi-polynomial improvement on the
translation of Boker and Lehtinen (2018). Any slightly better such translation would (if – like all
presently known such translations – it is efficiently constructive) lead to algorithms for solving parity
games that are asymptotically faster in the worst case than the current state of the art (Calude,
Jain, Khoussainov, Li, and Stephan, 2017; Jurdziński and Lazić, 2017; and Fearnley, Jain, Schewe,
Stephan, and Wojtczak, 2017), and hence it would yield a significant breakthrough.

2012 ACM Subject Classification Theory of computation → Formal languages and automata theory;
Theory of computation → Algorithmic game theory

Keywords and phrases alternating automata, weak automata, Büchi automata, parity automata,
parity games, universal trees

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2019.18

Funding This work has been supported by the EPSRC grants EP/P020992/1 and EP/P020909/1
(Solving Parity Games in Theory and Practice).

Acknowledgements We thank Moshe Vardi for encouraging us to bring the state-space blow-up
of alternating parity to alternating weak automata translation in line with the state-of-the-art
complexity of solving parity games.

1 Introduction

The influential class of regular languages of infinite words (often called the ω-regular languages)
is defined to consist of all the languages of infinite words that are recognized by finite non-
deterministic Büchi automata. The theory of ω-regular languages is quite well understood.
In particular, it is known that deterministic Büchi automata are not sufficiently expressive
to recognize all the ω-regular languages, but deterministic automata with the so-called
parity acceptance conditions are, and that the class of ω-regular languages is closed under
complementation. Effective constructions for determinization and complementation of Büchi
automata are important tools both in theory and in applications, and both are known to
require exponential blow-ups of the numbers of states in the worst case.

For applications in logic, it is natural to enrich automata models by the ability to
alternate between non-deterministic and universal transitions [21, 16]. It turns out that
alternating parity automata are no more expressive than non-deterministic Büchi automata,

© Laure Daviaud, Marcin Jurdziński, and Karoliina Lehtinen;
licensed under Creative Commons License CC-BY

30th International Conference on Concurrency Theory (CONCUR 2019).
Editors: Wan Fokkink and Rob van Glabbeek; Article No. 18; pp. 18:1–18:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Laure.Daviaud@city.ac.uk
mailto:Marcin.Jurdzinski@warwick.ac.uk
mailto:k.lehtinen@liverpool.ac.uk
https://doi.org/10.4230/LIPIcs.CONCUR.2019.18
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 Alternating Weak Automata from Universal Trees

and hence neither allowing alternation, nor the richer parity acceptance conditions, increase
expressiveness; this testifies to the robustness of the class of ω-regular languages. On
the other hand, alternation increases the expressive power of automata with the so-called
weak acceptance conditions: non-deterministic weak automata are not expressive enough to
recognize all ω-regular languages, but alternating weak automata are. The weak acceptance
conditions are significant due to their applications in logic [21] and thanks to their favourable
algorithmic properties [16].

Given that alternating weak automata are expressive enough to recognize all the ω-regular
languages, a natural question is whether, and to what degree, alternating weak automata
are less succinct than alternating Büchi or alternating parity automata. Another way of
stating this question is what blow-up in the number of states is sufficient or required for
translations from alternating parity or alternating Büchi automata to alternating weak
automata. The first upper bound for the blow-up of a translation from alternating Büchi
to alternating weak automata was doubly exponential, obtained by combining a doubly-
exponential determinization construction [7] and a linear translation from deterministic
parity automata to weak alternating automata [21, 19]. This has been improved considerably
by Kupferman and Vardi who have given a quadratic translation from alternating Büchi
to alternating weak automata [15], and then they have generalized it to a translation from
alternating parity automata with n states and d priorities to alternating weak automata,
whose blow-up is nd+O(1), i.e., exponential in the number of priorities in the parity acceptance
condition [14].

Understanding the exact trade-off between the complexity of the acceptance condition –
weak, Büchi, or parity, the latter measured by the number of priorities – and the number
of states in an automaton is interesting from the algorithmic point of view. For example,
the algorithmic problems of checking emptiness of non-deterministic parity automata on
infinite trees, of model checking for the modal µ-calculus, of solving two-player parity games,
and of checking emptiness of alternating parity automata on infinite words over a one-letter
alphabet, are all polynomial-time equivalent. Since checking emptiness of alternating weak
automata on words over a one-letter alphabet can be done in linear time, it follows that
a translation from alternating parity automata to alternating weak automata implies an
algorithm for solving parity games whose complexity matches the blow-up of the number of
states in the translation.

The first quasi-polynomial translation from alternating parity automata to alternating
weak automata was given recently by Boker and Lehtinen [1]. They have used the register
technique, developed by Lehtinen [17] for parity games, to provide a translation from
alternating parity automata with n states and d priorities to alternating parity automata
with nΘ(log(d/ logn)) states and Θ(logn) priorities; combined with the exponential translation
of Kupferman and Vardi [14], this yields an alternating parity to alternating weak translation
whose blow-up of the number of states is nΘ(logn·log(d/ logn)).

The main result reported in this paper is that another technique – universal trees [11, 5],
also developed to elucidate the recent major advance in the complexity of solving parity
games due to Calude, Jain, Khoussainov, Li, and Stephan [2] – can be used to further reduce
the state-space blow-up in the translation from alternating parity automata to alternating
weak automata. We give a translation from alternating parity automata with n states and
d priorities to alternating Büchi automata, whose state-space blow-up is proportional to
the size of the smallest (n, d/2)-universal trees [5], which is polynomial in n if d = O(logn)
and it is nlg(d/ lgn)+O(1) if d = ω(logn). When combined with Kupferman and Vardi’s
quadratic translation of alternating Büchi to alternating weak automata [15], we get the
composite blow-up of the form nO(log(d/ logn)), down from Boker and Lehtinen’s blow-up
of
(
nΘ(log(d/ logn)))logn.

L. Daviaud, M. Jurdziński, and K. Lehtinen 18:3

The necessary size of the state-space blow-up when going from alternating parity automata
to alternating weak automata is wide open: the best known lower bound is Ω(n logn) [15],
closely related to the 2Ω(n logn) lower bound on Büchi complementation [20], while the best
upper bounds are quasi-polynomial. On the other hand, the blow-up for the parity to weak
translation that we obtain nearly matches the current state-of-the-art quasi-polynomial
upper bounds on the complexity of solving parity games [2, 11, 9]. It follows that any
significant improvement over our translation would lead to a breakthrough improvement in
the complexity of solving parity games.

The exponential translation from alternating parity automata to alternating weak auto-
mata due to Kupferman and Vardi [14] is done by a rather involved induction on the number
of priorities. For an automaton with d priorities, it goes through a sequence of d intermediate
automata of a generalized type, which they call parity-weak alternating automata. In contrast,
our construction is significantly more streamlined and transparent; in particular, it avoids
introducing a new class of hybrid parity-weak automata. We first establish a hierarchical
decomposition of runs of alternating parity automata as a generalization of the decomposition
of runs of alternating co-Büchi automata due to Kupferman and Vardi [15], and then we use
the recently introduced universal trees [11, 5] to construct an alternating Büchi automaton,
which is a parity automaton with just 2 priorities. Our work is yet another application of
the recently introduced notion of universal trees [11, 5]. Such applications typically focus
on algorithms for solving games [11, 6, 5, 3]; our work is the first whose primary focus
is on automata.

In addition to universal trees, we use a notion of lazy progress measure. Unlike the
standard parity progress measures, which can be recognised by safety automata but require
an explicit bound to be known on the number of successive occurrences of odd priorities, lazy
progress measures are recognised by Büchi automata and can deal with finite but unbounded
numbers of occurrences of successive odd priorities. This Büchi automaton is similar to (but
more concise than) the automaton used to characterise parity tree automata that recognise
co-Büchi recognisable tree languages [18], itself a generalisation of automata used to decide
the weak definability of tree languages given as Büchi automata [22, 4].

A similar concept to our lazy progress measures was already introduced by Klarlund for
complementation of Büchi and Streett automata on words [12]. Klarlund indeed proves a
result that is equivalent to one of our key lemmas on parity progress measures. Our proof,
however, is more constructive, and it explicitly provides a hierarchical decomposition, which
clearly describes the structure of accepting run dags of parity word automata. Moreover –
unlike Klarlund’s proof, which relies on the result about Rabin measures [13] – our proof
is self-contained. We suspect that the opaqueness of Klarlund’s paper [12] may have been
responsible for attracting less attention and shallower absorption by the research community
than it deserves. In particular, some of the techniques and results that he presents there
have been rediscovered and refined by various authors, often much later [15, 14, 10, 11, 5],
including this work. We hope that our paper will help a wider and more thorough reception
and appreciation of Klarlund’s work.

2 Alternating automata

For a finite set X, we write B+(X) for the set of positive Boolean formulas over X. We say
that a set Y ⊆ X satisfies a formula ϕ ∈ B+(X) if ϕ evaluates to true when all variables
in Y are set to true and all variables in X \Y are set to false. For example, the sets {x, y }
and {x, z } satisfy the positive Boolean formula x ∧ (y ∨ z), but the set { y, z } does not. An

CONCUR 2019

18:4 Alternating Weak Automata from Universal Trees

alternating automaton has a finite set Q of states, an initial state q0 ∈ Q, a finite alphabet Σ,
and a transition function δ : Q× Σ→ B+(Q). Alternating automata allow to combine both
non-deterministic and universal transitions; disjunctions in transition formulas model the
non-deterministic choices and conjunctions model the universal choices.

We consider alternating automata as acceptors of infinite words. Whether infinite
sequences of states in runs of such automata are accepting or not is determined by an
acceptance condition. Here, we consider parity, Büchi, co-Büchi, weak, and safety acceptance
conditions. In a parity condition, given by a state priority function π : Q→ { 0, 1, 2, . . . , d }
for some positive even integer d, an infinite sequence of states is accepting if the largest state
priority that occurs infinitely many times is even. Büchi conditions are a special case of
parity conditions in which all states have priorities 1 or 2, and co-Büchi conditions are parity
conditions in which all states have priorities 0 or 1.

Let the transition graph of an alternating automaton have an edge (q, r) ∈ Q ×Q if r
occurs in δ(q, a) for some letter a ∈ Σ. We say that a parity automaton has a weak acceptance
condition if it is stratified: in every cycle in the transition graph, all states have the same
priority. Weak conditions are a special case of both Büchi and co-Büchi conditions in the
following sense: if the transition graph of a parity automaton is stratified, then every infinite
path in the transition graph satisfies each of the following three conditions if and only if it
satisfies the other two:

the parity condition π : Q→ { 0, 1, 2, . . . , d };
the co-Büchi condition π′ : Q→ { 0, 1 };
the Büchi condition π′′ : Q→ { 1, 2 };

where π′(q) = π(q) mod 2 and π′′(q) = 2− π′(q) for all q ∈ Q.
We say that a state is absorbing if its only successor in the transition graph is itself. A

parity automaton has a safety acceptance condition if all of its states have priority 0, except
for the additional absorbing reject state that has priority 1. An automaton with a safety
acceptance condition is stratified, and hence safety conditions are a special case of weak
conditions.

Whether an infinite word w = w0w1w2 · · · ∈ Σω is accepted or rejected by an alternating
automaton A is determined by the winner of the following acceptance game G(A, w). The
set of positions in the game is the set Q × N and the two players, Alice and Elvis, play
in the following way. The initial position is (q0, 0); for every current position (qi, i), first
Elvis chooses a subset P of Q that satisfies δ(qi, wi), then Alice picks a state qi+1 ∈ P , and
(qi+1, i+ 1) becomes the next current position. Note that Elvis can be thought of making the
non-deterministic choices and Alice can be thought of making the universal choices in the
transition function of the alternating automaton. This interaction of Alice and Elvis yields
an infinite sequence of states q0, q1, q2, . . . , and whether Elvis is declared the winner or not
is determined by whether the sequence is accepting according to the acceptance condition
of the automaton. Acceptance games for parity, Büchi, co-Büchi, and weak conditions are
parity games, which are determined [8]: in every acceptance game, either Alice or Elvis
has a winning strategy. We say that an infinite word w ∈ Σω is accepted by an alternating
automaton A if Elvis has a winning strategy in the acceptance game G(A, w), and otherwise
it is rejected.

A run dag of an alternating automaton A on an infinite word w is a directed acyclic
graph G = (V,E, ρ : V → Q), where V ⊆ Q× N is the set of vertices; successors (according
to the directed edge relation E) of every vertex (q, i) are of the form (q′, i+ 1); the following
conditions hold:

(q0, 0) ∈ V ,
for every (q, i) ∈ V , the Boolean formula δ(q, wi) is satisfied by the set of states p, such
that (p, i+ 1) is a successor of (q, i);

L. Daviaud, M. Jurdziński, and K. Lehtinen 18:5

and ρ projects vertices onto the first component. Note that every vertex in a run dag
has a successor, and hence every maximal path is infinite. We say that a run dag of an
automaton A is accepting if the sequence of states on every infinite path in the run dag is
accepting according to the accepting condition of A. The positional determinacy theorem for
parity games [8] implies that an infinite word w is accepted by an alternating automaton A
with a parity (or Büchi, co-Büchi, weak, or safety) condition if and only if there is an
accepting run dag of A on w. In other words, run dags are compact representations of
(positional) winning strategies for Elvis in the acceptance games.

Run dags considered here are a special case of layered dags, whose vertices can be
partitioned into sets L0, L1, L2, . . . , such that every edge goes from some layer Li to the
next layer Li+1. We define the width of a layered dag with an infinite number of lay-
ers L0, L1, L2, . . . to be lim infi→∞ |Li|. Note that the width of a run dag of an alternating
automaton is trivially upper-bounded by the number of states of the automaton.

3 From co-Büchi and Büchi to weak

In this section we summarize the results of Kupferman and Vardi [15] who have given
translations from alternating co-Büchi and Büchi automata to alternating weak automata
with only a quadratic blow-up in the state space. We recall the decomposition of co-Büchi
accepting run dags of Kupferman and Vardi in detail because it motivates and prepares the
reader for our generalization of their result to accepting parity run dags. Our main technical
result is a translation from alternating parity automata to alternating Büchi automata with
only a quasi-polynomial blow-up in the state space, but the ultimate goal is a quasi-polynomial
translation from parity to weak automata. Therefore, we also recall how Kupferman and
Vardi use their quadratic co-Büchi to weak translation in order to obtain a quadratic Büchi
to weak translation.

3.1 Co-Büchi progress measures
The main technical concept that underlies Kupferman and Vardi’s [15] translation from
alternating co-Büchi automata to alternating weak automata is that of a ranking function for
accepting run dags of alternating co-Büchi automata. As Kupferman and Vardi themselves
point out, ranking functions can be seen as equivalent to Klarlund’s progress measures [12].
We will adopt Klarlund’s terminology because the theory of progress measures for certifying
parity conditions is very well developed [8, 12, 13, 10, 11, 5] and our main goal in this paper
is to use a version of parity progress measures to give a simplified, streamlined, and improved
translation from alternating parity to alternating weak automata.

Let G = (V,E, π : V → { 0, 1 }) be a layered dag with vertex priorities 0 or 1, and
in which every vertex has a successor. Note that all run dags of an alternating co-Büchi
automaton are such layered dags and if the automaton has n states then the width of the run
dag is at most n. (Observe, however, that while formally the third component ρ : V → Q in
a run dag maps vertices to states, here we instead consider the labeling π : V → { 0, 1 } that
labels vertices by the priorities of the states π(v) = π(ρ(v)).)

A co-Büchi progress measure [8, 13, 10] is a mapping µ : V → M , where (M,≤) is a
well-ordered set, such that for every edge (v, u) ∈ E, we have
1. if π(v) = 0 then µ(v) ≥ µ(u),
2. if π(v) = 1 then µ(v) > µ(u).
It is elementary to argue that existence of a co-Büchi progress measure on a graph is sufficient
for every infinite path in the graph satisfying the co-Büchi condition. Importantly, it is also
necessary, which can be, for example, deduced from the proof of positional determinacy for

CONCUR 2019

18:6 Alternating Weak Automata from Universal Trees

parity games due to Emerson and Jutla [8]. In other words, co-Büchi progress measures are
witnesses for the property that all infinite paths in a graph satisfy the co-Büchi condition.
The appeal of such witnesses stems from the property that while certifying a global and
infinitary condition, it suffices to verify them locally by checking a simple inequality between
the labels of the source and the target of each edge in the graph.

The disadvantage of progress measures as above is that on graphs of infinite size, such as
run dags, the well-ordered sets of labels that are needed to certify co-Büchi conditions may
be of unbounded (and possibly infinite) size. In order to overcome this disadvantage, and to
enable automata-theoretic uses of progress measure certificates, Klarlund has proposed the
following concept of lazy progress measures [12]. A lazy (co-Büchi) progress measure is a
mapping µ : V →M , where (M,≤) is a well-ordered set and L ⊂M is the set of lazy-progress
elements, and such that:
1. for every edge (v, u) ∈ E, we have µ(v) ≥ µ(u);
2. if π(v) = 1 then µ(v) ∈ L;
3. on every infinite path in G, there are infinitely many vertices v such that µ(v) 6∈ L.
It is elementary to prove the following proposition.

I Proposition 1. If a graph has a lazy co-Büchi progress measure then all infinite paths in
it satisfy the co-Büchi condition.

The following converse establishes the attractiveness of lazy co-Büchi progress measures for
certifying the co-Büchi conditions on layered dags of bounded width, and hence for certifying
accepting run dags of alternating co-Büchi automata.

I Lemma 2 (Klarlund [12]). If all infinite paths in a layered dag (V,E, π : V → { 0, 1 })
satisfy the co-Büchi condition and the width of the dag is at most n, then there is a lazy
co-Büchi progress measure µ : V →M , where M = { 1, 2, . . . , 2n } and L = { 2, 4, 6, . . . , 2n }.

Proof. We summarize a proof given by Kupferman and Vardi [15] that provides an explicit
decomposition of the accepting run dag into (at most) 2n parts from which a lazy co-Büchi
progress measure can be straightforwadly defined. The proof by Klarlund [12] is more
succinct, but the former is more constructive and hence more transparent.

Observe that if all infinite paths satisfy the co-Büchi condition then there must be a
vertex v whose all descendants (i.e., vertices to which there is a – possibly empty – path
from v) have priority 0; call such vertices 1-safe in G1 = G. Indeed, otherwise it would be
easy to construct an infinite path with infinitely many occurrences of vertices of priority 1.

Let S1 be the set of all the 1-safe vertices in G1, and let G′1 = G1 \ S1 be the layered
dag obtained from G1 by removing all vertices in S1. Note that there is an infinite path in
the subgraph of G1 induced by S1, and hence the width of G′1 is strictly smaller than the
width of G1.

Let R1 be the set of all vertices in G′1 that have only finitely many descendants; call such
vertices transient in G′1. Let G2 be the the layered dag obtained from G′1 by removing all
vertices in R1. Since G2 is a subgraph of G′1, the width of G2 is strictly smaller than the width
of G1. Moreover, G2 shares the key properties with G1: every vertex has a successor and
hence all the maximal paths are infinite, and all infinite paths satisfy the co-Büchi condition.

By applying the same procedure to G2 that we have described for G1 above, we obtain
the set S2 of 1-safe vertices in G2 and the set R2 of vertices transient in G′2, and the layered
dag G3 – obtained from G2 by removing all vertices in S2 ∪ R2 – has the width that is
strictly smaller than that of G2. We can continue in this fashion until the graph Gk+1,
for some k ≥ 1, is empty. Since the width of G is at most n, and the widths of graphs
G1, G2, . . . , Gk+1 are strictly decreasing, it follows that k ≤ n.

L. Daviaud, M. Jurdziński, and K. Lehtinen 18:7

We define µ : V → { 1, 2, . . . , 2n } by:

µ(v) =
{

2i− 1 if v ∈ Si,
2i if v ∈ Ri,

and note that it is routine to verify that if we let L = { 2, 4, . . . , 2n } be the set of lazy-progress
elements then µ is a lazy co-Büchi progress measure. J

3.2 From co-Büchi and Büchi to weak
In this section we present a proof of the following result.

I Theorem 3 (Kupferman and Vardi [15]). There is a translation that given an alternating
co-Büchi automaton with n states yields an equivalent alternating weak automaton with
O(n2) states.

Proof. It suffices to argue that, given an alternating co-Büchi automaton A = (Q, q0,Σ, δ, π :
Q→ { 0, 1 }) with n states, we can design an alternating weak automaton with O(n2) states
that guesses and certifies a dag run of A together with a lazy co-Büchi progress measure on
it as described in Lemma 2. First we construct a safety automaton S with O(n2) states that
simulates the automaton A while guessing a lazy co-Büchi progress measure and verifying
conditions 1) and 2) of its definition. Condition 3) will be later handled by turning the safety
automaton S into a weak automaton W by appropriately assigning odd or even priorities to
all states in S. We split the design of W into those two steps so that we can better motivate
and explain the generalized constructions in Section 5.

The safety automaton S has the following set of states:

Q× { 2, 4, . . . , 2n } ∪
(
π−1(0)× { 1, 3, . . . , 2n− 1 }

)
∪ { reject } ;

its initial state is (q0, 2n); and its transition function δ′ is obtained from the transition
function δ of A in the following way: for every state (q, i), and for every a ∈ Σ, the formula
δ′
(
(q, i), a

)
is obtained from δ(q, a) by replacing every occurrence of state q′ ∈ Q by the

disjunction (i.e., a non-deterministic choice)

(q′, i) ∨ (q′, i− 1) ∨ · · · ∨ (q′, 1) (1)

where every occurrence (q′, j) for which π(q′) = 1 and j is odd stands for the state reject.
In other words, the safety automaton S can be thought of as consisting of 2n copies

A2n,A2n−1, . . . ,A1 of A, with the non-accepting states π−1(1) removed from the odd-indexed
copies A2n−1,A2n−3, . . . ,A1, and in whose acceptance games, Elvis always has the choice to
stay in the current copy of A or to move to one of the lower-indexed copies of A. Since the
transitions of the safety automaton S always respect the transitions of the original co-Büchi
automaton A, an accepting run dag of S yields a run dag of A (obtained from the first
components of the states (q, i)) and a labelling of its vertices by numbers in { 1, 2, . . . , 2n }
(obtained from the second components of the states (q, i)). It is routine to verify that the
design of the state set and of the transition function of the safety automaton S guarantees
that the latter labelling satisfies conditions 1) and 2) of the definition of a lazy co-Büchi
progress measure, where the set of lazy-progress elements is { 2, 4, . . . , 2n }.

By setting the state priority function π′ : (q, i) 7→ i + 1 for all non-reject states in S,
and π′ : reject 7→ 1, we obtain from S an automaton W whose acceptance condition is
weak because – by design – the transition function is non-increasing w.r.t. the state priority

CONCUR 2019

18:8 Alternating Weak Automata from Universal Trees

function. One can easily verify that the addition of this weak acceptance condition to S
allows the resulting automaton W, for every input word, to guess and verify a lazy progress
measure – if one exists – on a run dag of automaton A on the input word, while W rejects
the input word otherwise. This completes our summary of the proof of Theorem 3. J

I Corollary 4 (Kupferman and Vardi [15]). There is a translation that given an alternat-
ing Büchi automaton with n states yields an equivalent alternating weak automaton with
O(n2) states.

The argument of Kupferman and Vardi is simple and it exploits the ease with which
alternating automata can be complemented. Given an alternating Büchi automaton A with
n states, first complement it with no state space blow-up, obtaining an alternating co-Büchi
automaton with n states, next use the translation from Theorem 3 to obtain an equivalent
alternating weak automaton with O(n2) states, and finally complement the latter again with
no state space blow-up, hence obtaining an alternating weak automaton that is equivalent
to A and that has O(n2) states.

4 Lazy parity progress measures

Before we introduce lazy parity progress measures, we recall the definition of (standard)
parity progress measures [11, 5]. We define a well-ordered tree to be a finite prefix-closed
set of sequences of elements of a well-ordered set. We call such sequences nodes of the tree,
and their components are branching directions. We use the standard ancestor-descendant
terminology to describe relative positions of nodes in a tree. For example, 〈〉 is the root;
node 〈x, y〉 is the child of the node 〈x〉 that is reached from it via the branching direction y;
node 〈x, y〉 is the parent of node 〈x, y, z〉; nodes 〈x, y〉 and 〈x, y, z〉 are descendants of nodes
〈〉 and 〈x〉; nodes 〈〉 and 〈x〉 are ancestors of nodes 〈x, y〉 and 〈x, y, z〉; and a node is a leaf
if it does not have any children. All nodes in a well-ordered tree are well-ordered by the
lexicographic order that is induced by the well-order on the branching directions; for example,
we have 〈x〉 < 〈x, y〉, and 〈x, y, z〉 < 〈x,w〉 if y < w. We define the depth of a node to be
the number of elements in the eponymous sequence, the height of a tree to be the maximum
depth of a node, and the size of a tree to be the number of its nodes.

Parity progress measures assign labels to vertices of graphs with vertex priorities, and the
labels are nodes in a well-ordered tree. A tree labelling of a graph with vertex priorities that
do not exceed a positive even integer d is a mapping from vertices of the graph to nodes in
a well-ordered tree of height at most d/2. We write 〈md−1,md−3, . . . ,m`〉, for some odd `,
1 ≤ ` < d, to denote such nodes. We say that such a node has an (odd) level ` and an (even)
level `− 1, and the root 〈〉 has level d. Moreover, for every priority p, 0 ≤ p ≤ d, we define
the p-truncation 〈md−1,md−3, . . . ,m`〉|p in the following way:

〈md−1,md−3, . . . ,m`〉|p =

〈md−1,md−3, . . . ,m`〉 for p ≤ `,
〈md−1,md−3, . . . ,mp+1〉 for even p > `,

〈md−1,md−3, . . . ,mp〉 for odd p > `.

We then say that a tree labelling µ of a graph G = (V,E) with vertex priorities π : V →
{ 0, 1, 2, . . . , d } is a parity progress measure if the following progress condition holds for every
edge (v, u) ∈ E:
1. if π(v) is even then µ(v)|π(v) ≥ µ(u)|π(v);
2. if π(v) is odd then µ(v)|π(v) > µ(u)|π(v).

L. Daviaud, M. Jurdziński, and K. Lehtinen 18:9

It is well-known that satisfaction of such local conditions on every edge in a graph is sufficient
for every infinite path in the graph satisfying the parity condition [10, 11]. Less obviously, it
is also necessary, which can be, again, deduced from the proof of positional determinacy of
parity games due to Emerson and Jutla [8]. In other words, parity progress measures are
witnesses for the property that all infinite paths in a graph satisfy the parity condition. Like
for the simpler co-Büchi condition, their appeal stems from the property that they certify
conditions that are global and infinitary by verifying conditions that are local to every edge
in the graph.

Similar to the simpler co-Büchi progress measures, parity progress measures may unfor-
tunately require unbounded or even infinite well-ordered trees to certify parity conditions
on infinite graphs, and hence we consider lazy parity progress measures, also inspired by
Klarlund’s pioneering work [12]. A lazy tree is a well-ordered tree with a distinguished subset
of its nodes called lazy nodes. For convenience, we assume that only leaves may be lazy and
the root never is.

A lazy parity progress measure is a tree labelling µ of a graph (V,E), where the labels
are nodes in a lazy tree T , such that:
1. for every edge (v, u) ∈ E, µ(v)|π(v) ≥ µ(u)|π(v);
2. if π(v) is odd then node µ(v) is lazy and its level is at least π(v);
3. on every infinite path in G, there are infinitely many vertices v, such that µ(v) is not lazy.

First we establish that existence of a lazy progress measure is sufficient for all infinite
paths in a graph to satisfy the parity condition.

I Lemma 5. If a graph has a lazy parity progress measure then all infinite paths in it satisfy
the parity condition.

Proof. For the sake of contradiction, assume that there is an infinite path v1, v2, v3, . . . in
the graph for which the highest priority p that occurs infinitely often is odd. Let i ≥ 1 be
such that π(vj) ≤ p for all j ≥ i. By condition 1), we have:

µ(vi)|p ≥ µ(vi+1)|p ≥ µ(vi+2)|p ≥ (2)

Let i ≤ i1 < i2 < i3 < · · · be such that π(vik) = p for all k = 1, 2, 3, By condition 2),
all labels µ(vik), for k = 1, 2, 3, . . . , are lazy and their level in the tree is at least p. By
condition 3), for infinitely many k, π(vk) is not lazy, so infinitely many of the inequalities
in (2) must be strict, which contradicts the well-ordering of the tree T . J

Now we argue that existence of lazy parity progress measure is also necessary for a graph
to satisfy the parity condition. Moreover, we explicitly quantify the size of a lazy ordered
tree the labels from which are sufficient to give a lazy progress measure for a layered dag,
as a function of the width of the dag. Before we do that, however, we introduce a simple
operation that we call a lazification of a finite ordered tree. If T is a finite ordered tree, then
its lazification lazi(T) is a finite lazy tree that is obtained from T in the following way:

all nodes in T are also nodes in lazi(T) and they are not lazy;
for every non-leaf node t in T , t has extra lazy children in the tree lazi(T), one smaller
and one larger than all the other children, and one in-between every pair of consecutive
children.

It is routine to argue that if a tree has n leaves and it is of height at most h then its
lazification lazi(T) has O(nh) nodes and it is also of height h.

CONCUR 2019

18:10 Alternating Weak Automata from Universal Trees

I Theorem 6 (Klarlund [12]). If all infinite paths in a layered dag satisfy the parity condition
and the width of the dag is at most n, then there is a lazy parity progress measure whose
labels are nodes in a tree that is a lazification of an ordered tree with at most n leaves.

Proof. Klarlund’s proof [12] is very succinct and it heavily relies on the result of Klarlund
and Kozen on Rabin measures [13]. Our proof is not only self-contained but it also is more
constructive and transparent. The hierarchical decomposition describes the fundamental
structure of accepting run dags of alternating parity automata and it may be of independent
interest. The argument presented here is a generalization of the proof of Lemma 2 – given in
Section 3 – from co-Büchi conditions to parity conditions.

Consider a layered dag G = (V,E, π) where π : V → { 0, 1, 2, . . . , d }. For a priority p,
0 ≤ p < d, we write G≤p for the subgraph induced by the vertices whose priority is at most p.

We describe the following decomposition of G. Let D be the set that consists of all
vertices of the top even priority d in G, and R0 all those vertices in the subgraph G≤d−1

that have finitely many descendants. We say that those vertices are (d − 1)-transient in
G≤d−1. In other words, D ∪R0 is the set of vertices from which every path reaches (possibly
immediately) a vertex of priority d.

Let G1 = G \ (D ∪ R0) be the layered dag obtained from G by removing all vertices
in D ∪R0. Observe that every vertex in G1 has at least one successor and hence – unless
G1 is empty – all maximal paths are infinite. W.l.o.g., assume henceforth that G1 is not
empty. We argue that there must be a vertex in G1 whose all descendants have priorities
at most d− 2; call such vertices (d− 1)-safe in G1. Indeed, otherwise it would be easy to
construct an infinite path with infinitely many occurrences of the odd priority d− 1 and no
occurrences of the top even priority d.

Let S1 be the set of all the (d − 1)-safe vertices in G1. Let H1 be the subgraph of G
induced by S1, let n1 be the width of H1, and note that n1 > 0. Set G′1 = G1 \ S1 to be the
layered dag obtained from G1 by removing all (d− 1)-safe vertices in G1.

Let R1 be the set of all vertices in G′1 that have only finitely many descendants; call such
vertices (d − 1)-transient in G′1. Finally, let G2 be the layered dag obtained from G′1 by
removing all the (d− 1)-transient vertices in G′1. Note that the width of G2 is smaller than
the width of G1 by at least n1 > 0.

Unless graph G2 is empty, we can now apply the same steps to G2 that we have described
for G1, and obtain:

the set S2 of (d− 1)-safe vertices in G2;
the subgraph H2 of G2 induced by S2, which is of width n2 > 0;
the layered dag G′2, obtained from G2 by removing all the vertices in S2;
the set R2 of (d− 1)-transient vertices in G′2;
the layered graph G3, obtained from G2 by removing all vertices in S2 ∪R2, and whose
width is smaller than the width of G2 by at least n2 > 0.

We can continue in this fashion, obtaining graphs G1, G2, . . . , Gk+1, until the graph Gk+1,
for some k ≥ 0, is empty. Since the width of G is at most n and the widths of the graphs
G1, G2, . . . , Gk are positive (unless k = 0), we have that k ≤ n and

∑k
i=1 ni ≤ n.

The proces described above yields a hierarchical decomposition of the layered dag; we
now define – by induction on d – the tree that describes the shape of this decomposition.
We then argue that the lazification of this tree provides the set of labels in a lazy parity
progress measure.

In the base case d = 0, the shape of the decomposition is the well-ordered tree T of height
h = 0/2 = 0 with only a root node 〈〉. It is straightforward to see that the function that
maps every vertex onto the root is a (lazy) progress measure.

L. Daviaud, M. Jurdziński, and K. Lehtinen 18:11

For d ≥ 2, note that all vertices in dags H1, H2, . . . ,Hk have priorities at most d− 2. By
the inductive hypothesis, there are trees T1, T2, . . . , Tk, of heights at most h− 1 = (d− 2)/2
and with at most n1, n2, . . . , nk leaves, respectively, which are the shapes of the hierarchical
decompositions of dags H1, H2, . . . ,Hk, respectively.

We now construct the finite ordered tree T of height at most h = d/2 that is the shape of
the hierarchical decomposition of G: let T consist of the root node 〈〉 that has k children,
which are the roots of the subtrees T1, T2, . . . , Tk, in that order. Note that the number of
leaves of T is at most

∑k
i=1 ni ≤ n. Consider the following mapping from vertices in the

graph onto nodes in the lazification lazi(T) of tree T :
vertices in set D are mapped onto the root of lazi(T);
vertices in transient sets R0, R1, R2, . . . , Rk are mapped onto the lazy children of the
root of lazi(T): those in R0 onto the smallest lazy child, those in R1 onto the lazy child
between the roots of T1 and T2, etc.;
vertices in subgraphs H1, H2, . . . ,Hk are inductively mapped onto the appropriate nodes
in the lazy subtrees of lazi(T) that are rooted in the k non-lazy children of the root.

It is easy to verify that this mapping satisfies conditions 1) and 2) of the definition of a
lazy parity progress measure. Condition 3) is ensured by the fact that the root of T is not
lazy and by the inductive hypothesis. Recall that every infinite path satisfies the parity
condition, thus the highest priority p seen infinitely often on a given path is even. If p = d,
the path visits infinitely often vertices labelled by the root of T . Otherwise, eventually the
path contains only vertices in one of the sets Si and we can use the inductive hypothesis. J

5 From parity to Büchi via universal trees

In this section we complete the proof of the main technical result of the paper, which is a
quasi-polynomial translation from alternating parity automata to alternating weak automata.
The main technical tools that we use to design our translation are lazy progress measures and
universal trees [11, 5], and the state space blow-up of the translation is merely quadratic in
the size of the smallest universal tree. Nearly tight quasi-polynomial upper and lower bounds
have recently been given for the size of the smallest universal trees [11, 5] and, in particular,
they imply that if the number of priorities in a family of alternating parity automata is at
most logarithmic in the number of states, then the state space blow-up of our translation is
only polynomial.

I Theorem 7. There is a translation that given an alternating parity automaton with n
states and d priorities yields an equivalent alternating weak automaton whose number of
states is polynomial if d = O(logn) and it is nO(lg(d/ lgn)) if d = ω(logn).

Before we proceed to prove the theorem, we recall the notion of universal ordered trees.
An (n, h)-universal (ordered) tree [5] is an ordered tree, such that every finite ordered tree
of height at most h and with at most n leaves can be isomorphically embedded into it. In
such an embedding, the root of the tree must be mapped onto the root of the universal tree,
and the children of every node must be mapped – injectively and in an order-preserving
way – onto the children of its image. In order to upper-bound the size of the blow-up in our
parity to weak translation, we rely on the following upper bound on the size of the smallest
universal trees.

I Theorem 8 (Jurdziński and Lazić [11]). For all positive integers n and h, there is an
(n, h)-universal tree with at most quasi-polynomial number of leaves. More specifically, the
number of leaves is polynomial in n if h = O(logn), and it is nlg(h/ lgn)+O(1) if h = ω(logn).

CONCUR 2019

18:12 Alternating Weak Automata from Universal Trees

We also note that Czerwiński et al. [5] have subsequently proved a nearly-matching quasi-
polynomial lower bound, hence establishing that the smallest universal trees have quasi-
polynomial size.

In order to prove Theorem 7, we establish the following lemma that provides a translation
from alternating parity automata to alternating Büchi automata whose state-space blow-up
is tightly linked to the size of universal trees.

I Lemma 9. There is a translation that given an alternating parity automaton with n states
and d priorities yields an equivalent alternating Büchi automaton whose number of states is
O(ndLU) where LU is the number of leaves in an (n, d/2)-universal ordered tree U .

Note that Theorem 7 follows from Lemma 9 by Theorem 8 and Corollary 4.

Proof of Lemma 9. Given an alternating parity automaton A = (Q, q0,Σ, δ, π : Q →
{ 0, 1, . . . , d }) with n states, we now design an alternating Büchi automaton that guesses and
certifies a dag run of A together with a lazy parity progress measure on it. As for the co-Büchi
to weak case, we first construct a safety automaton that simulates the automaton A while
guessing a lazy parity progress measure and verifying conditions 1) and 2) of its definition.
Condition 3) will be later handled by turning the safety automaton into a Büchi automaton
by appropriately assigning priorities 1 or 2 to all states in the safety automaton.

Below we give a general construction of an alternating Büchi automaton BT from any
lazy well-ordered tree T , and then we argue that the alternating parity automaton A is
equivalent to the alternating Büchi automaton Blazi(U), for every (n, d/2)-universal tree U .

Let T be a lazy tree of width n and height d/2. The construction is by induction on d.
The safety automaton ST has the following set of states, which are pairs of an element of Q
and of a node in T .

If d = 0, then the set of states of ST is (Q× {〈〉}) ∪ { reject }.
Otherwise, let 〈x1〉, 〈x2〉, . . . , 〈xk〉 be the children of the root, and 1 ≤ i1 < i2 < . . . <

im ≤ k are the indices of its leaves that are lazy.
For i /∈ { i1, i2, . . . , im }, let Ti be the lazy subtrees of T of height at most d/2− 1 rooted
in 〈xi〉. By induction, for all i, we obtain an alternating Büchi automaton that is obtained
from the lazy tree Ti and from the alternating parity automaton A restricted to the
states of priority up to d− 2. Let Ωi denote its set of non-reject states. They are pairs
consisting of an element of Q and of a node in a tree of height d/2 − 1; the latter is a
sequence 〈md−3,md−5, . . . ,m`〉 of at most d/2− 1 branching directions. Let Γi be the set
consisting of the pairs (q, 〈xi,md−3,md−5, . . . ,m`〉) for (q, 〈md−3,md−5, . . . ,m`〉) ∈ Ωi.
Set Q(d) (resp. Q(<d)) the set of states of priority d (resp. < d) in A. The states of ST
are defined as:

(
Q(d) × {〈〉}

)
∪
(
Q(<d) × {〈xi1〉, 〈xi2〉, . . . , 〈xim〉}

)
∪

k⋃
i=1

Γi ∪ { reject } .

The initial state is (q0, t) where t is the largest tuple such that (q0, t) is a state. Let us
now define the transition function: for every state (q, t), and for every a ∈ Σ, the formula
δ′
(
(q, t), a

)
is obtained from δ(q, a) by replacing every occurrence of state q′ ∈ Q by the

disjunction (i.e., a non-deterministic choice)∨{
(q′, t′) : t|π(q) ≥ t′|π(q)

}
,

where every occurrence (q′, t′) which is not in the set of states stands for the state reject.

L. Daviaud, M. Jurdziński, and K. Lehtinen 18:13

In other words, the safety automaton ST can be thought of as consisting of copies of A,
for each node of the tree T , in whose acceptance games Elvis always has the choice to stay
in the current copy of A or to move to one of a smaller node with respect to the priority
of the current state. Since the transitions of the safety automaton ST always respect the
transitions of the original parity automaton A, an accepting run dag of ST yields a run dag
of A (obtained from the first components of the states (q, t)) and a labelling of its vertices by
nodes in T (obtained from the second components of the states (q, t)). It is routine to verify
that the design of the state set and of the transition function of the safety automaton ST
guarantees that the latter labelling satisfies condition 1) and 2) of the definition of a lazy
parity progress measure.

In order to obtain the Büchi automaton BT from the safety automaton ST , it suffices to
appropriately assign priorities 1 and 2 to all states: we let the state reject and all states
(q, t) such that t is a lazy node in tree T have priority 1, and we let all states (q, t) such
that t is not a lazy node in tree T have priority 2. Note that this ensures that a run of BT
is accepting if and only if the tree labelling of a run dag of A that the underlying safety
automaton ST guesses – in the second component of its states – satisfies condition 3) of the
definition of a lazy parity progress measure.

We now argue that if U is an (n, d/2)-universal tree then the alternating Büchi automaton
Blazi(U) is equivalent to the alternating parity automaton A. Firstly, all words accepted
by BT for any finite lazy ordered tree T are also accepted by A. This is because – as we have
argued above – every accepting run dag of any such automaton BT yields both a run dag
of A (in the first state components) and a lazy parity progress measure on it (in the second
state components), and the latter certifies that the former is accepting.

It remains to argue that every word accepted by A is also accepted by Blazi(U). By
Theorem 6, for every accepting run dag of A, there is a lazy progress measure whose labels
are nodes in a tree lazi(T), where T is an ordered tree of height at most d/2 and with at
most n leaves. It is routine to verify that if an ordered tree can be isomorphically embedded
in another, then the same holds for their lazifications. By (n, d/2)-universality of U , it follows
that lazi(T) can be isomorphically embedded in lazi(U). Therefore, for every word on which
there is an accepting run dag of A, the automaton Blazi(U) has the capacity to guess the run
dag of A and to guess and certify a lazy progress measure on it.

In order to conclude the O(ndLU) upper bound on the number of states of Blazi(U), it
suffices to observe that if the number of leaves in an ordered tree T of height h is L then the
number of nodes in lazi(T) is O(hL). J

6 Open questions

Our use of universal trees to turn alternating parity automata into Büchi automata, like
Boker and Lehtinen’s [1] register technique, does not exploit alternations (although the
further Büchi to weak translation does): all transitions that are not copied from the original
automaton are non-deterministic. Can universal and non-deterministic choices be combined
to further improve these translations? Can the long-standing Ω(n logn) lower bound [20] be
improved, for example by a combination of the full-automata technique of Yan [23] and the
recent lower bound techniques for non-deterministic safety separating automata based on
universal trees [5] and universal graphs [3]?

CONCUR 2019

18:14 Alternating Weak Automata from Universal Trees

References
1 U. Boker and K. Lehtinen. On the way to alternating weak automata. In FSTTCS 2018,

volume 122 of LIPIcs, pages 21:1–21:22. Schloss Dagstuhl–Leibniz-Zentrum für Informatik,
2018.

2 C. S. Calude, S. Jain, B. Khoussainov, W. Li, and F. Stephan. Deciding parity games in
quasipolynomial time. In STOC 2017, pages 252–263. ACM, 2017.

3 T. Colcombet and N. Fijalkow. Universal graphs and good for games automata: New tools for
infinite duration games. In FoSSaCS 2019, volume 11425 of LNCS, pages 1–26. Springer, 2019.

4 T. Colcombet, D. Kuperberg, C. Löding, and M. Vanden Boom. Deciding the weak definability
of Büchi definable tree languages. In CSL 2013, volume 23 of LIPIcs, pages 215–230. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 2013.

5 W. Czerwiński, L. Daviaud, N. Fijalkow, M. Jurdziński, R. Lazić, and P. Parys. Universal
trees grow inside separating automata: Quasi-polynomial lower bounds for parity games. In
SODA 2019, pages 2333–2349. ACM/SIAM, 2019.

6 L. Daviaud, M. Jurdziński, and R. Lazić. A pseudo-quasi polynomial algorithm for solving
mean-payoff parity games. In LICS 2018, pages 325–334. IEEE, 2018.

7 D. Drusinsky and D. Harel. On the power of bounded concurrency I: Finite automata. Journal
of the ACM, 41(3):517–539, 1994.

8 E. A. Emerson and C. Jutla. Tree automata, mu-calculus and determinacy. In FOCS 1991,
pages 368–377. IEEE, 1991.

9 J. Fearnley, S. Jain, S. Schewe, F. Stephan, and D. Wojtczak. An ordered approach to solving
parity games in quasi polynomial time and quasi linear space. In SPIN 2017, pages 112–121,
2017.

10 M. Jurdziński. Small progress measures for solving parity games. In STACS 2000, volume
1770 of LNCS, pages 290–301. Springer, 2000.

11 M. Jurdziński and R. Lazić. Succinct progress measures for solving parity games. In LICS
2017, page 9pp. IEEE, 2017.

12 N. Klarlund. Progress measures for complementation of ω-automata with applications to
temporal logic. In FOCS 1991, pages 358–367. IEEE, 1991.

13 N. Klarlund and D. Kozen. Rabin measures. Chicago J. Theor. Comput. Sci., pages 1–24,
1995. Article 3.

14 O. Kupferman and M. Y. Vardi. Weak alternating automata and tree automata emptiness. In
STOC 1998, pages 224–233. ACM, 1998.

15 O. Kupferman and M. Y. Vardi. Weak alternating automata are not that weak. ACM Trans.
Comput. Log., 2(3):408–429, 2001.

16 O. Kupferman, M. Y. Vardi, and P. Wolper. An automata-theoretic approach to branching-time
model checking. Journal of the ACM, 47(2):312–360, 2000.

17 K. Lehtinen. A modal µ perspective on solving parity games in quasi-polynomial time. In
LICS 2018, pages 639–648. IEEE, 2018.

18 K. Lehtinen and S. Quickert. Σµ
2 is decidable for Πµ

2 . In CiE 2017: Unveiling Dynamics and
Complexity, pages 292–303, 2017.

19 P. Lindsay. On alternating ω-automata. Theoretical Computer Science, 43:107–116, 1988.
20 M. Michel. Complementation is more difficult with automata on infinite words. CNET, Paris,

15, 1988.
21 D. E. Muller, A. Saoudi, and P. E. Schupp. Alternating automata, the weak monadic theory

of the tree and its complexity. In ICALP 1986, volume 226 of LNCS, pages 275–283. Springer,
1986.

22 M. Skrzypczak and I. Walukiewicz. Deciding the topological complexity of Büchi languages.
In ICALP 2016, volume 55 of LIPIcs, pages 99:1–99:13. Schloss Dagstuhl–Leibniz-Zentrum
für Informatik, 2016.

23 Q. Yan. Lower bounds for complementation of ω-automata via the full automata technique.
Logical Methods in Computer Science, 4:1–20, 2008.

Good for Games Automata:
From Nondeterminism to Alternation
Udi Boker
Interdisciplinary Center (IDC) Herzliya, Israel
udiboker@gmail.com

Karoliina Lehtinen
University of Liverpool, United Kingdom
https://cgi.csc.liv.ac.uk/~lehtinen/
k.lehtinen@liverpool.ac.uk

Abstract
A word automaton recognizing a language L is good for games (GFG) if its composition with any
game with winning condition L preserves the game’s winner. While all deterministic automata
are GFG, some nondeterministic automata are not. There are various other properties that are
used in the literature for defining that a nondeterministic automaton is GFG, including “history-
deterministic”, “compliant with some letter game”, “good for trees”, and “good for composition
with other automata”. The equivalence of these properties has not been formally shown.

We generalize all of these definitions to alternating automata and show their equivalence. We
further show that alternating GFG automata are as expressive as deterministic automata with the
same acceptance conditions and indices. We then show that alternating GFG automata over finite
words, and weak automata over infinite words, are not more succinct than deterministic automata,
and that determinizing Büchi and co-Büchi alternating GFG automata involves a 2Θ(n) state blow-up.
We leave open the question of whether alternating GFG automata of stronger acceptance conditions
allow for doubly-exponential succinctness compared to deterministic automata.

2012 ACM Subject Classification Theory of computation → Logic and verification

Keywords and phrases Good for games, history-determinism, alternation

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2019.19

Related Version A full version of the paper is available at https://arxiv.org/abs/1906.11624.

Funding Udi Boker : Israel Science Foundation grant 1373/16
Karoliina Lehtinen: EPSRC grant EP/P020909/1 (Solving Parity Games in Theory and Practice)

Acknowledgements We thank Orna Kupferman for suggesting to look into alternating good-for-
games automata and for stimulating discussions on the subject, and Thomas Colcombet for introdu-
cing to us his work on alternating history-deterministic automata.

1 Introduction

In general, deterministic automata have better compositional properties than nondetermin-
istic automata, making them better suited for applications such as synthesis. Unfortunately,
determinization is complicated and involves an exponential state space blow-up. Non-
deterministic automata that are good for games (GFG) have been heralded as a potential
way to combine the compositionality of deterministic automata with the conciseness of
nondeterministic ones. In this article we are interested in the question of whether the benefits
of good-for-games automata extend to alternating automata, which, in general, can be
double-exponentially more concise than deterministic automata.

The first hurdle of studying GFG alternating automata is to settle on definitions. Indeed,
for nondeterminisic automata, several GFG-type properties have been invented independently
under different names: good for games [17], good for trees [19], and history-determinism [11].

© Udi Boker and Karoliina Lehtinen;
licensed under Creative Commons License CC-BY

30th International Conference on Concurrency Theory (CONCUR 2019).
Editors: Wan Fokkink and Rob van Glabbeek; Article No. 19; pp. 19:1–19:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:udiboker@gmail.com
https://orcid.org/0000-0003-1171-8790
https://cgi.csc.liv.ac.uk/~lehtinen/
mailto:k.lehtinen@liverpool.ac.uk
https://doi.org/10.4230/LIPIcs.CONCUR.2019.19
https://arxiv.org/abs/1906.11624
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 Good for Games Automata

While Henzinger and Piterman introduced the idea of automata that compose well with
games, in their technical development they preferred to use a letter game such that one
player having a winning strategy in this game implies that the nondeterministic automaton
composes well with games [17]. In a similar vein, Kupferman, Safra and Vardi considered
already in 1996 a form of nondeterministic automata that resolves its nondeterminism
according to the past by looking at tree automata for derived word languages [19]; this
notion of good for trees was shown to be equivalent to the letter game [3]. Independently,
Colcombet introduced history-determinism in the setting of nondeterministic cost automata
[11], and later extended it to alternating automata [13]. He showed that history-determinism
implies that the automaton is suitable for composition with other alternating automata, a
seemingly stronger property than just compositionality with games. Although Colcombet
further developed history-determinism for cost automata, here we only consider automata
with ω-regular acceptance conditions.

As a result, in the literature there are at least five different definitions that characterize,
imply, or are implied by a nondeterministic automaton composing well with games: com-
position with games, composition with automata, composition with trees, letter games and
history-determinism. While some implications between them are proved, others are folklore,
or missing. Furthermore, these definitions do not all generalize in the same way to alternating
automata: compositionality with games and with automata are agnostic to whether the
automaton is nondeterministic, universal or alternating, and hence generalize effortlessly
to alternating automata; the letter-game and good-for-tree automata on the other hand
generalize “naturally” in a way that treats nondeterminism and universality asymmetrically
and hence need be adapted to handle alternation.

In the first part of this article, we give a coherent account of good-for-gameness for
alternating automata: we generalize all the existing definitions from nondeterministic to
alternating automata, and show them be equivalent. This implies that these are also
equivalent for nondeterministic automata. While some of these equivalences were already
folklore for nondeterministic automata, others are more surprising: compositionality with
one-player games implies compositionality with two-player games and compositionality with
automata, despite games being a special case of alternating automata and single-player games
being a special case of games. We also show that in the nondeterministic case each definition
can be relaxed to an asymmetric requirement: composition with universal automata or
universal trees is already equivalent to composition with alternating automata and games.

In the second part of this article, we focus on questions of expressiveness and succinctness.
The first examples of GFG automata were built on top of deterministic automata [17],
and Colcombet conjectured that history-deterministic alternating automata with ω-regular
acceptance conditions are not more concise than deterministic ones [12]. Yet, this has
since been shown to be false: already GFG nondeterministic Büchi automata cannot be
pruned into deterministic ones [3] and co-Büchi automata can be exponentially more concise
than deterministic ones [18]. In general, nondeterministic GFG automata are in between
nondeterministic and deterministic automata, having some properties from each [4].

Whether GFG alternating automata can be double exponentially more concise than
deterministic automata is particularly interesting in the wake of quasi-polynomial algorithms
for parity games. Indeed, since 2017 when Calude et al. brought down the upper bound for
solving parity games from subexponential to quasi-polynomial [10], the automata-theoretical
aspects of solving parity games with quasi-polynomial complexity have been studied in
more depth [20, 6, 7, 16, 1, 15, 14]. In particular, Bojańczyk and Czerwiński [1], and
Czerwiński et al. [15] describe the quasi-polynomial algorithms for solving parity games

U. Boker and K. Lehtinen 19:3

explicitly in terms of deterministic word automata that separate some word languages. A
polynomial deterministic or GFG safety separating automaton for these languages would
imply a polynomial algorithm for parity games. However, it is shown in [15] that the smallest
possible such nondeterministic automaton is quasi-polynomial. As this lower bound only
applies for nondeterministic automata, it is interesting to understand whether alternating
GFG automata could be more concise.

As for expressiveness, we show that alternating GFG automata are as expressive as de-
terministic automata with the same acceptance conditions and indices. The proof extends the
technique used in the nondeterministic setting [3], producing a deterministic automaton from
the product of the automaton and the two transducers that model its history-determinism.

Regarding succinctness, we first show that GFG automata over finite words, as well as
weak automata over infinite words, are not more succinct than deterministic automata. The
proof builds on the property that minimal deterministic automata of these types have exactly
one state for each Myhill-Nerode equivalence class, and an analysis that GFG automata of
these types must also have at least one state for each such class.

We proceed to show that determinizing Büchi and co-Büchi alternating GFG automata
involves a 2θ(n) state blow-up. The proof in this case is more involved, going through two main
lemmas. The first shows that for alternating GFG Büchi automata, a history-deterministic
strategy need not remember the entire history of the transition conditions, and can do with
only remembering the prefix of the word read. The second lemma shows that the breakpoint
(Miyano-Hayashi) construction, which is used to translate an alternating Büchi automaton
into a nondeterministic one, preserves GFGness. We leave open the question of whether
alternating GFG automata of stronger acceptance conditions allow for doubly-exponential
succinctness compared to deterministic automata.

Due to lack of space, some proofs are omitted and can be found in the full version [8].

2 Preliminaries

Words and automata. An alphabet Σ is a finite nonempty set of letters, a finite (resp.
infinite) word u = u0 . . . uk ∈ Σ∗ (resp. w = w0w1 . . . ∈ Σω) is a finite (resp. infinite) sequence
of letters from Σ. A language is a set of words, and the empty word is written ε.

An alternating word automaton is A = (Σ, Q, ι, δ, α), where Σ is a finite nonempty
alphabet, Q is a finite nonempty set of states, ι ∈ Q is an initial state, δ : Q× Σ→ B+(Q)
is a transition function where B+(Q) is the set of positive boolean formulas (transition
conditions) over Q, and α is an acceptance condition, on which we elaborate below. For a
state q ∈ Q, we denote by Aq the automaton that is derived from A by setting its initial state
to q. A is nondeterministic (resp. universal) if all its transition conditions are disjunctions
(resp. conjunctions), and it is deterministic if all its transition conditions are states.

There are various acceptance conditions, defined with respect to the set of states that (a
path of) a run of A visits. Some of the acceptance conditions are defined on top of a labeling
of A’s states. In particular, the parity condition is a labeling α : Q→ Γ, where Γ is a finite
set of priorities and a path is accepting if and only if the highest priority seen infinitely often
on it is even. A Büchi condition is the special case of the parity condition where Γ = {1, 2};
states of priority 2 are called accepting and of priority 1 rejecting, and then α can be viewed
as the subset of accepting states of Q. Co-Büchi automata are dual, with Γ = {0, 1}. A weak
automaton is a Büchi automaton in which every strongly connected component of the graph
induced by the transition function consists of only accepting or only rejecting states.

CONCUR 2019

19:4 Good for Games Automata

In Sections 2–5, we handle automata with arbitrary ω-regular acceptance conditions, and
thus consider α to be a mapping from Q to a finite set Γ, on top of which some further
acceptance criterion is implicitly considered (as in the parity condition). In Section 6, we
focus on weak, Büchi, and co-Büchi automata, and then view α as a subset of Q.

Games. A finite Σ-arena is a finite Σ×{A,E}-labeled Kripke structure. An infinite Σ-arena
is an infinite Σ× {A,E}-labeled tree. Nodes with an A-label are said to belong to Adam;
those with an E-label are said to belong to Eve. We represent a Σ-arena as R = (V,X, VE , C),
where V is its set of nodes, X ⊆ V × V its transitions, VE ⊆ V the E-labeled nodes, V \ VE
the A-labeled nodes and C : V → Σ its Σ-labeling function. We will assume that all states
have a successor. An arena might be rooted at an initial position vι ∈ V .

A play in R is an infinite path in R. A game is a Σ-arena together with a winning
condition W ⊆ Σω. A play π is said to be winning for Eve in the game if the Σ-labels along
π form a word in W . Else π is winning for Adam.

A strategy for Eve (Adam, resp.) is a function τ : V ∗ → V that maps a history v0 . . . vi,
i.e. a finite prefix of a play in R, to a successor of vi whenever vi ∈ VE (vi /∈ VE). A play
v0v1 . . . agrees with a strategy τ for Eve (Adam) if whenever vi ∈ VE (vi /∈ VE), we have
vi+1 = τ(vi). A strategy for Eve (Adam) is winning from a position v ∈ V if all plays
beginning in v that agree with it are winning for Eve (Adam). We say that a player wins the
game from a position v ∈ V if they have a winning strategy from v. If the game is rooted at
vι, we say that a player wins the game if they win from vι.

All the games we consider have ω-regular winning conditions and are therefore determined
and the winner has a finite-memory strategy [9]. Finite-memory strategies can be modeled by
transducers. Given alphabets I and O, an (I/O)-transducer is a tupleM = (I,O,M, ι, ρ, χ),
where M is a finite set of states (memories), ι ∈ M is an initial memory, ρ : M × I → M

is a deterministic transition function, and χ : M → O is an output function. The strategy
M : I∗ → O is obtained by following ρ and χ in the expected way: we first extend ρ to
words in I∗ by setting ρ(ε) = ι and ρ(u · a) = ρ(ρ(u), a), and then defineM(u) = χ(ρ(u)).

Products. An example, without labeling, of a synchronized product is given in Figure 1.

I Definition 1 (Synchronized product). The synchronized product R×A between a Σ-arena
R = (V,X, VE , C) and an alternating automaton A = (Σ, Q, ι, δ, α) with mapping α : Q→ Γ
is a Γ∪{⊥}-arena of which the states are V ×B+(Q) and the successor relation is defined by:

(v, q), for a state q of Q, has successors (v′, δ(q, C(v′))) for each successor v′ of v in R;
(v, b ∧ b′) and (v, b ∨ b′) have two successors (v, b) and (v, b′);
If R is rooted at v then the root of R×A is (v, δ(ι, C(v))).

The positions belonging to Eve are (v, b) where either b is a disjunction, or b is a state in Q
and v ∈ VE. The label of (v, b) is α(b) if b is a state of Q, and ⊥ otherwise.

I Definition 2 (Automata composition). Given alternating automata B = (Σ, QB, ιB, δB, β :
QB → Γ) and A = (Γ, QA, ιA, δA, α), their composition B ×A consists of the synchronized
product automaton (Σ, QB ×QA, (ιB, ιA), δ, α′), where α′(qB , qA) = α(qA) and δ((qB, qA), a)
consists of f(δB(qB , a), qA) where:

f(c ∨ c′, q) = f(c, q) ∨ f(c′, q)
f(c ∧ c′, q) = f(c, q) ∧ f(c′, q)
f(q′, q) = g(q′, δA(q, β(q′)) where

g(q, c ∨ c′) = g(q, c) ∨ g(q, c′)
g(q, c ∧ c′) = g(q, c) ∧ g(q, c′)
g(q, q′) = (q, q′).

U. Boker and K. Lehtinen 19:5

Dashed vertices: choosing the next state of A.

An alternating automaton A over {a, b}:An {a, b}-labeled arena R:

Boxes are Adam’s vertices.
Diamonds are Eve’s vertices.

The synchronized-product R×A:

Solid vertices: choosing the next vertex of R.

v2

v0
q3

q1

etc.

δ(q0,a)
v0

v0
q1∨q2

v0
q2∨q3

v1
q1

v2
δ(q1,b)

v2
q2

v0
q2

v0

q1

v1

v0
a

v2
ba

q2

q3

q1

q0
a, b

∨

a, b

a

a

∨

∨

b

b

∧

Figure 1 An example of a product between an alternating automaton and a finite arena.

Note that this stands for first unfolding the transition condition in B and then the transition
condition in A, and it is equivalent to the following substitution, which matches Colcombet’s
notation [13]: δB(qB, a)[q ∈ QB ← δA(qA, β(q))[p ∈ QA ← (q, p)]].

Acceptance of a word by an automaton. We define the acceptance directly in terms of
the model-checking (membership) game, which happens to be exactly the product of the
automaton with a path-like arena describing the input word. More precisely, A accepts a
word w if and only if Eve wins the model-checking game G(w,A), defined as the product
Rw ×A, where the arena Rw consists of an infinite path, of which all positions belong to
Eve (although it does not matter), and the label of the ith position is the ith letter of w.
The language of an automaton A, denoted by L(A), is the set of words that it accepts
(recognizes). Two automata are equivalent if they recognize the same language. We will refer
to the positions of the arena Rw by the suffix of w that labels the path starting there. In
particular, this gives us a finite representation of the arena for ultimately periodic words.
We further denote by Gτ (w,A) the model-checking game G(w,A) restricted to moves that
agree with the strategy τ of Adam or Eve.

3 Good for Games Automata: Five Definitions

We clarify the definitions that are used in the literature for “good for gameness”, while gen-
eralizing them from a nondeterministic to an alternating word automaton A = (Σ, Q, ι, δ, α).

Good for game composition. The first definition matches the intuition that “A is good
for playing games”. It was given in [17] for nondeterministic automata and applies as is
to alternating automata, by properly defining the synchronized product of a game and an
alternating automaton. (Definition 1.) We prove in Section 4 that it is equivalent when
speaking of only one-player finite-arena games and two-player finite/infinite-arena games.

I Definition 3 (Good for game composition). A is good for game composition if for every
[one-player] game G with a [finite] Σ-labeled arena and winning condition L(A), Eve has a
winning strategy in G if and only if she has a winning strategy in the synchronized-product
game G×A.

CONCUR 2019

19:6 Good for Games Automata

Compliant with the letter games. The first definition is simple to declare, but is not
convenient for technical developments. Thus, Henzinger and Piterman defined the “letter-
game”, our next definition, while independently Colcombet defined history-determinism,
which we provide afterwards. The two latter definitions are easily seen to be equivalent and
they were shown in [17] to imply the game composition definition. We are not aware of a full
proof of the other direction in the literature; we include one in this article.

In the letter-game for nondeterministic automata [17], Adam generates a word letter by
letter, and Eve has to resolve the nondeterminism “on the fly”, so that the generated run of
A is accepting if Adam generates a word in the language. It has not been generalized yet to
the alternating setting, and there are various ways in which it can be generalized, as it is not
clear who should pick the letters and how to resolve the nondeterminism and universality. It
turns out that a generalization that works well is to consider two independent games, one
in which Eve resolves the nondeterminism while Adam picks the letters and resolves the
universality, and another in which Eve picks the letters.

I Definition 4 (Compliant with the letter games). There are two letter games, Eve’s game
and Adam’s game.
Eve’s game: A configuration is a pair (σ, b) where b ∈ B+(Q) is a transition condition

and σ ∈ Σ ∪ {ε} is a letter. (We abuse ε to also be an empty letter.) A play begins in
(σ0, b0) = (ε, ι) and consists of an infinite sequence of configurations (σ0, b0)(σ1, b1)
In a configuration (σi, bi), the game proceeds to the next configuration (σi+1, bi+1) as
follows.

If bi is a state of Q, Adam picks a letter a from Σ, having (σi+1, bi+1) = (a, δ(bi, a)).
If bi is a conjunction bi = b′ ∧ b′′, Adam chooses between (ε, b′) and (ε, b′).
If bi is a disjunction bi = b′ ∨ b′′, Eve chooses between (ε, b′) and (ε, b′).

In the limit, a play consists of an infinite sequence π = b0, b1, . . . of transition conditions
and an infinite word w consisting of the concatenation of σ0, σ1, Let ρ be the restriction
of π to transition conditions that are states of Q. Eve wins the play if either w /∈ L(A)
or ρ satisfies A’s acceptance condition.
The nondeterminism in A is compliant with the letter games if Eve wins this game.

Adam’s game is similar to Eve’s game, except that Eve chooses the letters instead of Adam,
and Adam wins if either w ∈ L(A) or ρ does not satisfy A’s acceptance condition. The
universality in A is compliant with the letter games if Adam wins this game.

A is compliant with the letter games if its nondeterminism and universality are compliant
with the letter games.

Observe that we need both games: universal automata are trivially compliant with Eve’s
letter game and nondeterministic automata are trivially compliant with Adam’s letter game.

History-determinism. A nondeterministic automaton is history-deterministic [11] if there
is a strategy1 to resolve the nondeterminism that only depends on the word read so far, i.e.,
that is uniform for all possible futures. Colcombet generalized this to alternating automata
[13] by considering such strategies for both players.

We first define how to use a strategy τ : (Σ × B+(Q))∗ → B+(Q) for playing in a
model-checking game G(w,A), as the history domains are different. Recall that in the
model-checking game G(w,A), positions consist of a suffix of w and a transition condition

1 In Section 2, we formally defined a “strategy” with respect to a specific game. Here we abuse the term
“strategy” to refer to a general total function on finite words.

U. Boker and K. Lehtinen 19:7

of A so histories have type (Σω × B+(Q))∗. From such a history h, let h′ be the history
obtained by only keeping the first letter of the Σω component of h’s elements, that is, the
letter at the head of the current suffix. Then, we extend τ to operate over the (Σω×B+(Q))∗
domain, by defining τ(h) = τ(h′).

For convenience, we often refer to a history in (Σ× B+(Q))∗, as a pair in Σ∗ × (B+(Q))∗.

I Definition 5 (History-determinism [13]).
The nondeterminism inA is history-deterministic if there is a strategy τE : (Σ×B+(Q))∗ →
B+(Q) such that for all w ∈ L(A), τE is a winning strategy for Eve in G(w,A).
The universality in A is history-deterministic if there is a strategy τA : (Σ× B+(Q))∗ →
B+(Q) such that for all w /∈ L(A), τA is a winning strategy for Adam in G(w,A).
A is history-deterministic if its nondeterminism and universality are history-deterministic.

Good for automata composition. The next definition comes from Colcombet’s proof
that alternating history-deterministic automata behave well with respect to composition
with other alternating automata. We shall show in Section 4 that it also implies proper
compositionality with tree automata, and that for nondeterministic automata, it is enough
to require compositionality with universal, rather than alternating, automata.

I Definition 6 (Good for automata composition [13]). A is good for automata composition
if for every alternating word (or tree) automaton B with Σ-labeled states and acceptance
condition L(A), the language of the composed automaton B×A is equal to the language of B.

Good for trees. The next definition comes from the work in [19, 3] on the power of
nondeterminism in tree automata. It states that a nondeterministic word automaton A is
good-for-trees if we can “universally expand” it to run on trees and accept the “universally
derived language” L(A)M – trees all of whose branches are in the word language of A.

Observe that every universal word automaton for a language L is trivially good for LM.
Therefore, for universal automata, we suggest that a dual definition is more interesting: its
“existential expansion to trees” accepts LO – trees in which there exists a path in L.

For an alternating automaton A, we generalize the good-for-trees notion to require that A
is good for both L(A)M and L(A)O, when expanded universally and existentially, respectively.

We first formally generalize the definition of “expansion to trees” to alternating automata.
The universal (resp. existential) expansion of A to trees is syntactically identical to A, while
its semantics is to accept a tree t if and only if Eve wins the game t×A, when t is viewed as
a game in which all nodes belong to Adam (resp. Eve).

I Definition 7 (Good for trees). A is good for trees if its universal- and existential-expansions
to trees recognize the tree languages L(A)M and L(A)O, respectively.

4 Equivalence of All Definitions

We prove in this section the equivalence of all of the definitions in the alternating setting,
as given in Section 3, which implies their equivalence also in the nondeterministic (and
universal) setting. We may therefore refer to an automaton as good-for-games (GFG) if it
satisfies any of these definitions. In some cases, we provide additional equivalences that only
apply to the nondeterministic setting.

CONCUR 2019

19:8 Good for Games Automata

I Theorem 8. Given an alternating automaton A, the following are equivalent:
1. A is good for game composition (Def. 3).
2. A is compliant with the letter games (Def. 4).
3. A is history-deterministic (Def. 5).
4. A is good for automata composition (Def. 6).
5. A is good for trees (Def. 7).

Proof.
Lemma 9: History-determinism ⇔ compliance with the letter games. (Def. 4 ⇔ Def. 5).
Lemma 13: Compliance with the letter games ⇒ compositionality with arbitrary games.
(Def. 4 ⇒ “strong” Def. 3).
Lemma 14: Compositionality, even with just one-player finite-arena games ⇒ compliance
with the letter games. (“weak” Def. 3 ⇒ Def. 4).
Lemma 15: Good for trees is ⇔ compositionality with one-player games.
(Def. 7 ⇔ “medium” Def. 3).
Lemma 16: Compositionality with games ⇔ compositionality with automata.
(Def. 6 ⇔ Def. 3). J

We start with the simple equivalence of history-determinism and compliance with the
letter game. (Observe that the letter-game strategies are of the same type as the strategies
that witness history-determinism: a function from (Σ× B+(Q))∗ to B+(Q).)

I Lemma 9. Consider an alternating automaton A = (Σ, Q, ι, δ, α).
A strategy τE for Eve in her letter game is winning if and only if it witnesses the
history-determinism of the nondeterminism in A.
A strategy τA for Adam in his letter game is winning if and only if it witnesses the
history-determinism of the universality in A.
An alternating automaton A is history-deterministic if and only if it is compliant with
the letter games.

I Corollary 10. If A is history-deterministic, then there are finite-memory strategies τE and
τA to witness it.

The following two propositions state that “standard manipulations” of alternating auto-
mata preserve history-determinism. The dual of an automaton A, denoted by A, is derived
from A by changing every conjunction of a transition condition to a disjunction, and vice
versa, and changing the acceptance condition to reject every sequence of states (labeling)
that A accepts, and accept every sequence that A rejects.

I Proposition 11. Consider an alternating automaton A and its dual A. The nondetermin-
ism (resp. universality) of A is history-deterministic if and only if the universality (resp.
nondeterminism) of A is history-deterministic.

I Proposition 12. Consider an alternating automaton A, and let A′ be an automaton that
is derived from A by changing some transition conditions to different, but equivalent, boolean
formulas. Then the nondeterminism/universality in A = (Σ, Q, ι, δ, α) is history-deterministic
if and only if it is history-deterministic in A′.

The following lemma was shown in [17] for nondeterministic automata and can be deduced
for alternating automata from Lemma 9 and the equivalence of history-determinism and
being good for composition with automata [13]. We provide a simple direct proof.

U. Boker and K. Lehtinen 19:9

I Lemma 13. If an alternating automaton A is compliant with the letter games then it is
good for game composition.

If A is good for infinite games, it is clearly good for finite games, which can be unfolded into
infinite games. The following lemma shows that the other direction holds too: compositionality
with finite games implies compliance with the letter games, and therefore, from the previous
lemma, composition with infinite games.

Note that this correspondence does not extend to the notion of good for small games
[6, 14]: an automaton can be good for composition with games up to a bounded size, without
being good for games.

I Lemma 14. If an alternating automaton is good for composition with finite-arena one-
player games then it is compliant with the letter games.

Proof. Consider an alternating automaton A over the alphabet Σ. We show that if A is not
compliant with the letter games then it is not good for finite-arena one-player games. By
Proposition 12, we may assume that the transition conditions in A are in CNF.

If A is not compliant with Eve’s letter game, then since this game is ω-regular, Adam
has some finite-memory winning strategy, modeled by a transducerM. Observe that states
of M output the next moves of Adam, namely a letter and a disjunctive clause, and the
transitions ofM correspond to moves of Eve.

We translateM into a one-player Σ-labeled game with winning condition L(A), in which
all states belong to Adam: we consider every state/transition ofM as a vertex/edge of G,
take the letter output of a state as the labeling of the corresponding vertex, and ignore the
other outputs and the transition labels. (See an example in Figure 2.) We claim that A is
not good for one-player finite-arena games, since i) Adam loses G; and ii) Adam wins G × A.

Indeed, considering claim (i), a play of G corresponds to a possible path inM, which
corresponds to a possible play in Eve’s letter game that agrees withM. If there is a play of
G whose labeling is not in L(A), it follows that Eve can win her letter game againstM, by
forcing a word not in L(A), which contradicts the assumption thatM is a winning strategy.

As for claim (ii), Adam can play in the G × A game according to M: whenever in a
vertex (v, b) of G × A, where v is a vertex of G and b a transition condition of A, Adam
chooses the next vertex according to the transition in the corresponding state inM. Thus,
the generated play in G ×A corresponds to a play in Eve’s letter game that agrees withM,
which Adam is guaranteed to win.

In the case that A is not compliant with Adam’s letter game, we do the dual: Consider
the transition conditions in A to be in DNF, have a winning strategy for Eve, modeled by a
transducerM whose states output a letter and a conjunctive clause and whose transitions
correspond to Adam’s choices, and translate it to a Σ-labeled one-player game G, in which
all vertices belong to Eve. Then, for analogous reasons, Eve loses G, but wins G ×A. J

The equivalence between the “good for trees” notion and being good for composition
with one-player games, follows directly from the generalized definition of “good for trees”
(Definition 7) and the following observation: Every one-player Σ-labeled game is built on
top of a Σ-labeled tree (its arena, in case it is infinite, or the expansion of all possible plays,
in case of a finite arena), and every Σ-labeled tree can be viewed as a one-player game by
assigning ownership of all positions to either Adam or Eve. Clearly, every Σ-labeled tree t
belongs to L(A)M if and only if Eve wins the game on t in which all nodes belong to Adam.

I Lemma 15. An alternating automaton A is good for trees if and only if it is good for
composition with one-player games.

CONCUR 2019

19:10 Good for Games Automata

in Eve’s letter game on A from Figure 1:
A transducerM for Adam’s strategy

A game corresponding toM:

Transitions correspond to Eve’s choices.
States output Adam’s choices: A letter and a disjunctive clause.

All vertices belong to Adam.

v2

m0 v0
v3

v1
q1∨q2

q1∨q2

m1

m2

m3

q3

q1

a

a

b

q2 a

a

b

a

a

q3

q1

q1

q2

q1

Figure 2 An example of a strategy for Adam in Eve’s letter game, and the corresponding game,
as used in the proof of Lemma 14.

A finite-arena game can be viewed as an alternating automaton over a singleton alphabet,
suggesting that being good for composition with alternating automata implies being good
for composition with finite games. This is indeed the case and by Lemmas 13 and 14, it also
implies being good for infinite games. It turns out that even though alternating automata
over a non-singleton alphabet cannot be just viewed as games, the other direction also holds.

I Lemma 16. An alternating automaton A is good for game composition if and only if it is
good for automata composition.

Proof. We start with showing that being good for automata composition implies being good
for game composition. Given a game over a finite Σ-arena R = (V,X, VE , L) with initial
position ι and winning condition W ⊆ Σω, consider the automaton AR = ({a}, V, ι, δ, α) over
the alphabet {a} with acceptance condition W , where δ(v, a) =

∨
{v′|(v, v′) ∈ X} if v ∈ VE

and δ(v, a) =
∧
{v′|(v, v′) ∈ X} otherwise. AR accepts the unique word in {a}ω if and only

if Eve has a winning strategy in R from ι, because a strategy in R is exactly a run of AR
over this unique word, and it is winning if and only if the run is accepting.

Then, observing that the synchronized product R × A between a finite game and an
automaton is the special case of the synchronized product AR ×A, we conclude that if an
automaton is good for automata composition, then Eve wins R×A if and only if AR ×A is
non-empty, if and only if AR is non-empty, i.e. if and only if Eve has a winning strategy in
R. That is, A is good for finite game composition. From Lemmas 13 and 14, A is also good
for composition with infinite games.

For the other direction, assume that A is good for game composition. We show that A is
also good for automata composition. Consider an alternating automaton B with acceptance
condition L(A). Let w ∈ L(B) and consider the model-checking game G(w,B) in which
Eve has a winning strategy. Since A is good for game composition, Eve also has a winning
strategy s in G(w,B)×A. We use this strategy to build a strategy s′ for Eve in G(w,B×A).

First recall from Def. 2, that the transitions of B ×A are of the form f(c, q) ∨ f(c′, q),
f(c, q)∧f(c′, q), corresponding to choices in B, or of the form g(q, c)∨g(q, c′) or g(q, c)∧g(q, c′),
corresponding to choices in A. At a position (w, f(c, q) ∨ f(c′, q)), Eve plays as s plays
at ((w, c ∨ c′), q); at (w, g(q, c) ∨ g(q, c′)) Eve plays as s plays at ((w, c ∨ c′), q). Since the
winning condition in both games is determined by the states of A visited infinitely often,
if s is winning, so is s′. Therefore L(B × A) accepts w and L(B) ⊆ L(B × A). In the case
w /∈ L(B), Adam can similarly copy his strategy from G(w,B)×A into G(w,B ×A).

We conclude that the language of B ×A is equal to the language of B and therefore A is
good for automata composition. J

U. Boker and K. Lehtinen 19:11

I Remark 17. We observe that compositionality with word automata also implies composi-
tionality with (symmetric, unranked) tree automata. A tree automaton is similar to a word
automaton, except that its transitions have modalities �q and ♦q instead of states. Then, the
model-checking (or membership) game of a tree and an automaton is a game, as for words,
where, in addition, the modalities �q and ♦q dictate whether the choice of successor in the
tree is given to Adam or Eve. Then, if A composes with games, it must in particular compose
with the model-checking game of t and a tree automaton B with acceptance condition L(A).
If Eve (Adam) wins the model-checking game G(t,B), she (he) also wins G(t,B)×A. Her
(his) winning strategy in this game is also a winning strategy in G(t,B ×A), so B ×A must
accept (reject) t. A therefore composes with tree-automata.

While Theorem 8 obviously holds also for nondeterministic automata, we observe that
in the absence of universality, the definitions of Section 3 can be relaxed into asymmetrical
ones. For letter games, history-determinism, and good-for-trees, it follows directly from the
definitions, as only their “nondeterministic part” applies. For composition with games and
automata, we also show that it suffices to compose with universal automata and games.

I Lemma 18. A nondeterministic automaton A is good for automata composition if and
only if it is good for composition with universal automata.

5 Expressiveness

For some acceptance conditions, such as weak, Büchi, and co-Büchi, alternating automata
are more expressive than deterministic ones. For other conditions, such as parity, Rabin,
Streett, and Muller, they are not. Yet, also for the latter conditions, once considering the
condition’s index, which is roughly its size, alternating automata are more expressive than
deterministic automata with the same acceptance condition and index. (More details on the
different acceptance conditions can be found, for example, in [2].)

Most acceptance conditions are preserved, together with their index, when taking the
product of an automaton A with an auxiliary memory M . In such a product, the states of
the resulting automaton are pairs (q,m) of a state q from A and a state m from M , while
the acceptance condition is defined according to the projection of the states to their A’s
component. In particular, the weak, Büchi, co-Büchi, parity, Rabin, and Streett conditions
are preserved, together with their index, under memory product, while the very-weak and
Muller conditions are not.

For showing that GFG automata are not more expressive than deterministic automata with
the same acceptance condition and index, we generalize the proof of [3] from nondeterminism
to alternation. The idea is to translate an alternating GFG automaton A to an equivalent
deterministic automaton D by taking the product of A with the transducers that model the
history-deterministic strategies of A.

I Theorem 19. Every alternating GFG automaton with acceptance condition that is pre-
served under memory-product can be translated to a deterministic automaton with the same
acceptance condition and index. In particular, this is the case for weak, co-Büchi, Büchi,
parity, Rabin, and Streett GFG alternating automata of any index.

Proof. Consider an alternating GFG automaton A = (Σ, Q, ι, δ, α). For convenience, we
may assume by Proposition 12 that A’s transition conditions are in DNF.

By Corollary 10, the history-determinism of A’s universality and nondeterminism is wit-
nessed by finite-memory strategies, modeled by transducers MA = (IA, OA,MA, ιA, ρA, χA)
and ME = (IE , OE ,ME , ιE , ρE , χE), respectively. Observe that since transition conditions

CONCUR 2019

19:12 Good for Games Automata

of A are in DNF, the strategyMA chooses a state of A for every letter in Σ and clause of
states of A, while the transitions inME are made in pairs, first choosing a clause for a letter
in Σ and then updating the memory again according to Adam’s choice of a state of A.

Formally, we have that the elements of IA are pairs (a,C), where a ∈ Σ and C is a clause
of states in Q, and that elements of OA are states in Q, while elements of IE are in Σ ∪Q
and elements of OE are either clauses of states in Q or ε (when only updating the memory).

Let D = (Σ, Q′, ι′, δ′, α′) be the deterministic automaton that is the product of A
andMA, in which the universality is resolved according toMA and the nondeterminism
according to ME . That is, Q′ = Q ×MA ×ME , ι′ = (ι, ιA, ιE), α′(q, x, y) = α(q), and
for every q ∈ Q, x ∈ MA, y ∈ ME , and a ∈ Σ, we have δ′((q, x, y), a) = (q′, x′, y′), where
x′ = ρA(x, (a, χE(ρE(y, a)))), q′ = χA(x′), and y′ = ρE(ρE(y, a), q′).

Observe that A and D have the same acceptance condition and the same index, as A’s
acceptance condition is preserved under memory-product. We also have that A and D are
equivalent, since for every word w, the games G(w,A), GMA,ME

(w,A), and G(w,D) have
the same winner. J

6 Succinctness

Nondeterministic GFG automata over finite words and weak GFG automata over infinite
words can be pruned to equivalent deterministic automata [19, 22]. We show that this
remains true in the alternating setting. The succinctness of nondeterministic GFG Büchi
automata compared to deterministic ones is still an open question, having no lower bound
and a quadratic upper bound, whereas nondeterministic GFG co-Büchi automata can be
exponentially more succinct than their deterministic counterparts [18]. We show that in
the alternating setting, both Büchi and co-Büchi GFG automata are singly-exponential
more succinct than deterministic ones. We leave open the question of whether stronger
acceptance conditions can allow GFG automata to be doubly-exponential more succinct than
deterministic ones.

In this section we focus on specific classes of automata, and for brevity use three letter
acronyms in {D, N, A} × {W, B, C} × {W} when referring to them. The first letter stands
for the transition mode (deterministic, nondeterministic, alternating); the second for the
acceptance-condition (weak, Büchi, co-Büchi); and the third indicates that the automaton
runs on words. For example, DBW stands for a deterministic Büchi automaton on words.
We also use DFA, NFA, and WFA when referring to automata over finite words.

In the nondeterministic setting, the proof that GFG NFAs and GFG NWWs are not
more succinct than DFAs and DWWs, respectively, is based on two properties: i) In a
minimal DFA or DWW for a language L, there is exactly one state for every Myhill-Nerode
equivalence class of L. (Recall that finite words u and v are in the same class C when for
every word w, uw ∈ L if and only if vw ∈ L. For a class C, the language L(C) of C is
{w | ∃u ∈ C such that uw ∈ L}.); and ii) In a nondeterministic GFG automaton A that
has no redundant transitions (removing a transition will change its language or make it not
GFG), for every finite word u and states q, q′ ∈ δ(u), we have L(Aq) = L(Aq′).

For showing that GFG AFAs and AWWs are not more succinct than DFAs and DWWs,
respectively, we provide in the following lemma a variant of the above second property.

I Lemma 20. Consider a GFG alternating automaton A. Then for every class C of the
Myhill-Nerode equivalence classes of L(A), there is a state q in A, such that L(Aq) = L(C).

Proof. Let τ and η be history-deterministic strategies of A for Eve and Adam, respectively.
For every finite word u, let C(u) be the Myhill-Nerode equivalence class of u, and q(u) be the
state that A reaches when running on u along τ and η. We claim that L(Aq(u)) = L(C(u)).

U. Boker and K. Lehtinen 19:13

Indeed, if there is a word w ∈ L(C(u)) \ L(Aq(u)) then Adam wins the model-checking
game Gτ (uw,A), by playing according to η until reaching q(u) over u and then playing
unrestrictedly for rejecting the w suffix, contradicting the history-determinism of τ .

Analogously, if there is a word w ∈ L(Aq(u)) \L(C(u)) then Eve wins the model-checking
game Gη(uw,A), by playing according to τ until reaching q(u) over u and then playing
unrestrictedly for accepting the w suffix, contradicting the history-determinism of η. J

The insuccinctness of GFG AFAs and GFG AWWs directly follows.

I Theorem 21. For every GFG AFA or GFG AWW A, there is an equivalent DFA or
DWW A′, respectively, such that the number of states in A′ is not more than in A.

As opposed to weak automata, minimal deterministic Büchi and co-Büchi automata do
not have the Myhill-Nerode classification, and indeed, it was shown in [18] that GFG NCWs
can be exponentially more succinct than DCWs.

We show that GFG ACWs are also only singly-exponential more succinct than DCWs.
We translate a GFG ACW A to an equivalent DCW D in four steps: i) Dualize A to a GFG
ABW B; ii) Translate B to an equivalent NBW, having an O(3n) state blow-up [21, 5], and
prove that the translation preserves GFGness; iii) Translate B to an equivalent DBW C,
having an additional quadratic state blow-up [18]; and iv) Dualize C to a DCW D.

The main difficulty is, of course, in the second step, showing that the translation of
an ABW to an NBW preserves GFGness. For proving it, we first need the following key
lemma, stating that in a GFG ABW in which the transition conditions are given in DNF,
the history-deterministic strategies can only use the current state and the prefix of the word
read so far, ignoring the history of the transition conditions.

I Lemma 22. Consider an ABW A with transition conditions in DNF and history-determinis-
tic nondeterminism. Then Eve has a strategy τ : Σ∗ ×Q→ B+(Q) (and not only a strategy
(Σ× B+(Q))∗ → B+(Q)), such that for every word w ∈ L(A), Eve wins Gτ (w,A).

Proof. Let ξ : (Σ × B+(Q))∗ → B+(Q) be a “standard” history-deterministic strategy for
Eve. Observe that since the transition conditions of A are in DNF, ξ’s domain is (Σ×Q)∗,
and the run of A on w following ξ, namely Gξ(w,A), is an infinite tree, in which every node
is labeled with a state of A. A history h for ξ is thus a finite sequence of states and a finite
word. Let yearn(h) denote the number of positions in the sequence of states in h from the
last visit to α until the end of the sequence. We shall say “a history h for a word u” when
h’s word component is u, and “h ends with q” when the sequence of states in h ends in q.

We inductively construct from ξ a strategy τ : Σ∗ ×Q→ B+(Q), by choosing for every
history (u, q) ∈ Σ∗ ×Q some history h of ξ, as detailed below, and setting τ(u, q) = ξ(h).

At start, for u = ε, we set τ(ε, ι) = ξ(ε, ι). In a step in which every history of ξ for u ends
with a different state, we set τ(u, q) = ξ(h), where h is the single history that ends with q.

The challenge is in a step in which several histories of ξ for u end with the same state,
as τ can follow only one of them. We define that τ(u, q) = ξ(h), where h is a history of ξ
for u that ends with q, and yearn(h) is maximal among the histories of ξ for u that ends
in q. Every history of ξ that is not followed by τ is considered “stopped”, and in the next
iterations of constructing τ , histories of ξ with stopped prefixes will not be considered.

As ξ is a winning strategy for Eve, all paths in Gξ(w,A) are accepting. Observe that
Gτ (w,A) is a tree in which some of the paths are from Gξ(w,A) and some are not – whenever
a history is stopped in the construction of τ , a new path is created, where its prefix is of the
stopped history and the continuation follows the path it was redirected to. We will show
that, nevertheless, all paths in Gτ (w,A) are accepting.

CONCUR 2019

19:14 Good for Games Automata

Assume toward contradiction a path ρ of Gτ (w,A) that is not accepting, and let k be
its last position in α. The path ρ must have been created by infinitely often redirecting it
to different histories of ξ, as otherwise there would have been a rejecting path of ξ. Now,
whenever ρ was redirected, it was to a history h, such that yearn(h) was maximal. Thus, in
particular, this history did not visit α since position k. Therefore, by König’s lemma, there
is a path π of Gξ(w,A) that does not visit α after position k, contradicting the assumption
that all paths of Gξ(w,A) are accepting. J

We continue with showing that the translation of an ABW to an NBW preserves GFGness.

I Lemma 23. Consider an ABW A for which the nondeterminism is history-deterministic.
Then the nondeterminism in the NBW A′ that is derived from A by the breakpoint (Miyano-
Hayashi) construction is also history-deterministic.

Proof. Consider an ABW A = (Σ, Q, ι, δ, α) for which the nondeterminism is history-
deterministic. We write α for Q \ α. By Proposition 12, we may assume that the transition
conditions of A are given in DNF.

The breakpoint construction [21] generates from A an equivalent NBW A′, by intuitively
maintatining a pair 〈S,O〉 of sets of states of A, where S is the set of states that are visited at
the current step of a run, and O are the states among them that “owe” a visit to α. A state
owes a visit to α if there is a path leading to it with no visit to α since the last “breakpoint”,
which is a state of A′ in which O = ∅. The accepting states of A′ are the breakpoints.

For providing the formal definition of A′, we first construct from δ and each letter a ∈ Σ,
a set ∆(a) of transition functions γ1, γ2, . . . γk, for some k ∈ N, such that each of them has
only universality and corresponds to a possible resolution of the nondeterminism in every
state of A. For example, if A has states q1, q2, and q3, and its transition function δ for the
letter a is δ(q1, a) = q1 ∧ q3 ∨ q2; δ(q2, a) = q2 ∨ q3 ∨ q1; and δ(q3, a) = q2 ∧ q3 ∨ q1, then
∆(a) is a set of twelve transition functions, where γ1(q1, a) = q1 ∧ q3; γ1(q2, a) = q2; and
γ1(q3, a) = q2 ∧ q3, etc., corresponding to the possible ways of resolving the nondeterminism
in each of the states.

For convenience, we shall often consider a conjunctive formula over states as a set of
states, for example q1 ∧ q3 as {q1, q3}. For a set of states S ⊆ Q, a letter a, and a transition
function γ ∈ ∆(a), we define γ(S) =

⋃
q∈S γ(q, a).

Formally, the breakpoint construction [21] generates from A an equivalent NBW A′ =
(Σ, Q′, ι′, δ′, α′) as follows:

Q′ = {〈S,O〉 | O ⊆ S ⊆ Q}
ι′ = ({ι}, {ι} ∩ α)
δ′ : For a state 〈S,O〉 of B and a letter a ∈ Σ:

If O = ∅ then δ′(〈S,O〉, a) = {〈Ŝ, Ô〉 | exists a transition function γ ∈ ∆, such that
Ŝ = γ(S, a) and Ô = γ(S, a) ∩ α}
If O 6= ∅ then δ′(〈S,O〉, a) = {〈Ŝ, Ô〉 | exists a transition function γ ∈ ∆, such that
Ŝ = γ(S, a) and Ô = γ(O, a) ∩ α}

α′ = {(S, ∅) | S ⊆ Q}

Observe that the breakpoint construction determinizes the universality of A, while
morally keeping its nondeterminism as is. This will allow us to show that Eve can use her
history-deterministic strategy for A also for resolving the nondeterminism in A′.

At this point we need Lemma 22, guaranteeing a strategy τ : Σ∗ × Q → B+(Q) for
Eve. At each step, Eve should choose the next state in A′, according to the read prefix
u and the current state (S,O) of A′. Observe that τ assigns to every state q ∈ S a set of

U. Boker and K. Lehtinen 19:15

states S′ = τ(u, q), following a nondeterministic choice of δ(q, u); Together, all these choices
comprise some transition function γ ∈ ∆. Thus, in resolving the nondeterminism of A′, Eve’s
strategy τ ′ is to choose the transition γ that is derived from τ .

Since τ guarantees that all the paths in the τ -run-tree of A on a word w ∈ L(A) are
accepting, the corresponding τ ′-run of A′ on w is accepting, as infinitely often all the A-states
within A′’s states visit α. J

I Theorem 24. The translation of a GFG ABW or GFG ACW A to an equivalent DBW
or DCW, respectively, involves a 2Θ(n) state blow-up.

7 Conclusions

Alternating GFG is the sum of its parts. Throughout our five definitions of GFG for
alternating automata, a common theme prevails: each definition can be divided into a
condition for nondeterminism and one for universality, and their conjunction guarantees
good-for-gameness. For example, it suffices for an automaton to compose with both universal
automata and nondeterministic automata for it to compose with alternating automata, even
alternating tree automata. In other words, GFG nondeterminism and universality cannot
interact pathologically to generate alternating automata that are not GFG, and neither can
they ensure GFGness without each being GFG independently. This should facilitate checking
GFGness, as it can be done separately for universality and nondeterminism.

Between words, trees, games, and automata. In the recent translations from alternating
parity word automata into weak automata [7, 16], the key techniques involve adapting
methods that use finite one-player games to process infinite structures that are in some
sense between words and trees, and use these to manipulate alternating automata. These
translations implicitly depend on the compositionality that enable the step from asymmetrical
one-player games, i.e. trees, to alternating automata. Studying good-for-gameness provides
us with new tools to move between words, trees, games, and automata, and better understand
how nondeterminism, universality, and alternations interact in this context.

References
1 Mikołaj Bojanczyk and Wojciech Czerwinski. An automata toolbox. Technical report,

University of Warsaw, 2018.
2 Udi Boker. Why These Automata Types? In Proceedings of LPAR, pages 143–163, 2018.
3 Udi Boker, Denis Kuperberg, Orna Kupferman, and Michał Skrzypczak. Nondeterminism in

the Presence of a Diverse or Unknown Future. In Proceedings of ICALP, pages 89–100, 2013.
4 Udi Boker, Orna Kupferman, and Michał Skrzypczak. How Deterministic are Good-For-Games

Automata? In Proceedings of FSTTCS, pages 18:1–18:14, 2017.
5 Udi Boker, Orna Kupferman, and Adin Rosenberg. Alternation Removal in Büchi Automata.

In Proceedings of ICALP, pages 76–87, 2010.
6 Udi Boker and Karoliina Lehtinen. Register Games. Submitted to Logical Methods in

Computer Science.
7 Udi Boker and Karoliina Lehtinen. On the way to alternating weak automata. In Proceedings

of FSTTCS, 2018.
8 Udi Boker and Karoliina Lehtinen. Good for Games Automata: From Nondeterminism to

Alternation. arXiv, 2019. arXiv:1906.11624.
9 J Richard Büchi and Lawrence H Landweber. Solving sequential conditions by finite-state

strategies. Transactions of the American Mathematical Society, 138:295–311, 1969.

CONCUR 2019

http://arxiv.org/abs/1906.11624

19:16 Good for Games Automata

10 Cristian S Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, and Frank Stephan. Deciding
parity games in quasipolynomial time. In Proceedings of STOC, pages 252–263, 2017.

11 Thomas Colcombet. The theory of stabilisation monoids and regular cost functions. In
Proceedings of ICALP, pages 139–150, 2009.

12 Thomas Colcombet. Forms of Determinism for Automata. In Proceedings of STACS, pages
1–23, 2012.

13 Thomas Colcombet. Fonctions régulières de coût. Habilitation à diriger les recherches, École
Doctorale de Sciences Mathématiques de Paris Centre, 2013.

14 Thomas Colcombet and Nathanaël Fijalkow. Universal graphs and Good for small games
automata: New tools for infinite duration games. to appear in proc. of FOSSACS 2019.

15 Wojciech Czerwiński, Laure Daviaud, Nathanaël Fijalkow, Marcin Jurdzińskit, Ranko Lazić,
and Pawel Parys. Universal trees grow inside separating automata: Quasi-polynomial lower
bounds for parity games. In Proceedings of SODA, pages 2333–2349, 2019.

16 Laure Daviaud, Marcin Jurdzinski, and Karoliina Lehtinen. Alternating Weak Automata from
Universal Trees. Preprint arXiv, 2019. arXiv:1903.12620.

17 Thomas Henzinger and Nir Piterman. Solving games without determinization. In Proceedings
of CSL, pages 395–410, 2006.

18 Denis Kuperberg and Michał Skrzypczak. On Determinisation of Good-For-Games Automata.
In Proceedings of ICALP, pages 299–310, 2015.

19 Orna Kupferman, Shmuel Safra, and Moshe Y Vardi. Relating word and tree automata. Ann.
Pure Appl. Logic, 138(1-3):126–146, 2006. Conference version in 1996.

20 Karoliina Lehtinen. A modal µ perspective on solving parity games in quasi-polynomial time.
In Proceedings of LICS, pages 639–648, 2018.

21 Satoru Miyano and Takeshi Hayashi. Alternating Finite Automata on ω-Words. Theoretical
Computer Science, 32:321–330, 1984.

22 Gila Morgenstern. Expressiveness results at the bottom of the ω-regular hierarchy. M.Sc.
Thesis, The Hebrew University, 2003.

http://arxiv.org/abs/1903.12620

Determinacy in Discrete-Bidding Infinite-Duration
Games
Milad Aghajohari
Sharif University of Technology, Iran
mi.aghajohari@gmail.com

Guy Avni
IST Austria, Klosterneuburg, Austria
guy.avni@ist.ac.at

Thomas A. Henzinger
IST Austria, Klosterneuburg, Austria
tah@ist.ac.at

Abstract
In two-player games on graphs, the players move a token through a graph to produce an infinite
path, which determines the winner of the game. Such games are central in formal methods since
they model the interaction between a non-terminating system and its environment. In bidding
games the players bid for the right to move the token: in each round, the players simultaneously
submit bids, and the higher bidder moves the token and pays the other player. Bidding games are
known to have a clean and elegant mathematical structure that relies on the ability of the players to
submit arbitrarily small bids. Many applications, however, require a fixed granularity for the bids,
which can represent, for example, the monetary value expressed in cents. We study, for the first
time, the combination of discrete-bidding and infinite-duration games. Our most important result
proves that these games form a large determined subclass of concurrent games, where determinacy
is the strong property that there always exists exactly one player who can guarantee winning the
game. In particular, we show that, in contrast to non-discrete bidding games, the mechanism with
which tied bids are resolved plays an important role in discrete-bidding games. We study several
natural tie-breaking mechanisms and show that, while some do not admit determinacy, most natural
mechanisms imply determinacy for every pair of initial budgets.

2012 ACM Subject Classification Theory of computation → Solution concepts in game theory;
Theory of computation → Formal languages and automata theory

Keywords and phrases Bidding games, Richman games, determinacy, concurrent games, discrete
bidding

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2019.20

Related Version https://arxiv.org/abs/1905.03588

Funding This research was supported in part by the Austrian Science Fund (FWF) under grants
S11402-N23 (RiSE/SHiNE), Z211-N23 (Wittgenstein Award), and M 2369-N33 (Meitner fellowship).

1 Introduction

Two-player infinite-duration games on graphs are a central class of games in formal verification
[4] and have deep connections to foundations of logic [36]. They are used to model the
interaction between a system and its environment, and the problem of synthesizing a correct
system then reduces to finding a winning strategy in a graph game [35]. A graph game
proceeds by placing a token on a vertex in the graph, which the players move throughout
the graph to produce an infinite path (“play”) π. The winner of the game is determined
according to π.

© Milad Aghajohari, Guy Avni, and Thomas A. Henzinger;
licensed under Creative Commons License CC-BY

30th International Conference on Concurrency Theory (CONCUR 2019).
Editors: Wan Fokkink and Rob van Glabbeek; Article No. 20; pp. 20:1–20:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mi.aghajohari@gmail.com
mailto:guy.avni@ist.ac.at
mailto:tah@ist.ac.at
https://doi.org/10.4230/LIPIcs.CONCUR.2019.20
https://arxiv.org/abs/1905.03588
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 Determinacy in Discrete-Bidding Infinite-Duration Games

Two ways to classify graph games are according to the type of objectives of the players,
and according to the mode of moving the token. For example, in reachability games, the
objective of Player 1 is to reach a designated vertex t, and the objective of Player 2 is to
avoid t. An infinite play π is winning for Player 1 iff it visits t. The simplest mode of moving
is turn based: the vertices are partitioned between the two players and whenever the token
reaches a vertex that is controlled by a player, he decides how to move the token.

In bidding games, in each turn, a bidding takes place to determine which player moves the
token. Bidding games were introduced in [25, 26], where the main focus was on a concrete
bidding rule, called Richman rule (named after David Richman), which is as follows: Each
player has a budget, and before each move, the players simultaneously submit bids, where a
bid is legal if it does not exceed the available budget. The player who bids higher wins the
bidding, pays the bid to other player, and moves the token.

Bidding games exhibit a clean and elegant theory. The central problem that was previously
studied concerned the existence of a necessary and sufficient threshold budget, which allows
a player to achieve his objective. Assuming the sum of budgets is 1, the threshold budget
at a vertex v, denoted Thresh(v), is such that if Player 1’s budget exceeds Thresh(v), he
can win the game, and if Player 2’s budget exceeds 1 − Thresh(v), he can win the game.
Threshold budgets are known to exist in bidding reachability games [25, 26], as well as
infinite-duration bidding games with Richman bidding [7], poorman bidding [8], which are
similar to Richman bidding except that the winner of a bidding pays the “bank” rather
than the other player, and taxman bidding [10], which span the spectrum between Richman
and poorman bidding. In addition, bidding games exhibit a rich mathematical structure
in the form of a connection with random-turn based games, which are a special case of
stochastic games [19] in which in each turn, the player who moves is chosen according to a
probability distribution. Random-turn based games have been extensively studied since the
seminal paper [34].

These theoretical properties of bidding games highly depend on the ability of the players
to submit arbitrarily small bids. Indeed, in poorman games, the bids tend to 0 as the
game proceeds. Even in Richman reachability games, when the budget of Player 1 at v
is Thresh(v) + ε, a winning strategy bids so that the budget always exceeds the threshold
budget and, either the game is won or Player 1’s surplus, namely the difference between
his budget and the threshold budget, strictly increases. This strategy uses bids that are
exponentially smaller than ε.

For practical applications, however, allowing arbitrary granularity of bids is unreasonable.
For example, in formal methods, graph games are used to reason about multi-process systems,
and bidding naturally models “scrip” systems, which use internal currency in order to
prioritize processes. Car-control systems are one example, where different components might
send conflicting actions to the engine, e.g., the cruise control component can send the action
“accelerate” while the traffic-light recognizer can send “stop”. Bidding then specifies the level
of criticality of the actions, yet for this mechanism to be practical, the number of levels
of criticality (bids) must stay small. Bidding games can be used in settings in which bids
represent the monetary value of choosing an action. Such settings typically have a finite
granularity, e.g., cents. One such setting is Blockchain technology [15, 5], where players
represent agents that are using the service, and their bids represent transaction fees to the
miners. A second such setting is reasoning about ongoing auctions like the ones used in
the internet for advertisement allocation [32]. Bidding games can be used to devise bidding

M. Aghajohari, G. Avni, and T. A. Henzinger 20:3

strategies in such auctions. Motivation for bidding games also comes from recreational games,
e.g., bidding chess [12] or tic-tac-toe1, where it is unreasonable for a human player to keep
track of arbitrarily small and possibly irrational numbers.

In this work, we study discrete-bidding games in which the granularity of the bids is
restricted to be natural numbers. A key difference from the continuous-bidding model is that
there, the issue of how to break ties was largely ignored, by only considering cases where the
initial budget does not equal Thresh(v). In discrete-bidding, however, ties are a central part
of the game. A discrete-bidding game is characterized explicitly by a tie-breaking mechanism
in addition to the standard components, i.e., an arena, the players’ budgets, and an objective.
We investigate several tie-breaking mechanisms and show how they affect the properties of
the game. Discrete-bidding games with reachability objectives were first studied in [20]. The
focus in that paper was on extending the Richman theory to the discrete domain, and we
elaborate on their results later in this section.

A central concept in game theory is a winning strategy: a strategy that a player can reveal
before the other player, and still win the game. A game is determined if exactly one of the
players can guarantee winning the game. The simplest example of a non-determined game is
a two-player game called matching pennies: Each player chooses 1 (“heads”) or 0 (“tails”),
and Player 1 wins iff the parity of the sum of the players’ choices is 0. Matching pennies is
not determined since if Player 1 reveals his choice first, Player 2 will choose opposite and
win the game, and dually for Player 2.

Discrete-bidding games are a subclass of concurrent graph games [2], in which in each
turn, the players simultaneously select actions, and the joint vector of actions determines the
next position. A bidding game G is equivalent to a concurrent game G′ that is played on the
“configuration graph” of G: each vertex of G′ is a tuple 〈v,B1, B2, s〉, where v is the vertex in
G on which the token is situated, the players’ budgets are B1 and B2, and s is the state of
the tie-breaking mechanism. An action in G′ corresponds to a bid and a vertex to move to
upon winning the bidding. Concurrent games are not in general determined since matching
pennies can be modelled as a concurrent game.

The central question we address in this work asks under which conditions bidding games
are determined. We show that determinacy in bidding games highly depends on the tie-
breaking mechanism under use. We study natural tie-breaking mechanisms, show that
some admit determinacy while others do not. The simplest tie-breaking rule we consider
alternates between the players: Player 1 starts with the advantage, when a tie occurs,
the player with the advantage wins, and the advantage switches to the other player. We
show that discrete-bidding games with alternating tie-breaking are not determined, as we
demonstrate below.

I Example 1. Consider the bidding reachability game that is depicted in Fig. 1. We depict
the player who has the advantage with a star. We claim that no player has a winning strategy
when the game starts from the configuration 〈v0, 1, 1∗〉, thus the token is placed on v0, both
budgets equal 1, and Player 2 has the tie-breaking advantage. We start by showing that
if Player 2 reveals his first bid before Player 1, then Player 1 can guarantee winning the
game. There are two cases. First, if Player 2 bids 0, Player 1 bids 1 and draws the game to
t. Second, if Player 2 bids 1, then Player 1 bids 0, and the game reaches the configuration
〈v1, 2, 0∗〉. Next, both players bid 0 and we reach 〈v2, 2∗, 0〉. Player 1 wins by bidding 1

1 http://biddingttt.herokuapp.com/

CONCUR 2019

http://biddingttt.herokuapp.com/

20:4 Determinacy in Discrete-Bidding Infinite-Duration Games

v1 v2

v0t

Figure 1 A bidding game that is not determined with alternating tie-breaking, when the initial
configuration is 〈v0, 1, 1∗〉.

twice; indeed, the next two configurations are 〈v0, 1∗, 1〉 and either 〈t, 0, 2∗〉, if Player 2 bids
1, or 〈t, 0∗, 2〉, if he bids 0. The proof that Player 1 loses when he reveals his first bid before
Player 2 can be found in Theorem 10. y

We generalize the alternating tie-breaking mechanism as follows. A transducer is similar
to an automaton only that the states are labeled by output letters. In transducer-based tie
breaking, a transducer is run in parallel to the game. The transducer reads information
regarding the biddings and outputs which player wins in case of a tie. Alternating tie-breaking
is a special case of transducer tie-breaking in which the transducer is a two-state transducer,
where the alphabet consists of the letters > (“tie”) and ⊥ (“no-tie”) and the transducer
changes its state only when the first letter is read.

I Example 2. We describe another simpler game that is not determined. In a Büchi game,
Player 1 wins a play iff it visits an accepting state infinitely often. We claim that the Büchi
bidding game that is depicted on the left of Fig. 2 is not determined when the tie-breaking
uses the transducer on the right of the figure and both of the players’ initial budgets are
positive. That is, if a tie occurs in the first bidding, Player 2 wins all ties for the rest of the
game, and otherwise Player 1 wins all ties. First note that, for i ∈ {1, 2}, no matter what
the budgets are, if Player i wins all ties, he wins the game. A winning strategy for Player i
always bids 0. Intuitively, the other player must invest a unit of budget for winning a bidding
and leaving vi, thus the game eventually stays in vi. So, the winner is determined according
to the outcome of the first bidding, and the players essentially play a matching-pennies game
in that round. y

v1 v2

1 21

s1 s0 s2

⊤,⊥ ⊤,⊥
⊤⊥

Figure 2 On top, a Büchi game that is not determined when tie-breaking is determined according
to the transducer on the bottom, where the letters > and ⊥ respectively represent “tie” and “no tie”.

We proceed to describe our positive results. For transducer-based tie-breaking, we identify
a necessary and sufficient condition for determinacy: when the transducer is un-aware of the
occurrence of ties, bidding games are determined. The second tie-breaking mechanism for
which we show determinacy is random tie-breaking: a tie is resolved by tossing a coin that
determines the winner of the bidding. Finally, a tie-breaking mechanism that was introduced
in [20] is advantage based, except that when a tie occurs, the player with the advantage can
choose between (1) winning the bidding and passing the advantage to the other player, or
(2) allowing the other player to win the bidding and keeping the advantage. Determinacy for
reachability games with this tie-breaking mechanism was shown in [20]. The technique that
is used there cannot be extended to the other tie-breaking mechanisms we study. We show
an alternative proof for advantage-based tie-breaking and extend the determinacy result for
richer objectives beyond reachability.

M. Aghajohari, G. Avni, and T. A. Henzinger 20:5

We obtain our positive results by developing a unified proof technique to reason about
bidding games, which we call local determinacy. Intuitively, a concurrent game is locally
determined if from each vertex, there is a player who can reveal his action before the other
player. We show that locally-determined reachability games are determined and then extend
to Müller games, which are richer qualitative games. We expect our technique to extend to
show determinacy in other fragments of concurrent games unlike the technique in [20], which
is tailored for bidding games.

Determinacy has computational complexity implications; namely, finding the winner in a
bidding game with objective α when the budgets are given in unary is as hard as solving
a turn-based game with objective α, and we show a simple reduction in the other way for
bidding games. Finally, we establish results for strongly-connected discrete-bidding games.

Due to lack of space, some proofs appear in the full version.

2 Preliminaries

2.1 Concurrent and turn-based games
A concurrent game is a two-player game that is played by placing a token on a graph. In
each turn, both players simultaneously select actions, and the next vertex the token moves
to is determined according to their choices. The players thus produce an infinite path π in
the graph. A game is accompanied by an objective for Player 1, who wins iff π meets his
objective. We specify standard objectives in games later in the section. For i ∈ {1, 2}, we
use −i to refer to the other player, namely −i = 3− i

Formally, a concurrent game is played on an arena 〈A, V, λ, δ〉, where A is a finite set of
actions, V is a finite set of vertices, the function λ : V × {1, 2} → 2A \ ∅ specifies the allowed
actions for Player i in vertex v, and δ : V ×A×A→ V specifies, given the current vertex
and a choice of actions for the two players, the next vertex the token moves to. We call
u ∈ V a neighbor of v ∈ V if there is a1, a2 ∈ A with u = δ(v, a1, a2). We say that Player i
controls a vertex v ∈ V if his actions uniquely determine where the token proceeds to from
v. That is, for every a ∈ λ(v, i) there is a vertex u such that, for every allowed action a′ of
Player −i, we have δ(v, a, a′) = u. A turn-based game is a special case of a concurrent game
in which each vertex is controlled by one of the players.

2.2 Bidding games
A (discrete) bidding game is a special case of a concurrent game. The game is played on a
graph and both players have budgets. In each turn, a bidding takes place to determine which
player gets to move the token. Formally, a bidding game is played on an arena 〈V,E,N,M〉,
where V is a set of vertices, E ⊆ (V × V) is a set of edges, N ∈ IN represents the total
budget, and the tie-breaking mechanism isM on which we elaborate below.

We formalize the semantics of a bidding game 〈V,E,N,M〉 by means of a concurrent game
〈A, V ′, λ, δ〉. Let B1, B2 ∈ {0, . . . , N} with B1 +B2 = N and v ∈ V . A configuration vertex
of the form 〈v,B1, B2, s〉, represents a configuration of the bidding game in which the token
is placed on v, Player 1’s budget is B1, Player 2’s budget is B2, and s represents the state
of the tie-breaking mechanism. The allowed actions in a configuration vertex 〈v,B1, B2, s〉
are {0, . . . , B1} for Player 1 and {0, . . . , B2} for Player 2. For bids b1, b2 ∈ {0, . . . , N}, the
neighbor of a configuration vertex c = 〈v,B1, B2, s〉 is an intermediate vertex 〈c, b1, b2〉. If
b1 > b2, then Player 1 wins the bidding and chooses the next vertex the token proceeds to. In

CONCUR 2019

20:6 Determinacy in Discrete-Bidding Infinite-Duration Games

this case, Player 1 controls 〈c, b1, b2〉 and its neighbors are configuration vertices of the form
〈v′, B1 − b1, B2 + b1, s

′〉, where v′ ∈ V with 〈v, v′〉 ∈ E and s′ is the updated tie-breaking
state. The case where Player 2 wins the bidding, i.e., b1 < b2, is dual.

We proceed to the case of ties and describe three types of tie-breaking mechanisms.
Transducer-based: A transducer is T = 〈Σ, Q, q0,∆,Γ〉, where Σ is a set of letters, Q
is a set of states, q0 ∈ Q is an initial state, ∆ : Q× Σ→ Q is a deterministic transition
function, and Γ : Q→ {1, 2} is a labeling of the states. Intuitively, T is run in parallel
to the bidding game and its state is updated according to the outcomes of the biddings.
Whenever a tie occurs and T is in state s ∈ Q, the winner of the bidding is Γ(s). The
information according to which tie-breaking is determined is represented by the alphabet
of T . In general, the information can include the vertex on which the token is located
and the result of the previous bidding, i.e., the winner, whether or not a tie occurred,
and the winning bid, thus Σ = V × {1, 2} × {⊥,>} × IN.
Random-based: A tie is resolved by choosing the winner uniformly at random.
Advantage-based: Exactly one player holds the advantage. Suppose Player i holds the
advantage and a tie occurs. Then Player i chooses who wins the bidding. If he calls the
other player the winner, Player i keeps the advantage, and if he calls himself the winner,
the advantage switches to the other player.

Formally, consider a configuration c = 〈v,B1, B2, s〉 and an intermediate vertex 〈c, b1, b2〉.
In the transducer-based mechanism, the state s is a state in the transducer T . If b1 6= b2, the
player who controls 〈v, b1, b2〉 is determined as in the above. In case b1 = b2, then Player Γ(s)
controls the vertex. In both cases, we update the state of the tie-breaking mechanism by
feeding it the information on the last bidding; who won, whether a tie occurred, and what
vertex the winner chose, thus we set s′ = ∆(s, σ), where σ = 〈v′, i,⊥, bi〉 in case Player i wins
the bidding with his bid of bi, moves to v′, and no tie occurs. The other cases are similar.

In random-based tie-breaking, the mechanism has no state, thus we can completely
omit s. Consider an intermediate vertex 〈c, b1, b2〉. The case of b1 6= b2 is as in the above.
Suppose both players bid b. The intermediate vertex 〈c, b, b〉 is controlled by “Nature”. It
has two probabilistic outgoing transitions; one transition leads to the intermediate vertex
〈c, b, b − 1〉, which represents Player 1 winning the bidding with a bid of b, and the other
to the intermediate vertex 〈c, b− 1, b〉, which represents Player 2 winning the bidding with
a bid of b. We elaborate on the semantics of concurrent games with probabilistic edges
in Section 5.

Finally, in advantage-based tie-breaking, the state of the mechanism represents which
player has the advantage, thus s ∈ {1, 2}. Consider an intermediate vertex 〈c, b1, b2〉. When
a tie does not occur, there is no need to update s. When b1 = b2, then Player s controls
〈c, b1, b2〉 and the possibility to choose who wins the bidding. Choosing to lose the bidding
is modelled by no update to s and moving to an intermediate vertex that is controlled by
Player −s from which he chooses a successor vertex and the budgets are updated accordingly.
When Player s chooses to win the bidding we proceed directly to the next configuration
vertex, update the budgets, and the mechanism’s state to 3− s.

2.3 Strategies, plays, and objectives
A strategy is, intuitively, a recipe that dictates the actions that a player chooses in a game.
Formally, a finite history of a concurrent game is a sequence 〈v0, a

1
0, a

2
0〉, . . . , 〈vn−1, a

1
n−1,

a2
n−1〉, vn ∈ (V ×A×A)∗ · V such that, for each 0 ≤ i < n, we have vi+1 = δ(vi, a1

i , a
2
i). A

strategy is a function from (V ×A×A)∗ ·V to A. We restrict attention to legal strategies that

M. Aghajohari, G. Avni, and T. A. Henzinger 20:7

assign only allowed actions, thus for every history π ∈ (V ×A×A)∗ ·V that ends in v ∈ V , a
legal strategy σi for Player i has σi(π) ∈ λ(v, i). Two strategies σ1 and σ2 for the two players
and an initial vertex v0, determine a unique play, denoted play(v0, σ1, σ2) ∈ (V ×A×A)ω,
which is defined as follows. The first element of play(v0, σ1, σ2) is 〈v0, σ1(v0), σ2(v0)〉. For
i ≥ 1, let πi denote the prefix of length i of play(v0, σ1, σ2) and suppose its last element is
〈vi, a1

i , a
2
i 〉. We define vi+1 = δ(vi, ai1, ai2), ai+1

1 = σ1(πi · vi+1), and ai+1
2 = σ2(πi · vi+1). The

path that corresponds to play(v0, σ1, σ2) is v0, v1,
An objective for Player 1 is a subset on infinite paths α ⊆ V ω. We say that Player 1 wins

play(v0, σ1, σ2) iff the path π that corresponds to play(v0, σ1, σ2) satisfies the objective, i.e.,
π ∈ α. Let inf(π) ⊆ V be the subset of vertices that π visits infinitely often. We consider
the following objectives.

Reachability: A game is equipped with a target set T ⊆ V . A play π is winning for
Player 1, the reachability player, iff it visits T .
Büchi: A game is equipped with a set T ⊆ V of accepting vertices. A play π is winning
for Player 1 iff it visits T infinitely often.
Parity: A game is equipped with a function p : V → {1, . . . , d}, for d ∈ IN. A play π is
winning for Player 1 iff maxv∈inf(π) p(v) is odd.
Müller: A game is equipped with a set T ⊆ 2V . A play π is winning for Player 1 iff
inf(π) ∈ T .

3 A Framework for Proving Determinacy

3.1 Determinacy
Determinacy is a strong property of games, which intuitively says that exactly one player has
a winning strategy. That is, the winner can reveal his strategy before the other player, and the
loser, knowing how the winner plays, still loses. Formally, a strategy σi is a winning strategy
for Player i at vertex v iff for every strategy σ−i for Player −i, Player i wins play(v, σ1, σ2).
We say that a game 〈V,E, α〉 is determined if from every vertex v ∈ V either Player 1 has a
winning strategy from v or Player 2 has a winning strategy from v.

While concurrent games are not determined (e.g., “matching pennies”), turn-based games
are largely determined.

I Theorem 3 ([28]). Turn-based games with objectives that are Borel sets are determined.
In particular, turn-based Müller games are determined.

We describe an alternative definition for determinacy in concurrent games. Consider a
concurrent game G = 〈A, V, λ, δ, α〉. Recall that in G, in each turn, the players simultaneously
select an action, and their joint actions determine where the token moves to. For i ∈ {1, 2},
let Gi be the turn-based game that, assuming the token is placed on a vertex v, Player i
selects an action first, then Player −i selects an action, and the token proceeds from v as in G
given the two actions. Formally, the game G1 is a turn-based game 〈A, V ∪ (V ×A), λ′, δ′, α′〉,
and the definition for G2 is dual. The vertices that are controlled by Player 1 are V1 = V and
V2 = V ×A. For v ∈ V , we have λ′(v, 1) = λ(v, 1) and since Player 1 controls v, we arbitrarily
fix λ′(v, 2) = A. For a1 ∈ λ(v, 1) and a2 ∈ A, we define δ(v, a1, a2) = 〈v, a1〉. Similarly, we
define λ′(〈v, a1〉, 1) = A and λ′(〈v, a1〉, 2) = λ(v, 2). For a′1 ∈ A and a2 ∈ λ(v, 2), we define
δ′(〈v, a1〉, a′1, a2) = δ(v, a1, a2). Finally, an infinite play v1, 〈v1, a1〉, v2, 〈v2, a2〉, . . . , is in α′
iff v1, v2, . . . is in α. Recall that in bidding games, intermediate vertices are controlled by
one player and the only concurrent moves occur when revealing bids. Thus, when G is a
bidding game, in Gi, Player i always reveals his bids before Player −i.

CONCUR 2019

20:8 Determinacy in Discrete-Bidding Infinite-Duration Games

I Proposition 4. A strategy σi is winning for Player i in G at vertex v iff it is winning in
Gi from v. Then, G is determined at v iff either Player 1 wins in G1 from v or Player 2 wins
in G2 from v.

3.2 Local and global determinacy
We define local determinacy in a fragment of concurrent games, which slightly generalizes
bidding games. Consider a transducer R = 〈A×A,Q, q0,∆,Γ〉, where ∆ : Q×A×A→ Q

is a partial function. We assume that for each state q ∈ Q and i ∈ {1, 2}, there is a set of
allowed actions for each player, given by λR : Q× {1, 2} → 2A \ {∅}. For each a1 ∈ λR(q, 1)
and a2 ∈ λR(q, 2) we require that ∆(q, a1, a2) is defined. Recall that Γ : Q→ {1, 2}.

We say that a concurrent game G = 〈A, V, λ, δ〉 with objective α is R-concurrent if (1)
the set of vertices V are partitioned into configuration vertices C and intermediate vertices
I, (2) intermediate vertices do not contribute to the objective, thus for two plays π and π′
that differ only in their intermediate vertices, we have π ∈ α iff π′ ∈ α, (3) the neighbors
of configuration vertices are intermediate vertices and the transition function restricted to
configuration vertices is one-to-one, i.e., for every configuration vertex c and two pairs of
actions 〈a1, a2〉 6= 〈a′1, a′2〉, we have δ(c, a1, a2) 6= δ(c, a′1, a′2), (4) each intermediate vertex is
controlled by one player and its neighbors can either be all intermediate or all configuration
vertices, (5) for v, v′ ∈ V such that N(v), N(v′) ⊆ I, we have N(v) ∩ N(v′) = ∅, (6) each
vertex in V is associated with a state in R with the following restrictions. Suppose c ∈ C
is associated with q ∈ Q. Then, λ(v, i) = λR(q, i), for i ∈ {1, 2}. The transducer updates
its state after concurrent moves in configuration vertices; namely, for a configuration vertex
c and two actions a1, a2 ∈ A, let u = δ(c, a1, a2) be an intermediate vertex. Then, the
state that is associated with u is q′ = ∆(q, a1, a2) and u is controlled by Player Γ(q′). The
transducer also updates its state between intermediate states; namely, if u′ ∈ I is a neighbor
of u and assume Player 1 controls u and chooses action a1 to proceed from u to u′, then
u′ is associated with ∆(q′, a1, a2), for all a2 ∈ A, and similarly for Player 2. Finally, the
transducer does not update its state when proceeding from an intermediate vertex to a
configuration one; namely, if c′ ∈ C is a neighbor of u ∈ I and u is associated with q ∈ Q,
then c′ is associated with q.

Each bidding game with transducer- and advantage-based tie-breaking is R-concurrent.
Indeed, suppose the sum of budgets is N ∈ IN in the bidding game. Then, the states of the
transducer model the players’ budget and the state of the tie-breaking mechanism. Thus,
each state of the transducer is a triple 〈B1, B2, s〉 such that B1 +B2 = N . The set of allowed
actions in a state 〈B1, B2, s〉 are the allowed bids, thus λR(〈B1, B2, s〉, i) = {0, . . . , Bi}, for
i ∈ {1, 2}. Following a bidding in a configuration vertex, the intermediate vertex is obtained
similarly to bidding games; namely, the budgets are updated by reducing the winning bid
from the winner’s budget and adding it to the loser’s budget, and the state of the tie-breaking
mechanism is updated. With transducer-based tie-breaking, we need only one intermediate
vertex between two configuration vertices since we use the information from the bidding
to update the state of the tie-breaking transducer. In advantage-based tie-breaking, when
no tie occurs, a single intermediate vertex is needed since there is no update to the state
of the tie-breaking mechanism. In case of a tie, however, a second intermediate vertex is
needed in order to allow the player who holds the advantage, the chance to decide whether
or not to use it.

We describe the intuition for local determinacy. Consider a concurrent game G and a
vertex v. Recall that it is generally not the case that G is determined. That is, it is possible
that neither Player 1 nor Player 2 have a winning strategy from v. Suppose Player 1 has no

M. Aghajohari, G. Avni, and T. A. Henzinger 20:9

winning strategy. We say that a transducer admits local determinacy if in every vertex v
that is not winning for Player 1, there is a Player 2 action that he can reveal before Player 1
and stay in a non-losing vertex. Formally, we have the following.

I Definition 5 (Local determinacy). We say that a transducer R admits local determinacy if
every concurrent game G with Borel objective that is R-concurrent has the following property.
Consider the turn-based game G1 in which Player 1 reveals his action first in each position.
Since α is Borel, it is a determined game and there is a partition of the vertices to losing and
winning vertices for Player 1. Then, for every vertex v ∈ V that is losing for Player 1 in G1,
there is a Player 2 action a2 such that, for every Player 1 action a1, the vertex δ(v, a1, a2) is
losing for Player 1 in G1.

We show that locally-determined games are determined by starting with reachability
objectives and working our way up to Müller objectives.

I Lemma 6. If a reachability game G is R-concurrent for a locally-determined transducer
R, then G is determined.

Proof. Consider a concurrent reachability game G = 〈A, V, λ, δ, α〉 and a vertex v ∈ V from
which Player 1 does not have a winning strategy. That is, v is losing for Player 1 in G1.
We describe a winning strategy for Player 2 from v in G. Player 2’s strategy maintains the
invariant that the set of vertices S that are visited along the play in G, are losing for Player 1
in G1. Recall that since we assume intermediate vertices do not contribute to the objective,
the target of Player 1 is a configuration vertex. The invariant implies that Player 2 wins
since there is no intersection between S and Player 1’s target, and thus the target is never
reached. Initially, the invariant holds by the assumption that v is losing for Player 1 in G1.
Suppose the token is placed on a vertex u in G. Local determinacy implies that Player 2 can
choose an action a2 that guarantees that no matter how Player 1 chooses, the game reaches
a losing vertex for Player 1 in G1. Thus, the invariant is maintained, and we are done. J

Next, we show determinacy in parity games by reducing them to reachability games. The
reduction relies on a well-known concept that is called cycle-forming game (see for example
[3]) in which we terminate the parity game once a cycle is formed. Given a parity game P
and a vertex v in P , for i ∈ {1, 2}, by definition, Player i wins in P from v iff he wins from v

in Pi, in which he reveals his bids first. Memoryless determinacy of turn-based parity games
[21] implies that Player 1 wins from v in Pi iff he wins from v in the cycle-forming game
CFG(Pi, v). By applying the cycle-forming game construction directly to an R-concurrent
game P , we obtain a reachability game CFG(P, v) that is R-concurrent, which, by Lemma 6
is determined. It is technical to show that Player i wins from v in CFG(Pi, v) iff he wins
from v in CFG(P, v)i. Thus, if Player 1 does not win from v in P, Player 2 wins from v.
The details of the proof of the following lemma can be found in the full version.

I Lemma 7. If a parity game P is R-concurrent for a locally-determined transducer R, then
P is determined.

The proof for Müller objectives is similar only that we replace the cycle-forming game
reduction with a reduction from Müller games to parity games [23, Chapter 2].

I Theorem 8. If a Müller game G is R-concurrent for a locally-determined transducer R,
then G is determined.

CONCUR 2019

20:10 Determinacy in Discrete-Bidding Infinite-Duration Games

3.3 The bidding matrix
Consider a bidding game G = 〈V,E,N,M, α〉. Recall that G is R-concurrent, where a
configuration vertex is of the form c = 〈v,B1, B2, s〉. The set of allowed actions in c for
Player i is {0, . . . , Bi}, for i ∈ {1, 2}. In particular, there is a natural order on the actions. We
think of the possible pairs of actions available in c as a matrix Mc, which we call the bidding
matrix. Rows in Mc correspond to Player 1 bids and columns corresponds to Player 2 bids.
The diagonal that starts in the top-left corner of Mc and follows entries of the form 〈j, j〉, for
0 ≤ j ≤ min{B1, B2}, corresponds to biddings that resolve in a tie. Entries above and below
it correspond to biddings that are winning for Player 2 and Player 1, respectively. Consider
the turn-based game G1 in which Player 1 reveals his bid first. We consider objectives for
which turn-based games are determined, thus in G1, the vertex 〈c, b1, b2〉 is either winning for
Player 1 or Player 2. The entries inMc are in {1, 2}, whereMc(b1, b2) = 1 iff the intermediate
vertex 〈c, b1, b2〉 is winning for Player 1 in G1.

For i ∈ {1, 2}, we call a row or column in Mc an i-row or i-column, respectively, if all
its entries are i. We rephrase local determinacy in bidding games in terms of the bidding
matrix, and it is not hard to show that the following definition implies Definition 5.

I Definition 9. Consider a bidding game G = 〈V,E,N,M, α〉. We say that G is locally
determined if for every configuration vertex c, the bidding matrix either has a 2-column or a
1-row.

4 Transducer-based tie-breaking

The determinacy of bidding games with transducer-based tie-breaking depends on the
information that is available to the transducer. We start with a negative result.

I Theorem 10. Reachability bidding games with alternate tie-breaking are not determined.

Proof. Consider the bidding reachability game that is depicted in Fig. 1. We show that no
player has a winning strategy when the game starts from the configuration 〈v0, 1, 1∗〉, thus
the token is placed on v0, both budgets equal 1, and Player 2 has the tie-breaking advantage.
The proof that Player 2 has no winning strategy is shown in Example 1. We show that
Player 1 has no winning strategy, thus if he reveals his first bid before Player 2, then Player 2
wins the game. In Fig. 3, we depict most of the relevant configurations in the game with
Player 2’s strategy in place, and it is not hard to verify that Player 2 can force the game to
avoid t. J

v1, 1
∗
, 1 v2, 1, 1

∗

0, 0

0, 0

v1, 2
∗
, 0 v2, 2, 0

∗

0, 0

0, 0

v1, 0
∗
, 2 v2, 0, 2

∗

0, 0

0, 0

v0, 1, 1
∗

0, 0

1, 1

1, 0

v0, 0, 2
∗

0, 0
1, 0

v2, 1
∗
, 1

1, 0

Figure 3 Configurations in the game that is depicted in Fig. 1.

We proceed to prove our positive results, namely that bidding games are determined
when the information according to which tie-breaking is determined does not include the
occurrence of ties. Formally, we define a subclass of tie-breaking transducers.

M. Aghajohari, G. Avni, and T. A. Henzinger 20:11

I Definition 11. A transducer is un-aware of ties when its alphabet is V ×{1, 2}× IN, where
a letter 〈v, i, b〉 ∈ V × {1, 2} × IN means that the token is placed on v and Player i wins the
bidding with his bid of b.

We start with the following lemma, whose proof can be found in the full version, that
applies to any tie-breaking mechanism. Recall that rows represent Player 1 bids, columns
represent Player 2 bids, entries on the top-left to bottom-right diagonal represent ties in the
bidding, entries above it represent Player 2 wins, and entries below represent Player 1 wins.

I Lemma 12. Consider a bidding game G with some tie-breaking mechanism T and consider
a configuration c = 〈v,B1, B2, s〉. Entries in Mc in a column above the diagonal are all equal,
thus for bids b2 > b1, b

′
1, the entries 〈b1, b2〉 and 〈b′1, b2〉 in Mc are equal. Also, the entries in

a row to the left of the diagonal are equal, thus for bids b1 > b2, b
′
2, the entries 〈b1, b2〉 and

〈b1, b
′
2〉 in Mc are equal.

The next lemma, whose proof can be found in the full version, relates an entry on the
diagonal with its neighbors.

I Lemma 13. Consider a bidding game G, where tie-breaking is resolved according to a
transducer T that is un-aware of ties. Consider a configuration c = 〈v,B1, B2, s〉. Let b ∈ IN.
If Γ(s) = 1, i.e., Player 1 wins ties in c, then the entries 〈b, b〉 and 〈b, b− 1〉 in Mc are equal.
Dually, if Γ(s) = 2, then the entries 〈b, b〉 and 〈b− 1, b〉 in Mc are equal.

We continue to prove our positive results.

I Theorem 14. Consider a tie-breaking transducer T that is un-aware of ties. Then, a
Müller bidding game that resolves ties using T is determined.

Proof. We show that transducers that are not aware of ties admit local determinacy, and
the theorem follows from Theorem 8. See a depiction of the proof in Figure 4.

Consider a bidding game 〈V,E, α,N, T 〉, where T is un-aware of ties, and consider a
configuration vertex c = 〈v,B1, B2, s〉. We show that Mc either has a 1-row or a 2-column.
We prove for Γ(s) = 1 and the proof for Γ(s) = 2 is similar. Let B = min{B1, B2}. When
B2 > B1, the matrix Mc is a rectangle. Still the diagonal of interest models biddings that
result in ties and it starts from the top right corner of Mc. The columns B+ 1, . . . , B2 do not
intersect this diagonal. By Lemma 12, the entries in each one of these columns are all equal.
We assume all the entries are 1 as otherwise we find a 2-column. Similarly, if B1 > B2, we
assume that the entries in the rows B + 1, . . . , B1 below the diagonal are all 2, otherwise we
find a 1-row.

We restrict attention to the B ×B top-left sub-matrix of Mc. Consider the B-th row in
Mc. By Lemma 12, entries in this row that are below the diagonal are all equal, and, since
Γ(s) = 1, they also equal the entry on the diagonal. If all entries equal 1, then together with
the assumption above that entries to the right of the diagonal are all 1, we find a 1-row.
Thus, we assume all entries below and on the diagonal in the B-th row all equal 2. Now,
consider the B-th column. By Lemma 12, the entries above the diagonal are all equal. If
they all equal 2, together with the entry 〈B,B〉 on the diagonal and the entries below it,
which we assume are all 2, we find a 2-column. Thus, we assume the entries in the B-th
column above the diagonal are all 1. Next, consider the (B − 1)-row. Similarly, the elements
on and to the left of the diagonal are all equal, and if they equal 1, we find a 1-row, thus we
assume they are all 2. We continue in a similar manner until the entry 〈1, 1〉. If it is 1, we
find a 1-column and if it is 2, we find a 2-row, and we are done. J

CONCUR 2019

20:12 Determinacy in Discrete-Bidding Infinite-Duration Games

We conclude this section by relating the computational complexity of bidding games with
turn-based games. Let TBα be the class of turn-based games with a qualitative objective
α. Let BIDα,trans be the class of bidding games with transducer-based tie-breaking and
objective α. The problem TB-WINα gets a game G ∈ TBα and a vertex v in G, and the goal
is to decide whether Player 1 can win from v. Similarly, the problem BID-WINα,trans gets
as input a game G ∈ BIDα,trans with budgets expressed in unary and a configuration c in
G, and the goal is to decide whether Player 1 can win from c. The proof of the following
theorem can be found in the full version.

I Theorem 15. For a qualitative objective α, the complexity of TB-WINα and BID-
WINα,trans coincide.

5 Random-Based Tie Breaking

In this section we show that bidding games with random-based tie-breaking are determined.
A stochastic concurrent game is G = 〈A, V, λ, δ, α〉 is the same as a concurrent game only
that the transition function is stochastic, thus given v ∈ V and a1, a2 ∈ A, the transition
function δ(v, a1, a2) is a probability distribution over V . Two strategies σ1 and σ2 give rise
to a probability distribution D(σ1, σ2) over infinite plays.

Traditionally, determinacy in stochastic concurrent games states that each vertex is
associated with a value, which is the probability that Player 1 wins under optimal play [27].
The value is obtained, however, when the players are allowed to use probabilistic strategies.
We show a stronger form of determinacy in bidding games; namely, we show that the value
exists even when the players are restricted to use deterministic strategies.

I Definition 16 (Determinacy in stochastic games). Consider a stochastic concurrent game
G and a vertex v ∈ V . Let P1 and P2 denote the set of pure strategies for Players 1
and 2, respectively. For i ∈ {1, 2}, the value for Player i, denoted vali(G, v), is intuit-
ively obtained when he reveals his strategy before the other player. We define val1(G, v) =
supσ1∈P1 infσ2∈P2 Prπ∼D(σ1,σ2)[π ∈ α] and val2(G, v) = infσ2∈P2 supσ1∈P1 Prπ∼D(σ1,σ2)[π ∈
α]. We say that G is determined in v if val1(G, v) = val2(G, v) in which case we denote the
value by val(G, v). We say that G is determined if it is determined in all vertices.

The key idea in the proof shows determinacy for reachability games that are played on
directed acyclic graphs (DAGs, for short). The following lemma, whose proof can be found
in the full version, shows that the proof for DAGs implies the general case by formalizing a
standard “unwinding” argument (see for example Theorem 3.7 in [20]).

I Lemma 17. Determinacy of reachability bidding games that are played on DAGs implies
determinacy of general reachability bidding games.

We continue to show determinacy in bidding games on DAGs.

I Lemma 18. Reachability bidding games with random-based tie-breaking that are played on
DAGs are determined.

Proof. Consider a reachability game G that is played on a DAG with two distinguished
vertices t1 and t2, which are sinks. There are no other cycles in G, thus all plays end either in
t1 or t2, and, for i ∈ {1, 2}, Player i wins iff the game ends in ti. The height of G is the length
of the longest path from some vertex to either t1 or t2. We prove that G is determined by
induction on its height. For a height of 0, the claim clearly holds since for every B1, B2 ∈ IN,
the value in t1 is 1 and the value in t2 is 0. Suppose the claim holds for games of heights of
at most n− 1 and we prove for games of height n.

M. Aghajohari, G. Avni, and T. A. Henzinger 20:13

2 2= =

1

=

B

=

1

1

1

=
=

1

=

1

1

1

=
=

22

1

=

1

1

=

2 2= =2

1

=

12=2

1?

Figure 4 A depiction of the contra-
diction in Theorem 14 with B2 > B1.

v0,0

=

≤v0,1

v1,0
v1,0 + v0,1

2

v0,2

v1,2

v1,2 + v2,1
2

v2,0 v2,1

≤

=

v3,0 v3,1 v3,2

≤ ≤

= = v3,2 + v2,3
2

v0,3

v1,3

v2,3

=
=

≤

≤

Pl
ay

er
 1

 w
in

s

Player 2 wins

Figure 5 Observations on the matrix Mc when
resolving ties randomly.

Consider a configuration vertex c = 〈v,B1, B2〉 of height n. Let c′ be a configuration
vertex that, skipping intermediate vertices, is a neighbor of c. Then, the height of c′ is less
than n and by the induction hypothesis, its value is well defined. It follows that the value
of the intermediate vertices following c are also well-defined: if the intermediate vertex is
controlled by Player 1 or Player 2, the value is respectively the maximum or minimum of its
neighbors, and if it is controlled by Nature, the value is the average of its two neighbors.

We claim that G is determined in c by showing that one of the players has a (weakly)
dominant bid from c, where a bid b1 dominates a bid b′1 if, intuitively, Player 1 always prefers
bidding b1 over b′1. It is convenient to consider a variant of the bidding matrix Mc of c, which
is a (B1 + 1)× (B2 + 1) matrix with entries in [0, 1], where an entry Mc(b1, b2) represents
the value of the intermediate vertex 〈c, b1, b2〉. Note that Player 1, the reachability player,
aims to maximize the value while Player 2 aims to minimize it. Some properties of Mc are
depicted in Fig. 5 and are formalized in the full version.

Consider the bids 0 and 1 for the two players. We claim that there is a player for which
either 0 weakly dominates 1 or vice versa. Assume towards contradiction that this is not the
case. Consider the 2×2 top-left sub-matrix ofMc and denote its values v0,0, v0,1, v1,0, and v1,1.
Since v1,1 is the average of v0,1 and v1,0, we either have v0,1 ≤ v1,1 ≤ v1,0 or v0,1 ≥ v1,1 ≥ v1,0.
Suppose w.l.o.g. that the first holds, thus v0,1 ≤ v1,0. Note that v0,0 < v0,1, since otherwise
the bid 1 dominates 0 for Player 2. Also, we have v0,0 > v1,0, since otherwise 0 dominates 1
for Player 1. Combining, we have that v0,1 > v1,0, and we reach a contradiction.

In the full version, we show that (1) if row 0 dominates row 1, it dominates every other
row, in which case we can find optimal pure strategies in c, and (2) if row 1 dominates row
0, then column 1 dominates column 0, in which case we can delete the first row and first
column and reason about a smaller game. Two dual properties hold for columns. J

Combining the two theorems above, we obtain the following.

I Theorem 19. Reachability bidding games with random-based tie breaking are determined.

6 Advantage-Based Tie-Breaking

Recall that in advantage-based tie-breaking, one of the players holds the advantage, and
when a tie occurs, he can choose whether to win and pass the advantage to the other player,
or lose the bidding and keep the advantage. Advantage-based tie-breaking was introduced
and studied in [20], where determinacy for reachability games was obtained by showing that
each vertex v in the game has a threshold budget Thresh(v) ∈ (IN × {∗}) such that that
Player 1 wins from v iff his budget is at least Thresh(v), where n∗ ∈ (IN× {∗}) means that

CONCUR 2019

20:14 Determinacy in Discrete-Bidding Infinite-Duration Games

2

2

2

i

i

i − 1

i − 1

i + 1 2

Figure 6 A depiction of the first part
of Lemma 21.

1

1

1

i

i

i − 1

i − 1

i + 1 2

2

Figure 7 A depiction of the second part of
Lemma 21.

Player 1 wins when he starts with a budget of n as well as the advantage. We show that
advantage-based tie-breaking admits local determinacy, thus Müller bidding games with
advantage-based are determined.

Recall that the state of the advantage-based tie-breaking mechanism represents which
player has the advantage, thus it is in {1, 2}.

I Lemma 20 ([20]). Consider a reachability bidding game G with advantage-based tie-breaking.
Holding the advantage is advantageous: For i ∈ {1, 2}, if Player i wins from a configuration
vertex 〈v,B1, B2,−i〉, then he also wins from 〈v,B1, B2, i〉.
The advantage can be replaced by a unit of budget: Suppose Player 1 wins in 〈v,B1, B2, 1〉,
then he also wins in 〈v,B1 + 1, B2 − 1, 2〉. Suppose Player 2 wins in 〈v,B1, B2, 2〉, then
he also wins in 〈v,B1 − 1, B2 + 1, 1〉.

We need two more observation on the bidding matrix, which are depicted in Figs. 6 and 7,
stated in Lemma 21 below, and proven in the full version.

I Lemma 21. Consider a reachability bidding game G with advantage-based tie-breaking.
Consider a configuration c = 〈v,B1, B2, 1〉 in G, where Player 1 has the advantage, and
i ∈ {0, . . . , B1}. If Mc(i − 1, i) = Mc(i, i − 1) = 2, then Mc(i, i) = 2, and if Mc(i, i) = 2,
then Mc(i+ 1, i) = 2. Consider a configuration c = 〈v,B1, B2, 2〉 in G, where Player 2 has
the advantage, and i ∈ {0, . . . , B2}. If Mc(i− 1, i) = Mc(i, i− 1) = 1, then Mc(i, i) = 1, and
if Mc(i, i− 1) = 2, then Mc(i, i) = 2.

In the full version, we combine the lemmas above to show that advantage-based tie-
breaking gives rise to local determinacy and thus obtain the following theorem.

I Theorem 22. Müller bidding games with advantage-based tie-breaking are determined.

We turn to study computational complexity of bidding games. Let BIDα,adv be the class of
bidding games with advantage-based tie-breaking and objective α, and let BID-WINα,adv be
the respective decision problem. Recall that TB-WINα is the decision problem for turn-based
games. The upper bound in the following theorem is implied from determinacy and the lower
bound is similar to Theorem 15 and can be found in the full version.

I Theorem 23. For a qualitative objective α, the complexity of TB-WINα and BID-WINα,adv
coincide.

7 Strongly-Connected Games

Reasoning about strongly-connected games is key to the solution in continuous-bidding
infinite-duration games [7, 8, 10]. It is shown that in a strongly-connected continuous-bidding
game, with every initial positive budget, a player can force the game to visit every vertex

M. Aghajohari, G. Avni, and T. A. Henzinger 20:15

v1 v2 v3

Figure 8 A strongly-connected Büchi game in which Player 1 loses with every initial budget.

infinitely often. It follows that in a strongly-connected Büchi game G with at least one
accepting state, Player 1 wins with every positive initial budget. We show a similar result in
discrete-bidding games in two cases, where the proof can be found in the full version.

I Theorem 24. Consider a strongly-connected bidding game G in which tie-breaking is either
resolved randomly or by a transducer that always prefers Player 1. Then, for every pair of
initial budgets, Player 1 can force visiting every vertex in G infinitely often with probability 1.

In [20], it is roughly stated that, with advantage-based tie-breaking, as the budgets
tend to infinity, the game “behaves” similarly to a continuous-bidding game. We show
that infinite-duration discrete-bidding games can be quite different from their continuous
counterparts; namely, we show a Büchi game G such that under continuous-bidding, Player 1
wins in G with every pair of initial budgets, and under discrete-bidding, Player 1 loses in G
with every pair of initial budgets.

I Theorem 25. There is a strongly-connected Büchi discrete-bidding game with advantage-
based tie-breaking such that Player 1 loses with every pair of initial budgets.

Proof. Suppose the game that is depicted in Fig. 8 starts at vertex v1 with initial budgets
B1 ∈ IN and B2 = 0. Player 2 always bids 0, uses the advantage when he has it, and, upon
winning, stays in v1 and moves from v2 to v1. Note that in order to visit v3, Player 1 needs
to win two biddings in a row; in v1 and v2. Thus, in order to visit v3, he must “invest” a
unit of budget, meaning that the number of visits to v3 is bounded by B1. J

8 Discussion and Future Work

We study discrete-bidding infinite-duration bidding games and identify large fragments of
bidding games that are determined. Bidding games are a subclass of concurrent games. We
are not aware of other subclasses of concurrent games that admit determinacy. We find it an
interesting future direction to extend the determinacy we show here beyond bidding games.
Weaker versions of determinacy in fragments of concurrent games have been previously
studied [37].

We focused on bidding games with “Richman” bidding and it is interesting to study other
bidding games with other bidding rules. Discrete-bidding has previously been studied in
combination with all-pay bidding [30] in which both players pay their bid to the other player.
In addition, it is interesting to study discrete-bidding games with quantitative objectives and
non-zero-sum games, which were previously studied only for continuous bidding [7, 8, 29].

This work belongs to a line of works that transfer concepts and ideas between the areas of
formal verification and algorithmic game theory [33]. Examples of works in the intersection of
the two fields include logics for specifying multi-agent systems [2, 17, 31], studies of equilibria
in games related to synthesis and repair problems [16, 14, 22, 1], non-zero-sum games in
formal verification [18, 13], and applying concepts from formal methods to resource allocation
games such as rich specifications [11], efficient reasoning about very large games [6, 24], and
a dynamic selection of resources [9].

CONCUR 2019

20:16 Determinacy in Discrete-Bidding Infinite-Duration Games

References
1 S. Almagor, G. Avni, and O. Kupferman. Repairing Multi-Player Games. In Proc. 26th

CONCUR, pages 325–339, 2015.
2 R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic. J. ACM,

49(5):672–713, 2002.
3 B. Aminof and S. Rubin. First-cycle games. Inf. Comput., 254:195–216, 2017.
4 K.R. Apt and E. Grädel. Lectures in Game Theory for Computer Scientists. Cambridge

University Press, 2011.
5 N. Atzei, M. Bartoletti, and T. Cimoli. A survey of attacks on Ethereum smart contracts.

IACR Cryptology ePrint Archive, 2016:1007, 2016.
6 G. Avni, S. Guha, and O. Kupferman. An Abstraction-Refinement Methodology for Reasoning

about Network Games. Games, 9(3), 2018.
7 G. Avni, T. A. Henzinger, and V. Chonev. Infinite-Duration Bidding Games. In Proc. 28th

CONCUR, volume 85 of LIPIcs, pages 21:1–21:18, 2017.
8 G. Avni, T. A. Henzinger, and R. Ibsen-Jensen. Infinite-Duration Poorman-Bidding Games.

In Proc. 14th WINE, volume 11316 of LNCS, pages 21–36. Springer, 2018.
9 G. Avni, T. A. Henzinger, and O. Kupferman. Dynamic Resource Allocation Games. In Proc.

9th SAGT, pages 153–166, 2016.
10 G. Avni, T. A. Henzinger, and Ð. Žikelić. Bidding Mechanisms in Graph Games. In In Proc.

44th MFCS, 2019.
11 G. Avni, O. Kupferman, and T. Tamir. Network-formation games with regular objectives. Inf.

Comput., 251:165–178, 2016.
12 J. Bhatt and S. Payne. Bidding Chess. Math. Intelligencer, 31:37–39, 2009.
13 T. Brihaye, V. Bruyère, J. De Pril, and H. Gimbert. On Subgame Perfection in Quantitative

Reachability Games. Logical Methods in Computer Science, 9(1), 2012.
14 K. Chatterjee. Nash Equilibrium for Upward-Closed Objectives. In Proc. 15th CSL, volume

4207, pages 271–286. Springer, 2006.
15 K. Chatterjee, A. K. Goharshady, and Y. Velner. Quantitative Analysis of Smart Contracts.

In Proc. 27th ESOP, pages 739–767, 2018.
16 K. Chatterjee, T. A. Henzinger, and M. Jurdzinski. Games with secure equilibria. Theor.

Comput. Sci., 365(1-2):67–82, 2006.
17 K. Chatterjee, T. A. Henzinger, and N. Piterman. Strategy logic. Inf. Comput., 208(6):677–693,

2010.
18 K. Chatterjee, R. Majumdar, and M. Jurdzinski. On Nash Equilibria in Stochastic Games. In

Proc. 13th CSL, pages 26–40, 2004.
19 A. Condon. On Algorithms for Simple Stochastic Games. In Proc. DIMACS, pages 51–72,

1990.
20 M. Develin and S. Payne. Discrete Bidding Games. The Electronic Journal of Combinatorics,

17(1):R85, 2010.
21 E.A. Emerson and C. Jutla. Tree Automata, µ-Calculus and Determinacy. In Proc. 32nd

FOCS, pages 368–377, 1991.
22 D. Fisman, O. Kupferman, and Y. Lustig. Rational Synthesis. In Proc. 16th TACAS, pages

190–204, 2010.
23 E. Grädel, W. Thomas, and T. Wilke. Automata, Logics, and Infinite Games: A Guide to

Current Research, volume 2500. Springer, 2002.
24 O. Kupferman and T. Tamir. Hierarchical Network Formation Games. In Proc. 23rd TACAS,

pages 229–246, 2017.
25 A. J. Lazarus, D. E. Loeb, J. G. Propp, W. R. Stromquist, and D. H. Ullman. Combinatorial

Games under Auction Play. Games and Economic Behavior, 27(2):229–264, 1999.
26 A. J. Lazarus, D. E. Loeb, J. G. Propp, and D. Ullman. Richman Games. Games of No

Chance, 29:439–449, 1996.
27 D. A. Martin. The Determinacy of Blackwell Games. J. Symb. Log., 63(4):1565–1581, 1998.

M. Aghajohari, G. Avni, and T. A. Henzinger 20:17

28 D.A. Martin. Borel Determinacy. Annals of Mathematics, 65:363–371, 1975.
29 R. Meir, G. Kalai, and M. Tennenholtz. Bidding games and efficient allocations. Games and

Economic Behavior, 2018. doi:10.1016/j.geb.2018.08.005.
30 M. Menz, J. Wang, and J. Xie. Discrete All-Pay Bidding Games. CoRR, abs/1504.02799,

2015. arXiv:1504.02799.
31 F. Mogavero, A. Murano, G. Perelli, and M. Y. Vardi. Reasoning About Strategies: On the

Model-Checking Problem. ACM Trans. Comput. Log., 15(4):34:1–34:47, 2014.
32 S. Muthukrishnan. Ad Exchanges: Research Issues. In Proc. 5th WINE, pages 1–12, 2009.
33 N. Nisan, T. Roughgarden, E. Tardos, and V. Vazirani. Algorithmic Game Theory. Cambridge

University Press, 2007.
34 Y. Peres, O. Schramm, S. Sheffield, and D. B. Wilson. Tug-of-war and the infinity Laplacian.

J. Amer. Math. Soc., 22:167–210, 2009.
35 A. Pnueli and R. Rosner. On the Synthesis of a Reactive Module. In Proc. 16th POPL, pages

179–190, 1989.
36 M.O. Rabin. Decidability of Second Order Theories and Automata on Infinite Trees. Transac-

tion of the AMS, 141:1–35, 1969.
37 S. Le Roux. Concurrent Games and Semi-Random Determinacy. In Proc. 43rd MFCS, pages

40:1–40:15, 2018.

CONCUR 2019

https://doi.org/10.1016/j.geb.2018.08.005
http://arxiv.org/abs/1504.02799

Energy Mean-Payoff Games
Véronique Bruyère
Université de Mons (UMONS), Belgium
veronique.bruyere@umons.ac.be

Quentin Hautem1

Université de Mons (UMONS), Belgium
q.hautem@gmail.com

Mickael Randour2

Université de Mons (F.R.S.-FNRS & UMONS), Belgium
mickael.randour@gmail.com

Jean-François Raskin
Université libre de Bruxelles (ULB), Belgium
jraskin@ulb.ac.be

Abstract
In this paper, we study one-player and two-player energy mean-payoff games. Energy mean-payoff
games are games of infinite duration played on a finite graph with edges labeled by 2-dimensional
weight vectors. The objective of the first player (the protagonist) is to satisfy an energy objective on
the first dimension and a mean-payoff objective on the second dimension. We show that optimal
strategies for the first player may require infinite memory while optimal strategies for the second
player (the antagonist) do not require memory. In the one-player case (where only the first player
has choices), the problem of deciding who is the winner can be solved in polynomial time while
for the two-player case we show co-NP membership and we give effective constructions for the
infinite-memory optimal strategies of the protagonist.

2012 ACM Subject Classification Software and its engineering → Formal methods; Theory of
computation → Logic and verification; Theory of computation → Solution concepts in game theory

Keywords and phrases two-player zero-sum games played on graphs, energy and mean-payoff
objectives, complexity study and construction of optimal strategies

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2019.21

Related Version A full version of the paper is available at [14], https://arxiv.org/pdf/1907.
01359.pdf.

Funding Work partially supported by the PDR project Subgame perfection in graph games (F.R.S.-
FNRS), the grant n°F.4520.18 ManySynth (F.R.S.-FNRS), the ARC project Non-Zero Sum Game
Graphs: Applications to Reactive Synthesis and Beyond (Fédération Wallonie-Bruxelles), the EOS
project Verifying Learning Artificial Intelligence Systems (F.R.S.-FNRS & FWO), and the COST
Action 16228 GAMENET (European Cooperation in Science and Technology).

1 Introduction

Graph games with ω-regular objectives are a canonical mathematical model to formalize
and solve the reactive synthesis problem [33]. Extensions of graph games with quantitative
objectives have been considered more recently as a model where, not only the correctness,

1 supported by a FRIA fellowship
2 F.R.S.-FNRS Research Associate

© Véronique Bruyère, Quentin Hautem, Mickael Randour, and Jean-François Raskin;
licensed under Creative Commons License CC-BY

30th International Conference on Concurrency Theory (CONCUR 2019).
Editors: Wan Fokkink and Rob van Glabbeek; Article No. 21; pp. 21:1–21:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:veronique.bruyere@umons.ac.be
mailto:q.hautem@gmail.com
mailto:mickael.randour@gmail.com
mailto:jraskin@ulb.ac.be
https://doi.org/10.4230/LIPIcs.CONCUR.2019.21
https://arxiv.org/pdf/1907.01359.pdf
https://arxiv.org/pdf/1907.01359.pdf
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 Energy Mean-Payoff Games

but also the quality of solutions for the reactive synthesis problem can be formalized and
optimized. A large effort has been invested in studying games with various kinds of objectives,
see e.g. [5, 12, 15, 19, 21, 22, 25, 35, 36], see also Chapter 27 of [3] and the survey [13].

Two particularly important classes of objectives are mean-payoff and energy objectives.
In a mean-payoff game, the edges of the game graph are labeled with integer weights that
model payoffs received by the first player (the protagonist) and paid by the second player (the
antagonist) when the edge is taken. The game is played for infinitely many rounds, and the
protagonist aims at maximizing the mean value of edges traversed during the game while the
antagonist tries to minimize this mean value. Mean-payoff games have been studied in [25]
where it is shown that memoryless optimal strategies exist for both players. As a corollary
of this result, mean-payoff games can be decided in NP ∩ co-NP. While pseudo-polynomial
time algorithms for solving mean-payoff games have been developed in [12, 36] as well as the
recent pseudo-quasi-polynomial time algorithm in [24], it is a long standing open question
whether or not those games can be solved in polynomial time. Energy games were defined
more recently in [16]. In an energy game, edges are also labeled with integer weights that
represent gains or losses of energy. In such a game, the protagonist tries to build an infinite
path for which the total sum of energy in all the prefixes is bounded from below, while the
antagonist has the opposite goal. Energy games can also be decided in NP ∩ co-NP and it is
known that they are inter-reducible with mean-payoff games [5].

Energy mean-payoff games that combine an energy and a mean-payoff objectives have
not been yet studied. This is the main goal of this paper. It is a challenging problem
for several reasons. First, multi-dimensional homogeneous extensions of mean-payoff and
energy games have been studied in a series of recent contributions [21, 29, 34, 35], and
those works show that when going from one dimension to several, the close relationship
between mean-payoff games and energy games is lost and specific new techniques need to
be designed for solving those extensions. Second, pushdown mean-payoff games have been
studied in [22] and shown to be undecidable. Decision problems for energy mean-payoff
games can be reduced to decision problems of pushdown mean-payoff games, even to the
subclass of pushdown mean-payoff games with a one-letter stack alphabet. Unfortunately,
pushdown mean-payoff games are undecidable in general and to the best of our knowledge
the one-letter stack alphabet case has not been studied.

Main contributions. In this paper, we prove that energy mean-payoff games are decidable.
More precisely, their decision problems lie in co-NP (Theorem 7) for both cases of strict and
non-strict inequality in the threshold constraint for the mean-payoff objective. To obtain
this result, we first study one-player energy mean-payoff games and characterize precisely
the game graphs in which P1 (the protagonist) can build an infinite path that satisfies the
energy mean-payoff objective (Theorem 5 and Theorem 6). This characterization leads to
polynomial time algorithms to solve the decision problems in the one-player case (Theorem 3).
Then we show that in two-player energy mean-payoff games memoryless optimal strategies
always exist for P2 (the antagonist) who aims at spoiling the energy mean-payoff objective of
P1 (Proposition 8). Combined with the polynomial time algorithms for the one-player case,
this result leads to co-NP membership of the decision problems. While the memoryless result
for P2 allows us to understand how this player should play in energy mean-payoff games, it
does not prescribe how P1 should play from winning vertices. To show how to effectively
construct optimal strategies for P1, we consider a reduction to 4-dimensional energy games
in case of strict inequality for mean-payoff objective (Proposition 12). With the result of [29],
this implies the existence of finite-memory strategies for P1 to play optimally and of a

V. Bruyère, Q. Hautem, M. Randour, and J.-F. Raskin 21:3

pseudo-polynomial time algorithm to solve those instances. For non-strict inequalities, this
reduction cannot be applied as, even for the one-player case, infinite-memory strategies are
sometimes necessary to play optimally. In this case, we show how we can combine an infinite
number of finite-memory strategies, that are played in sequence, in order to play optimally
(Proposition 13).

Related work. As already mentioned, multi-dimensional conjunctive extensions of mean-
payoff games and multi-dimensional conjunctive extensions of energy games have been
considered [18, 21, 35]. Deciding the existence of a winning strategy for P1 in those games is
co-NP-complete. Games with any Boolean combination of mean-payoff objectives have been
shown undecidable in [34]. Games with mean-payoff objectives and ω-regular constraints
have been studied in [20], while games with energy objectives and ω-regular constraints have
been studied in [17], and their multi-dimensional extensions in [2, 21, 23].

In [29], the authors have studied multi-dimensional energy games for the fixed initial
credit and provided a pseudo-polynomial time algorithm to solve them when the number
of dimensions is fixed. Energy games with bounds on the energy level have been studied
in [26, 28]. Games with the combination of an energy objective and an average-energy
objective are investigated in [6, 7]. This seemingly related class of games is actually quite
different from the energy mean-payoff games studied in this paper: e.g., they are EXPSPACE-
hard whereas our games are in co-NP. Infinite-state energy games are investigated in [1]
where energy objectives are studied on infinite game structures, induced by one-counter
automata or pushdown automata. Some work on other models dealing with energy have
been studied, as battery edge systems [4] and consumption games [8]. In the latter games,
minimization of running costs have also been investigated [10]. Optimizing the expected
mean-payoff in energy MDP’s have been studied in [11]. In [32], Kucera presents an overview
of results related to games and counter automata, which are close to energy constraints.

We now discuss mean-payoff pushdown games [22] in more details. In those games, a
stack is associated with a finite game structure, and players move from vertex to vertex while
applying operations on the stack. Those operations are push a letter, pop a letter or skip and
can be respectively represented with weights 1, −1 and 0. The authors show that one-player
pushdown games can be solved in polynomial time, thanks to the existence of pumpable paths.
Moreover, already in this case, P1 needs infinite memory to win in mean-payoff pushdown
games. In the two-player setting, determining the winner is undecidable. Doing a straight
reduction of one-player energy mean-payoff games to one-player mean-payoff pushdown games
would lead to a pseudo-polynomial solution, whereas we show here that we can solve the
former games in polynomial time. In addition, we cannot use the concept of pumpable paths
to obtain those results as the construction of [22] is inherent to the behavior of the stack
of mean-payoff pushdown games. Indeed, after one step, the height of the stack can only
change of one unity (+1,−1, 0), whereas in energy mean-payoff games, the energy level can
vary from −W to +W , for an arbitrarily large integer W ∈ N.

Structure of the paper. In Sect. 2, we introduce the necessary notations and preliminaries
to this work. In Sect. 3, we study the one-player energy mean-payoff games. In Sect. 4, we
study the two-player energy mean-payoff games.

CONCUR 2019

21:4 Energy Mean-Payoff Games

2 Preliminaries

In this section, we introduce energy mean-payoff games and the related decision problems
studied in this paper.

Games structures. A game structure is a weighted directed graph G = (V, V1, V2, E, w)
such that V1, V2 form a partition of the finite set V , Vi is the set of vertices controlled by
player Pi , i ∈ {1, 2}, E ⊆ V × V is the set of edges such that for all v ∈ V , there exists
v′ ∈ V such that (v, v′) ∈ E, and w = (w1, w2) : E → Z2 is a weight function that assigns
a pair of weights w(e) = (w1(e), w2(e)) to each edge e ∈ E. In the whole paper, we denote
by |V | the number of vertices of V , by |E| the number of edges of E, and by ||E|| ∈ N0 the
largest absolute value used by the weight function w. We say that a game structure is a
player-i game structure when player Pi controls all the vertices, that is, Vi = V .

A play in G from an initial vertex v0 is an infinite sequence ρ = ρ0ρ1 . . . ρk . . . of vertices
such that ρ0 = v0 and (ρk, ρk+1) ∈ E for all k ≥ 0. A factor of ρ, denoted by ρ[k, `], is the
finite sequence ρkρk+1 . . . ρ`. When k = 0, we say that ρ[0, `] is the prefix of length ` of ρ.
The suffix ρkρk+1 . . . of ρ is denoted by ρ[k,∞]. The set of plays in G is denoted by Plays(G)
or simply Plays. A path or a cycle is simple if there are no two occurrences of the same vertex
(except for the first and last vertices in the cycle). A multicycle C is a multiset of simple
cycles (that may or may not be connected to each other). We extend the weight function w
to paths (resp. cycles, multicycles) as the sum w(π) = (w1(π), w2(π)) of the weights of their
edges. In particular, for a multicycle C, we have w(C) =

∑
π∈C w(π).

Given a path π = π0π1 · · ·πn, we consider its cycle decomposition into a multiset of simple
cycles as follows. We push successively vertices π0, π1, . . . onto a stack. Whenever we push a
vertex π` equal to a vertex πk already in the stack, i.e. a simple cycle C = πk · · ·π` is formed,
we remove this cycle from the stack except πk (we remove all the vertices until reaching πk
that we let in the stack) and add C to the cycle decomposition multiset of π. The cycle
decomposition of a play ρ = ρ0ρ1 . . . is defined similarly.

For each dimension j ∈ {1, 2}, the weight or energy level of the prefix ρ[0, k] of a play ρ is
wj(ρ[0, k]), and the mean-payoff-inf (resp. mean-payoff-sup) of ρ is MPj(ρ) = lim infk→∞ 1

k ·
wj(ρ[0, k]) (resp. MPj(ρ) = lim supk→∞ 1

k · wj(ρ[0, k])). The following properties hold for
both mean-payoff values. First, they are prefix-independent, that is, MPj(πρ) = MPj(ρ) and
MPj(πρ) = MPj(ρ) for all finite paths π. Second for a play ρ = ρ0 . . . ρk−1(ρk . . . ρl)ω that is
eventually periodic, its mean-payoff-inf and mean-payoff-sup values coincide and are both
equal to the average weight of the cycle ρk . . . ρlρk, that is, 1

l−k+1 · wj(ρk . . . ρlρk).

Strategies. Given a game structure G, a strategy σi for player Pi is a function V ∗ · Vi → V

that assigns to each path πv ending in a vertex v ∈ Vi a vertex v′ such that (v, v′) ∈ E.
Such a strategy σi is memoryless if it only depends on the last vertex of the path, i.e.
σi(πv) = σi(π′v) for all πv, π′v ∈ V ∗ · Vi. It is a finite-memory strategy if it can be encoded
by a deterministic Moore machine M = (M,m0, αU , αN) where M is a finite set of states
(the memory of the strategy), m0 ∈M is an initial memory state, αU : M × V →M is an
update function, and αN : M × Vi → V is a next-move function. Such a machine defines a
strategy σi such that σi(πv) = αN (α̂U (m0, π), v) for all paths πv ∈ V ∗ ·Vi, where α̂U extends
αU to paths as expected. The memory size of σi is then the size |M | ofM. In particular σi
is memoryless when it has memory size one.

Given a strategy σi for Pi, a play ρ is consistent with σi if for all its prefixes ρ[0, k] ∈ V ∗ ·Vi,
we have ρk+1 = σi(ρ[0, k]). A finite path π consistent with σi is defined similarly. Given a
finite-memory strategy σi and its Moore machineM, we denote by G(σi) the game structure

V. Bruyère, Q. Hautem, M. Randour, and J.-F. Raskin 21:5

obtained as the product of G withM. Notice that the set of plays from an initial vertex v0
that are consistent with σi is then exactly the set of plays in G(σi) starting from (v0,m0)
where m0 is the initial memory state ofM.

Objectives. Given a game structure G and an initial vertex v0, an objective for player P1
is a set of plays Ω ⊆ Plays(G). Given a strategy σ1 for P1, we say that σ1 is winning for P1
from v0 if all plays ρ ∈ Plays(G) from v0 that are consistent with σ1 satisfy ρ ∈ Ω. Given a
strategy σ2 for P2, we say that σ2 is winning for P2 from v0 if all plays ρ ∈ Plays(G) from
v0 that are consistent with σ2 satisfy ρ 6∈ Ω.

We here consider the following objectives for dimension j ∈ {1, 2}:
Energy objective. Given an initial credit c0 ∈ N, the objective Energyj(c0) = {ρ ∈
Plays(G) | ∀k ≥ 0, c0 + wj(ρ[0, k]) ≥ 0} requires that the energy level remains always
nonnegative in dimension j.
Mean-payoff-inf objective. The objective MPj(∼ 0) = {ρ ∈ Plays(G) | MPj(ρ) ∼ 0} with
∼ ∈ {>,≥} requires that the mean-payoff-inf value is ∼ 0 in dimension j.
Mean-payoff-sup objective. The objective MPj(∼ 0) = {ρ ∈ Plays(G) | MPj(ρ) ∼ 0} with
∼ ∈ {>,≥} requires that the mean-payoff-sup value is ∼ 0 in dimension j.

Notice that it is not a restriction to work with threshold 0 in mean-payoff-inf/sup
objectives. Indeed arbitrary thresholds a

b ∈ Q can be reduced to threshold 0 by replacing
the weight function w of G by the function b · w − a.

Decision problems. In this paper we consider the following four variants of a decision
problem implying an energy objective on the first dimension and a mean-payoff objective on
the second dimension. Let ∼ ∈ {>,≥}:

The energy mean-payoff decision problem E ∩MP∼0 asks, given a game structure G and
an initial vertex v0, to decide whether there exist an initial credit c0 ∈ N and a winning
strategy σ1 for player P1 from v0 for the objective Ω = Energy1(c0) ∩MP2(∼ 0).
The energy mean-payoff decision problem E ∩MP∼0 asks, given a game structure G and
an initial vertex v0, to decide whether there exist an initial credit c0 ∈ N and a winning
strategy σ1 for player P1 from v0 for the objective Ω = Energy1(c0) ∩MP2(∼ 0).

In this context, we also use the terminology of energy mean-payoff objectives or energy
mean-payoff games. Let us give two illustrating examples.

I Example 1. Consider the player-1 game structure G depicted in Figure 1. Consider the
cycle C = v0v0v0v1v1v1v0 that loops twice on v0, goes to v1, loops twice on v1, and comes
back to v0. Observe that w(C) = (w1(C), w2(C)) = (0, 2). Hence P1 has a winning strategy,
that consists in looping forever in this cycle C, for all four variants of the energy mean-payoff
decision problem.

I Example 2. Consider now the player-1 game structure G depicted in Figure 2. It differs
from the previous game structure only by the weight (−1, 1) (instead of (−1, 3)) of the edge
(v1, v1). We claim that P1 has no winning strategy for any of the two decision problems
E ∩MP>0 and E ∩MP>0. We will explain why in Section 3. However P1 has a winning
strategy for both problems E ∩MP≥0 and E ∩MP≥0 with initial credit c0 = 0. Such a
strategy consists in repeatedly executing the following round, with Z = 1 initially, and Z
incremented by 1 after each round: loop Z times on v0, go to v1, loop Z times on v1, and
come back to v0. Such a strategy with infinite memory is clearly winning for the energy
objective. It is also winning for the mean-payoff-inf objective because with Z increased by 1
at each round, the cost of moving from v0 to v1 and from v1 to v0 becomes negligible.

CONCUR 2019

21:6 Energy Mean-Payoff Games

No finite-memory strategy is winning in this case. Indeed assume the contrary: there
exists a winning strategy that induces a cycle C in which it loops forever. This cycle
necessarily uses both simple cycles C0 = (v0, v0) and C1 = (v1, v1) as the strategy is winning.
As these cycles are not connected, C has to also use the simple cycle C3 = (v0, v1, v0). As
w(C1) = −w(C2) and w(C3) = (0,−2), it is easy to see that it is impossible that this strategy
satisfies both energy and mean-payoff-inf/sup objectives simultaneously.

v0 v1

(0,−1)

(0,−1)

(−1,3)(1,−1)

Figure 1 Energy mean-payoff game where
P1 wins with finite memory for problems
E ∩MP>0 and E ∩MP>0.

v0 v1

(0,−1)

(0,−1)

(−1,1)(1,−1)

Figure 2 Energy mean-payoff game where
P1 needs infinite memory to win for problems
E ∩MP≥0 and E ∩MP≥0.

3 One-player setting

Within this section, we investigate player-1 game structures, that is, game structures where
player P1 is the only one to play. In this context, P1 has a winning strategy for the energy
mean-payoff objective for some initial credit c0 if and only if there exists a play belonging to
this objective. For player-1 game structures, we show that the energy mean-payoff decision
problem can be solved in polynomial time for all of its four variants. However depending
on the used relation ∼ ∈ {>,≥} for the mean-payoff objective, memory requirements for
winning strategies of P1 differ. We already know that P1 needs infinite memory in case of
non-strict inequalities by Example 2. In case of strict inequalities, we show that finite-memory
strategies are always sufficient for P1, as in Example 1. All these results will be useful in
Section 4 when we will investigate the general case of two-player energy mean-payoff games.

I Theorem 3. The energy mean-payoff decision problem for player-1 game structures can
be solved in polynomial time. Moreover,

for both problems E ∩MP>0 and E ∩MP>0, pseudo-polynomial-memory strategies are
sufficient and necessary for P1 to win;
for both problems E ∩MP≥0 and E ∩MP≥0, in general, P1 needs infinite memory to win.

To prove Theorem 3, we characterize the existence of a winning strategy for P1 for some
initial credit c0 by the existence of a particular cycle or multicycle, that we call good.

I Definition 4. Let G be a game structure and v0 be an initial vertex.
We say that a cycle C is a good cycle if w1(C) ≥ 0 and w2(C) > 0. A good cycle C is
reachable if it is reachable from v0.
We say that a multicycle C is a good multicycle if w1(C) ≥ 0 and w2(C) ≥ 0. A good
multicyle C is reachable if all its simple cycles are in the same connected component
reachable from v0.

There exists a simple characterization of the existence of a winning strategy for P1 for
either the objective Energy1(c0) ∩ MP2(> 0) or the objective Energy1(c0) ∩ MP2(> 0) for
some initial credit c0: both are equivalent to the existence of a reachable good cycle.

V. Bruyère, Q. Hautem, M. Randour, and J.-F. Raskin 21:7

I Theorem 5. Let G be a player-1 game structure and v0 be an initial vertex. The following
assertions are equivalent.
1. There exist an initial credit c0 and a winning strategy for P1 from v0 for the objective

Energy1(c0) ∩MP2(> 0).
2. There exist an initial credit c0 and a winning strategy for P1 from v0 for the objective

Energy1(c0) ∩MP2(> 0).
3. There exists a reachable good cycle.

In case of non-strict inequalities, there exists also a simple characterization: P1 can win
for either the objective Energy1(c0) ∩MP2(≥ 0) or the objective Energy1(c0) ∩MP2(≥ 0) for
some initial credit c0 if and only if there exists a reachable good multicycle.

I Theorem 6. Let G be a player-1 game structure and v0 be an initial vertex. The following
assertions are equivalent.
1. There exist an initial credit c0 and a winning strategy for P1 from v0 for the objective

Energy1(c0) ∩MP2(≥ 0).
2. There exist an initial credit c0 and a winning strategy for P1 from v0 for the objective

Energy1(c0) ∩MP2(≥ 0).
3. There exists a reachable good multicycle.

A similar characterization appears for multi-mean-payoff games and multi-energy games
studied in [35]: when the objective is an intersection of several mean-payoff-inf objectives
(resp. several energy objectives), and when he plays alone, P1 has a winning strategy if and
only if there exists a reachable non negative multicycle (resp. a reachable non negative cycle)
in the game structure. Nevertheless, the proofs of those results differ substantially from the
proofs of our results.

Due to the lack of space, we only give the main ideas of the proofs (see [14] for more details):
1. We begin by illustrating the statements of Theorems 5 and 6 with the two previous

examples. Let us first come back to the game structure of Figure 1. The cycle C
mentioned in Example 1 is a reachable good cycle since w(C) = (0, 2). By Theorem 5,
it follows that P1 is winning for the energy mean-payoff decision problem with strict
inequalities (and thus also with non-strict inequalities), as already observed in Example 1.
Let us now come back to the game structure of Figure 2. Recall from Example 2 that
there exists a winning strategy for P1 in case of non-strict inequalities, but no winning
strategy in case of strict inequalities. By Theorem 6, there should exist a reachable
good multicycle. Indeed, consider the multicycle C = {C,C ′} with C = (v0, v0) and
C ′ = (v1, v1): we have w(C) = w(C) + w(C ′) = (1,−1) + (−1, 1) = (0, 0). Moreover by
Theorem 5, there is no reachable good cycle in this game.

2. By Theorems 5 and 6, solving the energy mean-payoff decision problem reduces to decide
whether there exists a reachable good cycle (resp. multicycle). This can be tested in
polynomial time thanks to a variant of a result in [31] that states that deciding the
existence of a cycle (resp. multicycle) of weight (0, 0) can be done in polynomial time.
This established the polynomial complexity stated in Theorem 3.

3. Theorem 5 is proved as follows. For Implication (3) ⇒ (1), a winning strategy for P1
consists in reaching the good cycle and looping in it forever. Implication (1) ⇒ (2) is
trivial since MP2(ρ) ≥ MP2(ρ) for all plays ρ. However, the proof of Implication (2)⇒ (3)
is rather technical, it is thus detailed in [14].

4. The proof of Theorem 6 requires a more precise characterization by good cycles and
multicycles. We show that the existence of a good cycle is equivalent to the existence of

CONCUR 2019

21:8 Energy Mean-Payoff Games

either one good cycle that is simple,
or two simple cycles C, C ′ with respective weight vectors w(C) = (−x, y) and w(C ′) =
(x′,−y′) that satisfy x, x′, y ∈ N0 and y′ ∈ N and make an angle < 180o (see Figure 3).

We show a similar equivalence for the existence of a good multicycle with the existence of
either a good multicycle C = {C} composed of a unique simple cycle C,
or two simple cycles C, C ′ as before with the difference that w(C), w(C ′) make an
angle ≤ 180o (instead of < 180o).

The proof of these results is based on the cycle decomposition of paths and on geometrical
arguments on the weights of those simple cycles.
Let us illustrate this characterization with our two running examples. In case of Figure 1,
the good cycle is characterized by the two cycles C = (v1, v1), C ′ = (v0, v0) with respective
weights (−1, 3), (1,−1). In case of Figure 2, the good multicycle is characterized by the
two cycles C = (v1, v1), C ′ = (v0, v0) with respective weights (−1, 1), (1,−1). Moreover
one can check that there is no good cycle (the conditions given in the characterization do
not hold in Figure 2).

w1

w2

w(C)

w(C ′)

Figure 3 Geometrical view of the characterization for good cycles.

5. With the characterization given previously in Item 4., in case of strict inequalities, pseudo-
polynomial-memory strategies are sufficient for P1 to win, as stated in Theorem 3. Indeed
when there exist two simple cycles C, C ′ with weight vectors w(C), w(C ′) as in Figure 3,
one can construct a good cycle as follows. There always exists a linear combination
of vectors w(C), w(C ′), with pseudo-polynomial positive coefficients, that is > (0, 0)
and that balances the cost of moving from C to C ′ and from C ′ to C (this is however
not possible when those vectors make an angle of 180o). The fact that in case of strict
inequalities, pseudo-polynomial-memory strategies are necessary for P1 to win is proved
in [14]. Notice that in case of non-strict inequalities, Theorem 3 states that P1 needs
infinite memory to win, that we already know from Example 2.

6. Theorem 6 is proved as follows. Implication (1) ⇒ (2) is immediate. For Implication
(3) ⇒ (1), with the two simple cycles C,C ′ of the characterization given in Item 4.,
one can construct a winning strategy with infinite memory for P1 that is similar to the
strategy of Example 2. To prove (2)⇒ (3), suppose that P1 is winning for the objective
Energy1(c0)∩MP2(≥ 0) for some c0. Then he is also winning for Energy1(c0)∩MP2(> −ε)
for all ε > 0. We consider the game structure Gε obtained from G by replacing function
w2 by function w2 + ε. Hence P1 is now winning in this game Gε for the objective
Energy1(c0) ∩MP2(> 0), and by Theorem 5 there exists a reachable good cycle in Gε.
Therefore, with the characterization of Item 4., for each ε, there exist either one good

V. Bruyère, Q. Hautem, M. Randour, and J.-F. Raskin 21:9

simple cycle Cε, or two simple cycles Cε, C ′ε with weight vectors as in Figure 3. The main
part of the proof is to extract from these sequences of cycles a reachable good multicycle
thanks to the characterization of Item 4. (Notice that when ε converges to 0, the angle
> 180o made by the vectors of Figure 3 converges to an angle ≥ 180o.)

4 Two-player setting

In this section we consider two-player energy mean-payoff games. We show that the four
variants of the energy mean-payoff decision problem are in co-NP. To establish this, we show
that if the answer to this problem is No, then P2 has a spoiling memoryless strategy σ2 that
he can use for all initial credits c0 ∈ N. In the game structure G(σ2), P1 is then the only
player and we can apply the results of the previous section, in particular Theorem 3. We also
show that in case of mean-payoff objectives with strict inequality, the energy mean-payoff
decision problem can be reduced to the unknown initial credit problem for 4-dimensional
energy games. If follows by [29] that our decision problem can be solved in pseudo-polynomial
time and that finite-memory winning strategies with pseudo-polynomial size for P1 exist and
can effectively be constructed. In case of mean-payoff objectives with non-strict inequality, we
already know that infinite memory is necessary for P1 in player-1 energy mean-payoff games
by Theorem 3. We show how to construct such strategies. The results that we establish in
this section are summarized in the following theorem.

I Theorem 7. The energy mean-payoff decision problem for two-player game structures is
in co-NP. Moreover,

both problems E ∩MP>0 and E ∩MP>0 can be solved in pseudo-polynomial time and
exponential-memory strategies are sufficient for P1 to win;
for both problems E ∩MP≥0 and E ∩MP≥0, in general, P1 needs infinite memory to win.

In all cases, winning strategies can be effectively constructed for both players.

The proof of this result is detailed in the following sections.

4.1 Memoryless winning strategies for P2

For all four variants of mean-payoff energy objective, we here establish that P2 does not
need any memory for his winning strategies. Therefore, thanks to Theorem 3, the energy
mean-payoff decision problem can be solved in co-NP.

I Proposition 8. Let ∼ ∈ {>,≥}. For all energy mean-payoff games G and all initial
vertices v0, if the answer to the energy mean-payoff problem E ∩MP∼0 (resp. E ∩MP∼0)
is No, then there exists a memoryless strategy σ2 for P2 such that for all initial credits
c0 ∈ N, no play ρ consistent with σ2 from v0 belongs to Ω = Energy1(c0) ∩MP2(∼ 0) (resp.
to Ω = Energy1(c0) ∩MP2(∼ 0)).

The proof of this proposition is given in [14]. Note that energy objectives are not prefix-
independent objectives and as a consequence this proposition does not directly follow from
the results of [30] where are given general conditions that guarantee the existence of a
memoryless winning strategy for one of the players. However our proof is an adaptation of
the proof technique of [9, 21, 27, 30].

Notice that from Theorems 5-6 and Proposition 8, we directly get the following corollary.

I Corollary 9. For all energy mean-payoff games G and initial vertices v0, let ∼ ∈ {>,≥}.
Then P1 is winning from v0 for Energy1(c0)∩MP2(∼ 0) for some initial credit c0 if and only
if he is winning from v0 for Energy1(c0) ∩MP2(∼ 0) for some initial credit c0.

CONCUR 2019

21:10 Energy Mean-Payoff Games

While Proposition 8 allows us to obtain the membership in co-NP of the decision problems
and to effectively construct winning memoryless strategies for P2, unfortunately it does not
tell us how P1 must play from a winning vertex (when spoiling strategies do not exist for
P2). In the following two sections we provide results that show how P1 needs to play in
order to win energy mean-payoff games. We first show that P1 can win with finite memory
for the case of strict inequalities, and then we provide infinite-memory winning strategies for
the case of non-strict inequalities. For the later case, we already know that infinite memory
is necessary even player-1 game structures (see Theorem 3).

4.2 Strategies for P1: case of strict inequalities
In case of strict inequalities, our solution is based on a reduction to multi-dimensional energy
games [18] for which we know how to construct strategies for P1.

4.2.1 Multi-dimensional energy games
We need to recall the concept of d-dimensional energy games, with d ∈ N0. Those games
are played on d-dimensional game structure G = (V, V1, V2, E, w) where the weight function
w : E → Zd assigns a d-tuple (instead of a pair) of weights w(e) to each edge e ∈ E. The
unknown initial credit problem asks, given a d-dimensional game structure and an initial
vertex v0, to decide whether there exists an initial credit c0 = (c0,1, . . . , c0,d) ∈ Nd and
a winning strategy for P1 for the objective Ω = ∩dj=1Energyj(c0,j). When d = 1 and the
answer to this problem is Yes, we denote by c(v0) ∈ N the minimum initial credit for which
P1 has a winning strategy from v0. The complexity of this problem has been first studied
in [18, 21, 35] and then in [29] for a fixed number of dimensions.

I Theorem 10 ([18, 21, 29, 35]). The unknown initial credit problem for d-dimensional
energy games can be solved in pseudo-polynomial time, that is in time (|V | · ||E||)O(d4). If
the answer to this problem is

Yes, then exponential-memory strategies are sufficient and necessary for player P1 to win,
No, then P2 has a spoiling memoryless strategy σ2 that he can use for all initial credits
c0 ∈ Nd.

We recall the next useful lemma.

I Lemma 11 ([17]). Let G be a 1-dimensional energy game and v0 be an initial vertex. For
all plays ρ consistent with a winning strategy σ1 for P1, if the initial credit is c(v0) + ∆ for
∆ ≥ 0, then the energy level at all positions of ρ where a state v occurs is at least c(v) + ∆.

The next proposition shows that we can reduce energy mean-payoff games with strict
inequality constraints to energy games with 4 dimensions.

I Proposition 12. The problems E ∩MP>0 and E ∩MP>0 for energy mean-payoff games
are both polynomially reducible to the unknown initial credit problem for 4-dimensional energy
games. Moreover, for the energy game G′ constructed from the given G, we have ||E′|| = ||E||
and |V ′|, |E′| are linear in |V |, |E|, and from a finite-memory winning strategy σ′1 of P1 in
G′, we can derive a finite-memory winning strategy σ1 of P1 in G such that the memory size
of σ1 is upper bounded by the memory size of σ′1.

V. Bruyère, Q. Hautem, M. Randour, and J.-F. Raskin 21:11

s

v r v′

(x,y,−1,1) (0,0,0,0)

(0,0,1,−1)

(0,0,0,0)(0,−1,0,0)

Figure 4 Construction of a
4-dimensional energy game.

−εi

−εi−1

MP2(ρ)

ω2(ρi−1)
|ρi−1|

ω2(ρi)
|ρi|

Figure 5 ρ satisfies MP2(ρ) ≥ 0.

Proof. We first explain the reduction and then we give the main intuitions that justify
the correctness (see [14] for the formal detailed proof). Given an energy mean-payoff game
structure G = (V, V1, V2, E, w) with w : E → Z2, we construct a 4-dimensional energy game
G′ = (V ′, V ′1 , V ′2 , E′, w′) with w′ : E′ → Z4 as follows. Each edge e = (v, v′) ∈ E labeled by
w(e) = (x, y) is replaced by the following gadget composed of:

five edges (v, r), (r, s), (s, s), (s, r), and (r, v′) where r, s are two new vertices,
such that w′(v, r) = (x, y,−1, 1), w′(r, s) = (0,−1, 0, 0), w′(s, s) = (0, 0, 1,−1), w′(s, r) =
(0, 0, 0, 0), and w′(r, v′) = (0, 0, 0, 0).

This is illustrated in Figure 4. The set V ′2 is equal to V2, and V ′1 is composed of all vertices
of V1 and the 2 · |E| new vertices (two for each edge of G). By construction, we have
||E′|| = ||E|| and |V ′|, |E′| are linear in |V |, |E|. Now, we show that if Pi wins in G′ then Pi
wins in G, for i ∈ {1, 2}.

First, assume that P1 wins in G′ with a strategy σ′1. By Theorem 10, we can assume
that σ′1 is a finite-memory strategy. Let us construct a corresponding strategy σ1 in G. The
graph G′ is a structural copy of G where each edge is replaced by the gadget of Figure 4.
So to each path π′ of G′ that ends in a vertex of G (so not in a s or r vertex), there is a
corresponding path π in G obtained by removing all the new vertices introduced by the
gadget. We construct the strategy σ1 as follows: the edge taken by σi after history π is
simply the edge that σ′i enters in G′ after history π′. Let us show that σ1 is winning in
G. Remember that all dimensions in G′ are interpreted as energy dimensions. The first
dimension which models energy in G is unchanged by the gadget as all weights are 0 for the
first dimension in the newly introduced edges. The second dimension, which corresponds
to the mean-payoff dimension in G, is transformed into an energy dimension. We make
a few remarks. If P1 decides to go from v to r and then directly to v′, the effect on the
energy accumulated on the second dimension is the same as in G. Nevertheless because the
third dimension is affected negatively by all edges with the exception of the self loops on
vertices of type s, it is clear that P1 needs to take periodically the edges from r-vertices
to s-vertices and loop in s in order to recharge the energy on the third dimension. So, the
intuition behind our construction is simple: in G′, P1 can play as in G but he needs to
recharge periodically dimension three by looping on s. Also, let us note that P1 always needs
to leave the gadget composed of the s and r vertices as otherwise the fourth dimension would
go arbitrary low and so this would violate the corresponding energy objectives. Finally, we
note that second dimension is decreased when P1 takes the edge from r to s. So, in order
to satisfy the energy objective in G′ for dimension two, P1 needs to accumulate unbounded

CONCUR 2019

21:12 Energy Mean-Payoff Games

reward on that dimension in the other edges (and so in the corresponding edges in G). As
by hypothesis the strategy σ′1 is finite-memory, this implies that mean-payoff accumulated
on dimension two will be strictly positive when playing the corresponding strategy σ1 in G.
This in turn implies that σ1 is winning in G.

Assume now that σ′2 is a winning strategy for P2 in G′. It can be supposed to be
memoryless by Theorem 10. As V2 = V ′2 , we can interprete σ′2 in G thus leading to a player-1
game structure G(σ′2). Similar arguments as done before together with Theorem 5 show that
σ′2 is winning for P2 in G. J

4.3 Strategies for P1: case of non-strict inequalities

By Theorem 6, we know that infinite memory may be necessary for P1 to win in case of
non-strict inequalities. The reduction to multi-dimensional energy games of previous section
is thus not applicable for this case. Instead, we show how we can effectively construct a
winning strategy for P1 by combining an infinite number of finite-memory strategies.

I Proposition 13. For both problems E ∩MP≥0 and E ∩MP≥0, if P1 is winning from an
initial vertex v0, then one can effectively construct a strategy for him to win from v0. This
strategy requires infinite memory.

Proof. Remember by Corollary 9 that P1 is winning from v0 for the objective Energy(c0) ∩
MP(≥ 0) for some c0 if and only if he is winning from v0 for the objective Energy(c0)∩MP(≥ 0)
for some c0. Here, we show how to construct a winning strategy for P1 for the mean-payoff-inf
case only. Indeed such a winning strategy is also winning for the mean-payoff-sup case.

We first note that if P1 is winning from a vertex v for the objective Ω(c0) = Energy1(c0)∩
MP2(≥ 0), then he is also winning from v for the objective Ωi(c0) = Energy1(c0)∩MP2(> −εi)
for all εi = 1

2i , i ∈ N0. Let Win be the set of vertices v from which P1 is winning for Ω(c0)
for some c0. In particular v0 ∈Win by hypothesis. From now on, we assume that the vertices
not in Win are removed from V leading to a game structure that we still denote by G. This
can be done as a winning strategy for P1 will never enter those vertices.

For all vertices v ∈Win, we denote by c(v) ∈ N the minimum initial credit from which P1
is winning for Ω(c(v)) from v. Similarly for all i ∈ N0, we denote by ci(v) ∈ N the minimum
initial credit from which he is winning for Ωi(ci(v)) from v and by σvi such a winning strategy
for P1. Recall by Proposition 12 that all strategies σvi can be supposed to be finite-memory
and to have memory size bounded by Mv

i . The game structure G(σvi) induced by σvi has a
number of vertices equal to

Nv
i = |Win| ·Mv

i (1)

Also, we have that c1(v) ≤ c2(v) ≤ c3(v) ≤ . . . ≤ c(v). Moreover as these initial credits are
integers,

∃kv,∀i ≥ kv : ci(v) = ckv (v). (2)

Let us define

κ = max
v∈Win

kv and γ = max{ci+1(v)− ci(v) | v ∈Win, i ∈ N0}. (3)

These constants will be useful later for the energy objective.

V. Bruyère, Q. Hautem, M. Randour, and J.-F. Raskin 21:13

An effective winning strategy for P1. Let us define a strategy τ1 for P1 from v0 that will
be proved to be winning for P1. A play ρ consistent with τi is the limit of a sequence of
prefixes ρi of increasing length constructed in the following way:
1. Initialize i = 1 and ρ0 = v0;
2. Assume that a prefix ρi−1 has been constructed so far and that its last vertex is vi−1.

Apply, starting from vi−1, the strategy σvi−1
i (against P2) until the produced path πi

consistent with σvi−1
i and the path ρi equal to the concatenation ρi−1 with πi satisfy

w2(ρi) > Nvi
i+1 · ||E|| − |ρi| · εi. (4)

3. Increment i by 1 and goto 2.

Notice that in (4), we require for w2(ρi) more than w2(ρi) > −|ρi| · εi. Indeed the
latter inequality would be enough to guarantee that the mean-payoff-sup value of ρ satisfies
MP(ρ) ≥ 0 but we will explain later that we need (4) to guarantee MP(ρ) ≥ 0.

For the correctness of the given construction, we need to prove that for each i ∈ N0, there
exists a path ρi satisfying (4). This is a consequence of point (ii) of the next lemma.

I Lemma 14. As each σvi is a finite-memory strategy from v winning for Energy1(c0)∩
MP2(> −εi),
(i) for all plays π consistent with σvi from v, for all k ∈ N, we have w2(π[0, k]) >

−Nv
i · ||E|| − k · εi, and

(ii) for all K ∈ N, there exists k ∈ N such that for all plays π consistent with σvi from v,
we have w2(π[0, k]) > K − k · εi.

Proof. Let us come back to the game structure G(σvi) with Nv
i vertices (by (1)). As σvi is

winning for the objective MP2(> −εi), all reachable cycles C in G(σvi) have a average weight

w2(C)
|C|

> −εi. (5)

Moreover as the weight w2(C) is an integer, w2(C) ≥ −|C| · εi + tC , for some tC > 0. Let
t = min{tC | C reachable cycle in G(σvi)}. This tells us that one unit t > 0 of weight is
accumulated each time a cycle is closed in G(σvi):

w2(C) ≥ −|C| · εi + t. (6)

Let us prove (i). Consider a play π consistent with σvi from v, i.e., an infinite path in
G(σvi). Let k ∈ N and let us reason on the cycle decomposition of π[0, k]. First, as the
acyclic part of this decomposition has a length bounded by Nv

i , its weight is bounded below
by −Nv

i · ||E||. Second, let ` be the total length of the cycles C of the cyclic decomposition of
π[0, k]. As all cycles C in G(σvi) satisfy (5), we conclude that the total weight of this cyclic
part of π[0, k] is bounded below by −` · εi. Finally, as ` ≤ k, we obtain the claimed lower
bound of (i), that is, w2(π[0, k]) > −Nv

i · ||E|| − k · εi.
Let us now prove (ii). We simply repeat the arguments given for (i) by using (6)

instead of (5). If α cycles are closed during the cycle decomposition of π[0, k], we then get
w2(π[0, k]) ≥ α · t−Nv

i · ||E|| − k · εi instead of the inequality of (i). So, given K ∈ N, take
k ∈ N such that α is large enough to get an accumulated positive weight α · t such that
α · t−Nv

i · ||E|| > K. This establishes (ii). J

Let us prove that τ1 is a winning strategy (with infinite memory) from v0 for the objective
Ω(d0) with the initial credit

d0 = κ · γ + c1(v0) (7)

CONCUR 2019

21:14 Energy Mean-Payoff Games

with the constants of (3). Let ρ be a play consistent with τ1 from v0, i.e., ρ is the limit of a
sequence of prefixes ρi as described previously in the definition of τi. Remember that each ρi,
i ∈ N0, is the concatenation of ρi−1 and πi such that πi is consistent with σvi−1

i from vi−1.

Mean-payoff-inf objective. We begin by showing that ρ satisfies MP2(ρ) ≥ 0. To achieve
this goal, it is enough to show that for all i ∈ N0, the average weight never falls below −εi−1
during the construction of ρi (i.e. the construction of πi), and this average weight is above
−εi at the end of the construction of ρi (see Figure 5).

Let us show that such a property is a consequence of Lemma 14 and inequality (4)
satisfied by ρi. First by (4), the average weight of ρi satisfies w2(ρi)

|ρi| > −εi. Second, consider
any prefix π[0, k] of πi and the corresponding prefix ρ[0, k′] of ρi such that k′ = k + |ρi−1|.
Then by point (i) of Lemma 14, we have w2(π[0, k]) > −Nv

i · ||E|| − k · εi, and by (4) applied
to ρi−1, we have w2(ρi−1) > Nvi

i · ||E|| − |ρi−1| · εi−1. Therefore we get

w2(ρ[0, k′]) = w2(ρi−1) + w2(π[0, k])
> (Nvi

i · ||E|| − |ρi−1| · εi−1) + (−Nv
i · ||E|| − k · εi)

> −|ρ[0, k′]| · εi−1

Hence, as announced, the average weight of the prefix ρ[0, k′] of ρi is above −εi−1.

Energy objective. It remains to explain why the energy objective is also satisfied by ρ with
the initial credit d0 defined in (7). Recall from the definition of τ1 that ρ is the limit of a
sequence of prefixes ρi such that each ρi is the concatenation of ρi−1 and πi. Recall also that
ci(v) ∈ N is the minimum initial credit for which σvi is winning from v.

By construction, π1 is consistent with σv0
1 with the initial credit d0 = c1(v0) + ∆1, where

∆1 = κ · γ. Hence the energy level of ρ1 = π1 never drops below zero and it is at least equal
to c1(v1) + ∆1 in the last vertex v1 of ρ1 by Lemma 11. Similarly π2 is consistent with
σv1

2 with the initial credit c1(v1) + ∆1 = c2(v1) + ∆2, where ∆2 = κ · γ − (c2(v1)− c1(v1)).
Hence the energy level of ρ2 never drops below zero and it is at least equal to c2(v2) + ∆2
in the last vertex v2 of ρ2 by Lemma 11. This argument can be repeated for all i ∈ N0:
the energy level of ρi never drops below zero and it is at least equal to ci(vi) + ∆i, with
∆i = κ · γ −

∑i−1
j=1(cj+1(vj) − cj(vj)). Notice that we always have ∆i ≥ 0 by (2) and by

definition of κ and γ (see (3)). Therefore the energy level of ρ never drops belows zero.
This proves that τ1 is a winning strategy for the objective Energy1(d0) ∩MP2(≥ 0) and

thus conclude the proof. J

4.4 Proof of Theorem 7
We conclude this section with the proof of Theorem 7.

Proof of Theorem 7. We establish the three assertions of the theorem as follows.
We first prove that the energy mean-payoff decision problems for two-player games G

are in co-NP for the four variants. This result is obtained as follows. By Proposition 8,
memoryless strategies are sufficient for P2 to win, for all four variants. Hence, the following is
an algorithm in co-NP: guess a memoryless strategy σ2 for P2, and in the resulting one-player
game G(σ2), verify in polynomial time whether P1 is winning thanks to Theorem 3.

Second, we consider the two variants with strict inequalities. By Proposition 12, there
exists a polynomial reduction of the energy mean-payoff decision problem to the unknown
initial credit problem for 4-dimensional energy games. By Theorem 10, it follows that the

V. Bruyère, Q. Hautem, M. Randour, and J.-F. Raskin 21:15

energy mean-payoff decision problem can be solved in pseudo-polynomial time and that
exponential-memory strategies are sufficient for P1 to win.

Finally, we consider the last two variants with non-strict inequalities. In Proposition 13,
we have shown how we can effectively construct a winning strategy for P1 in this case. J

References
1 Parosh Aziz Abdulla, Mohamed Faouzi Atig, Piotr Hofman, Richard Mayr, K. Narayan Kumar,

and Patrick Totzke. Infinite-state energy games. In Thomas A. Henzinger and Dale Miller,
editors, Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science
Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS), CSL-LICS ’14, Vienna, Austria, July 14 - 18, 2014, pages 7:1–7:10. ACM,
2014. doi:10.1145/2603088.2603100.

2 Parosh Aziz Abdulla, Richard Mayr, Arnaud Sangnier, and Jeremy Sproston. Solving Parity
Games on Integer Vectors. In Pedro R. D’Argenio and Hernán C. Melgratti, editors, CONCUR
2013 - Concurrency Theory - 24th International Conference, CONCUR 2013, Buenos Aires,
Argentina, August 27-30, 2013, Proceedings, volume 8052 of Lecture Notes in Computer Science,
pages 106–120. Springer, 2013. doi:10.1007/978-3-642-40184-8_9.

3 Roderick Bloem, Krishnendu Chatterjee, and Barbara Jobstmann. Graph Games and Reactive
Synthesis. In Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem,
editors, Handbook of Model Checking, pages 921–962. Springer, 2018.

4 Udi Boker, Thomas A. Henzinger, and Arjun Radhakrishna. Battery transition systems. In
Suresh Jagannathan and Peter Sewell, editors, The 41st Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’14, San Diego, CA, USA,
January 20-21, 2014, pages 595–606. ACM, 2014. doi:10.1145/2535838.2535875.

5 Patricia Bouyer, Ulrich Fahrenberg, Kim Guldstrand Larsen, Nicolas Markey, and Jirí Srba.
Infinite Runs in Weighted Timed Automata with Energy Constraints. In Franck Cassez and
Claude Jard, editors, Formal Modeling and Analysis of Timed Systems, 6th International
Conference, FORMATS 2008, Saint Malo, France, September 15-17, 2008, Proceedings, volume
5215 of Lecture Notes in Computer Science, pages 33–47. Springer, 2008. doi:10.1007/
978-3-540-85778-5_4.

6 Patricia Bouyer, Piotr Hofman, Nicolas Markey, Mickael Randour, and Martin Zimmermann.
Bounding Average-Energy Games. In Javier Esparza and Andrzej S. Murawski, editors,
Foundations of Software Science and Computation Structures - 20th International Conference,
FOSSACS 2017, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, volume 10203 of
Lecture Notes in Computer Science, pages 179–195, 2017. doi:10.1007/978-3-662-54458-7_
11.

7 Patricia Bouyer, Nicolas Markey, Mickael Randour, Kim G. Larsen, and Simon Laursen.
Average-energy games. Acta Inf., 55(2):91–127, 2018. doi:10.1007/s00236-016-0274-1.

8 Tomás Brázdil, Krishnendu Chatterjee, Antonín Kucera, and Petr Novotný. Efficient Controller
Synthesis for Consumption Games with Multiple Resource Types. In P. Madhusudan and
Sanjit A. Seshia, editors, Computer Aided Verification - 24th International Conference, CAV
2012, Berkeley, CA, USA, July 7-13, 2012, Proceedings, volume 7358 of Lecture Notes in
Computer Science, pages 23–38. Springer, 2012. doi:10.1007/978-3-642-31424-7_8.

9 Tomás Brázdil, Petr Jancar, and Antonín Kucera. Reachability Games on Extended Vector
Addition Systems with States. CoRR, abs/1002.2557, 2010. arXiv:1002.2557.

10 Tomás Brázdil, David Klaska, Antonín Kucera, and Petr Novotný. Minimizing Running Costs
in Consumption Systems. In Armin Biere and Roderick Bloem, editors, Computer Aided
Verification - 26th International Conference, CAV 2014, Held as Part of the Vienna Summer of
Logic, VSL 2014, Vienna, Austria, July 18-22, 2014, Proceedings, volume 8559 of Lecture Notes
in Computer Science, pages 457–472. Springer, 2014. doi:10.1007/978-3-319-08867-9_30.

CONCUR 2019

https://doi.org/10.1145/2603088.2603100
https://doi.org/10.1007/978-3-642-40184-8_9
https://doi.org/10.1145/2535838.2535875
https://doi.org/10.1007/978-3-540-85778-5_4
https://doi.org/10.1007/978-3-540-85778-5_4
https://doi.org/10.1007/978-3-662-54458-7_11
https://doi.org/10.1007/978-3-662-54458-7_11
https://doi.org/10.1007/s00236-016-0274-1
https://doi.org/10.1007/978-3-642-31424-7_8
http://arxiv.org/abs/1002.2557
https://doi.org/10.1007/978-3-319-08867-9_30

21:16 Energy Mean-Payoff Games

11 Tomás Brázdil, Antonín Kucera, and Petr Novotný. Optimizing the Expected Mean Payoff in
Energy Markov Decision Processes. In Cyrille Artho, Axel Legay, and Doron Peled, editors,
Automated Technology for Verification and Analysis - 14th International Symposium, ATVA
2016, Chiba, Japan, October 17-20, 2016, Proceedings, volume 9938 of Lecture Notes in
Computer Science, pages 32–49, 2016. doi:10.1007/978-3-319-46520-3_3.

12 Lubos Brim, Jakub Chaloupka, Laurent Doyen, Raffaella Gentilini, and Jean-François Raskin.
Faster algorithms for mean-payoff games. Formal Methods in System Design, 38(2):97–118,
2011. doi:10.1007/s10703-010-0105-x.

13 Véronique Bruyère. Computer Aided Synthesis: A Game-Theoretic Approach. In Émilie
Charlier, Julien Leroy, and Michel Rigo, editors, Developments in Language Theory - 21st
International Conference, DLT 2017, Liège, Belgium, August 7-11, 2017, Proceedings, volume
10396 of Lecture Notes in Computer Science, pages 3–35. Springer, 2017. doi:10.1007/
978-3-319-62809-7_1.

14 Véronique Bruyère, Quentin Hautem, Mickael Randour, and Jean-François Raskin. Energy
mean-payoff games. CoRR, abs/1907.01359, 2019. arXiv:1907.01359.

15 Véronique Bruyère, Quentin Hautem, and Jean-François Raskin. On the Complexity of
Heterogeneous Multidimensional Games. In Josée Desharnais and Radha Jagadeesan, editors,
27th International Conference on Concurrency Theory, CONCUR 2016, August 23-26, 2016,
Québec City, Canada, volume 59 of LIPIcs, pages 11:1–11:15. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2016. doi:10.4230/LIPIcs.CONCUR.2016.11.

16 Arindam Chakrabarti, Luca de Alfaro, Thomas A. Henzinger, and Mariëlle Stoelinga. Resource
Interfaces. In Rajeev Alur and Insup Lee, editors, Embedded Software, Third International
Conference, EMSOFT 2003, Philadelphia, PA, USA, October 13-15, 2003, Proceedings, volume
2855 of Lecture Notes in Computer Science, pages 117–133. Springer, 2003. doi:10.1007/
978-3-540-45212-6_9.

17 Krishnendu Chatterjee and Laurent Doyen. Energy parity games. Theor. Comput. Sci.,
458:49–60, 2012. doi:10.1016/j.tcs.2012.07.038.

18 Krishnendu Chatterjee, Laurent Doyen, Thomas A. Henzinger, and Jean-François Raskin.
Generalized Mean-payoff and Energy Games. In Kamal Lodaya and Meena Mahajan, editors,
IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer
Science, FSTTCS 2010, December 15-18, 2010, Chennai, India, volume 8 of LIPIcs, pages
505–516. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2010. doi:10.4230/LIPIcs.
FSTTCS.2010.505.

19 Krishnendu Chatterjee, Laurent Doyen, Mickael Randour, and Jean-François Raskin. Looking
at mean-payoff and total-payoff through windows. Inf. Comput., 242:25–52, 2015. doi:
10.1016/j.ic.2015.03.010.

20 Krishnendu Chatterjee, Thomas A. Henzinger, and Marcin Jurdzinski. Mean-Payoff Parity
Games. In 20th IEEE Symposium on Logic in Computer Science (LICS 2005), 26-29 June
2005, Chicago, IL, USA, Proceedings, pages 178–187. IEEE Computer Society, 2005. doi:
10.1109/LICS.2005.26.

21 Krishnendu Chatterjee, Mickael Randour, and Jean-François Raskin. Strategy synthesis for
multi-dimensional quantitative objectives. Acta Inf., 51(3-4):129–163, 2014. doi:10.1007/
s00236-013-0182-6.

22 Krishnendu Chatterjee and Yaron Velner. The Complexity of Mean-Payoff Pushdown Games.
J. ACM, 64(5):34:1–34:49, 2017. doi:10.1145/3121408.

23 Thomas Colcombet, Marcin Jurdzinski, Ranko Lazic, and Sylvain Schmitz. Perfect half space
games. In LICS Proceedings, pages 1–11. IEEE Computer Society, 2017. doi:10.1109/LICS.
2017.8005105.

24 Laure Daviaud, Marcin Jurdzinski, and Ranko Lazic. A pseudo-quasi-polynomial algorithm
for mean-payoff parity games. In Anuj Dawar and Erich Grädel, editors, Proceedings of the
33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, Oxford, UK,
July 09-12, 2018, pages 325–334. ACM, 2018. doi:10.1145/3209108.3209162.

https://doi.org/10.1007/978-3-319-46520-3_3
https://doi.org/10.1007/s10703-010-0105-x
https://doi.org/10.1007/978-3-319-62809-7_1
https://doi.org/10.1007/978-3-319-62809-7_1
http://arxiv.org/abs/1907.01359
https://doi.org/10.4230/LIPIcs.CONCUR.2016.11
https://doi.org/10.1007/978-3-540-45212-6_9
https://doi.org/10.1007/978-3-540-45212-6_9
https://doi.org/10.1016/j.tcs.2012.07.038
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.505
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.505
https://doi.org/10.1016/j.ic.2015.03.010
https://doi.org/10.1016/j.ic.2015.03.010
https://doi.org/10.1109/LICS.2005.26
https://doi.org/10.1109/LICS.2005.26
https://doi.org/10.1007/s00236-013-0182-6
https://doi.org/10.1007/s00236-013-0182-6
https://doi.org/10.1145/3121408
https://doi.org/10.1109/LICS.2017.8005105
https://doi.org/10.1109/LICS.2017.8005105
https://doi.org/10.1145/3209108.3209162

V. Bruyère, Q. Hautem, M. Randour, and J.-F. Raskin 21:17

25 A. Ehrenfeucht and J. Mycielski. Positional strategies for mean payoff games. International
Journal of Game Theory, 8:109–113, 1979. doi:10.1007/BF01768705.

26 Uli Fahrenberg, Line Juhl, Kim G. Larsen, and Jirí Srba. Energy Games in Multiweighted
Automata. In Antonio Cerone and Pekka Pihlajasaari, editors, Theoretical Aspects of Computing
- ICTAC 2011 - 8th International Colloquium, Johannesburg, South Africa, August 31 -
September 2, 2011, Proceedings, volume 6916 of Lecture Notes in Computer Science, pages
95–115. Springer, 2011. doi:10.1007/978-3-642-23283-1_9.

27 Hugo Gimbert and Wieslaw Zielonka. Games Where You Can Play Optimally Without Any
Memory. In Martín Abadi and Luca de Alfaro, editors, CONCUR 2005 - Concurrency Theory,
16th International Conference, CONCUR 2005, San Francisco, CA, USA, August 23-26, 2005,
Proceedings, volume 3653 of Lecture Notes in Computer Science, pages 428–442. Springer,
2005. doi:10.1007/11539452_33.

28 Line Juhl, Kim Guldstrand Larsen, and Jean-François Raskin. Optimal Bounds for Multi-
weighted and Parametrised Energy Games. In Zhiming Liu, Jim Woodcock, and Huibiao Zhu,
editors, Theories of Programming and Formal Methods - Essays Dedicated to Jifeng He on
the Occasion of His 70th Birthday, volume 8051 of Lecture Notes in Computer Science, pages
244–255. Springer, 2013. doi:10.1007/978-3-642-39698-4_15.

29 Marcin Jurdzinski, Ranko Lazic, and Sylvain Schmitz. Fixed-Dimensional Energy Games are
in Pseudo-Polynomial Time. In Magnús M. Halldórsson, Kazuo Iwama, Naoki Kobayashi, and
Bettina Speckmann, editors, Automata, Languages, and Programming - 42nd International
Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part II, volume
9135 of Lecture Notes in Computer Science, pages 260–272. Springer, 2015. doi:10.1007/
978-3-662-47666-6_21.

30 Eryk Kopczynski and Damian Niwinski. A simple indeterminate infinite game. In Vasco Brattka,
Hannes Diener, and Dieter Spreen, editors, Logic, Computation, Hierarchies, volume 4 of Ontos
Mathematical Logic, pages 205–212. De Gruyter, 2014. doi:10.1515/9781614518044.205.

31 S. Rao Kosaraju and Gregory F. Sullivan. Detecting Cycles in Dynamic Graphs in Polynomial
Time (Preliminary Version). In Janos Simon, editor, Proceedings of the 20th Annual ACM
Symposium on Theory of Computing, May 2-4, 1988, Chicago, Illinois, USA, pages 398–406.
ACM, 1988. doi:10.1145/62212.62251.

32 Antonín Kucera. Playing Games with Counter Automata. In Alain Finkel, Jérôme Leroux,
and Igor Potapov, editors, Reachability Problems - 6th International Workshop, RP 2012,
Bordeaux, France, September 17-19, 2012, Proceedings, volume 7550 of Lecture Notes in
Computer Science, pages 29–41. Springer, 2012. doi:10.1007/978-3-642-33512-9_4.

33 Amir Pnueli and Roni Rosner. On the Synthesis of an Asynchronous Reactive Module. In
Giorgio Ausiello, Mariangiola Dezani-Ciancaglini, and Simona Ronchi Della Rocca, editors,
Automata, Languages and Programming, 16th International Colloquium, ICALP89, Stresa,
Italy, July 11-15, 1989, Proceedings, volume 372 of Lecture Notes in Computer Science, pages
652–671. Springer, 1989. doi:10.1007/BFb0035790.

34 Yaron Velner. Robust Multidimensional Mean-Payoff Games are Undecidable. In Andrew M.
Pitts, editor, Foundations of Software Science and Computation Structures - 18th International
Conference, FoSSaCS 2015, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015, Proceedings, volume
9034 of Lecture Notes in Computer Science, pages 312–327. Springer, 2015. doi:10.1007/
978-3-662-46678-0_20.

35 Yaron Velner, Krishnendu Chatterjee, Laurent Doyen, Thomas A. Henzinger, Alexander Moshe
Rabinovich, and Jean-François Raskin. The complexity of multi-mean-payoff and multi-energy
games. Inf. Comput., 241:177–196, 2015. doi:10.1016/j.ic.2015.03.001.

36 U. Zwick and M. Paterson. The Complexity of Mean Payoff Games on Graphs. Theoretical
Computer Science, 158(1-2):343–359, 1996.

CONCUR 2019

https://doi.org/10.1007/BF01768705
https://doi.org/10.1007/978-3-642-23283-1_9
https://doi.org/10.1007/11539452_33
https://doi.org/10.1007/978-3-642-39698-4_15
https://doi.org/10.1007/978-3-662-47666-6_21
https://doi.org/10.1007/978-3-662-47666-6_21
https://doi.org/10.1515/9781614518044.205
https://doi.org/10.1145/62212.62251
https://doi.org/10.1007/978-3-642-33512-9_4
https://doi.org/10.1007/BFb0035790
https://doi.org/10.1007/978-3-662-46678-0_20
https://doi.org/10.1007/978-3-662-46678-0_20
https://doi.org/10.1016/j.ic.2015.03.001

Equilibrium Design for Concurrent Games
Julian Gutierrez
Department of Computer Science, University of Oxford, UK
julian.gutierrez@cs.ox.ac.uk

Muhammad Najib
Department of Computer Science, University of Oxford, UK
mnajib@cs.ox.ac.uk

Giuseppe Perelli
Department of Computer Science, University of Göteborg, Sweden
giuseppe.perelli@gu.se

Michael Wooldridge
Department of Computer Science, University of Oxford, UK
michael.wooldridge@cs.ox.ac.uk

Abstract
In game theory, mechanism design is concerned with the design of incentives so that a desired
outcome of the game can be achieved. In this paper, we study the design of incentives so that
a desirable equilibrium is obtained, for instance, an equilibrium satisfying a given temporal logic
property – a problem that we call equilibrium design. We base our study on a framework where
system specifications are represented as temporal logic formulae, games as quantitative concurrent
game structures, and players’ goals as mean-payoff objectives. In particular, we consider system
specifications given by LTL and GR(1) formulae, and show that implementing a mechanism to
ensure that a given temporal logic property is satisfied on some/every Nash equilibrium of the game,
whenever such a mechanism exists, can be done in PSPACE for LTL properties and in NP/ΣP

2 for
GR(1) specifications. We also study the complexity of various related decision and optimisation
problems, such as optimality and uniqueness of solutions, and show that the complexities of all such
problems lie within the polynomial hierarchy. As an application, equilibrium design can be used as
an alternative solution to the rational synthesis and verification problems for concurrent games with
mean-payoff objectives whenever no solution exists, or as a technique to repair, whenever possible,
concurrent games with undesirable rational outcomes (Nash equilibria) in an optimal way.

2012 ACM Subject Classification Theory of computation → Modal and temporal logics; Computing
methodologies → Multi-agent systems; Theory of computation → Algorithmic game theory

Keywords and phrases Games, Temporal logic, Synthesis, Model checking, Nash equilibrium

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2019.22

Acknowledgements Najib acknowledges the financial support of the Indonesia Endowment Fund for
Education (LPDP), and Perelli the support of the project “dSynMA”, funded by the ERC under the
European Union’s Horizon 2020 research and innovation programme (grant agreement No 772459).

1 Introduction

Over the past decade, there has been increasing interest in the use of game-theoretic
equilibrium concepts such as Nash equilibrium in the analysis of concurrent and multi-agent
systems (see, e.g., [3, 4, 8, 14, 15, 17, 23]). This work views a concurrent system as a
game, with system components (agents) corresponding to players in the game, which are
assumed to be acting rationally in pursuit of their individual preferences. Preferences may
be specified by associating with each player a temporal logic goal formula, which the player
desires to see satisfied, or by assuming that players receive rewards in each state the system
visits, and seek to maximise the average reward they receive (the mean payoff). A further

© Julian Guiterrez, Muhammad Najib, Giuseppe Perelli, and Michael Wooldridge;
licensed under Creative Commons License CC-BY

30th International Conference on Concurrency Theory (CONCUR 2019).
Editors: Wan Fokkink and Rob van Glabbeek; Article No. 22; pp. 22:1–22:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:julian.gutierrez@cs.ox.ac.uk
mailto:mnajib@cs.ox.ac.uk
mailto:giuseppe.perelli@gu.se
mailto:michael.wooldridge@cs.ox.ac.uk
https://doi.org/10.4230/LIPIcs.CONCUR.2019.22
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 Equilibrium Design for Concurrent Games

possibility is to combine goals and rewards: players primarily seek the satisfaction of their
goal, and only secondarily seek to maximise their mean payoff. The key decision problems in
such settings relate to what temporal logic properties hold on computations of the system
that may be generated by players choosing strategies that form a game-theoretic (Nash)
equilibrium. These problems are typically computationally complex, since they subsume
temporal logic synthesis [32]. If players have LTL goals, for example, then checking whether
an LTL formula holds on some Nash equilibrium path in a concurrent game is 2EXPTIME-
complete [14, 16, 17], rather than only PSPACE-complete as it is the case for model checking,
certainly a computational barrier for the practical analysis and automated verification of
reactive, concurrent, and multi-agent systems modelled as multi-player games.

Within this game-theoretic reasoning framework, a key issue is that individually rational
choices can cause outcomes that are highly undesirable, and concurrent games also fall prey
to this problem. This has motivated the development of techniques for modifying games,
in order to avoid bad equilibria, or to facilitate good equilibria. Mechanism design is the
problem of designing a game such that, if players behave rationally, then a desired outcome
will be obtained [26]. Taxation and subsidy schemes are probably the most important class
of techniques used in mechanism design. They work by levying taxes on certain actions (or
providing subsidies), thereby incentivising players away from some outcomes towards others.
The present paper studies the design of subsidy schemes (incentives) for concurrent games,
so that a desired outcome (a Nash equilibrium in the game) can be obtained – a problem
that we call Equilibrium design. We model agents as synchronously executing concurrent
processes, with each agent receiving an integer payoff for every state the overall system visits;
the overall payoff an agent receives over an infinite computation path is then defined to be
the mean payoff over this path. While agents (naturally) seek to maximise their individual
mean payoff, the designer of the subsidy scheme wishes to see some temporal logic formula
satisfied, either on some or on every Nash equilibrium of the game.

With this model, we assume that the designer – an external principal – has a finite budget
that is available for making subsidies, and this budget can be allocated across agent/state
pairs. By allocating this budget appropriately, the principal can incentivise players away from
some states and towards others. Since the principal has some temporal logic goal formula, it
desires to allocate subsidies so that players are rationally incentivised to choose strategies so
that the principal’s temporal logic goal formula is satisfied in the path that would result from
executing the strategies. For this general problem, following [24], we identify two variants of
the principal’s mechanism design problem, which we refer to as Weak Implementation
and Strong Implementation. In the Weak variant, we ask whether the principal can
allocate the budget so that the goal is achieved on some computation path that would be
generated by Nash equilibrium strategies in the resulting system; in the Strong variation,
we ask whether the principal can allocate the budget so that the resulting system has at least
one Nash equilibrium, and moreover the temporal logic goal is satisfied on all paths that
could be generated by Nash equilibrium strategies. For these two problems, we consider goals
specified by LTL formulae or GR(1) formulae [5], give algorithms for each case, and classify the
complexity of the problem. While LTL is a natural language for the specification of properties
of concurrent and multi-agent systems, GR(1) is an LTL fragment that can be used to easily
express several prefix-independent properties of computation paths of reactive systems, such
as ω-regular properties often used in automated formal verification. We then go on to study
variations of these two problems, for example considering optimality and uniqueness of
solutions, and show that the complexities of all such problems lie within the polynomial
hierarchy, thus making them potentially amenable to efficient practical implementations.
Table 1 summarises the main computational complexity results in the paper.

J. Guiterrez, M. Najib, G. Perelli, and M. Wooldridge 22:3

Table 1 Summary of main complexity results.

LTL Spec. GR(1) Spec.

Weak Implementation PSPACE-complete (Thm. 6) NP-complete (Thm. 7)

Strong Implementation PSPACE-complete (Cor. 9) ΣP
2-complete (Thm. 10)

Opt-WI FPSPACE-complete (Thm. 14) FPNP-complete (Thm. 16)

Opt-SI FPSPACE-complete (Thm. 22) FPΣP
2 -complete (Thm. 25)

Exact-WI PSPACE-complete (Cor. 15) DP-complete (Cor. 17)

Exact-SI PSPACE-complete (Cor. 23) DP
2-complete (Cor. 26)

UOpt-WI PSPACE-complete (Cor. 18) ∆P
2-complete (Cor. 19)

UOpt-SI PSPACE-complete (Cor. 27) ∆P
3-complete (Cor. 28)

2 Preliminaries

Linear Temporal Logic. LTL [31] extends classical propositional logic with two operators,
X (“next”) and U (“until”), that can be used to express properties of paths. The syntax of
LTL is defined with respect to a set AP of atomic propositions as follows:

ϕ ::= > | p | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ

where p ∈ AP. As commonly found in the LTL literature, we use of the following abbreviations:
ϕ1 ∧ ϕ2 ≡ ¬(¬ϕ1 ∨ ¬ϕ2), ϕ1 → ϕ2 ≡ ¬ϕ1 ∨ ϕ2, Fϕ ≡ > Uϕ, and Gϕ ≡ ¬F¬ϕ.

We interpret formulae of LTL with respect to pairs (α, t), where α ∈ (2AP)ω is an infinite
sequence of atomic proposition evaluations that indicates which propositional variables are
true in every time point and t ∈ N is a temporal index into α. Formally, the semantics of
LTL formulae is given by the following rules:

(α, t) |= >
(α, t) |= p iff p ∈ αt
(α, t) |= ¬ϕ iff it is not the case that (α, t) |= ϕ

(α, t) |= ϕ ∨ ψ iff (α, t) |= ϕ or (α, t) |= ψ

(α, t) |= Xϕ iff (α, t+ 1) |= ϕ

(α, t) |= ϕUψ iff for some t′ ≥ t :
(
(α, t′) |= ψ and

for all t ≤ t′′ < t′ : (α, t′′) |= ϕ
)
.

If (α, 0) |= ϕ, we write α |= ϕ and say that α satisfies ϕ.

General Reactivity of rank 1. The language of General Reactivity of rank 1, denoted GR(1),
is the fragment of LTL given by formulae written in the following form [5]:

(GFψ1 ∧ . . . ∧GFψm)→ (GFϕ1 ∧ . . . ∧GFϕn),

where each subformula ψi and ϕi is a Boolean combination of atomic propositions.

CONCUR 2019

22:4 Equilibrium Design for Concurrent Games

Mean-Payoff. For a sequence r ∈ Rω, let mp(r) be the mean-payoff value of r, that is,

mp(r) = lim inf
n→∞

avgn(r)

where, for n ∈ N \ {0}, we define avgn(r) = 1
n

∑n−1
j=0 rj , with rj the (j+1)th element of r.

Arenas. An arena is a tuple A = 〈N,Ac,St, s0, tr, λ〉 where N, Ac, and St are finite non-
empty sets of players (write N = |N|), actions, and states, respectively; if needed, we write
Aci(s), to denote the set of actions available to player i at s; s0 ∈ St is the initial state;
tr : St× ~Ac→ St is a transition function mapping each pair consisting of a state s ∈ St and
an action profile ~a ∈ ~Ac = AcN, one for each player, to a successor state; and λ : St→ 2AP

is a labelling function, mapping every state to a subset of atomic propositions.
We sometimes call an action profile ~a = (a1, . . . , an) ∈ ~Ac a decision, and denote ai the

action taken by player i. We also consider partial decisions. For a set of players C ⊆ N and
action profile ~a, we let ~aC and ~a−C be two tuples of actions, respectively, one for all players
in C and one for all players in N \ C. We also write ~ai for ~a{i} and ~a−i for ~aN\{i}. For two
decisions ~a and ~a′, we write (~aC ,~a′−C) to denote the decision where the actions for players in
C are taken from ~a and the actions for players in N \ C are taken from ~a′.

A path π = (s0,~a0), (s1,~a1) · · · is an infinite sequence in (St× ~Ac)ω such that tr(sk,~ak) =
sk+1 for all k. Paths are generated in the arena by each player i selecting a strategy σi that
will define how to make choices over time. We model strategies as finite state machines with
output. Formally, for arena A, a strategy σi = (Qi, q0

i , δi, τi) for player i is a finite state
machine with output (a transducer), where Qi is a finite and non-empty set of internal states,
q0
i is the initial state, δi : Qi × ~Ac→ Qi is a deterministic internal transition function, and
τi : Qi → Aci an action function. Let Stri be the set of strategies for player i. Note that this
definition implies that strategies have perfect information1 and finite memory (although we
impose no bounds on memory size).

A strategy profile ~σ = (σ1, . . . , σn) is a vector of strategies, one for each player. As with
actions, ~σi denotes the strategy assigned to player i in profile ~σ. Moreover, by (~σB , ~σ′C)
we denote the combination of profiles where players in disjoint B and C are assigned their
corresponding strategies in ~σ and ~σ′, respectively. Once a state s and profile ~σ are fixed, the
game has an outcome, a path in A, denoted by π(~σ, s). Because strategies are deterministic,
π(~σ, s) is the unique path induced by ~σ, that is, the sequence s0, s1, s2, . . . such that

sk+1 = tr(sk, (τ1(qk1), . . . , τn(qkn))), and
qk+1
i = δi(ski , (τ1(qk1), . . . , τn(qkn))), for all k ≥ 0.

Furthermore, we simply write π(~σ) for π(~σ, s0).
Arenas define the dynamic structure of games, but lack a central aspect of a game:

preferences, which give games their strategic structure. A multi-player game is obtained
from an arena A by associating each player with a goal. We consider multi-player games
with mp goals. A multi-player mp game is a tuple G =〈A, (wi)i∈N〉, where A is an arena and
wi : St→ Z is a function mapping, for every player i, every state of the arena into an integer
number. In any game with arena A, a path π in A induces a sequence λ(π) = λ(s0)λ(s1) · · ·
of sets of atomic propositions; if, in addition, A is the arena of an mp game, then, for each
player i, the sequence wi(π) = wi(s0)wi(s1) · · · of weights is also induced. Unless stated
otherwise, for a game G and a path π in it, the payoff of player i is payi(π) = mp(wi(π)).

1 Mean-payoff games with imperfect information are generally undecidable [13].

J. Guiterrez, M. Najib, G. Perelli, and M. Wooldridge 22:5

Nash equilibrium. Using payoff functions, we can define the game-theoretic concept of
Nash equilibrium [26]. For a multi-player game G, a strategy profile ~σ is a Nash equilibrium
of G if, for every player i and strategy σ′i for player i, we have

payi(π(~σ)) ≥ payi(π((~σ−i, σ′i))) .

Let NE(G) be the set of Nash equilibria of G.

3 From Mechanism Design to Equilibrium Design

We now describe the two main problems that are our focus of study. As discussed in the
introduction, such problems are closely related to the well-known problem of mechanism
design in game theory. Consider a system populated by agents N, where each agent i ∈ N
wants to maximise its payoff payi(·). As in a mechanism design problem, we assume there is
an external principal who has a goal ϕ that it wants the system to satisfy, and to this end,
wants to incentivise the agents to act collectively and rationally so as to bring about ϕ. In
our model, incentives are given by subsidy schemes and goals by temporal logic formulae.

Subsidy Schemes. A subsidy scheme defines additional imposed rewards over those given
by the weight function w. While the weight function w is fixed for any given game, the
principal is assumed to be at liberty to define a subsidy scheme as they see fit. Since agents
will seek to maximise their overall rewards, the principal can incentivise agents away from
performing visiting some states and towards visiting others; if the principal designs the
subsidy scheme correctly, the agents are incentivised to choose a strategy profile ~σ such that
π(~σ) |= ϕ. Formally, we model a subsidy scheme as a function κ : N→ St→ N, where the
intended interpretation is that κ(i)(s) is the subsidy in the form of a natural number k ∈ N
that would be imposed on player i if such a player visits state s ∈ St. For instance, if we
have wi(s) = 1 and κ(i)(s) = 2, then player i gets 1 + 2 = 3 for visiting such a state. For
simplicity, hereafter we write κi(s) instead of κ(i)(s) for the subsidy for player i.

Notice that having an unlimited fund for a subsidy scheme would make some problems
trivial, as the principal can always incentivise players to satisfy ϕ (provided that there is
a path in A satisfying ϕ). A natural and more interesting setting is that the principal is
given a constraint in the form of budget β ∈ N. The principal then can only spend within the
budget limit. To make this clearer, we first define the cost of a subsidy scheme κ as follows.

I Definition 1. Given a game G and subsidy scheme κ, we let cost(κ) =
∑
i∈N

∑
s∈St κi(s).

We say that a subsidy scheme κ is admissible if it does not exceed the budget β, that is,
if cost(κ) ≤ β. Let K(G, β) denote the set of admissible subsidy schemes over G given budget
β ∈ N. Thus we know that for each κ ∈ K(G, β) we have cost(κ) ≤ β. We write (G, κ) to
denote the resulting game after the application of subsidy scheme κ on game G. Formally,
we define the application of some subsidy scheme on a game as follows.

I Definition 2. Given a game G = 〈A, (wi)i∈N〉 and an admissible subsidy scheme κ, we
define (G, κ) =〈A, (w′i)i∈N〉, where w′i(s) = wi(s) + κi(s), for each i ∈ N and s ∈ St.

We now come to the main question(s) that we consider in the remainder of the paper.
We ask whether the principal can find a subsidy scheme that will incentivise players to
collectively choose a rational outcome (a Nash equilibrium) that satisfies its temporal logic
goal ϕ. We call this problem equilibrium design. Following [24], we define two variants of this
problem, a weak and a strong implementation of the equilibrium design problem. The formal
definition of the problems and the analysis of their respective computational complexity are
presented in the next sections.

CONCUR 2019

22:6 Equilibrium Design for Concurrent Games

4 Equilibrium Design: Weak Implementation

In this section, we study the weak implementation of the equilibrium design problem, a logic-
based computational variant of the principal’s mechanism design problem in game theory.
We assume that the principal has full knowledge of the game G under consideration, that is,
the principal uses all the information available of G to find the appropriate subsidy scheme,
if such a scheme exists. We now formally define the weak variant of the implementation
problem, and study its respective computational complexity, first with respect to goals
(specifications) given by LTL formulae and then with respect to GR(1) formulae.

Let WI(G, ϕ, β) denote the set of subsidy schemes over G given budget β that satisfy a
formula ϕ in at least one path π generated by ~σ ∈ NE(G). Formally

WI(G, ϕ, β) = {κ ∈ K(G, β) : ∃~σ ∈ NE(G, κ) s.t. π(~σ) |= ϕ}.

I Definition 3 (Weak Implementation). Given a game G, formula ϕ, and budget β:

Is it the case that WI(G, ϕ, β) 6= ∅?

In order to solve Weak Implementation, we first characterise the Nash equilibria of a
multi-player concurrent game in terms of punishment strategies. To do this in our setting,
we recall the notion of secure values for mean-payoff games [33].

For a player i and a state s ∈ St, by puni(s) we denote the punishment value of i over
s, that is, the maximum payoff that i can achieve from s, when all other players behave
adversarially. Such a value can be computed by considering the corresponding two-player
zero-sum mean-payoff game [35]. Thus, it is in NP ∩ coNP, and note that both player i and
coalition N\{i} can achieve the optimal value of the game using memoryless strategies. Then,
for a player i and a value z ∈ R, a pair (s,~a) is z-secure for player i if puni(tr(s, (~a−i, a′i))) ≤ z
for every a′i ∈ Ac. Write puni(G) for the set of punishment values for player i in G.

I Theorem 4. For every mp game G and ultimately periodic path π = (s0,~a0), (s1,~a1), . . .,
the following are equivalent:

1. There is ~σ ∈ NE(G) such that π = π(~σ, s0);
2. There exists z ∈ RN, where zi ∈ puni(G) such that, for every i ∈ N

a. for all k ∈ N, the pair (sk,~ak) is zi-secure for i, and
b. zi ≤ payi(π).

The characterisation of Nash Equilibria provided in Theorem 4 will allow us to turn the
Weak Implementation problem into a path finding problem over (G, κ). On the other
hand, with respect to the budget β that the principal has at its disposal, the definition of
subsidy scheme function κ implies that the size of K(G, β) is bounded, and particularly, it is
bounded by β and the number of agents and states in the game G, in the following way.

I Proposition 5. Given a game G with |N | players and |St| states and budget β, it holds that

|K(G, β)| = β + 1
m

(
β +m

β + 1

)
,

with m = |N × St| being the number of pairs of possible agents and states.

From Proposition 5 we derive that the number of possible subsidy schemes is polynomial
in the budget β and singly exponential in both the number of agents and states in the game.
At this point, solving Weak Implementation can be done with the following procedure:

J. Guiterrez, M. Najib, G. Perelli, and M. Wooldridge 22:7

1. Guess:
a subsidy scheme κ ∈ K(G, β),
a state s ∈ St for every player i ∈ N, and
punishment memoryless strategies (~σ−1, . . . , ~σ−n) for all players i ∈ N;

2. Compute (G, κ);
3. Compute z ∈ RN;
4. Compute the game (G, κ)[z] by removing the states s such that puni(s) ≤ zi for some

player i and the transitions (s,~a−i) that are not zi secure for player i;
5. Check whether there exists an ultimately periodic path π in (G, κ)[z] such that π |= ϕ

and zi ≤ payi(π) for every player i ∈ N.

Since the set K(G, β) is finitely bounded (Proposition 5), and punishment strategies
only need to be memoryless, thus also finitely bounded, clearly step 1 can be guessed
nondeterministically. Moreover, each of the guessed elements is of polynomial size, thus
this step can be done (deterministically) in polynomial space. Step 2 clearly can be done in
polynomial time. Step 3 can also be done in polynomial time since, given (~σ−1, . . . , ~σ−n), we
can compute z solving |N| one-player mean-payoff games, one for each player i [35, Thm. 6].
For step 5, we will use Theorem 4 and consider two cases, one for LTL specifications and one
for GR(1) specifications. Firstly, for LTL specifications, consider the formula

ϕWI := ϕ ∧
∧
i∈N

(mp(i) ≥ zi)

written in LTLLim [7], an extension of LTL where statements about mean-payoff values over
a given weighted arena can be made.2 The semantics of the temporal operators of LTLLim

is just like the one for LTL over infinite computation paths π = s0, s1, s3. On the other
hand, the meaning of mp(i) ≥ zi is simply that such an atomic formula is true if, and only if,
the mean-payoff value of π with respect to player i is greater or equal to zi, a constant real
value; that is, mp(i) ≥ zi is true in π if and only if payi(π) = mp(wi(π)) is greater or equal
than constant value zi. Formula ϕWI corresponds exactly to 2(b) in Theorem 4. Furthermore,
since every path in (G, κ)[z] satisfies condition 2(a) of Theorem 4, every computation path of
(G, κ)[z] that satisfies ϕWI is a witness to the Weak Implementation problem.

I Theorem 6. Weak Implementation with LTL specifications is PSPACE-complete.

Proof. Membership follows from the procedure above and the fact that model checking for
LTLLim is PSPACE-complete [7]. Hardness follows from the fact that LTL model checking is a
special case of Weak Implementation. For instance, consider the case in which all weights
for all players are set to the same value, say 0, and the principal has budget β = 0. J

Case with GR(1) specifications. One of the main bottlenecks of our procedure to solve
Weak Implementation lies in step 5, where we solve an LTLLim model checking problem.
To reduce the complexity of our decision procedure, we consider Weak Implementation
with the specification ϕ expressed in the GR(1) sublanguage of LTL. With this specification
language, the path finding problem can be solved without model-checking the LTLLim formula
given before. In order to do this, we can define a linear program (LP) such that the LP has
a solution if and only if WI(G, ϕ, β) 6= ∅. From our previous procedure, observe that
step 1 can be done nondeterministically in polynomial time, and steps 2–4 can be done

2 The formal semantics of LTLLim can be found in [7]. We prefer to give only an informal description here.

CONCUR 2019

22:8 Equilibrium Design for Concurrent Games

(deterministically) in polynomial time. Furthermore, using LP, we also can check step 5
deterministically in polynomial time. For the lower-bound, we use [33] and note that if
ϕ = > and β = 0, then the problem reduces to checking whether the underlying mp game
has a Nash equilibrium. Based on the above observations, we have the following result.

I Theorem 7. Weak Implementation with GR(1) specifications is NP-complete.

Proof sketch. For the upper bound, we define an LP of size polynomial in (G, κ) having a
solution if and only if there is an ultimately periodic path π such that zi ≤ payi(π) and
satisfies the GR(1) specification. Recall that ϕ has the following form

ϕ =
m∧
l=1

GFψl →
n∧
r=1

GFθr,

and let V (ψl) and V (θr) be the subset of states in (G, κ) that satisfy the Boolean combinations
ψl and θr, respectively. Property ϕ is satisfied on π if, and only if, either π visits every state
in V (θr) infinitely often or some of the states in V (ψl) only a finite number of times. For
the game (G, κ)[z], let W = (V,E, (wa)a∈N) be the underlying multi-weighted graph, and
for every edge e ∈ E introduce a variable xe. Informally, the value of xe is the number of
times that e is used on a cycle. Formally, let src(e) = {v ∈ V : ∃w e = (v, w) ∈ E}; trg(e) =
{v ∈ V : ∃w e = (w, v) ∈ E}; out(v) = {e ∈ E : src(e) = v}; and in(v) = {e ∈ E : trg(e) = v}.
Now, consider ψl for some 1 ≤ l ≤ m, and define the following linear program LP(ψl):
Eq1: xe ≥ 0 for each edge e – a basic consistency criterion;
Eq2: Σe∈Exe ≥ 1 – at least one edge is chosen;
Eq3: for each a ∈ N, Σe∈Ewa(src(e))xe ≥ 0 – total sum of any solution is non-negative;
Eq4: Σsrc(e)∩V (ψl) 6=∅xe = 0 – no state in V (ψl) is in the cycle associated with the solution;
Eq5: for each v ∈ V , Σe∈out(v)xe = Σe∈in(v)xe – this condition says that the number of times

one enters a vertex is equal to the number of times one leaves that vertex.
LP(ψl) has a solution if and only if there is a path π in G such that zi ≤ payi(π) for
every player i and visits V (ψl) only finitely many times. Consider now the linear program
LP(θ1, . . . , θn) defined as follows. Eq1–Eq3 as well as Eq5 are as in LP(ψl), and:
Eq4: for all 1 ≤ r ≤ n, Σsrc(e)∩V (θr)6=∅xe ≥ 1 – this condition says that, for every V (θr), at

least one state in V (θr) is in the cycle associated with the solution of the linear program.
In this case, LP(θ1, . . . , θn) has a solution if and only if there exists a path π such that
zi ≤ payi(π) for every player i and visits every V (θr) infinitely many times. Since the
constructions above are polynomial in the size of both (G, κ) and ϕ, we can conclude it is
possible to check in NP the statement that there is a path π satisfying ϕ such that zi ≤ payi(π)
for every player i in the game if and only if one of the two linear programs defined above has
a solution. For the lower-bound, we use [33] as discussed before. J

We now turn our attention to the strong implementation of the equilibrium design problem.
As in this section, we first consider LTL specifications and then GR(1) specifications.

5 Equilibrium Design: Strong Implementation

Although the principal may find WI(G, ϕ, β) 6= ∅ to be good news, it might not be good
enough. It could be that even though there is a desirable Nash equilibrium, the others
might be undesirable. This motivates us to consider the strong implementation variant of
equilibrium design. Intuitively, in a strong implementation, we require that every Nash
equilibrium outcome satisfies the specification ϕ, for a non-empty set of outcomes. Then, let
SI(G, ϕ, β) denote the set of subsidy schemes κ given budget β over G such that:

J. Guiterrez, M. Najib, G. Perelli, and M. Wooldridge 22:9

1. (G, κ) has at least one Nash equilibrium outcome,
2. every Nash equilibrium outcome of (G, κ) satisfies ϕ.

Formally we define it as follows:

SI(G, ϕ, β) = {κ ∈ K(G, β) : NE(G, κ) 6= ∅ ∧ ∀~σ ∈ NE(G, κ) s.t. π(~σ) |= ϕ}.

This gives us the following decision problem:

I Definition 8 (Strong Implementation). Given a game G, formula ϕ, and budget β:

Is it the case that SI(G, ϕ, β) 6= ∅?

Strong Implementation can be solved with a 5-step procedure where the first four
steps are as in Weak Implementation, and the last step (step 5) is as follows:
5. Check whether:
(a) there is no ultimately periodic path π in (G, κ)[z] such that zi ≤ payi(π) for each i ∈ N;
(b) there is an ultimately periodic path π in (G, κ)[z] such that π |= ¬ϕ and zi ≤ payi(π),

for each i ∈ N.

For step 5, observe that a positive answer to 5(a) or 5(b) is a counterexample to
κ ∈ SI(G, ϕ, β). Then, to carry out this procedure for the Strong Implementation
problem with LTL specifications, consider the following LTLLim formulae:

ϕ∃ =
∧
i∈N

(mp(i) ≥ zi);

ϕ∀ = ϕ∃ → ϕ.

Notice that the expression NE(G, κ) 6= ∅ can be expressed as “there exists a path π in G
that satisfies formula ϕ∃”. On the other hand, the expression ∀~σ ∈ NE(G, κ) such that π(~σ) |=
ϕ can be expressed as “for every path π in G, if π satisfies formula ϕ∃, then π also satisfies
formula ϕ”. Thus, using these two formulae, we obtain the following result.

I Corollary 9. Strong Implementation with LTL specifications is PSPACE-complete.

Proof. Membership follows from the fact that step 5(a) can be solved by existential LTLLim

model checking, whereas step 5(b) by universal LTLLim model checking – both clearly in
PSPACE by Savitch’s theorem. Hardness is similar to the construction in Theorem 6. J

Case with GR(1) specifications. Notice that the first part, i.e., NE(G, κ) 6= ∅ can be
solved in NP [33]. For the second part, observe that

∀~σ ∈ NE(G, κ) such that π(~σ) |= ϕ

is equivalent to

¬∃~σ ∈ NE(G, κ) such that π(~σ) |= ¬ϕ.

Thus we have

¬ϕ =
m∧
l=1

GFψl ∧ ¬
(n∧
r=1

GFθr
)
.

To check this, we modify the LP in Theorem 7. Specifically, we modify Eq4 in LP(θ1, . . . , θn)
to encode the θ-part of ¬ϕ. Thus, we have the following equation in LP′(θ1, . . . , θn):

CONCUR 2019

22:10 Equilibrium Design for Concurrent Games

Eq4: there exists r, 1 ≤ r ≤ n, Σsrc(e)∩V (θr)6=∅xe = 0 – this condition ensures that at least
one set V (θr) does not have any state in the cycle associated with the solution.

In this case, LP′(θ1, . . . , θn) has a solution if and only if there is a path π such that
zi ≤ payi(π) for every player i and, for at least one V (θr), its states are visited only finitely
many times. Thus, we have a procedure that checks if there is a path π that satisfies ¬ϕ
such that zi ≤ payi(π) for every player i, if and only if both linear programs have a solution.
Using this new construction, we can now prove the following result.

I Theorem 10. Strong Implementation with GR(1) specifications is ΣP
2 -complete.

Proof sketch. For membership, observe that by rearranging the problem statement, we have
the following question: Check whether the following expression is true

∃κ ∈ K(G, β), (1)
∃~σ ∈ σ1 × · · · × σn, such that ~σ ∈ NE(G, κ), (2)

and
∀~σ′ ∈ σ1 × · · · × σn, if ~σ′ ∈ NE(G, κ) then π(~σ′) |= ϕ. (3)

Statement (2) can be checked in NP (Theorem 4), whereas verifying statement (3) is in
coNP; to see this, notice that we can rephrase (3) as follows: ¬∃z ∈ {puni(s) : s ∈ St}N such
that both LP(ψl) and LP′(θ1, . . . , θn) have a solution in (G, κ)[z]. Thus, membership in ΣP

2
follows. We prove hardness via a reduction from QSAT2 (satisfiability of quantified Boolean
formulae with 2 alternations), which is known to be ΣP

2 -complete [28]. J

6 Optimality and Uniqueness of Solutions

Having asked the questions studied in the previous sections, the principal – the designer
in the equilibrium design problem – may want to explore further information. Because the
power of the principal is limited by its budget, and because from the point of view of the
system, it may be associated with a reward (e.g., money, savings, etc.) or with the inverse
of the amount of a finite resource (e.g., time, energy, etc.) an obvious question is asking
about optimal solutions. This leads us to optimisation variations of the problems we have
studied. Informally, in this case, we ask what is the least budget that the principal needs to
ensure that the implementation problems have positive solutions. The principal may also
want to know whether a given subsidy scheme is unique, so that there is no point in looking
for any other solutions to the problem. In this section, we investigate these kind of problems,
and classify our study into two parts, one corresponding to the Weak Implementation
problem and another one corresponding to the Strong Implementation problem.

6.1 Optimality and Uniqueness in the Weak Domain
We can now define formally some of the problems that we will study in the rest of this section.
To start, the optimisation variant for Weak Implementation is defined as follows.

I Definition 11 (Opt-WI). Given a game G and a specification formula ϕ:

What is the optimum budget β such that WI(G, ϕ, β) 6= ∅?

Another natural problem, which is related to Opt-WI, is the “exact” variant – a
membership question. In this case, in addition to G and ϕ, we are also given an integer b,
and ask whether it is indeed the smallest amount of budget that the principal has to spend
for some optimal weak implementation. This decision problem is formally defined as follows.

J. Guiterrez, M. Najib, G. Perelli, and M. Wooldridge 22:11

I Definition 12 (Exact-WI). Given a game G, a specification formula ϕ, and an integer b:

Is b equal to the optimum budget for WI(G, ϕ, β) 6= ∅?

To study these problems, it is useful to introduce some concepts first. More specifically, let
us introduce the concept of implementation efficiency. We say that a Weak Implementation
(resp. Strong Implementation) is efficient if β = cost(κ) and there is no κ′ such that
cost(κ′) < cost(κ) and κ′ ∈WI(G, ϕ, β) (resp. κ′ ∈ SI(G, ϕ, β)). In addition to the concept
of efficiency for an implementation problem, it is also useful to have the following result.

I Proposition 13. Let zi be the largest payoff that player i can get after deviating from a
path π. The optimum budget is an integer between 0 and

∑
i∈N zi · (|St| − 1).

Using Proposition 13, we can show that both Opt-WI and Exact-WI can be solved in
PSPACE for LTL specifications. Intuitively, the reason is that we can use the upper bound
given by Proposition 13 to go through all possible solutions in exponential time, but using
only nondeterministic polynomial space. Formally, we have the following results.

I Theorem 14. Opt-WI with LTL specifications is FPSPACE-complete.

I Corollary 15. Exact-WI with LTL specifications is PSPACE-complete.

The fact that both Opt-WI and Exact-WI with LTL specifications can be answered in,
respectively, FPSPACE and PSPACE does not come as a big surprise: checking an instance
can be done using polynomial space and there are only exponentially many instances to
be checked. However, for Opt-WI and Exact-WI with GR(1) specifications, these two
problems are more interesting.

I Theorem 16. Opt-WI with GR(1) specifications is FPNP-complete.

Proof sketch. Membership follows from the fact that the search space, which is bounded
as in Proposition 13, can be explored using binary search and Weak Implementation as
an oracle. More precisely, we can find the smallest budget β such that WI(G, ϕ, β) 6= ∅ by
checking every possible value for β, which lies between 0 and 2n, where n is the length of the
encoding of the instance. Since, due to the binary search routine, we need logarithmically
many calls to the NP oracle (i.e., to Weak Implementation), in the end we have a searching
procedure that would run in polynomial time. For the lower bound, we reduce from TSP
Cost (the optimal travelling salesman problem), which is FPNP-complete [28]. J

I Corollary 17. Exact-WI with GR(1) specifications is DP-complete.

Proof. For membership, observe that an input is a “yes” instance of Exact-WI if and
only if it is a “yes” instance of Weak Implementation and a “yes” instance of Weak
Implementation Complement (the problem where one asks whether WI(G, ϕ, β) = ∅).
Since the former problem is in NP and the latter problem is in coNP, membership in DP

follows. For the lower bound, we use the same reduction technique as in Theorem 16, and
reduce from Exact TSP, a problem known to be DP-hard [28, 29]. J

Following [27], we may naturally ask whether the optimal solution given by Opt-WI is
unique. We call this problem UOpt-WI. For some fixed budget β, it may be the case that
for two subsidy schemes κ, κ′ ∈WI(G, ϕ, β) – we assume the implementation is efficient – we
have κ 6= κ′ and cost(κ) = cost(κ′). With LTL specifications, it is not difficult to see that we
can solve UOpt-WI in polynomial space. Therefore, we have the following result.

CONCUR 2019

22:12 Equilibrium Design for Concurrent Games

I Corollary 18. UOpt-WI with LTL specifications is PSPACE-complete.

For GR(1) specifications, we reason about UOpt-WI using the following procedure:
1. Find the exact budget using binary search and Weak Implementation as an oracle;
2. Use an NP oracle once to guess two distinct subsidy schemes with precisely this budget;

if no such subsidy schemes exist, return “yes”; otherwise, return “no”.
The above decision procedure clearly is in ∆P

2 (for the upper bound). Furthermore, since
Theorem 16 implies ∆P

2 -hardness [22] (for the lower bound), we have the following corollary.

I Corollary 19. UOpt-WI with GR(1) specifications is ∆P
2 -complete.

6.2 Optimality and Uniqueness in the Strong Domain
In this subsection, we study the same problems as in the previous subsection but with
respect to the Strong Implementation variant of the equilibrium design problem. We
first formally define the problems of interest and then present the two first results.

I Definition 20 (Opt-SI). Given a game G and a specification formula ϕ:

What is the optimum budget β such that SI(G, ϕ, β) 6= ∅?

I Definition 21 (Exact-SI). Given a game G, a specification formula ϕ, and an integer b:

Is b equal to the optimum budget for SI(G, ϕ, β) 6= ∅?

For the same reasons discussed in the weak versions of these two problems, we can prove
the following two results with respect to games with LTL specifications.

I Theorem 22. Opt-SI with LTL specifications is FPSPACE-complete.

I Corollary 23. Exact-SI with LTL specifications is PSPACE-complete.

For GR(1) specifications, observe that using the same arguments for the upper-bound
of Opt-WI with GR(1) specifications, we obtain the upper-bound for Opt-SI with GR(1)
specifications. Then, it follows that Opt-SI is in FPΣP

2 . For hardness, we define an FPΣP
2-

complete problem, namely Weighted MinQSAT2. Recall that in QSAT2 we are given
a Boolean 3DNF formula ψ(x,y) and sets x = {x1, . . . , xn},y = {y1, . . . , ym}, with a set
of terms T = {t1, . . . , tk}. Define Weighted MinQSAT2 as follows. Given ψ(x,y) and a
weight function c : x→ Z≥, Weighted MinQSAT2 is the problem of finding an assignment
~x ∈ {0, 1}n with the least total weight such that ψ(x,y) is true for every ~y ∈ {0, 1}m. Observe
that Weighted MinQSAT2 generalises MinQSAT2, which is known to be FPΣP

2[logn]-hard
[12], i.e., MinQSAT2 is an instance of Weighted MinQSAT2, where all weights are 1.

I Theorem 24. Weighted MinQSAT2 is FPΣP
2-complete.

Proof. Membership follows from the upper-bound of MinQSAT2 [12]: since we have an
exponentially large input with respect to that of MinQSAT2, by using binary search we will
need polynomially many calls to the ΣP

2 oracle. Hardness is immediate [12]. J

Now that we have an FPΣP
2 -hard problem in our hands, we can proceed to determine the

complexity class of Opt-SI with GR(1) specifications. For the upper bound we one can use
arguments analogous to those in Theorem 16. For the lower bound, one can reduce from
Weighted MinQSAT2. Formally, we have:

J. Guiterrez, M. Najib, G. Perelli, and M. Wooldridge 22:13

I Theorem 25. Opt-SI with GR(1) specifications is FPΣP
2-complete.

I Corollary 26. Exact-SI with GR(1) specifications is DP
2 -complete.

Proof. Membership follows from the fact that an input is a “yes” instance of Exact-SI (with
GR(1) specifications) if and only if it is a “yes” instance of Strong Implementation and a
“yes” instance of Strong Implementation Complement, the decision problem where we
ask SI(G, ϕ, β) = ∅ instead. The lower bound follows from the hardness of Strong Imple-
mentation and Strong Implementation Complement problems, which immediately
implies DP

2 -hardness [1, Lemma 3.2]. J

Furthermore, analogous to UOpt-WI, we also have the following corollaries.

I Corollary 27. UOpt-SI with LTL specifications is PSPACE-complete.

I Corollary 28. UOpt-SI with GR(1) specifications is ∆P
3 -complete.

7 Conclusions & Related and Future Work

Equilibrium design vs. mechanism design – connections with Economic theory

Although equilibrium design is closely related to mechanism design, as typically studied in
game theory [21], the two are not exactly the same. Two key features in mechanism design
are the following. Firstly, in a mechanism design problem, the designer is not given a game
structure, but instead is asked to provide one; in that sense, a mechanism design problem is
closer to a rational synthesis problem [14, 16]. Secondly, in a mechanism design problem, the
designer is only interested in the game’s outcome, which is given by the payoffs of the players
in the game; however, in equilibrium design, while the designer is interested in the payoffs of
the players as these may need to be perturbed by its budget, the designer is also interested –
and in fact primarily interested – in the satisfaction of a temporal logic goal specification,
which the players in the game do not take into consideration when choosing their individual
rational choices; in that sense, equilibrium design is closer to rational verification [17] than
to mechanism design. Thus, equilibrium design is a new computational problem that sits
somewhere in the middle between mechanism design and rational verification/synthesis.
Technically, in equilibrium design we go beyond rational synthesis and verification through
the additional design of subsidy schemes for incentivising behaviours in a concurrent and
multi-agent system, but we do not require such subsidy schemes to be incentive compatible
mechanisms, as in mechanism design theory, since the principal may want to reward only
a group of players in the game so that its temporal logic goal is satisfied, while rewarding
other players in the game in an unfair way – thus, leading to a game with a suboptimal
social welfare measure. In this sense, equilibrium design falls short with respect to the more
demanding social welfare requirements often found in mechanism design theory.

Equilibrium design vs. rational verification – connections with Computer science

Typically, in rational synthesis and verification [14, 16, 17, 23] we want to check whether
a property is satisfied on some/every Nash equilibrium computation run of a reactive,
concurrent, and multi-agent system. These verification problems are primarily concerned
with qualitative properties of a system, while assuming rationality of system components.
However, little attention is paid to quantitative properties of the system. This drawback has
been recently identified and some work has been done to cope with questions where both

CONCUR 2019

22:14 Equilibrium Design for Concurrent Games

qualitative and quantitative concerns are considered [3, 6, 9, 10, 11, 18, 20, 34]. Equilibrium
design is new and different approach where this is also the case. More specifically, as
in a mechanism design problem, through the introduction of an external principal – the
designer in the equilibrium design problem – we can account for overall qualitative properties
of a system (the principal’s goal given by an LTL or a GR(1) specification) as well as for
quantitative concerns (optimality of solutions constrained by the budget to allocate additional
rewards/resources). Our framework also mixes qualitative and quantitative features in a
different way: while system components are only interested in maximising a quantitative
payoff, the designer is primarily concerned about the satisfaction of a qualitative (logic)
property of the system, and only secondarily about doing it in a quantitatively optimal way.

Equilibrium design vs. repair games and normative systems – connections with AI

In recent years, there has been an interest in the analysis of rational outcomes of multi-agent
systems modelled as multi-player games. This has been done both with modelling and with
verification purposes. In those multi-agent settings, where AI agents can be represented as
players in a multi-player game, a focus of interest is on the analysis of (Nash) equilibria
in such games [8, 17]. However, it is often the case that the existence of Nash equilibria
in a multi-player game with temporal logic goals may not be guaranteed [16, 17]. For this
reason, there has been already some work on the introduction of desirable Nash equilibria in
multi-player games [2, 30]. This problem has been studied as a repair problem [2] in which
either the preferences of the players (given by winning conditions) or the actions available
in the game are modified; the latter one also being achieved with the use of normative
systems [30]. In equilibrium design, we do not directly modify the preferences of agents in the
system, since we do not alter their goals or choices in the game, but we indirectly influence
their rational behaviour by incentivising players to visit, or to avoid, certain states of the
overall system. We studied how to do this in an (individually) optimal way with respect to
the preferences of the principal in the equilibrium design problem. However, this may not
always be possible, for instance, because the principal’s temporal logic specification goal is
just not achievable, or because of constraints given by its limited budget.

Future work: social welfare requirements and practical implementation

As discussed before, a key difference with mechanism design is that social welfare requirements
are not considered [25]. However, a benevolent principal might not see optimality as an
individual concern, and instead consider the welfare of the players in the design of a subsidy
scheme. In that case, concepts such as the utilitarian social welfare may be undesirable as the
social welfare maximising the payoff received by players might allocate all the budget to only
one player, and none to the others. A potentially better option is to improve fairness in the
allocation of the budget by maximising the egalitarian social welfare. Finally, given that the
complexity of equilibrium design is much better than that of rational synthesis/verification,
we should be able to have efficient implementations, for instance, as an extension of EVE [19].

References
1 Gadi Aleksandrowicz, Hana Chockler, Joseph Y. Halpern, and Alexander Ivrii. The Computa-

tional Complexity of Structure-based Causality. J. Artif. Int. Res., 58(1):431–451, January
2017. URL: http://dl.acm.org/citation.cfm?id=3176764.3176775.

2 S. Almagor, G. Avni, and O. Kupferman. Repairing Multi-Player Games. In CONCUR,
volume 42 of LIPIcs, pages 325–339. Schloss Dagstuhl, 2015.

http://dl.acm.org/citation.cfm?id=3176764.3176775

J. Guiterrez, M. Najib, G. Perelli, and M. Wooldridge 22:15

3 S. Almagor, O. Kupferman, and G. Perelli. Synthesis of Controllable Nash Equilibria in
Quantitative Objective Games. In IJCAI, pages 35–41, 2018.

4 B. Aminof, V. Malvone, A. Murano, and S. Rubin. Graded Strategy Logic: Reasoning about
Uniqueness of Nash Equilibria. In AAMAS, pages 698–706. ACM, 2016.

5 R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Sa’ar. Synthesis of Reactive(1)
designs. Journal of Computer and System Sciences, 78(3):911–938, 2012.

6 A. Bohy, V. Bruyère, E. Filiot, and J. Raskin. Synthesis from LTL Specifications with
Mean-Payoff Objectives. In TACAS, pages 169–184, 2013.

7 U. Boker, K. Chatterjee, T. A. Henzinger, and O. Kupferman. Temporal Specifications with
Accumulative Values. ACM Transactions on Computational Logic, 15(4):27:1–27:25, 2014.
doi:10.1145/2629686.

8 P. Bouyer, R. Brenguier, N. Markey, and M. Ummels. Pure Nash Equilibria in Concurrent
Deterministic Games. Logical Methods in Computer Science, 11(2), 2015.

9 K. Chatterjee and L. Doyen. Energy parity games. Theoretical Computer Science, 458:49–60,
2012.

10 K. Chatterjee, L. Doyen, T. Henzinger, and J. Raskin. Generalized Mean-payoff and Energy
Games. In FSTTCS, pages 505–516, 2010. doi:10.4230/LIPIcs.FSTTCS.2010.505.

11 K. Chatterjee, T. A. Henzinger, and M. Jurdzinski. Mean-Payoff Parity Games. In LICS,
pages 178–187. IEEE Computer Society, 2005.

12 H. Chockler and J. Halpern. Responsibility and Blame: A Structural-Model Approach. Journal
of Artificial Intelligence Research, 22:93–115, 2004.

13 Aldric Degorre, Laurent Doyen, Raffaella Gentilini, Jean-François Raskin, and Szymon Tor-
uńczyk. Energy and Mean-Payoff Games with Imperfect Information. In Anuj Dawar and
Helmut Veith, editors, Computer Science Logic, pages 260–274, Berlin, Heidelberg, 2010.
Springer Berlin Heidelberg.

14 D. Fisman, O. Kupferman, and Y. Lustig. Rational Synthesis. In TACAS, volume 6015 of
LNCS, pages 190–204. Springer, 2010.

15 J. Gutierrez, P. Harrenstein, G. Perelli, and M. Wooldridge. Nash Equilibrium and Bisimulation
Invariance. In CONCUR, volume 85 of LIPIcs, pages 17:1–17:16. Schloss Dagstuhl, 2017.

16 J. Gutierrez, P. Harrenstein, and M. Wooldridge. Iterated Boolean Games. Information and
Computation, 242:53–79, 2015.

17 J. Gutierrez, P. Harrenstein, and M. Wooldridge. From Model Checking to Equilibrium
Checking: Reactive Modules for Rational Verification. Artificial Intelligence, 248:123–157,
2017.

18 J. Gutierrez, A. Murano, G. Perelli, S. Rubin, and M. Wooldridge. Nash Equilibria in
Concurrent Games with Lexicographic Preferences. In IJCAI, pages 1067–1073, 2017. doi:
10.24963/ijcai.2017/148.

19 J. Gutierrez, M. Najib, G. Perelli, and M. Wooldridge. EVE: A Tool for Temporal Equilibrium
Analysis. In ATVA, volume 11138 of LNCS, pages 551–557. Springer, 2018.

20 J. Gutierrez, M. Najib, G. Perelli, and M. Wooldridge. On Computational Tractability for
Rational Verification. In IJCAI, 2019. To appear.

21 L. Hurwicz and S. Reiter. Designing Economic Mechanisms. Cambridge University Press,
2006.

22 M. Krentel. The Complexity of Optimization Problems. Journal of Computer and System
Sciences, 36(3):490–509, 1988. doi:10.1016/0022-0000(88)90039-6.

23 O. Kupferman, G. Perelli, and M. Y. Vardi. Synthesis with Rational Environments. Annals of
Mathematics and Artificial Intelligence, 78(1):3–20, 2016.

24 M. Wooldridge and U. Endriss and S. Kraus and J. Lang. Incentive engineering for Boolean
games. Artificial Intelligence, 195:418–439, 2013. doi:10.1016/j.artint.2012.11.003.

25 M. Maschler, E. Solan, and S. Zamir. Game Theory. Cambridge University Press, 2013.
26 M.J. Osborne and A. Rubinstein. A Course in Game Theory. MIT Press, 1994.

CONCUR 2019

http://dx.doi.org/10.1145/2629686
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.505
http://dx.doi.org/10.24963/ijcai.2017/148
http://dx.doi.org/10.24963/ijcai.2017/148
http://dx.doi.org/10.1016/0022-0000(88)90039-6
http://dx.doi.org/10.1016/j.artint.2012.11.003

22:16 Equilibrium Design for Concurrent Games

27 C. Papadimitriou. On the Complexity of Unique Solutions. Journal of the ACM, 31(2):392–400,
1984. doi:10.1145/62.322435.

28 C. Papadimitriou. Computational complexity. Addison-Wesley, Reading, Massachusetts, 1994.
29 C. Papadimitriou and M. Yannakakis. The Complexity of Facets (and some Facets of

Complexity). Journal of Computer and System Sciences, 28(2):244–259, 1984.
30 G. Perelli. Enforcing Equilibria in Multi-Agent Systems. In Proceedings of the 18th International

Conference on Autonomous Agents and MultiAgent Systems, AAMAS ’19, pages 188–196, 2019.
URL: http://dl.acm.org/citation.cfm?id=3306127.3331692.

31 A. Pnueli. The Temporal Logic of Programs. In FOCS, pages 46–57. IEEE, 1977.
32 A. Pnueli and R. Rosner. On the Synthesis of a Reactive Module. In POPL, pages 179–190.

ACM Press, 1989.
33 M. Ummels and D. Wojtczak. The Complexity of Nash Equilibria in Limit-Average Games.

In CONCUR, pages 482–496, 2011. doi:10.1007/978-3-642-23217-6_32.
34 Y. Velner, K. Chatterjee, L. Doyen, T. Henzinger, A. Rabinovich, and J. Raskin. The

Complexity of Multi-Mean-Payoff and Multi-Energy Games. Information and Computation,
241:177–196, 2015.

35 U. Zwick and M. Paterson. The Complexity of Mean Payoff Games on Graphs. Theoretical
Computer Science, 158(1):343–359, 1996. doi:10.1016/0304-3975(95)00188-3.

http://dx.doi.org/10.1145/62.322435
http://dl.acm.org/citation.cfm?id=3306127.3331692
http://dx.doi.org/10.1007/978-3-642-23217-6_32
http://dx.doi.org/10.1016/0304-3975(95)00188-3

Partial Order Reduction for Reachability Games
Frederik Meyer Bønneland
Department of Computer Science, Aalborg University, Denmark
frederikb@cs.aau.dk

Peter Gjøl Jensen
Department of Computer Science, Aalborg University, Denmark
pgj@cs.aau.dk

Kim G. Larsen
Department of Computer Science, Aalborg University, Denmark
kgl@cs.aau.dk

Marco Muñiz
Department of Computer Science, Aalborg University, Denmark
muniz@cs.aau.dk

Jiří Srba
Department of Computer Science, Aalborg University, Denmark
srba@cs.aau.dk

Abstract
Partial order reductions have been successfully applied to model checking of concurrent systems and
practical applications of the technique show nontrivial reduction in the size of the explored state
space. We present a theory of partial order reduction based on stubborn sets in the game-theoretical
setting of 2-player games with reachability/safety objectives. Our stubborn reduction allows us to
prune the interleaving behaviour of both players in the game, and we formally prove its correctness on
the class of games played on general labelled transition systems. We then instantiate the framework
to the class of weighted Petri net games with inhibitor arcs and provide its efficient implementation
in the model checker TAPAAL. Finally, we evaluate our stubborn reduction on several case studies
and demonstrate its efficiency.

2012 ACM Subject Classification Theory of computation → Algorithmic game theory

Keywords and phrases Petri nets, games, synthesis, partial order reduction, stubborn sets

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2019.23

Funding The research leading to these results has received funding from the project DiCyPS funded
by the Innovation Fund Denmark and the ERC Advanced Grant LASSO. The last author is partially
affiliated with FI MU, Brno, Czech Republic.

1 Introduction

The state space explosion problem is the main obstacle for model checking of concurrent
systems as even very simple processes running in parallel can produce an exponentially
large number of possible interleavings and hence make the state space search practically
intractable. One of the ways to tame this problem is by employing a variety of partial order
reduction techniques, including the seminal work on stubborn set reductions by Valmari
et al. [24, 23, 25].

As our main contribution, we generalize the theory of partial order reductions into the
framework of 2-player games. The idea is that whenever one of the players can perform a
series of moves in different sub-components of the system in parallel (without being disturbed
by the other player), we may apply the classical stubborn set reductions in order to reduce
the number of interleavings of independent actions. There is a number of subtle points that

© Frederik Meyer Bønneland, Peter Gjøl Jensen, Kim Guldstrand Larsen, Marco Muñiz, and
Jiří Srba;
licensed under Creative Commons License CC-BY

30th International Conference on Concurrency Theory (CONCUR 2019).
Editors: Wan Fokkink and Rob van Glabbeek; Article No. 23; pp. 23:1–23:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:frederikb@cs.aau.dk
https://orcid.org/0000-0002-9320-9991
mailto:pgj@cs.aau.dk
mailto:kgl@cs.aau.dk
https://orcid.org/0000-0003-2357-0375
mailto:muniz@cs.aau.dk
mailto:srba@cs.aau.dk
https://doi.org/10.4230/LIPIcs.CONCUR.2019.23
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Partial Order Reduction for Reachability Games

one has to satisfy so that the reduced game preserves the winning strategies of both players.
We formulate a number of sufficient conditions that define the notion of a stable stubborn set
reduction that guarantees the preservation of winning strategies for both players in the game.
In the setting of general game labelled transition systems, we formally prove the correctness
of stable reductions and we demonstrate the applicability of the framework on weighted Petri
net games with inhibitor arcs. We show how to approximate in a syntax-driven manner
the conditions of a stable Petri net game reduction and provide an efficient, open source
implementation in the model checker TAPAAL [6]. We also implement a game engine based
on dependency graphs, following the approach from [14, 5], and on several case studies
evaluate the game engine both with and without the use of the stable stubborn set reduction.
The experiments demonstrate that the computation of the stubborn sets has only a minor
overhead and has the potential of achieving exponential reduction both in the running
time as well as in the number of searched configurations. We believe that this is the first
implementation of 2-player game partial order reduction technique for Petri nets working
in practice.

Related Work. Partial order reductions in the non-game setting for linear time properties
have previously been studied [19, 23, 18, 17] which lends itself towards the safeness or liveness
properties we want to preserve for winning states. In [19] and [23] Peled and Valmari present
partial order reductions for general LTL. In [18] Lehmann et al. study stubborn sets applied
to a subset of LTL properties called simple linear time properties which does not require all
the requirements for general LTL preservation.

The extension of partial order reductions to game-oriented formalisms and verification
tasks has not yet received much attention in the literature. In [10] partial order reductions
for LTL without the next operator are adapted to a subset of alternating-time temporal
logic and applied to multi-agent systems. The authors considers games with imperfect
information, however they also show that their technique does not work for strategies
with perfect information. We assume an antagonistic environment and focus on preserving
the existence of winning strategies with perfect information, reducing the state space and
improving existing controller synthesis algorithms. Partial order reduction for the problem of
checking bisimulation equivalance between two labelled transition systems is presented in [9].
Our partial order reduction is applied directly to a labelled transition system while theirs are
applied to the bisimulation game graph. While the setting is distinctly different, our approach
is more general as we allow for mixed states, provide less information to the controller, and
allow for reduction in both controllable as well as environmental states. Moreover, we provide
an implementation of the on-the-fly strategy synthesis algorithm and argue by a number of
case studies for its practical applicability.

The work on partial order reductions for modal mu-calculus and CTL (see e.g. [21, 26])
allows us in principle to encode the game semantics as a part of the mu-calculus formula,
however, there is to the best of our knowledge no literature documenting the practical
applicability of this approach.

Complexity and decidability results for control synthesis in Petri nets games are not
encouraging. The control synthesis problem is for many instances of Petri net formalisms
undecidable [1, 2], including those that allow for inhibition [2] which we utilise to model our
case studies. If the problem is decidable for a given instance of a Petri net formalism (like
e.g. for bounded nets) then it is usually of exponential complexity. In fact, most questions
about the behaviour of bounded Petri nets are at least PSPACE-hard [11]. Among these
questions is the existence of an infinite run [7] that we need to test as one of the sufficient

F.M. Bønneland, P. G. Jensen, K. G. Larsen, M. Muñiz, and J. Srba 23:3

conditions for applying stubborn set reductions to games. Instead of using exact infinite run
detection approaches like in [7], we opt for efficient overapproximation algorithms to detect
cycles using both syntactic and local state information.

2 Preliminaries

I Definition 1 (Game Labelled Transition System). A (deterministic) Game Labelled Trans-
ition System (GLTS) is a tuple G = (S, A1, A2,→,Goal) where S is a set of states, A1 is a
finite set of actions for player 1 (the controller), A2 is a finite set of actions for player 2 (the
environment) where A1 ∩A2 = ∅ and A = A1 ∪A2, → ⊆ S ×A× S is a transition relation
s.t. if (s, a, s′) ∈ → and (s, a, s′′) ∈ → then s′ = s′′, and Goal ⊆ S is a set of goal states.

Let G = (S, A1, A2,→,Goal) be a fixed GLTS for the remainder of the section. Whenever
(s, a, s′) ∈ → we write s a−→ s′ and say that a is enabled in s and can be fired in s yielding s′.
Otherwise we say that a is disabled in s. The set of enabled player i actions where i ∈ {1, 2}
in a state s ∈ S is given by eni(s) = {a ∈ Ai | ∃s′ ∈ S. s

a−→ s′}. The set of all enabled
actions is given by en(s) = en1(s) ∪ en2(s). For a state s ∈ S where en(s) 6= ∅ if en2(s) = ∅
then we call s a player 1 state, if en1(s) = ∅ then we call s a player 2 state, and otherwise
we call it a mixed state. The GLTS G is called non-mixed if all states are either player
1 or player 2 states. For a sequence of actions w = a1a2 · · · an ∈ A∗ we write s w−→ s′ if
s
a1−→ s1

a2−→ · · · an−−→ s′. If w ∈ Aω, i.e. it is infinite, then we write s w−→. Actions that are a
part of w are said to occur in w. A sequence of states induced by w ∈ A∗ ∪Aω is called a
run and is written as π = s0s1 · · · . We use ΠG(s) to denote the set of all runs starting from
a state s ∈ S in GLTS G, s.t. for all s0s1 · · · ∈ ΠG(s) we have s0 = s, and ΠG =

⋃
s∈S ΠG(s)

as the set of all runs. The length of a run π (number of states in the run) is given by the
function ` : ΠG → N0 ∪ {∞}. A position in a run π = s0s1 . . . ∈ ΠG(s) is a natural number
i ∈ N0 that refers to the state si and is written as πi. A position i can range from 0 to `(π)
s.t. if π is infinite then i ∈ N0 and otherwise 0 ≤ i ≤ `(π). Let Πmax

G (s) be the set of all
maximal runs starting from s, defined as Πmax

G (s) = {π ∈ ΠG(s) | `(π) =∞∨en(π`(π)) = ∅)}.
We omit the GLTS G from the subscript of run sets if it is clear from the context.

A reduced game is defined by a function called a reduction.

I Definition 2 (Reduction). Let G = (S, A1, A2,→,Goal) be a GLTS. A reduction is a
function St : S → 2A.

I Definition 3 (Reduced Game). Let G = (S, A1, A2,→,Goal) be a GLTS and St be a
reduction. The reduced game of G by the reduction St is given by GSt = (S, A1, A2,−→

St
,Goal)

where s a−→
St

s′ iff s
a−→ s′ and a ∈ St(s).

The set of actions St(s) is the stubborn set of s with the reduction St. The set of
non-stubborn actions for s is defined as St(s) = A \ St(s).

A (memoryless) strategy is a function which proposes the next action player 1 wants to
be fired.

I Definition 4 (Strategy). Let G = (S, A1, A2,→,Goal) be a GLTS. A strategy is a function
σ : S → A1∪{⊥} where for all s ∈ S we have if en1(s) 6= ∅ then σ(s) ∈ en1(s) else σ(s) = ⊥.

CONCUR 2019

23:4 Partial Order Reduction for Reachability Games

The intuition is that in order to ensure progress, player 1 always has to propose an action
if she has an enabled action. Let σ be a fixed strategy for the remainder of the section. We
define a function nextσ(s) that returns the set of actions considered at s ∈ S under σ as:

nextσ(s) =
{
en2(s) ∪ σ(s) if σ(s) 6= ⊥
en2(s) otherwise.

Let Πmax
σ (s) ⊆ Πmax(s) be the set of maximal runs subject to σ starting at s ∈ S, defined as:

Πmax
σ (s) = {π ∈ Πmax(s) | ∀i ∈ {1, ..., `(π)}. ∃a ∈ nextσ(πi−1). πi−1

a−→ πi)} .

I Definition 5 (Winning Strategy). Let G = (S, A1, A2,→,Goal) be a GLTS and s ∈ S be a
state. A strategy σ is a winning strategy for player 1 at s in G iff for all π ∈ Πmax

σ (s) there
exists a position i s.t. πi ∈ Goal.

If a state is winning for player 1 in G then no matter what action sequence the environment
chooses, eventually a goal state is reached. Furthermore, for a given winning strategy σ at s
in G there is a finite number n ∈ N such that a goal state is always reached with at most n
action firings. We call the minimum such number the strategy depth of σ.

I Definition 6 (Strategy Depth). Let G = (S, A1, A2,→,Goal) be a GLTS, s ∈ S a winning
state for player 1 in G where s /∈ Goal, and σ a winning strategy at s in G. Then n ∈ N0 is
the depth of σ at s in G if:

for all π ∈ Πmax
G,σ (s) there exists 0 ≤ i ≤ n s.t. πi ∈ Goal, and

there exists π′ ∈ Πmax
G,σ (s) s.t. π′n ∈ Goal and for all 0 ≤ j < n we have π′j /∈ Goal.

I Lemma 7. Let G = (S, A1, A2,→,Goal) be a GLTS, s ∈ S a winning state for player 1
in G, and σ a winning strategy at s in G.
1. There exists n ∈ N0 that is the depth of σ at s in G.
2. For all a ∈ nextσ(s) where s a−→ s′, the depth of σ at s′ in G is m such that 0 ≤ m < n.

A set of actions for a given state and a given set of goal states is called an interesting
set if for any path leading to any goal state at least one action from the set of interesting
actions has to be fired.

I Definition 8 (Interesting Actions). Let G = (S, A1, A2,→,Goal) be a GLTS and s ∈ S a
state. A set of actions As(Goal) ⊆ A is called an interesting set of actions for s and Goal if
whenever s /∈ Goal, w = a1 · · · an ∈ A∗, s

w−→ s′, and s′ ∈ Goal then there exists 1 ≤ i ≤ n

s.t. ai ∈ As(Goal).

I Example 9. In Figure 1 we see an example of a GLTS G = (S, A1, A2,→,Goal) where
S = {s1, s2, s3, s4, s5, s6, s7} is the states denoted by a circle, A1 = {a, b, c} is the player 1
actions, A2 = {d} is the player 2 actions, and → is denoted by the solid and dashed lines
between states and labelled with a corresponding action for player 1 and 2, respectively. Let
Goal = {s6}.

We consider different proposals for a set of interesting actions for the state s1. The set
{b} is an interesting set of actions in s1 since the goal state s6 cannot be reached without
firing b at least once. Furthermore, the sets {a} and {c} are also sets of interesting actions
for the state s1.

Player 1 has to consider his safe actions. A player 1 action is safe in a given player 1
state if by firing it before any sequence of player 1 actions excluding the safe action then it
will never reach a player 2 state.

F.M. Bønneland, P. G. Jensen, K. G. Larsen, M. Muñiz, and J. Srba 23:5

s1 s2 s3

s4 s5 s6 ∈ Goal

s7safe(s1) = {a}
As1 ({sg}) = {a}

a b

c

a b

c

d

Figure 1 Example of safe and interesting sets of actions for a state s1.

I Definition 10 (Safe Action). Let G = (S, A1, A2,→,Goal) be a GLTS and s ∈ S a state
s.t. en2(s) = ∅. An action a ∈ A1 ∩ en1(s) is safe in s if whenever w ∈ (A1 \ {a})∗ and
s
w−→ s′ and en2(s′) = ∅ and s aw−−→ s′′ then en2(s′′) = ∅. The set of all safe actions for s is

written as safe(s).

I Example 11. Consider again the GLTS in Figure 1. We reasoned in Example 9 that the
set {b} is an interesting set of actions in the state s1. However, b is not a safe player 1 action
in s1 since by definition b has to be enabled at s1 to be safe. The enabled actions at s1
is en(s1) = {a, c}, and between these two actions only a is safe. The action c is not safe
since we have s1

a−→ s2 and en2(s2) = ∅ but s1
ca−→ s5 and en2(s5) 6= ∅. It is clear from the

figure that s1 is a winning state for player 1 with a as the action player 1 should choose in
order to win.

3 Stable Reduction

A reduction St provides at each state a set of actions which are sufficient to fire such that a
certain property is preserved in the reduced game. In the game setting, we have to guarantee
the preservation of winning strategies for both players in the game. In what follows, we
shall introduce a number of conditions that preserve winning strategies and we call such a
reduction a stable one.

For the remainder of the section let s ∈ S be a state and Goal ⊆ S be a set of goal states,
and let As(Goal) be a fixed set of interesting actions for s and Goal.

I Definition 12 (Stable Strategy Conditions). A reduction St is called stable if St satisfies
for every s ∈ S Conditions I, W, R, G1, G2, S, C, and D.
I If en1(s) 6= ∅ and en2(s) 6= ∅ then en(s) ⊆ St(s).
W For all w ∈ St(s)

∗
and all a ∈ St(s) if s wa−−→ s′ then s aw−−→ s′.

R As(Goal) ⊆ St(s)
G1 For all w ∈ St(s)

∗
if en2(s) = ∅ and s w−→ s′ then en2(s′) = ∅.

G2 For all w ∈ St(s)
∗
if en1(s) = ∅ and s w−→ s′ then en1(s′) = ∅.

S en1(s) ∩ St(s) ⊆ safe(s) or en1(s) ⊆ St(s)
C For all a ∈ A2 if there exists w ∈ Aω2 s.t. s w−→ and a occurs infinitely often in w then

a ∈ St(s).
D If en2(s) 6= ∅ then there exists a ∈ en2(s) ∩ St(s) s.t. for all w ∈ St(s)

∗
where s w−→ s′

we have a ∈ en2(s′).

CONCUR 2019

23:6 Partial Order Reduction for Reachability Games

If s is a mixed state then Condition I ensures all enabled actions are included in the
reduction. That is, we do not attempt to reduce the state space from this state. Condition W
ensures that we can swap the ordering of firing actions, such that firing the actions included
in the reduction first still ensures we can reach a given state, i.e. they are independent.
Condition R ensures that a goal state cannot be reached solely by exploring actions not
in the reduction, i.e. reachability of paths to goal states are preserved in the reduction.
Conditions G1 and G2 ensure that if a state is a player 1 (or player 2) state then a player
2 (or player 1) state cannot be reached solely by exploring actions not in the reduction,
i.e. reachability of paths to mixed states and opposing player states are preserved in the
reduction. Condition S ensures either that all stubborn player 1 actions are also safe and
if this is not the case then all player 1 actions are included in the reduction. Condition C
preserves infinite paths on which only player 2 actions are fired. Condition D ensures that at
least one player 2 action cannot be disabled solely by exploring actions not in the reduction.

I Example 13. In Figure 2 we see an example of a GLTS G = (S, A1, A2,→,Goal) where
S = {s1, s2, s3, s4, s5, s6, s7, s8, s9, s10} are the states denoted by a circle, A1 = {a, b, c, d} is
the player 1 actions, A2 = {e} is the player 2 action, and → is denoted by the solid and
dashed lines between states and labelled with a corresponding action for player 1 and 2,
respectively. Let Goal = {s8} be a fixed set of goal states for this GLTS and As1(Goal) = {a}
be a set of interesting actions. Thick lines indicate transitions and states that are preserved
by a stable reduction St, while thin lines indicates transitions and states that are removed
by the same reduction. For state s1 we have St(s1) = {a, c} as it is sufficient to satisfy the
stable reduction conditions. We satisfy G1 since c has to be fired once to reach s7. For
s1

ba−→ s5 and s1
bc−→ s7 we also have s1

ab−→ s5 and s1
cb−→ s7, so W is satisfied. Clearly St(s1)

is an interesting set since As1(Goal) ⊆ St(s1), so R is satisfied. Condition S is satisfied since
St(s1) ∩ en(s1) ⊆ safe(s1). We have that I, G2, C, and D are satisfied as well since their
antecedents are not true.

s1

s2

s3

s4

s5

s6

s7

s8 ∈ Goal

s9 s10

safe(s1) = {a}
As1 ({sg}) = {a, b, c}

a

b

c

b

c a

c a

b

c

b

a

d e

Figure 2 Example of a stable reduction for a state s1.

We shall first notice the fact that if a goal state is reachable from some state, then the
state has at least one enabled action that is also in the stubborn set.

I Lemma 14. Let G = (S, A1, A2,→,Goal) be a GLTS, St a reduction that satisfies Condi-
tions W and R, and s ∈ S a state. If there exists w ∈ A∗ s.t. s w−→ s′ and s′ ∈ Goal then
St(s) ∩ en(s) 6= ∅.

The correctness of stable stubborn reductions is proved by the next two lemmas. Both
lemmas are proved by induction on the depth of a winning strategy for player 1 in the game.

F.M. Bønneland, P. G. Jensen, K. G. Larsen, M. Muñiz, and J. Srba 23:7

I Lemma 15. Let G = (S, A1, A2,→,Goal) be a GLTS and St a stable reduction. For all
s ∈ S if state s is winning for player 1 in G then state s is winning for player 1 in GSt.

I Lemma 16. Let G = (S, A1, A2,→,Goal) be a GLTS and St a stable reduction. For all
s ∈ S if state s is winning for player 1 in GSt then state s is winning for player 1 in G.

We can now present the main theorem showing that stable reductions preserve the winning
strategies of both players in the game.

I Theorem 17 (Strategy Preservation for GLTS). Let G = (S, A1, A2,→) be a GLTS and St
a stable reduction. For all s ∈ S state s is winning for player 1 in G iff state s is winning
for player 1 in GSt.

Moreover, for non-mixed games we can simplify the conditions of stable reductions by
removing the requirement on safe actions.

I Theorem 18 (Strategy Preservation for Non-Mixed GLTS). Let G = (S, A1, A2,→) be a
non-mixed GLTS and St a stable reduction with Condition S excluded. For all s ∈ S state s
is winning for player 1 in G iff state s is winning for player 1 in GSt.

4 Stable Reductions on Petri Net Games

We now introduce the formalism of Petri net games and show how to algorithmically construct
stable reductions in a syntax-driven manner.

I Definition 19 (Petri Net Game). A Petri net game is a tuple N = (P, T1, T2,W, I) where P
and T = T1]T2 are finite sets of places and transitions, respectively, such that P ∩T = ∅ and
where transitions are partitioned into player 1 and player 2 transitions,W : (P×T)∪(T×P)→
N0 is a weight function for regular arcs, and I : (P × T) → N∞ is a weight function for
inhibitor arcs. A marking M on N is a function M : P → N0. The setM(N) is the set of
all markings for N .

For the rest of this section, let N = (P, T1, T2,W, I) be a fixed Petri net game such that
T = T1 ∪ T2. Let us first fix some useful notation. For a place or transition x, we
denote the preset of x as •x = {y ∈ P ∪ T | W ((y, x)) > 0}, and the postset of x as
x• = {y ∈ P ∪ T | W ((x, y)) > 0}. For a transition t, we denote the inhibitor preset of
t as ◦t = {p ∈ P | I((p, t)) 6= ∞}, and the inhibitor postset of a place p as p◦ = {t ∈ T |
I((p, t)) 6=∞}. For a place p we define the increasing preset of p, containing all transitions
that increase the number of tokens in p, as +p = {t ∈ •p | W ((t, p)) > W ((p, t))}, and
similarly the decreasing postset of p as p− = {t ∈ p• |W ((t, p)) < W ((p, t))}. For a transition
t we define the decreasing preset of t, containing all places that have their number of tokens
decreased by t, as −t = {p ∈ •t |W ((p, t)) > W ((t, p))}, and similarly the increasing postset
of t as t+ = {p ∈ t• | W ((p, t)) < W ((t, p))}. For a set X of either places or transitions,
we extend the notation as •X =

⋃
x∈X

•x and X• =
⋃
x∈X x

•, and similarly for the other
operators.

A Petri net N = (P, T1, T2,W, I) defines a GLTS G(N) = (S, A1, A2,→,Goal) where
S = M(N) is the set of all markings, A1 = T1 is the set of player 1 actions, A2 = T2 is
the set of player 2 actions, M t−→ M ′ whenever for all p ∈ P we have M(p) ≥ W ((p, t)),
M(p) < I((p, t)) and M ′(p) = M(p)−W ((p, t)) +W ((t, p)), and Goal ∈M(N) is the set of
goal markings, described by a simple reachability logic formula defined below.

By analysing the increasing presets and postsets, we can identify a sufficient condition
for a transition to be safe.

CONCUR 2019

23:8 Partial Order Reduction for Reachability Games

Table 1 Increasing and decreasing transitions for expression e ∈ EN .

Expression e incrM (e) decrM (e)
c ∅ ∅
p +p p−

e1 + e2 incrM (e1) ∪ incrM (e2) decrM (e1) ∪ decrM (e2)
e1 − e2 incrM (e1) ∪ decrM (e2) decrM (e1) ∪ incrM (e2)

e1 · e2
incrM (e1) ∪ decrM (e1) ∪
incrM (e2) ∪ decrM (e2)

incrM (e1) ∪ decrM (e1) ∪
incrM (e2) ∪ decrM (e2)

I Lemma 20 (Safe Transition). Let N = (P, T1, T2,W, I) be a Petri net game and t ∈ T a
transition. If t+ ∩ •T2 = ∅ and −t ∩ ◦T2 = ∅ then t is safe in any marking of N .

Let EN be the set of marking expressions in N given by the abstract syntax (here e
ranges over EN):

e ::= c | p | e1 ⊕ e2

where c ∈ N0, p ∈ P , and ⊕ ∈ {+,−, ∗}. An expression e ∈ EN is evaluated relatively to a
markingM ∈M(N) by the function evalM : EN → Z where evalM (c) = c, evalM (p) = M(p)
and evalM (e1 ⊕ e2) = evalM (e1)⊕ evalM (e2).

In Table 1 we define the functions incrM : EN → 2T and decrM : EN → 2T that, given an
expression e ∈ EN , return the set of transitions that can (when fired) increase resp. decrease
the evaluation of e.

I Lemma 21 ([4]). Let N = (P, T1, T2,W, I) be a Petri net and M ∈M(N) a marking. Let
e ∈ EN and let M w−→M ′ where w = t1t2 . . . tn ∈ T ∗.

If evalM (e) < evalM ′(e) then there is i, 1 ≤ i ≤ n, such that ti ∈ incrM (e).
If evalM (e) > evalM ′(e) then there is i, 1 ≤ i ≤ n, such that ti ∈ decrM (e).

We can now define the set of reachability formulae ΦN that evaluate over the markings
in N as follows:

ϕ ::= true | false | t | e1 ./ e2 |deadlock | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ¬ϕ

where e1, e2 ∈ EN , t ∈ T and ./ ∈ {<,≤,=, 6=, >,≥}.
The satisfaction relation for a formula ϕ ∈ ΦN in a marking M is defined as expected:

M |= true
M |= t iff t ∈ en(M)
M |= e1 ./ e2 iff evalM (e1) ./ evalM (e2)
M |= deadlock iff en(M) = ∅
M |= ϕ1 ∧ ϕ2 iff M |= ϕ1 and M |= ϕ2

M |= ϕ1 ∨ ϕ2 iff M |= ϕ1 or M |= ϕ2

M |= ¬ϕ iff M 6|= ϕ

Our aim is to be able to preserve at least one execution to the set Goal = {M ∈M(N) |
M |= ϕ} for a given formula ϕ describing the set of goal markings. In order to achieve this,
we define the set of interesting transitions AM (ϕ) for a formulae ϕ so that any firing sequence
of transitions from a marking that does not satisfy ϕ leading to a marking that satisfies ϕ
must contain at least one interesting transition. Table 2 provides the definition of AM (ϕ)

F.M. Bønneland, P. G. Jensen, K. G. Larsen, M. Muñiz, and J. Srba 23:9

Table 2 Interesting transitions of ϕ (assuming M 6|= ϕ, otherwise AM (ϕ) = ∅).

ϕ AM (ϕ) AM (¬ϕ)
deadlock (•t)− ∪ +(◦t) for some t ∈ en(M) ∅

t
+p for some p ∈ •t where M(p) < W ((p, t)) or
p− for some p ∈ ◦t where M(p) ≥ I((p, t)) (•t)− ∪ +(◦t)

e1 < e2 decrM (e1) ∪ incrM (e2) AM (e1 ≥ e2)
e1 ≤ e2 decrM (e1) ∪ incrM (e2) AM (e1 > e2)
e1 > e2 incrM (e1) ∪ decrM (e2) AM (e1 ≤ e2)
e1 ≥ e2 incrM (e1) ∪ decrM (e2) AM (e1 < e2)

e1 = e2
decrM (e1) ∪ incrM (e2) if evalM (e1) > evalM (e2)
incrM (e1) ∪ decrM (e2) if evalM (e1) < evalM (e2) AM (e1 6= e2)

e1 6= e2 incrM (e1) ∪ decrM (e1) ∪ incrM (e2) ∪ decrM (e2) AM (e1 = e2)
ϕ1 ∧ ϕ2 Defined in Equation (1) AM (¬ϕ1 ∨ ¬ϕ2)
ϕ1 ∨ ϕ2 AM (ϕ1) ∪AM (ϕ2) AM (¬ϕ1 ∧ ¬ϕ2)

that is similar to the one presented in [4] for the non-game setting, except for the conjunction
where we in our setting use Equation (1) that provides an optimisation for Condition S and
possibly ends with a smaller set of interesting transitions.

AM (ϕ1 ∧ ϕ2) =

AM (ϕ1) if M |= ϕ2

AM (ϕ2) if M |= ϕ1

AM (ϕ1) if M 6|= ϕ1 and AM (ϕ1) ⊆ safe(M)
AM (ϕ2) if M 6|= ϕ2 and AM (ϕ2) ⊆ safe(M)
AM (ϕ1) ∪AM (ϕ2) otherwise

(1)

The desired property of the set of interesting transitions is formulated below.

I Lemma 22. Let N = (P, T1, T2,W, I) be a Petri net, M ∈M(N) a marking, and ϕ ∈ ΦN
a formula. If M 6|= ϕ and M w−→M ′ where w ∈ AM (ϕ)

∗
then M ′ 6|= ϕ.

We shall now discuss a method for detecting the impossibility of infinite firing sequences
consisting of purely player 2 transitions. Let Fin ⊆ P ∪ T2 be the smallest set that for every
p ∈ P and every t ∈ T2 satisfies:
1. p ∈ Fin whenever W ((p, t)) > W ((t, p)) for every t ∈ •p ∩ T2,
2. t ∈ Fin whenever −t ∩ Fin 6= ∅, and
3. p ∈ Fin whenever •p ∩ T2 ⊆ Fin.
It is easy to observe that by performing any infinite firing sequence of T2 transitions, only
finitely many tokens can be added to any place from Fin and the infinite firing sequence
contains only finitely many occurrences of any transition from Fin. We let Inf = (P ∪T2)\Fin
denote the complement of the set Fin. Note that Fin and Inf only has to be computed once
as it is independent of any specific marking.

In Algorithm 1 we present an overapproximation algorithm for detecting cycles of player 2
transitions. The algorithm first checks for orphan transitions (with empty preset) and
includes them to the cycle transitions. Then, for a given marking M , it overapproximates
the set MarkedPlaces of possible places that can be marked by firing T2 transitions from M .
Finally, every transition from the set Inf that has its preset marked is added to the set of
possible infinite cycle transitions.

CONCUR 2019

23:10 Partial Order Reduction for Reachability Games

Algorithm 1: cycle(N,M): Overapproximation algorithm for computing the set of
transitions that may appear in infinite player 2 computations.

input :N = (P, T1, T2,W, I) and M ∈M(N)
output : If a transition t ∈ T2 appears infinitely often on some infinite firing

sequence of T2 transitions from the marking M then t ∈ cycle(N,M).
1 CycleTransitions := ∅;
2 foreach t ∈ T2 do
3 if •t = ∅ then
4 CycleTransitions := CycleTransitions ∪ {t};

5 FreshPlaces := {p ∈ P |M(p) > 0}; MarkedPlaces := ∅;
6 while MarkedPlaces 6= FreshPlaces do
7 MarkedPlaces := FreshPlaces;
8 foreach p ∈ P \MarkedPlaces do
9 if ∃t ∈ T2. p ∈ t• ∧ •t ⊆ MarkedPlaces then

10 FreshPlaces := FreshPlaces ∪ {p};

11 foreach t ∈ Inf ∩ T2 do
12 if •t ⊆ MarkedPlaces then
13 CycleTransitions := CycleTransitions ∪ {t};

14 return CycleTransitions;

I Lemma 23. Let N = (P, T1, T2,W, I) be a Petri net game and M ∈M(N). Algorithm 1
terminates and if there exists w ∈ Tω2 s.t. M w−→ where t ∈ T2 occurs infinitely often in w

then t ∈ cycle(N,M).

We can now provide a list of syntactic conditions that guarantee the stability of a given
reduction.

I Theorem 24 (Stable Reduction Preserving Closure). Let N = (P, T1, T2,W, I) be a Petri net
game, ϕ a formula, and St a reduction of G(N) such that for all M ∈M(N) the following
conditions hold.
1. If en1(M) 6= ∅ and en2(M) 6= ∅ then en(M) ⊆ St(M).
2. If en1(M) ∩ St(M) * safe(M) then en1(M) ⊆ St(M).
3. AM (ϕ) ⊆ St(M)
4. If en1(M) = ∅ then T1 ⊆ St(M).
5. If en2(M) = ∅ then T2 ⊆ St(M).
6. cycle(N,M) ⊆ St(M)
7. For all t ∈ St(M) if t /∈ en(M) then either

a. there exists p ∈ •t s.t. M(p) < W ((p, t)) and +p ⊆ St(s), or
b. there exists p ∈ ◦t s.t. M(p) ≥ I((p, t)) and p− ⊆ St(s).

8. For all t ∈ St(M) if t ∈ en(M) then
a. for all p ∈ −t we have p• ⊆ St(M), and
b. for all p ∈ t+ we have p◦ ⊆ St(M).

9. If en2(M) 6= ∅ then there exists t ∈ en2(M) ∪ St(M) s.t. (•t)− ∪ +(◦t) ⊆ St(M).

Then St satisfies I, W, R, G1, G2, S, C, and D.

F.M. Bønneland, P. G. Jensen, K. G. Larsen, M. Muñiz, and J. Srba 23:11

Algorithm 2: Computation of St(M) for some stable reduction St.
input :A Petri net game N = (P, T1, T2,W, I) and M ∈M(N) and formula ϕ
output :X ⊆ T where X is a stable stubborn set for M

1 if en(M) = ∅ then
2 return T ;
3 if en1(M) 6= ∅ ∧ en2(M) 6= ∅ then
4 return T ;
5 Y := ∅;
6 if en1(M) = ∅ then
7 Pick any t ∈ en2(M);
8 Y := T1 ∪ (•t)− ∪ +(◦t);
9 Y := Y ∪ cycle(N,M);

10 else
11 Y := T2;
12 Y := Y ∪AM (ϕ);
13 X := Saturate(Y);
14 if X ∩ en1(M) * safe(M) then
15 return T ;
16 return X;

In Algorithm 2 we provide a pseudocode for calculating stubborn sets for a given marking.
The algorithm calls Algorithm 3 that saturates a given set to satisfy Conditions 7 and 8.

I Theorem 25. Algorithm 2 terminates and returns St(M) for some stable reduction St.

I Remark 26. In the actual implementation of the algorithm, we first saturate only over the
set of interesting transitions and in the case that Saturate(AM (ϕ)) ∩ en(M) = ∅, we do not
explore any of the successors of the marking M as we know that no goal marking can be
reached from M (this follows from Lemma 14).

5 Implementation and Experiments

We extend the Petri net verification engine verifypn [12], a part of TAPAAL tool suite [6],
to experimentally demonstrate the viability of our approach. The synthesis algorithm for
solving Petri net games is an adaptation of the dependency graph fixed-point computation
from [15, 14] that we reimplement in C++ while utilising PTries [13] for efficient state storage.
The source code is available under GPLv3 [3]. We conduct a series of experiments using the
following scalable case studies.

In Autonomous Intersection Management (AIM) vehicles move at different speeds towards
an intersection and we want to ensure the absence of collisions. We model the problem as
a Petri net game and refer to each instance as AIM-W -X-Y -Z where W is the number
of intersections with lanes of length X, Z is the number of cars, and Y is the number of
different speeds for each car. The controller assign speeds to cars while the environment
aims to cause a collision. The goal marking is where all cars reach their destinations
while there are no collisions.
We reformulate the classical Producer Consumer System (PCS) as a Petri net game. In
each instance PCS-N -K the total of N consumers (controlled by the environment) and N
producers (controlled by the controller) share N buffers. Each consumer and producer has

CONCUR 2019

23:12 Partial Order Reduction for Reachability Games

Algorithm 3: Saturate(Y).
1 X := ∅;
2 while Y 6= ∅ do
3 Pick any t ∈ Y ;
4 if t /∈ en(M) then
5 if ∃p ∈ •t. M(p) < W ((p, t)) then
6 Pick any p ∈ •t s.t. M(p) < W ((p, t));
7 Y := Y ∪ (+p \X);
8 else
9 Pick any p ∈ ◦t s.t. M(p) ≥ I((p, t));

10 Y := Y ∪ (p− \X);

11 else
12 Y := Y ∪ (((−t)• ∪ (t+)◦) \X);
13 X := X ∪ {t};
14 Y := Y \ {t};
15 return X;

a fixed buffer to consume/produce from/to, and each consumer/producer has K different
randomly chosen consumption/production rates. The game alternates in rounds where
the player choose for each consumer/producer appropriate buffers and rates. The goal of
the game is to ensure that the consumers have always enough products in the selected
buffers while at the same time the buffers have limited capacity and may not overflow.
The Railway Scheduling Problem contains four instances modelling the Danish train
station Lyngby and three of its smaller variants. The scheduling problem, including the
station layout, was originally described as a game in [16] and each instance is annotated by
a number N representing the number of trains that migrate through the railway network.
The controller controls the lights and switches, while the environment moves the trains.
The goal of the controller is to make sure that all trains reach (without any collisions)
their final destinations.
The Nim (NIM-K-S) Petri net game was described in [22] as a two player game where
the players in rounds repeatedly remove between 1 and K pebbles from an initial stack
containing S pebbles. The player that has a turn and empty stack of pebbles loses. In
our (equivalent) model, we are instead adding pebbles and the player that first adds to
or above the given number S loses.
The Manufacturing Workflow (MW) contains instances of a software product line Petri
net model presented in [20]. The net describes a series of possible ways of configuring a
product (performed by the environment) while the controller aims to construct a requested
product. The model instance MW-N contains N possible choices of product features.
The Order Workflow (OW) Petri net game model is taken from [8] and the goal of the
game is to synthesise a strategy that guarantees a workflow soundness, irrelevant of the
choices made by the environment. We scale the workflow by repeatedly re-initialising the
workflow N times (denoted by OW-N).

All experimental evaluation is run on AMD Opteron 6376 Processors with 120 GB memory
limitation and 12 hours timeout (we measure only the execution time without the parsing
time of the models). We use for all experiments the depth first search strategy and we only

F.M. Bønneland, P. G. Jensen, K. G. Larsen, M. Muñiz, and J. Srba 23:13

Table 3 Experiments with and without partial order reduction (POR and NORMAL).

Time (seconds) Markings ×1000 Reduction
Model NORMAL POR NORMAL POR %Time %Markings
AIM-13-100-6-11 117.9 46.6 1702 514 60 70
AIM-13-100-6-16 173.9 63.2 2464 746 64 70
AIM-13-150-9-16 337.0 219.9 3696 2454 35 34
AIM-13-150-9-21 408.0 294.1 4853 3331 28 31
AIM-14-150-9-16 449.9 278.4 4259 2865 38 33
AIM-15-150-9-16 534.5 384.9 4861 3204 28 34
PCS-2-2 24.0 19.9 9629 6554 17 32
PCS-2-3 116.1 90.9 61990 39114 22 37
PCS-2-4 399.1 283.3 240510 145109 29 40
LyngbySmall-2 3.4 1.0 1803 444 71 75
LyngbySmall-3 23.1 26.1 11473 10701 -13 7
LyngbySmall-4 144.3 193.3 65371 70008 -34 -7
Lyngby-2 3292.0 215.5 1511749 87214 93 94
NIM-5-49500 9.2 3.4 5054 892 63 82
NIM-7-49500 32.7 3.9 24039 1159 88 95
NIM-9-49500 165.1 4.7 114235 1522 97 99
NIM-11-49500 710.7 8.2 533516 1877 99 100
MW-40 735.3 0.2 69439 9 100 100
MW-50 1952.0 0.2 135697 11 100 100
MW-60 4417.0 0.3 234570 13 100 100
OW-10000 0.9 0.7 320 240 22 25
OW-100000 11.1 7.8 3200 2400 30 25
OW-1000000 137.7 109.8 32000 24000 20 25

report the examples where the algorithms both with and without partial order reduction
returned a result within the time and memory limits. We provide a reproducibility package
with all models and experimental data [3].

5.1 Results
Table 3 shows the experimental evaluation, displaying the relative gain in computation time
(in seconds) without and with partial order reduction as well in the number of explored
markings (in thousands). The results demonstrate significant reductions across all models,
in some cases like in NIM and MW even of several degrees of magnitude. Other models like
PCS, AIM and OW show a moderate but significant reduction. We observe that the time
reduction is generally only few percent smaller than the reduction in the number of explored
markings, showing typically between 2% to 20% overhead for computing (on-the-fly) the
stubborn sets. For two instances of the LyngbySmall models we notice an actual slowdown in
the running time where for LyngbySmall-3 the number of reduced markings is less significant
and it results in 13% slowdown, partially due to the overhead for computing stubborn sets
but also because the search strategy changed and this resulted in the fact that we have to
search a larger portion of the generated dependency graph before we obtain a conclusive
answer. This effect is, in particular, observed in the LyngbySmall-4 example where the

CONCUR 2019

23:14 Partial Order Reduction for Reachability Games

number of markings stored when applying partial order reduction actually exceeds those
where no reduction is applied. Nevertheless, in general the experiments confirm the practical
applicability of partial order reduction for 2-player games with only minimal overhead for
computing the stubborn sets.

6 Conclusion

We generalised the partial order reduction technique based on stubborn sets from plain
reachability to a game theoretical setting. This required a nontrivial extension of the classical
conditions on stubborn sets so that a state space reduction can be achieved for both players
in the game. In particular, the computation of the stubborn sets for player 2 (uncontrollable
transitions) needed a new insight on how to handle and efficiently approximate the existence
of infinite runs with player 2 transitions only. We proved the correctness of our approach and
instantiated it to the case of Petri net games. We provided (to the best of our knowledge)
the first implementation of partial order reduction for Petri net games and made it available
as a part of the model checker TAPAAL. The experiments show promising results on a
number of case studies, achieving in general a substantial state space reduction with only a
small overhead for computing the stubborn sets. In the future work, we plan to combine our
contribution with a recent insight on how to effectively use partial order reduction in the
timed setting [4] in order to extend our framework to general timed games.

References
1 N. Alechina, N. Bulling, S. Demri, and B. Logan. On the complexity of resource-bounded

logics. In Reachability Problems, volume 9899 of LNCS, pages 36–50. Springer-Verlag, 2016.
2 B. Bérard, S. Haddad, M. Sassolas, and N. Sznajder. Concurrent Games on VASS with

Inhibition. In International Conference on Concurrency Theory, volume 7454 of LNCS, pages
39–52. Springer-Verlag, 2012.

3 F. M. Bønneland, P. G. Jensen, K. G. Larsen, M. Mũniz, and J. Srba. Artifact for “Partial
Order Reduction for Reachability Games”, June 2019. doi:10.5281/zenodo.3252104.

4 F.M. Bønneland, J. Dyhr, P.G. Jensen, M. Johannsen, and J. Srba. Start Pruning When Time
Gets Urgent: Partial Order Reduction for Timed Systems. In Computer Aided Verification,
volume 10981 of LNCS, pages 527–546. Springer-Verlag, 2018.

5 A.E. Dalsgaard, S. Enevoldsen, P. Fogh, L.S. Jensen, P.G. Jensen, T.S. Jepsen, I. Kaufmann,
K.G. Larsen, S.M. Nielsen, M.Chr. Olesen, S. Pastva, and J. Srba. A Distributed Fixed-Point
Algorithm for Extended Dependency Graphs. Fundamenta Informaticae, 161(4):351–381, 2018.
doi:10.3233/FI-2018-1707.

6 A. David, L. Jacobsen, M. Jacobsen, K.Y. Jørgensen, M.H. Møller, and J. Srba. TAPAAL 2.0:
Integrated Development Environment for Timed-Arc Petri Nets. In Tools and Algorithms for the
Construction and Analysis of Systems, volume 7214 of LNCS, pages 492–497. Springer-Verlag,
2012.

7 R. Davidrajuh. Detecting Existence of Cycles in Petri Nets. In International Joint Conference
SOCO’16-CISIS’16-ICEUTE’16, volume 527 of AISC, pages 376–385. Springer-Verlag, 2016.

8 J. Dehnert and A. Zimmermann. Making Workflow Models Sound Using Petri Net Controller
Synthesis. In On the Move to Meaningful Internet Systems 2004: CoopIS, DOA, and ODBASE,
volume 3290 of LNCS, pages 139–154. Springer-Verlag, 2004.

9 M. Huhn, P. Niebert, and H. Wehrheim. Partial Order Reductions for Bisimulation Checking.
In Foundations of Software Technology and Theoretical Computer Science, volume 1530 of
LNCS, pages 271–282. Springer-Verlag, 1998.

10 W. Jamroga, W. Penczek, P. Dembiński, and A. Mazurkiewicz. Towards Partial Order
Reductions for Strategic Ability. In Proceedings of the 17th International Conference on
Autonomous Agents and MultiAgent Systems, AAMAS 2018, pages 156–165, Richland, SC,
2018. ACM.

https://doi.org/10.5281/zenodo.3252104
https://doi.org/10.3233/FI-2018-1707

F.M. Bønneland, P. G. Jensen, K. G. Larsen, M. Muñiz, and J. Srba 23:15

11 E. Javier. Decidability and Complexity of Petri Net Problems – An Introduction, volume 1491
of LNCS, pages 374–428. Springer-Verlag, 1998.

12 J.F Jensen, T. Nielsen, L.K. Oestergaard, and J. Srba. TAPAAL and Reachability Analysis of
P/T Nets. In Transactions on Petri Nets and Other Models of Concurrency XI, volume 9930
of LNCS, pages 307–318. Springer-Verlag, 2016.

13 P. G. Jensen, K. G. Larsen, and J. Srba. PTrie: Data Structure for Compressing and Storing
Sets via Prefix Sharing. In Proceedings of the 14th International Colloquium on Theoretical
Aspects of Computing (ICTAC’17), volume 10580 of LNCS, pages 248–265. Springer-Verlag,
2017. doi:10.1007/978-3-319-67729-3_15.

14 P.G. Jensen, K.G. Larsen, and J. Srba. Real-Time Strategy Synthesis for Timed-Arc Petri Net
Games via Discretization. In International Symposium on Model Checking Software, volume
9641 of LNCS, pages 129–146. Springer-Verlag, 2016.

15 P.G. Jensen, K.G. Larsen, and J. Srba. Discrete and continuous strategies for timed-arc Petri
net games. International Journal on Software Tools for Technology Transfer, 20(5):529–546,
October 2018.

16 P. Kasting, M.R. Hansen, and S. Vester. Synthesis of Railway-Signaling Plans using Reachability
Games. In Proceedings of the 28th Symposium on the Implementation and Application of
Functional Programming Languages, IFL 2016, pages 9:1–9:13, New York, NY, USA, 2016.
ACM. doi:10.1145/3064899.3064908.

17 A. Laarman and A. Wijs. Partial-Order Reduction for Multi-core LTL Model Checking.
In Hardware and Software: Verification and Testing, volume 8855 of LNCS, pages 267–283.
Springer-Verlag, 2014.

18 A. Lehmann, N. Lohmann, and K. Wolf. Stubborn Sets for Simple Linear Time Properties. In
Application and Theory of Petri Nets, volume 7347 of LNCS, pages 228–247. Springer-Verlag,
2012.

19 D. Peled. All from One, One for All: on Model Checking Using Representatives. In Computer
Aided Verification, volume 697 of LNCS, pages 409–423. Springer-Verlag, 1993.

20 F.G. Quintanilla, S. Kubler, O. Cardin, and P. Castagna. Product Specification in a
Service-Oriented Holonic Manufacturing System using Petri-Nets. IFAC Proceedings Volumes,
46(7):342–347, May 2013. doi:10.3182/20130522-3-BR-4036.00094.

21 Y.S. Ramakrishna and S.A. Smolka. Partial-Order Reduction in the Weak Modal Mu-
Calculus. In Antoni Mazurkiewicz and Józef Winkowski, editors, International Conference on
Concurrency Theory, volume 1243 of LNCS, pages 5–24. Springer-Verlag, 1997.

22 R. Tagiew. Multi-Agent Petri-Games. In International Conference on Computational In-
telligence for Modeling Control Automation, volume 10981 of LNCS, pages 130–135. IEEE
Computer Society, 2008. doi:10.1109/CIMCA.2008.15.

23 A. Valmari. A Stubborn Attack on State Explosion. Formal Methods in System Design,
1(4):297–322, December 1992.

24 A. Valmari. On-The-Fly Verification with Stubborn Sets. In Computer Aided Verification,
volume 697 of LNCS, pages 397–408. Springer-Verlag, 1993.

25 A. Valmari and H. Hansen. Stubborn Set Intuition Explained. In Transactions on Petri Nets
and Other Models of Concurrency XII, volume 10470 of LNCS, pages 140–165. Springer-Verlag,
2017.

26 B. Willems and P. Wolper. Partial-Order Methods for Model Checking: From Linear Time to
Branching Time. In Proceedings 11th Annual IEEE Symposium on Logic in Computer Science,
pages 294–303, July 1996. doi:10.1109/LICS.1996.561357.

CONCUR 2019

https://doi.org/10.1007/978-3-319-67729-3_15
https://doi.org/10.1145/3064899.3064908
https://doi.org/10.3182/20130522-3-BR-4036.00094
https://doi.org/10.1109/CIMCA.2008.15
https://doi.org/10.1109/LICS.1996.561357

Synthesis of Data Word Transducers
Léo Exibard
Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France
Université libre de Bruxelles, Brussels, Belgium

Emmanuel Filiot
Université libre de Bruxelles, Brussels, Belgium

Pierre-Alain Reynier
Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France

Abstract
In reactive synthesis, the goal is to automatically generate an implementation from a specification
of the reactive and non-terminating input/output behaviours of a system. Specifications are
usually modelled as logical formulae or automata over infinite sequences of signals (ω-words), while
implementations are represented as transducers. In the classical setting, the set of signals is assumed
to be finite. In this paper, we consider data ω-words instead, i.e., words over an infinite alphabet.
In this context, we study specifications and implementations respectively given as automata and
transducers extended with a finite set of registers. We consider different instances, depending on
whether the specification is nondeterministic, universal or deterministic, and depending on whether
the number of registers of the implementation is given or not.

In the unbounded setting, we show undecidability for both universal and non-deterministic
specifications, while decidability is recovered in the deterministic case. In the bounded setting,
undecidability still holds for non-deterministic specifications, but can be recovered by disallowing
tests over input data. The generic technique we use to show the latter result allows us to reprove
some known result, namely decidability of bounded synthesis for universal specifications.

2012 ACM Subject Classification Theory of computation → Logic and verification; Theory of
computation → Automata over infinite objects; Theory of computation → Transducers

Keywords and phrases Register Automata, Synthesis, Data words, Transducers

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2019.24

Related Version An extended version can be found at https://arxiv.org/abs/1905.03538.

Funding Léo Exibard: Funded by a FRIA fellowship from the F.R.S.-FNRS.
Emmanuel Filiot: Research associate of F.R.S.-FNRS. He is supported by the ARC Project Transform
Fédération Wallonie-Bruxelles and the FNRS CDR J013116F and MIS F451019F projects.
Pierre-Alain Reynier : Partly funded by the DeLTA project (ANR-16-CE40-0007).

Acknowledgements We would like to thank Ayrat Khalimov for his remarks and suggestions, which
helped improve the quality of the paper.

1 Introduction

Reactive synthesis is an active research domain whose goal is to design algorithmic methods
able to construct a reactive system from a specification of its admissible behaviours. Such
systems are notoriously difficult to design correctly, and the main appealing idea of synthesis
is to automatically generate systems correct by construction. Reactive systems are non-
terminating systems that continuously interact with the environment in which they are
executed, through input and output signals. At each time step, the system receives an
input signal from a set In and produces an output signal from a set Out. An execution is
then modelled as an infinite sequence alternating between input and output signals, i.e., an
ω-word in (In.Out)ω. Classically, the sets In and Out are assumed to be finite and reactive

© Léo Exibard, Emmanuel Filiot, and Pierre-Alain Reynier;
licensed under Creative Commons License CC-BY

30th International Conference on Concurrency Theory (CONCUR 2019).
Editors: Wan Fokkink and Rob van Glabbeek; Article No. 24; pp. 24:1–24:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.CONCUR.2019.24
https://arxiv.org/abs/1905.03538
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2 Synthesis of Data Word Transducers

systems are modelled as (sequential) transducers. Transducers are simple finite-state machines
with transitions of type States × In → States × Out, which, at any state, can process any
input signal and deterministically produce some output signal, while possibly moving, again
deterministically, to a new state. A specification is then a language S ⊆ (In.Out)ω telling
which are the acceptable behaviours of the system. It is also classically represented as
an automaton, or as a logical formula then converted into an automaton. Some regular
specifications may not be realisable by any transducer, and the realisability problem asks,
given a regular specification S, whether there exists a transducer T whose behaviours satisfy
S (are included in S). The synthesis problem asks to construct T if it exists.

A typical example of reactive system is that of a server granting requests from a finite set
of clients C. Requests are represented as the set of input signals In = {(r, i) | i ∈ C} ∪ {idle}
(client i requests the ressource) and grants by the set of output signals Out = {(g, i) | i ∈
C} ∪ {idle} (server grants client i’s request). A typical constraint to be imposed on such a
system is that every request is eventually granted, which can be represented by the LTL
formula

∧
i∈C G((r, i) → F (g, i)). The latter specification is realisable for instance by the

transducer which outputs (g, i) whenever it reads (r, i) and idle whenever it reads idle.
It is well-known that the realisability problem is decidable for ω-regular specifications,

ExpTime-c when represented by parity automata [9] and 2ExpTime-c for LTL specifica-
tions [16]. Such positive results have triggered a recent and very active research interest in
efficient symbolic methods and tools for reactive synthesis (see e.g. [1]). Extensions of this
classical setting have been proposed to capture more realistic scenarios [1]. However, only a
few works have considered infinite sets of input and output signals. In the previous example,
the number of clients is assumed to be finite, and small. To the best of our knowledge,
existing synthesis tools do not handle large alphabets, and it is more realistic to consider
an unbounded (infinite) set of client identifiers, e.g. C = N. The goal of this paper is to
investigate how reactive synthesis can be extended to handle infinite sets of signals.

Data words are infinite sequences x1x2 . . . of labelled data, i.e., pairs (σ, d) with σ a label
from a finite alphabet, and d ∈ N. They can naturally model executions of reactive systems
over an infinite set of signals. Among other models, register automata are one of the main
extensions of automata recognising languages of data words [10, 18]. They can use a finite set
of registers in which to store data that are read, and to compare the current data with the
content of some of the registers (in this paper, we allow comparison of equality). Likewise,
transducers can be extended to register transducers as a model of reactive systems over data
words: a register transducer is equipped with a set of registers, and when reading an input
labelled data (σ, d), it can test d for equality with the content of some of its registers, and
depending on the result of this test, deterministically assign some of its registers to d and
output a finite label β together with the content of one of its registers. Its executions are
then data words alternating between input and output labelled data, so register automata
can be used to represent specifications, as languages of such data words.

Contributions. We consider two classical semantics for register automata, non-deterministic
and universal, both with a parity acceptance condition, which give two classes of register
automata respectively denoted NRA and URA. Since NRA are not closed under complement
(already over finite data words), NRA and URA define incomparable classes of specifications.
The request-grant specification given previously with an infinite number of clients is expressible
by an URA [12]: whenever a request is made by client i (labelled data (r, i)), universally trigger
a run which stores i in some register and verifies that the labelled data (g, i) eventually occurs
in the data word; but no NRA can define it. On the contrary, consider the specification S0:

L. Exibard, E. Filiot, and P.-A. Reynier 24:3

“all input data but one are copied on the output, the missing one being replaced by some data
which occurred before it”, modelled as the set of data sequences d1d1d2d2 . . . didjdi+1di+1 . . .

for all i ≥ 0 and j < i (finite labels are irrelevant and not represented). S0 is not definable
by any URA (it would require to guess j, which can be arbitrarily smaller than i), but it is
expressible by some NRA making this guess.

However, we show (unsurprisingly) that the realisability problem by register transducers
of specifications defined by NRA is undecidable. The same negative result also holds for
URA, solving an open question raised in [12]. On the positive side, we show that decidability
is recovered for deterministic (parity) register automata (DRA). One of the difficulties of
register transducer synthesis is that the number of registers needed to realise the specification
is, a priori, unbounded with regards to the number of registers of the specification. We show
it is in fact not the case for DRA: any specification expressed as a DRA with r registers is
realisable by a register transducer iff it is realisable by a transducer with r registers.

A way to obtain decidability is to fix a bound k and to target register transducers with
at most k registers. This setting is called bounded synthesis in [12], which establishes that
bounded synthesis is decidable in 2ExpTime for URA. We show that unfortunately, bounded
synthesis is still undecidable for NRA specifications. To recover decidability for NRA, we
disallow equality tests on the input data and add a syntactic requirement which entails
that on any accepted word, each output data is the content of some register which has
been assigned an input data occurring before. This defines a subclass of NRA that we call
(input) test-free NRA (NRAtf). NRAtf can express how output data can be obtained from
input data (by copying, moving or duplicating them), although they do not have the whole
power of register automata on the input nor the output side. Note that the specification
S0 given before is NRAtf-definable. To show that bounded synthesis is decidable for NRAtf,
we establish a generic transfer property characterising realisable data word specifications in
terms of realisability of corresponding specifications over a finite alphabet, thus reducing
to the well-known synthesis problem over a finite alphabet. Such property also allows us
to reprove the result of [12], with a rather short proof based on standard results from the
theory of register automata, indicating that it might allow to establish decidability for other
classes of data specifications. Our results are summarised in Table 1.

Table 1 Decidability status of the problems studied.

DRA NRA URA NRAtf

Bounded Synthesis ExpTime Undecidable (k ≥ 1) 2ExpTime 2ExpTime
(Thm. 13) (Thm. 3) ([12] and Thm. 12) (Thm. 16)

General Case ExpTime Undecidable Undecidable Open
(Thm. 6) (Thm. 2) (Thm. 4)

Related Work. As already mentioned, bounded synthesis of register transducers is consid-
ered in [12] where it is shown to be decidable for URA. We reprove this result in a shorter
way. Our proof bears some similarities with that of [12], but it seems that our formulation
benefits more from the use of existing results. The technique is also more generic and we
instantiate it to NRAtf. NRAtf correspond to the one-way, non-deterministic version of the
expressive transducer model of [5], which however does not consider the synthesis problem.

The synthesis problem over infinite alphabets is also considered in [6], in which data rep-
resent identifiers and specifications (given as particular automata close to register automata)
can depend on equality between identifiers. However, the class of implementations is very
expressive: it allows for unbounded memory through a queue data structure. The synthesis
problem is shown to be undecidable and a sound but incomplete algorithm is given.

C O N C U R 2 0 1 9

24:4 Synthesis of Data Word Transducers

Finally, classical reactive synthesis has strong connections with game theory on finite
graphs. Some extension of games to infinite graphs whose vertices are valuations of variables in
an infinite data domain have been considered in [8]. Such games are shown to be undecidable
and a decidable restriction is proposed, which however does not seem to match our context.

2 Data Words and Register Automata

For a (possibly infinite) set S, we denote by Sω the set of infinite words over this alphabet.
For 1 ≤ i ≤ j, we let u[i:j] = uiui+1 . . . uj and u[i] = u[i:i] the ith letter of u. For u, v ∈ Sω,
we define their interleaving 〈u, v〉 = u[1]v[1]u[2]v[2] . . .

Data Words. Let Σ be a finite alphabet and D a countably infinite set, denoting, all over
this paper, a set of elements called data. We also distinguish an (arbitrary) data value d0 ∈ D.
Given a set R, let τR0 be the constant function defined by τR0 (r) = d0 for all r ∈ R. A labelled
data (or l-data for short) is a pair x = (σ, d) ∈ Σ×D, where σ is the label and d the data.
We define the projections lab(x) = σ and dt(x) = d. A data word over Σ and D is an infinite
sequence of labelled data, i.e. a word w ∈ (Σ×D)ω. We extend the projections lab and dt
to data words naturally, i.e. lab(w) ∈ Σω and dt(w) ∈ Dω. We denote the set of data words
over Σ and D by DW(Σ,D) (DW when clear from the context). A data word language is a
subset L ⊆ DW(Σ,D). Note that in this paper, data words are infinite, otherwise they are
called finite data words, and we denote by DWf (Σ,D) the set of finite data words.

Register Automata. Register automata are automata recognising data word languages.
They were first introduced in [10] as finite-memory automata. Here, we define them in a
spirit close to [18], but over infinite words 1, with a parity acceptance condition.

A register automaton (RA) is a tuple A = (Σ,D, Q, q0, δ, R, c), where:
Σ is a finite alphabet of labels, D is an infinite alphabet of data
Q is a finite set of states and q0 ∈ Q is the initial state
R is a finite set of registers. We denote TstR = 2R and AsgnR = 2R. 2

c : Q → {1, . . . , d}, where d ∈ N is the number of priorities, is the colouring function,
used to define the acceptance condition
δ ⊆ Q× Σ× TstR × AsgnR ×Q is a set of transitions.

A transition (q, σ, tst, asgn, q′) is also written q
σ,tst,asgn−−−−−−→
A

q′. We may omit A in the latter
notation. Intuitively such transition means that on input (σ, d) in state q the automaton: it
first checks that tst is exactly the set of registers containing d: for all r ∈ tst, d is the current
content of register r and for all r /∈ tst, d is not in register r, then it assigns d to all the
registers in asgn (asgn might be empty), and finally transitions to state q′.
A is said to be deterministic (resp. complete) when, given any state, any label and any

possible test, at most (resp. at least) one transition can be taken: ∀q ∈ Q,∀σ ∈ Σ,∀tst ∈
TstR,∃≤1asgn ∈ Asgn,∃≤1q′ ∈ Q such that q σ,tst,asgn−−−−−−→ q′ (resp. ∀q,∀σ, ∀tst,∃≥1asgn,∃≥1q′

s.t. q σ,tst,asgn−−−−−−→ q′). Since tests are mutually exclusive, this syntactically ensures that for any
state and in any register configuration, the transition to take is determined by the input
l-data (respectively that a transition can always be taken, regardless the input l-data). The
class of deterministic register automata will be denoted DRA.

1 In the terminology of [13], it corresponds to multiple-assignment register automata with registers initially
filled, i.e. the class MF , with the additional requirement that all are filled with the same data.

2 Those sets are identical but have distinct semantics.

L. Exibard, E. Filiot, and P.-A. Reynier 24:5

Configurations and Runs. A configuration is a pair (q, τ) ∈ Q×(R→ D). Given tst ∈ TstR
and d ∈ D, we say that τ, d satisfies tst, denoted τ, d |= tst if τ−1(d) = tst. Given a
transition t = p

σ,tst,asgn−−−−−−→ p′, we say that (q, τ) enables t on reading (σ′, d) if q = p,
σ′ = σ and τ, d |= tst. Let next(τ, asgn, d) be the configuration τ ′ defined by τ ′(i) = d if
i ∈ asgn, and τ ′(i) = τ(i) otherwise. We extend this notation to configurations as follows: if
γ = (q, τ) enables t on input (σ, d), the successor configuration of (q, τ) by t on input (σ, d) is
next(γ, asgn, d) = (p′,next(τ, asgn, d)). We also write next(γ, t, σ, d) to denote the successor
of (q, τ) by transition t when (q, τ) enables t on input (σ, d). The initial configuration is
(q0, τ

R
0). Then, a run over a data word (σ1, d1)(σ2, d2) . . . is an infinite sequence of transitions

t0t1 . . . such that there exists a sequence of configurations γ0γ1 · · · = (q0, τ0)(q1, τ1) . . . such
that γ0 is initial and for all i ≥ 0, γi+1 = next(γi, ti, σi, di). To a run ρ, we associate its
sequence of states states(ρ) = q0q1 . . .

Languages Defined by RA. Given a run ρ, we denote, by a slight abuse of notation, c(ρ) =
max{j | c(ql) = j for infinitely many ql ∈ states(ρ)} the maximum color that occurs infinitely
often in ρ. Then, in the parity acceptance condition, ρ is accepting whenever c(ρ) is even. We
consider two dual semantics for RA: non-deterministic (N) and universal (U). Given an RA A,
depending on whether it is considered nondeterministic or universal, it recognises LN (A) =
{w | there exists an accepting run ρ on w} or LU (A) = {w | all runs ρ on w are accepting}.

We denote by NRA (resp. URA) the class of register automata interpreted with a non-
deterministic (resp. universal) parity acceptance condition, and given A ∈ NRA (resp.
A ∈ URA), we write L(A) instead of LN (A) (resp. LU (A)). We also denote by DRA the class
of deterministic parity register automata.

3 Synthesis of Register Transducers

Specifications, Implementations and the Realisability Problem. Let Σi and Σo be two
finite alphabets of labels, and D a countable set of data. A relational data word is an element
of w ∈ [(Σi × D).(Σo × D)]ω. Such a word is called relational as it defines a pair of data
words in DW(Σi,D)× DW(Σo,D) through the following projections. If w = x1

i
x1
o
x2
i
x2
o
. . . ,

we let inp(w) = x1
i
x2
i
. . . and out(w) = x1

o
x2
o
. . . We denote by RW(Σi,Σo,D) (just RW

when clear from the context) the set of relational data words. A specification is simply a
language S ⊆ RW(Σi,Σo,D). An implementation is a total function I : (Σi×D)∗ → Σo×D.
We associate to I another function fI : DW(Σi,D) → DW(Σo,D) which, to an input
data word wi = x1

i
x2
i
· · · ∈ Σi × D, associates the output data word fI(wi) = x1

o
x2
o
. . .

such that ∀i ≥ 1, xi
o

= I(x1
i
. . . xi−1

i
). I also defines a language of relational data words

L(I) = {〈wi, fI(wi)〉 | wi ∈ DW(Σi,D)}.
We say that I realises S when L(I) ⊆ S, and that S is realisable if there exists an

implementation realising it. The realisability problem consists, given a (finite representation
of a) specification S, in checking whether S is realisable. In general, we parameterise
this problem by classes of specifications S and of implementations I, defining the (S, I)-
realisability problem, denoted Real(S, I). Given a specification S ∈ S, it asks whether S is
realisable by some implementation I ∈ I. We now introduce the classes S and I we consider.

Specification Register Automata. In this paper, we consider specifications defined from
register automata alternately reading input and output l-data. We assume that the set of
states is partitioned into Qi (called input states, reading only labels in Σi) and Qo (called
output states, reading only labels in Σo), where q0 ∈ Qi and F ⊆ Qi, and such that the

C O N C U R 2 0 1 9

24:6 Synthesis of Data Word Transducers

transition relation δ alternates between these two sets, i.e. δ ⊆ ∪α=i,o(Qα × Σα × TstR ×
AsgnR × Qα), where i = o (resp. o = i). We denote by DRA (resp. NRA, URA) the
class of specifications defined by deterministic (resp. non-deterministic, universal) parity
register automata.

Register Transducers As Implementations. We consider implementations represented as
transducers processing data words. A register transducer is a tuple T = (Σi,Σo, Q, q0, δ, R)
where Q is a finite set of states with initial state q0, R is a finite set of registers, and
δ : Q × Σi × TstR → AsgnR × Σo × R × Q is the (total) transition function (as before,
TstR = AsgnR = 2R). When processing an l-data (σi, d), T compares d with the content of
some of its registers, and depending on the result, moves to another state, stores d in some
registers, and outputs some label in Σo along with the content of some register r ∈ R.

Let us formally define the semantics of a register transducer T , as an implementation IT .
First, for a finite input data word w = (σ1

i
, d1

i
) . . . (σn

i
, dn

i
) in (Σi ×D)∗, we denote by (qi, τi)

the ith configuration reached by T on w, where (q0, τ0) is initial and for all 0 < i < n, (qi, τi)
is the unique configuration such that there exists a transition δ(qi−1, σ

i
i
, tst) = (asgn, σo, r, qi)

such that τi−1, d
i
i
|= tst and τi = next(τi−1, d

i
i
, asgn). We let (σi

o
, di

o
) = (σo, τi(r)) and

IT (w) = (σn
o
, dn

o
). Then, we denote fT = fIT

and L(T) = L(IT). Note that if T is
interpreted as a DRA with exactly one transition per output state and whose states are
all accepting (i.e. have even maximal parity 2), then L(IT) is indeed the language of such
register automaton. We denote by RT[k] the class of implementations defined by register
transducers with at most k registers, and by RT =

⋃
k≥0 RT[k] the class of implementations

defined by register transducers.

Synthesis from Data-Free Specifications. If in the latter definitions of the problem, one
considers specifications defined by RA with no registers, and implementations defined by RT
with no registers, then the data in data-words can be ignored and we are in the classical
reactive synthesis setting, for which important results are known:

I Theorem 1 ([9]). Given a (data-free) specification S defined by some (register-free)
universal or non-deterministic parity automaton, the realisability problem of S by (register-
free) transducers is ExpTime-c.

4 Unbounded Synthesis

In this section, we consider the unbounded synthesis problem Real(RA,RT). Thus, we
do not fix a priori the number of registers of the implementation. Let us first consider
the case of NRA and URA, which are, in our setting, the most natural devices to express
data word specifications. By reducing the universality of NRA over finite words (which is
undecidable [14]) to our synthesis problems, we show:

I Theorem 2. Real(NRA,RT) is undecidable.

I Theorem 3. For all k ≥ 1, Real(NRA,RT[k]) is undecidable.

Now, we can show that the unbounded synthesis problem is also undecidable for URA,
answering a question left open in [12].

I Theorem 4. Real(URA,RT) is undecidable.

L. Exibard, E. Filiot, and P.-A. Reynier 24:7

Proof. We present a reduction from the emptiness problem of URA over finite words (which
is undecidable by a direct reduction from the universality problem of NRA, undecidable
by [14]) to our synthesis problem.

First, consider the relation S1 = {(u#v, u#w) | u ∈ DWf , v ∈ DW, each data of u appears
infinitely often in w}. S1 is recognised by a 1-register URA which, upon reading a data d
in u, stores it in its register and checks that it appears infinitely often in w by visiting a
state with maximal parity 2 every time it sees d (all other states have parity 1). Note that
for all k ≥ 1, S1 ∩ {(u#v, u#w) | u ∈ DWf , v, w ∈ DW and |dt(u)| ≤ k} is realisable by a
k-register transducer: on reading u, store each distinct data in one register, and after the #
outputs them in turn in a round-robin fashion. However, S1 is not realisable: on reading the
separator, any implementation must have all the data of dt(u) in its registers, but the size
of dt(u) is not bounded (u can have pairwise distinct data and be of arbitary length).

Then, let A be a URA over finite data words. Consider the specification S = S1 ∪ S2 ∪ T ,
where S2 = {(u#v, u#w#(a, d0)ω) | u ∈ DWf , v ∈ DW, w ∈ L(A)} and T = {(u,w) | u /∈
DWf#DW, w ∈ DW}. S has total domain, and is recognisable by a URA. Indeed, URA are
closed under union, by the same product construction as for the intersection of NRA [10],
and each part is URA-recognisable: S1 is, as described above, S2 is by simulating A on the
output to check w ∈ L(A) then looping over (a, d0), and T simply checks a regular property.

Now, if L(A) 6= ∅, let w ∈ L(A), and k its number of distinct data. Then S is realisable
by a k-register transducer realising S1 when the number of data in u is lower than or equal
to k, and, when it is greater than k, by outputting u#ŵ#(a, d0)ω where ŵ is a membership-
preserving renaming of w using k distinct data of u (this can always be done thanks to the
so-called “indistinguishability property” stated in [10]). Conversely, if L(A) = ∅, then S is
not realisable. If it were, S ∩ DWf#DW = S1 would be too, as a regular domain restriction,
but we have seen above that this is not the case. Thus, S is realisable iff L(A) = ∅. J

However, we show that restricting to DRA allows to recover the decidability, modulo
one additional assumption, namely that no output transition of the specification is such
that tst = ∅ (the output data is different from all register contents). We denote by DRA∅
this class of DRA. Such assumption rules out pathological, and to our opinion uninteresting
and technical cases stemming from the asymmetry between the class of specifications and
implementations. E.g., consider the single-register DRA in Fig. 1a (finite labels are arbitrary
and not depicted). It starts by reading one input data d and stores it in r, asks that the
corresponding output data is different from the content d of r (with tst = ∅ depicted here
6=r), then accepts any output over any input (transitions > are always takeable). It is
not realisable because transducers necessarily output the content of some register (hence
producing a data which already appeared). On the other hand, having tests tst = ∅ does
not imply unrealisability, as shown by the DRA of Fig. 1b: it starts by reading one data d1,
asks to copy it on the output, then reads another data d2, and requires that the output is
either distinct from d1 or equal to it, depending on whether d2 6= d1. It happens that such
specification is realisable by the identity.

1 2 3

4

>, ↓ r 6= r

> >

(a) An unrealisable DRA.

1 2 3 5

4

6

7

>, ↓ r ↑ r

6=r
, ↓
r

=r, ↓ r

6=r

=r

> >

(b) A similar DRA, suprisingly realisable.

Figure 1 Pathological DRA specifications.

C O N C U R 2 0 1 9

24:8 Synthesis of Data Word Transducers

To check for realisability of DRA∅-specifications with r-registers, we show that it suffices
to target transducers with r registers only.

I Proposition 5. Let S be a specification defined by a DRA∅ with r registers. If S is realisable
by a register transducer, then it is realisable by a transducer with r registers.

Proof. Let S = (Σi,Σo,D, QS , qS0 , δS , RS , c) be a DRA∅ specification realisable by a register
transducer I = (Σi,Σo,D, QI , qI0 , δI , RI). Without loss of generality, we assume that S does
not conduct assignments on the output and that S is complete. Now, from S, we extract a
transducer I ′ realising S with RS registers, using I as a guide to make choices for the output.
To this end, we simulate I synchronously with S. However, we cannot properly simulate I,
since we only have RS registers, which are used to simulate S. Instead, we keep constraints
in memory.

Constraints. A constraint represents the equality relations between the registers in RS and
those in RI (note that such idea is pervasive in the study of registers automata, e.g. to
recognise the projection over finite labels). Thus, a constraint is a subset C ⊆ RS×RI , which
is intended to be a set of equalities between the content of registers in RS and in RI . Then,
knowing tests tstS , tstI and assignments asgnS , asgnI performed by S and I respectively
allows to update the constraints: we define

next(C, tstS , asgnS , tstI , asgnI) = C\((asgnS ×RI) ∪ (RS × asgnI))
∪((tstS ∪ asgnS)× (tstI ∪ asgnI))

For instance, assume RI = {r1, r2} and RS = {s1, s2}, and at some point in a run, we
have3 C = {(s2, r1), (s2, r2)}, i.e. s2 = r1 = r2 and s1 6= r1 (inequalities are implicit, since
C is an exhaustive list of equalities). Now, S reads some data d which satisfies the tests
tstS = {s1} in S and tstI = ∅ in I (such tests are consistent because s1 6= r1, r2), and
conducts assignments asgnS = ∅ and asgnI = {r2}. Then, on the one hand, s1 = r2 (both
contain d), and on the other hand s2 = r1 (since the content of those registers did not change).
Moreover, r1 6= r2 since r2 has been reassigned and s1 6= r1 still holds. This is represented
by the set of constraints C ′ = {(s1, r2), (s2, r1)}, and indeed, next(C, {s1},∅,∅, {r2}) = C ′.

Abstracting the behaviour of I modifies its language (it somehow simplifies it), but we
will see that what we build is still an implementation.

Definition of I′. We build I ′ = (Σi,Σo,D, Q, q0, δ, R
S), where Q = QS×QI ×2RS×RI and

q0 = (qS0 , qI0 , RS ×RI); we now define δ. For each state (qS
i
, qI , C) ∈ Q, for each input test

(σi, tstSi) ∈ Σi×TstRS , we construct a transition t = (qS
i
, qI , C) σi,tstS

i
,asgnS ,σo,so−−−−−−−−−−−−→
I′ (q′S

i
, q′

I
, C ′)

whenever there exist the following transitions of S and I:

tS
i

= qS
i

σi,tstS
i
,asgnS

−−−−−−−−→
S

qS
o

tS
o

= qS
o

σo,tstS
o−−−−→

S
q′
S
i

tI = qI
σi,tstI ,asgnI ,σo,ro−−−−−−−−−−−→

I
q′
I

such that, for some fixed arbitrary order on RS , we have:

(i) tstI = {r ∈ RI | ∃s ∈ tstS
i
, (s, r) ∈ C}

(ii) C ′ = next(C, tstS
i
, asgnS , tstI , asgnI)

(iii) tstS
o

= {s ∈ RS | (s, ro) ∈ C ′}
(iv) so = min tstS

o

3 For readability, we confuse a register with its content.

L. Exibard, E. Filiot, and P.-A. Reynier 24:9

Item (i) ensures with the help of constraints that in any reachable configuration of I ′,
there exists at least one input data which satisfies both tstS

i
and tstI , which allows I ′ to

synchronise S with I. Note that this does not means that I ′ is the synchronous product
of S and I on any input: since I ′ only has the registers of S, it cannot discriminate data
as subtly as I, and might thus adopt a different behaviour. For instance, it can be that
upon reading some input data word, at some point, I would store some input data d in some
register r that S would not, and use it later on in a test tstI = {r} to take different actions,
while neither I ′ nor S could discriminate between those choices: on reading d, I ′ simulates
S with tstS

i
= ∅ and synchronously simulates in I the transition with input test tstI = ∅.

Nevertheless, we show the existence of some relational data word common to I and I ′ for
each run of I ′ (which is also a run of S). This is sufficient to conclude that I ′ realises S,
because then each run of I ′, interpreted as a run of S, is accepting. Then, items (iii) and
(iv) ensures the same property as item (i) does, but this time on output positions.

We shall see that for a transition t such that (qS , qI , C) is accessible on some finite input
data word, tS

i
, tS

o
and tI exist and are unique. So, for a run ρ = t1t2 . . . of I ′, we define

ρS = tS
i1t

S
o1t

S
i2t

S
o2 . . . and ρI = tI1t

I
2 . . .

Proof of Correctness. Let us show that I ′ is indeed a transducer realising S: we show that
for all ui ∈ DW(Σi,D), there exists a unique sequence of transitions ρ in I ′, a unique output
data word uo ∈ DW(Σo,D) (we denote u = 〈ui, uo〉) and a w ∈ L(I) such that:

1. ρI is the run of I over w
2. ρS is the run of S over w

3. ρ is the run of I ′ over u
4. ρS is the run of S over u

Note that the above properties imply lab(u) = lab(w), but it can be that u 6= w, which is
consistent with the observations we made. Let us show that they entail the result we need:
let ui ∈ DW(Σi,D) be some input data word. By property 3, fI′(ui) exists and is unique,
so I ′ has total domain. Now, by denoting ρS the run of S over u = 〈ui, fI′(ui)〉, we know
by property 2 that there exists w ∈ L(I) such that ρS is the run of S over w. Then, ρS is
accepting because I realises S so w ∈ L(S), hence u ∈ L(S). Thus, I ′ realises S.

The proof of properties 1-4 is rather technical, and can be found in [7]. J

Such result allows us to reduce unbounded synthesis to bounded synthesis for DRA∅.
Bounded synthesis is in ExpTime for DRA (Thm. 13) and is the topic of the next section.

I Theorem 6. Real(DRA∅,RT) is decidable in ExpTime.

5 Bounded Synthesis: A Generic Approach

In this section, we study the setting where target implementations are register transducers
in the class RT[k], for some k ≥ 0 that we now fix for the whole section. For the complexity
analysis, we assume k is given as input, in unary. Indeed, describing a k-register automaton
in general requires O(k) bits, and not O(log k) bits. We prove the decidable cases of
the first line of Table 1 (page 3), by reducing the problems to realisability problems for
data-free specifications.

Abstract Actions. We reduce the problem to a finite alphabet problem. Since we synthesise
k-register transducers, we take the input and output actions of the transducers as symbols of
our finite input and output alphabets. Let Rk = {1, . . . , k} and Tstk = Asgnk = 2Rk . The

C O N C U R 2 0 1 9

24:10 Synthesis of Data Word Transducers

finite input actions are Ak
i

= Σi × Tstk which corresponds to picking a label and a test over
the k registers, and the output actions are Ak

o
= Σo × Asgnk ×Rk, corresponding to picking

some output symbol, some assignment and some register whose content is to be output.
An alternating sequence of actions a = (σ1

i
, test1)(σ1

o
, asgn1, r1) · · · ∈ (Ak

i
Ak
o
)ω abstracts

a set of relational data words of the form w = (σ1
i
, d1

i
)(σ1

o
, d1

o
) · · · ∈ RW(Σi,Σo,D) via a

compatibility relation that we now define. We say that w is compatible with a if there exists
a sequence of register configurations τ0τ1 · · · ∈ (Rk → D)ω such that τ0 = τRk

0 and for all
i ≥ 1, τi, dii |= testi, dio = τi(ri) and τi+1 = next(τi, dii, asgni). Note that this sequence is
unique if it exists. We denote by Comp(a) the set of relational data words compatible with a.
Given a specification S, we let WS,k = {a | Comp(a) ⊆ S}. The set WS,k can be seen as a
specification over the finite input (resp. output) alphabets Ak

i
(resp. Ak

o
).

I Theorem 7 (Transfer). Let S be a data word specification. The following are equivalent:
1. S is realisable by a transducer with k registers.
2. The (data-free) word specification WS,k is realisable by a (register-free) finite transducer.

Proof. Let T be a transducer with k registers realising S. The transducer T can be seen as
a finite transducer T ′ over input alphabet Ak

i
and output alphabet Ak

o
. Indeed, since the

transition function of T is total, it is also the case of T ′ (this is required by the definition of
transducer defining implementations).

Let us show that WS,k is realisable by T ′, i.e. L(T ′) ⊆ WS,k. Take a sequence a =
a1e1a2e2 · · · ∈ L(T ′). We show that Comp(a) ⊆ S. Let w ∈ Comp(a). Then, there exists a
run q0q1q2 . . . of T ′ on a since a ∈ L(T ′). By definition of compatibility for w, there exists
a sequence of register configurations τ0τ1 · · · ∈ (Rk → D)ω satisfying the conditions in the
definition of compatibility. From this we can deduce that (q0, τ0)(q1, τ1) . . . is an initial
sequence of configurations of T over w, so w ∈ L(T). Finally, L(T) ⊆ S, since T realises S.

Conversely, suppose that WS,k is realisable by some finite transducer T ′ over the input
(output) alphabets Ak

i
(Ak

o
). Again, the transducer T can be seen as a transducer with

k registers over data words. We show that T realises S, i.e., L(T) ⊆ S. Let w ∈ L(T).
The run of T over w induces a sequence of actions a in (Ak

i
Ak
o
)ω which, by definition of

compatibility, satisfies w ∈ Comp(a). Moreover, a ∈ L(T ′). Hence, since T ′ realises WS,k, we
get Comp(a) ⊆ S, so w ∈ S, concluding the proof. J

5.1 The case of URA specifications
In this section, we show that for any S a data word specification given as some URA,
the language WS,k is effectively ω-regular, entailing the decidability of Real(URA,RT[k]),
by Theorem 7 and the decidability of (data-free) synthesis. Let us first prove a series of
intermediate lemmas.

We define an operation ⊗ between relational data words w ∈ RW(Σi,Σo,D) and sequences
of actions a ∈ (Ak

i
Ak
o
)ω as follows: w ⊗ a ∈ RW(Ak

i
, Ak

o
,D) is defined only if for all i ≥ 1,

lab(w[i]) = lab(a[i]) where lab(a[i]) is the first component of a[i] (a label in Σi ∪ Σo), by
(w ⊗ a)[i] = (a[i], dt(w[i])).

I Lemma 8. The language Lk = {w ⊗ a | w ∈ Comp(a)} is definable by some NRA.

Proof. We define an NRA with k registers which roughly follows the actions it reads on its
input. Its set of states is {q}∪AsgnR, with initial state q. In state q, it is only allowed to read
labelled data in Ak

i
×D. On reading (σi, tst, d), it guesses some assignment asgn, performs

L. Exibard, E. Filiot, and P.-A. Reynier 24:11

the test tst and the assignment asgn and goes to state asgn. In any state asgn ∈ AsgnR, it is
only allowed to read labelled data of the form (σo, asgn, r, d), for which it tests whether d is
equal to the content of r. It does no assignment and moves back to state q. All states are
accepting (i.e. have maximal even parity 2). Such NRA has size O(2k2). J

Let S be a specification defined by some URA AS with set of states Q. The following
subset of Lk is definable by some NRA, where S denotes the complement of S:

I Lemma 9. The language LS,k = {w ⊗ a | w ∈ Comp(a) ∩ S} is definable by some NRA.

Proof. Since S is definable by the URA AS , S is NRA-definable with the same automaton,
denoted now AS , interpreted as an NRA. Let B be some NRA defining Lk (it exists by
Lemma 8). It now suffices to take a product of AS and B to get an NRA defining LS,k. J

Given a data word language L, we denote by lab(L) = {lab(w) | w ∈ L} its projection on
labels. The language WS,k is obtained as the complement of the label projection of LS,k:

I Lemma 10. WS,k = lab(LS,k).

Proof. Let a ∈ (Ak
i
Ak
o
)ω. Then, a /∈WS,k ⇔ Comp(a) 6⊆ S ⇔ ∃w ∈ RW, w ∈ Comp(a)∩S ⇔

∃w ∈ RW, w ⊗ a ∈ LS,k ⇔ a ∈ lab(LS,k). J

We are now able to show regularity of WS,k.

I Lemma 11. Let S be a data word specification, k ≥ 0. If S is definable by some URA
with n states and r registers, then WS,k is effectively ω-regular, definable some deterministic
parity automaton with O(2n216(r+k)2

) states and O(n.4(r+k)2) priorities.

Proof. First, LS,k is definable by some NRA with O(2k2
n) states and O(r + k) registers

by Lemma 10, obtained as product between the NRA AS and the automaton obtained in
Lemma 8, of size O(2k2). It is known that the projection on the alphabet of labels of
a language of data words recognised by some NRA is effectively regular [10]. The same
construction, which is based on extending the state space with register equality types, carries
over to ω-words, and one obtains a non-deterministic parity automaton with O(n.4(r+k)2)
states and d priorities recognising lab(LS,k). It can be complemented into a deterministic

parity automaton with O(2n2.16(r+k)2

) states and O(n.4(r+k)2) priorities using standard
constructions [15]. J

We are now able to reprove the following result, known from [12]:

I Theorem 12. For all k ≥ 0, Real(URA,RT[k]) is in 2ExpTime.

Proof. By Lemma 11, we construct a deterministic parity automaton PS,k for WS,k. Then,
according to Theorem 7, it suffices to check whether it is realisable by a (register-free)
transducer. This is decidable by Theorem 1. The way to decide it is to see PS,k as a
two-player parity game and check whether the protagonist has a solution. Parity games
can be solved in time O(mlog d) [3] where m is the number of states of the game and
d the number of priorities. Overall, solving it requires doubly exponential time, more
precisely in O(2n316(r+k)2

). J

In [11], it is shown that the complexity of the problem is actually only singly exponential in k,
and such analysis extends to our construction. Similarly, when the specification automaton
is deterministic, we can show that:

I Theorem 13. Real(DRA,RT[k]) is in ExpTime.

C O N C U R 2 0 1 9

24:12 Synthesis of Data Word Transducers

5.2 The case of test-free NRA specifications
Unfortunately, by Theorem 3, the synthesis problem for specifications expressed as NRA is
undecidable, even when the number of registers of the implementation is bounded. And indeed,
if we mimic the reasoning of the previous section, Lemma 10 does not allow to conclude because
LS,k is definable by a URA but the string projection of a URA is not ω-regular in general. E.g.,
consider L = {(r, d1) . . . (r, dn)(g, d′1) . . . (g, d′m) | ∀i 6= j, di 6= dj ∧ ∀1 ≤ i ≤ n,∃j, d′j = di},
which consists in a word w ∈ rn with pairwise distinct data followed by a word w ∈ gm which
contains at least all the data of w (it is over finite words for simplicity but can be extended
to ω-words). L is recognised by the URA which, on reading (r, di), universally triggers a run
checking three properties: firstly, once a label g is read, only g’s are read, secondly, (r, di)
does not appear again, and thirdly, (g, di) appears at least once. Now, it is readily seen that
lab(L) = {rngm | m ≥ n}, which is not regular. Here, we defined L over finite words for
simplicity but it is easily extended to an ω-language which is not ω-regular.

Thus, in this section, we consider a restriction on NRA which do not perform tests on
input data. A test-free register automaton is a tuple A = (Σi,Σo,D, Q, q0, δ, R, c) such that
δ ⊆ Q× Σi × AsgnR × Σo ×R ×Q. Such a register automaton reads two labelled data at
once. In a configuration (q, τ), when reading (σi, di)(σo, do), it can fire any transition of the
form (q, σi, asgn, r, σo, q′) ∈ δ such that τ(r) = do and move to configuration (q′, τ ′) where
τ ′ = next(τ, asgn, di). It is easily seen that a test-free register automaton can be converted
into a proper register automaton, justifying its name. Such automata will be interpreted by
a non-deterministic parity acceptance condition; we denote the class NRAtf

4.
It is not clear whether WS,k is regular for such specifications, but we show that it suffices

to consider another set denoted W tf
S,k which is easier to analyse (and can be proven regular),

and based on the behaviour of S over input with pairwise distinct data. The intuition behind
restricting to such case is that NRAtf cannot conduct test on input data, so they behave
the same on an input word whose data are all distinct, and such choice ensures that two
equal input data will not ease the task of the implementation. An interesting side-product
of this approach is that it implies that we can restrict to test-free implementations. A
test-free transducer is a transducer whose transitions do not depend on tests over input
data; formally δ : Q× Σi → AsgnR × Σo ×R×Q. In the following, we let AllDiff denote
the set of relational data words whose input data are pairwise distinct: AllDiff = {w =
(σ1

i
, d1

i
)(σ1

o
, d1

o
) · · · ∈ RW | ∀0 ≤ i < i′, di

i
6= di

′

i
}; by convention d0

i
= d0.

I Proposition 14. Let S be a NRAtf specification. The following are equivalent:
(i) S is realisable

(ii) W tf
S,k = {a ∈ (A∅

i
Ak
o
)ω | Comp(a) ∩ S ∩ AllDiff 6= ∅}, where A∅

i
= Σi × {∅}, has

domain (A∅
i

)ω and is realisable (by a register-free transducer)
(iii) S is realisable by a test-free transducer

Proof. (i)⇒ (ii): If S is realisable, then by Theorem 7 WS,k has total domain and is realisable
by some transducer I. Now, since transducers are closed under regular domain restriction,
W∅
S,k = WS,k ∩ (A∅

i
Ak
o
)ω has domain (A∅

i
)ω and is realisable by I ∩ (A∅

i
Ak
o
)ω. Moreover,

W∅
S,k ⊆ W tf

S,k. Indeed, if Comp(a) ⊆ S, then, since S has total domain and a ∈ (A∅
i
Ak
o
)ω,

Comp(a) ∩ S ∩AllDiff 6= ∅. Thus, W tf
S,k also has domain (A∅

i
)ω and is realisable by any

transducer realising W∅
S,k.

4 The bounded synthesis of URA is already decidable, so we do not consider their test-free restriction.

L. Exibard, E. Filiot, and P.-A. Reynier 24:13

(iii) ⇒ (i): is trivial.
(ii) ⇒ (iii): Intuitively, NRAtf can only rearrange input data (duplicate, erase, copy)

regardless of the actual data values (as there are no tests), so its behaviour on AllDiff
determines its behaviour on the entire domain. This can be formalised precisely through a
notion of data origins given a run (this notion is also made explicit in [5]).

To a run ρ = q0
σ1
i
,asgn1,r1,σ1

o−−−−−−−−−→ q1
σ2
i
,asgn2,r2,σ2

o−−−−−−−−−→ q2 . . . corresponds the origin function
oρ : j 7→ max{i ≤ j | rj ∈ asgni}, with the convention max∅ = 0.

Now, for an origin function o : N\{0} → N and for a relational data word w ∈ RW, we
say w is compatible with the origin function o, denoted w |= o, whenever for all j ≥ 1,
dt(out(w)[j]) = dt(inp(w)[o(j)]), with the convention dt(inp(w)[0]) = d0.

The following lemma shows that actual data values in a word w do not matter with
respect to membership in some NRAtf, only the compatibility with origin functions does:

I Lemma 15. Let w ∈ RW and ρ a sequence of transitions of some NRAtf. Then,
(i) If ρ is a run over w, then w |= oρ.

(ii) If ρ is a run over w and w ∈ AllDiff, then for all o : N\{0} → N, w |= o⇔ o = oρ.
(iii) If w and ρ have the same finite labels and if w |= oρ, then ρ is a run over w.

Proof. (i) and (iii) follow from the semantics of NRAtf, which do not conduct any test on the
input data. The ⇐ direction of (ii) is exactly (i). Now, assume w ∈ AllDiff admits ρ as a
run, and let o such that w |= o. Then, let j ≥ 1 be such that dt(out(w)[j]) = dt(inp(w)[o(j)]).
By (i) we know that dt(out(w)[j]) = dt(inp(w)[oρ(j)]), so dt(inp(w)[o(j)]) = dt(inp(w)[oρ(j)]).
Since w ∈ AllDiff, this implies o(j) = oρ(j), so, overall, o = oρ. J

Now, assume W tf
S,k is realisable by some transducer I. We show that I, when ignoring the

∅ input tests, is actually an implementation of S. Thus, let I ′ be the same transducer as I
except that all input transitions (σi,∅) are now simply labelled σi. Note that I ′, interpreted
as a register transducer, is test-free. Let w ∈ DW, and ai = lab(w)×∅ω be the input action
in A∅

i
with same finite labels as w. Let a = I(ai), and let w′ ∈ Comp(a)∩S∩AllDiff (such

w′ exists because W tf
S,k has domain (A∅

i
)ω and I realises W tf

S,k). Then, since lab(w) = lab(w′),
they admit the same run ρI in I, so w,w′ |= oρI . Then, w′ ∈ S, so it admits an accepting
run ρS in S, which implies w′ |= oρS . Moreover, w′ ∈ AllDiff so, by Lemma 15 ii, we
get oρI = oρS . Therefore, w |= oρS , so, by iii, w admits ρS as a run, i.e. w ∈ S. Overall,
L(I) ⊆ S meaning that I is a (test-free) implementation of S. End of proof of Prop. 14 J

Finally, W tf
S,k = {a ∈ (A∅

i
Ak
o
)ω | Comp(a) ∩ S ∩ AllDiff 6= ∅} is regular. Indeed,

W tf
S,k = {a ∈ (A∅

i
Ak
o
)ω | Comp(a) ∩ S∅ 6= ∅}, where S∅ is the same automaton as S except

that all transitions q σi,asgn,r,σo−−−−−−−→ q′ have been replaced with q
σi,∅,asgn,r,σo−−−−−−−−−→ q′, because, for

all a ∈ (A∅
i
Ak
o
)ω, Comp(a) ∩ S ∩AllDiff 6= ∅ ⇔ Comp(a) ∩ S∅ 6= ∅ (the ⇒ direction is

trivial, and the⇐ stems from the fact that an AllDiff input only takes tst = ∅ transitions).
Then, Ltf

S,k = {w ⊗ a ∈ RW⊗ (A∅
i
Ak
o
)ω | w ∈ Comp(a) ∩ S∅} is NRA-definable. Indeed,

S is NRAtf-definable, so S∅ is NRA-definable, and by Lemma 8, Lk = {w⊗a | w ∈ Comp(a)}
is NRA-definable, so their product recognises Ltf

S,k. Finally, W tf
S,k = lab(Ltf

S,k), and the
projection of a NRA over some finite alphabet is regular [10].

Overall, by Theorems 1 and 7, we get (the complexity analysis is the same as for URA):

I Theorem 16. For all k ≥ 0, Real(NRAtf,RT[k]) is decidable and in 2ExpTime.

C O N C U R 2 0 1 9

24:14 Synthesis of Data Word Transducers

6 Synthesis and Uniformisation

In this section, we discuss the relation between realisability and uniformisation of relations:
in this paper, if S is realisable by a register transducer, then, in particular, it has universal
domain, i.e. inp(S) = DW(Σi,D), otherwise it cannot be that L(T) ⊆ S for T a register
transducer, since by definition inp(T) = DW(Σi,D). However, when defining a specification,
the user might be interested only in a subset of behaviours (for instance, s/he knows
that all input data will be pairwise distinct). In the finite alphabet setting, since the
formalisms used to express specifications are closed under complement (whether it is LTL
or ω-automata), it suffices to complete the specification by allowing any behaviour on the
input not considered. However, since register automata are not closed under complement,
such approach is not sufficient here. Thus, it is relevant to generalise the realisability
problem to the case where the domain of the specification is not universal. This can be
done by equipping register transducers with an acceptance condition. It is also necessary to
adapt the notion of realisability; otherwise, any transducer accepting no words realises any
specification. A natural way is to consider synthesis as an instance of the uniformisation
problem. An (implementation) function f : I → O is said to uniformise a (specification)
relation R ⊆ I × O whenever dom(f) = dom(R) and for all i ∈ dom(f), (i, f(i)) ∈ R. In
the context of reactive synthesis, where f = fI is defined from an implementation I and R

is given as a language of relational words, it can be rephrased as inp(L(I)) = inp(R) and
for all wi ∈ inp(L(I)), 〈wi, fI(wi)〉 ∈ R. Note that such definition coincides with the one of
realisability when the class of implementations has universal domain. In the following, we
denote by Unif(S, I) the uniformisation problem from specifications in S to implementations
in I. Unfortunately, this setting is actually much harder, as shown by the next two theorems:

I Theorem 17. Given S a specification represented by a DRA, checking whether inp(S) =
DW(Σi,D) is undecidable.

While the uniformisation setting obviously preserves the undecidability results from
the synthesis setting, the above result allows to show that the somehow more general
uniformisation problem is undecidable. For instance, we can prove:

I Theorem 18. For all k ≥ 1, Unif(URA,RT[k]) is undecidable.

If the domain is DRA-recognisable, it is possible to reduce the uniformisation problem to
realisability, by allowing any behaviour on the complement on the domain (which is DRA-
recognisable). However, such property is undecidable as a direct corollary of Theorem 17.

7 Conclusion

In this paper, we have given a picture of the decidability landscape of the synthesis of
register transducers from register automata specifications. We studied the parity acceptance
condition because of its generality, but our results allow to reduce the synthesis problem
for register automata specifications to the one for finite automata while preserving the
acceptance condition. We have also introduced and studied test-free NRA, which do not have
the ability to test their input, but still have the power of duplicating, removing or copying
the input data to form the output. We have shown that they allow to recover decidability in
presence of non-determinism, in the bounded case. We leave open the unbounded case, which
we conjecture to be decidable. As future work, we want to study synthesis problems for
specifications given by logical formulae, for decidable data words logics such as two-variable
fragments of FO [2, 17, 4].

L. Exibard, E. Filiot, and P.-A. Reynier 24:15

References
1 Roderick Bloem, Krishnendu Chatterjee, and Barbara Jobstmann. Graph Games and Reactive

Synthesis, pages 921–962. Springer International Publishing, Cham, 2018.
2 Miko laj Bojańczyk, Anca Muscholl, Thomas Schwentick, Luc Segoufin, and Claire David.

Two-Variable Logic on Words with Data. In Proceedings of the 21th IEEE Symposium on Logic
in Computer Science (LICS 2006), pages 7–16. ACM, 2006. doi:10.1109/LICS.2006.51.

3 Cristian S. Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, and Frank Stephan. Deciding
Parity Games in Quasipolynomial Time. In Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing (STOC 2017), pages 252–263. ACM, 2017. doi:10.1145/
3055399.3055409.

4 Luc Dartois, Emmanuel Filiot, and Nathan Lhote. Logics for Word Transductions with
Synthesis. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS 2018), pages 295–304. ACM, 2018. doi:10.1145/3209108.3209181.

5 Antoine Durand-Gasselin and Peter Habermehl. Regular Transformations of Data Words
Through Origin Information. In Proceedings of the 19th International Conference on Foun-
dations of Software Science and Computation Structures (FOSSACS 2016), volume 9634
of Lecture Notes in Computer Science, pages 285–300. Springer, 2016. doi:10.1007/
978-3-662-49630-5_17.

6 Rüdiger Ehlers, Sanjit A. Seshia, and Hadas Kress-Gazit. Synthesis with Identifiers. In
Proceedings of the 15th International Conference on Verification, Model Checking, and Abstract
Interpretation (VMCAI 2014), volume 8318 of Lecture Notes in Computer Science, pages
415–433. Springer, 2014. doi:10.1007/978-3-642-54013-4_23.

7 Léo Exibard, Emmanuel Filiot, and Pierre-Alain Reynier. Synthesis of Data Word Transducers.
CoRR, abs/1905.03538, 2019. arXiv:1905.03538.

8 Diego Figueira and M. Praveen. Playing with Repetitions in Data Words Using Energy Games.
In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS 2018), pages 404–413. ACM, 2018. doi:10.1145/3209108.3209154.

9 J.R. Büchi and L.H. Landweber. Solving Sequential Conditions by Finite-State Strategies.
Transactions of the American Mathematical Society, 138:295–311, 1969.

10 Michael Kaminski and Nissim Francez. Finite-memory Automata. Theor. Comput. Sci.,
134(2):329–363, 1994. doi:10.1016/0304-3975(94)90242-9.

11 Ayrat Khalimov and Orna Kupferman. Register Bounded Synthesis. In Proceedings of the
30th International Conference on Concurrency Theory (CONCUR 2019), 2019. To appear.

12 Ayrat Khalimov, Benedikt Maderbacher, and Roderick Bloem. Bounded Synthesis of Register
Transducers. In Proceedings of the 16th International Symposium on Automated Technology for
Verification and Analysis (ATVA 2018), volume 11138 of Lecture Notes in Computer Science,
pages 494–510. Springer, 2018.

13 Andrzej S. Murawski, Steven J. Ramsay, and Nikos Tzevelekos. Bisimilarity in Fresh-Register
Automata. In 30th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS
2015), pages 156–167. IEEE Computer Society, 2015. doi:10.1109/LICS.2015.24.

14 Frank Neven, Thomas Schwentick, and Victor Vianu. Finite State Machines for Strings over
Infinite Alphabets. ACM Trans. Comput. Logic, 5(3):403–435, 2004. doi:10.1145/1013560.
1013562.

15 Nir Piterman. From Nondeterministic Büchi and Streett Automata to Deterministic Parity
Automata. Logical Methods in Computer Science, 3(3), 2007.

16 A. Pnueli and R. Rosner. On the synthesis of a reactive module. In ACM Symposium on
Principles of Programming Languages, POPL. ACM, 1989.

17 Thomas Schwentick and Thomas Zeume. Two-Variable Logic with Two Order Relations.
Logical Methods in Computer Science, 8(1), 2012. doi:10.2168/LMCS-8(1:15)2012.

18 Luc Segoufin. Automata and Logics for Words and Trees over an Infinite Alphabet. In
Proceedings of the 15th Annual Conference of the EACSL on Computer Science Logic (CSL
2006), volume 4207 of Lecture Notes in Computer Science, pages 41–57. Springer, 2006.
doi:10.1007/11874683_3.

C O N C U R 2 0 1 9

https://doi.org/10.1109/LICS.2006.51
https://doi.org/10.1145/3055399.3055409
https://doi.org/10.1145/3055399.3055409
https://doi.org/10.1145/3209108.3209181
https://doi.org/10.1007/978-3-662-49630-5_17
https://doi.org/10.1007/978-3-662-49630-5_17
https://doi.org/10.1007/978-3-642-54013-4_23
http://arxiv.org/abs/1905.03538
https://doi.org/10.1145/3209108.3209154
https://doi.org/10.1016/0304-3975(94)90242-9
https://doi.org/10.1109/LICS.2015.24
https://doi.org/10.1145/1013560.1013562
https://doi.org/10.1145/1013560.1013562
https://doi.org/10.2168/LMCS-8(1:15)2012
https://doi.org/10.1007/11874683_3

Register-Bounded Synthesis
Ayrat Khalimov
School of Computer Science and Engineering, The Hebrew University, Jerusalem, Israel
ayrat.khalimov@gmail.com

Orna Kupferman
School of Computer Science and Engineering, The Hebrew University, Jerusalem, Israel
orna@cs.huji.ac.il

Abstract
Traditional synthesis algorithms return, given a specification over finite sets of input and output
Boolean variables, a finite-state transducer all whose computations satisfy the specification. Many
real-life systems have an infinite state space. In particular, behaviors of systems with a finite control
yet variables that range over infinite domains, are specified by automata with infinite alphabets.
A register automaton has a finite set of registers, and its transitions are based on a comparison of
the letters in the input with these stored in its registers. Unfortunately, reasoning about register
automata is complex. In particular, the synthesis problem for specifications given by register
automata, where the goal is to generate correct register transducers, is undecidable.

We study the synthesis problem for systems with a bounded number of registers. Formally,
the register-bounded realizability problem is to decide, given a specification register automaton A

over infinite input and output alphabets and numbers ks and ke of registers, whether there is a
system transducer T with at most ks registers such that for all environment transducers T ′ with at
most ke registers, the computation T ‖T ′, generated by the interaction of T with T ′, satisfies the
specification A. The register-bounded synthesis problem is to construct such a transducer T , if exists.
The bounded setting captures better real-life scenarios where bounds on the systems and/or its
environment are known. In addition, the bounds are the key to new synthesis algorithms, and, as
recently shown in [24], they lead to decidability. Our contributions include a stronger specification
formalism (universal register parity automata), simpler algorithms, which enable a clean complexity
analysis, a study of settings in which both the system and the environment are bounded, and a
study of the theoretical aspects of the setting; in particular, the differences among a fixed, finite,
and infinite number of registers, and the determinacy of the corresponding games.

2012 ACM Subject Classification Theory of computation → Formal languages and automata theory

Keywords and phrases Synthesis, Register Automata, Register Transducers

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2019.25

Related Version A full version of the paper is available at https://www.cs.huji.ac.il/~ornak/
publications/concur19.pdf.

1 Introduction

Synthesis is the automated construction of a system from its specification. The specification
distinguishes between outputs, generated by the system, and inputs, generated by its
environment. The system should realize the specification, namely satisfy it against all
possible environments. Thus, for every sequence of inputs, the system should generate a
sequence of outputs so that the induced computation satisfies the specification [10, 30]. The
systems are modelled by transducers: automata whose transitions are labeled by letters from
the input alphabet, which trigger the transition, and letters from the output alphabet, which
are generated when the transition is taken. Since its introduction, synthesis has been one
of the most studied problems in formal methods, with extensive research on wider settings,
heuristics, and applications [25, 1].

© Ayrat Khalimov and Orna Kupferman;
licensed under Creative Commons License CC-BY

30th International Conference on Concurrency Theory (CONCUR 2019).
Editors: Wan Fokkink and Rob van Glabbeek; Article No. 25; pp. 25:1–25:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ayrat.khalimov@gmail.com
mailto:orna@cs.huji.ac.il
https://doi.org/10.4230/LIPIcs.CONCUR.2019.25
https://www.cs.huji.ac.il/~ornak/publications/concur19.pdf
https://www.cs.huji.ac.il/~ornak/publications/concur19.pdf
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

25:2 Register-Bounded Synthesis

Until recently, all studies of the synthesis problem considered finite state transducers that
realize specifications given by temporal-logic formulas over a finite set of Boolean propositions
or by finite-state automata. Many real-life systems, however, have an infinite state space.
One class of infinite-state systems, motivating this work, consists of systems in which the
control is finite and the source of infinity is the domain of the variables in the systems.
This includes, for example, data-independent programs [37, 20, 27], software with integer
parameters [5], communication protocols with message parameters [11], datalog systems with
infinite data domain [4, 36], and more [8, 6]. Lifting automata-based methods to the setting
of such systems requires the introduction of automata with infinite alphabets. The latter
include registers [33], pebbles [28, 34], or variables [18, 19], or handle the infinite alphabets
by attributing it by labels from an auxiliary finite alphabet [3, 2].

A register automaton [33] has a finite set of registers, each of which may contain a letter
from the infinite alphabet. The transitions of a register automaton do not refer explicitly to
each of the (infinitely many) input letters. Rather, they compare the letter in the input with
the content of the registers, and may also store the input letter in a register. Several variants
of this model have been studied. For example, [21] forces the content of the registers to be
different, [28] adds alternation and two-wayness, [22] allows the registers to change their
content nondeterministically during the run, and [35] adds the ability to check for uniqueness
of the input letter. Likewise, register transducers are adjusted to model systems whose
interaction involves input and output variables over an infinite domain: their transitions are
labeled by guards that compare the value in the input with the content of the registers. In
addition, while taking a transition, the transducer stores this value in some of its registers
and outputs a value stored in one of its registers. For example, a transition of a register
transducer can be “in state q5, if the value in the input is not equal to the value stored in
register #1, then store the value in the input into register #2, output the value stored in
register #1, and transit to state q3”. A register automaton can thus specify properties like
“every value read in the input in two successive cycles is output in the next cycle”. For more
elaborated examples, see Examples 1 and 2.

The transition to infinite alphabets makes reasoning much more complex. In particular,
the universality and containment problems for register automata are undecidable [28], and
so is the synthesis problem for specifications given by register automata [14]. While the
specifications used for the undecidability result in [14] are register automata with a fixed
number of registers, the realizing transducers are equipped with an unbounded queue of
registers: they can push the inputs into the queue, and later compare the inputs with the
values in the queue. This, for example, is helpful for realizing specifications like “every value
that appears in the input has to eventually appear on the output twice”. While the latter
can be specified by a register automaton with a single register, a realizing transducer for
it may behave as follows: it queues every incoming value into its queue, outputs the value
stored in the head of the queue twice, and dequeues it – which requires an unbounded queue
of registers. Moreover, as shown in [15], the synthesis problem stays undecidable even when
the number of registers in the realizing transducer is finite, yet not known in advance. In
[24], it is shown that bounding the number of registers of the realizing transducer makes the
synthesis problem decidable. Essentially, such a bound enables an abstraction of the infinite
number of register valuations to a finite number of equivalence relations. In more details,
since the transitions of the specification register automaton only compare the value in the
input with the content of its registers, we can abstract the exact values stored in the registers
and only maintain their partition into equivalence classes: two registers are in the same class
if they agree on the values stored in them. In particular, such a partition fixes the transition
that the automaton should take, and can be updated whenever the input value is stored in
some register.

A. Khalimov and O. Kupferman 25:3

In this paper we offer a comprehensive study of the synthesis problem for systems
with a bounded number of registers. As has been the case with bounded synthesis in the
finite-state setting [31, 13, 16, 26], the motivation for the study is both conceptual and
computational: First, the bounded setting captures better real-life scenarios where bounds
on the systems and/or its environment are known. Second, the bounds are the key to new
synthesis algorithms, and in the case of systems with an infinite variable domain, they
lead to decidability. Note that the only parameter we bound is the number of registers.
In particular, the size of the alphabet stays infinite, and the size of the system and its
environment stays unbounded1.

Let us start with the conceptual motivation. It is by now realized that requiring a
realizing system to satisfy the specification against all possible environments is often too
demanding. Dually, allowing all possible systems is perhaps not demanding enough. This issue
is traditionally approached by adding assumptions on the system and/or the environment,
which are modeled as part of the specification (see e.g. [9]). In bounded synthesis in the
finite-state setting, the assumptions on the system and its environment are given by means
of bounds on the sizes of their state space [31, 26]. In the setting of register transducers,
bounding the size of the state spaces of the system and its environment is not of much interest,
as a register may be used to store the value of the state. Thus, the interesting parameter
to bound is the number of allowed registers. Indeed, this setting corresponds to systems
with a finite control and a finite number of memory elements, each maintaining a value from
an infinite domain. Formally, the register-bounded realizability problem is to decide, given a
specification register automaton A over infinite input and output alphabets and numbers ks

and ke of registers, whether there is a system transducer T with at most ks registers such
that for all environment transducers T ′ with at most ke registers, the computation T‖T ′,
generated by the interaction of T with T ′, satisfies the specification A. The register-bounded
synthesis problem is to construct such a transducer T , if exists.

We continue to the computational motivation and describe our contribution. Our
specifications are given by universal register parity automata on infinite words (reg-UPW, for
short). Thus, each configuration of the automaton may have several successor configurations,
and an infinite word is accepted if all the possible runs on it are accepting. Reg-UPWs
are more expressive than deterministic register parity automata or universal register Büchi
automata, and are more succinct than universal register co-Büchi automata. Reg-UPWs
are incomparable with nondeterministic register parity automata (reg-NPW). There are
good reasons to work with the universal (rather than nondeterministic) model. First, basic
questions are undecidable for reg-NPW. In particular, [12] shows undecidability of the
universality problem for nondeterministic register weak automata with a single register,
which can be shown to imply undecidability of reg-NPW register-bounded synthesis. Second,
as we demonstrate in Section 2, the class of properties that are expressible by reg-UPWs is
more interesting in practice. In particular, reg-UPWs are easily closed under conjunction,
which is crucial for synthesis.

We describe a simple algorithm for the register-bounded synthesis problem for reg-UPW
specifications ([24] only handles co-Büchi automata), which enables a clean complexity
analysis ([24] only shows decidability). We study the settings in which both the system and

1 We note, however, that bounding the number of states in the realizing transducer has proven to be helpful
also in the context of systems over infinite alphabets. For example, [17] describes a CEGAR-based
synthesis algorithm that approaches the general undecidable synthesis problem by iteratively refining
under-approximating systems of bounded sizes.

CONCUR 2019

25:4 Register-Bounded Synthesis

the environment are bounded ([24] only bounds the system), and we study the theoretical
aspects of the setting; in particular, the differences between a fixed, a finite yet unbounded,
and an infinite number of registers, and the determinacy of the corresponding games.

Our synthesis algorithm reduces the register-bounded synthesis problem to the traditional
synthesis problem. Specifically, given a specification reg-UPW A with kA registers, and
numbers ks and ke, we construct a (register-less) UPW A′ that abstracts the values in the
registers of A and consider instead equivalences among registers in the three sets of registers
involved: these of A, and these of the system and environment transducers. The synthesis
problem for A is then reduced to that of A′. In Section 3 we solve the case where the
environment is not bounded (thus ke =∞) and then in Section 4 continue to the general case.
Our complexity analysis carefully takes into account the fact that in the determinization of
A′, the registers of A and the environment behave universally, whereas these of the system
behave deterministically. Accordingly, the complexity of the register-bounded synthesis
problem for A with n states, finite alphabet of size m, and index c, can be solved in time
(cmn(ks + ke + kA))O(cn(ks+ke+kA)(ke+kA+1)). Thus, it is polynomial in m, exponential in c,
n, and ks, and doubly-exponential only in kA and ke. In the full version [23], we also study
determinacy of register-bounded synthesis and show that for all ks ∈ N and ke ∈ N∪{∞}, the
problem is not determined: there are specifications that are neither realizable by a bounded
system (with respect to bounded environments), nor their negations are realizable by a
bounded environment (with respect to bounded systems). This corresponds to the picture
obtained for bounded synthesis for finite-state systems, where the size of the state space is
bounded (we bound only the number of registers) [26]. We also examine the difference in the
strength of systems and environments with a fixed, finite, or infinite number of registers, and
the existence of a cut-off point, namely a finite-model property characterizing settings where
a finite and bounded number of registers suffices.

2 Preliminaries

2.1 Register Automata
Let ΣI and ΣO be two finite alphabets and let D be an infinite domain of data values. We
consider systems that get inputs in ΣI × D and respond with outputs in ΣO × D. Let
Σ = ΣI × ΣO. Computations of systems as above are words in 〈σ0, i0, o0〉〈σ1, i1, o1〉... ∈
(Σ×D ×D)ω. Register automata specify languages of such words. Let B = {true, false}. A
k-register word automaton is a tuple A = 〈Σ, Q, q0, R, v0, δ, α〉, where Σ is a finite alphabet,
Q is the set of states, q0 ∈ Q is an initial state, R is a set of k registers, v0 ∈ DR is an initial
register valuation, δ : Q × (Σ × BR × BR) → 2Q×BR is a transition function, and α is an
acceptance condition (we later define several acceptance conditions). Intuitively, when A
is in state q and reads a letter 〈σ, i, o〉 ∈ Σ×D ×D, it compares i and o with the content
of its registers and branches into several new configurations according to the result of this
comparison. In more detail, rather than specifying a transition for each element in Σ×D×D,
the transition function δ specifies a transition for each element in Σ× BR × BR, where the
two guards in BR compare the values stored in the registers with i and o. Then, δ directs A
into a set of pairs in Q×BR, each describing a successor state and a storing mask, indicating
which registers are going to store i.

A configuration of A is a pair 〈q, v〉 ∈ Q×DR, describing the state that A visits and the
content of its registers. A run of A starts in the configuration 〈q0, v0〉, and continues to form
an infinite sequence of successive configurations. In order to define runs formally, we first
need some notations. Given a valuation v ∈ DR and a value d ∈ D, let v ∼ d denote the

A. Khalimov and O. Kupferman 25:5

Boolean assignment g ∈ BR that indicates the agreement of v with d. Thus, for every r ∈ R,
we have g(r) = true iff v(r) = d. The function update : DR×D×BR → DR maps a valuation
v ∈ DR, a value d ∈ D, and a storing mask a ∈ BR, to the valuation obtained from v by
changing the value stored in registers that are positive in a to d. Formally, for every r ∈ R,
we have that update(v, d, a)(r) is d if a(r) = true and is v(r) otherwise. Note that it need
not be the case that update(v, d, a) ∼ d = a. Indeed, if v(r) = d, then update(v, d, a)(r) = d

regardless of a(r).
For two configurations 〈q′, v′〉 and 〈q, v〉 in Q×DR, and a triple 〈σ, i, o〉 ∈ Σ×D ×D,

we say that 〈q′, v′〉 is a 〈σ, i, o〉-successor of 〈q, v〉 if there exists a ∈ BR such that 〈q′, a〉 ∈
δ(q, 〈σ, v ∼ i, v ∼ o〉) and v′ = update(v, i, a).

Now, a run of A on a word w = 〈σ0, i0, o0〉〈σ1, i1, o1〉... ∈ (Σ × D × D)ω is an infinite
sequence 〈q0, v0〉〈q1, v1〉... ∈ (Q×DR)ω of configurations such that for every j ≥ 0, we have
that 〈qj+1, vj+1〉 is a 〈σj , ij , oj〉-successor of 〈qj , vj〉. Note that there may be several different
runs on the same word. Note also that since δ may return an empty set of possible transitions,
a configuration 〈qj , vj〉 need not have 〈σj , ij , oj〉-successors. There, the sequence of successive
configurations is finite, and is not a run.

When A is a parity automaton, α : Q → {0, ..., c − 1}, for an index c ∈ N, a run ρ is
accepting if the maximal rank that is visited by ρ infinitely often is even. Formally, ρ =
〈q0, v0〉〈q1, v1〉... is accepting if max{j ∈ {0, ..., c− 1} : α(ql) = j for infinitely many l ≥ 0} is
even. The co-Büchi acceptance condition is a special case of parity, with c = 2. Thus, ρ is
accepting if vertices 〈q, v〉 with α(q) = 1 are visited only finitely often. When A is universal,
it accepts the word w if all the runs of A on w are accepting. Note that since we require runs
to be infinite, the universal quantification on the runs means that a configuration with no
successors is like an accepting configuration: once we reach it, there are no restrictions on the
suffix of the word. The language of A, denoted L(A), is the set of all words that A accepts.
We sometimes use w |= A to indicate that w ∈ L(A). We use reg-UPW and reg-UCW to
abbreviate a universal register parity and co-Büchi automata, respectively. A (register-less)
UPW can be viewed as a special case of a reg-UPW with no registers. In particular, it has
no initial valuation and its transition function is of the form δ : Q× Σ→ 2Q.

I Example 1. The reg-UCW A appearing in Figure 1 specifies an arbiter with a single output
signal ack (that is, ΣI is a singleton, and we ignore it, and ΣO = 2{ack}) that gets in each
moment in time an input data value i, and outputs either ack or ¬ack along with an output
data value o. It accepts a word if every input data value different from the previous one is
eventually outputted with ack. The acceptance condition α requires runs to visit q1 only
finitely often. The reg-UCW A has a single register, thus R = {r1}, and we describe vectors
in Σ × BR × BR by triples in {ack,¬ack} × {0, 1} × {0, 1}, possibly replacing some of the
parameters by _, indicating that both values of this parameter apply. We continue to describe

q0 q1

i = r1
i 6= r1/store1

i 6= r1/store1

¬ack ∨ o 6= r1

Figure 1 The reg-UCW A. The edge labels are symbolic, where the expressions i 6= r1 and i = r1

mean that the i-guard is 0 and 1 respectively, and the expression o 6= r1 means that the o-guard is
0. The label store1 means the storing mask is 1, while its absence means it is 0. The state q1 is
doubly-circled, indicating that a run is accepting iff it visits q1 only finitely often.

CONCUR 2019

25:6 Register-Bounded Synthesis

the transition function. First, δ(q0, 〈_, 1,_〉) = {〈q0, 0〉}. That is, if the input data value
agrees with the one stored in r1, we only loop in q0. Then, δ(q0, 〈_, 0,_〉) = {〈q0, 1〉, 〈q1, 1〉}.
That is, if the input data value differs from the one stored in r1, then A both loops in q0
and sends a copy to q1, and stores the value of the input data value in r1. In state q1, we
have δ(q1, 〈ack,_, 1〉) = ∅, thus the copy sent to q1 fulfils its mission when it reads an ack
with an output data value that agrees with the one stored in r1. In all other cases, the copy
stays in q1. Thus, δ(q1, 〈¬ack,_,_〉) = δ(q1, 〈ack,_, 0〉) = 〈q1, 0〉. The parity acceptance
condition α = {q0 7→ 0, q1 7→ 1} then guarantees that all copies sent to q1 eventually fulfil
their missions. We note that the universality of A is used in order to detect all data values
that are not stored in r1: a copy of the automaton is launched for each of them. Such a
detection is impossible in a deterministic or even a nondeterministic register automaton.

2.2 Register Transducers
Register transducers model systems with inputs in ΣI×D and outputs in ΣO×D. Every such
system implements a strategy (ΣI ×D)+ → ΣO ×D, describing the output it generates after
reading a sequence of inputs. A register transducer is a tuple T = 〈ΣI ,ΣO, S, s0, R, v0, τ〉,
where ΣI and ΣO are input and output finite alphabets, S is a set of states, s0 ∈ S is an initial
state, R is a set of registers, v0 ∈ DR is an initial register valuation, and τ : S× (ΣI ×BR)→
S × BR × ΣO × R is a transition function. Intuitively, when T is in state s and reads a
letter 〈i, i〉 ∈ ΣI ×D, it compares i with the content of its registers. Depending on i and
the comparison, it transits deterministically to a successor state and may store the data
value i into its registers. It also outputs a letter in ΣO and a value stored in one of the
registers. Note that a register may store either its initial value or some value seen earlier as
a data input.

Formally, a configuration of T is a pair in S × DR, and successive configurations are
defined in a way similar to the one defined for automata, except that T is deterministic: given
a configuration 〈s, v〉 ∈ S ×DR and an input 〈i, i〉 ∈ ΣI ×D, let τ(s, 〈i, v ∼ i〉) = 〈s′, a, o, r〉.
Then, the 〈i, i〉-successor of 〈s, v〉 is 〈s′, update(v, i, a)〉.

Given an input word w = 〈i0, i0〉〈i1, i1〉... ∈ (ΣI ×D)ω, the run of T on w is the sequence
〈s0, v0〉〈s1, v1〉... ∈ (S ×DR)ω, where for all j ≥ 0, we have that 〈sj+1, vj+1〉 is the 〈ij , ij〉-
successor of 〈sj , vj〉. For every j ≥ 0, let τ(sj , ij , vj ∼ ij) = 〈sj+1, aj , oj , rj〉. Then, the
computation of T on w is the sequence 〈〈i0, o0〉, i0, o0〉〈〈i1, o1〉, i1, o1〉... ∈ ((ΣI×ΣO)×D×D)ω

such that for every j ≥ 0, we have that oj = update(vj , ij , aj)(rj). Thus, the transducer
moves from sj to sj+1, stores ij in registers that are positive in aj , and then outputs oj and
the (updated) content of register rj . A (register-less) transducer is a special case of a register
transducer with no registers. In particular, it has no initial valuation and its transition
function is of the form τ : S × ΣI → S × ΣO.

For a register transducer T and a reg-UPW A, we say that T realizes A, denoted T |= A,
if for all input words w ∈ (ΣI ×D)ω, the computation of T on w is in the language of A.

I Example 2. Figure 2 describes a register transducer that realizes the reg-UCW from
Example 1. The input alphabet ΣI is a singleton and we ignore it. The output alphabet
ΣO = 2{ack}, and the register set R = {r1, r2}. The transducer loops in the initial state
s0 if the current data input equals the previous data input (which is stored in register r1).
Otherwise (i 6= r1), the transducer stores the new data value into r1, does not raise ack,
outputs the value of register r1 (it has to output something), and moves into state s1. Now,
if it does not see a new data input (i = r1), then – in order to acknowledge the previous
data input – it raises ack, outputs the previous data input from r1, and returns into s0.

A. Khalimov and O. Kupferman 25:7

Alternatively, if in state s1 the transducer sees a new data input (i 6= r1), then it stores into
r2, raises ack, outputs the previous data input from r1, and moves into s2. From there, if no
new data input was seen, the transducer moves into s3, while outputting the value of r2 and
raising ack. And so on. Thus, in states s0 and s1 register r1 contains the previous data input,
while in states s2 and s3 it is stored in register r2. Finally, register r1 is initialized with the
same value as the automaton register, while r2 can start with anything. We conclude with a
remark that there is a simpler transducer that realizes the same reg-UCW: It always raises
ack, stores alternatingly into r1 and r2 while outputting alternatingly the value of r2 and r1.
But such a transducer produces spurious acks, while our transducer does not.

s0 s1 s2 s3

i = r1/〈¬ack , r1〉

i 6= r1/〈¬ack , r1, store1〉

i = r1/〈ack , r1〉

i 6= r1/〈ack , r1, store2〉

i 6= r2/〈ack , r2, store1〉

i = r2/〈ack , r2〉

i 6= r2/〈¬ack , r2, store2〉

i = r2/〈¬ack , r2〉

Figure 2 A register transducer that realizes the reg-UCW A from Example 1. The edge labeling
for ΣO and the guards is symbolic, and is similar to that in Figure 1.

2.3 Synthesis with an Infinite or Unbounded Number of System
Registers

The realizability problem is to decide, given a reg-UPW A over ΣI × ΣO ×D ×D, whether
there is a register transducer all whose computations are accepted by A. The synthesis
problem is to construct such a transducer, if exists.

The realizability and synthesis problems in the context of specifications and systems with
an infinite data domain was first studied in [14]. The transducers in [14] have an infinite
number of registers, all initialized to the same value. The automata in [14] are universal
register automata with a variant of weak acceptance condition, and additionally do not allow
for register re-assignment. It is shown in [14] that the synthesis problems is undecidable,
already for automata with only two registers. Since our automata and transducers are more
powerful, undecidability applies to our setting. Thus, when the number of registers in the
system is infinite, the realizability and synthesis problems are undecidable.

Consider now the case where the number of registers is finite but not fixed a-priori. It
is shown in [12] that the nonemptiness problem for universal 2-register automata on finite
words is undecidable. It is not hard to reduce their nonemptiness problem to the synthesis
problem for 2-register UPWs, which implies the undecidability of the latter. Thus, we get
the following.

I Theorem 3 ([12, 14]). The synthesis problem of transducers with an infinite or a finite
but unbounded number of registers for specifications given by 2-register UPWs is undecidable.
In the case of an infinite number of registers, undecidability holds even when the transducer
registers are initialized with the same value.

3 Synthesis with a Fixed Number of System Registers

The system-bounded realizability problem is to decide, given a reg-UPW A over ΣI×ΣO×D×D
and a number ks of registers, whether there is a transducer with at most ks registers all whose
computations are accepted by A. The system-bounded synthesis problem is to construct such
a transducer, if exists.

CONCUR 2019

25:8 Register-Bounded Synthesis

Let A = 〈Σ, Q, q0, RA, v
A
0 , δ, α〉, and let |RA| = kA. Recall that Σ = ΣI × ΣO. We define

a UPW A′ (that is, with no registers) that abstracts the values stored in RA. Instead, A′
maintains an equivalence relation over the registers of A and the registers of the realizing
transducer, indicating which of them agree on the values stored in them.

Let Rs denote a set of ks registers, namely these of the realizing transducer (we subscript
its elements by s as this transducer models the system), and let R = RA ∪Rs. For valuations
vA ∈ DRA and vs ∈ DRs , let vA ∪ vs be the valuation in DR obtained by taking their union.
Likewise, for a valuation v ∈ DR, let vA and vs denote the projections of v on RA and Rs,
respectively. Let Π be the set of all equivalence relations over R. Consider an element π ∈ Π,
thus π ⊆ R × R. For two registers r, r′ ∈ R, we write π(r, r′) to denote that r and r′ are
equivalent in π. Note that r and r′ may be both in RA, both in Rs, or one in RA and one in
Rs. Each equivalence relation π ∈ Π induces a partition of R into equivalence classes, and we
sometimes refer to the elements in Π as partitions of R. Then, for π ∈ Π, we talk about sets
S ∈ π, where S ⊆ R, and π(r, r′) indicates that r and r′ are in the same set in the partition.
Let f : DR → Π map a register valuation v ∈ DR to the partition π ∈ Π, where for every
two registers r, r′ ∈ R, we have that π(r, r′) iff v(r) = v(r′).

Recall that we describe guards and storing masks on a set R of registers by Boolean
functions in BR. Each assignment g ∈ BR corresponds to a set of registers characterized
by g. In the sequel, we sometimes refer to Boolean assignments as sets, thus assume that
g ⊆ R, and talk about union and intersection of assignments, referring to the sets they
characterize. Consider a partition π of R and a Boolean assignment gs ⊆ Rs. We say that gs

is π-consistent if there is an equivalence class S ∈ π∪{∅} such that S∩Rs = gs. We then say
that 〈π, gs〉 chooses S. Note that for gs = ∅, the set S is either empty or contains no system
registers, and might be not unique. For example, if RA = {#1, #2, #3, #4}, Rs = {#5, #6}, and
π = {{#1}, {#2, #3}, {#4, #5}, {#6}}, then 〈π, {#5}〉 chooses only {#4, #5}, the pair 〈π, {#6}〉
chooses only {#6}, and 〈π,∅〉 chooses {#1}, {#2, #3}, or ∅. For a set SA ⊆ RA, we say
that 〈π, gs〉 A-chooses SA if there is a set S ∈ π ∪ {∅} such that 〈π, gs〉 chooses S and
SA = S ∩ RA. Thus, 〈π, gs〉 A-chooses SA if 〈π, gs〉 chooses a set whose RA registers are
these in SA. Continuing the previous example, 〈π, {#5}〉 A-chooses {#4}, the pair 〈π, {#6}〉
A-chooses ∅, and 〈π,∅〉 A-chooses {#1}, {#2, #3}, or ∅. Finally, for a register r ∈ R, the
pair 〈π, r〉 A-chooses the unique set SA ⊆ RA if SA = S ∩RA, for the set S ∈ π such that
r ∈ S. In the example above, the pairs 〈π, #4〉 and 〈π, #5〉 both A-choose {#4}, and the pair
〈π, #6〉 A-chooses ∅.

The following lemma follows immediately from the definitions.

I Lemma 4. Consider a partition π of R = Rs ∪RA and a valuation v ∈ DR s.t. f(v) = π.
Then:
(a) for every i ∈ D, the guard vs ∼ i is π-consistent and A-chooses the guard vA ∼ i,
(b) for every guard g ∈ (π ∪ {∅}), there exists i ∈ D satisfying (v ∼ i) = g, and
(c) for every r ∈ R, the pair 〈π, r〉 A-chooses vA ∼ v(r).

Recall the function update : DR×D×BR → DR, where update(v, d, a) is obtained from v

by storing d in the registers in a. We now define a function update′ : Π×BR×BR → Π, which
adjusts the update function to the abstraction of valuations by partitions. Intuitively, for a
partition π ∈ Π, a guard g ∈ (π ∪ {∅}), and a storing mask a ⊆ R, we obtain the partition
update′(π, g, a) from π by moving the registers in a either into the equivalence class of g (if
g is not empty), or into a new equivalence class. Formally, update′(π, g, a) = {S \ a : S ∈
π \ g} \ {∅}∪{g∪a}. Note that, in particular, update′(π,∅, a) = {S \a : S ∈ π} \ {∅}∪{a}.

A. Khalimov and O. Kupferman 25:9

I Lemma 5. For every valuation v ∈ DR, value i ∈ D, and storing mask a ⊆ R, we have
that f(update(v, i, a)) = update′(f(v), v ∼ i, a).

We are now ready to define the abstraction of A. In addition to ks, the abstraction is
parameterized by a partition π0 of the system and automaton registers. Given ks and π0, the
(ks, π0)-abstraction of A is the UPW A′ = 〈Σ′, Q′, q′0, δ′, α′〉 with the following components.

Q′ = Q × Π and q′0 = 〈q0, π0〉. Thus, each state in A′ is a pair 〈q, π〉, abstracting
configurations 〈q, vA〉 of A and register valuations vs of an anticipated transducer that
satisfy f(vs ∪ vA) = π.
Σ′ = Σ × BRs × Rs × BRs . Recall that in A, the transition function is δ : Q × (Σ ×
BRA × BRA) → 2Q×BRA , and when A is in configuration 〈q, vA〉 and reads a letter
〈σ, i, o〉 ∈ Σ × D × D, it proceeds according to 〈σ, gA

i , g
A
o 〉 ∈ Σ × BRA × BRA , where

gA
i is vA ∼ i and gA

o is vA ∼ o. Also, each successor state q′ is paired with a storing
mask aA

i ∈ BRA , which induces a successor configuration 〈q′, update(v, i, aA
i)〉. Intuitively,

each letter 〈σ, gs
i , rs, a

s
i 〉 ∈ Σ′, together with the current partition, induces choices for

〈σ, gA
i , g

A
o , a

A
i 〉 ∈ Σ× BRA × BRA × BRA which determine the transitions in A that the

abstraction follows.
For every state 〈q, π〉 ∈ Q′ and letter 〈σ, gs

i , rs, a
s
i 〉 ∈ Σ′, we have that 〈q′, π′〉 ∈

δ′(〈q, π〉, 〈σ, gs
i , rs, a

s
i 〉) iff there exist gA

i , g
A
o , a

A
i ∈ BRA such that the following condi-

tions hold.
gA
i is A-chosen by 〈π, gs

i 〉. Let gi = gs
i ∪ gA

i . Note that gi ∈ (π ∪ {∅}).
Recall that the output value in register transducers refers to the updated register
values, namely their values in the successor configuration. Therefore, when we compare
the data output of a transducer with the register values of the automaton, we first have
to update the values of the system transducer. For this, we introduce the partition
π?. Let π? be the partition after updating the system registers in π according to the
guard gs

i and the storing mask as
i . Thus, π? = update′(π, gi, as

i).
gA
o is A-chosen by 〈π?, rs〉. Note that since the set chosen by 〈π?, rs〉 is not empty, gA

o

is unique.
〈q′, aA

i 〉 ∈ δ(q, 〈σ, gA
i , g

A
o 〉).

We can now complete updating the partition. The partition π′ is the result of updating
the registers of A in π? according to the guard gA

i and the storing mask aA
i . Let

g?
i = gi ∪ as

i be the updated guard after system storing. Then π′ = update′(π?, g?
i , a

A
i).

The acceptance condition of A′ is induced from the one of A. Thus, for every state
〈q, π〉 ∈ Q′, we have that α′(〈q, π〉) = α(q).

Recall that the abstraction of A is parameterized by both the number of registers that
the system transducer may have as well as an initial partition for the registers of both the
system and the automaton. Let vA ∈ DRA be a valuation of the automaton registers. A
partition π ∈ Π is consistent with vA if there is a register valuation vs ∈ DRs such that
π = f(vA ∪ vs). Thus, all automaton registers are related according to vA, and the system
registers are unrestricted.

I Example 6. Let D = N, RA = {#1, #2, #3, #4}, and Rs = {#5, #6, #7}. Then the partition
π = {{#1, #4, #5}, {#2, #6}, {#3}, {#7}} is consistent with the valuation vA ∈ DRA for which
vA(#1) = vA(#4) = 9, vA(#2) = 2, and vA(#3) = 13. Indeed, taking vs ∈ DRs with vs(#5) = 9,
vs(#6) = 2, and vs(#7) = 14 results in π = f(vA ∪ vs). Note that different valuations
vs ∈ DRs may witness the consistency of π with vA. In our example, all these with vs(#5) = 9,
vs(#6) = 2, and vs(#7) 6∈ {2, 9, 13}. Also, several different partitions may be consistent with
a given valuation vA ∈ DRA . In our example, all these in which register #1 and #4 are in the
same set, different from the (different) sets of #2 and #3.

CONCUR 2019

25:10 Register-Bounded Synthesis

We can now state our main theorem, relating the realizability of A with realizability of its
abstraction. Consider a ks-register ΣI/ΣO-transducer T = 〈ΣI ,ΣO, S, s0, R, v0, τ〉. We can
view T as a (register-less) Σ′I/Σ′O–transducer T ′, for Σ′I = ΣI × BR and Σ′O = BR ×ΣO ×R.
Indeed, the transition function τ : S × (ΣI ×BR)→ S ×BR ×ΣO ×R of T can be viewed as
τ ′ : S × Σ′I → S × Σ′O. When v0 ∈ DRs is fixed, we say that T and T ′ correspond to each
other. Essentially, our main theorem follows from the fact that a reg-UPW A is realized
by a ks-transducer T iff the abstraction of A is realized by the register-less transducer that
corresponds to T . Formally, we have the following.

I Theorem 7. Consider a reg-UPW A with Σ = ΣI × ΣO, set of registers RA, and an
initial valuation vA

0 . Then, A is realizable by a ks-register ΣI/ΣO-transducer with a set
of registers Rs iff there is a partition π0 of R = Rs ∪ RA, consistent with vA

0 , such that
the (ks, π0)-abstraction of A is realizable by a (ΣI × BRs)/(ΣO ×Rs × BRs)-transducer. In
particular, a transducer that realizes the (ks, π0)-abstraction of A corresponds to a ks-register
transducer that realizes A.

Proof sketch. Let A = 〈Σ, Q, q0, RA, v
A
0 , δ, α〉 and let A′ be its (ks, π0)-abstraction, where

π0 is a partition of R consistent with vA
0 . We prove that for every valuation vs

0 ∈ DRs

satisfying f(vA
0 ∪ vs

0) = π0, ks-register ΣI/ΣO-transducer T initialized with vs
0, and register-

less (ΣI × BRs)/(BRs × ΣO ×Rs)-transducer T ′, where T and T ′ correspond to each other,
it holds that T |= A iff T ′ |= A′. The theorem then follows.

Assume first that T 6|= A. We prove that T ′ 6|= A′. Since T 6|= A, there is an input
sequence wI

T = 〈i0, i0〉〈i1, i1〉..., a run ρT = 〈s0, v
s
0〉〈s1, v

s
1〉... of T on wI

T , a computation
wT =

〈
〈i0, o0〉, i0, o0

〉〈
〈i1, o1〉, i1, o1

〉
... that T generates when it follows ρT , and a rejecting

run ρA = 〈q0, v
A
0 〉〈q1, v

A
1 〉... of A on the computation wT . Note that A may have several

runs on wT . Since it is universal, and A rejects wT , we know that at least one of them
does not satisfy α. We show that wI

T and ρT induce an input sequence wI
T ′ to T ′ such that

A′ rejects the computation of T ′ on wI
T ′ . We define wI

T ′ = 〈i0, vs
0 ∼ i0〉〈i1, vs

1 ∼ i1〉.... The
word wI

T ′ uniquely defines the computation wT ′ and the run ρT ′ = s0s1... of T ′. We now
define the rejecting run ρA′ of A′ on wT ′ . It starts in the configuration 〈q0, π0〉. Suppose
that in step j ≥ 0, the run ρA reaches the configuration 〈q, vA〉, the run ρT reaches the
configuration 〈s, vs〉, and the run ρA′ reaches the state 〈q, π〉. Assume that π = f(vA ∪ vs).
Since π0 = f(vA

0 ∪ vs
0), this holds for j = 0. Assume that in ρT , the transducer T transit in

the step j from 〈s, vs〉 to 〈s′, v′s〉, while reading 〈i, i〉 and outputting 〈o, o〉. Note that the
respective letter of the computation wT ′ is σ′ = 〈〈i, o〉, gs

i , rs, as〉, where gs
i = (vs ∼ i) and

it holds that 〈s′, as, o, rs〉 = τ(s, i, gs
i). Let 〈q′, v′A〉 be a 〈〈i, o〉, i, o〉-successor of 〈q, vA〉 as

appears in ρA. In the full version [23], we prove that the pair 〈q′, π′〉 is a σ′-successor of
〈q, π〉 in A′, where π′ = f(v′A ∪ v′s). By repeatedly applying the above claim, we can start
from 〈q0, π0〉 and, for all j ≥ 0, get the successor 〈qj+1, πj+1〉 of 〈qj , πj〉, obtaining the sought
run ρA′ . Also, by the definition of α′, the fact ρA is rejecting implies that so is ρA′ , and so
we are done.

Assume now that T ′ 6|= A′. We prove that T 6|= A. Since T ′ 6|= A′, there is an input
sequence wI

T ′ that induces the run ρT ′ = s0s1... and the computation wT ′ of T ′ such that wT ′

generates a rejecting run ρA′ = 〈q0, π0〉〈q1, π1〉... in A′. Given wT ′ (and hence ρT ′) and ρA′ ,
we construct a computation wT of T that induces a rejecting run ρA in A. The run ρT starts
in 〈s0, v

s
0〉, and the run ρA starts in 〈q0, v

A
0 〉. Suppose that in some step j ≥ 0, the run ρT ′

reaches a state s, the run ρA′ reaches a state 〈q, π〉, the run ρT reaches a configuration 〈s, vs〉,
and the run ρA reaches a configuration 〈q, vA〉. Assume that π = f(vs ∪ vA). This holds for
j = 0. Assume that T ′ transits into s′ when reading 〈i, gs

i 〉 and outputting 〈as, o, rs〉, and
that A′ transits into 〈q′, π′〉 when reading 〈〈i, o〉, gs

i , rs, as〉. Then, as we prove in the full

A. Khalimov and O. Kupferman 25:11

version [23], there exist i ∈ D such that the transducer T transits into 〈s′, v′s〉 on reading
〈i, i〉, the automaton A transits into 〈q′, v′A〉 on reading 〈〈i, o〉, i, o〉, where o = v′s(rs), and
f(v′s ∪ v′A) = π′. Applying the above claim in the initial step, when j = 0, we construct the
configuration 〈s1, v

s
1〉 of ρT , the configuration 〈q1, v

A
1 〉 of ρA, and the first letter 〈〈i, o〉, i, o〉

of wT . Note that the claim preconditions hold, in particular, f(vs
1 ∪ vA

1) = π1, so we can
apply it again. By an iterative application, we construct the sought computation wT and
the rejecting run ρA on wT . J

We can now analyze the complexity of our synthesis algorithm. Recall that the input
to the problem is a reg-UPW A and an integer ks ≥ 0, and the output is a ks-register
transducer that realizes A, or an answer that no such transducer exists. Theorem 7 reduces
the problem for A with n states, index c, and kA registers, to the synthesis problem of a
(register-less) UPW A′ with n(kA + ks)kA+ks states and index c. Indeed, the state space
of A′ is the product of that of A with the set of possible partitions of the registers of A
and these of the generated transducer, and the number of such partitions is bounded by
(kA + ks)kA+ks . Note that A′ is parameterized by both ks and π0. While ks is fixed, π0
depends on the initial partition of Rs. Thus, we may need to repeat the reduction |Πs| ≤ k ks

s

times, where Πs is the set of system partitions. By [29, 32] a UPW with N states and index c
can be determinized to a DPW with (Nc)O(Nc) states and index O(Nc). Then, the synthesis
problem for DPW reduces linearly, up to a multiplicative factor in the sizes of the alphabets,
to solving parity games, which can be done in time at most O((n′)5), for a game with n′
vertices and index c′ < logn′ [7]. The alphabet of A′ is Σ′ = Σ × BRs × Rs × BRs . Let
m = |Σ|. Then, |Σ′| = m · 2O(ks). Thus, the new factor in the complexity is |Σ|, which is
typically much smaller than N . It follows that the synthesis problem for A′ can be solved
in time (Nmc)O(Nc) =

(
cmn(kA + ks)kA+ks

)O(cn(kA+ks)kA+ks). Thus, a naive analysis gives
a complexity that is doubly-exponential in kA and ks and is exponential in n and c. As
we argue below, the analysis can be tightened to a one that is doubly-exponential only in
kA and is exponential in n, c, and ks. Essentially, this follows from the fact that while the
partition-component in the state space of A′ behaves universally with respect to the registers
in RA, it is deterministic with respect to these in Rs. Consequently, when counting the
number of states in the DPW obtained by determinizing A′, we can replace the number of
all possible partitions of R by the number of partitions of R for a fixed partition of Rs. For
more details, see [23].

I Theorem 8. Register-bounded synthesis with ks system registers for reg-UPWs with n
states, finite alphabet of size m, index c, and kA registers, is solvable in time (cmn(ks +
kA))O(cnkA(ks+kA)kA). Thus, it is polynomial in m, exponential in n, c, and ks, and doubly-
exponential in kA.

We note that when the specification automaton A is a reg-UCW, its abstraction A′ is
a UCW. Since reg-UCWs can be expressed as reg-UPWs with c = 2, the obtained time
complexity for the case where specifications are reg-UCWs is (mn(ks + kA))O(nkA(ks+kA)kA).

4 Synthesis with a Fixed Number of System and Environment
Registers

In this section, we consider the system-bounded synthesis problem with respect to restricted
environments. Such environments are expressible by a register transducer with a bounded
number of registers. Clearly, restricting the environments makes more specifications realizable.
As we shall see, however, the complexity of the synthesis problem increases. An important

CONCUR 2019

25:12 Register-Bounded Synthesis

conceptual difference between the setting studied in Section 3 and the one here is that once
we fix the number of registers of both the system and the environment, we also fix the
number of data values that may participate in the interaction. Indeed, the only data outputs
that the system and environment transducers may generate during the interaction are these
stored in their registers in their initial valuations.

In order to define the bounded setting, we first have to define the interaction between sys-
tem and environment transducers. Consider a system transducer Tsys =
〈ΣI ,ΣO, Ss, s

s
0, Rs, v

s
0, τs〉 and an environment transducer Tenv = 〈ΣO,ΣI , Se, s

e
0, Re, v

e
0, τe〉.

Note that the outputs of the environments are the inputs of the system, and vice versa. We
denote the computation that is the interaction between the two transducers by Tenv‖Tsys,
indicating that the environment initiates the interaction and is the first transducer to move.
Recall that τe : Se × (ΣO × BRe)→ Se × BRe × ΣI ×Re. The ΣO and BRe components of
the transition depends on the output of the system, which are generated when the system
moves between states. Likewise, τs : Ss × (ΣI × BRs)→ Ss × BRs × ΣO ×Rs, with the ΣI

and BRs components depending on the output of the environment. Recall that we assume
that the environment moves first. Accordingly, for the first step of the interaction we assume
that the ΣO and BRe components are induced by the pair 〈∅, v0(r0)〉, for some designated
register r0 ∈ Re.

Formally, Tenv‖Tsys = 〈〈i0, o0〉, i0, o0〉〈〈i1, o1〉, i1, o1〉... ∈ ((ΣI × ΣO) × D × D)ω is
such that there are runs ρe = 〈se

0, v
e
0〉〈se

1, v
e
1〉〈se

2, v
e
2〉... ∈ (Se × DRe)ω of Tenv and ρs =

〈ss
0, v

s
0〉〈ss

1, v
s
1〉〈ss

2, v
s
2〉... ∈ (Ss ×DRs)ω of Tsys such that the following hold. Let 〈o−1, o−1〉 =

〈∅, ve
0(re

0)〉. Then, for every j ≥ 0, the following hold:
τe(se

j , oj−1, v
e
j ∼ oj−1) = 〈se

j+1, a
e
j , ij , r

e
j 〉, ij = ve

j (re
j), and ve

j+1 = update(ve
j , oj−1, a

e
j).

That is, in each round in the interaction, including the first round, the environment
moves first, the configuration 〈se

j+1, v
e
j+1〉 is the 〈oj−1, oj−1〉-successor of 〈se

j , v
e
j 〉, and the

transition taken in this move fixes ij and ij .
τs(ss

j , ij , v
s
j ∼ ij) = 〈ss

j+1, a
s
j , oj , r

s
j 〉, oj = vs

j (rs
j), and vs

j+1 = update(vs
j , ij , a

s
j). That

is, the system respond by moving to the configuration 〈ss
j+1, v

s
j+1〉, which is the 〈ij , ij〉-

successor of 〈ss
j , v

s
j 〉, and the transition taken in this move fixes oj and oj .

The environment-system-bounded realizability problem is to decide, given a reg-UPW
A over ΣI × ΣO × D × D, and numbers ks and ke of system and environment registers,
respectively, whether there is a system transducer Tsys with at most ks registers such that
for all environment transducers Tenv with at most ke registers, we have that Tenv‖Tsys |= A.
The environment-system-bounded synthesis problem is to construct such a system transducer,
if exists.

Let A = 〈Σ, Q, q0, RA, v
A
0 , δ, α〉. As in the construction in Section 3, we define a (register-

less) UPW A′ that abstracts the registers of A and maintains instead the equivalence relation
between the registers. Here, however, the equivalence relation refers to the registers of A, of
the system, and of the environment. Let Rs and Re denote the sets of system and environment
registers, respectively. Let R = Rs ∪Re ∪RA, Π be the set of equivalence relations over R,
and f : DR → Π map a register valuation to the partition it induces. We modify the function
update′ from Section 3 to refer to registers directly, namely update′ : Π×R× BR → Π maps
〈π, r, a〉 to the partition resulting from moving the registers in a into the equivalence class of
r. Formally, update′(π, r, a) = {S \ a : S ∈ π \ C} \ {∅} ∪ {C ∪ a}, where C ∈ π and r ∈ C.
The update function has properties similar to these stated in Lemma 5.

I Lemma 9. For every valuation v ∈ DR, register r ∈ R, and storing mask a ⊆ R, we have
that f(update(v, v(r), a)) = update′(f(v), r, a).

A. Khalimov and O. Kupferman 25:13

Given a reg-UPW A, bounds ks, ke ∈ N, and an initial partition π0 ∈ DR, the (ks, ke, π0)-
abstraction of A is the UPW A′ = 〈Σ′, Q′, q′0, δ′, α′〉, defined as follows.

Σ′ = Σ×Rs × BRs × BRs .
Q′ = (Q×Π×Rs) ∪ {q′0}. A state 〈q, π, rs〉 ∈ Q×Π×Rs contains, in addition to the
original state q and partition π, the register rs whose value was output by the system
transducer in the previous move.
The initial state q′0 = 〈q0, π0, r

e
0〉. It contains the environment register re

0, because in the
first move the environment transducer reads its own data value ve

0(re
0).

Defining δ′, we use two auxiliary partitions: First, π? corresponds to the register valuation
after the environment transducer moves and updates its registers. Then, π?? corresponds
to the register valuations after the system transducer moves and updates its registers.
Finally, the destination partition π′ corresponds to the register valuation after A moves.
For every state 〈q, π, r〉 ∈ (Q×Π×Rs) ∪ {〈q0, π0, r

e
0〉} and letter 〈σ, rs, g

s
i , a

s
i 〉 ∈ Σ′, we

have that 〈q′, π′, rs〉 ∈ δ′(〈q, π, r〉, 〈σ, rs, g
s
i , a

s
i 〉) iff there exist re ∈ Re, ae

o ∈ BRe , and
aA
i ∈ BRA satisfying the following.
Let π? = update′(π, r, ae

o). That is, the environment transducer updates its registers
using the previous system value. (In the initial state, the environment transducer uses
the value stored in its register re

0.)
Let C ∈ π? be the set that contains re. We require that (C ∩Rs) = gs

i .
Let π?? = update′(π?, re, a

s
i). That is, the system transducer updates its registers

using the value stored currently in the register that the environment outputs.
The automaton A transits and updates its registers using the values in the registers of
the environment and system transducers. Hence, the input guard gA

i is A-chosen by
〈π??, re〉, while the output guard gA

o is A-chosen by 〈π??, rs〉. Thus, we require that
〈q′, aA

i 〉 ∈ δ(q, 〈σ, gA
i , g

A
o 〉) and π′ = update′(π??, re, a

A
i).

The acceptance condition of A′ is induced from the one of A. Thus, for every state
〈q, π, r〉 ∈ Q′, we have that α′(〈q, π, r〉) = α(q).

Recall that the abstraction of A is parameterized by both the number of registers that
the system transducer may have as well as an initial partition for the registers of the system,
the environment, and the automaton. Let vA ∈ DRA be a valuation of the automaton
registers, and πs a partition of Rs. A partition π ∈ Π is consistent with vA and πs if there
are register valuations vs ∈ DRs and ve ∈ DRe s.t. πs = f(vs) and π = f(vA ∪ vs ∪ ve). Thus,
automata registers are related according to vA

0 , system registers are related according to πs,
and environment registers are not related in any special way.

I Theorem 10. Consider a reg-UPW A with Σ = ΣI × ΣO, set of registers RA, and an
initial valuation vA

0 . Then, A is realizable by a ks-register ΣI/ΣO-transducer with a set of
registers Rs with respect to environments that are ke-register ΣO/ΣI-transducers iff there
is a partition πs of Rs and a (ΣI × BRs)/(ΣO × Rs × BRs)-transducer T ′ such that for
every partition π0 of R that is consistent with vA

0 and πs, the transducer T ′ realizes the
(ks, ke, π0)-abstraction of A.

Proof sketch. The theorem follows from the following claim, which we prove in [23]. Fix a
system ks-register transducer Tsys with an initial valuation vs

0, and fix an environment initial
valuation ve

0. Let A′ be the (ks, ke, π0)-abstraction of A with π0 = f(vs
0∪ve

0∪vA
0). Let T ′sys be

the register-less transducer corresponding to Tsys. Then, we have that T ′sys |= A′ iff for every
environment transducer Tenv with the initial valuation ve

0, it holds that Tenv‖Tsys |= A. J

CONCUR 2019

25:14 Register-Bounded Synthesis

We now analyze the complexity of the environment-system-bounded synthesis problem.
Using Theorem 10, we can reduce the synthesis problem for ks system and ke environment
registers, reg-UPW A with n states, index c, and kA registers, to the synthesis problem of
a (register-less) UPW A′ with O(nkk) states and index c, where k = ks + ke + kA. Recall
that the reduction does not create a single instance of the register-less synthesis problem,
and instead requires to find a system partition πs such that the (ks, ke, π0)-abstractions of
A, for every π0 consistent with vA

0 and πs, are realized by a single transducer. There can
be no more than ks

ks system partitions, and we are going to enumerate them one by one.
Now, once a system partition πs is fixed, we can create a single UPW that represents the
intersection of the abstraction UPWs for each π0 consistent with πs and vA

0 . To this end, we
create one initial state per π0, while the rest of the definition stays the same. The number of
initial states is bounded by (ks + ke + kA)ke . Let us call this automaton A′. By the same
naive analysis as in the system-bounded case, the synthesis problem for A′ can be solved in
time (Nmc)O(Nc) =

(
cmnkk

)O(cnkk), where m = |Σ| is the size of the finite alphabet of A.
In order to account for enumeration of system partitions, we multiply it by ks

ks , but this
does not affect the asymptotic complexity. Thus, the environment-system-bounded synthesis
problem is doubly-exponential in kA, ks, and ke, and is exponential in n and c.

As in the case of system-bounded synthesis, we can use the fact that the system-partition
component in the state space of A′ is deterministic with respect to the registers in Rs, and
behaves universally only with respect to the registers in RA and Re. The universal behavior
with respect to Re follows from the fact that a system transducer plays against all possible
environment transducers. Accordingly, we can tighten the complexity as follows.

I Theorem 11. Environment-system-bounded synthesis with ks system and ke environment
registers for reg-UPWs with n states, finite alphabet of size m, index c, and kA registers is
solvable in time (cmn(ks + ke + kA))O(cn(ks+ke+kA)(ke+kA+1)). Thus, it is polynomial in m,
exponential in c, n, and ks, and doubly-exponential in kA and ke.

References
1 R. Bloem, K. Chatterjee, and B. Jobstmann. Graph Games and Reactive Synthesis. In

Handbook of Model Checking., pages 921–962. Springer, 2018.
2 M. Bojańczyk, A. Muscholl, T. Schwentick, and L. Segoufin. Two-variable logic on data trees

and XML reasoning. Journal of the ACM, 56(3):1–48, 2009.
3 M. Bojanczyk, A. Muscholl, T. Schwentick, L. Segoufin, and C. David. Two-Variable Logic on

Words with Data. In Proc. 21st IEEE Symp. on Logic in Computer Science, pages 7–16, 2006.
4 A. Bouajjani, P. Habermehl, Y. Jurski, and M. Sighireanu. Rewriting systems with data. In

FCT, pages 1–22, 2007.
5 A. Bouajjani, P. Habermehl, and R R. Mayr. Automatic verification of recursive procedures

with one integer parameter. Theoretical Computer Science, 295:85–106, 2003.
6 M. Brambilla, S. Ceri, S. Comai, P. Fraternali, and I. Manolescu. Specification and Design of

Workflow-Driven Hypertexts. J. Web Eng., 1(2):163–182, 2003.
7 C.S. Calude, S. Jain, B. Khoussainov, W. Li, and F. Stephan. Deciding parity games in

quasipolynomial time. In Proc. 49th ACM Symp. on Theory of Computing, pages 252–263,
2017.

8 S. Ceri, P. Fraternali, A. Bongio, M. Brambilla, S. Comai, and M. Matera. Designing Data-
Intensive Web Applications. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2002.

9 K. Chatterjee, T. Henzinger, and B. Jobstmann. Environment Assumptions for Synthesis. In
Proc. 19th Int. Conf. on Concurrency Theory, volume 5201 of Lecture Notes in Computer
Science, pages 147–161. Springer, 2008.

A. Khalimov and O. Kupferman 25:15

10 A. Church. Logic, arithmetics, and automata. In Proc. Int. Congress of Mathematicians, 1962,
pages 23–35. Institut Mittag-Leffler, 1963.

11 G. Delzanno, A. Sangnier, and R. Traverso. Parameterized Verification of Broadcast Networks
of Register Automata. In P. A. Abdulla and I. Potapov, editors, Reachability Problems, pages
109–121, Berlin, Heidelberg, 2013. Springer.

12 S. Demri and R. Lazic. LTL with the freeze quantifier and register automata. ACM Trans.
Comput. Log., 10(3):16:1–16:30, 2009.

13 R. Ehlers. Symbolic bounded synthesis. In Proc. 22nd Int. Conf. on Computer Aided
Verification, volume 6174 of Lecture Notes in Computer Science, pages 365–379. Springer,
2010.

14 R. Ehlers, S. Seshia, and H. Kress-Gazit. Synthesis with Identifiers. In Proc. 15th Int. Conf.
on Verification, Model Checking, and Abstract Interpretation, volume 8318 of Lecture Notes in
Computer Science, pages 415–433. Springer, 2014.

15 L. Exibard, E. Filiot, and P-A. Reynier. Synthesis of Data Word Transducers. In Proc. 30th
Int. Conf. on Concurrency Theory, 2019.

16 E. Filiot, N. Jin, and J.-F. Raskin. An Antichain Algorithm for LTL Realizability. In Proc.
21st Int. Conf. on Computer Aided Verification, volume 5643, pages 263–277, 2009.

17 B. Finkbeiner, F. Klein, R. Piskac, and M. Santolucito. Temporal Stream Logic: Synthesis
beyond the Bools. In Proc. 31st Int. Conf. on Computer Aided Verification, 2019.

18 O. Grumberg, O. Kupferman, and S. Sheinvald. Variable Automata over Infinite Alphabets.
In Proc. 4th Int. Conf. on Language and Automata Theory and Applications, volume 6031 of
Lecture Notes in Computer Science, pages 561–572. Springer, 2010.

19 O. Grumberg, O. Kupferman, and S. Sheinvald. An Automata-Theoretic Approach to
Reasoning about Parameterized Systems and Specifications. In 11th Int. Symp. on Automated
Technology for Verification and Analysis, pages 397–411, 2013.

20 R. Hojati, D.L. Dill, and R.K. Brayton. Verifying linear temporal properties of data insens-
itive controllers using finite instantiations. In Hardware Description Languages and their
Applications, pages 60–73. Springer, 1997.

21 M. Kaminski and N. Francez. Finite-memory automata. Theoretical Computer Science,
134(2):329–363, 1994.

22 M. Kaminski and D. Zeitlin. Extending finite-memory automata with non-deterministic
reassignment. In AFL, pages 195–207, 2008.

23 A. Khalimov and O. Kupferman. Register-bounded Synthesis, 2019. Full version, available on
the author’s personal pages.

24 A. Khalimov, B. Maderbacher, and R. Bloem. Bounded Synthesis of Register Transducers.
In 16th Int. Symp. on Automated Technology for Verification and Analysis, volume 11138 of
Lecture Notes in Computer Science, pages 494–510. Springer, 2018.

25 O. Kupferman. Recent Challenges and Ideas in Temporal Synthesis. In Proc. 38th International
Conference on Current Trends in Theory and Practice of Computer Science, volume 7147 of
Lecture Notes in Computer Science, pages 88–98. Springer, 2012.

26 O. Kupferman, Y. Lustig, M.Y. Vardi, and M. Yannakakis. Temporal Synthesis for Bounded
Systems and Environments. In Proc. 28th Symp. on Theoretical Aspects of Computer Science,
pages 615–626, 2011.

27 R. Lazić and D. Nowak. A Unifying Approach to Data-Independence. In Proc. 11th Int. Conf.
on Concurrency Theory, pages 581–596. Springer Berlin Heidelberg, 2000.

28 F. Neven, T. Schwentick, and V. Vianu. Towards Regular Languages over Infinite Alphabets. In
26th Int. Symp. on Mathematical Foundations of Computer Science, pages 560–572. Springer-
Verlag, 2001.

29 N. Piterman. From Nondeterministic Büchi and Streett Automata to Deterministic Parity
Automata. In Proc. 21st IEEE Symp. on Logic in Computer Science, pages 255–264. IEEE
press, 2006.

CONCUR 2019

25:16 Register-Bounded Synthesis

30 A. Pnueli and R. Rosner. On the Synthesis of a Reactive Module. In Proc. 16th ACM Symp.
on Principles of Programming Languages, pages 179–190, 1989.

31 S. Schewe and B. Finkbeiner. Bounded Synthesis. In 5th Int. Symp. on Automated Technology
for Verification and Analysis, volume 4762 of Lecture Notes in Computer Science, pages
474–488. Springer, 2007.

32 S. Schewe and T. Varghese. Determinising Parity Automata. In 39th Int. Symp. on Mathem-
atical Foundations of Computer Science, volume 8634 of Lecture Notes in Computer Science,
pages 486–498. Springer, 2014.

33 Y. Shemesh and N.: Francez. Finite-state unification automata and relational languages.
Information and Computation, 114:192–213, 1994.

34 T. Tan. Pebble Automata for Data Languages: Separation, Decidability, and Undecidability.
PhD thesis, Technion - Computer Science Department, 2009.

35 N. Tzevelekos. Fresh-register Automata. In Proc. 38th ACM Symp. on Principles of Program-
ming Languages, pages 295–306, New York, NY, USA, 2011. ACM.

36 V. Vianu. Automatic verification of database-driven systems: a new frontier. In ICDT ’09,
pages 1–13, 2009.

37 P. Wolper. Expressing Interesting Properties of Programs in Propositional Temporal Logic.
In Proc. 13th ACM Symp. on Principles of Programming Languages, pages 184–192, 1986.

Translating Asynchronous Games for Distributed
Synthesis
Raven Beutner
Saarland University, Saarbrücken, Germany

Bernd Finkbeiner
Saarland University, Saarbrücken, Germany

Jesko Hecking-Harbusch
Saarland University, Saarbrücken, Germany

Abstract
In distributed synthesis, a set of process implementations is generated, which together, accomplish
an objective against all possible behaviors of the environment. A lot of recent work has focussed on
systems with causal memory, i.e., sets of asynchronous processes that exchange their causal histories
upon synchronization. Decidability results for this problem have been stated either in terms of
control games, which extend Zielonka’s asynchronous automata by partitioning the actions into
controllable and uncontrollable, or in terms of Petri games, which extend Petri nets by partitioning
the tokens into system and environment players. The precise connection between these two models
was so far, however, an open question.

In this paper, we provide the first formal connection between control games and Petri games.
We establish the equivalence of the two game types based on weak bisimulations between their
strategies. For both directions, we show that a game of one type can be translated into an equivalent
game of the other type. We provide exponential upper and lower bounds for the translations. Our
translations allow to transfer and combine decidability results between the two types of games.
Exemplarily, we translate decidability in acyclic communication architectures, originally obtained
for control games, to Petri games, and decidability in single-process systems, originally obtained for
Petri games, to control games.

2012 ACM Subject Classification Theory of computation → Algorithmic game theory

Keywords and phrases synthesis, distributed systems, causal memory, Petri games, control games

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2019.26

Related Version A full version of the paper is available at https://arxiv.org/abs/1907.00829 [3].

Funding Supported by the German Research Foundation (DFG) Grant Petri Games (392735815)
and the Collaborative Research Center “Foundations of Perspicuous Software Systems” (TRR 248,
389792660), and by the European Research Council (ERC) Grant OSARES (683300).

1 Introduction

Synthesis is the task of automatically generating an implementation fulfilling a given objective
or proving that no such implementation can exist. Synthesis can be viewed as a game
between the system and the environment with winning strategies for the system being correct
implementations [4]. We call a class of games decidable if we can determine the existence of
a winning strategy. A distributed system consists of local processes, that possess incomplete
information about the global system state. Distributed synthesis searches for distributed
strategies that govern the local processes such that the system as a whole satisfies an objective,
independently of the inputs that are received from the environment.

© Raven Beutner, Bernd Finkbeiner, and Jesko Hecking-Harbusch;
licensed under Creative Commons License CC-BY

30th International Conference on Concurrency Theory (CONCUR 2019).
Editors: Wan Fokkink and Rob van Glabbeek; Article No. 26; pp. 26:1–26:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.CONCUR.2019.26
https://arxiv.org/abs/1907.00829
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

26:2 Translating Asynchronous Games for Distributed Synthesis

After some early results on synchronous distributed systems [24], most work has focussed
on the synthesis of asynchronous distributed systems with causal memory [12, 13, 20, 14,
11, 10]. Causal memory means that two processes share no information while they run
independently; during every synchronization, however, they exchange their complete local
histories. The study of the synthesis problem with causal memory has, so far, been carried
out, independently of each other, in two different models: control games and Petri games.

Control Games and Petri Games. Control games [13] are based on Zielonka’s asynchronous
automata [26], which are compositions of local processes. The actions of the asynchronous
automaton are partitioned as either controllable or uncontrollable. Hence, each process
can have both controllable and uncontrollable behavior. A strategy comprises a family of
one individual controller for each process that can restrict controllable actions based on
the causal past of the process but has to account for all uncontrollable actions. Together,
the local controllers aim to fulfill an objective against all possible unrestricted behavior.
There are non-elementary decidability results for acyclic communication architectures [13, 20].
Decidability has also been obtained for restrictions on the dependencies of actions [12] or on
the synchronization behavior [16, 17] and, recently, for decomposable games [14].

Petri games [11] are based on Petri nets. They partition the places of the underlying Petri
net into system places and environment places and, thereby, group the tokens into system
players and environment players. For tokens in system places, the outgoing transitions can
be restricted by the strategy whereas tokens in environment places cannot be controlled, i.e.,
every possible transition has to be accounted for. Strategies are defined as restrictions of
the global unfolding and aim to fulfill an objective against all possible unrestricted behavior.
Petri games are EXPTIME-complete for a bounded number of system players and one
environment player [11] as well as for one system player and a bounded number of environment
players [10]. Both models are based on causal information: Control games utilize local views
whereas Petri games utilize unfoldings.

Translations. The precise connection between control games and Petri games, and hence,
the question whether results can be transferred between them, was, so far, open. We translate
control games into Petri games, and vice versa. Both game types admit strategies based
on causal information but the formalisms for the possibilities of system and environment
differ. In control games, an action is either controllable or uncontrollable and therefore
can be restricted by either all or none of the involved players. From the same state of
a process, both controllable and uncontrollable behavior is possible. By contrast, Petri
games utilize a partitioning into system and environment places. While this offers more
precise information about which player can control a shared transition, a given place can
no longer comprise both system and environment behavior. The challenge is to resolve the
controllability while preserving the causal information in the game. For both translations,
we adopt the concept of commitment sets: The local players do not enable behavior directly
but move to a state or place that explicitly encodes their decision of what to enable. Using
this explicit representation, we can express the controllability aspects of one game in the
respective other one, i.e., make actions in a control game controllable by only a subset of
players and allow places in Petri games that comprise both environment and system behavior.

Our translations preserve the structure of winning strategies in a weak bisimilar way.
In addition to the upper bounds established by our exponential translations, we provide
matching lower bounds. The translations show that contrasting formalisms can be overcome
whereas our lower bounds highlight an intrinsic difficultly to achieve this. The equivalence

R. Beutner, B. Finkbeiner, and J. Hecking-Harbusch 26:3

rX rY

acc acc

uX uY

uY uX

T :
rX rY

c

acc

N :
c c′

gX gY

uX, u
′
X

uY , u
′
Y

M :
r′
X

r′
Y

c′
acc′

N ′:
r′
X

r′
Y

acc′ acc′

u′
X

u′
Y

u′
Y

u′
X

T ′:

Figure 1 A control game for a manager M of resources X and Y between threads T and T ′

with networks N and N ′ is depicted. Communication occurs by synchronization on shared actions.
Dotted actions are controllable, all others are uncontrollable. Losing states are double circles.

B
U T

Hu HdH

C

D

Lu Ld

u d

iu id

i

su sd

cu cd

(a) Petri game for a police strategy.

B

H H

H H

Lu Ld Lu Ld

U T

Hu HdC

D D

u d

iu id

i i

su sd su sd

cu

Hu

cd

Hd

(b) Unfolding (with grayed parts) and winning strategy (without).

Figure 2 A Petri game, an unfolding, and a winning strategy are given. Gray places belong to
the system whereas white places belong to the environment. Winning places are double circles.

of both models, as witnessed by our results, gives rise to more practical applications by
allowing the transfer of existing decidability results between both models. As an example, we
can transfer decidability of single-process systems for Petri games [10] to control games and
decidability for acyclic communication architectures for control games [13] to Petri games.

2 Examples

We illustrate the models with two examples. The examples demonstrate the use of control
games and Petri games and their differences, which our translations overcome. Both examples
highlight decidable classes [10, 13], that are transferable through the results of the paper.

As a control game, consider the example of a manager for resources in Fig. 1. The control
game consists of five players: A manager M and two pairs of thread and network connection
(T , N and T ′, N ′). Both pairs of thread and network connection are identical but act on
disjoint actions (primed and not). There are two resources X and Y that are managed by M .
Each thread (T , T ′) can request access to one of them (rX , rY) and afterwards wait for the
acknowledgement from its network connection (acc). After the acknowledgement, the thread
can use one of the resources (uX , uY). Each network connection (N , N ′) synchronizes with
its thread on the actions for requests and synchronizes with the manager for communication
(c). Afterwards, each network connection sends the acknowledgement to its thread. The
manager is the only process that comprises controllable actions. Upon communication with
one of the two network connections, the manager can grant access to the resources X or Y
using the controllable actions gX or gY . The enabled resource can afterwards be accessed
and used (uX , uY). A losing state can be reached for either thread if an unwanted resource
is enabled, i.e., after the acknowledgement, the requested and granted resource do not match.

CONCUR 2019

26:4 Translating Asynchronous Games for Distributed Synthesis

This control game can be won by the system. After every communication with a network
connection, the manager enables the resource that the respective thread requested. A winning
controller relies on the information transfer associated with every synchronization. The
request of the process is transferred to the manager upon communication with the network
connection. Then, the correct resource can be enabled. This control game falls into a
decidable class by our translation to Petri games as it is a single-process system with bad
places [10]. Note that the control game has a cyclic communication architecture.

As a Petri game, consider the example of a burglary in Fig. 2a. A crime boss in
environment place B decides to either burgle up- or downtown by firing transition u or d.
Depending on the choice, an undercover agent in system place U or a thug in environment
place T is instructed by transition iu or id and commits the burglary, i.e., moves to place Hu

or Hd. This returns the crime boss to her hideout H where she gets caught and interrogated
(i) by a cop in system place C. Afterwards, the cop can send (su, sd) the flipped crime boss
up- or downtown to place Lu or Ld in order to intercept the burglary (cu, cd).

Causal past is key for the existence of winning strategies. Only upon synchronization
players exchange all information about their past. After the crime boss instructs for a
location to burgle, only she and the respective burglar know about the decision. The cop
learns about the location of the burglary after catching the crime boss. A winning strategy
for the cop catches and interrogates the crime boss and then uses the obtained information
to send the flipped crime boss to the correct location. For this Petri game, our translation
results in a control game with acyclic communication architecture [13]. Note that the Petri
game has two system and two environment players.

3 Background

We recall asynchronous automata [26], control games [13], Petri nets [25], and Petri games [11].

3.1 Zielonka’s Asynchronous Automata
An asynchronous automaton [26] is a family of finite automata, called processes, synchronizing
on shared actions. Our definitions follow [13]. The finite set of processes of an asynchronous
automaton is defined as P. A distributed alphabet (Σ, dom) consists of a finite set of actions Σ
and a domain function dom : Σ→ 2P\{∅}. For an action a ∈ Σ, dom(a) are all processes that
have to synchronize on a. For a process p ∈ P, Σp = {a ∈ Σ | p ∈ dom(a)} denotes all actions
p is involved in. A (deterministic) asynchronous automaton A = ({Sp}p∈P, sin, {δa}a∈Σ)
is defined by a finite set of local states Sp for every process p ∈ P, the initial state sin ∈∏
p∈P Sp, and a partial function δa :

∏
p∈dom(a) Sp

.−→
∏
p∈dom(a) Sp. We call an element

{sp}p∈P ∈
∏
p∈P Sp a global state. For a set of processes R ⊆ P, we abbreviate sR = {sp}p∈R

as the restriction of the global state to R. We denote that a local state s′ ∈ Sp is part of
a global state sR by s′ ∈ sR. For a local state s′, we define the set of outgoing actions by
act(s′) = {a ∈ Σ | ∃sdom(a) ∈ domain(δa) : s′ ∈ sdom(a)}. We can view an asynchronous
automaton as a sequential automaton with state space

∏
p∈P Sp and transitions s a−→ s′ if

(sdom(a), s
′
dom(a)) ∈ δa and sP\dom(a) = s′P\dom(a). By Plays(A) ∈ Σ∗∪Σω, we denote the set

of finite and infinite sequences in this global automaton. For a finite u ∈ Plays(A), state(u)
denotes the global state after playing u and statep(u) the local state of process p.

The domain function dom induces an independence relation I: Two actions a, b ∈ Σ are
independent, denoted by (a, b) ∈ I, if they involve different processes, i.e., dom(a)∩dom(b) =
∅. Adjoint independent actions of sequences of actions can be swapped. This leads to an
equivalence relation ∼I between sequences, where u ∼I w if u and w are identical up to

R. Beutner, B. Finkbeiner, and J. Hecking-Harbusch 26:5

multiple swaps of consecutive independent actions. The equivalence classes of ∼I are called
traces and denoted by [u]I for a sequence u. Given the definition of asynchronous automata,
it is natural to abstract from concrete sequences and consider Plays(A) as a set of traces.

In our translation, an alternative characterization of a subset of asynchronous automata
turns out to be practical: We describe every process p by a finite local automaton �p =
(Qp, s0,p, ϑp) acting on actions from Σp. Here, Qp is a finite set of states, s0,p the initial state
and ϑp ⊆ Qp × Σp ×Qp a deterministic transition relation. For a family of local processes
{�p}p∈P, we define the parallel composition

⊗
p∈P �p as an asynchronous automaton with

(1) ∀p ∈ P : Sp = Qp, (2) sin = {s0,p}p∈P, and (3) δa
(
{sp}p∈dom(a)

)
: If for all p ∈ dom(a),

there exists a state s′p ∈ Sp with (sp, a, s′p) ∈ ϑp then define δa({sp}p∈dom(a)) = {s′p}p∈dom(a),
otherwise it is undefined. Figure 1 is an example of such a parallel composition. Note that
not every asynchronous automaton can be described as a composition of local automata.

3.2 Control Games
A control game [13] C = (A,Σsys,Σenv, {Sp}p∈P) consists of an asynchronous automaton A
as a game arena, a distribution of actions into controllable actions Σsys and uncontrollable
actions Σenv, and special states {Sp}p∈P for a winning objective. We define the set of plays in
the game as Plays(C) = Plays(A). Intuitively, a strategy for C can restrict controllable actions
but cannot prohibit uncontrollable actions. Given a play u, a process p only observes parts
of it. The local p-view, denoted by viewp(u), is the shortest trace [v]I such that u ∼I v w
for some w not containing any actions from Σp. The p-view describes the causal past of
process p and contains all actions the process is involved in and all actions it learns about
via communication. We define the set of p-views as Playsp(C) = {viewp(u) | u ∈ Plays(C)}.

To avoid confusion with Petri games, we refer to strategies for control games as controllers.
A controller for C is a family of local controllers for all processes % = {fp}p∈P. A local
controller for a process p is a function fp : Playsp(C)→ Σsys ∩Σp. Plays(C, %) denotes the set
of plays respecting %. It is defined as the smallest set containing the empty play ε and such
that for every u ∈ Plays(C, %): (1) if a ∈ Σenv and ua ∈ Plays(C) then ua ∈ Plays(C, %) and
(2) if a ∈ Σsys, ua ∈ Plays(C), and ∀p ∈ dom(a) : a ∈ fp(viewp(u)) then ua ∈ Plays(C, %).
Environment actions are always possible whereas system actions are only possible if allowed
by the local controllers of all participating processes. Local controllers base their decisions
on their local view and thereby act only on their causal past.

We define the (possibly empty) set of final plays PlaysF (C, %) as all finite plays u ∈
Plays(C, %) such that there is no a with u a ∈ Plays(C, %). We consider either reachability
or safety objectives for the system. Therefore, {Sp}p∈P describes sets of winning (Wp) or
losing (Bp) states. A controller % is reachability-winning if it only admits finite plays and
on each final play all processes terminate in a winning state. For safety objectives, we need
to ensure progress. A controller % is deadlock-avoiding if PlaysF (C, %) ⊆ PlaysF (C,>) for
the controller > allowing all actions, i.e., the controller only terminates if the asynchronous
automaton does. A controller % is safety-winning if it is deadlock-avoiding and no play in
Plays(C, %) visits any local, losing state from

⋃
p∈P Bp.

3.3 Petri Nets
A Petri net [25, 22] N = (P, T ,F , In) consists of disjoint sets of places P and transitions T ,
the flow relation F as multiset over (P ×T)∪ (T ×P), and the initial marking In as multiset
over P. We call elements in P ∪ T nodes and N finite if the set of nodes is finite. For
node x, the precondition (written pre(x)) is the multiset defined by pre(x)(y) = F(y, x) and

CONCUR 2019

26:6 Translating Asynchronous Games for Distributed Synthesis

postcondition (written post (x)) the multiset defined by post (x)(y) = F(x, y). For multiple
nets N σ,N 1, · · · , we refer to the components by PNσ and write preNσ (x) unless clear from
the context. Configurations of Petri nets are represented by multisets over places, called
markings. In is the initial marking. For a transition t, pre(t) is the multiset of places from
which tokens are consumed. A transition t is enabled in marking M if pre(t) ⊆M , i.e., every
place in M contains at least as many tokens as required by t. If no transition is enabled from
markingM then we callM final. An enabled transition t can fire from a markingM resulting
in the successor marking M ′ = M − pre(t) + post (t) (denoted M [t 〉 M ′). For markings M
and M ′, we write M [t0,...,tn−1 〉 M ′ if there exist markings M = M0, . . . ,Mn = M ′ s.t.
Mi [ti 〉 Mi+1 for all 0 ≤ i ≤ n − 1. The set of reachable markings of N is defined as
R(N) = {M | ∃n ∈ N, t0, . . . , tn−1 ∈ T : In [t0,...,tn−1 〉 M}. A net N ′ is a subnet of N
(written N ′ v N) if P ′ ⊆ P, T ′ ⊆ T , In′ ⊆ In, and F ′ = F � (P ′ × T ′) ∪ (T ′ × P ′). A
Petri net is 1-bounded if every reachable marking contains at most one token per place. It is
concurrency-preserving if |pre(t)| = |post (t)| for all transitions t.

For nodes x and y, we write xl y if x ∈ pre(y), i.e., there is an arc from x to y. With ≤,
we denote the reflexive, transitive closure of l. The causal past of x is past(x) = {y | y ≤ x}.
x and y are causally related if x ≤ y ∨ y ≤ x. They are in conflict (written x] y) if there
exists a place q ∈ P \{x, y} and two distinct transitions t1, t2 ∈ post (q) s.t. t1 ≤ x and t2 ≤ y.
Node x is in self-conflict if x] x. We call x and y concurrent if they are neither causally
related nor in conflict. An occurrence net is a Petri net N , where the pre- and postcondition
of all transitions are sets, the initial marking coincides with places without ingoing transitions
(∀q ∈ P : q ∈ In ⇔ |pre(q)| = 0), all other places have exactly one ingoing transition
(∀q ∈ P \ In : |pre(q)| = 1), ≤ is well-founded (no infinite path following the inverse flow
relation exists), and no transition is in self-conflict. An initial homomorphism from N to N ′ is
a function λ : P∪T → P ′∪T ′ that respects node types (λ(P) ⊆ P ′∧λ(T) ⊆ T ′), is structure-
preserving on transitions (∀t ∈ T : λ[preN (t)] = preN ′(λ(t)) ∧ λ[postN (t)] = postN ′(λ(t))),
and agrees on the initial markings (λ[In] = In′).

A branching process [5, 18, 6] describes parts of the behavior of a Petri net. Formally, an
(initial) branching process of a Petri net N is a pair ι = (N ι, λι) where N ι is an occurrence
net and λι : Pι ∪ T ι → P ∪ T is an initial homomorphism from N ι to N that is injective
on transitions with the same precondition (∀t, t′ ∈ T ι : (preN ι(t) = preN ι(t′) ∧ λι(t) =
λι(t′))⇒ t = t′). A branching process describes subsets of possible behaviors of a Petri net.
Whenever a place or transition can be reached on two distinct paths it is split up. λ can be
thought of as label of the copies into nodes of N . The injectivity condition avoids additional
unnecessary splits: Each transition must either be labelled differently or occur from different
preconditions. The unfolding U of N is the maximal branching process: Whenever there is
a set of pairwise concurrent places C s.t. λ[C] = preN (t) for some transition t then there
exists t′ with λ(t′) = t and preNU(t′) = C. It represents ever possible behavior of N .

3.4 Petri Games
A Petri game [11] is a tuple G = (PS ,PE , T ,F , In,Sp). The system places PS and environment
places PE partition the places of the underlying, finite netN = (P, T ,F , In) with P = PS]PE .
We extend notation from the underlying net to G by, e.g., defining preG(·) = preN (·) and
PG = PN . The game progresses by firing transitions in the underlying net. Intuitively, a
strategy can control the behavior of tokens on system places by deciding which transitions
to allow. Tokens on environment places belong to the environment and cannot be restricted
by strategies. Sp ⊆ P denotes special places used to pose a winning objective. For graphical
representation, we depict a Petri game as the underlying net and color system places gray,
environment places white, and special places as double circles (cf. Fig. 2).

R. Beutner, B. Finkbeiner, and J. Hecking-Harbusch 26:7

A strategy for G is an initial branching process σ = (N σ, λσ) satisfying justified refusal:
If there is a set of pairwise concurrent places C in N σ and a transition t ∈ T G with
λ[C] = preG(t) then there either is a transition t′ with λ(t′) = t and C = preNσ (t′) or there
is a system place q ∈ C ∩λ−1[PS] with t 6∈ λ[postNσ (q)]. Since a branching process describes
subsets of the behavior of a Petri net, a strategy is a restriction of possible moves in the
game. Justified refusal enforces that only system places can prohibit transitions based on
their causal past. From every situation in the game, a transition possible in the underlying
net is either allowed, i.e., in the strategy, or there is a system place that never allows it. In
particular, transitions involving only environment places are always possible. A strategy σ is
reachability-winning for a set of winning places Sp =W if N σ is a finite net and in each final,
reachable marking every token is on a winning place. A strategy is deadlock-avoiding if for
every final, reachable marking M in the strategy, λ[M] is final as well, i.e., the strategy is
only allowed to terminate if the underlying Petri net does so. A strategy σ is safety-winning
for bad places Sp = B if it is deadlock-avoiding and no reachable marking contains a bad
place. For both objectives, we can require σ to be deterministic: For every reachable marking
M and system place q ∈M there is at most one transition from postNσ (q) enabled in M . In
Fig. 2b, the unfolding of Fig. 2a is depicted labeled by λ. Excluding the grayed parts, this is
a winning strategy for the system.

For safety as winning objective, unbounded Petri games are undecidable in general [11]
whereas bounded ones with either one system player [10] or one environment player [11]
are EXPTIME-complete. Bounded synthesis is a semi-decision procedure to find winning
strategies [7, 8, 15]. Both approaches are implemented in the tool Adam [9, 8].

4 Game Equivalence

A minimum requirement for translations between games is to be winning-equivalent. The
system has a winning strategy in one game if and only if it has a winning strategy in the
translated other one. One trivial translation fulfilling this is to solve the game and to
return a minimal winning-equivalent game. Such a translation is not desirable, especially
since decidability in both control games and Petri games is still an open question [19, 11].
Instead, our translations preserve the underlying structure of the games. We propose strategy-
equivalence as an adequate equivalence notion. Our notion is based on weak bisimulation
which is popular and powerful to relate concurrent systems represented as Petri nets [2, 1, 23].

For our purpose, a bisimulation between the underlying Petri net and the asynchronous
automaton is not sufficient. Instead, we want to express that any strategy can be matched by
a strategy that allows equivalent (bisimilar) behavior, i.e., allows identical actions/transitions.
In both models, strategies are defined based on the causal past of the players. A Petri game
G utilizes unfoldings whereas a control game C utilizes local views. We consider a strategy
and a controller equivalent if there is a weak bisimulation between the branching process of
the strategy and the plays that are compatible with the controller. We base our definition
on a set of shared actions and transitions between the Petri game and the control game. We
refer to them as observable. All non-shared transitions and actions are considered internal
(τ). If we, e.g., translate a Petri game to a control game we aim for a control game that
contains all transitions as observable actions but might add internal ones.

I Definition 1. A strategy σ for G and controller % for C are bisimilar if there exists a
relation ≈B⊆ R(N σ)× Plays(A, %) s.t. Inσ ≈B ε and all following conditions hold:

If M ≈B u and M [a 〉 M ′ there exists u′ ∈ Plays(A, %) with u′ = uτ∗aτ∗ and M ′ ≈B u′

If M ≈B u and M [τ 〉 M ′ there exists u′ ∈ Plays(A, %) with u′ = uτ∗ and M ′ ≈B u′

If M ≈B u and u′ = u a there exists M ′ ∈ R(N σ) with M [τ∗aτ∗ 〉 M ′ and M ′ ≈B u′

If M ≈B u and u′ = u τ there exists M ′ ∈ R(N σ) with M [τ∗ 〉 M ′ and M ′ ≈B u′

CONCUR 2019

26:8 Translating Asynchronous Games for Distributed Synthesis

A Petri game G and a control game C are called strategy-equivalent if for every winning
strategy σ for G there exists a bisimilar winning controller %σ for C and for every winning
controller % for C there exists a bisimilar winning strategy σ% for G.

5 Translating Petri Games to Control Games

We give our translation from Petri games to control games and prove that it yields strategy-
equivalent (and therefore winning-equivalent) games. Moreover, we provide an exponential
lower bound, showing that our translation is asymptomatically optimal when requiring
strategy-equivalence. We present the translation for reachability objectives. Due to space
restrictions, all proofs and further details can be found in the full version of the paper [3].

5.1 Construction
We describe the construction of our translation for a restrictive class of Petri games called
sliceable. In Sec. 5.3, the construction is generalized to concurrency-preserving Petri games.

Slices. A Petri game describes the global behavior of the players. By contrast, a control
game is defined in terms of local processes. Similarly, a Petri game strategy is a global
branching process opposed to a family of local controllers for control games. The first
difference our translation needs to overcome is to distribute a Petri game into parts describing
the local behavior of players. Therefore, we dismantle the Petri game into slices for each
token.

I Definition 2. A slice of a Petri net N is a Petri net ς = (Pς , T ς ,F ς , Inς) s.t., (1) ς v N ,
(2) |Inς | = 1, (3) ∀t ∈ T ς : |preς(t)| = |postς(t)| = 1, (4) ∀q ∈ Pς : postN (q) ⊆ T ς

A slice is a subnet of N (1) that describes the course of exactly one token (2, 3) and
includes every possible move of this token (4). A slice characterizes the exact behavior of
a single token in the global net N . For a family of slices {ς}ς∈S, the parallel composition
‖ς∈S ς is the Petri net with places

⊎
ς∈S Pς , transitions

⋃
ς∈S T ς , flow relation

⊎
ς∈S F ς ,

and initial marking
⊎
ς∈S Inς . All unions, except for the union of transitions, are disjoint.

Transitions can be shared between multiple slices, creating synchronization. A Petri net N
is sliceable if there is a family of slices {ς}ς∈S s.t. N = ‖ς∈S ς and

⊎
ς∈S Pς is a partition

of PN , i.e., N can be described by the local movements of tokens. Sliceable Petri nets are
concurrency-preserving and 1-bounded. We extend slices to Petri games in the natural way
by distinguishing system, environment, and special places. Figure 4 depicts a Petri game
(a) and a possible distribution into slices (b). Note that even concurrency-preserving and
1-bounded Petri games must not be sliceable and that a distribution in slices is not unique.

Commitment Sets. In control games, actions are either controllable or uncontrollable
whereas, in Petri games, players are distributed between the system and the environment. In
our construction, we represent transitions as actions and need to guarantee that only certain
players can control them. In control games, this cannot be expressed directly. We overcome
this difference by using commitment sets. Each process that should be able to control an
action chooses a commitment set, i.e., moves to a state that explicitly encodes its decision.

We fix a sliceable game G = (PS ,PE , T ,F , In,W) and a distribution in slices {ς}ς∈S. We
begin by defining a control game CG . Afterwards, we describe a possible modification ĈG ,
that enforces determinism. The construction is depicted in Fig. 3.

R. Beutner, B. Finkbeiner, and J. Hecking-Harbusch 26:9

Define P = S and the distributed alphabet as (Σ, dom) with:

Σ = T ∪ {τ(q,A) | q ∈ PS ∧ A ⊆ postG(q)}

∪ { E(q,A)
[t1,t2] | q ∈ PS ∧ A ⊆ postG(q) ∧ t1, t2 ∈ A ∧ t1 6= t2}

and dom : Σ→ 2P \ {∅}:

dom(t) = {ς ∈ S | t ∈ T ς} for t ∈ T
dom(τ(q,A)) = {ς} where ς ∈ S is the unique slice s.t. q ∈ Pς

dom(E(q,A)
[t1,t2]) = {ς ∈ S | t1 ∈ T ς ∨ t2 ∈ T ς}

For each slice ς = (Pς , T ς ,F ς , Inς) ∈ S, we define a local process �ς = (Qς , q0,ς , ϑς) with
ϑς ⊆ Qς × Σς ×Qς as:

Qς = Pς ∪ {(q,A) | q ∈ Pς ∩ PS ∧ A ⊆ postς(q)} ∪ {⊥ς}
q0,ς is the unique state s.t. Inς = {q0,ς}

and ϑς is given by:

q
τ(q,A)7−−−−→ (q,A)

q ∈ PS ∧
A ⊆ postς(q)

(1) q
t7−−−→ q′

q ∈ PE ∧ t ∈ T ∧
q ∈ preς(t) ∧ q′ ∈ postς(t)

(2) (q,A) t7−−−→ q′

q ∈ PS ∧ t ∈ A ∧
q ∈ preς(t) ∧ q′ ∈ postς(t)

(3)

(q,A)
E(q,A)

[t1,t2]7−−−−→ ⊥ς(4)
q

E(q′,A′)
[t1,t2]7−−−−→ ⊥ς

q′ 6∈ Qς ∧ q ∈ PE ∧
(t1 ∈ T ς ⇒ t1 ∈ postς(q)) ∧
(t2 ∈ T ς ⇒ t2 ∈ postς(q))

(5) (q,A)
E(q′,A′)

[t1,t2]7−−−−→ ⊥ς
q′ 6∈ Qς ∧

(t1 ∈ T ς ⇒ t1 ∈ A) ∧
(t2 ∈ T ς ⇒ t2 ∈ A)

(6)

Define AG =
⊗

ς∈S
�ς and the control game as CG = (AG ,Σsys,Σenv, {Wς}ς∈S) where

Σsys = {τ(q,A) | q ∈ PS ∧ A ⊆ postG(q)}

Σenv = T ∪ { E(q,A)
[t1,t2] | q ∈ PS ∧ A ⊆ postG(q) ∧ t1, t2 ∈ A ∧ t1 6= t2}

Wς = (W ∩ Pς) ∪ {(q,A) | q ∈ (W ∩Pς) ∧ A ⊆ postG(q)}

Figure 3 The construction of the translated control game for a Petri game G =
(PS ,PE , T ,F , In,W), distributed in slices {ς}ς∈S, is depicted. Excluding the red parts, this is
the definition of CG . Including the red parts, this is the definition of ĈG .

We transform every slice ς into a process that is described by a local automaton �ς .
Hence, we use the terms slice and process interchangeably. Every place in ς becomes a local
state in �ς . The process starts in the state that corresponds to the initial place of the slice.
For every system place q, we furthermore add the aforementioned commitment sets. These
are states (q, A) representing every possible commitment, i.e., every A ⊆ postG(q).

Every transition t is added as an uncontrollable action. Action t involves all processes
with slices synchronizing on t. To choose a commitment set, we furthermore add controllable
actions (τ -actions) that are local to each process. We assume that each process chooses at
most one commitment set. The transition relation ϑς is given by three rules: From every
system place q ∈ PS , a process can choose a commitment set using the corresponding τ -action
(1). From an environment place q ∈ PE , t can fire if q is in the precondition of t (q ∈ preς(t)).
The process is then moved to the state q′ that corresponds to the place that is reached when

CONCUR 2019

26:10 Translating Asynchronous Games for Distributed Synthesis

A

B

C

D

e1 e2 ia

b

(a)

A

B

e1 e2 a

b

C

D

ia

b

(b)

A

⊥ς1

e1 e2a

b

E

C(C, ∅) (C, {i})

D

(D, {b})

(D, ∅)

(D, {a})

⊥ς2

τ(C,∅) τ(C,{i}

iτ(D,{a,b})

τ(D,{b})

τ(D,∅)

τ(D,{a})

a

b
b

a

E

(D, {a, b})

B

(c)

Figure 4 A sliceable Petri game G (a), a possible (in this case unique) distribution in slices (ς1, ς2)
(b), and the asynchronous automaton CG obtained by our translation (c). ĈG comprises additional
⊥-states and one E(D,{a,b})

[a,b] -action (named E) depicted in red.

firing t in the slice (q′ ∈ postς(t)) (2). A process on an environment place can hence never
restrict any actions; as in Petri games. For a system place, the rule is almost identical but
only admits t if a commitment set has been chosen, that contains t (3). Therefore, a process
on a system place can control actions by choosing commitment sets; as in Petri games. States
corresponding to winning places become winning states.

An example translation is depicted in Fig. 4. The Petri game (a) comprise two players
starting in A and C. They can move to B and D using e1, e2, or i and afterwards synchronize
on a or b. The Petri game can be distributed into slices (b). In the control game from our
construction (c), the slice containing only environment places results in the local process
on the left. For the system places in the other slice, commitment sets are added as states
{C} × 2{i} and {D} × 2{a,b}. The process can choose them using controllable τ -actions
and the actions a, b, and i can only occur if included in the current set. The construction
guarantees that only the second process can control transitions a and b, as in the Petri game.

Non-Determinism. In deterministic strategies, every system place allows transitions s.t.
in every situation, there is at most one of them enabled. In CG , the controller can choose
arbitrary commitment sets and, thus, a winning controller can result in a non-deterministic
strategy for G. To ensure deterministic strategies, we want to penalize situations where a
commitment set in CG is chosen s.t. two or more distinct actions from this set can be taken.

To achieve this, we define the modified game ĈG . We equip each process with a ⊥-state
from which no winning configurations are reachable. Uncontrollable E-actions move processes
to ⊥-states and thereby cause the system to lose. The situation to be covered comprises a
process that has chosen a commitment set, i.e., is in a state (q, A), and two distinct actions t1
and t2 in A. For every such combination, we add a E(q,A)

[t1,t2]-action that involves all processes
participating in t1 or t2 and can be taken exactly if (q, A) is a current state and both t1 and
t2 could occur from the current global state. The three rules in ϑ add the E(q,A)

[t1,t2]-action to
each process. It fires if one process is in state (q, A) (4) and all other involved processes are
in states such that both t1, t2 ∈ A are possible (4, 5). To ensure that t1 and t2 can both
be taken, we distinguish between system and environment places: Every process ς on an
environment place needs to be in the right state, i.e., if ς is involved in ti (ti ∈ T ς), then ti
is in the postcondition of its current place for i = 1, 2 (5). If on a system place, ti must not
only be in the postcondition but also in the currently chosen commitment set (6).

R. Beutner, B. Finkbeiner, and J. Hecking-Harbusch 26:11

Size. In both CG and ĈG , the size of the alphabet and number of local states is exponential
in the number of transitions and linear in the number of places. For CG , the blow-up in the
alphabet can be kept polynomial by using a tree construction to choose commitment sets.
For a bound on the number of outgoing transitions, both CG and ĈG are of polynomial size.

5.2 Correctness
We show that our translation yields strategy-equivalent games by outlining the translation
of winning strategies and controllers between G and CG . Both game types rely on causal
information, i.e., a strategy/controller bases its decisions on every action/transition it took
part in as well as all information it received upon communication. In G, the information is
carried by individual tokens. In our translation, we transform each slice for a token into a
process that is involved in exactly the transitions that the slice it is build from takes part in,
i.e., we preserve the communication architecture. At every point, all processes in CG possess
the same information as their counterpart slices. Using the commitment set, our translation
ensures that only processes on a state based on a system place can control any behavior.
Therefore, a process and its counterpart slice have the same possibilities for control.

Translating a Strategy for G to a Controller for CG. Given a winning strategy σ, we
construct a controller %σ. The only states from which a process p can control any behavior
(in terms of controllable actions) are of the form q ∈ PS . σ decides for every system place
which transitions to enable. Due to our construction, p can copy the decision of σ by
choosing an appropriate commitment set. Therefore, %σ allows the same behavior as σ. If σ
is deterministic then the commitments sets are chosen such that no E-actions are possible.

Translating a Controller for CG to a Strategy for G. Given a winning controller %, we
incrementally construct a strategy σ%. Every system place q in the partially constructed
strategy can control which transitions are enabled. The place q belongs to some process.
If on a state corresponding to a system place, this process can control all actions using
its commitment sets. q enables exactly the transitions that the process has chosen as
a commitment set. An environment place cannot control any behavior and neither can
the process it belongs to. Hence, % and σ% allow the same actions and transitions. A
winning controller for ĈG additionally avoids any uncontrollable E-actions and results in a
deterministic strategy.

We obtain that G and CG are strategy-equivalent and that G and ĈG are strategy-equivalent
if we require deterministic strategies for Petri games.

5.3 Generalization to Concurrency-Preserving Games
Our translation builds processes from a slice distribution of the Petri game. This limits the
translation to sliceable games. The notion of slices is too strict: Our translation only requires
to distribute the global behavior of the Petri game into local behavior, a partitioning of the
places is not necessarily needed. We introduce the new concept of singular nets (SN). Similar
to a slice, an SN describes the course of one token. Instead of being a subnet, it is equipped
with a labeling function assigning to each node in the singular net a node in the original net.
This labeling allows us to split up places and transitions by equally labelled copies enabling
us to distribute every concurrency-preserving Petri net and game into singular nets. We can
build our previous translation with an SN-distribution instead of a slice-distribution.

CONCUR 2019

26:12 Translating Asynchronous Games for Distributed Synthesis

Define GC = (PS ,PE , T ,F , In,B) where
PS =

⋃
p∈P

Sp, PE = { (s,A) | s ∈
⋃
p∈P

Sp, A ⊆ act(s) ∩ Σsys} ∪ {⊥pDL | p ∈ P}

T = { (a,B, {As}s∈B) | a ∈ Σenv , B ∈ domain(δa), As ⊆ act(s) ∩ Σsys} ∪ (1)

{ (a,B, {As}s∈B) | a ∈ Σsys, B ∈ domain(δa), As ⊆ act(s) ∩ Σsys, a ∈ As} ∪ (2)

{ τ(s,A) | s ∈
⋃
p∈P

Sp, A ⊆ act(s) ∩ Σsys} ∪ {tMDL |M ∈ DDL} (3), (7)
F = {

(
(s,A) , (a,B, {As}s∈B)

)
| s ∈ B, As = A} ∪ (4)

{
(

(a,B, {As}s∈B) , s′) | s′ ∈ δa(B)} ∪ (5)

{
(
s, τ(s,A)

)
} ∪ {

(
τ(s,A), (s,A)

)
} ∪ (6)

{
(
q, tMDL

)
| q ∈M} ∪ {

(
tMDL,⊥pDL

)
| p ∈ P} (8)

In = sA
in and B =

⋃
p∈P
Bp ∪

⋃
p∈P
⊥pDL

Figure 5 We give the construction of the translated Petri game GC for a control game C =
(A,Σsys,Σenv, {Bp}p∈P) where A = ({Sp}p∈P, s

A
in, {δa}a∈Σ). The initial state sA

in is viewed as a set.
The gray parts penalize the artificial deadlocks, i.e., all markings in DDL.

I Theorem 3. For every concurrency-preserving Petri game G, there exist control games CG
and ĈG with an equal number of players such that (1) G and CG are strategy-equivalent and
(2) G and ĈG are strategy-equivalent if we require deterministic Petri game strategies.

5.4 Lower Bound
We can show that there is a family of Petri games such that every strategy-equivalent control
game must have exponentially many local states. In a control game, either all or none of the
players can restrict an action. By contrast, Petri games offer a finer granularity of control
by allowing only some players to restrict a transition. The insight for the lower bound is to
create a situation where a transition is shared between players but can only be controlled by
one of them. Using careful reasoning, we can show that in any strategy-equivalent control
game there must be actions that can only be controlled by a single process, resulting in
exponentially many local states. Our translation shows that the difference between both
formalism can be overcome but our lower bound shows an intrinsic difficulty to achieve this.

I Theorem 4. There is a family of Petri games such that every strategy-equivalent control
game (with an equal number of players) must have at least Ω(dn) local states for d > 1.

6 Translating Control Games to Petri Games

We give our translation from control games to Petri games, prove that it yields strategy-
equivalent games, and give an exponential lower bound. We present our translation for safety
objectives. All proofs and further details can be found in the full version of this paper [3].

6.1 Construction
We fix a control game C = (A,Σsys,Σenv, {Bp}p∈P) with safety objective. The translation
to GC is depicted in Fig. 5. We represent each local state s as a system place. We add
environment places (s,A), which encode every possible commitment set of actions that can be
allowed by a controller (A ⊆ act(s) ∩ Σsys). From each system place, the player can move to

R. Beutner, B. Finkbeiner, and J. Hecking-Harbusch 26:13

AC

BD

E

F

b

ac

d

c

d

(a)

A
(A, ∅)

(A, {a})

C

B

(B, ∅)

(C, {c})

(C, ∅)

D

(b, 〈A〉, {∅}})

(b, 〈A〉, {{a}})

(a, 〈A〉, {{a}})

E

(E, ∅)

(E, {c})

F

(c, 〈C,E〉, {{c}, {c}})

(d, 〈B,E〉, {∅, {c}})

(d, 〈B,E〉, {∅, ∅})

(b)

Figure 6 Control game C (a) and translated Petri game GC (b) are given. Commitment sets
without outgoing transitions are omitted. The set of artificial deadlocks DDL comprises every final
marking that contains at least one blue place. The resulting tMDL-transitions are omitted.

places for the commitment sets using a τ(s,A)-transition (3, 6). Each action a in C can occur
from different configurations of the processes in dom(a), i.e., all states in domain(δa), whereas
in Petri games transitions fire from fixed preconditions. We want to represent a as a transition
that fires from places representing commitment sets that correspond to configurations from
which a can occur in C. We hence duplicate a into multiple transitions to account for every
configuration in domain(δa) and for every combination of commitment sets. Transitions
have the form (a,B, {As}s∈B) where a is the action in the control game, B ∈ domain(δa)
is the configuration from which a can fire, and {As}s∈B are the involved commitment sets.
If action a is uncontrollable the corresponding transitions are added independently of the
commitment sets (1). If a is controllable a transition is only added if a is in the commitment
sets of all involved players, i.e., a ∈ As for every s ∈ B (2). If (a,B, {As}s∈B) is added it
fires from precisely the precondition that is encoded in it, i.e., the places (s,A) where s ∈ B
and As = A, and moves every token to the system place that corresponds to the resulting
local state when firing a in C (4, 5). A strategy can restrict controllable actions by moving
to an appropriate commitment set but cannot forbid uncontrollable ones, since they can
occur from every combination of commitment sets. If a system player decides to refuse any
commitment set it could prohibit transitions that correspond to uncontrollable actions. In
Sec. 6.3, we show how to force the system to always choose a commitment set.

In safety games, every winning strategy must avoid deadlocks. By introducing explicit
commitment sets, we add artificial deadlocks, i.e., configurations that are deadlocked in GC
but where the corresponding state in C could still act. This permits trivial strategies that,
e.g., always choose the empty commitment set. We define DDL as the set of all reachable
markings that are final in GC but where the corresponding global state in C can still perform
an action, i.e., all artificial deadlocks. Similar to the E-actions, we introduce tMDL-transitions
that fire from every marking M in DDL and move every token to a losing place ⊥DL (7, 8).
The mechanism to detect artificial deadlocks is depicted as the gray parts in Fig. 5.

Figure 6 depicts an example translation. The system cannot win this game: The
uncontrollable action b can always happen, independent of the commitment set for place A.
If one of the two tokens refuses c (moves to a blue place) a (losing) transition tDL can fire.

6.2 Correctness
We show strategy-equivalence of C and GC by translating strategies (that always commit)
and controllers between both of them. We observe that each token moves on the local states
of one process and takes part in precisely the actions of the process. At every point, a
token hence possesses the same local information as the process. A token can restrict the
controllable actions using the commitment sets but cannot restrict the uncontrollable ones.
The token therefore has the same possibilities as the process counterpart.

CONCUR 2019

26:14 Translating Asynchronous Games for Distributed Synthesis

Translating Controllers to Strategies. Given a winning controller %, we incrementally build
a (possibly infinite) winning, deterministic strategy σ%. Every system place q in a partially
constructed strategy can choose one of the commitment sets. q copies % by committing to
exactly the actions that the process it belongs to has allowed. The commitment sets can only
restrict controllable actions, as the process can. Hence, σ% allows the same behavior as %.

Translating Strategies to Controllers. Given a winning, deterministic strategy σ, we
construct a winning controller %σ. A process p that resides on a local state s can decide which
of the controllable actions should be allowed. Every token in σ can decide for a commitment
set and therefore implicitly chooses which controllable actions should be enabled. p allows
exactly the actions that σ chooses as a commitment set. Both can only restrict controllable
actions and, by copying, %σ achieves the same behavior as σ.

I Theorem 5. C and GC are strategy-equivalent.

6.3 Enforcing Commitment
Our construction assumes wining strategies to always choose a commitment set. We can
modify GC such that every non-committing strategy cannot win. The insight is to use the
deadlock-avoidance of winning strategies. Deadlocks define a global situation of the game.
To enforce commitment, we require local deadlock-avoidance in the sense that every token
has to choose a commitment set. This is not prevented by global deadlock-avoidance, where,
e.g., a single player being able to play locally enables every other player to refuse to commit
without being deadlocked. We reduce local to global deadlocks by adding transitions to
challenge the players to have reached a local deadlock. Using challenge transitions, every
player currently residing on a place that corresponds to a chosen commitment set moves to a
terminating place. Every player that has chosen commitment sets can terminate, resulting in
the players that are locally deadlocked to cause a global deadlock. Although the challenge
is always possible, the scheduler decides the point of challenge. The game with the added
challenger has a winning strategy iff GC has a winning strategy that always commits.

6.4 Lower Bounds
We can provide a family of control games where every strategy-equivalent Petri game must
be of exponential size. In control games, both controllable and uncontrollable actions can
occur from the same state. In Petri games, a given place can either restrict all transitions
(system place) or none. A control game where both actions types are possible already results
in Petri games of exponential size. We assume the absence of infinite τ -sequences.

I Theorem 6. There is a family of control games such that every strategy-equivalent Petri
game (with an equal number of players) must have at least Ω(dn) places for d > 1.

7 New Decidable Classes

We exemplarily show one transferrable class of decidability for both control games and Petri
games to highlight the applicability of our translations.

New Decidable Control Games. A process in a control game is an environment process if
all its action are uncontrollable. A system process is one that is not an environment process.
We can modify our second translation by not adding system places if there are no outgoing
controllable actions. Therefore, environment processes do not add system places to the Petri
game and we can use the results from [10].

R. Beutner, B. Finkbeiner, and J. Hecking-Harbusch 26:15

I Corollary 7. Control games with safety objectives and one system process are decidable.

New Decidable Petri Games. Given a Petri game G and a distribution into slices (or SNs)
{ς}ς∈S, we analyze the communication structure between the slices by building the undirected
graph (V,E) where V = S and E = {(ς1, ς2) | T ς1 ∩ T ς2 6= ∅}. (V,E) is isomorphic to the
communication architecture of the constructed asynchronous automaton CG (as introduced in
[13]). We define Gã as every Petri game that has a distribution {ς}ς∈S where (V,E) is acyclic.
We can show that such distributions are hard to find. From [13], we obtain decidability.

I Lemma 8. Deciding whether a Petri net has an acyclic slice-distribution is NP-complete.

I Corollary 9. Petri games in Gã with reachability objectives are decidable.

8 Conclusion

We have provided the first formal connection between control games and Petri games by
showing that both are equivalent. This indicates that synthesis models for asynchronous
systems with causal memory are stable under the concrete formalisms of system and environ-
ment responsibilities for the two most common models. Conversely, our lower bounds show
an intrinsic difference between control games and Petri games. By our translations, existing
and future decidability results can be combined and transferred between both game types.
Our translations could be adapted to other winning objectives. An interesting direction for
future work is to investigate how action-based control games [21] relate to Petri games and
to study unified models that combine features from control games and Petri games.

References
1 Cyril Autant and Philippe Schnoebelen. Place Bisimulations in Petri Nets. In Proceedings of

Application and Theory of Petri Nets, pages 45–61, 1992. doi:10.1007/3-540-55676-1_3.
2 Eike Best, Raymond R. Devillers, Astrid Kiehn, and Lucia Pomello. Concurrent Bisimulations

in Petri Nets. Acta Inf., 28(3):231–264, 1991. doi:10.1007/BF01178506.
3 Raven Beutner, Bernd Finkbeiner, and Jesko Hecking-Harbusch. Translating Asynchronous

Games for Distributed Synthesis (Full Version). arXiv preprint, 2019. arXiv:1907.00829.
4 J. Richard Buchi and Lawrence H. Landweber. Solving sequential conditions by finite state

strategies. Transactions of the American Mathematical Society, 138:295–311, 1969.
5 Joost Engelfriet. Branching Processes of Petri Nets. Acta Inf., 28(6):575–591, 1991. doi:

10.1007/BF01463946.
6 Javier Esparza and Keijo Heljanko. Unfoldings – A Partial-Order Approach to Model Checking.

Springer, 2008. doi:10.1007/978-3-540-77426-6.
7 Bernd Finkbeiner. Bounded Synthesis for Petri Games. In Proceedings of Correct System

Design - Symposium in Honor of Ernst-Rüdiger Olderog on the Occasion of His 60th Birthday,
pages 223–237, 2015. doi:10.1007/978-3-319-23506-6_15.

8 Bernd Finkbeiner, Manuel Gieseking, Jesko Hecking-Harbusch, and Ernst-Rüdiger Olderog.
Symbolic vs. Bounded Synthesis for Petri Games. In Proceedings of SYNT@CAV, pages 23–43,
2017. doi:10.4204/EPTCS.260.5.

9 Bernd Finkbeiner, Manuel Gieseking, and Ernst-Rüdiger Olderog. Adam: Causality-Based
Synthesis of Distributed Systems. In Proceedings of CAV, pages 433–439, 2015. doi:10.1007/
978-3-319-21690-4_25.

10 Bernd Finkbeiner and Paul Gölz. Synthesis in Distributed Environments. In Proceedings of
FSTTCS, pages 28:1–28:14, 2017. doi:10.4230/LIPIcs.FSTTCS.2017.28.

11 Bernd Finkbeiner and Ernst-Rüdiger Olderog. Petri games: Synthesis of distributed systems
with causal memory. Inf. Comput., 253:181–203, 2017. doi:10.1016/j.ic.2016.07.006.

CONCUR 2019

https://doi.org/10.1007/3-540-55676-1_3
https://doi.org/10.1007/BF01178506
http://arxiv.org/abs/1907.00829
https://doi.org/10.1007/BF01463946
https://doi.org/10.1007/BF01463946
https://doi.org/10.1007/978-3-540-77426-6
https://doi.org/10.1007/978-3-319-23506-6_15
https://doi.org/10.4204/EPTCS.260.5
https://doi.org/10.1007/978-3-319-21690-4_25
https://doi.org/10.1007/978-3-319-21690-4_25
https://doi.org/10.4230/LIPIcs.FSTTCS.2017.28
https://doi.org/10.1016/j.ic.2016.07.006

26:16 Translating Asynchronous Games for Distributed Synthesis

12 Paul Gastin, Benjamin Lerman, and Marc Zeitoun. Distributed Games with Causal Memory
Are Decidable for Series-Parallel Systems. In Proceedings of FSTTCS, pages 275–286, 2004.
doi:10.1007/978-3-540-30538-5_23.

13 Blaise Genest, Hugo Gimbert, Anca Muscholl, and Igor Walukiewicz. Asynchronous Games
over Tree Architectures. In Proceedings of ICALP, pages 275–286, 2013. doi:10.1007/
978-3-642-39212-2_26.

14 Hugo Gimbert. On the Control of Asynchronous Automata. In Proceedings of FSTTCS, pages
30:1–30:15, 2017. doi:10.4230/LIPIcs.FSTTCS.2017.30.

15 Jesko Hecking-Harbusch and Niklas O. Metzger. Efficient Trace Encodings of Bounded
Synthesis for Asynchronous Distributed Systems. In Proceedings of ATVA, 2019.

16 P. Madhusudan and P. S. Thiagarajan. A Decidable Class of Asynchronous Distributed
Controllers. In Proceedings of CONCUR, pages 145–160, 2002. doi:10.1007/3-540-45694-5_
11.

17 P. Madhusudan, P. S. Thiagarajan, and Shaofa Yang. The MSO Theory of Connectedly
Communicating Processes. In Proceedings of FSTTCS, pages 201–212, 2005. doi:10.1007/
11590156_16.

18 José Meseguer, Ugo Montanari, and Vladimiro Sassone. Process versus Unfolding Semantics
for Place/Transition Petri Nets. Theor. Comput. Sci., 153(1&2):171–210, 1996. doi:10.1016/
0304-3975(95)00121-2.

19 Anca Muscholl. Automated Synthesis of Distributed Controllers. In Proceedings of ICALP,
pages 11–27, 2015. doi:10.1007/978-3-662-47666-6_2.

20 Anca Muscholl and Igor Walukiewicz. Distributed Synthesis for Acyclic Architectures. In
Proceedings of FSTTCS, pages 639–651, 2014. doi:10.4230/LIPIcs.FSTTCS.2014.639.

21 Anca Muscholl, Igor Walukiewicz, and Marc Zeitoun. A look at the control of asynchronous
automata. Perspectives in Concurrency Theory, pages 356–371, 2009.

22 Mogens Nielsen, Gordon D. Plotkin, and Glynn Winskel. Petri Nets, Event Structures and
Domains, Part I. Theor. Comput. Sci., 13:85–108, 1981. doi:10.1016/0304-3975(81)90112-2.

23 Ernst-Rüdiger Olderog. Nets, terms and formulas: three views of concurrent processes and
their relationship, volume 23. Cambridge University Press, 2005.

24 Amir Pnueli and Roni Rosner. Distributed Reactive Systems Are Hard to Synthesize. In 31st
Annual Symposium on Foundations of Computer Science, 1990, Volume II, pages 746–757,
1990. doi:10.1109/FSCS.1990.89597.

25 Wolfgang Reisig. Petri Nets: An Introduction. Springer, 1985. doi:10.1007/
978-3-642-69968-9.

26 Wieslaw Zielonka. Notes on Finite Asynchronous Automata. ITA, 21(2):99–135, 1987.
doi:10.1051/ita/1987210200991.

https://doi.org/10.1007/978-3-540-30538-5_23
https://doi.org/10.1007/978-3-642-39212-2_26
https://doi.org/10.1007/978-3-642-39212-2_26
https://doi.org/10.4230/LIPIcs.FSTTCS.2017.30
https://doi.org/10.1007/3-540-45694-5_11
https://doi.org/10.1007/3-540-45694-5_11
https://doi.org/10.1007/11590156_16
https://doi.org/10.1007/11590156_16
https://doi.org/10.1016/0304-3975(95)00121-2
https://doi.org/10.1016/0304-3975(95)00121-2
https://doi.org/10.1007/978-3-662-47666-6_2
https://doi.org/10.4230/LIPIcs.FSTTCS.2014.639
https://doi.org/10.1016/0304-3975(81)90112-2
https://doi.org/10.1109/FSCS.1990.89597
https://doi.org/10.1007/978-3-642-69968-9
https://doi.org/10.1007/978-3-642-69968-9
https://doi.org/10.1051/ita/1987210200991

Long-Run Average Behavior
of Vector Addition Systems with States
Krishnendu Chatterjee
IST Austria, Klosterneuburg, Austria
krish.chat@ist.ac.at

Thomas A. Henzinger
IST Austria, Klosterneuburg, Austria
tah@ist.ac.at

Jan Otop
University of Wrocław, Poland
jotop@cs.uni.wroc.pl

Abstract
A vector addition system with states (VASS) consists of a finite set of states and counters. A
configuration is a state and a value for each counter; a transition changes the state and each counter
is incremented, decremented, or left unchanged. While qualitative properties such as state and
configuration reachability have been studied for VASS, we consider the long-run average cost of
infinite computations of VASS. The cost of a configuration is for each state, a linear combination
of the counter values. In the special case of uniform cost functions, the linear combination is the
same for all states. The (regular) long-run emptiness problem is, given a VASS, a cost function,
and a threshold value, if there is a (lasso-shaped) computation such that the long-run average value
of the cost function does not exceed the threshold. For uniform cost functions, we show that the
regular long-run emptiness problem is (a) decidable in polynomial time for integer-valued VASS, and
(b) decidable but nonelementarily hard for natural-valued VASS (i.e., nonnegative counters). For
general cost functions, we show that the problem is (c) NP-complete for integer-valued VASS, and
(d) undecidable for natural-valued VASS. Our most interesting result is for (c) integer-valued VASS
with general cost functions, where we establish a connection between the regular long-run emptiness
problem and quadratic Diophantine inequalities. The general (nonregular) long-run emptiness
problem is equally hard as the regular problem in all cases except (c), where it remains open.

2012 ACM Subject Classification Theory of computation→ Automata over infinite objects; Theory
of computation → Quantitative automata

Keywords and phrases vector addition systems, mean-payoff, Diophantine inequalities

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2019.27

Related Version A full version of the paper is available at http://arxiv.org/abs/1905.05537.

Funding Krishnendu Chatterjee: The Austrian Science Fund (FWF) NFN grant S11407-N23
(RiSE/SHiNE)
Thomas A. Henzinger : The Austrian Science Fund (FWF) grants S11402-N23 (RiSE/ShiNE) and
Z211-N23 (Wittgenstein Award)
Jan Otop: The National Science Centre (NCN), Poland under grant 2017/27/B/ST6/00299

Acknowledgements We thank Petr Novotný for helpful discussion on the literature.

1 Introduction

Vector Addition System with States (VASS). Vector Addition Systems (VASS) [20] are
equivalent to Petri Nets, and they provide a fundamental framework for formal analysis
of parallel processes [14]. The extension of VASs with a finite-state transition structure

© Krishnendu Chatterjee, Thomas A. Henzinger, and Jan Otop;
licensed under Creative Commons License CC-BY

30th International Conference on Concurrency Theory (CONCUR 2019).
Editors: Wan Fokkink and Rob van Glabbeek; Article No. 27; pp. 27:1–27:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-4561-241X
mailto:krish.chat@ist.ac.at
mailto:tah@ist.ac.at
https://orcid.org/0000-0002-8804-8011
mailto:jotop@cs.uni.wroc.pl
https://doi.org/10.4230/LIPIcs.CONCUR.2019.27
http://arxiv.org/abs/1905.05537
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2 Long-Run Average Behavior of Vector Addition Systems with States

gives Vector Addition Systems with States (VASS). Informally, a VASS consists of a finite
set of control states and transitions between them, and a set of k counters, where at every
transition between the control states each counter is either incremented, decremented, or
remains unchanged. A configuration consists of a control state and a valuation of each
counter, and the transitions of the VASS describe the transitions between the configurations.
Thus a VASS represents a finite description of an infinite-state transition system between
the configurations. If the counters can hold all possible integer values, then we call them
integer-valued VASS; and if the counters can hold only non-negative values, then we call
them natural-valued VASS.

Modelling power. VASS are a fundamental model for concurrent processes [14], and often
used in performance analysis of concurrent processes [12, 16, 18, 19]. Moreover, VASS have
been used (a) in analysis of parametrized systems [2], (b) as abstract models for programs
for bounds and amortized analysis [29], (c) in interactions between components of an API
in component-based synthesis [15]. Thus they provide a rich framework for a variety of
problems in verification as well as program analysis.

Previous results for VASS. A computation (or a run) in a VASS is a sequence of configu-
rations. The well-studied problems for VASS are as follows: (a) control-state reachability
where given a set of target control states a computation is successful if one of the target
states is reached; (b) configuration reachability where given a set of target configurations a
computation is successful if one of the target configurations is reached. For natural-valued
VASS, (a) the control-state reachability problem is ExpSpace-complete: the ExpSpace-
hardness is shown in [25, 13] and the upper bound follows from [28]; and (b) the configuration
reachability problem is decidable [26, 21, 22, 23], and a recent breakthrough result shows
that the problem is non-elementary hard [10]. For integer-valued VASS, (a) the control-state
reachability problem is NLogSpace-complete: the counters can be abstracted away and
we have to solve the reachability problem for graphs; and (b) the configuration reachability
problem is NP-complete: this is a folklore result obtained via reduction to linear Diophantine
inequalities.

Long-run average property. The classical problems for VASS are qualitative (or Boolean)
properties where each computation is either successful or not. In this work we consider
long-run average property that assigns a real value to each computation. A cost is associated
to each configuration and the value of a computation is the long-run average of the costs
of the configurations of the computation. For cost assignment to configuration we consider
linear combination with natural coefficients of the values of the counters. In general the
linear combination for the cost depends on the control state of the configuration, and in the
special case of uniform cost functions the linear combination is the same across all states.

Motivating examples. We present some motivating examples for the problems we consider.
First, consider a VASS where the counters represent different queue lengths, and each queue
consumes resource (e.g., energy) proportional to its length, however, for different queues
the constant of the proportionality might differ. The computation of the long-run average
resource consumption is modeled as a uniform cost function, where the linear combination
for the cost function is obtained from the constants of proportionality. Second, consider a
system that uses two different batteries, and the counters represent the charge levels. At
different states, different batteries are used, and we are interested in the long-run average

K. Chatterjee, T. A. Henzinger, and J. Otop 27:3

charge of the used battery. This is modeled as a general cost function, where depending on
the control state the cost function is the value of the counter representing the battery used
in the state.

Our contributions. We consider the following decision problem: given a VASS and a cost
function decide whether there is a regular (or periodic) computation such that the long-run
average value is at most a given threshold. Our main contributions are as follows:
1. For uniform cost functions, we show that the problem is (a) decidable in polynomial time

for integer-valued VASS, and (b) decidable but non-elementary hard for natural-valued
VASS. In (b) we assume that the cost function depends on all counters.

2. For general cost functions, we show that the problem is (a) NP-complete for integer-valued
VASS, and (b) undecidable for natural-valued VASS.

Our most interesting result is for general cost functions and integer-valued VASS, where
we establish an interesting connection between the problem we consider and quadratic
Diophantine inequalities. Finally, instead of regular computations, if we consider existence of
an arbitrary computation, then all the above results hold, other than the NP-completeness
result for general cost functions and integer-valued VASS (which remains open).

Related works. Long-run average behavior have been considered for probabilistic VASS [5],
and other infinite-state models such as pushdown automata and games [9, 8, 1]. In these
works the costs are associated with transitions of the underlying finite-state representation.
In contrast, in our work the costs depend on the counter values and thus on the configurations.
Costs based on configurations, specifically the content of the stack in pushdown automata,
have been considered in [27]. Quantitative asymptotic bounds for polynomial-time termination
in VASS have also been studied [4, 24], however, these works do not consider long-run average
property. Finally, a related model of automata with monitor counters with long-run average
property have been considered in [7, 6]. However, there are some crucial differences: in
automata with monitor counters, the cost always depends on one counter, and counters are
reset once the value is used. Moreover, the complexity results for automata with monitor
counters are quite different from the results we establish.

2 Preliminaries

For a sequence w, we define w[i] as the (i+ 1)-th element of w (we start with 0) and w[i, j]
as the subsequence w[i]w[i + 1] . . . w[j]. We allow j to be ∞ for infinite sequences. For a
finite sequence w, we denote by |w| its length; and for an infinite sequence the length is ∞.

We use the same notation for vectors. For a vector ~x ∈ Rk (resp., Qk, Zk or Nk), we
define x[i] as the i-th component of ~x. We define the support of ~x, denoted by supp(~x) as
the set of components of ~x with non-zero values. For vectors ~x, ~y of equal dimension, we
denote by ~x · ~y, the dot-product of ~x and ~y.

2.1 Vector addition systems with states (VASS)
A k-dimensional vector addition system with states (VASS) over Z (resp., over N), referred
to as VASS(Z, k) (resp., VASS(N, k)), is a tuple A = 〈Q,Q0, δ〉, where (1) Q is a finite
set of states, (2) Q0 ⊆ Q is a set of initial states, and (3) δ ⊆ Q×Q× Zk. We denote by
VASS(Z, k) (resp., VASS(N, k)) the class of k-dimensional VASS over Z (resp., N). We
often omit the dimension in VASS and write VASS(Z),VASS(N),VASS(N),VASS(Z) if a
definition or an argument is uniform w.r.t. the dimension.

CONCUR 2019

27:4 Long-Run Average Behavior of Vector Addition Systems with States

Configurations and computations. A configuration of a VASS(Z, k) A is a pair from
Q× Zk, which consists of a state and a valuation of the counters. A computation of A is an
infinite sequence π of configurations such that (a) π[0] ∈ Q0 × {~0}1, and (b) for every i ≥ 0,
there exists (q, q′, ~y) ∈ δ such that π[i] = (q, ~x) and π[i+ 1] = (q′, ~x+ ~y). A computation of
a VASS(N, k) A is a computation π of A considered as a VASS(Z, k) such that the values
of all counters are natural, i.e., for all i > 0 we have π[i] ∈ Q× Nk.

Paths and cycles. A path ρ = (q0, q
′
0, ~y0), (q1, q

′
1, ~y1), . . . in a VASS(Z) (resp., VASS(N))

A is a (finite or infinite) sequence of transitions (from δ) such that for all 0 ≤ i ≤ |ρ| we have
q′i = qi+1. A finite path ρ is a cycle if ρ = (q0, q

′
0, ~y0), . . . , (qm, q′m, ~ym) and q0 = q′m. Every

computation in a VASS(Z) (resp., VASS(N)) defines a unique infinite path. Conversely,
every infinite path in a VASS(Z) A starting with q0 ∈ Q0 defines a computation in A.
However, if A is a VASS(N, k), some paths do not have corresponding computations due to
non-negativity restriction posed on the counters.

Regular computations. We say that a computation π of a VASS(Z) (resp., VASS(N)) is
regular if it corresponds to a path which is ultimately periodic, i.e., it is of the form αβω

where α, β are finite paths.

2.2 Decision problems
We present the decision problems that we study in the paper.

Cost functions. Consider a VASS(Z, k) (resp., VASS(N, k)) A = (Q,Q0, δ). A cost func-
tion f for A is a function f : Q × Zk → Z, which is linear with natural coefficients, i.e.,
for every q there exists ~a ∈ Nk such that f(q, ~z) = ~a · ~z for all ~z ∈ Zk. We extend cost
functions to computations as follows. For a computation π of A, we define f(π) as the
sequence f(π[0]), f(π[1]), Every cost function f is given by a labeling l : Q → Nk by
f(q, ~z) = l(q) · ~z. We define the size of f , denoted by |f |, as the size of binary representation
of l considered as a sequence of natural numbers of the length |Q| · k.

Uniform cost functions. We say that a cost function f is uniform, if it is given by a
constant function l, i.e., for all states q, q′ and ~z ∈ Zk we have f(q, ~z) = f(q′, ~z). Uniform
cost functions are given by a single vector ~a ∈ Nk.

The long-run average. We are interested in the long-run average of the values returned
by the cost function, which is formalized as follows. Consider an infinite sequence of real
numbers w. We define LimAvg(w) = lim infk→∞ 1

k+1
∑k
i=0 w[i].

I Definition 1 (The average-value problems). Given a VASS(Z, k) (resp., VASS(N, k)) A,
a cost function f for A, and a threshold λ ∈ Q,

the average-value problem (resp., the regular average-value problem) asks whether
A has a computation (resp., a regular computation) π such that LimAvg(f(π)) ≤ λ, and
the finite-value problem (resp., the regular finite-value problem) asks whether A has
a computation (resp., a regular computation) π such that LimAvg(f(π)) <∞.

The following example illustrates the regular average-value problem for VASS(Z).

1 Without loss of generality, we assume that the initial counter valuation is ~0. We can encode any initial
configuration in the VASS itself.

K. Chatterjee, T. A. Henzinger, and J. Otop 27:5

A B C

e1,
(

1
0
)

e2,
(0
−1
)

e3,
(

0
3
)

e4,
(−2

0
)

A 7→
(

4
0
)

B 7→
(

1
1
)

C 7→
(

0
1
)

Figure 1 The VASS Ae and its labeling.

I Example 2. Consider the VASS(Z, 2) Ae = 〈{A,B,C}, {B}, {e1, e2, e3, e4}〉 depicted in
Figure 1 and a (non-uniform) cost function f is given by the labeling from Figure 1. A 7→

(
4
0
)
,

Consider an infinite path (e1e2e3e4)ω that defines the regular computation π0. This
computation can be divided into blocks of 4 consecutive configurations. The (i+ 1)-th block
has the following form

. . . (B,
(−i

2i
)
)(A,

(−i+1
2i
)
)(B,

(−i+1
2i−1

)
)(C,

(−i+1
2i+2

)
) . . .

and the corresponding values of f(π) are:

. . . i − 4i+ 4 i 2i+ 2 . . .

Therefore, the sum of values over each block is 6 and hence LimAvg(f(π0)) = 3
2 .

The answer to the (regular) average-value problem with any threshold is YES. Consider
j ∈ N and a path (e1e2)j(e1e2e3e4)ω. Observe that it defines a regular computation πj ,
which after the block (e1e2)j coincides with π0 with all counter values shifted by

(−2j
3j
)
.

Note that in each block e1e2e3e4, the value f on the vector
(−2j

3j
)
are j,−8j, j, 3j. Therefore,

LimAvg(f(πj)) = LimAvg(f(π0)) + −3j
4 = −3j−6

4 . It follows that for every threshold λ ∈ Q,
there exists a regular computation πj with LimAvg(f(πj)) ≤ λ.

Organization. In this paper, we study the (regular) average-value problem for VASS(Z, k)
and VASS(N, k). First, we study the average-value problem for uniform cost functions
(Section 3). Next, we consider the non-uniform case, where we focus on VASS(Z) (Section 4).
We start with solving the (regular) finite-value problem, and then we move to the regular
average-value problem. We show that both problems are NP-complete. Next, we discuss
the non-uniform case for VASS(N) and we show that the regular finite-value problem is
decidable (and non-elementary), while the (regular) average-value problem is undecidable.

3 Uniform cost functions

In this section we study the average-value problem for VASS(Z) and VASS(N) for the
uniform cost functions.

3.1 Integer-valued VASS: VASS(Z)
Consider a VASS(Z, k) A and a uniform cost function f for A. This function is defined
by a single vector of coefficients ~a ∈ Nk. First, observe that we can reduce the number
of the counters to one, which tracks the current cost. This counter c stores the value of
f(π[i]) = ~a · ~z, where ~z are the values of counters. Initially, the counter c is 0 = ~a ·~0. Next,
in each step i > 0, counters ~z are updated with some values ~y and we update c with ~a · ~y.
Note that the value of f(π[i+ 1]) = ~a · (~z + ~y) equals f(π[i]) + ~a · ~y.

CONCUR 2019

27:6 Long-Run Average Behavior of Vector Addition Systems with States

Second, observe that the average-value problem for VASS(Z, 1) and uniform cost functions
is equivalent to single-player average energy games (with no bounds on energy levels), which
are solvable in polynomial time [3]. Moreover, average-energy games (with no bounds on
energy levels) admit memoryless winning strategies and hence the average-value and the
regular average-value problems coincide. In consequence we have:

I Theorem 3. The average-value and the regular average-value problems for VASS(Z) and
uniform cost functions are decidable in polynomial time.

3.2 Natural-valued VASS: VASS(N)
For natural-valued VASS, we cannot reduce the number of counters to one; we need to track
all counters to make sure that all of them have non-negative values. Moreover, we show
that the average-value problem for (single counter) VASS(N, 1) is in PSpace while the
average-value problem for VASS(N) is nonelementary.

First, the average-value problem for (single counter) VASS(N, 1) in the uniform case
is equivalent to single-player average energy games with non-negativity constraint on the
energy values. The latter problem is in PSpace and it is NP-hard [3].

In the multi-counter case, we show that the average-value problem is mutually reducible to
the configuration reachability problem for VASS, which has recently been shown nonelemen-
tary hard [10]. We additionally assume that the cost function depends on all its arguments,
i.e., all coefficients are non-negative. This assumption allows us show that if there is a
computation of the average value below some λ, then there is one, which is lasso-shaped and
the cycle in the lasso has exponential size in the size of the VASS and λ. Therefore, we can
non-deterministically pick such a cycle and check whether it is reachable from the initial
configuration.

I Theorem 4. The average-value and the regular average-value problems for VASS(N) and
uniform cost functions with non-zero coefficients are decidable and mutually reducible to the
configuration reachability problem for VASS(N).

We have used in the proof the fact that f depends on all counters. We conjecture that
this assumption can be lifted:

I Open question 5. Is the average-value problem for VASS(N) and uniform cost functions
decidable?

4 General cost functions and VASS(Z)

First, we consider (an extension of) the regular finite-value problem for VASS(Z) (Section 4.1).
We show that one can decide in non-deterministic polynomial time whether a given VASS
has a regular computation (a) of the value −∞, or (b) of some finite value. To achieve this,
we introduce path summarizations, which allow us to state conditions that entail (a) and
respectively (b). We show that these conditions can be checked in NP.

We apply the results from Section 4.1 to solve the regular average-value problem (Sec-
tion 4.2). We consider only VASS that have some computation of a finite value, and no
computation of the value −∞, i.e., the answer to (a) is NO and the answer to (b) is YES. In
other cases we can easily answer to the regular average-value problem. If the answer to (a) is
YES, then for any threshold we answer YES. If the answers to (a) and (b) are NO, then for
any threshold we answer NO. Finally, we show NP-hardness of the regular finite-value and
the regular average-value problems (Section 4.3).

K. Chatterjee, T. A. Henzinger, and J. Otop 27:7

The main result of this section is the following theorem:

I Theorem 6. The regular finite-value and the regular average-value problems for VASS(Z)
with (general) cost functions are NP-complete.

We fix a VASS(Z, k) A = 〈Q,Q0, δ〉, with the set of states Q and the set of transitions δ,
and a cost function f , which we refer to throughout this section. We exclude the complexity
statements, where the asymptotic behavior applies to all A and f .

4.1 The finite-value problem
For a path ρ, we define characteristics Gain(ρ),Vals(ρ), which summarize the impact of ρ
on the values of counters (Gain) and the value of the (partial) average of costs (Vals).

Let ρ be of the form (q1, q2, ~y1) . . . (qm, qm+1, ~ym). We define Gain(ρ) as the sum of
updates along ρ, i.e., Gain(ρ) =

∑m
i=1 ~yi. The vector Gain(ρ) is the update of counters

upon the whole path ρ. Observe that Gain(ρ1ρ2) = Gain(ρ1) + Gain(ρ2).
Let l : Q → Nk be the function representing f , i.e., for every ~z ∈ Zk we have f(q, ~z) =

l(q)·~z. We define Vals(ρ) as the sum of vectors l(qi) along ρ, i.e., Vals(ρ) =
∑m
i=1 l(qi). Note

that we exclude the last state qm+1, and hence we have Vals(ρ1ρ2) = Vals(ρ1) + Vals(ρ2).
The vector Vals(ρ) describes the coefficients with which each counter contributes to the
average along the path ρ.

Consider a regular computation π and a path ρ1(ρ2)ω that corresponds to it. Let π′
be the (regular) computation obtained from π by contracting |ρ2| to a single transition
(qf , qf ,Gain(ρ2)), which is a loop over a fresh state qf . The counters over this transition are
updated by Gain(ρ2) and the cost function in qf is defined as f(qf , ~z) = 1

|ρ2|Vals(ρ2) · ~z.
The values of π and π′ may be different, but they differ only by some finite value. Indeed,

the difference over a single iteration of ρ2 updates and computation of the partial averages
are interleaved along ρ2, while in (qf , qf ,Gain(ρ2)) we first compute the partial average and
then update the counters. Therefore, that difference is a finite value N that does not depend
on the initial values of counters. It follows that the difference between the average values of
(the computations corresponding to) ρ2 and (qf , qf ,Gain(ρ2)) is bounded by N .

Finally, observe that the value of π′ can be easily estimated. Observe that the partial
average of the first n+ 1 values of f in π′ equals

1
n+ 1

(
~0 ·Vals(ρ2) + Gain(ρ2) ·Vals(ρ2) + . . .+nGain(ρ2) ·Vals(ρ2)

)
= n

2 Gain(ρ2) ·Vals(ρ2).

In consequence, we have the following:

I Lemma 7. Let π be a regular computation corresponding to a path ρ1(ρ2)ω. Then, one of
the following holds:
1. Gain(ρ2) ·Vals(ρ2) < 0 and LimAvg(f(π)) = −∞, or
2. Gain(ρ2) ·Vals(ρ2) = 0 and LimAvg(f(π)) is finite, or
3. Gain(ρ2) ·Vals(ρ2) > 0 and LimAvg(f(π)) =∞.

I Example 8. Consider the VASS Ae and the cost function f from Example 2. We have
shown that the computation defined by the path (e1e2e3e4)ω has finite average value. This
can be algorithmically computed using Lemma 7. We compute

Gain(e1e2e3e4) =
(

1
0
)

+
(0
−1
)

+
(

0
3
)

+
(−2

0
)

=
(−1

2
)

Vals(e1e2e3e4) =
(

1
1
)

+
(

4
0
)

+
(

1
1
)

+
(

0
1
)

=
(

6
3
)

Therefore, Gain(e1e2e3e4) ·Vals(e1e2e3e4) = 0.

CONCUR 2019

27:8 Long-Run Average Behavior of Vector Addition Systems with States

Reduction to integer quadratic programming. Lemma 7 reduces the regular finite-value
problem to finding a cycle with Gain(ρ) ·Vals(ρ) < 0 (resp., Gain(ρ) ·Vals(ρ) = 0). We
show that existence of such a cycle can be stated as a polynomial-size instance of integer
quadratic programming, which can be decided in NP [11]. An instance of integer quadratic
programming consists of a symmetric matrix A ∈ Qn×n,~a ∈ Qn, d ∈ Q,B ∈ Qn×m,~c ∈ Qm

and it asks whether there exists a vector ~x ∈ Zn satisfying the following system:

~xTA~x+ ~a~x+ d ≤0
B~x ≤~c

Let ρ be a cycle. Observe that both Gain(ρ),Vals(ρ) depend only on the multiplicity
of transitions occurring in ρ; the order of transitions is irrelevant. Consider a vector
~x = (x[1], . . . , x[m]) of multiplicities of transitions e1, . . . , em in ρ. Then,

Gain(ρ) ·Vals(ρ) =
∑

1≤i,j≤m
x[i]x[j]Gain(ei) ·Vals(ej)

Therefore, we have

2 ·Gain(ρ) ·Vals(ρ) = ~xTA~x (1)

for a symmetric matrix A ∈ Zm×m defined for all i, j as

A[i, j] = Gain(ei) ·Vals(ej) + Gain(ej) ·Vals(ei). (2)

The left hand side of (1) is multiplied by 2 to avoid division by 2. It follows that if
Gain(ρ) ·Vals(ρ) < 0 (resp., Gain(ρ) ·Vals(ρ) = 0), then the inequality ~xTA~x − 1 ≤ 0
(resp., ~xTA~x ≤ 0) has a solution.

Note that the above inequality can have a solution, which does not correspond to a
cycle. We can encode with a system of linear inequalities that ~x corresponds to a cycle.
Consider S ⊆ Q, which corresponds to all states visited by ρ. It suffices to ensure that
(a) for all s ∈ S, the number of incoming transitions to s, which is the sum of multiplicities
of transitions leading to s, equals the number of transitions outgoing from s, (b) for every
s ∈ S, the number of outgoing transitions is greater or equal to 1, and (c) for s ∈ Q \ S, the
number of incoming and outgoing transitions is 0. Finally, we state that all multiplicities are
non-negative. We can encode such equations and inequalities as BS~x ≤ ~cS . Observe that
every vector of multiplicities ~x ∈ Z satisfies ~xTA~x− 1 ≤ 0 (resp., ~xTA~x ≤ 0) and BS~x ≤ ~cS
defines a cycle ρ with Gain(ρ),Vals(ρ) < 0 (resp., Gain(ρ),Vals(ρ) = 0). The matrices
A,BS and the vector ~cS are polynomial in |A|. The set S can be picked non-deterministically.
In consequence, we have the following:

I Lemma 9. The problem: given a VASS(Z, k) A and a cost function f , decide whether A
has a regular computation of the value −∞ (resp., less than +∞) is in NP.

4.2 The regular average-value problem
In this section, we study the regular average-value problem for VASS(Z). We assume that A
has a regular computation of finite value and does not have a regular computation of the value
−∞. Finally, we consider the case of the threshold λ = 0. The case of an arbitrary threshold
λ ∈ Q can be easily reduced to the case λ = 0 (see [7, 6] for intuitions and techniques in
mean-payoff games a.k.a. limit-average games).

K. Chatterjee, T. A. Henzinger, and J. Otop 27:9

Consider a regular computation π and let ρ1(ρ2)ω be a path corresponding to π. We
derive the necessary and sufficient conditions on ρ1, ρ2 to have LimAvg(f(π)) ≤ 0.

Assume that LimAvg(f(π)) ≤ 0. Due to Lemma 7, we have Gain(ρ2) ·Vals(ρ2) = 0,
which implies that every iteration of ρ2 has the same average. Therefore, LimAvg(f(π)) is
the average value of ρ2 (starting with counter values defined by ρ1). The latter value is at
most 0 if and only if the sum of values along ρ2 is at most 0. We define this sum below.

The sum of values Sum~g(ρ). Let l be the labeling defining the cost function f . Consider
a path ρ of length m such that ρ = (q1, q2, ~y1) . . . (qm, qm+1, ~ym). Let π be the computation
corresponding to ρ with the initial counter values being ~g. Then, the value of counters at
the position i in π is ~g +

∑i−1
j=1 ~yj . Therefore, the sum of values over ρ starting with counter

values ~g ∈ Zk, denoted by Sum~g(ρ), is given by the following formula:

Sum~g(ρ) =
m∑
i=1

(
~g +

i−1∑
j=1

~yj

)
· l(qi)

We have the following:

I Lemma 10. There exists a regular computation π with LimAvg(f(π)) ≤ 0 if and only if
there exist paths ρ1, ρ2 such that
(C1) ρ1(ρ2)ω is an infinite path and ρ2 is a cycle,
(C2) Gain(ρ2) ·Vals(ρ2) = 0, and
(C3) SumGain(ρ1)(ρ2) ≤ 0.

Due to results from the previous section, we can check in NP the existence of ρ1, ρ2
satisfying (C1) and (C2). We call a cycle ρ2 balanced if Gain(ρ2) · Vals(ρ2) = 0. In the
remaining part we focus on condition (C3), while keeping in mind (C1) and (C2).

The plan of the proof. The proof has three key ingredients which are as follows: factoriza-
tions, quadratic factor elimination, and the linear case.

Factorizations. We show that we can consider only paths ρ2 of the form

α0β
n[1]
1 α1β

n[2]
2 . . . βn[p]

p αp,

where |αi|, |βi| ≤ |A| and each βi is a distinct simple cycle (Lemma 12). It follows that p
is exponentially bounded in |A|. Next, we show that for ρ2 in such a form we have

SumGain(ρ1)(ρ2) = ~nTB~n+ ~c · ~n+ e

where B ∈ Zp×p,~c ∈ Zp (Lemma 13). Therefore, SumGain(ρ1)(ρ2) ≤ 0 can be presented
as an instance of integer quadratic programming, where the variables correspond to
multiplicities of simple cycles.
However, there are two problems to overcome. First, ρ2 has to be balanced, i.e., it has to
satisfy Gain(ρ2) ·Vals(ρ2) = 0, which introduces another quadratic equation. Solving a
system of two quadratic equations over integers is considerably more difficult (see [11] for
references). Second, p is (bounded by) the number of distinct simple cycles and hence it
can be exponential in |A|. Therefore, B and ~c may have exponential size (of the binary
representation) in |A|.
Quadratic factor elimination. To solve these problems, we fix a sequence Tpl =
(α0, β1, α1, . . . , βp, αp) and consider BTpl,~cTpl, eTpl for Tpl. We show that one of the
following holds (Lemma 14 and Lemma 15):

CONCUR 2019

27:10 Long-Run Average Behavior of Vector Addition Systems with States

~nTBTpl~n+ ~cTpl · ~n+ eTpl ≤ 0 has a simple solution, or
there exist ~dTpl ∈ Zp, hTpl ∈ Z such that for all vectors ~n, if the cycle ρ2 =
α0β

n[1]
1 . . . β

n[p]
p αp is balanced (C2), then ~nTBTpl~n = ~dTpl · ~n+ hTpl.

We can decide in non-deterministic polynomial time whether the first condition holds
(Lemma 20).
The linear case. Assuming that the second condition holds, we reduce the problem of
solving the quadratic inequality ~nTBTpl~n + ~cTpl · ~n + eTpl ≤ 0 to solving the linear
inequality (~cTpl + ~dTpl) · ~n + (eTpl + hTpl) ≤ 0. Moreover, we can compute ~dTpl, hTpl
from the sequence Tpl. At this point, we can solve the problem in non-deterministic
exponential time. Next, we argue that we do not have to compute the whole system.
We show that if (~cTpl + ~dTpl) · ~n+ eTpl + hTpl ≤ 0 has a solution, then it has a solution
for a vector ~n0 with m = O(|A|) non-zero components. Therefore, we can remove cycles
corresponding to 0 coefficients of ~n0. Still,

∑p
i=0 |αi| can be exponential in |A|, but this

operation shortens the size of the template, i.e., the value
∑p
i=0 |αi| +

∑p
i=1 |βi|, and

hence by iterating it we get a polynomial size template, which yields a polynomial-size
system of inequalities. These inequalities can be solved in NP.

We now present the details of each ingredient.

4.2.1 Factorizations
The regular finite-value problem has been solved via reduction to solving (quadratic and
linear) inequalities. In this section, we show a reduction of the regular average-value problem
to linear and quadratic inequalities as well. First, we establish that we can consider only
cycles ρ, which have a compact representation using templates parametrized by multiplicities
of cycles. The value Sum~g(ρ) for a cycle represented by a template is given by a quadratic
function in the multiplicities of cycles.

Templates and multiplicities. A template Tpl is a sequence of paths (α0, β1, α1, . . . , βp, αp)
such that all β1, . . . , βp are cycles and α0β1α1 . . . βpαp is a cycle. A template is minimal if for
all i ∈ {0, . . . , p} we have |αi| < |Q| and all βi are pairwise distinct simple cycles. For every
vector ~n ∈ Np, called multiplicities, we define Tpl(~n) as a cycle α0β

n[1]
1 α1β

n[2]
2 . . . β

n[p]
p αp. A

cycle ρ has a (minimal) factorization if there exists a (minimal) template and multiplicities
~n such that ρ = Tpl(~n).

Observe that every cycle ρ has a factorization such that for all i we have |αi| < |Q| and
each βi is a simple cycle. However, the sequence βi’s can have repetitions. The following
lemma states that if a cycle β occurs twice in ρ, then we can group them together.

I Lemma 11. Consider ~g ∈ Zk and a cycle α0βα1βα2. Then, one of the following holds:
Sum~g(α0β

2α1α2) ≤ Sum~g(α0βα1βα2) or Sum~g(α0α1β
2α2) ≤ Sum~g(α0βα1βα2).

Careful repeated application of Lemma 11 implies that we can look for a cycle ρ satisfying
(C1), (C2) and (C3) among cycles that have a minimal factorization:

I Lemma 12. For every cycle ρ and ~g ∈ Zk, there exists a cycle ρ′ that has a minimal
factorization such that Gain(ρ) = Gain(ρ′), Vals(ρ) = Vals(ρ′) and Sum~g(ρ) ≥ Sum~g(ρ′).

Consider a template Tpl = (α0, β1, α1, . . . , βp, αp). We present Sum~g(Tpl(~n)) as a
function from multiplicities of simple cycles ~n ∈ N into Z. First, observe that

Sum~g(Tpl(~n)) = Sum~0(Tpl(~n)) + ~g ·Vals(Tpl(~n)).

K. Chatterjee, T. A. Henzinger, and J. Otop 27:11

The expression Vals(Tpl(~n)) is a linear expression in ~n with natural coefficients, and the
expression Sum~0(Tpl(~n)) is a quadratic function in each of its arguments ~n.

I Lemma 13. Given a template Tpl we can compute in polynomial time in |Tpl|+ |A|+ |f |,
a symmetric matrix BTpl ∈ Zp×p,~cTpl ∈ Zp and eTpl ∈ Z such that the following holds:

2 · Sum~0(Tpl(~n)) = ~nTBTpl~n+ ~cTpl~n+ eTpl (3)

Moreover, for all i, j ∈ {1, . . . , p} we have

BTpl[i, j] = Gain(βmin(i,j)) ·Vals(βmax(i,j)). (4)

Observe that BTpl is similar to the matrix A from (1). We exploit this similarity in the
following section to eliminate the term ~nTBTpl~n if possible.

4.2.2 Elimination of the quadratic factor
We show how to simplify the expression (3) of Lemma 13 for Sum~0(Tpl(~n)). We show that
either the inequality Sum~0(Tpl(~n)) + ~g ·Vals(Tpl(~n)) ≤ 0 has a simple solution for every
~g, or the quadratic term in (3) of Lemma 13 can be substituted with a linear term.

Negative and linear templates. Consider a template Tpl. A template Tpl is positive
(resp., negative) if there exist multiplicities ~n1, ~n2 ∈ Np such that
1. ~nT1 BTpl~n1 > 0 (resp., ~nT1 BTpl~n1 < 0), and
2. for every t ∈ N+, we have Gain(Tpl(t~n1 + ~n2)) ·Vals(Tpl(t~n1 + ~n2)) = 0.
A template Tpl is linear if there exist ~dTpl ∈ Zp and hTpl ∈ Z such that for all ~n, if
Gain(Tpl(~n)) ·Vals(Tpl(~n)) = 0, then ~nTBTpl~n = ~dTpl · ~n+ hTpl.

We observe that the existence of a negative cycle Tpl implies that Sum~g(Tpl(~n)) ≤ 0
has a solution for every ~g ∈ Nk, which in turn implies that the answer to the average-value
problem is YES. Basically, for ρt defined as Tpl(t~n1 + ~n2) and t big enough we can make
Sum~g(ρt) arbitrarily small.

I Lemma 14. If there exist a negative template, whose any state is reachable from some
initial state, then the answer to the regular average-value problem with threshold 0 is YES.

We show that either there is a template, which is negative or all templates are linear
(Lemma 15). Next, we show that we can check in non-deterministic polynomial time whether
there exists a negative template (Lemma 20).

I Lemma 15. (1) There exists a negative template or all templates are linear. (2) If
there exists a positive template Tpl, then there exists a negative one of the size bounded by
|Tpl|2. (3) If a template Tpl is linear, we can compute ~dTpl, hTpl in polynomial time in
|Tpl|+ |A|+ |f |.

Proof ideas. Consider a template Tpl with all connecting paths being empty, i.e., Tpl =
(ε, β1, . . . , βp, ε). Let ~n be a vector of multiplicities such that a cycle Tpl(~n) is balanced, i.e.,
Gain(Tpl(~n)) ·Vals(Tpl(~n)) = 0. We consider three cases:
The case ~nT BTpl~n < 0. Then, ~n1 = ~n and ~n2 = ~0 witness negativity of Tpl.
The case ~nT BTpl~n > 0. Then, Tpl is positive and we show that the reversed template

TplR = (ε, βp, . . . , β1, ε) is negative. Equality Gain(Tpl(~n)) ·Vals(Tpl(~n)) = 0 can be
stated as a matrix equation ~nTA~n = 0, where A is defined as in (2). We juxtapose (2)
and (4), and get that for all i, j we have A[i, j] = BTpl[i, j] + BTplR [p− i+ 1, p− j + 1].
Thus, 0 = ~nTA~n = ~nTBTpl~n + ~nR

TBTplR ~nR, where ~nR is the reversed vector ~n. It
follows that TplR is negative.

CONCUR 2019

27:12 Long-Run Average Behavior of Vector Addition Systems with States

The above two cases fail. Then for all ~n, if Gain(Tpl(~n)) · Vals(Tpl(~n)) = 0, then
~nTBTpl~n = 0. Therefore, Tpl is linear with ~dTpl, hTpl being ~0 and 0 respectively.

Essentially the same line of reasoning can be applied if the connecting paths in Tpl are
non-empty. However, in that case ~dTpl, hTpl may be non-zero. J

Now, we discuss how to check whether there exists a negative template. One of the
conditions of negativity is that Gain(Tpl(t~n1 +~n2)) ·Vals(Tpl(t~n1 +~n2)) = 0. Recall that
Gain and Vals depend on the multiset of transitions, but not on the order of transitions.
Therefore, for a given template Tpl, we define TransTpl(~n) ∈ Nm, where m = |δ|, as the
vector of multiplicities of transitions in Tpl(~n). We will write Trans(~n) if Tpl is clear from
the context.

I Lemma 16. Let Tpl be a template and let ~n ∈ Np be a vector of multiplicities. There exist
r1, . . . , r` ∈ Q+ and ~z1, . . . , ~z` ∈ Np such that (1) supp(~zi) ≤ m (the number of transitions
of |A|), (2) there exists t ∈ N+ such that Trans(~zi) = t ·Trans(~n), and (3) ~n =

∑`
i=1 ri~zi.

I Remark. The condition Trans(~zi) = t · Trans(~n) implies that if the cycle Tpl(~n) is
balanced, then all the cycles Tpl(~z1), . . . ,Tpl(~z`) are balanced as well.

Proof ideas. First, observe that Trans is a linear function transforming vectors from Np

into vectors from Nm. The value p can be exponential w.r.t. m = |δ| and hence we show
that each vector from Np can be presented as a linear combination over Q+ of vectors with
polynomially-bounded supports. J

Next, we show that if there exists a negative template, then there exists one of polynomial
size. If ~n1, ~n2 ∈ Np are the vectors witnessing positivity (resp., negativity) of a template
Tpl, then by Lemma 16, there exist witnesses ~n0

1, ~n
0
2 with polynomial-size support. We

remove from Tpl cycles corresponding to coefficient 0 in both ~n0
1 and ~n0

2 and obtain only
polynomially many cycles. In consequence, we have:

I Lemma 17. If there exists a negative template, then there exists one of polynomial size in
|Tpl|+ |A|+ |f |.

Still, to check whether there exists a negative template we have to solve a system consisting
of a quadratic inequality ~nT1 BTpl~n1 < 0 and a quadratic equation, which corresponds to
Gain(Tpl(t~n1 + ~n2)) ·Vals(Tpl(t~n1 + ~n2)) = 0. We show that this quadratic equation can
be transformed into a system of linear inequalities. We show that using standard elimination
of quadratic terms for successive variables n[1], n[2], . . . , n[p+ 1]. The key observation is that
Gain(Tpl(~n)) ·Vals(Tpl(~n)) = 0 implies that for every variable n[i] either n[i] = 0 or n[i]
is a double root (∆ = 0). Thanks to this property, we obtain a polynomial-size system of
linear inequalities.

I Lemma 18. Let Tpl be a template. There exist systems of linear equations and inequalities
S1, . . . , Sl such that (1) each Si has polynomial size in |Tpl|+ |A|+ |f |, (2) for all ~n ∈ Np

we have Gain(Tpl(~n)) ·Vals(Tpl(~n)) = 0 iff for some i the vector ~n satisfies Si.

Finally, Lemma 17 and Lemma 18 imply that existence of a negative template can be
solved in NP via reduction to integer quadratic programming.

I Lemma 19. We can verify in NP whether a given VASS(Z, k) A has a negative template.

K. Chatterjee, T. A. Henzinger, and J. Otop 27:13

Proof sketch. We non-deterministically pick a template Tpl of polynomial size (Lemma 17).
Then, we non-deterministically pick a system Si for template (Lemma 18). We make two
copies of Si: S1

i and S2
i ; in one we substitute ~n with ~n2 and in the other with ~n1 + ~n2. It

follows that for all t ∈ R the vector t~n1 + ~n2 satisfies Si (substituted for ~n). Finally, we solve
an instance of integer quadratic programming consisting of ~n1BTpl~n1 − 1 ≤ 0 and linear
equations and inequalities S1

i and S2
i , which is an instance of integer quadratic programming

and hence can be solved in NP [11]. J

4.2.3 The linear case
We consider the final case, where all templates are linear. The decision procedure described
in the following lemma answers YES (in at least one of non-deterministic computations)
whenever the answer to the regular average-value problem with threshold 0 is YES and all
templates are linear. Thus, it is complete.

Our main algorithm assumes that all templates are linear if it fails to find a negative
template. The failure can be due to a wrong non-deterministic pick. Having that in mind, we
make sure that the decision procedure from the following lemma is sound regardless of the
linearity of templates, i.e., if it answers YES, then the answer to the regular average-value
problem with threshold 0 is YES.

I Lemma 20. Assume that all templates are linear. Then, we can solve the regular average-
value problem with threshold 0 in non-deterministic polynomial time. Moreover, the procedure
is sound irrespectively of the linearity assumption.

Proof sketch. First, we show that using Lemma 16, if there is a cycle ρ with (a) Gain(ρ) ·
Vals(ρ) = 0 and (b) Sum~g(ρ) ≤ 0, then there is a cycle ρ′ defined by a template of polynomial
size satisfying both conditions (a) and (b). We take a path ρ, write it as Tpl(~n) and apply
Lemma 16 to ~n. We get a vector with polynomially many non-zero coefficients ~n0 and define
a reduced template Tpl′ by removal of cycles that correspond to 0 coefficients.

Second, consider a template Tpl of polynomial size. We nondeterministically pick a
subset of states Q and write a system of equations SQGain over variables ~x, ~y such that ~x, ~y is
a solution of SQGain if and only if there exists a path ρ1 satisfying (a) ~x are multiplicities of
transitions along ρ1 (b) ρ1 is from some initial state of A to the first state of Tpl, (c) ρ1
visits all states from Q, (d) ~y = Gain(ρ1).

Finally, if all templates are linear, then there exist ρ1, ρ2 defining a regular computation
of the average value at most 0 if and only if there is a subset of states Q and a template Tpl
of polynomial size such that the system of inequalities consisting of SQGain and the inequality
Hx,y : (~cTpl,~0 + ~dTpl) ·~n+ eTpl,~0 +hTpl + 2 · ~y ·Vals(Tpl(~n)) ≤ 0 has a solution over natural
numbers. Note that all the components except for ~y ·Vals(Tpl(~n)) are linear. Since ~y and
~n are variables, the component ~y ·Vals(Tpl(~n)) is quadratic. Still, SQGain with Hx,y is an
instance of integer quadratic programming, which can be solved in NP [11].

Having a solution of the system SQGain, we can compute in polynomial time Gain(ρ1) and
SumGain(ρ1)(Tpl(~n)) and then verify SumGain(ρ1)(Tpl(~n)) ≤ 0. Therefore, the correctness
of the algorithm does not depend on the linearity assumption. J

4.2.4 Summary
We present a short summary of the non-deterministic procedure deciding whether a given
VASS(Z, k) A has a regular computation of the value at most 0. We assume that all states
in A are reachable from initial states.

CONCUR 2019

27:14 Long-Run Average Behavior of Vector Addition Systems with States

Step 1. Check whether there is a cycle ρ with Gain(ρ) ·Vals(ρ) < 0. It can be done in
non-deterministic polynomial time (Lemma 9). If the answer is YES, then the answer to
the average-value problem is YES (Lemma 7). Otherwise, proceed to Step 2.
Step 2. Check whether there exists a negative template in A. It can be done in non-
deterministic polynomial time (Lemma 19). If the answer is YES, then the answer to the
regular average-value problem is YES (Lemma 14). Otherwise, proceed to Step 3.
Step 3. Assuming that the previous steps failed, all templates are linear. Solve the
regular average-value problem in non-deterministic polynomial time (Lemma 20). Note
that Step 2, could have failed due to unfortunate non-deterministic pick. However, the
procedure from Lemma 20 is sound regardless of the linearity assumption.

In consequence, we have the main result of this section:

I Lemma 21. The regular average-value problem for VASS(Z) with (general) cost functions
is in NP.

4.3 Hardness
We show that the regular finite-value and the regular average-value problems are NP-hard.
The proof is via reduction from the 3-SAT problem. Given a 3-CNF formula ϕ over n
variables, we construct a VASS of dimension 2n, where dimensions correspond to literals
in ϕ. Each simple cycle ρ in the VASS consists of two parts: The first part corresponds to
picking a substitution σ, which is stored in the vector Gain(ρ). The second part ensures
that Gain(ρ) ·Vals(ρ) = 0 if σ satisfies ϕ and it is strictly positive otherwise. Therefore,
if ϕ is satisfiable, the VASS has a regular run of the average cost 0, and otherwise all its
regular runs have infinite average cost. In consequence, we have the following:

I Lemma 22. The regular finite-value and the regular average-value problems for VASS(Z)
with (general) cost functions are NP-hard.

The main results of this section (Lemma 9, Lemma 21 and Lemma 22) summarize to
Theorem 6. We leave the case of non-regular runs as an open question.

I Open question 23. What is the complexity of the average-value and finite-value problems
for VASS(Z)?

5 General cost functions and VASS(N)

We show that the average-value and the regular average-value problems are undecidable.
The proofs are via reduction from the halting problem for Minsky machines [17], which are
automata with two natural-valued registers r1, r2. There are two main differences between
Minsky machines and VASS(N). First, the former can perform zero- and nonzero-tests on
their registers, while the latter can take any transition as long as the counters’ values remain
non-negative. Second, the halting problem for Minsky machines is qualitative, i.e., the answer
is YES or NO. We consider quantitative problems for VASS, where we are interested in the
values assigned to computations. We exploit the quantitative features of our problems to
simulate zero- and nonzero-tests.

The problems with an exact threshold are undecidable, but we can decide existence of a
regular computation of some finite value via reduction to reachability in VASS.

I Theorem 24. (1) The average-value and the regular average-value problems for VASS(N)
with (general) cost functions are undecidable. (2) The regular finite-value problem for
VASS(N) with (general) cost functions is decidable.

K. Chatterjee, T. A. Henzinger, and J. Otop 27:15

References
1 Parosh Aziz Abdulla, Mohamed Faouzi Atig, Piotr Hofman, Richard Mayr, K. Narayan Kumar,

and Patrick Totzke. Infinite-state energy games. In CSL-LICS 2014, pages 7:1–7:10, 2014.
2 Roderick Bloem, Swen Jacobs, Ayrat Khalimov, Igor Konnov, Sasha Rubin, Helmut Veith, and

Josef Widder. Decidability in Parameterized Verification. SIGACT News, 47(2):53–64, 2016.
3 Patricia Bouyer, Nicolas Markey, Mickael Randour, Kim G. Larsen, and Simon Laursen.

Average-energy games. Acta Inf., 55(2):91–127, 2018.
4 Tomás Brázdil, Krishnendu Chatterjee, Antonín Kucera, Petr Novotný, Dominik Velan, and

Florian Zuleger. Efficient Algorithms for Asymptotic Bounds on Termination Time in VASS.
In LICS 2018, pages 185–194, 2018.

5 Tomás Brázdil, Stefan Kiefer, Antonín Kucera, and Petr Novotný. Long-Run Average Behaviour
of Probabilistic Vector Addition Systems. In LICS 2015, pages 44–55, 2015. doi:10.1109/
LICS.2015.15.

6 Krishnendu Chatterjee, Thomas A. Henzinger, and Jan Otop. Nested Weighted Limit-Average
Automata of Bounded Width. In MFCS 2016, pages 24:1–24:14, 2016.

7 Krishnendu Chatterjee, Thomas A. Henzinger, and Jan Otop. Quantitative Monitor Automata.
In SAS 2016, pages 23–38, 2016.

8 Krishnendu Chatterjee and Yaron Velner. Hyperplane separation technique for multidimen-
sional mean-payoff games. J. Comput. Syst. Sci., 88:236–259, 2017.

9 Krishnendu Chatterjee and Yaron Velner. The Complexity of Mean-Payoff Pushdown Games.
J. ACM, 64(5):34:1–34:49, 2017.

10 Wojciech Czerwinski, Slawomir Lasota, Ranko Lazic, Jérôme Leroux, and Filip Mazowiecki.
The Reachability Problem for Petri Nets is Not Elementary. In STOC, pages 398–406, 2019.

11 Alberto Del Pia, Santanu S Dey, and Marco Molinaro. Mixed-integer quadratic programming
is in NP. Mathematical Programming, 162(1-2):225–240, 2017.

12 Emanuele D’Osualdo, Jonathan Kochems, and C. H. Luke Ong. Automatic Verification
of Erlang-Style Concurrency. In Francesco Logozzo and Manuel Fähndrich, editors, SAS
2013, pages 454–476, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg. doi:10.1007/
978-3-642-38856-9_24.

13 Javier Esparza. Decidability and complexity of Petri net problems—an introduction. Lectures
on Petri nets I: Basic models, pages 374–428, 1998.

14 Javier Esparza and Mogens Nielsen. Decidability Issues for Petri Nets - a survey. Bulletin of
the European Association for Theoretical Computer Science, 52:245–262, 1994.

15 Yu Feng, Ruben Martins, Yuepeng Wang, Isil Dillig, and Thomas W. Reps. Component-based
Synthesis for Complex APIs. In POPL 2017, POPL 2017, pages 599–612, New York, NY,
USA, 2017. ACM. doi:10.1145/3009837.3009851.

16 Pierre Ganty and Rupak Majumdar. Algorithmic Verification of Asynchronous Programs.
ACM Trans. Program. Lang. Syst., 34(1):6:1–6:48, May 2012. doi:10.1145/2160910.2160915.

17 John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Automata Theory,
Languages, and Computation (3rd Edition). Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2006.

18 Alexander Kaiser, Daniel Kroening, and Thomas Wahl. Dynamic Cutoff Detection in
Parameterized Concurrent Programs. In CAV 2010, pages 645–659, 2010. doi:10.1007/
978-3-642-14295-6_55.

19 Alexander Kaiser, Daniel Kroening, and Thomas Wahl. Efficient Coverability Analysis by Proof
Minimization. In Maciej Koutny and Irek Ulidowski, editors, CONCUR 2012, pages 500–515,
Berlin, Heidelberg, 2012. Springer Berlin Heidelberg. doi:10.1007/978-3-642-32940-1_35.

20 Richard M. Karp and Raymond E. Miller. Parallel Program Schemata. J. Comput. Syst. Sci.,
3(2):147–195, 1969.

21 S. Rao Kosaraju. Decidability of Reachability in Vector Addition Systems (Preliminary Version).
In Proceedings of the 14th Annual ACM Symposium on Theory of Computing, May 5-7, 1982,
San Francisco, California, USA, pages 267–281, 1982. doi:10.1145/800070.802201.

CONCUR 2019

http://dx.doi.org/10.1109/LICS.2015.15
http://dx.doi.org/10.1109/LICS.2015.15
http://dx.doi.org/10.1007/978-3-642-38856-9_24
http://dx.doi.org/10.1007/978-3-642-38856-9_24
http://dx.doi.org/10.1145/3009837.3009851
http://dx.doi.org/10.1145/2160910.2160915
http://dx.doi.org/10.1007/978-3-642-14295-6_55
http://dx.doi.org/10.1007/978-3-642-14295-6_55
http://dx.doi.org/10.1007/978-3-642-32940-1_35
http://dx.doi.org/10.1145/800070.802201

27:16 Long-Run Average Behavior of Vector Addition Systems with States

22 Jean-Luc Lambert. A Structure to Decide Reachability in Petri Nets. Theor. Comput. Sci.,
99(1):79–104, 1992. doi:10.1016/0304-3975(92)90173-D.

23 Jérôme Leroux. Vector addition systems reachability problem (a simpler solution). In EPiC,
volume 10, pages 214–228. Andrei Voronkov, 2012.

24 Jérôme Leroux. Polynomial Vector Addition Systems With States. In ICALP 2018, pages
134:1–134:13, 2018.

25 R. Lipton. The Reachability Problem Requires Exponential Space. Technical report 62, Yale,
1976.

26 Ernst W. Mayr. An Algorithm for the General Petri Net Reachability Problem. In STOC
1981, pages 238–246, 1981. doi:10.1145/800076.802477.

27 Jakub Michaliszyn and Jan Otop. Average Stack Cost of Büchi Pushdown Automata. In
FSTTCS 2017, pages 42:1–42:13, 2017. doi:10.4230/LIPIcs.FSTTCS.2017.42.

28 Charles Rackoff. The covering and boundedness problems for vector addition systems. Theo-
retical Computer Science, 6(2):223–231, 1978. doi:10.1016/0304-3975(78)90036-1.

29 Moritz Sinn, Florian Zuleger, and Helmut Veith. A Simple and Scalable Static Analysis for
Bound Analysis and Amortized Complexity Analysis. In CAV, pages 745–761, 2014.

http://dx.doi.org/10.1016/0304-3975(92)90173-D
http://dx.doi.org/10.1145/800076.802477
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2017.42
http://dx.doi.org/10.1016/0304-3975(78)90036-1

Reachability for Bounded Branching VASS
Filip Mazowiecki
LaBRI, Université de Bordeaux, France
filip.mazowiecki@u-bordeaux.fr

Michał Pilipczuk
University of Warsaw, Poland
michal.pilipczuk@mimuw.edu.pl

Abstract
In this paper we consider the reachability problem for bounded branching VASS. Bounded VASS
are a variant of the classic VASS model where all values in all configurations are upper bounded
by a fixed natural number, encoded in binary in the input. This model gained a lot of attention
in 2012 when Haase et al. showed its connections with timed automata. Later in 2013 Fearnley
and Jurdziński proved that the reachability problem in this model is PSPACE-complete even in
dimension 1. Here, we investigate the complexity of the reachability problem when the model is
extended with branching transitions, and we prove that the problem is EXPTIME-complete when
the dimension is 2 or larger.

2012 ACM Subject Classification Theory of computation → Models of computation

Keywords and phrases Branching VASS, counter machines, reachability problem, bobrvass

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2019.28

Related Version An arXiv version of the paper is available at https://arxiv.org/abs/1904.10226.

Funding Filip Mazowiecki: This study has been carried out with financial support from
the French State, managed by the French National Research Agency (ANR) in the frame
of the “Investments for the future” Programme IdEx Bordeaux (ANR-10-IDEX-03-02).
Michał Pilipczuk: This work is a part of project TOTAL that has received funding from
the European Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme, grant agreement No. 677651.

Acknowledgements The authors would like to thank Marthe Bonamy for feeding them during the
work on this project. No beavers were harmed in the making of this paper.

1 Introduction

Vector addition systems with states (VASS or d-VASS when the dimension is d), also
known as Petri nets, are a long established model for concurrent systems. The branching
generalisation of VASS (BrVASS or d-BrVASS1) is among the most popular extensions due
to its multiple connections with database theory [4], recursively parallel programs [5], timed
pushdown systems [6], and many others. A configuration of a d-VASS (or a d-BrVASS) is
a pair consisting of a state and a vector over Nd. In d-VASS, the transitions update the
configurations by changing the state and updating the configuration vector using vectors
over Zd. In d-BrVASS, in addition there can be branching transitions, which create two
independent copies of the system splitting the configuration vector among them.

1 The standard abbreviation for this model appearing in the literature is BVASS. Since in this work we
work with both bounded and branching models of VASS, we prefer to disambiguate these variants by
using prefixes Bo and Br, respectively.

© Filip Mazowiecki and Michał Pilipczuk;
licensed under Creative Commons License CC-BY

30th International Conference on Concurrency Theory (CONCUR 2019).
Editors: Wan Fokkink and Rob van Glabbeek; Article No. 28; pp. 28:1–28:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:filip.mazowiecki@u-bordeaux.fr
mailto:michal.pilipczuk@mimuw.edu.pl
https://doi.org/10.4230/LIPIcs.CONCUR.2019.28
https://arxiv.org/abs/1904.10226
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

28:2 Reachability for Bounded Branching VASS

Table 1 Complexities in dimension 1. In the last entry only a PSPACE lower bound is known.

unary binary binary with a bound
1-VASS NL-complete [20] NP-complete [14] PSPACE-complete [10]

1-BrVASS PTIME-complete [13] PSPACE-complete [11] in EXPTIME

The central decision problem for both VASS and BrVASS is the reachability problem,
i.e., whether there exists a computation between given input configurations. For VASS
we know that reachability is decidable [18], moreover, recently the upper bound on the
complexity was improved to Ackermann [17]. Whether reachability is decidable for BrVASS
is one of the most intriguing open problems in formal verification, highlighted for example in
the survey of Bojańczyk [3].

To understand better the source of hardness, the reachability problem was studied when
the dimension of the vectors is fixed to a constant. Then it matters how the vectors of
the models are encoded and one must consider two cases: unary and binary encodings.
Particularly, when the dimension is 1 it is known that 1-VASS with vectors encoded in
unary is NL-complete [20], while for the binary encoding it becomes NP-complete [14]. For
1-BrVASS the complexities are also known, namely for the unary encoding the reachability
is PTIME-complete [13], while for the binary encoding the problem is PSPACE-complete [11].
We present these results in Table 1. For these models the complexities are easy to remember
as in both cases the complexity of the branching variant adds alternation to the complexity,
as expected. However, branching is not alternation and this intuition is possibly misleading.
Already in dimension 2 reachability for 2-VASS is known to be NL-complete [9] and PSPACE-
complete [2] for unary and binary encodings, respectively; while for 2-BrVASS it is not even
known whether reachability is decidable.

In this paper we are interested in the variants of VASS and BrVASS with vectors encoded
in binary, where all values in all configurations are upper bounded by some natural number,
given on input. We shall denote these classes BoVASS and BoBrVASS, respectively. The
model BoVASS was popularised due to its connections with timed automata [15], where it
was shown that reachability for timed automata is interreducible in logarithmic space with
reachability for BoVASS. At the time it was known that for timed automata this problem
is PSPACE-complete [1], even when there are only 3 clocks available [7], and NL-complete
for the case with 1 clock; leaving open the complexity for timed automata with 2 clocks.
The problem for two clocks was proved later to be PSPACE-complete [10], where the main
technical contribution was proving that reachability for 1-BoVASS is PSPACE-complete.
Then the final result for timed automata with two clocks followed from the reductions
presented in [15]2. Regarding the branching extension a more powerful version of the model
1-BoBrVASS was studied in [6], where connections between BrVASS and pushdown timed
automata were explored.

The reachability for 1-BoVASS has become one of the standard problems used in
reductions proving PSPACE-hardness of various decision problems. Apart from the already
mentioned application to prove PSPACE-hardness of reachability for two clock automata,
1-BoVASS was used e.g., to prove: PSPACE-completeness of reachability for two dimensional
VASS [2]; and PSPACE-completeness of regular separability of one counter automata [8].

2 Both papers [15, 10] write bounded counter automata instead of BoVASS. We write BoVASS to have
a uniform terminology for all models in this paper.

F. Mazowiecki and Mi. Pilipczuk 28:3

Our contribution. In this paper we study the complexity of the reachability problem for
BoBrVASS. This problem can be easily proved to be in EXPTIME, but only PSPACE-
hardness is known; e.g., due to the mentioned PSPACE-hardness of 1-BoVASS. Our main
contribution is that the reachability problem for 2-BoBrVASS is EXPTIME-complete and
we leave the complexity of 1-BoBrVASS as an open problem (see Table 1). We believe that
if there exists an EXPTIME lower bound for reachability for 1-BoBrVASS, then this would
give a new, interesting starting problem for EXPTIME-hardness reductions. As an example
application, we prove that reachability for 1-BoBrVASS is reducible in polynomial time
to reachability in 2-BrVASS, which slightly improves the state of art, as currently only a
PSPACE lower bound is known for 2-BrVASS [2].

Organisation. After presenting the main definitions and problems in Section 2 and Section 3,
we prove the EXPTIME-completeness of reachability for 2-BoBrVASS in Section 4. Then
in Section 5 we give some indications that using our techniques it would be hard to lift
the EXPTIME-hardness result to 1-BoBrVASS. We conclude in Section 6 providing a
polynomial time reduction of reachability for 1-BoBrVASS to reachability for 2-BrVASS.

2 Preliminaries

VASS model. A Vector Addition System with States (VASS) in dimension d (in short
d-VASS) is V = (Q,∆), where: Q is a finite set of states and ∆ ⊆ Q× Zd ×Q is a finite set
of transitions. The size of V is |Q|+ |∆| · r, where r is the maximal representation size of
vectors in ∆ (written in binary).

A configuration is a pair (q,n), denoted q(n), where n ∈ Nd. Whenever d = 1, we identify
vectors in dimension 1 with natural numbers and in particular we denote configurations by
q(n) for n ∈ N. We will often refer to values of vector components as counter values and when
convenient we will denote them c1, . . . , cd. We write that q is the state of the configuration
and n is the vector of the configuration. We write p(n) t−→ q(m) if t = (p, z, q) ∈ ∆ and
n + z = m. More generally, a run is a sequence of configurations

q0(n0) t0−→ q1(n1) t1−→ . . .
tk−→ qk+1(nk+1), (1)

where ti = (qi, zi, qi+1) ∈ ∆ and ni + zi = ni+1 for all 0 6 i 6 k. Notice that configurations
have vectors over natural numbers and transitions have vectors over integers. We write
p(n) t0...tk−−−−→ q(m) or p(n) →∗ q(m) if there exists a run like (1) such that p(n) = q0(n0)
and q(m) = qk+1(nk+1). We write p(n) 6→∗ q(m) if no such run exists.

A bounded d-VASS (d-BoVASS) is a d-VASS equipped with a bound B such that
numbers in all configurations cannot exceed B. Formally, a BoVASS V is a tuple (Q,∆, B)
such that (Q,∆) is a VASS and B ∈ N. We will assume that B is given in binary. A
run is defined in the same way like for d-VASS but in (1) we additionally assume that
ni ∈ {0, . . . , B}d for all 0 6 i 6 k. That is, all components in all vectors are bounded by B.
Whenever speaking about bounded models of vector addition systems, we add the length of
the bit representation of B to the size of the system.

In the d-VASS model one can simulate lower bound inequality tests as follows. We
write that t = (p, n, i, q) ∈ Q × N × {1, . . . , d} × Q is an inequality test, and we allow to
write p(n) t−→ q(m) only if n = m and ci > n in both configurations. We use the notation
t = (p, q)ci>n for simplicity. In a d-VASS V such a test can be simulated with one extra
state r and two transitions: t1 = (p,−vi, r) and t2 = (r,vi, q), where vi[j] = n for i = j and
vi[j] = 0 otherwise. Then it is easy to see that p(n) t−→ q(m) iff p(n) t1t2−−→ q(m) for all pairs

CONCUR 2019

28:4 Reachability for Bounded Branching VASS

of configurations p(n) and q(m). If V is additionally a BoVASS with a bound B > n, then
we can also implement analogously defined upper bound inequality tests (p, q)ci6n. Indeed,
it suffices to add one extra state r and two transitions: t1 = (p,wi, r) and t2 = (r,−wi, q),
where wi[j] = B − n for i = j and wi[j] = 0 otherwise. Finally, equality tests (p, q)ci=n can
be encoded by a lower bound test followed by an upper bound test. Slightly abusing the
notation, we will assume that such inequality and equality tests are allowed in the transition
set of BoVASS models, as they can be simulated as above at the cost of increasing the size
of the system by a constant multiplicative factor.

I Definition 1. Fix some function f : {0, . . . ,M}d → {0, . . . , N}d for some M,N ∈ N.
We say that a d-BoVASS computes f if there exist states p, q ∈ Q such that for all
n ∈ {0, . . . ,M}d and m ∈ Nd, we have p(n) →∗ q(m) if and only if m = f(n). The
bound B of the BoVASS does not have to be equal to M or N .

Note that in the above definition, we do not specify how the BoVASS computing f
behaves starting in a configuration outside of the domain of f . However, it is easy to restrict
the system to block on such configurations, e.g. by adding tests ci 6M in the beginning.

I Example 2. Consider the copying function f : {0, . . . ,M}2 → {0, . . . ,M}2 defined by
f(n,m) = (n, n) for all 0 6 n,m 6M . We define a 2-BoVASS V = (Q,∆, B) computing f
as follows. The bound is B = M(M + 2); the set of states is Q = {p, r1, r2, q}; the transitions
are depicted in Figure 1. To prove that this is the right function it suffices to observe that:

p(n,m)→∗ r1(k, l) iff k = n and l = 0;
r1(n, 0)→∗ r2(k, l) iff k = 0 and l = (M + 2)n;
and r2(0, (M + 2)n)→∗ q(k, l) iff k = l = n.

p r1 r2 q

(0,−1)

c2 = 0

(−1, M + 2)

c1 = 0

(1,−(M + 1))

c2 6 M

Figure 1 The BoVASS computing f(n, m) = (n, n).

Note that in Example 2, the size of V is polynomial in the representation of M . A
2-BoVASS of exponential size is trivial to define. In fact, for every function f there exists a
BoVASS computing f of size exponential in the representation of the sizes of domain and
codomain: one can simply use an equality test for every element of the domain to specify
the corresponding value.

Branching VASS model. A Branching Vector Addition System with States (BrVASS) in
dimension d (in short d-BrVASS) is B = (Q,∆1,∆2, q0), where: Q is a finite set of states,
∆1 ⊆ Q×Zd×Q is the set of unary transitions, ∆2 ⊆ Q3 is the set of binary transitions, and
q0 ∈ Q is an initial state. The notions regarding configurations are the same as for VASS. A
run of a BrVASS is a tree labelled with configurations such that internal nodes have either
one or two children, and the following conditions hold.

For every internal node with one child, let p(n) be its label and let q(m) be the label of
its child. Then there exists (p, z, q) ∈ ∆1 such that n + z = m;
For every internal node with two children, let p(n) be its label and let q1(m1), q2(m2)
be the labels of its children. Then (p, q1, q2) ∈ ∆2 and n = m1 + m2.
The leaves are labelled q0(0), where 0 is the zero vector.

Notice that a BrVASS with ∆2 = ∅ is essentially a VASS with a distinguished state q0. A
partial run is a run that does not have to satisfy the last condition.

F. Mazowiecki and Mi. Pilipczuk 28:5

A bounded d-BrVASS (d-BoBrVASS) is a d-BrVASS equipped with a bound B ∈ N
that bounds all numbers in all configurations, similarly as for d-BoVASS. As in the case of
BoVASS, for every BoBrVASS we abuse the notation allowing for inequality and equality
test transitions in ∆1.

A (p(n), q(m))-context (or just context if the configurations are not relevant) of a
BrVASS is a partial run such that the root of the tree is labelled p(n) and one of the
leaves is labelled q(m); all other leaves are labelled q0(0). We write p(n)→∗ q(m) if there
exists a (p(n), q(m))-context and we write p(n) 6→∗ q(m) otherwise. Using this notation,
the definition of computing a function f : {0, . . . ,M}d → {0, . . . , N}d by a d-BoBrVASS
generalises from the definition for d-BoVASS in the expected way.

For future reference, we state and prove the following easy claim.

I Lemma 3. Given a d-BoBrVASS B with state set Q and upper bound B together with an
integer B′ > B, one can compute in polynomial time a d-BoBrVASS B′ with state set Q′ ⊇ Q
and upper bound B′ such that the following holds: for any p, q ∈ Q and n,m ∈ {0, . . . , B},
we have p(n)→∗ q(m) in B if and only if p(n)→∗ q(m) in B′.

Proof. It suffices to modify B as follows: after each transition of B, add an additional
sequence of inequality tests checking that all counter values are bounded by B. J

The reachability problem. The reachability question for all mentioned models is, given a
system within the model (say, a VASS or a BoBrVASS etc.) and two configurations p(n),
q(m), whether p(n)→∗ q(m)3.

In this paper we are interested in the reachability problem for bounded models with
vectors encoded in binary. For d-BoVASS (i.e. without branching), the problem is easily
contained in PSPACE for any d, because configurations can be described in polynomial
space and solving the reachability problem amounts to nondeterministically guessing a run.
Fearnley and Jurdziński proved in [10] that, in fact, the problem is PSPACE-complete even
for d = 1.

For the BoBrVASS model the situation is somewhat similar, however there is a gap in
our understanding. On one hand, the problem is trivially in EXPTIME for any d, because
the total number of configurations is exponential in the size of the input system. Note
here, that even though again every configuration can be described in polynomial space,
due to branching we cannot apply the same reasoning as for BoVASS to argue PSPACE
membership. For lower bounds, the result of [10] shows PSPACE-hardness. This leaves a
gap between PSPACE and EXPTIME, which is the starting point of our work.

In this paper we show that the reachability problem for d-BoBrVASS model is EXPTIME-
complete for any d > 2, leaving as an open problem the case of d = 1.

I Theorem 4. For all d > 2, the reachability problem for d-BoBrVASS is EXPTIME-
complete.

The proof of Theorem 4 is split into two parts. In Section 3 we introduce auxiliary models
that lie between 1-BoBrVASS and 2-BoBrVASS. Later in Section 4 we prove that these
models are EXPTIME-hard.

3 For BrVASS usually this question is phrased asking for the existence of a run not a context. In this
scenario it means that in the input of the problem one requires q(m) = q0(0). It is easy to see that the
two questions are equivalent in terms of complexity for all variants of BrVASS in this paper.

CONCUR 2019

28:6 Reachability for Bounded Branching VASS

3 Extensions of 1-BoBrVASS with doubling and halving

We introduce convenient extensions of the models 1-BoVASS and 1-BoBrVASS, where
we add the ability of multiplying and dividing the counter value by 2. Formally, a doubling
transition is a transition of the form t = (p, q)×2 for some states p, q that has the following
semantics: we can write p(n) t−→ q(m) if and only if m = 2n. Similarly, a halving transition is
a transition of the form t = (p, q)÷2 for some states p, q that has the following semantics: we
may write p(n) t−→ q(m) if and only if m = n/2. Note that in particular, if n is odd then the
transition cannot be applied. Models 1-BoVASS×2, 1-BoVASS÷2, and 1-BoVASS×2,÷2

extend 1-BoVASS by respectively allowing doubling transitions, halving transitions, and
both doubling and halving transitions. Models 1-BoBrVASS÷2, 1-BoBrVASS×2 and
1-BoBrVASS×2,÷2 extend 1-BoBrVASS in the same way.

It is not hard to see that doubling and halving transitions can be simulated using an
additional counter, as explained next.

I Lemma 5. For every 1-BoVASS×2,÷2 V = (Q,∆) there exists a 2-BoVASS V ′ = (Q′,∆′)
of polynomial size in V such that Q ⊆ Q′ and p(n) →∗ q(m) iff p(n, 0) →∗ q(m, 0), for
all p, q ∈ Q. Similarly, for every 1-BoBrVASS×2,÷2 there exists a 2-BoBrVASS that is
analogous as above.

Proof. Every doubling transition (p, q)×2 can be simulated using the extra counter, two
additional states r1, r2 6∈ Q and five transitions: t1 = (p, (0, 0), r1), t2 = (r1, (−1, 2), r1),
t3 = (r1, r2)c1=0, t4 = (r2, (1,−1), r2), t5 = (r2, q)c2=0. Similarly, every halving transition
(p, q)×2 can be simulated using the extra counter, two additional states s1, s2 6∈ Q and five
transitions: t1 = (p, (0, 0), s1), t2 = (s1, (−2, 1), s1), t3 = (s1, s2)c1=0, t4 = (s2, (1,−1), s2),
t5 = (s2, q)c2=0. J

Therefore, 1-BoBrVASS×2,÷2 is a model in between 1-BoBrVASS and 2-BoBrVASS.
This model was inspired by the more powerful one register machine (MP1RM) [19], used to
prove the limitations of expressiveness for two-counter machines4. It is a one counter machine
(without bounds) extended with two operations: multiplying by constants and dividing by
constants. A more general model with polynomial updates was also studied in [12].

By Lemma 5, the reachability problem for d-BoBrVASS for any d > 2 is at least as hard
as the reachability problem for 1-BoBrVASS×2,÷2. In the next section we will prove that
the latter problem is already EXPTIME-hard, which will conclude the proof of Theorem 4.
Before this, we show a side result which essentially says that doubling can be implemented
using halving and vice versa.

I Proposition 6. The reachability problems for models 1-BoVASS×2,÷2, 1-BoVASS×2

and 1-BoVASS÷2 are equivalent with respect to polynomial time reductions. Similarly, the
reachability problems for models 1-BoBrVASS×2,÷2, 1-BoBrVASS×2 and 1-BoBrVASS÷2

are equivalent with respect to polynomial time reductions.

Proof. We will give polynomial-time reductions from model 1-BoVASS×2,÷2 to models
1-BoVASS×2 and 1-BoVASS÷2. The converse reductions are trivial, and the result for
models with branching (1-BoBrVASS×2,÷2, 1-BoBrVASS×2 and 1-BoBrVASS÷2) follows
by applying the same construction.

4 The amazing name and abbreviation of the model come from [19].

F. Mazowiecki and Mi. Pilipczuk 28:7

We start with the reduction from 1-BoVASS×2,÷2 to 1-BoVASS×2. Consider a 1-
BoVASS×2,÷2 B, say with an upper bound B. By applying Lemma 3, we may assume that
B + 1 is a power of 2, say B = 2n − 1 for some positive integer n.

The idea is to simulate every halving transition (u, v)÷2 in B with a sequence of O(n)
transitions (standard or doubling); since n is polynomial in the size of B, this is fine for a
polynomial-time reduction. We explain this sequence in words; translating this description
into a formal definition of a system and adding appropriate states and transitions to B is
straightforward. Apply n− 1 times the following operation (depicted on Figure 2): if the
counter value is smaller than 2n−1 then just double the counter; and otherwise subtract 2n−1

from the counter, double it and then add 1. Finally, at the end test whether the counter
value is smaller than 2n−1.

p

q1

r

q2

p′

−2n−1

c1 < 2 n−1

×2
+1

×2

Figure 2 Shifting the bits cyclically to the left.

To see that these operations correctly implement halving the counter value, consider its
bit encoding. Each single operation described above amounts to cyclically shifting the bit
encoding to the left by 1: every bit is moved to a position one higher, apart from the bit
from the highest (nth) position which is moved to the lowest position. Thus, after n − 1
applications the initial bit encoding is cyclically shifted by n−1 to the left, which is equivalent
to shifting it by 1 to the right. So now it suffices to verify that the highest bit (which was
the lowest in the encoding of the initial counter value) is 0, and if this is the case, then the
final counter value is equal to half of the initial counter value.

p

q1

r

q2

p′

−1

+0

÷2
+2 n−1

÷2

Figure 3 Shifting the bits cyclically to the right.

The reduction from 1-BoVASS×2,÷2 to 1-BoVASS÷2 follows by the same reasoning,
but reversed. That is, we have to implement every doubling transition (u, v)×2 in B using a
sequence of O(n) transitions (standard or halving). First, we verify that the counter value is
smaller than 2n−1, for otherwise the doubling transition cannot be applied. If this is the case,
we cyclically shift the binary encoding of the counter value by 1 to the right n− 1 times. As
Figure 3 shows, each such shift is performed by first nondeterministically guessing whether
the counter value is odd, subtracting 1 if this is the case, halving, and adding 2n−1 to the
counter value if the counter value was odd. J

CONCUR 2019

28:8 Reachability for Bounded Branching VASS

4 Exptime-hardness

This section is devoted to prove EXPTIME-completness of 1-BoBrVASS×2,÷2. Note that
Theorem 7 below together with Lemma 5 immediately give Theorem 4.

I Theorem 7. The reachability problem for 1-BoBrVASS×2,÷2 is EXPTIME-complete.

We start by proving two lemmas that will be helpful in the reduction. Afterwards we
define countdown games, an EXPTIME-complete problem from which we reduce. In the
next two claims we write M for some power of 2, i.e. M = 2n for some n ∈ N.

I Lemma 8. Let f : {0, 1, . . . ,M − 1} → {0, 1, . . . ,M − 1 + M(M − 1)} be defined as
f(x) = x + Mx. Then f is computable by a 1-BoVASS×2,÷2 of size polynomial in the
representation of M , with an upper bound B = M +M(M − 1) +M2(M − 1) +M3(M − 1).

Proof. The set of states is Q = {p, r, q0, q1, . . . , qn}. The transitions are depicted in Figure 4.

p r q0 . . . qn

M + M2 + M3

0

−1−M3

c1 6 M3 + M2 ÷2 ÷2

Figure 4 The 1-BoVASS×2,÷2 computing f(x) = x + Mx.

We now prove that the system defined above indeed computes f . Consider any x ∈
{0, 1, . . . ,M−1}. Observe that p(x)→∗ r(y) if and only if y = x+Ma+M2a+M3a−(M3+1)b
for some 0 6 b 6 a 6 M − 1 (a is the number of loops taken in p and b is the number
of loops taken in r). Then observe that r(x + Ma + M2a + M3a) →∗ q0(y) if and only if
y = x− a+Ma+M2a. Finally, note that it is possible to go from q0 to qn only if the initial
counter value is divisible by M . Since |x− a| < M , this is possible only if x = a. Then we
get q0(Mx + M2x) →∗ qn(y) if and only if y = x + Mx, so in total p(x) →∗ qn(y) if and
only if y = x+Mx, as required. J

We now combine the system provided by Lemma 8 with the branching feature of the
BoBrVASS model to implement the key functionality: copying the counter value into two
separate branches.

I Lemma 9. There is a 1-BoBrVASS×2,÷2 of size polynomial in the representation of M ,
with an upper bound as in Lemma 8, and distinguished states p, q1, q2, with the following
property. For every x ∈ {0, 1, . . . ,M −1} there is a unique partial run ρx of the system whose
root is labelled with configuration p(x) and whose all leaves have states q1 or q2. Moreover,
ρx has exactly two leaves: one with configuration q1(x) and second with configuration q2(x).

Proof. We start the construction with the 1-BoVASS×2,÷2 provided by Lemma 8, hence
we can assume that there is a state p′ such that for all x ∈ {0, 1, . . . ,M − 1}, p(x)→∗ p′(y)
if and only if y = x+Mx. Next, add states {r, q1, s0, . . . , sn−1, q2} to the system together
with the following transitions:

branching transition (p′, r, s0);
inequality test (r, q1)c16M−1; and
halving transitions (si, si+1)÷2 for all i ∈ {0, 1, . . . , n− 1}, where sn = q2.

We now argue that this system has the required property. Observe that starting from
configuration p(x), the system first has to move to configuration p′(x + Mx), where it
branches into configurations r(y) and s0(z) with y + z = x + Mx. In one branch we test

F. Mazowiecki and Mi. Pilipczuk 28:9

that y 6M − 1 and end in configuration q1(y). In the other branch we divide z by 2 exactly
n times, which amounts to testing that z is divisible by M and finishing in configuration
q2(z/M). Since y 6M − 1, z is divisible by M , and x ∈ {0, 1, . . . ,M − 1}, we conclude that
the split (y, z) of x+Mx has to be equal to (x,Mx). Hence, the only two leaves are labelled
with configurations q1(x) and q2(x), respectively. J

We will now show a reduction from a classic EXPTIME-complete problem – determining
a winner of a countdown game – to reachability in 1-BoBrVASS×2,÷2. A countdown game
is a pair (S, T) such that S is a set of nodes partitioned into two subsets S = S∃] S∀, and
T ⊆ S × (N \ {0}) × S are weighted transitions, with weights encoded in binary. We can
assume that for every node s there exists exactly two outgoing transitions (s, n, s′) for some
integer n and node s′. A configuration of a game is s(c), where s ∈ S and c ∈ N.

The game has two players, each owning her set of nodes (Player q owns Sq, for q ∈ {∃,∀}).
The game proceeds as follows: for every configuration s(c) the owner of the node s chooses
one of the two transitions (s, n, s′) such that n 6 c and moves to the configuration s′(c− n).
If it is not possible to choose such a transition, then the game ends and Player ∀ wins the
game. Otherwise, if at some point a configuration with value 0 is reached, then the game
ends and Player ∃ wins the game.

Given a countdown game (S, T) and a starting configuration s(c) the problem whether
Player ∃ has a winning strategy is known to be EXPTIME-complete [16]5. Without loss of
generality we can assume that c = 2n − 1 for some integer n.

Proof of Theorem 7. We give a reduction from the problem of determining the winner
of a countdown game. Let then (S, T) be the given countdown game and s(c) be its
starting configuration, where c = 2n − 1 for some integer n. We are going to construct, in
polynomial time, a 1-BoBrVASS×2,÷2 B together with a root configuration such that B
has an accepting run from the root configuration (i.e. one where all leaves are labelled with
the initial configuration q0(0)) if and only if Player ∃ wins the game.

We start by including all nodes of S in the state set of B. For every node r ∈ S∃, let
(r, n1, r

′
1) and (r, n2, r

′
2) be the two transitions in T that have r as the origin. Then add

transitions (r,−n1, r
′
1) and (r,−n2, r

′
2) to the transition set of B.

Next, for every node r ∈ S∀, let (r, n1, r
′
1) and (r, n2, r

′
2) be the two transitions in T that

have r as the origin. Then add a copy of the system provided by Lemma 9 for M = c+ 1,
and identify its distinguished state p with r. Denoting the other two distinguished states of
the copy by qr

1 and qr
2, add transitions (qr

1,−n1, r
′
1) and (qr

2,−n2, r
′
2) to B.

Finally, we add an initial state q0 together with a transition (r, 0, q0) for each r ∈ S.
Thus, B may accept whenever it reaches any state r ∈ S with counter value 0. This finishes
the construction of B. We set the root configuration to be s(c).

To see that the reduction is correct it suffices to observe that accepting runs of B with
root configuration s(c) are in one-to-one correspondence with winning strategies of Player ∃
in the game (S, T) starting from s(c). Indeed, in nodes belonging to Player ∃, she may choose
any of the two transitions originating there, which corresponds to the possibility of taking
any of the two transitions in an accepting run of B. In nodes belonging to Player ∀, Player ∃
has to be able to win for both possible moves of Player ∀, which corresponds to requiring
acceptance in both subtrees obtained as a result of running the respective copy of the system
provided by Lemma 9. J

5 The game considered in [16] is slightly different but it is easy to show that both definitions are equivalent.

CONCUR 2019

28:10 Reachability for Bounded Branching VASS

5 Limitations of 1-BoBrVASS

The natural approach to show EXPTIME hardness for 1-BoBrVASS is to ask whether they
can efficiently compute the function f : {0, . . . ,M} → {0, . . . , 2M} defined by f(x) = 2x.
Then 1-BoBrVASS could simulate 1-BoBrVASS×2 and EXPTIME-hardness would follow
from Theorem 7 and Proposition 6. Unfortunately, we show that this is not the case. In the
following proposition, we assume the original definition of 1-BoBrVASS, without inequality
or equality tests as single transitions.

I Proposition 10. Consider the function f : {0, . . . ,M} → {0, . . . , 2M} defined as f(x) = 2x,
for some M ∈ N. Then every 1-BoBrVASS computing the function f has at least M states.

Proof. Suppose B is a 1-BoBrVASS that computes f : there are p, q ∈ Q such that for all
x ∈ {0, . . . ,M}, p(x)→∗ q(y) if and only if y = 2x. Here, Q denotes the set of states of B.

For every x ∈ {0, . . . ,M}, fix any run ρx that witnesses p(x)→∗ q(2x). The spine of ρx

is the path from the root (labelled p(x)) to the leaf labelled q(2x) (in the special case when
q(2x) = q0(0) this path might be not unique and the spine is defined as any path).

B Claim 11. For every x ∈ {1, . . . ,M}, the spine of ρx contains at least one configuration
with counter value 0.

Proof. Suppose every configuration on the spine of ρx has a positive counter value. Consider
run ρ′ obtained from ρx by decrementing all the counter value in each configuration on the
spine by 1. Then ρ′ witnesses that p(x− 1)→∗ q(2x− 1), contradicting the assumption that
B computes f . C

B Claim 12. For all different x, x′ ∈ {0, . . . ,M}, the sets of configurations on the spines of
ρx and ρx′ are disjoint.

Proof. Suppose some configuration r(z) appears both on the spine of ρx and of ρx′ . Then
replacing the context rooted at r(z) in ρx with the context rooted at r(z) in ρx′ yields a
run witnessing that p(x) →∗ q(2x′). As x 6= x′, this contradicts the assumption that B
computes f . C

The proposition now follows immediately from the two claims above: For every x ∈
{1, . . . ,M} the spine of ρx has to contain some configuration with counter value 0, and these
configuration have to be pairwise distinct for different x. This implies that B has to have at
least M states, as claimed. J

6 Conclusion

We have proved EXPTIME-completeness of reachability for 2-BoBrVASS leaving the
complexity for 1-BoBrVASS between PSPACE and EXPTIME. Our EXPTIME-hardness
proof for 2-BoBrVASS heavily relied on the ability of manipulating a counter by multiplying
and dividing it by 2. As shown by Proposition 10, one counter alone is not enough to
implement this functionality in the BoBrVASS model.

At this moment we do not have any clear indication on whether reachability for 1-
BoBrVASS is EXPTIME-hard, or it rather leans towards PSPACE. On one hand, EXPTIME-
hardness would give us a natural problem to reduce from for other infinite-state systems with
branching, similarly to the role served by reachability for 1-BoVASS. On the other hand,

F. Mazowiecki and Mi. Pilipczuk 28:11

PSPACE-membership would be even more interesting, as intuitively it would show that in
the 1-BoBrVASS model the branching transitions are too weak to emulate alternation,
contrary to the situation in multiple other models of similar kind.

To motivate the study of this problem even further, we highlight the connections between
1-BoBrVASS and 2-BrVASS. It is known that reachability for 2-VASS is PSPACE-hard,
however the only proof of hardness we are aware of uses the reduction from 1-BoVASS. We
show that similarly one can reduce 1-BoBrVASS to 2-BrVASS.

I Proposition 13. The reachability problem for 1-BoBrVASS is reducible to the reachability
problem for 2-BrVASS in polynomial time.

Proof. Consider a 1-BoBrVASS B, say with state set Q and upper bound B ∈ N. The idea
is to construct a 2-BrVASS V where every configuration p(x) of B will be simulated by a
configuration of the form p(x, 2B − x) of V.

We start by including Q in the state set of V.
Next, we model every unary transition t = (u, k, v) of B using two unary transitions

in V: (u, (k,−B − k), rt) followed by (rt, (0, B), v), where rt is a new state added for the
transition t. Note that this sequence of two transitions can be fired in configuration of the
form u(x, 2B − x) if and only if x+ k ∈ {0, . . . , B}, and then the resulting configuration is
v(x+ k, 2B − (x+ k)).

Every branching transition t = (u, v1, v2) of B is modelled in V as follows. We add
to V two new states st,1 and st,2, a branching transition (u, st,1, st,2), and unary transitions
(st,1, (0, B), v1) and (st,2, (0, B), v2). Observe that thus, after firing transition (u, st,1, st,2) in
configuration of the form u(x, 2B − x) we obtain two configurations of the form st,1(x1, y

′
1)

and st,2(x2, y
′
2) satisfying x1 + x2 = x and y′1 + y′2 = 2B − x, in which we have to apply

the transitions that add B to the second counter, obtaining configurations v1(x1, y1) and
v2(x2, y2) satisfying x1 + x2 = x and y1 + y2 = 4B − x. Hence, provided the initial split
of the second counter was (y′1, y′2) = (B − x1, B − x2), we indeed obtain configurations
v1(x1, 2B − x1) and v2(x2, 2B − x2), as was our initial intention. We will later argue that in
runs in which we are interested, in all branching transitions the second counter has to be
split as above.

Finally, if q0 is the initial state of B, we add a new initial state q′0 to V together with a
transition (q0, (0,−2B), q′0). Thus, the only way to arrive at configuration q′0(0, 0) is to apply
this transition in configuration q0(0, 2B).

Now consider any pair of configurations p(n), q(m) of B, where n,m ∈ {0, . . . , B}. We
claim that p(n)→∗ q(m) in B if and only if p(n, 2B − n)→∗ q(m, 2B −m) in V.

For the forward direction, consider a partial run π of B witnessing p(n) →∗ q(m) and
modify it to a run ρ of V as follows. First, replace every configuration of the form u(x) in π with
configuration u(x, 2B−x). Next, replace the transitions of B in π with sequences of transitions
of V in the expected way, as described above. In particular, whenever in π a branching
transition (u, v1, v2) is applied to configuration u(x) and results in configurations v1(x1) and
v2(x2), in ρ we model this by applying a branching transition to u(x, 2B − x) and obtaining
st,1(x1, B−x1) and st,2(x2, B−x2), which are subsequently modified to v1(x1, 2B−x1) and
v2(x2, 2B − x2). Then ρ witnesses that p(n, 2B − n)→∗ q(m, 2B −m) in V.

For the backward direction, consider a partial run ρ of V witnessing p(n, 2B − n) →∗
q(m, 2B −m). A node of ρ will be called principal if the state of its configuration belongs to
the original state set Q; other nodes will be called auxiliary. Note that in ρ, every second
level consists entirely of principal nodes, and every other level consists entirely of auxiliary
nodes. More specifically, every principal node a, say labelled with a configuration u(x, y), is
of one of the following four kinds:

CONCUR 2019

28:12 Reachability for Bounded Branching VASS

a has one child and one grandchild, labelled respectively with configurations rt(x+ k, y−
k −B) and v(x+ k, y − k) for some unary transition (u, k, v) of B;
a has two children, each having one child of its own, and these are respectively labelled with
configurations st,1(x1, y

′
1), st,2(x2, y

′
2), v1(x1, y

′
1 +B), v2(x2, y

′
2 +B) for some branching

transition (u, v1, v2) of B;
a has one leaf child labelled with q′0(0, 0), so in particular the configuration at a is
q(x, z) = q0(0, 2B); or
a is the unique leaf labelled with q(m, 2B −m).

These types of principal nodes will be called unary, branching, leaf , and final, respectively.
We first prove by a bottom-up induction over ρ that in all principal nodes, the sum of

counter values is equal to 2B. This trivially holds for all principal nodes that are leaf or final.
Next, whenever a is a unary principal node with configuration u(x, y), then by the induction
assumption for its grandchild we infer that (x+k)+(y−k) = 2B for some integer k, implying
x+ y = 2B as required. The case of branching principal nodes is analogous.

We now prove by a top-down induction over ρ that in all principal nodes, the value of
the first counter is upper bounded by B. This is certainly true in the root, since we assumed
that n 6 B. Suppose a is a unary principal node with configuration u(x, 2B − x) for which
we already know that x 6 B, and its child and grandchild are respectively labelled with
rt(x+ k,B − x− k) and v(x+ k, 2B − x− k) for some unary transition (u, k, v) of B. Then
the existence of the child’s configuration implies that B−x−k > 0, implying that x+k 6 B,
as required. Finally, observe that if a is a branching principal node, then the sum of the first
counter values in its grandchildren is equal to the first counter value in a, hence an upper
bound of B on the latter entails an upper bound of B on the former.

All in all, we argued that all principal nodes in ρ have configurations of the form
u(x, 2B − x), where u ∈ Q and x ∈ {0, . . . B}. It now remains to observe that taking all
principal nodes with tree order induced from ρ and forgetting the second counter value yields
a run of B witnessing that p(n)→∗ q(m) in B. J

References
1 Rajeev Alur and David L. Dill. A Theory of Timed Automata. Theor. Comput. Sci., 126(2):183–

235, 1994. doi:10.1016/0304-3975(94)90010-8.
2 Michael Blondin, Alain Finkel, Stefan Göller, Christoph Haase, and Pierre McKenzie. Reach-

ability in Two-Dimensional Vector Addition Systems with States Is PSPACE-Complete. In
30th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2015, Kyoto, Japan,
July 6-10, 2015, pages 32–43, 2015. doi:10.1109/LICS.2015.14.

3 Mikolaj Bojańczyk. Automata column. SIGLOG News, 1(2):3–12, 2014. URL: https:
//dl.acm.org/citation.cfm?id=2677163.

4 Mikolaj Bojańczyk, Anca Muscholl, Thomas Schwentick, and Luc Segoufin. Two-variable logic
on data trees and XML reasoning. J. ACM, 56(3):13:1–13:48, 2009. doi:10.1145/1516512.
1516515.

5 Ahmed Bouajjani and Michael Emmi. Analysis of Recursively Parallel Programs. ACM Trans.
Program. Lang. Syst., 35(3):10:1–10:49, 2013. doi:10.1145/2518188.

6 Lorenzo Clemente, Sławomir Lasota, Ranko Lazi’̧, and Filip Mazowiecki. Timed pushdown
automata and branching vector addition systems. In 32nd Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS 2017, Reykjavik, Iceland, June 20-23, 2017, pages 1–12,
2017. doi:10.1109/LICS.2017.8005083.

7 Costas Courcoubetis and Mihalis Yannakakis. Minimum and Maximum Delay Problems in
Real-Time Systems. Formal Methods in System Design, 1(4):385–415, 1992. doi:10.1007/
BF00709157.

https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1109/LICS.2015.14
https://dl.acm.org/citation.cfm?id=2677163
https://dl.acm.org/citation.cfm?id=2677163
https://doi.org/10.1145/1516512.1516515
https://doi.org/10.1145/1516512.1516515
https://doi.org/10.1145/2518188
https://doi.org/10.1109/LICS.2017.8005083
https://doi.org/10.1007/BF00709157
https://doi.org/10.1007/BF00709157

F. Mazowiecki and Mi. Pilipczuk 28:13

8 Wojciech Czerwinski and Slawomir Lasota. Regular separability of one counter automata. In
32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik,
Iceland, June 20-23, 2017, pages 1–12, 2017. doi:10.1109/LICS.2017.8005079.

9 Matthias Englert, Ranko Lazic, and Patrick Totzke. Reachability in Two-Dimensional Unary
Vector Addition Systems with States is NL-Complete. In Proceedings of the 31st Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS ’16, New York, NY, USA, July
5-8, 2016, pages 477–484, 2016. doi:10.1145/2933575.2933577.

10 John Fearnley and Marcin Jurdzinski. Reachability in two-clock timed automata is PSPACE-
complete. Inf. Comput., 243:26–36, 2015. doi:10.1016/j.ic.2014.12.004.

11 Diego Figueira, Ranko Lazic, Jérôme Leroux, Filip Mazowiecki, and Grégoire Sutre. Polynomial-
Space Completeness of Reachability for Succinct Branching VASS in Dimension One. In 44th
International Colloquium on Automata, Languages, and Programming, ICALP 2017, July 10-
14, 2017, Warsaw, Poland, pages 119:1–119:14, 2017. doi:10.4230/LIPIcs.ICALP.2017.119.

12 Alain Finkel, Stefan Göller, and Christoph Haase. Reachability in Register Machines with
Polynomial Updates. In Mathematical Foundations of Computer Science 2013 - 38th Interna-
tional Symposium, MFCS 2013, Klosterneuburg, Austria, August 26-30, 2013. Proceedings,
pages 409–420, 2013. doi:10.1007/978-3-642-40313-2_37.

13 Stefan Göller, Christoph Haase, Ranko Lazic, and Patrick Totzke. A Polynomial-Time
Algorithm for Reachability in Branching VASS in Dimension One. In 43rd International
Colloquium on Automata, Languages, and Programming, ICALP 2016, July 11-15, 2016,
Rome, Italy, pages 105:1–105:13, 2016. doi:10.4230/LIPIcs.ICALP.2016.105.

14 Christoph Haase, Stephan Kreutzer, Joël Ouaknine, and James Worrell. Reachability in Suc-
cinct and Parametric One-Counter Automata. In CONCUR 2009 - Concurrency Theory, 20th
International Conference, CONCUR 2009, Bologna, Italy, September 1-4, 2009. Proceedings,
pages 369–383, 2009. doi:10.1007/978-3-642-04081-8_25.

15 Christoph Haase, Joël Ouaknine, and James Worrell. On the Relationship between Reachability
Problems in Timed and Counter Automata. In Reachability Problems - 6th International
Workshop, RP 2012, Bordeaux, France, September 17-19, 2012. Proceedings, pages 54–65, 2012.
doi:10.1007/978-3-642-33512-9_6.

16 Marcin Jurdziński, Jeremy Sproston, and François Laroussinie. Model Checking Probabilistic
Timed Automata with One or Two Clocks. Logical Methods in Computer Science, 4(3), 2008.
doi:10.2168/LMCS-4(3:12)2008.

17 Jérôme Leroux and Sylvain Schmitz. Reachability in Vector Addition Systems is Primitive-
Recursive in Fixed Dimension. In LICS, 2019. arXiv:1903.08575.

18 Ernst W. Mayr. An Algorithm for the General Petri Net Reachability Problem. SIAM J.
Comput., 13(3):441–460, 1984. doi:10.1137/0213029.

19 Rich Schroeppel. A two counter machine cannot calculate 2N . Artificial Intelligence Memo
No. 257, 1972.

20 Leslie G. Valiant and Mike Paterson. Deterministic One-Counter Automata. J. Comput. Syst.
Sci., 10(3):340–350, 1975. doi:10.1016/S0022-0000(75)80005-5.

CONCUR 2019

https://doi.org/10.1109/LICS.2017.8005079
https://doi.org/10.1145/2933575.2933577
https://doi.org/10.1016/j.ic.2014.12.004
https://doi.org/10.4230/LIPIcs.ICALP.2017.119
https://doi.org/10.1007/978-3-642-40313-2_37
https://doi.org/10.4230/LIPIcs.ICALP.2016.105
https://doi.org/10.1007/978-3-642-04081-8_25
https://doi.org/10.1007/978-3-642-33512-9_6
https://doi.org/10.2168/LMCS-4(3:12)2008
http://arxiv.org/abs/1903.08575
https://doi.org/10.1137/0213029
https://doi.org/10.1016/S0022-0000(75)80005-5

Reasoning About Distributed Knowledge of
Groups with Infinitely Many Agents
Michell Guzmán
University of Milano-Bicocca, Italy
michell.guzman@unimib.it

Sophia Knight
University of Minnesota Duluth, MN, USA
sophia.knight@gmail.com

Santiago Quintero
LIX École Polytechnique de Paris, France
squinter@lix.polytechnique.fr

Sergio Ramírez
Pontificia Universidad Javeriana de Cali, Colombia
sergio@javerianacali.edu.co

Camilo Rueda
Pontificia Universidad Javeriana de Cali, Colombia
crueda@javerianacali.edu.co

Frank Valencia
CNRS, LIX École Polytechnique de Paris, France
Pontificia Universidad Javeriana de Cali, Colombia
frank.valencia@lix.polytechnique.fr

Abstract
Spatial constraint systems (scs) are semantic structures for reasoning about spatial and epistemic
information in concurrent systems. We develop the theory of scs to reason about the distributed
information of potentially infinite groups. We characterize the notion of distributed information of a
group of agents as the infimum of the set of join-preserving functions that represent the spaces of
the agents in the group. We provide an alternative characterization of this notion as the greatest
family of join-preserving functions that satisfy certain basic properties. We show compositionality
results for these characterizations and conditions under which information that can be obtained
by an infinite group can also be obtained by a finite group. Finally, we provide algorithms that
compute the distributive group information of finite groups.

2012 ACM Subject Classification Theory of computation → Concurrency; Theory of computation
→ Distributed computing models; Theory of computation → Semantics and reasoning

Keywords and phrases Reasoning about Groups, Distributed Knowledge, Infinitely Many Agents,
Reasoning about Space, Algebraic Modeling

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2019.29

Related Version Full version of this paper at https://hal.archives-ouvertes.fr/hal-02172415.

Funding This work have been partially supported by the ECOS-NORD project FACTS (C19M03)
and the Colciencias project CLASSIC (125171250031).

1 Introduction

In current distributed systems such as social networks, actors behave more as members of a
certain group than as isolated individuals. Information, opinions, and beliefs of a particular
actor are frequently the result of an evolving process of interchanges with other actors in a

© Michell Guzmán, Sophia Knight, Santiago Quintero, Sergio Ramírez, Camilo Rueda, and Frank
Valencia;
licensed under Creative Commons License CC-BY

30th International Conference on Concurrency Theory (CONCUR 2019).
Editors: Wan Fokkink and Rob van Glabbeek; Article No. 29; pp. 29:1–29:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:michell.guzman@unimib.it
mailto:sophia.knight@gmail.com
mailto:squinter@lix.polytechnique.fr
mailto:sergio@javerianacali.edu.co
mailto:crueda@javerianacali.edu.co
mailto:frank.valencia@lix.polytechnique.fr
https://doi.org/10.4230/LIPIcs.CONCUR.2019.29
https://hal.archives-ouvertes.fr/hal-02172415
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

29:2 Reasoning About Distributed Knowledge with Infinitely Many Agents

group. This suggests a reified notion of group as a single actor operating within the context
of the collective information of its members. It also conveys two notions of information, one
spatial and the other epistemic. In the former, information is localized in compartments
associated with a user or group. In the latter, it refers to something known or believed by a
single agent or collectively by a group.

In this paper we pursue the development of a principled account of a reified notion of
group by taking inspiration from the epistemic notion of distributed knowledge [12]. A group
has its information distributed among its member agents. We thus develop a theory about
what exactly is the information available to agents as a group when considering all that is
distributed among its members.

In our account a group acts itself as an agent carrying the collective information of its
members. We can interrogate, for instance, whether there is a potential contradiction or
unwanted distributed information that a group might be involved in among its members
or by integrating a certain agent. This is a fundamental question since it may predict or
prevent potentially dangerous evolutions of the system.

Furthermore, in many real life multi-agent systems, the agents are unknown in advance.
New agents can subscribe to the system in unpredictable ways. Thus, there is usually no
a-priori bound on the number of agents in the system. It is then often convenient to model
the group of agents as an infinite set. In fact, in models from economics and epistemic
logic [14, 13], groups of agents have been represented as infinite, even uncountable, sets. In
accordance with this fact, in this paper we consider that groups of agents can also be infinite.
This raises interesting issues about the distributed information of such groups. In particular,
that of group compactness: information that when obtained by an infinite group can also be
obtained by one of its finite subgroups. We will provide conditions for this to hold.

Context. Constraint systems (cs)1 are algebraic structures for the semantics of process
calculi from concurrent constraint programming (ccp) [18]. In this paper we shall study cs
as semantic structures for distributed information of a group of agents.

A cs can be formalized as a complete lattice (Con,v). The elements of Con represent
partial information and we shall think of them as being assertions. They are traditionally
referred to as constraints since they naturally express partial information (e.g., x > 42). The
order v corresponds to entailment between constraints, c v d, often written d w c, means c
can be derived from d, or that d represents as much information as c. The join t, the bottom
true, and the top false of the lattice correspond to conjunction, the empty information, and
the join of all (possibly inconsistent) information, respectively.

The notion of computational space and the epistemic notion of belief in the spatial ccp
(sccp) process calculi [15] is represented as a family of join-preserving maps si : Con → Con
called space functions. A cs equipped with space functions is called a spatial constraint
system (scs). From a computational point of view si(c) can be interpreted as an assertion
specifying that c resides within the space of agent i. From an epistemic point of view, si(c)
specifies that i considers c to be true. An alternative epistemic view is that i interprets c as
si(c). All these interpretations convey the idea of c being local or subjective to agent i.

This work. In the spatial ccp process calculus sccp [15], scs are used to specify the spatial
distribution of information in configurations 〈P, c〉 where P is a process and c is a constraint,
called the store, representing the current partial information. E.g., a reduction 〈 P, s1(a) t
s2(b) 〉 −→ 〈 Q, s1(a) t s2(b t c) 〉 means that P , with a in the space of agent 1 and b in the
space of agent 2, can evolve to Q while adding c to the space of agent 2.

1 For simplicity we use cs for both constraint system and its plural form.

M. Guzmán, S. Knight, S. Quintero, S. Ramírez, C. Rueda, and F. Valencia 29:3

Given the above reduction, assume that d is some piece of information resulting from the
combination (join) of the three constraints above, i.e., d = atbtc, but strictly above the join
of any two of them. We are then in the situation where neither agent has d in their spaces,
but as a group they could potentially have d by combining their information. Intuitively, d is
distributed in the spaces of the group I = {1, 2}. Being able to predict the information that
agents 1 and 2 may derive as group is a relevant issue in multi-agent concurrent systems,
particularly if d represents unwanted or conflicting information (e.g., d = false).

In this work we introduce the theory of group space functions ∆I : Con → Con to reason
about information distributed among the members of a potentially infinite group I. We shall
refer to ∆I as the distributed space of group I. In our theory c w ∆I(e) holds exactly when
we can derive from c that e is distributed among the agents in I. E.g., for d above, we should
have s1(a) t s2(b t c) w ∆{1,2}(d) meaning that from the information s1(a) t s2(b t c) we
can derive that d is distributed among the group I = {1, 2}. Furthermore, ∆I(e) w ∆J(e)
holds whenever I ⊆ J since if e is distributed among a group I, it should also be distributed
in a group that includes the agents of I.

Distributed information of infinite groups can be used to reason about multi-agent
computations with unboundedly many agents. For example, a computation in sccp is a
possibly infinite reduction sequence γ of the form 〈 P0, c0 〉 −→ 〈 P1, c1 〉 −→ · · · with
c0 v c1 v · · · . The result of γ is

⊔
n≥0 cn, the join of all the stores in the computation.

In sccp all fair computations from a configuration have the same result [15]. Thus, the
observable behaviour of P with initial store c, written O(P, c), is defined as the result of
any fair computation starting from 〈P, c〉. Now consider a setting where in addition to their
sccp capabilities in [15], processes can also create new agents. Hence, unboundedly many
agents, say agents 1, 2, . . ., may be created during an infinite computation. In this case,
O(P, c) w ∆N(false), where N is the set of natural numbers, would imply that some (finite
or infinite) set of agents in any fair computation from 〈P, c〉 may reach contradictory local
information among them. Notice that from the above-mentioned properties of distributed
spaces, the existence of a finite set of agents H ⊆ N such that O(P, c) w ∆H(false) implies
O(P, c) w ∆N(false). The converse of this implication will be called group compactness and
we will provide meaningful sufficient conditions for it to hold.

Our main contributions are listed below.
1. We characterize the distributed space ∆I as a space function resulting from the infimum

of the set of join-preserving functions that represent the spaces of the agents of a possibly
infinite group I.

2. We provide an alternative characterization of a distributed space as the greatest join
preserving function that satisfies certain basic properties.

3. We show that distributed spaces have an inherent compositional nature: The information
of a group is determined by that of its subgroups.

4. We provide a group compactness result for groups: Given an infinite group I, meaningful
conditions under which c w ∆I(e) implies c w ∆J(e) for some finite group J ⊆ I.

5. For finite scs we shall provide algorithms to compute ∆I that exploit the above-mentioned
compositional nature of distributed spaces.

All in all, in this paper we put forward an algebraic theory for group reasoning in the context
of ccp. The theory and algorithms here developed can be used in the semantics of the
spatial ccp process calculus to reason about or prevent potential unwanted evolutions of ccp
processes. One could imagine the incorporation of group reasoning in a variety of process
algebraic settings and indeed we expect that such formalisms will appear in due course.

CONCUR 2019

29:4 Reasoning About Distributed Knowledge with Infinitely Many Agents

2 Background

We presuppose basic knowledge of domain and order theory [3, 1, 6] and use the following
notions. Let C be a poset (Con,v), and let S ⊆ Con. We use

⊔
S to denote the least

upper bound (or supremum or join) of the elements in S, and
d
S is the greatest lower

bound (glb) (infimum or meet) of the elements in S. An element e ∈ S is the greatest
element of S iff for every element e′ ∈ S, e′ v e. If such e exists, we denote it by max S.
As usual, if S = {c, d}, c t d and c u d represent

⊔
S and

d
S, respectively. If S = ∅, we

denote
⊔
S = true and

d
S = false. We say that C is a complete lattice iff each subset

of Con has a supremum in Con. The poset C is distributive iff for every a, b, c ∈ Con,
a t (b u c) = (a t b) u (a t c). A non-empty set S ⊆ Con is directed iff for every pair of
elements x, y ∈ S, there exists z ∈ S such that x v z and y v z, or iff every finite subset of
S has an upper bound in S. Also c ∈ Con is compact iff for any directed subset D of Con,
c v

⊔
D implies c v d for some d ∈ D. A self-map on Con is a function f from Con to

Con. Let (Con,v) be a complete lattice. The self-map f on Con preserves the join of a set
S ⊆ Con iff f(

⊔
S) =

⊔
{f(c) | c ∈ S}. A self-map that preserves the join of finite sets is

called join-homomorphism. A self-map f on Con is monotonic if a v b implies f(a) v f(b).
We say that f distributes over joins (or that f preserves joins) iff it preserves the join of
arbitrary sets. A self-map f on Con is continuous iff it preserves the join of any directed set.

3 Spatial Constraint Systems

Constraint systems [18] are semantic structures to specify partial information. They can
be formalized as complete lattices [2].

I Definition 1 (Constraint Systems [2]). A constraint system (cs) C is a complete lattice
(Con,v). The elements of Con are called constraints. The symbols t, true and false will be
used to denote the least upper bound (lub) operation, the bottom, and the top element of C.

The elements of the lattice, the constraints, represent (partial) information. A constraint
c can be viewed as an assertion. The lattice order v is meant to capture entailment of
information: c v d, alternatively written d w c, means that the assertion d represents at
least as much information as c. We think of d w c as saying that d entails c or that c can
be derived from d. The operator t represents join of information; c t d can be seen as an
assertion stating that both c and d hold. We can think of t as representing conjunction
of assertions. The top element represents the join of all, possibly inconsistent, information,
hence it is referred to as false. The bottom element true represents empty information. We
say that c is consistent if c 6= false, otherwise we say that c is inconsistent. Similarly, we say
that c is consistent/inconsistent with d if c t d is consistent/inconsistent.

Constraint Frames. One can define a general form of implication by adapting the corre-
sponding notion from Heyting Algebras to cs. A Heyting implication c→ d in our setting
corresponds to the weakest constraint one needs to join c with to derive d.

I Definition 2 (Constraint Frames [7]). A constraint system (Con,v) is said to be a constraint
frame iff its joins distribute over arbitrary meets. More precisely, c t

d
S =

d
{c t e | e ∈ S}

for every c ∈ Con and S ⊆ Con. Define c→ d as
d
{e ∈ Con | c t e w d}.

The following properties of Heyting implication correspond to standard logical properties
(with →, t, and w interpreted as implication, conjunction, and entailment).

M. Guzmán, S. Knight, S. Quintero, S. Ramírez, C. Rueda, and F. Valencia 29:5

I Proposition 3 ([7]). Let (Con,v) be a constraint frame. For every c, d, e ∈ Con the
following holds: (1) c t (c→ d) = c t d, (2) (c→ d) v d, (3) c→ d = true iff c w d.

Spatial Constraint Systems. The authors of [15] extended the notion of cs to account for
distributed and multi-agent scenarios with a finite number of agents, each having their own
space for local information and their computations. The extended structures are called
spatial cs (scs). Here we adapt scs to reason about possibly infinite groups of agents.

A group G is a set of agents. Each i ∈ G has a space function si : Con → Con satisfying
some structural conditions. Recall that constraints can be viewed as assertions. Thus given
c ∈ Con, we can then think of the constraint si(c) as an assertion stating that c is a piece of
information residing within a space of agent i. Some alternative epistemic interpretations of
si(c) is that it is an assertion stating that agent i believes c, that c holds within the space of
agent i, or that agent i interprets c as si(c). All these interpretations convey the idea that c
is local or subjective to agent i.

In [15] scs are used to specify the spatial distribution of information in configurations
〈P, c〉 where P is a process and c is a constraint. E.g., a reduction 〈 P, si(c) t sj(d) 〉 −→
〈 Q, si(c) t sj(d t e) 〉 means that P with c in the space of agent i and d in the space of
agent j can evolve to Q while adding e to the space of agent j.

We now introduce the notion of space function.

I Definition 4 (Space Functions). A space function over a cs (Con,v) is a continuous self-
map f : Con→ Con s.t. for every c, d ∈ Con (S.1) f(true) = true, (S.2) f(ctd) = f(c)tf(d).
We shall use S(C) to denote the set of all space functions over C = (Con,v).

The assertion f(c) can be viewed as saying that c is in the space represented by f .
Property S.1 states that having an empty local space amounts to nothing. Property S.2
allows us to join and distribute the information in the space represented by f .

In [15] space functions were not required to be continuous. Nevertheless, we will argue
later, in Remark 17, that continuity comes naturally in the intended phenomena we wish
to capture: modelling information of possibly infinite groups. In fact, in [15] scs could only
have finitely many agents.

In this work we also extend scs to allow arbitrary, possibly infinite, sets of agents. A
spatial cs is a cs with a possibly infinite group of agents each having a space function.

I Definition 5 (Spatial Constraint Systems). A spatial cs (scs) is a cs C = (Con,v) equipped
with a possibly infinite tuple s = (si)i∈G of space functions from S(C).

We shall use (Con,v, (si)i∈G) to denote an scs with a tuple (si)i∈G. We refer to G and
s as the group of agents and space tuple of C and to each si as the space function in C of
agent i. Subsets of G are also referred to as groups of agents (or sub-groups of G).

Let us illustrate a simple scs that will be used throughout the paper.

I Example 6. The scs (Con,v, (si)i∈{1,2}) in Fig. 1 is given by the complete lattice M2 and
two agents. We have Con = {p ∨ ¬p, p,¬p, p ∧ ¬p} and c v d iff c is a logical consequence of
d. The top element false is p ∧ ¬p, the bottom element true is p ∨ ¬p, and the constraints p
and ¬p are incomparable with each other. The set of agents is {1, 2} with space functions s1
and s2: For agent 1, s1(p) = ¬p, s1(¬p) = p, s1(false) = false, s1(true) = true, and for agent
2, s2(p) = false = s2 (false), s2(¬p) = ¬p, s2(true) = true. The intuition is that the agent 2
sees no difference between p and false while agent 1 interprets ¬p as p and vice versa.

CONCUR 2019

29:6 Reasoning About Distributed Knowledge with Infinitely Many Agents

p ∨ ¬p

p ¬p

p ∧ ¬p

s1

s1

s1

s1 s2

s2

s2

s2

Figure 1 Cs given by lattice M2 ordered by implication and space functions s1 and s2.

More involved examples of scs include meaningful families of structures from logic and
economics such as Kripke structures and Aumann structures (see [15]). We illustrate scs
with infinite groups in the next section.

4 Distributed Information

In this section we characterize the notion of collective information of a group of agents.
Roughly speaking, the distributed (or collective) information of a group I is the join of each
piece of information that resides in the space of some i ∈ I. The distributed information of I
w.r.t. c is the distributive information of I that can be derived from c. We wish to formalize
whether a given e can be derived from the collective information of the group I w.r.t. c.

The following examples, which we will use throughout this section, illustrate the above
intuition.

I Example 7. Consider an scs (Con,v, (si)i∈G) where G = N and (Con,v) is a constraint
frame. Let c def= s1(a) t s2(a→ b) t s3(b→ e). The constraint c specifies the situation
where a, a → b and b → e are in the spaces of agent 1, 2 and 3, respectively. Neither
agent necessarily holds e in their space in c. Nevertheless, the information e can be derived
from the collective information of the three agents w.r.t. c, since from Prop. 3 we have
a t (a→ b) t (b→ e) w e. Let us now consider an example with infinitely many agents. Let
c′

def=
⊔

i∈N si(ai) for some increasing chain a0 v a1 v Take e′ s.t. e′ v
⊔

i∈N ai. Notice
that unless e′ is compact (see Section 2), it may be the case that no agent i ∈ N holds e′ in
their space; e.g., if e′ A ai for any i ∈ N. Yet, from our assumption, e′ can be derived from
the collective information w.r.t. c′ of all the agents in N, i.e.,

⊔
i∈N ai.

The above example may suggest that the distributed information can be obtained by
joining individual local information derived from c. Individual information of an agent i can
be characterized as the i-projection of c defined thus:

I Definition 8 (Agent and Join Projections). Let C = (Con,v, (si)i∈G) be an scs. Given
i ∈ G, the i-agent projection of c ∈ Con is defined as πi(c)

def=
⊔
{e | c w si(e)}. We say that

e is i-agent derivable from c iff πi(c) w e. Given I ⊆ G the I-join projection of a group
I of c is defined as πI(c) def=

⊔
{πi(c) | i ∈ I}. We say that e is I-join derivable from c iff

πI(c) w e.

The i-projection of an agent i of c naturally represents the join of all the information of
agent i in c. The I-join projection of group I joins individual i-projections of c for i ∈ I. This
projection can be used as a sound mechanism for reasoning about distributed-information: If
e is I-join derivable from c then it follows from the distributed-information of I w.r.t. c.

M. Guzmán, S. Knight, S. Quintero, S. Ramírez, C. Rueda, and F. Valencia 29:7

I Example 9. Let c be as in Ex. 7. We have π1(c) w a, π2(c) w (a→ b), π3(c) w (b→ e).
Indeed e is I-join derivable from c since π{1,2,3}(c) = π1(c) t π2(c) t π3(c) w e. Similarly we
conclude that e′ is I-join derivable from c′ in Ex. 7 since πN(c′) =

⊔
i∈N πi(c) w

⊔
i∈N ai w e′.

Nevertheless, I-join projections do not provide a complete mechanism for reasoning about
distributed information as illustrated below.

I Example 10. Let d def= s1(b) u s2(b). Recall that we think of t and u as conjunction and
disjunction of assertions: d specifies that b is present in the space of agent 1 or in the space of
agent 2 though not exactly in which one. Thus from d we should be able to conclude that b
belongs to the space of some agent in {1, 2}. Nevertheless, in general b is not I-join derivable
from d since from π{1,2}(d) = π1(d)tπ2(d) we cannot, in general, derive b. To see this consider
the scs in Fig. 2a and take b = ¬p. We have π{1,2}(d) = π1(d)tπ2(d) = truettrue = true 6w b.
One can generalize the example to infinitely many agents: Consider the scs in Ex. 7. Let
d′

def=
d

i∈N si(b′). We should be able to conclude from d′ that b′ is in the space of some agent
in N but, in general, b′ is not N-join derivable from d′.

4.1 Distributed Spaces
In the previous section we illustrated that the I-join projection of c, πI(c), the join of
individual projections, may not project all distributed information of a group I. To solve
this problem we shall develop the notion of I-group projection of c, written as ΠI(c). To do
this we shall first define a space function ∆I called the distributed space of group I. The
function ∆I can be thought of as a virtual space including all the information that can be in
the space of a member of I. We shall then define an I-projection ΠI in terms of ∆I much
like πi is defined in terms of si.

Recall that S(C) denotes the set of all space functions over a cs C. For notational
convenience, we shall use (fI)I⊆G to denote the tuple (fI)I∈P(G) of elements of S(C).

Set of Space Functions. We begin by introducing a new partial order induced by C. The
set of space functions ordered point-wise.

I Definition 11 (Space Functions Order). Let C = (Con,v, (si)i∈G) be an scs. Given
f, g ∈ S(C), define f vs g iff f(c) v g(c) for every c ∈ Con. We shall use Cs to denote the
partial order (S(C),vs); the set of all space functions ordered by vs.

A very important fact for the design of our structure is that the set of space functions
S(C) can be made into a complete lattice.

I Lemma 12. Let C = (Con,v, (si)i∈G) be an scs. Then Cs is a complete lattice.

4.2 Distributed Spaces as Maximum Spaces
Let us consider the lattice of space functions Cs = (S(C),vs). Suppose that f and g are
space functions in Cs with f vs g. Intuitively, every piece of information c in the space
represented by g is also in the space represented by f since f(c) v g(c) for every c ∈ Con.
This can be interpreted as saying that the space represented by g is included in the space
represented by f ; in other words the bigger the space, the smaller the function that represents
it in the lattice Cs.

Following the above intuition, the order relation vs of Cs represents (reverse) space
inclusion and the join and meet operations in Cs represent intersection and union of spaces.
The biggest and the smallest spaces are represented by the bottom and the top elements of
the lattice Cs, here called λ⊥ and λ> and defined as follows.

CONCUR 2019

29:8 Reasoning About Distributed Knowledge with Infinitely Many Agents

I Definition 13 (Top and Bottom Spaces). For every c ∈ Con, define λ⊥(c) def= true,
λ>(c) def= true if c = true and λ>(c) def= false if c 6= true.

The distributed space ∆I of a group I can be viewed as the function that represents the
smallest space that includes all the local information of the agents in I. From the above
intuition, ∆I should be the greatest space function below the space functions of the agents in
I. The existence of such a function follows from completeness of (S(C),vs) (Lemma 12).

I Definition 14 (Distributed Spaces). Let C be an scs (Con,v, (si)i∈G). The distributed
spaces of C is given by ∆ = (∆I)I⊆G where ∆I

def= max{f ∈ S(C) | f vs si for every i ∈ I}.
We shall say that e is distributed among I ⊆ G w.r.t. c iff c w ∆I(e). We shall refer to each
∆I as the (distributed) space of the group I.

It follows from Lemma 12 that ∆I =
d
{si | i ∈ I} (where

d
is the meet in the complete

lattice (S(C),vs)). Fig. 2b illustrates an scs and its distributed space ∆{1,2}.

Compositionality . Distributed spaces have pleasant compositional properties. They
capture the intuition that the distributed information of a group I can be obtained from the
the distributive information of its subgroups.

I Theorem 15. Let (∆I)I⊆G be the distributed spaces of an scs (Con,v, (si)i∈G). Suppose
that K,J ⊆ I ⊆ G. (1) ∆I = λ> if I = ∅, (2) ∆I = si if I = {i}, (3) ∆J(a) t∆K(b) w
∆I(a t b), and (4) ∆J(a) t∆K(a→ c) w ∆I(c) if (Con,v) is a constraint frame.

Recall that λ> corresponds to the empty space (see Def. 13). The first property realizes
the intuition that the empty subgroup ∅ does not have any information whatsoever distributed
w.r.t. a consistent c: for if c w ∆∅(e) and c 6= false then e = true. Intuitively, the second
property says that the function ∆I for the group of one agent must be the agent’s space
function. The third property states that a group can join the information of its subgroups.
The last property uses constraint implication, hence the constraint frame condition, to express
that by joining the information a and a→ c of their subgroups, the group I can obtain c.

Let us illustrate how to derive information of a group from smaller ones using Thm. 15.

I Example 16. Let c = s1(a) t s2(a→ b) t s3(b→ e) as in Ex. 7. We want to prove that
e is distributed among I = {1, 2, 3} w.r.t. c, i.e., c w ∆{1,2,3}(e). Using Properties 2 and 4
in Thm. 15 we obtain c w s1(a) t s2(a→ b) = ∆{1}(a) t∆{2}(a→ b) w ∆{1,2}(b), and then
c w ∆{1,2}(b) t s3(b→ e) = ∆{1,2}(b) t∆{3}(b→ e) w ∆{1,2,3}(e) as wanted.

I Remark 17 (Continuity). The example with infinitely many agents in Ex. 7 illustrates
well why we require our spaces to be continuous in the presence of possibly infinite groups.
Clearly c′ =

⊔
i∈N si(ai) w

⊔
i∈N ∆N(ai). By continuity,

⊔
i∈N ∆N(ai) = ∆N(

⊔
i∈N ai) which

indeed captures the idea that each ai is in the distributed space ∆N.
In Thm. 15 we listed some useful properties about (∆I)I⊆G. In the next section we shall

see that (∆I)I⊆G is the greatest solution of three basic properties.
We conclude this subsection with an important family of scs from mathematical economics:

Aumann structures. We illustrate that the notion of distributed knowledge in these structures
is an instance of a distributed space.

I Example 18 (Aumann Constraint Systems). Aumann structures [13] are an event-based
approach to modelling knowledge. An Aumann structure is a tuple A = (S,P1, . . . ,Pn)
where S is a set of states and each Pi is a partition on S for agent i. The partitions are

M. Guzmán, S. Knight, S. Quintero, S. Ramírez, C. Rueda, and F. Valencia 29:9

p ∨ ¬p

p ¬p

p ∧ ¬p

s1

s1

s1

s1 s2

s2

s2

s2

π1

π1

π1

π1

π2

π2

π2

π2

(a) Projections π1 and π2 given s1 and s2.

p ∨ ¬p

p ¬p

p ∧ ¬p

s1

s1

s1

s1 s2

s2

s2

s2

∆I

∆I

∆I

∆I

(b) ∆I with I = {1, 2} given s1 and s2.

Figure 2 Projections (a) and Distributed Space function (b) over lattice M2.

called information sets. If two states t and u are in the same information set for agent
i, it means that in state t agent i considers state u possible, and vice versa. An event in
an Aumann structure is any subset of S. Event e holds at state t if t ∈ e. The set Pi(s)
denotes the information set of Pi containing s. The event of agent i knowing e is defined as
Ki(e) = {s ∈ S | Pi(s) ⊆ e}, and the distributed knowledge of an event e among the agents
in a group I is defined as DI(e) = {s ∈ S |

⋂
i∈I Pi(s) ⊆ e}.

An Aumann structure can be seen as a spatial constraint system C(A) with events as
constraints, i.e., Con = {e | e is an event in A}, and for every e1, e2 ∈ Con, e1 v e2 iff
e2 ⊆ e1. The operators join (t) and meet (u) are intersection (∩) and union (∪) of events,
respectively; true = S and false = ∅. The space functions are the knowledge operators,
i.e., si(c) = Ki(c). From these definitions and since meets are unions one can easily verify
that ∆I(c) = DI(c) which shows the correspondence between distributed information and
distributed knowledge.

4.3 Distributed Spaces as Group Distributions Candidates

We now wish to single out a few fundamental properties on tuples of self-maps that can be
used to characterize distributed spaces.

I Definition 19 (Distribution Candidates). Let C be an scs (Con,v, (si)i∈G). A tuple
δ = (δI)I⊆G of self-maps on Con is a group distribution candidate (gdc) of C if for each
I, J ⊆ G: (D.1) δI is a space function in C, (D.2) δI = si if I = {i}, (D.3) δI ws δJ

if I ⊆ J .

Property D.1 requires each δI to be a space function. This is trivially met for δI = ∆I .

Property D.2 says that the function δI for a group of one agent must be the agent’s space
function. Clearly, δ{i} = ∆{i} satisfies D.2; indeed the distributed space of a single agent
is their own space. Finally, Property D.3 states that δI(c) w δJ(c), if I ⊆ J . This is
also trivially satisfied if we take δI = ∆I and δJ = ∆J . Indeed if a subgroup I has some
distributed information c then any subgroup J that includes I should also have c. This also
realizes our intuition above: The bigger the group, the bigger the space and thus the smaller
the space function that represents it.

CONCUR 2019

29:10 Reasoning About Distributed Knowledge with Infinitely Many Agents

Properties D1–D3, however, do not determine ∆ uniquely. In fact, there could be
infinitely-many tuples of space functions that satisfy them. For example, if we were to chose
δ∅ = λ>, δ{i} = si for every i ∈ G, and δI = λ⊥ whenever |I| > 1 then D1, D2 and D3
would be trivially met. But these space functions would not capture our intended meaning
of distributed spaces: E.g., we would have true w δI (e) for every e thus implying that any e
could be distributed in the empty information true amongst the agents in I 6= ∅.

Nevertheless, the following theorem states that (∆I)I⊆G could have been equivalently
defined as the greatest space functions satisfying Properties D1–D3.

I Theorem 20 (Max gdc). Let (∆I)I⊆G be the distributed spaces of C = (Con,v, (si)i∈G).
Then (∆I)I⊆G is a gdc of C and if (δI)I⊆G is a gdc of C then δI vs ∆I for each I ⊆ G.

Let us illustrate the use of Properties D1-D3 in Thm. 20 with the following example.

I Example 21. Let c = s1(a)ts2(a→ b)ts3(b→ e) as in Ex. 7. We want to prove c w ∆I(e)
for I = {1, 2, 3}. From D.2 we have c = ∆{1}(a) t∆{2}(a→ b) t∆{3}(b→ e). We can then
use D.3 to obtain c w ∆I(a) t∆I(a→ b) t∆I(b→ e). Finally, by D.1 and Proposition 3 we
infer c w ∆I(a t (a→ b) t (b→ e)) w ∆I(e), thus c w ∆I(e) as wanted. Now consider our
counter-example in Ex. 10 with d = s1(b) u s2(b). We wish to prove d w ∆I(b) for I = {1, 2}.
I.e., that b can be derived from d as being in a space of a member of {1,2}. Using D.1 and
D.3 we obtain d w d′ = ∆{1}(b) u∆{2}(b) w ∆{1,2}(b) u∆{1,2}(b) = ∆{1,2}(b) as wanted.

The characterization of distributed spaces by Thm. 20 provide us with a convenient proof
method: E.g. to prove that a tuple F = (fI)I⊆G equals (∆I)I⊆G, it suffices to show that the
tuple is a gdc and that fI ws ∆I for all I ⊆ G. We use this mechanism in Section 5.

4.4 Group Projections
As promised in Section 4.1 we now give a definition of Group Projection. The function ΠI(c)
extracts exactly all information that the group I may have distributed w.r.t. c.

I Definition 22 (Group Projection). Let (∆I)I⊆G be the distributed spaces of an scs C =
(Con,v, (si)i∈G). Given the set I ⊆ G, the I-group projection of c ∈ Con is defined as
ΠI(c) def=

⊔
{e | c w ∆I(e)}. We say that e is I-group derivable from c iff ΠI(c) w e.

Much like space functions and agent projections, group projections and distributed spaces
also form a pleasant correspondence: a Galois connection [3].

I Proposition 23. Let (∆I)I⊆G be the distributed spaces of C = (Con,v, (si)i∈G). For every
c, e ∈ Con, (1) c w ∆I(e) iff ΠI(c) w e, (2) ΠI(c) w ΠJ (c) if J ⊆ I, and (3) ΠI(c) w πI(c).

The first property in Prop. 23, a Galois connection, states that we can conclude from
c that e is in the distributed space of I exactly when e is I-group derivable from c. The
second says that the bigger the group, the bigger the projection. The last property says that
whatever is I-join derivable is I-group derivable, although the opposite is not true as shown
in Ex. 10.

4.5 Group Compactness
Suppose that an infinite group of agents I can derive e from c (i.e., c w ∆I(e)). A legitimate
question is whether there exists a finite sub-group J of agents from I that can also derive e
from c. The following theorem provides a positive answer to this question provided that e is
a compact element (see Section 2) and I-join derivable from c.

M. Guzmán, S. Knight, S. Quintero, S. Ramírez, C. Rueda, and F. Valencia 29:11

I Theorem 24 (Group Compactness). Let (∆I)I⊆G be the distributed spaces of an scs
C = (Con,v, (si)i∈G). Suppose that c w ∆I(e). If e is compact and I-join derivable from c

then there exists a finite set J ⊆ I such that c w ∆J(e).

We conclude this section with the following example of group compactness.

I Example 25. Consider the example with infinitely many agents in Ex. 7. We have
c′ =

⊔
i∈N si(ai) for some increasing chain a0 v a1 v . . . and e′ s.t. e′ v

⊔
i∈N ai. Notice

that c′ w ∆N(e′) and πN(c′) w e′. Hence e′ is N-join derivable from c′. If e′ is compact, by
Thm. 24 there must be a finite subset J ⊆ N such that c′ w ∆J(e′).

5 Computing Distributed Information

Let us consider a finite scs C = (Con,v, (si)i∈G) with distributed spaces (∆I)I⊆G. By finite
scs we mean that Con and G are finite sets. Let us consider the problem of computing ∆I :
Given a set {si}i∈I of space functions, we wish to find the greatest space function f such
that f v si for all i ∈ I (see Def. 14).

Because of the finiteness assumption, the above problem can be rephrased in simpler
terms: Given a finite lattice L and a finite set S of join-homomorphisms on L, find the
greatest join-homomorphism below all the elements of S. Even in small lattices with four
elements and two space functions, finding such greatest function may not be immediate, e.g.,
for S = {s1, s2} and the lattice in Fig. 1 the answer is given Fig. 2b.

In this section we shall use the theory developed in previous sections to help us find
algorithms for this problem. Recall from Def. 14 and Lemma 12 that ∆I equals the following

max{f ∈ S(C) | f v si for all i ∈ I} =
⊔
{f ∈ S(C) | f v si for all i ∈ I} =

l
{si | i ∈ I}

A naive (meet-based) approach would be to compute ∆I(c) by taking the point-wise meet
construction σI(c) def=

d
{si(c) | i ∈ I} for each c ∈ Con. But this does not work in general

since ∆I(c) =
d
{si | i ∈ I}(c) is not necessarily equal to σI(c) =

d
{si(c) | i ∈ I}. In fact

σI ws ∆I but σI may not even be a space function as shown in Fig. 3a.
A brute force (join-based) solution to computing ∆I(c) can be obtained by generating the

set {f(c) | f ∈ S(C) and f v si for all i ∈ I} and taking its join. This approach works since
the join of a set of space functions S can be computed point-wise: (

⊔
S)(c) =

⊔
{f(c)|f ∈ S}.

However, the number of such functions in S(C) can be at least factorial in the size of Con.
For constraint frames, which under the finite assumption coincides with distributive lattices,
the size of S(C) can be non-polynomial in the size of Con.

I Proposition 26 (Lower Bounds on Number of Space Functions). For every n ≥ 2, there
exists a cs C = (Con,v) such that |S(C)| ≥ (n− 2)! and n = |Con |. For every n ≥ 1, there
exists a constraint frame C = (Con,v) such that |S(C)| ≥ nlog2 n and n = |Con |.

Nevertheless, in the following sections we shall be able to exploit order theoretical results
and properties of distributed spaces to compute ∆I(c) for every c ∈ Con in polynomial
time in the size of Con. The first approach uses the inherent compositional nature of ∆I in
distributed lattices. The second approach uses the above-mentioned σ as a suitable upper
bound to compute ∆I by approximating it from above.

5.1 Distributed Spaces in Distributed Lattices
Here we shall illustrate some pleasant compositionality properties of distributed spaces that
can be used for computing ∆I in distributed lattices (constraint frames). These properties
capture the intuition that just like distributed information of a group I is the collective

CONCUR 2019

29:12 Reasoning About Distributed Knowledge with Infinitely Many Agents

p ∨ ¬p

p ¬p

p ∧ ¬p

s1

s1

s1

s1 s2

s2

s2

s2

σI

σI

σI

σI

(a) For I = {1, 2}, σI(c) =
d

i∈I si(c) is not a
space function: σI(p t ¬p) 6= σI(p) t σI(¬p).

a

b c d

e

s1 s2

s2

s1

s1

s2

s1, s2

s1, s2

δ+
I

δ+
I

δ+
I

δ+
I

δ+
I

(b) For I = {1, 2}, δ+
I (Lemma 27) is not a space

function: δ+
I (b) t δ+

I (e) = b 6= a = δ+
I (b t e).

Figure 3 Counter-examples over lattice M2 (a) and the non- distributive lattice M3 (b).

information from all its members, it is also the collective information of its subgroups. The
following results can be used to produce algorithms to compute ∆I(c).

We use XJ to denote the set of tuples (xj)j∈J of elements xj ∈ X for each j ∈ J.

I Lemma 27. Let (∆I)I⊆G be the distributed spaces of a finite scs C = (Con,v, (si)i∈G).
Suppose that (Con,v) is a constraint frame. Let δ+

I : Con → Con, with I ⊆ G, be the
function δ+

I (c) def=
d
{
⊔

i∈I si(ai) | (ai)i∈I ∈ ConI and
⊔

i∈I ai w c}. Then ∆I = δ+
I .

The above lemma basically says that ∆I(c) is the greatest information below all possible
combinations of information in the spaces of the agents in I that derive c. The proof that
δ+

I ws ∆I uses the fact that space functions preserve joins. The proof that δ+
I vs ∆I proceeds

by showing that (δ+
I)I⊆G is a group distribution candidate (Def. 19). Distributivity of the

lattice (Con,v) is crucial for this direction. In fact without it ∆I = δ+
I does not necessarily

hold as shown by the following counter-example.

I Example 28. Consider the non-distributive lattice M3 and the space functions s1 and
s2 in Fig. 3b. We obtain δ+

I (b t c) = δ+
I (e) = a and δ+

I (b) t δ+
I (c) = b t a = b. Then,

δ+
I (b t c) 6= δ+

I (b) t δ+
I (c), i.e., δ+

I is not a space function.

Lemma 27 can be used to prove the following theorem which intuitively characterizes the
information of a group from that of its subgroups. Each of the following results will be used
to generate algorithms to compute ∆I(c), each an improvement on the previous one.

I Theorem 29. Let (∆I)I⊆G be the distributed spaces of a finite scs C = (Con,v, (si)i∈G).
Suppose that (Con,v) is a constraint frame. Let J,K ⊆ G be two groups such that I = J ∪K.
Then the following equalities hold:

1. ∆I(c) =
l
{∆J(a) t∆K(b) | a, b ∈ Con and a t b w c}. (1)

2. ∆I(c) =
l
{∆J(a) t∆K(a→ c) | a ∈ Con}. (2)

3. ∆I(c) =
l
{∆J(a) t∆K(a→ c) | a ∈ Con and a v c}. (3)

M. Guzmán, S. Knight, S. Quintero, S. Ramírez, C. Rueda, and F. Valencia 29:13

The above properties bear witness to the inherent compositional nature of our notion of
distributed space. This nature will be exploited by the algorithms below. The first property
in Thm. 29 essentially reformulates Lemma 27 in terms of subgroups rather than agents.
It can be proven by replacing ∆J(a) and ∆K(b) by δ+

J (a) and δ+
K(b), defined in Lemma 27

and using distributivity of joins over meets. The second and third properties in Thm. 29
are pleasant simplifications of the first using heyting implication. These properties realize
the intuition that by joining the information a and a→ c of their subgroups, the group I
can obtain c.

5.2 Algorithms for Distributed Lattices
Recall that λ> represents the empty distributed space (see Def. 13). Given a finite scs C =
(Con,v, (si)i∈G) with distributed spaces (∆I)I⊆G, the recursive function DeltaPart3(I, c)
in Algorithm 1 computes ∆I(c) for any given c ∈ Con. Its correctness, assuming that (Con,v)
is a constraint frame (i.e., a distributed lattice), follows from Thm. 29(3). Termination
follows from the finiteness of C and the fact the sets J and K in the recursive calls form a
partition of I. Notice that we select a partition (in halves) rather than any two sets K,J
satisfying the condition I = J ∪K to avoid significant recalculation.

Algorithm 1 Function DeltaPart3(I, c) computes ∆I(c).
1: function DeltaPart3(I, c)
2: if I = ∅ then
3: return λ>(c)
4: else if I = {i} then
5: return si(c)
6: else
7: {J,K} ← Partition(I) . returns a partition {J,K} of I s.t., |J | = b|I|/2c
8: return

d
{DeltaPart3(J, a) tDeltaPart3(K, a→ c) | a ∈ Con and a v c}.

Algorithms. DeltaPart3(I, c) computes ∆I(c) using Thm. 29(3). By modifying Line
8 with the corresponding meet operations, we obtain two variants of DeltaPart3 that
use, instead of Thm. 29(3), the Properties Thm. 29(1) and Thm. 29(2). We call them
DeltaPart1 and DeltaPart2. Finally, we also obtain a non-recursive algorithm that
outputs ∆I(c) by computing δ+

I (c) in Lemma 27 in the obvious way: Computing the meet
of elements of the form

⊔
i∈I si(ai) for every tuple (ai)i∈I such that

⊔
i∈I ai w c. We call it

Delta+.

Worst-case time complexity. We assume that binary distributive lattice operations u, t,
and→ are computed in O(1) time. We also assume a fixed group I of sizem = |I| and express
the time complexity for computing ∆I in terms of n = |Con |, the size of the set of constraints.
The above-mentioned algorithms compute the value ∆I(c). The worst-case time complexity
for computing the function ∆I is in (1) O(mn1+m) using Delta+, (2) O(mn1+2 log2 m) using
DeltaPart1, and (3) O(mn1+log2 m) using DeltaPart2 and DeltaPart3.

5.3 Algorithm for Arbitrary Lattices
Let (∆I)I⊆G be the distributed spaces of a finite scs C = (Con,v, (si)i∈G). The maximum
space function ∆I under a collection {si}i∈I can be computed by successive approximations,
starting with some (not necessarily space) function known to be less than all {si}i∈I . Assume

CONCUR 2019

29:14 Reasoning About Distributed Knowledge with Infinitely Many Agents

a self map σ : Con → Con such that σ w ∆I and, for all i ∈ I, σ v si. A good starting
point is σ(u) =

d
{si(u) | i ∈ I}, for all u ∈ Con. By definition of u, σ(u) is the biggest

function under all functions in {si}i∈I , hence σ w ∆I . The algorithm computes decreasing
upper bounds of ∆I by correcting σ values not conforming to the space function property
σ(u) t σ(v) = σ(u t v). The correction decreases σ and maintains the invariant σ w ∆I .

There are two ways of correcting σ values: (1) when σ(u) t σ(v) @ σ(u t v), assign
σ(u t v)← σ(u) t σ(v) and (2) when σ(u) t σ(v) 6v σ(u t v), assign σ(u)← σ(u) u σ(u t v)
and also σ(v)← σ(v) u σ(u t v). It can be shown that the assignments in both cases should
decrease σ while preserving the σ w ∆I invariant.

The procedure (see Algorithm 2) loops through pairs u, v ∈ Con while there is some pair
satisfying cases (1) or (2) above for the current σ. When there is, it updates σ as mentioned
before. At the end of the loop all u, v ∈ Con pairs satisfy the space function property. By
the invariant mentioned above, this means σ = ∆I .

Algorithm 2 DeltaGen finds ∆I .
σ(u)←

d
{si(u) | i ∈ I} . for all u ∈ Con

while u, v ∈ Con ∧ σ(u) t σ(v) 6= σ(u t v) do
if σ(u) t σ(v) @ σ(u t v) then . case (1)

σ(u t v)← σ(u) t σ(v)
else . case (2)

σ(u)← σ(u) u σ(u t v)
σ(v)← σ(v) u σ(u t v)

Assume a fixed group I of size m = |I| and that u and t are computed in O(1) time.
The complexity of the initialization of DeltaGen is O(nm) with n = |Con |. Each element
in Con can be decreased at most n times. Identifying an element to be decreased (in the
test of the loop) takes O(n2). Since there are n2 possible decreases, worst time complexity
of the loop is in O(n4).

6 Conclusions and Related Work

We developed semantic foundations and provided algorithms for reasoning about the dis-
tributed information of groups in multi-agents systems. We plan to develop similar techniques
for reasoning about other group phenomena in multi-agent systems from social sciences and
computer music such as group polarization [4] and group improvisation [17].

The closest related work is that of [15] (and its extended version [16]) which introduces
spatial constraint systems (scs) for the semantics of a spatial ccp language. Their work is
confined to a finite number of agents and to reasoning about agents individually rather than
as groups. We added the continuity requirement to the space functions of [15] to be able to
reason about possibly infinite groups. In [7, 8, 9, 10] scs are used to reason about beliefs, lies
and other epistemic utterances but also restricted to a finite number of agents and individual,
rather than group, behaviour of agents.

Our work is inspired by the epistemic concept of distributed knowledge [5]. Knowledge
in distributed systems was discussed in [11], based on interpreting distributed systems using
Hintikka’s notion of possible worlds. In this definition of distributed knowledge, the system
designer ascribes knowledge to processors (agents) in each global state (a processor’s local
state). In [12] the authors present a general framework to formalize the knowledge of a
group of agents, in particular the notion of distributed knowledge. The authors consider
distributed knowledge as knowledge that is distributed among the agents belonging to a
given group, without any individual agent necessarily having this knowledge. In [13] the

M. Guzmán, S. Knight, S. Quintero, S. Ramírez, C. Rueda, and F. Valencia 29:15

authors study knowledge and common knowledge in situations with infinitely many agents.
The authors highlight the importance of reasoning about infinitely many agents in situations
where the number of agents is not known in advance. Their work does not address distributed
knowledge but points out potential technical difficulties in their future work.

References
1 Samson Abramsky and Achim Jung. Domain Theory. In Samson Abramsky et al., editors,

Handbook of Logic in Computer Science, volume 3, pages 1–168. Oxford University Press, 1994.
2 Frank S. Boer, Alessandra Di Pierro, and Catuscia Palamidessi. Nondeterminism and infinite

computations in constraint programming. Theoretical Computer Science, pages 37–78, 1995.
3 Brian A Davey and Hilary A Priestley. Introduction to lattices and order. Cambridge university

press, 2nd edition, 2002.
4 Joan-María Esteban and Debraj Ray. On the Measurement of Polarization. Econometrica,

62(4):819–851, 1994.
5 Ronald Fagin, Joseph Y Halpern, Yoram Moses, and Moshe Y Vardi. Reasoning about

knowledge. MIT press Cambridge, 4th edition, 1995.
6 Gerhard Gierz, Karl Heinrich Hofmann, Klaus Keimel, Jimmie D. Lawson, Michael Mislove,

and Dana S. Scott. Continuous lattices and domains. Cambridge University Press, 2003.
7 Michell Guzmán, Stefan Haar, Salim Perchy, Camilo Rueda, and Frank Valencia. Belief,

Knowledge, Lies and Other Utterances in an Algebra for Space and Extrusion. Journal of Logical
and Algebraic Methods in Programming, 2016. URL: https://hal.inria.fr/hal-01257113.

8 Michell Guzman, Salim Perchy, Camilo Rueda, and Frank Valencia. Deriving Inverse Operators
for Modal Logic. In Theoretical Aspects of Computing – ICTAC 2016, volume 9965 of Lecture
Notes in Computer Science, pages 214–232. Springer, 2016. URL: https://hal.inria.fr/
hal-01328188.

9 Michell Guzmán, Salim Perchy, Camilo Rueda, and Frank Valencia. Characterizing Right
Inverses for Spatial Constraint Systems with Applications to Modal Logic. Theoretical
Computer Science, 744(56–77), October 2018. URL: https://hal.inria.fr/hal-01675010.

10 Stefan Haar, Salim Perchy, Camilo Rueda, and Frank Valencia. An Algebraic View of
Space/Belief and Extrusion/Utterance for Concurrency/Epistemic Logic. In 17th International
Symposium on Principles and Practice of Declarative Programming (PPDP 2015), pages
161–172. ACM SIGPLAN, 2015. URL: https://hal.inria.fr/hal-01256984.

11 Joseph Y Halpern. Using reasoning about knowledge to analyze distributed systems. Annual
review of computer science, 2(1):37–68, 1987.

12 Joseph Y Halpern and Yoram Moses. Knowledge and common knowledge in a distributed
environment. Journal of the ACM (JACM), 37(3):549–587, 1990.

13 Joseph Y Halpern and Richard A Shore. Reasoning about common knowledge with infinitely
many agents. Information and Computation, 191(1):1–40, 2004.

14 Werner Hildenbrand. On economies with many agents. Journal of Economic Theory, 2(2):161–
188, 1970.

15 Sophia Knight, Catuscia Palamidessi, Prakash Panangaden, and Frank D. Valencia. Spatial and
Epistemic Modalities in Constraint-Based Process Calculi. In CONCUR 2012 - 23rd Interna-
tional Conference on Concurrency Theory, volume 7454 of Lecture Notes in Computer Science,
pages 317–332. Springer, 2012. URL: https://hal.archives-ouvertes.fr/hal-00761116.

16 Sophia Knight, Prakash Panangaden, and Frank Valencia. Computing with Epistemic and
Spatial Modalities. Submitted for journal publication, 2019.

17 Camilo Rueda and Frank Valencia. On validity in modelization of musical problems by CCP.
Soft Computing, 8(9):641–648, 2004. doi:10.1007/s00500-004-0390-7.

18 Vijay A. Saraswat, Martin Rinard, and Prakash Panangaden. The Semantic Foundations of
Concurrent Constraint Programming. In Proceedings of the 18th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’91, pages 333–352. ACM, 1991.
doi:10.1145/99583.99627.

CONCUR 2019

https://hal.inria.fr/hal-01257113
https://hal.inria.fr/hal-01328188
https://hal.inria.fr/hal-01328188
https://hal.inria.fr/hal-01675010
https://hal.inria.fr/hal-01256984
https://hal.archives-ouvertes.fr/hal-00761116
https://doi.org/10.1007/s00500-004-0390-7
https://doi.org/10.1145/99583.99627

Robustness Against Transactional Causal
Consistency
Sidi Mohamed Beillahi
Université de Paris, IRIF, CNRS, F-75013 Paris, France
beillahi@irif.fr

Ahmed Bouajjani
Université de Paris, IRIF, CNRS, F-75013 Paris, France
abou@irif.fr

Constantin Enea
Université de Paris, IRIF, CNRS, F-75013 Paris, France
cenea@irif.fr

Abstract
Distributed storage systems and databases are widely used by various types of applications. Transac-
tional access to these storage systems is an important abstraction allowing application programmers
to consider blocks of actions (i.e., transactions) as executing atomically. For performance reasons, the
consistency models implemented by modern databases are weaker than the standard serializability
model, which corresponds to the atomicity abstraction of transactions executing over a sequentially
consistent memory. Causal consistency for instance is one such model that is widely used in practice.

In this paper, we investigate application-specific relationships between several variations of causal
consistency and we address the issue of verifying automatically if a given transactional program is
robust against causal consistency, i.e., all its behaviors when executed over an arbitrary causally
consistent database are serializable. We show that programs without write-write races have the same
set of behaviors under all these variations, and we show that checking robustness is polynomial time
reducible to a state reachability problem in transactional programs over a sequentially consistent
shared memory. A surprising corollary of the latter result is that causal consistency variations which
admit incomparable sets of behaviors admit comparable sets of robust programs. This reduction also
opens the door to leveraging existing methods and tools for the verification of concurrent programs
(assuming sequential consistency) for reasoning about programs running over causally consistent
databases. Furthermore, it allows to establish that the problem of checking robustness is decidable
when the programs executed at different sites are finite-state.

2012 ACM Subject Classification Theory of computation → Program verification

Keywords and phrases Distributed Databases, Causal Consistency, Model Checking

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2019.30

Related Version Complete proofs can be found at https://arxiv.org/abs/1906.12095.

Funding This work is supported in part by the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement No 678177).

1 Introduction

Distribution and replication are widely adopted in order to implement storage systems
and databases offering performant and available services. The implementations of these
systems must ensure consistency guarantees allowing to reason about their behaviors in an
abstract and simple way. Ideally, programmers of applications using such systems would like
to have strong consistency guarantees, i.e., all updates occurring anywhere in the system
are seen immediately and executed in the same order by all sites. Moreover, application
programmers also need an abstract mechanism such as transactions, ensuring that blocks

© Sidi Mohamed Beillahi, Ahmed Bouajjani, and Constantin Enea;
licensed under Creative Commons License CC-BY

30th International Conference on Concurrency Theory (CONCUR 2019).
Editors: Wan Fokkink and Rob van Glabbeek; Article No. 30; pp. 30:1–30:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:beillahi@irif.fr
mailto:abou@irif.fr
mailto:cenea@irif.fr
https://doi.org/10.4230/LIPIcs.CONCUR.2019.30
https://arxiv.org/abs/1906.12095
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

30:2 Robustness Against Transactional Causal Consistency

t1 [z = 1
x = 1]

t2 [y = 1]
||

t3 [x = 2
r1 = z] //0

t4 [r2 = y //1
r3 = x] //2

(a) CCv but not CM.

t1 [x = 1]
t2 [r1 = x] //2 ||

t3 [x = 2]
t4 [r2 = x] //1

(b) CM but not CCv.

t1 [x = 2] ||
t2 [x = 1]
t3 [r1 = x] //2
t4 [r2 = x] //1

(c) CC but not CM nor CCv.

Figure 1 Computations showing the relation between CC, CCv and CM. Transactions are delimited
using brackets, same site transactions are aligned vertically, and read values are given in comments.

of actions (writes and reads) of a site can be considered as executing atomically without
interferences from actions of other sites. For transactional programs, the consistency model
offering strong consistency is serializability [37], i.e., every computation of a program is
equivalent to another one where transactions are executed serially one after another without
interference. In the non-transactional case this model corresponds to sequential consistency
(SC) [31]. However, while serializability and SC are easier to apprehend by application
programmers, their enforcement (by storage systems implementors) requires the use of global
synchronization between all sites, which is hard to achieve while ensuring availability and
acceptable performances [24, 25]. For this reason, modern storage systems ensure weaker
consistency guarantees. In this paper, we are interested in studying causal consistency [30].

Causal consistency is a fundamental consistency model implemented in several production
databases, e.g., AntidoteDB, CockroachDB, and MongoDB, and extensively studied in the
literature [7, 23, 33, 34, 39]. Basically, when defined at the level of actions, it guarantees that
every two causally related actions, say 𝑎1 is causally before (i.e., it has an influence on) 𝑎2,
are executed in that same order, i.e., 𝑎1 before 𝑎2, by all sites. The sets of updates visible to
different sites may differ and read actions may return values that cannot be obtained in SC
executions. The definition of causal consistency can be lifted to the level of transactions,
assuming that transactions are visible to a site in their entirety (i.e., all their updates are
visible at the same time), and they are executed by a site in isolation without interference
from other transactions. In comparison to serializability, causal consistency allows that
conflicting transactions, i.e., which read or write to a common location, be executed in
different orders by different sites as long as they are not causally related. Actually, we
consider three variations of causal consistency introduced in the literature, weak causal
consistency (CC) [38, 14], causal memory (CM) [3, 38], and causal convergence (CCv) [18].

The weakest variation of causal consistency, namely CC, allows speculative executions
and roll-backs of transactions which are not causally related (concurrent). For instance, the
computation in Fig. 1c is only feasible under CC: the site on the right applies t2 after t1
before executing t3 and roll-backs t2 before executing t4. CCv and CM offer more guarantees.
CCv enforces a total arbitration order between all transactions which defines the order in
which delivered concurrent transactions are executed by every site. This guarantees that all
sites reach the same state when all transactions are delivered. CM ensures that all values read
by a site can be explained by an interleaving of transactions consistent with the causal order,
enforcing thus PRAM consistency [32] on top of CC. Contrary to CCv, CM allows that two sites
diverge on the ordering of concurrent transactions, but both models do not allow roll-backs of
concurrent transactions. Thus, CCv and CM are incomparable in terms of computations they
admit. The computation in Fig. 1a is not admitted by CM because there is no interleaving
of those transactions that explains the values read by the site on the right: reading 0 from
z implies that the transactions on the left must be applied after t3 while reading 1 from
y implies that both t1 and t2 are applied before t4 which contradicts reading 2 from x.
However, this computation is possible under CCv because t1 can be delivered to the right

S. M. Beillahi, A. Bouajjani, and C. Enea 30:3

after executing t3 but arbitrated before t3, which implies that the write to x in t1 will be
lost. The CM computation in Fig. 1b is not possible under CCv because there is no arbitration
order that could explain both reads from x.

As a first contribution of our paper, we show that the three causal consistency semantics
coincide for transactional programs containing no write-write races, i.e., concurrent transac-
tions writing on a common variable. We also show that if a transactional program has a
write-write race under one of these semantics, then it must have a write-write race under any
of the other two semantics. This property is rather counter-intuitive since CC is strictly weaker
than both CCv and CM, and CCv and CM are incomparable (in terms of admitted behaviors).
Notice that each of the computations in Figures 1b, 1a, and 1c contains a write-write race
which explains why none of these computations is possible under all three semantics.

Then, we investigate the problem of checking robustness of application programs against
causal consistency relaxations: Given a program 𝑃 and a causal consistency variation 𝑋, we
say that 𝑃 is robust against 𝑋 if the set of computations of 𝑃 when running under 𝑋 is the
same as its set of computations when running under serializability. This means that it is
possible to reason about the behaviors of 𝑃 assuming the simpler serializability model and
no additional synchronization is required when 𝑃 runs under 𝑋 such that it maintains all
the properties satisfied under serializability. Checking robustness is not trivial, it can be seen
as a form of checking program equivalence. However, the equivalence to check is between two
versions of the same program, obtained using two different semantics, one more permissive
than the other one. The goal is to check that this permissiveness has actually no effect on the
particular program under consideration. The difficulty in checking robustness is to apprehend
the extra behaviors due to the reorderings introduced by the relaxed consistency model w.r.t.
serializability. This requires a priori reasoning about complex order constraints between
operations in arbitrarily long computations, which may need maintaining unbounded ordered
structures, and make the problem of checking robustness hard or even undecidable.

We show that verifying robustness of transactional programs against causal consistency
can be reduced in polynomial time to the reachability problem in concurrent programs over
SC. This allows to reason about distributed applications running on causally consistent
storage systems using the existing verification technology and it implies that the robustness
problem is decidable for finite-state programs; the problem is PSPACE-complete when the
number of sites is fixed, and EXPSPACE-complete otherwise. This is the first result on the
decidability and complexity of verifying robustness against causal consistency. In fact, the
problem of verifying robustness has been considered in the literature for several consistency
models of distributed systems, including causal consistency [12, 16, 17, 20, 35]. These works
provide (over- or under-)approximate analyses for checking robustness, but none of them
provides precise (sound and complete) algorithmic verification methods for solving this
problem, nor addresses its decidability and complexity.

The approach we adopt for tackling this verification problem is based on a precise
characterization of the set of robustness violations, i.e., executions that are causally consistent
but not serializable. For both CCv and CM, we show that it is sufficient to search for a special
type of robustness violations, that can be simulated by serial (SC) computations of an
instrumentation of the original program. These computations maintain the information
needed to recognize the pattern of a violation that would have occurred in the original
program under a causally consistent semantics (executing the same set of operations). A
surprising consequence of these results is that a program is robust against CM iff it is robust
against CC, and robustness against CM implies robustness against CCv. This shows that the
causal consistency variations we investigate can be incomparable in terms of the admitted
behaviors, but comparable in terms of the robust applications they support.

CONCUR 2019

30:4 Robustness Against Transactional Causal Consistency

2 Causal Consistency

Program syntax. We consider a simple programming language where a program is parallel
composition of processes distinguished using a set of identifiers P. Each process is a sequence
of transactions and each transaction is a sequence of labeled instructions. Each transaction
starts with a begin instruction and finishes with an end instruction. Each other instruction
is either an assignment to a process-local register from a set R or to a shared variable from
a set V, or an assume statement. The assignments use values from a data domain D. An
assignment to a register ⟨𝑟𝑒𝑔⟩ := ⟨𝑣𝑎𝑟⟩ is called a read of ⟨𝑣𝑎𝑟⟩ and an assignment to a
shared variable ⟨𝑣𝑎𝑟⟩ := ⟨𝑟𝑒𝑔-𝑒𝑥𝑝𝑟⟩ is called a write to ⟨𝑣𝑎𝑟⟩ (⟨𝑟𝑒𝑔-𝑒𝑥𝑝𝑟⟩ is an expression
over registers). The statement assume ⟨𝑏𝑒𝑥𝑝𝑟⟩ blocks the process if the Boolean expression
⟨𝑏𝑒𝑥𝑝𝑟⟩ over registers is false. Each instruction is followed by a goto statement which defines
the evolution of the program counter. Multiple instructions can be associated with the same
label which allows us to write non-deterministic programs and multiple goto statements can
direct the control to the same label which allows us to mimic imperative constructs like loops
and conditionals. We assume that the control cannot pass from one transaction to another
without going as expected through begin and end instructions.

Causal memory (CM) semantics. Informally, the semantics of a program under causal
memory is defined as follows. The shared variables are replicated across each process, each
process maintaining its own local valuation of these variables. During the execution of a
transaction in a process, the shared-variable writes are stored in a transaction log which is
visible only to the process executing the transaction and which is broadcasted to all the other
processes at the end of the transaction1. To read a shared variable 𝑥, a process 𝑝 first accesses
its transaction log and takes the last written value on 𝑥, if any, and then its own valuation
of the shared variables, if 𝑥 was not written during the current transaction. Transaction logs
are delivered to every process in an order consistent with the causal delivery relation between
transactions, i.e., the transitive closure of the union of the program order (the order in which
transactions are executed by a process), and the delivered-before relation (a transaction 𝑡1 is
delivered-before a transaction 𝑡2 iff the log of 𝑡2 has been delivered at the process executing
𝑡1 before 𝑡1 starts). By an abuse of terminology, we call this property causal delivery. Once
a transaction log is delivered, it is immediately applied on the shared-variable valuation of
the receiving process. Also, no transaction log can be delivered to a process 𝑝 while 𝑝 is
executing another transaction, we call this property transaction isolation.

Causal convergence (CCv) semantics. Compared to causal memory, causal convergence
ensures eventual consistency of process-local copies of the shared variables. Each transaction
log is associated with a timestamp and a process applies a write on some variable 𝑥 from a
transaction log only if it has a timestamp larger than the timestamps of all the transaction
logs it has already applied and that wrote the same variable 𝑥. For simplicity, we assume that
the transaction identifiers play the role of timestamps, which are totally ordered according
to some relation <. CCv satisfies both causal delivery and transaction isolation as well.

Weak causal consistency (CC) semantics. Compared to the previous semantics, CC allows
that reads of the same process observe concurrent writes as executing in different orders.
Each process maintains a set of values for each shared variable, and a read returns any one

1 For simplicity, we assume that every transaction commits. The effects of aborted transactions shouldn’t
be visible to any process.

S. M. Beillahi, A. Bouajjani, and C. Enea 30:5

begin(𝑝1, 𝑡1)
isu(𝑝1, 𝑡1, 𝑥, 1)

end(𝑝1, 𝑡1)
·

begin(𝑝2, 𝑡3)
isu(𝑝2, 𝑡3, 𝑥, 2)

end(𝑝2, 𝑡3)
· del(𝑝1, 𝑡3) · del(𝑝2, 𝑡1) ·

begin(𝑝2, 𝑡4)
ld(𝑝2, 𝑡4, 𝑥, 1)

end(𝑝2, 𝑡4)
·

begin(𝑝1, 𝑡2)
ld(𝑝1, 𝑡2, 𝑥, 2)

end(𝑝1, 𝑡2)

(a) CM execution of the program in Fig. 1b.

begin(𝑝1, 𝑡1)
isu(𝑝1, 𝑡1, 𝑧, 1)
isu(𝑝1, 𝑡1, 𝑥, 1)

end(𝑝1, 𝑡1)

·

begin(𝑝2, 𝑡3)
isu(𝑝2, 𝑡3, 𝑥, 2)
ld(𝑝2, 𝑡3, 𝑧, 0)

end(𝑝2, 𝑡3)

· del(𝑝1, 𝑡3) · del(𝑝2, 𝑡1) ·
begin(𝑝1, 𝑡2)

isu(𝑝1, 𝑡2, 𝑦, 1)
end(𝑝1, 𝑡2)

·del(𝑝2, 𝑡2) ·

begin(𝑝2, 𝑡4)
ld(𝑝2, 𝑡4, 𝑦, 1)
ld(𝑝2, 𝑡4, 𝑥, 2)

end(𝑝2, 𝑡4)

(b) CCv execution of the program in Figure 1a.

begin(𝑝1, 𝑡1)
isu(𝑝1, 𝑡1, 𝑥, 2)

end(𝑝1, 𝑡1)
·

begin(𝑝2, 𝑡2)
isu(𝑝2, 𝑡2, 𝑥, 1)

end(𝑝2, 𝑡2)
· del(𝑝2, 𝑡1) ·

begin(𝑝2, 𝑡3)
ld(𝑝2, 𝑡3, 𝑥, 2)

end(𝑝2, 𝑡3)
·

begin(𝑝2, 𝑡4)
ld(𝑝2, 𝑡4, 𝑥, 1)

end(𝑝2, 𝑡4)
· del(𝑝1, 𝑡2)

(c) CC execution of the program in Figure 1c.

Figure 2 For readability, the sub-sequences of events delimited by begin and end are aligned
vertically, the execution-flow advancing from left to right and top to bottom.

of these values non-deterministically. Transaction logs are associated with vector clocks [30]
which represent the causal delivery relation, i.e., a transaction 𝑡1 is before 𝑡2 in causal-delivery
iff the vector clock of 𝑡1 is smaller than the vector clock of 𝑡2. We assume that transactions
identifiers play the role of vector clocks, which are partially ordered according to some
relation <. When applying a transaction log on the shared-variable valuation of the receiving
process, we only keep the values that were written by concurrent transactions (not related
by causal delivery). CC satisfies both causal delivery and transaction isolation.

Program execution. The semantics of a program 𝒫 under a causal consistency semantics
X ∈ {CCv, CM, CC} is defined using a labeled transition system [𝒫]X where the set Ev of
transition labels, called events, is defined by:

Ev = {begin(𝑝, 𝑡), ld(𝑝, 𝑡, 𝑥, 𝑣), isu(𝑝, 𝑡, 𝑥, 𝑣), del(𝑝, 𝑡), end(𝑝, 𝑡) : 𝑝 ∈ P, 𝑡 ∈ T, 𝑥 ∈ V, 𝑣 ∈ D}

where begin and end label transitions corresponding to the start, resp., the end of a transaction,
isu and ld label transitions corresponding to writing, resp., reading, a shared variable during
some transaction, and del labels transitions corresponding to applying a transition log received
from another process on the local copy of the shared variables. An event isu is called an
issue while an event del is called a store. An execution of [𝒫]X is a sequence of events
𝜌 = ev1 · ev2 · . . . labeling the transitions. Fig. 2a shows an execution under CM. This satisfies
transaction isolation since no transaction is delivered while another transaction is executing.
The execution in Fig. 2a is not possible under CCv since 𝑡4 and 𝑡2 read 2 and 1 from 𝑥,
respectively. This is possible only if 𝑡1 and 𝑡3 write 𝑥 at 𝑝2 and 𝑝1, respectively, which
contradicts the definition of CCv where we cannot have both 𝑡1 < 𝑡3 and 𝑡3 < 𝑡1. Fig. 2b
shows an execution under CCv (we assume 𝑡1 < 𝑡2 < 𝑡3 < 𝑡4). Notice that del(𝑝2, 𝑡1) did not
result in an update of 𝑥 because the timestamp 𝑡1 is smaller than the timestamp of the last
transaction that wrote 𝑥 at 𝑝2, namely 𝑡3, a behavior that is not possible under CM. The
two processes converge and store the same shared variable copy at the end of the execution.
Fig. 2c shows an execution under CC, which is not possible under CCv and CM because 𝑡3 and
𝑡4 read 2 and 1, respectively. Since the transactions 𝑡1 and 𝑡2 are concurrent, 𝑝2 stores both
values 2 and 1 written by these transactions. A read of 𝑥 can return any of these two values.

Execution summary. Let 𝜌 be an execution under X ∈ {CCv, CM, CC}, a sequence 𝜏 of
events isu(𝑝, 𝑡) and del(𝑝, 𝑡) with 𝑝 ∈ P and 𝑡 ∈ T is called a summary of 𝜌 if it is obtained
from 𝜌 by substituting every sub-sequence of transitions in 𝜌 delimited by a begin and an

CONCUR 2019

30:6 Robustness Against Transactional Causal Consistency

end transition, with a single “macro-event” isu(𝑝, 𝑡). For example, isu(𝑝1, 𝑡1) · isu(𝑝2, 𝑡3) ·
del(𝑝1, 𝑡3) · del(𝑝2, 𝑡1) · isu(𝑝2, 𝑡4) · isu(𝑝1, 𝑡2) is a summary of the execution in Fig. 2a.

We say that a transaction 𝑡 in 𝜌 performs an external read of a variable 𝑥 if 𝜌 contains
an event ld(𝑝, 𝑡, 𝑥, 𝑣) which is not preceded by a write on 𝑥 of 𝑡 (i.e., isu(𝑝, 𝑡, 𝑥, 𝑣)). Under CM
and CC, a transaction 𝑡 writes a variable 𝑥 if 𝜌 contains isu(𝑝, 𝑡, 𝑥, 𝑣), for some 𝑣. In Fig. 2a,
𝑡2 and 𝑡4 perform external reads, and 𝑡2 writes to 𝑦. A transaction 𝑡 executed by a process 𝑝

writes 𝑥 at process 𝑝′ ̸= 𝑝 if 𝑡 writes 𝑥 and 𝜌 contains del(𝑝′, 𝑡) (e.g., in Fig. 2a, 𝑡1 writes 𝑥 at
𝑝2). Under CCv, we say that a transaction 𝑡 executed by a process 𝑝 writes 𝑥 at process 𝑝′ ≠ 𝑝

if 𝑡 writes 𝑥 and 𝜌 contains an event del(𝑝′, 𝑡) which is not preceded by an event del(𝑝′, 𝑡′)
(or isu(𝑝′, 𝑡′)) with 𝑡 < 𝑡′ and 𝑡′ writing 𝑥 (if it would be preceded by such an event then the
write to 𝑥 of 𝑡 will be discarded). For example, in Fig. 2b, 𝑡1 does not write 𝑥 at 𝑝2.

3 Write-Write Race Freedom

We say that an execution 𝜌 has a write-write race on a shared variable 𝑥 if there exist two
concurrent transactions 𝑡1 and 𝑡2 that were issued in 𝜌 and each transaction contains a write
to the variable 𝑥. We call 𝜌 write-write race free if there is no variable 𝑥 such that 𝜌 has a
write-write race on 𝑥. Also, we say a program 𝒫 is write-write race free under a consistency
semantics X ∈ {CCv, CM, CC} iff for every 𝜌 ∈ ExX(𝒫), 𝜌 is write-write race free.

We show that if a given program has a write-write race under one of the three causal
consistency semantics then it must have a write-write race under the remaining two. The
intuition behind this is that the three semantics coincide for programs without write-write
races. Indeed, without concurrent transactions that write to the same variable, every process
local valuation of a shared variable will be a singleton set under CC and no process will ever
discard a write when applying an incoming transaction log under CCv.

I Theorem 1. Given a program 𝒫 and two consistency semantics X, Y ∈ {CCv, CM, CC}, 𝒫
has a write-write race under X iff 𝒫 has a write-write race under Y.

The following result shows that indeed, the three causal consistency semantics coincide for
programs which are write-write race free under any one of these three semantics.

I Theorem 2. Let 𝒫 be a program. Then, ExCC(𝒫) = ExCCv(𝒫) = ExCM(𝒫) iff 𝒫 has no
write-write race under CM, CCv, or CC.

4 Programs Robustness

4.1 Program Traces
We define an abstraction of executions satisfying transaction isolation, called trace. Intuitively,
a trace forgets the order in which shared-variables are accessed inside a transaction and
the order between transactions accessing different variables. The trace of an execution 𝜌 is
obtained by adding several standard relations between events in its summary which record
the data-flow, e.g. which transaction wrote the value read by another transaction.

The trace of an execution 𝜌 is a tuple tr(𝜌) = (𝜏, PO, WR, WW, RW, STO) where 𝜏 is the
summary of 𝜌, PO is the program order, which relates any two issue events isu(𝑝, 𝑡) and
isu(𝑝, 𝑡′) that occur in this order in 𝜏 , WR is the write-read relation (also called read-from),
which relates events of two transactions 𝑡 and 𝑡′ such that 𝑡 writes a value that 𝑡′ reads, WW
is the write-write order (also called store-order), which relates events of two transactions that
write to the same variable, and RW is the read-write relation (also called conflict), which
relates events of two transactions 𝑡 and 𝑡′ such that 𝑡 reads a value overwritten by 𝑡′, and
STO is the same-transaction relation, which relates events of the same transaction.

S. M. Beillahi, A. Bouajjani, and C. Enea 30:7

isu(𝑝1, 𝑡1) isu(𝑝2, 𝑡3) del(𝑝1, 𝑡3) del(𝑝2, 𝑡1) isu(𝑝1, 𝑡2) del(𝑝2, 𝑡2) isu(𝑝2, 𝑡4)

WW

STO

PO

STO

PO

RW
WR

STO
WR

𝑡1 𝑡3 𝑡2 𝑡4

WW

PO PORW

WR

WR

Figure 3 The trace of the execution in Fig. 2b and its transactional happens-before.

Formally, WR relates any two events ev1 ∈ {isu(𝑝, 𝑡), del(𝑝, 𝑡)} and ev2 = isu(𝑝, 𝑡′) that
occur in this order in 𝜏 such that 𝑡′ performs an external read of 𝑥, and ev1 is the last
event in 𝜏 before ev2 such that 𝑡 writes 𝑥 if ev1 = isu(𝑝, 𝑡), and 𝑡 writes 𝑥 at 𝑝 if ev1 =
del(𝑝, 𝑡) (we may use WR(𝑥) to emphasize the variable 𝑥). Also, WW relates any two events
ev1 ∈ {isu(𝑝, 𝑡1), del(𝑝, 𝑡1)} and ev2 ∈ {isu(𝑝, 𝑡2), del(𝑝, 𝑡2)} that occur in this order in 𝜏

provided that 𝑡1 and 𝑡2 both write the same variable 𝑥, and if 𝜌 is an execution under
causal convergence, then (1) if ev𝑖 = del(𝑝, 𝑡𝑖), for some 𝑖 ∈ {1, 2}, then 𝑡𝑖 writes 𝑥 at 𝑝, and
(2) if ev1 ∈ {isu(𝑝, 𝑡1), del(𝑝, 𝑡1)} and ev2 = del(𝑝, 𝑡2), then 𝑡1 < 𝑡2 (we may use WW(𝑥) to
emphasize the variable 𝑥). We also define RW(𝑥) = WR−1(𝑥); WW(𝑥) (we use ; to denote
the standard composition of relations) and RW =

⋃︀
𝑥∈V RW(𝑥). If a transaction 𝑡 reads the

initial value of 𝑥 then RW(𝑥) relates isu(𝑝, 𝑡) to isu(𝑝′, 𝑡′) of any other transaction 𝑡′ which
writes to 𝑥 (i.e., (isu(𝑝, 𝑡), isu(𝑝′, 𝑡′)) ∈ RW(𝑥)). Finally, STO relates any event isu(𝑝, 𝑡) with
the set of events del(𝑝′, 𝑡), where 𝑝 ̸= 𝑝′.

Then, we define the happens-before relation HB as the transitive closure of the union of
all the relations in the trace, i.e., HB = (PO ∪ WR ∪ WW ∪ RW ∪ STO)+. Since we reason
about only one trace at a time, we may say that a trace is simply a summary 𝜏 , keeping the
relations implicit. The trace of the CCv execution in Fig. 2b is shown on the left of Fig. 3.
Tr(𝒫)X denotes the set of traces of executions of a program 𝒫 under X ∈ {CCv, CM, CC}.

The causal order CO of a trace tr = (𝜏, PO, WR, WW, RW, STO) is the transitive closure
of the union of the program order, write-read relation, and the same-transaction relation, i.e.,
CO = (PO ∪ WR ∪ STO)+. For readability, we write ev1 →HB ev2 instead of (ev1, ev2) ∈ HB.

4.2 Program Semantics Under Serializability
The semantics of a program under serializability [37] can be defined using a transition system
where the configurations keep a single shared-variable valuation (accessed by all processes)
with the standard interpretation of read or write statements. Each transaction executes in
isolation. Alternatively, the serializability semantics can be defined as a restriction of [𝒫]X,
X ∈ {CCv, CM, CC}, to the set of executions where each transaction is immediately delivered
to all processes, i.e., each event end(𝑝, 𝑡) is immediately followed by all del(𝑝′, 𝑡) with 𝑝′ ̸= 𝑝.
Such executions are called serializable and the set of serializable executions of a program 𝒫 is
denoted by ExSER(𝒫). The latter definition is easier to reason about when relating executions
under causal consistency and serializability, respectively.

A trace tr is called serializable if it is the trace of a serializable execution. Let TrSER(𝒫) de-
note the set of serializable traces. Given a serializable trace tr = (𝜏, PO, WR, WW, RW, STO)
we have that every event isu(𝑝, 𝑡) in 𝜏 is immediately followed by all del(𝑝′, 𝑡) with 𝑝′ ̸= 𝑝.
For simplicity, we write 𝜏 as a sequence of “atomic macro-events” (𝑝, 𝑡) where (𝑝, 𝑡) denotes
a sequence isu(𝑝, 𝑡) · del(𝑝1, 𝑡) · . . . · del(𝑝𝑛, 𝑡) for some 𝑝 ∈ P = {𝑝, 𝑝1, . . . , 𝑝𝑛}. We say that 𝑡

is “atomic”. In Fig. 3, 𝑡2 is atomic and we can use (𝑝2, 𝑡3) instead of isu(𝑝2, 𝑡3)del(𝑝1, 𝑡3).
Since multiple executions may have the same trace, it is possible that an execution 𝜌

produced by a variation of causal consistency has a serializable trace tr(𝜌) even though

CONCUR 2019

30:8 Robustness Against Transactional Causal Consistency

p1
t1 [r1 = x //0

x = r1 + 1]
||

p2
t2 [r2 = x //0

x = r2 + 1]

(a) Lost Update (LU).

p1
t1 [x = 1]
t2 [r1 = y] //0

||
p2

t3 [y = 1]
t4 [r2 = x] //0

(b) Store Buffering (SB).

[a = 1
z = 1
x = 1
y = 1]

||

if (a == 1)
[x = 2
r1 = z //0
r2 = y //1
r3 = x] //2

(c) Without transactions,
non-robust against CCv.

[a = 1
x = 1
r1 = x] //2

||
if (a == 1)

[x = 2
r2 = x] //1

(d) Without transactions, non-
robust only against CM.

if (*)
[x = 1]

else
[r1 = x]

||

if (*)
[x = 2]

else
[r2 = x]

(e) Robust against both
CM and CCv.

[x = 1]
[r1 = y] ||

[r2 = x
if (r2 == 1)
y = 1]

(f) Robust against both CM and CCv.

Figure 4 (Non-)robust programs. For non-robust programs, the read instructions are commented
with the values they return in robustness violations. The condition of if-else is checked inside a
transaction whose demarcation is omitted for readability (* denotes non-deterministic choice).

end(𝑝, 𝑡) actions may not be immediately followed by del(𝑝′, 𝑡) actions. However, 𝜌 would be
equivalent, up to reordering of “independent” (or commutative) transitions, to a serializable
execution. The happens-before relation between events is extended to transactions as follows:
a transaction 𝑡1 happens-before another transaction 𝑡2 ̸= 𝑡1 if the trace tr contains an event
of transaction 𝑡1 which happens-before an event of 𝑡2. The happens-before relation between
transactions is denoted by HB𝑡 and called transactional happens-before (an example is given
on the right of Fig. 3). The following result characterizes serializable traces.

I Theorem 3 ([2, 41]). A trace tr is serializable iff HB𝑡 is acyclic.

4.3 Robustness Problem
We consider the problem of checking whether the causally-consistent semantics of a program
produces the same set of traces as the serializability semantics.

I Definition 4. A program 𝒫 is called robust against a semantics X ∈ {CCv, CM, CC} iff
TrX(𝒫) = TrSER(𝒫).

Since TrSER(𝒫) ⊆ TrX(𝒫), the problem of checking robustness of a program 𝒫 against a
semantics X boils down to checking whether there exists a trace tr ∈ TrX(𝒫) ∖ TrSER(𝒫). We
call tr a robustness violation (or violation, for short). By Theorem 3, HB𝑡 of tr is cyclic.

We discuss several examples of programs which are (non-) robust against both CM and
CCv or only one of them. Fig. 4a and Fig. 4b show examples of programs that are not robust
against both CM and CCv, which have also been discussed in the literature on weak memory
models, e.g. [6]. The execution of Lost Update under both CM and CCv allows that the two
reads of x in transactions 𝑡1 and 𝑡2 return 0 although this cannot happen under serializability.
Also, executing Store Buffering under both CM and CCv allows that the reads of x and y return
0 although this would not be possible under serializability. These values are possible because
the first transaction in each of the processes may not be delivered to the other process.

Assuming for the moment that each instruction in Fig. 4c and Fig. 4d forms a different
transaction, the values we give in comments show that the program in Fig. 4c, resp., Fig. 4d,
is not robust against CCv, resp., CM. The values in Fig. 4c are possible assuming that the
timestamp of the transaction [x = 1] is smaller than the timestamp of [x = 2] (which
means that if the former is delivered after the second process executes [x = 2], then it

S. M. Beillahi, A. Bouajjani, and C. Enea 30:9

will be discarded). Moreover, enlarging the transactions as shown in Fig. 4c, the program
becomes robust against CCv. The values in Fig. 4d are possible under CM because different
processes do not need to agree on the order in which to apply transactions, each process
applying the transaction received from the other process last. However, under CCv this
behavior is not possible, the program being actually robust against CCv. As in the previous
case, enlarging the transactions as shown in the figure leads to a robust program against CM.

We end the discussion with several examples of programs that are robust against both
CM and CCv. These are simplified models of real applications reported in [28]. The program
in Fig. 4e can be understood as the parallel execution of two processes that either create
a new user of some service, represented abstractly as a write on a variable x or check its
credentials, represented as a read of x (the non-deterministic choice abstracts some code
that checks whether the user exists). Clearly this program is robust against both CM and
CCv since each process does a single access to the shared variable. Although we considered
simple transactions that access a single shared-variable this would hold even for “bigger”
transactions that access an arbitrary number of variables. The program in Fig. 4f can be
thought of as a process creating a new user of some service and reading some additional data
in parallel to a process that updates that data only if the user exists. It is rather easy to see
that it is also robust against both CM and CCv.

5 Robustness Against Causal Consistency

We consider now the issue of checking robustness against a variation of causal consistency,
considering first the case of CCv and CM. The result concerning CC is derived from the one
concerning CM. We show next that a robustness violation should contain at least an issue and
a store event of the same transaction that are separated by another event that occurs after
the issue and before the store and which is related to both via the happens-before relation.
Otherwise, since any two events which are not related by happens-before could be swapped
in order to derive an execution with the same trace, every store event could be swapped until
it immediately follows the corresponding issue and the execution would be serializable.

I Lemma 5. Given a robustness violation 𝜏 , there exists a transaction 𝑡 such that 𝜏 = 𝛼 ·
isu(𝑝, 𝑡)·𝛽 ·del(𝑝0, 𝑡)·𝛾 and an event 𝑎 ∈ 𝛽 such that (isu(𝑝, 𝑡), 𝑎) ∈ HB and (𝑎, del(𝑝0, 𝑡)) ∈ HB.

The transaction 𝑡 in the trace 𝜏 above is called a delayed transaction. The happens-before
constraints imply that 𝑡 belongs to an HB𝑡 cycle.

Next, we show that a program which is not robust against CCv or CM admits violations of
particular shapes, which enables reducing robustness checking to a reachability problem in a
program running under serializability (presented in Section 6).

5.1 Robustness Violations under Causal Convergence
Roughly, our characterization of CCv robustness violations states that the first delayed
transaction (which must exist by Lemma 5) is followed by a possibly-empty sequence of
delayed transactions that form a “causality chain”, i.e., every new delayed transaction is
causally ordered after the previous delayed transaction. Moreover, the issue event of the last
delayed transaction happens-before the issue event of another transaction that reads a variable
updated by the first delayed transaction (this completes a cycle in HB𝑡). We say that a
sequence of issue events ev1 ·ev2 · . . . ev𝑛 forms a causality chain when (ev𝑖, ev𝑖+1) ∈ CO for all
1 ≤ 𝑖 ≤ 𝑛 − 1. Also, for simplicity, we use “macro-events” (𝑝, 𝑡) even in traces obtained under
causal consistency (recall that this notation was introduced to simplify serializable traces),

CONCUR 2019

30:10 Robustness Against Transactional Causal Consistency

𝜏CCv1:
𝛼 isu(𝑝, 𝑡)

∘ 𝛽 (𝑝0, 𝑡0)∘
del(𝑝0, 𝑡)
∘ 𝛾

HB ∖ CO
∀

CO
∀

WW(𝑥)
RW(𝑥); STO

𝜏CCv2:
𝛼 isu(𝑝, 𝑡)|¬𝑥∘ 𝛽1|¬𝑥

isu(𝑝1, 𝑡1)∘ 𝛽2
del(𝑝0, 𝑡)

∘ 𝛾

HB ∖ CO
∀

CO WW(𝑥) ∪ RW(𝑥)
∃

HB
∀

RW(𝑦 ̸= 𝑥)
∃

𝜏CM1:
𝛼 isu(𝑝, 𝑡)

∘ 𝛽 (𝑝0, 𝑡0)∘
del(𝑝0, 𝑡)

∘ 𝛾

HB ∖ CO
∀

CO
∀

WW(𝑥)
WW(𝑥)

𝜏CM2:
𝛼 isu(𝑝, 𝑡)|¬𝑥∘ 𝛽1|¬𝑥

isu(𝑝1, 𝑡1)∘ 𝛽2
del(𝑝0, 𝑡)

∘ 𝛾

HB ∖ CO
∀

CO RW(𝑥)
∃

RW(𝑦 ̸= 𝑥)
∃

HB
∀

Figure 5 Robustness violation patterns. We use 𝑎 𝛽
𝑅 ∀

to denote ∀ 𝑏 ∈ 𝛽. (𝑎, 𝑏) ∈ 𝑅. We
use 𝛽1|¬𝑥 to say that all delayed transactions in 𝛽1 do not access 𝑥. For violations 𝜏CCv1 and 𝜏CM1, 𝑡

is the only delayed transaction. For 𝜏CCv2 and 𝜏CM2, all delayed transactions are in 𝛽1|¬𝑥 and they
form a causality chain that starts at isu(𝑝, 𝑡) and ends at isu(𝑝1, 𝑡1).

i.e., we assume that any sequence of events formed of an issue isu(𝑝, 𝑡) followed immediately
by all the store events del(𝑝′, 𝑡) is replaced by (𝑝, 𝑡). Then, all the relations that held between
an event ev of such a sequence and another event ev′, e.g., (ev, ev′) ∈ PO, are defined to
hold as well between the corresponding macro-event (𝑝, 𝑡) and ev′, e.g, ((𝑝, 𝑡), ev′) ∈ PO.

I Theorem 6. A program 𝒫 is not robust against CCv iff Tr(𝒫)CCv contains a trace of type
𝜏CCv1 = 𝛼 · isu(𝑝, 𝑡) ·𝛽 · (𝑝0, 𝑡0) ·del(𝑝0, 𝑡) ·𝛾 or 𝜏CCv2 = 𝛼 · isu(𝑝, 𝑡) ·𝛽1 · isu(𝑝1, 𝑡1) ·𝛽2 ·del(𝑝0, 𝑡) ·𝛾
that satisfies the properties given in Fig. 5.

Above, 𝜏CCv1 contains a single delayed transaction while 𝜏CCv2 may contain arbitrarily many
delayed transactions. The issue event of the last delayed transactions, i.e., isu(𝑝, 𝑡) in 𝜏CCv1
and isu(𝑝1, 𝑡1) in 𝜏CCv2, happens before (𝑝0, 𝑡0) and some event in 𝛽2, respectively, which
read a variable updated by the first delayed transaction. The theorem above allows 𝛽1 = 𝜖,
𝛽2 = 𝜖, 𝛽 = 𝜖, 𝛾 = 𝜖, 𝑝 = 𝑝1, 𝑡 = 𝑡1, and 𝑡1 to be a read-only transaction. If 𝑡1 is a read-only
transaction then isu(𝑝1, 𝑡′) has the same effect as (𝑝1, 𝑡1) since 𝑡1 does not contain writes.
Fig. 6a and Fig. 6b show two violations under CCv.

The violation patterns in Theorem 6 characterize minimal robustness violations where
the measure defined as the sum of the distances (number of events that are causally related
to the issue) between issue and store events of the same transaction is minimal. Minimality
enforces the constraints stated above. For example, in the context of 𝜏CCv2, the delayed
transactions in 𝛽1 cannot create a cycle in the transactional happens-before (otherwise,
𝛼 · isu(𝑝, 𝑡) · 𝛽1 · del(𝑝0, 𝑡) · 𝛾′ would be a violation with a smaller measure, which contradicts
minimality). Also, if it were to have a delayed transaction 𝑡2 in 𝛽2 (resp., 𝛽 for 𝜏CCv1), then it
is possible to remove some transaction (all its issue and store events) from the original trace
and obtain a new violation with a smaller measure. For instance, in the case of 𝛽2, if 𝑡 ̸= 𝑡1,
then we can safely remove the last delayed transaction (i.e., 𝑡1), that is causally dependent
on the first delayed transaction, since all events in 𝛽2 · del(𝑝0, 𝑡) · 𝛾 neither read from the

S. M. Beillahi, A. Bouajjani, and C. Enea 30:11

isu(𝑝1, 𝑡1) (𝑝2, 𝑡2) del(𝑝2, 𝑡1)
WW

STO

RW

(a) Violation of LU pro-
gram in Fig. 4a.

isu(𝑝1, 𝑡1) isu(𝑝1, 𝑡2) (𝑝2, 𝑡3) (𝑝2, 𝑡4) del(𝑝2, 𝑡1)

PO RW PO RW

(b) Violation of SB program in Fig. 4b.

isu(𝑝1, 𝑡1) (𝑝2, 𝑡2) del(𝑝2, 𝑡1)

WW WW

(c) Violation of LU program
in Fig. 4a.

Figure 6 (a) A 𝜏CCv1 violation where 𝛽2 = 𝜖, 𝛾 = 𝜖, and 𝑡 and 𝑡0 correspond to 𝑡1 and 𝑡2.
(b) A 𝜏CCv2 (resp., 𝜏CM2) violation where 𝑡 and 𝑡1 correspond to 𝑡1 and 𝑡2. 𝑡1 is a read-only
transaction. Also, 𝛽1 = 𝜖, 𝛽2 = (𝑝2, 𝑡3) · (𝑝2, 𝑡4), 𝛾 = 𝜖, such that (isu(𝑝1, 𝑡2), (𝑝2, 𝑡3)) ∈ RW(𝑦) and
((𝑝2, 𝑡4), del(𝑝2, 𝑡1)) ∈ RW(𝑥). (c) A 𝜏CM1 violation with 𝛽2 = 𝛾 = 𝜖, and 𝑡 and 𝑡0 correspond to 𝑡1
and 𝑡2. In all traces, we show only the relations that are part of the happens-before cycle.

writes of 𝑡1 nor are issued by the same process as 𝑡1. The resulting trace is still a robustness
violation (because of the HB𝑡 cycle involving 𝑡2) but with a smaller measure. Note that all
processes that delayed transactions, stop executing new transactions in 𝛽2 (resp., 𝛽) because
of the relation HB ∖ CO, shown in Fig. 5, between the delayed transaction 𝑡1 (resp., 𝑡) and
events in 𝛽2 (resp., 𝛽). This characterization of minimal violations is essential for deriving
an optimal reduction of robustness checking to SC reachability (presented in Section 6).

5.2 Robustness Violations under Causal Memory

The characterization of robustness violations under CM is at some level similar to that of
robustness violations under CCv. However, some instance of the violation pattern under CCv
is not possible under CM and CM admits some class of violations that is not possible under
CCv. This reflects the fact that these consistency models are incomparable in general. The
following theorem gives the precise characterization. Roughly, a program is not robust if it
admits a violation which can either be because of two concurrent transactions that write to
the same variable (a write-write race) or because of a restriction of the pattern admitted
by CCv where the last delayed transaction must be related only by RW in a happens-before
path with future transactions. The first pattern is not admitted by CCv because the writes
to each variable are executed according to the timestamp order.

I Theorem 7. A program 𝒫 is not robust against CM iff Tr(𝒫)CM contains a trace of type
𝜏CM1 = 𝛼 · isu(𝑝, 𝑡) · 𝛽 · (𝑝0, 𝑡0) · del(𝑝0, 𝑡) · 𝛾 or 𝜏CM2 = 𝛼 · isu(𝑝, 𝑡) · 𝛽1 · isu(𝑝1, 𝑡1) · 𝛽2 · del(𝑝0, 𝑡) · 𝛾

that satisfies the properties given in Fig. 5.

The CM violation in Fig. 6b (pattern 𝜏CM2) is a violation under CCv as well which corresponds
to the pattern 𝜏CCv2. The detection of the violation pattern 𝜏CM1 (e.g., Fig. 6c) implies the
existence of a write-write race under CM. Conversely, if a program has a trace which contains
a write-write race under CM, then this trace must be a robustness violation since the two
transactions, that caused the write-write race, form a cycle in the store order hence a cycle
in the transactional happens-before order2. Thus, the program is not robust against CM.
Therefore, a program which is robust against CM is also write-write race free under CM. Since
without write-write races, the CM and the CCv semantics coincide, we get the following.

I Lemma 8. If a program 𝒫 is robust against CM, then 𝒫 is robust against CCv.

2 Given two concurrent transactions 𝑡1 and 𝑡2 that write on a common variable 𝑥, isu(𝑝1, 𝑡1) is in store
order before del(𝑝1, 𝑡2) and isu(𝑝2, 𝑡2) before del(𝑝2, 𝑡1).

CONCUR 2019

30:12 Robustness Against Transactional Causal Consistency

5.3 Robustness Violations under Weak Causal Consistency
If a program is robust against CM, then it must not contain a write-write race under CM (note
that this is not true for CCv). Therefore, by Theorem 2, a program which is robust against
CM has the same set of traces under both CM and CC, which implies that it is also robust
against CC. Conversely, since CC is weaker than CM (i.e., TrCM(𝒫) ⊆ TrCC(𝒫) for any 𝒫), if a
program is robust against CC then it is robust against CM. Thus, we obtain the following.

I Theorem 9. A program 𝒫 is robust against CC iff it is robust against CM.

6 Reduction to SC Reachability

We present a reduction of robustness checking to a reachability problem in a program executing
under the serializability semantics. Given a program 𝒫 and a semantics X ∈ {CCv, CM, CC},
we define an instrumentation of 𝒫 such that 𝒫 is not robust against X iff the instrumentation
reaches an error state under serializability. The instrumentation uses auxiliary variables to
simulate the robustness violations (in particular, the delayed transactions) satisfying the
patterns given in Fig. 5. We focus our presentation on the second violation pattern of CCv
(similar to the second violation pattern of CM): 𝜏CCv2 = 𝛼·isu(𝑝, 𝑡)·𝛽1 ·isu(𝑝1, 𝑡1)·𝛽2 ·del(𝑝0, 𝑡)·𝛾.
We describe the instrumentation only informally, the precise definition can be found in [11].

The process 𝑝 that delayed the first transaction 𝑡 is called the Attacker. The processes
delaying transactions in 𝛽1 · isu(𝑝1, 𝑡1) are called Visibility Helpers. Recall that all the delayed
transactions must be causally after isu(𝑝, 𝑡) and causally before isu(𝑝1, 𝑡1). The processes
that execute transactions in 𝛽2 and contribute to the happens-before path between isu(𝑝1, 𝑡1)
and del(𝑝0, 𝑡) are called Happens-Before Helpers. A happens-before helper cannot be the
attacker or a visibility helper since this would contradict causal delivery (a transaction of
a happens-before helper is not delayed, so it is visible immediately to all processes, and it
cannot follow a delayed transaction). 𝛾 contains the stores of the delayed transactions from
isu(𝑝, 𝑡) ·𝛽1 · isu(𝑝1, 𝑡1). It is important to notice that we may have 𝑡 = 𝑡1. In this case, 𝛽1 = 𝜖

and the only delayed transaction is 𝑡. Also, all delayed transactions in 𝛽1 including 𝑡1 may
be issued on the same process as 𝑡. In all these cases, the set of Visibility Helpers is empty.

The instrumentation uses two copies of the set of shared variables in the original program.
We use primed variables 𝑥′ to denote the second copy. When a process becomes the attacker
or a visibility helper, it will write only to the second copy that is visible only to these
processes (and remains invisible to the other processes including the happens-before helpers).
The writes made by the other processes including the happens-before helpers are made visible
to all processes, i.e., they are applied on both copies of the shared variables.

To establish the causality chains of delayed transactions performed by the attacker and
the visibility helpers, we look whether a transaction can extend the causality chain started
by the first delayed transaction from the attacker. In order for a transaction to “join” the
causality chain, it has to satisfy one of the following conditions:

the transaction is issued by a process that has already another transaction in the causality
chain. Thus, we ensure the continuity of the causality chain through program order.
the transaction is reading from a variable updated by a previous transaction in the causality
chain. Hence, we ensure the continuity of the causality chain through write-read.

We introduce a flag for each shared variable to mark the fact that it was updated by a
previous transaction in the causality chain. These flags are used by the instrumentation to
establish whether a transaction “joins” a causality chain. Enforcing a happens-before path

S. M. Beillahi, A. Bouajjani, and C. Enea 30:13

starting in the last delayed transaction, using transactions of the happens-before helpers,
can be done in the similar way. Compared to causality chains, there are two more cases in
which a transaction can extend a happens-before path:

the transaction writes to a variable read by a previous transaction in the happens-before
path. Hence, we ensure the continuity of the happens-before path through read-write.
the transaction writes to a variable updated by a previous transaction in the happens-
before path. We ensure the continuity of the happens-before path through write-write.

We extend the set of flags used for causality chains to record if a variable was read or written
by a previous transaction in the happens-before path. Overall, the instrumentation uses a
flag 𝑥.𝑒𝑣𝑒𝑛𝑡 or 𝑥′.𝑒𝑣𝑒𝑛𝑡 for each (copy of a) shared variable, that records the type of the
last access (read or write) to that variable. Initially, these flags and other flags used by the
instrumentation as explained below are initialized to null (⊥).

In general, whether a process is an attacker, visibility helper, or happens-before helper is
not enforced syntactically by the instrumentation, and can vary from execution to execution.
The role of a process in an execution is set non-deterministically during the execution using
some additional process-local flags. Thus, during an execution, each process chooses to set
to true at most one of the flags 𝑝.𝑎, 𝑝.𝑣ℎ, and 𝑝.ℎ𝑏ℎ, implying that the process becomes an
attacker, visibility helper, or happens-before helper, respectively. At most one process can be
an attacker, i.e., set 𝑝.𝑎 to true. Before a process becomes an attacker or visibility helper it
passes though a stage where it executes transactions in the usual way without delaying them.

A process can non-deterministically choose to delay a transaction at which point it sets a
global flag 𝑎trA to true. During the delayed transaction it chooses randomly a write instruction
to a shared variable 𝑦 and stores the name of this variable in the global variable 𝑎stA . The
values written during delayed transactions are stored in primed variables and visible only to
the attacker and the visibility helpers. Each time the attacker writes to a variable 𝑧′ (the
copy of 𝑧 from the original program) during a delayed transaction, it sets the flag 𝑧′.𝑒𝑣𝑒𝑛𝑡

to st which will allow other processes that read the same variable to join the set of visibility
helpers and start delaying their transactions. Once the attacker delays a transaction, it starts
reading only from the primed variables (i.e., 𝑧′).

When 𝑎trA is set to true by the attacker, other processes continue the execution of their
original instructions but, whenever they store a value they write it to both the shared variable
𝑧 and the primed variable 𝑧′ so it is visible to all processes. When a process chooses non
deterministically to join the visibility helpers, it delays all writes (i.e., writes only to primed
variables) and reads only from the primed variables.

In order for the attacker or a visibility helper to start the happens-before path, it has
to either read or write a shared variable 𝑥 that was not accessed by a delayed transaction
(i.e., 𝑥′.𝑒𝑣𝑒𝑛𝑡 =⊥). In this case we set the global flag HB to true to mark the start of the
happens-before path and the end of the causality chain, and set the flag 𝑥.𝑒𝑣𝑒𝑛𝑡 to ld. When
HB becomes true the attacker and the visibility helpers stop executing new transactions.

Also, when HB becomes true, the remaining processes can choose non-deterministically to
join the set of happens-before helpers, i.e., continue the happens-before path created by the
existing happens-before helpers, the attacker, or visibility helper. The happens-before helpers
continue executing their instructions, until one of them reads from the variable 𝑦 whose
name was stored in 𝑎stA . This establishes a happens-before path between the last delayed
transaction and a “fictitious” store event corresponding to the first delayed transaction that
could be executed just after this read of 𝑦. The execution doesn’t have to contain this store
event explicitly since it is always enabled. Therefore, at the end of every transaction, the
instrumentation checks whether the transaction reads 𝑦. If this is the case, then the execution
stops and goes to an error state to indicate that this is a robustness violation.

CONCUR 2019

30:14 Robustness Against Transactional Causal Consistency

The role of a process in an execution is chosen non-deterministically at runtime. Therefore,
the instrumentation [[𝒫]] of a program 𝒫 is obtained by replacing each instruction ⟨𝑙𝑖𝑛𝑠𝑡⟩
with the concatenation of the instrumentations corresponding to the attacker, the visibility
helpers, and the happens-before helpers, i.e., [[⟨𝑙𝑖𝑛𝑠𝑡⟩]] ::= [[⟨𝑙𝑖𝑛𝑠𝑡⟩]]A [[⟨𝑙𝑖𝑛𝑠𝑡⟩]]VH [[⟨𝑙𝑖𝑛𝑠𝑡⟩]]HbH.
The following theorem states the correctness of the instrumentation.

I Theorem 10. A program 𝒫 is not robust against CCv iff [[𝒫]] reaches the error state.

A similar instrumentation can be defined for the other variations of causal consistency, i.e.,
causal memory (CM) and weak causal consistency (CC).

The following result states the complexity of checking robustness for finite-state programs 3

against one of the three variations of causal consistency considered in this work (we use
causal consistency as a generic name to refer to all of them). It is a direct consequence
of Theorem 10 and of previous results concerning the reachability problem in concurrent
programs running over SC, with a fixed [27] or parametric number of processes [40].

I Corollary 11. Checking robustness of finite-state programs against causal consistency is
PSPACE-complete when the number of processes is fixed and EXPSPACE-complete, otherwise.

7 Related Work

Causal consistency is one of the oldest consistency models for distributed systems [30]. Formal
definitions of several variants of causal consistency, suitable for different types of applications,
have been introduced recently [19, 18, 38, 14]. The definitions in this paper are inspired from
these works and coincide with those given in [14]. In that paper, the authors address the
decidability and the complexity of verifying that an implementation of a storage system is
causally consistent (i.e., all its computations, for every client, are causally consistent).

While our paper focuses on trace-based robustness, state-based robustness requires that
a program is robust if the set of all its reachable states under the weak semantics is the
same as its set of reachable states under the strong semantics. While state-robustness is
the necessary and sufficient concept for preserving state-invariants, its verification, which
amounts in computing the set of reachable states under the weak semantics, is in general a
hard problem. The decidability and the complexity of this problem has been investigated in
the context of relaxed memory models such as TSO and Power, and it has been shown that
it is either decidable but highly complex (non-primitive recursive), or undecidable [8, 9]. As
far as we know, the decidability and complexity of this problem has not been investigated for
causal consistency. Automatic procedures for approximate reachability/invariant checking
have been proposed using either abstractions or bounded analyses, e.g., [10, 5, 21, 1]. Proof
methods have also been developed for verifying invariants in the context of weakly consistent
models such as [29, 26, 36, 4]. These methods, however, do not provide decision procedures.

Decidability and complexity of trace-based robustness has been investigated for the TSO
and Power memory models [15, 13, 22]. The work we present in this paper borrows the idea of
using minimal violation characterizations for building an instrumentation allowing to obtain
a reduction of the robustness checking problem to the reachability checking problem over SC.
However, applying this approach to the case of causal consistency is not straightforward and
requires different proof techniques. Dealing with causal consistency is far more tricky and
difficult than dealing with TSO, and requires coming up with radically different arguments

3 That is, programs where the number of variables and the data domain are bounded.

S. M. Beillahi, A. Bouajjani, and C. Enea 30:15

and proofs, for (1) characterizing in a finite manner the set of violations, (2) showing that
this characterization is sound and complete, and (3) using effectively this characterization in
the definition of the reduction to the reachability problem.

As far as we know, our work is the first one that establishes results on the decidability and
complexity issues of the robustness problem in the context of causal consistency, and taking
into account transactions. The existing work on the verification of robustness for distributed
systems consider essentially trace-based concepts of robustness and provide either over- or
under-approximate analyses for checking it. The static analyses proposed in [12, 16, 17, 20]
are based on computing an abstraction of the set of computations, which is used in searching
for robustness violations. These approaches may return false alarms due to the abstractions
they consider. In particular, [12] shows that a trace under causal convergence is not admitted
by the serializability semantics iff it contains a (transactional) happens-before cycle with a
RW dependency, and another RW or WW dependency. This characterization alone is not
sufficient to prove the reduction in Theorem 10, which requires a finer characterization of
robustness violations. A sound (but not complete) bounded analysis for detecting robustness
violation is proposed in [35]. Our approach is technically different, is precise, and provides a
decision procedure for checking robustness when the program is finite-state.

References
1 Parosh Aziz Abdulla, Mohamed Faouzi Atig, Ahmed Bouajjani, and Tuan Phong Ngo. Context-

Bounded Analysis for POWER. In Axel Legay and Tiziana Margaria, editors, Tools and
Algorithms for the Construction and Analysis of Systems - 23rd International Conference,
TACAS 2017, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, Part II, volume
10206 of Lecture Notes in Computer Science, pages 56–74, 2017.

2 Atul Adya. Weak consistency: A generalized theory and optimistic implementations for
distributed transactions. PhD thesis, MIT, 1999.

3 Mustaque Ahamad, Gil Neiger, James E. Burns, Prince Kohli, and Phillip W. Hutto. Causal
Memory: Definitions, Implementation, and Programming. Distributed Computing, 9(1):37–49,
1995.

4 Jade Alglave and Patrick Cousot. Ogre and Pythia: an invariance proof method for weak
consistency models. In Giuseppe Castagna and Andrew D. Gordon, editors, Proceedings of
the 44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL 2017,
Paris, France, January 18-20, 2017, pages 3–18. ACM, 2017.

5 Jade Alglave, Daniel Kroening, and Michael Tautschnig. Partial Orders for Efficient Bounded
Model Checking of Concurrent Software. In Natasha Sharygina and Helmut Veith, editors,
Computer Aided Verification - 25th International Conference, CAV 2013, Saint Petersburg,
Russia, July 13-19, 2013. Proceedings, volume 8044 of Lecture Notes in Computer Science,
pages 141–157. Springer, 2013.

6 Jade Alglave, Luc Maranget, and Michael Tautschnig. Herding Cats: Modelling, Simulation,
Testing, and Data Mining for Weak Memory. ACM Trans. Program. Lang. Syst., 36(2):7:1–7:74,
2014.

7 Sérgio Almeida, João Leitão, and Luís E. T. Rodrigues. ChainReaction: a causal+ consistent
datastore based on chain replication. In Zdenek Hanzálek, Hermann Härtig, Miguel Castro,
and M. Frans Kaashoek, editors, Eighth Eurosys Conference 2013, EuroSys ’13, Prague, Czech
Republic, April 14-17, 2013, pages 85–98. ACM, 2013.

8 Mohamed Faouzi Atig, Ahmed Bouajjani, Sebastian Burckhardt, and Madanlal Musuvathi.
On the verification problem for weak memory models. In Manuel V. Hermenegildo and Jens
Palsberg, editors, Proceedings of the 37th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2010, Madrid, Spain, January 17-23, 2010, pages 7–18.
ACM, 2010.

CONCUR 2019

30:16 Robustness Against Transactional Causal Consistency

9 Mohamed Faouzi Atig, Ahmed Bouajjani, Sebastian Burckhardt, and Madanlal Musuvathi.
What’s Decidable about Weak Memory Models? In Helmut Seidl, editor, Programming
Languages and Systems - 21st European Symposium on Programming, ESOP 2012, Held as
Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2012,
Tallinn, Estonia, March 24 - April 1, 2012. Proceedings, volume 7211 of Lecture Notes in
Computer Science, pages 26–46. Springer, 2012.

10 Mohamed Faouzi Atig, Ahmed Bouajjani, and Gennaro Parlato. Getting Rid of Store-Buffers
in TSO Analysis. In Ganesh Gopalakrishnan and Shaz Qadeer, editors, Computer Aided
Verification - 23rd International Conference, CAV 2011, Snowbird, UT, USA, July 14-20,
2011. Proceedings, volume 6806 of Lecture Notes in Computer Science, pages 99–115. Springer,
2011.

11 Sidi Mohamed Beillahi, Ahmed Bouajjani, and Constantin Enea. Robustness Against Trans-
actional Causal Consistency. CoRR, 2019.

12 Giovanni Bernardi and Alexey Gotsman. Robustness against Consistency Models with Atomic
Visibility. In Josée Desharnais and Radha Jagadeesan, editors, 27th International Conference
on Concurrency Theory, CONCUR 2016, August 23-26, 2016, Québec City, Canada, volume 59
of LIPIcs, pages 7:1–7:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016.

13 Ahmed Bouajjani, Egor Derevenetc, and Roland Meyer. Checking and Enforcing Robustness
against TSO. In Matthias Felleisen and Philippa Gardner, editors, Programming Languages
and Systems - 22nd European Symposium on Programming, ESOP 2013, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2013, Rome, Italy,
March 16-24, 2013. Proceedings, volume 7792 of Lecture Notes in Computer Science, pages
533–553. Springer, 2013.

14 Ahmed Bouajjani, Constantin Enea, Rachid Guerraoui, and Jad Hamza. On verifying causal
consistency. In Giuseppe Castagna and Andrew D. Gordon, editors, Proceedings of the 44th
ACM SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, Paris,
France, January 18-20, 2017, pages 626–638. ACM, 2017.

15 Ahmed Bouajjani, Roland Meyer, and Eike Möhlmann. Deciding Robustness against Total
Store Ordering. In Luca Aceto, Monika Henzinger, and Jirí Sgall, editors, Automata, Languages
and Programming - 38th International Colloquium, ICALP 2011, Zurich, Switzerland, July
4-8, 2011, Proceedings, Part II, volume 6756 of Lecture Notes in Computer Science, pages
428–440. Springer, 2011.

16 Lucas Brutschy, Dimitar Dimitrov, Peter Müller, and Martin T. Vechev. Serializability
for eventual consistency: criterion, analysis, and applications. In Giuseppe Castagna and
Andrew D. Gordon, editors, Proceedings of the 44th ACM SIGPLAN Symposium on Principles
of Programming Languages, POPL 2017, Paris, France, January 18-20, 2017, pages 458–472.
ACM, 2017.

17 Lucas Brutschy, Dimitar Dimitrov, Peter Müller, and Martin T. Vechev. Static serializability
analysis for causal consistency. In Jeffrey S. Foster and Dan Grossman, editors, Proceedings of
the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2018, Philadelphia, PA, USA, June 18-22, 2018, pages 90–104. ACM, 2018.

18 Sebastian Burckhardt. Principles of Eventual Consistency. Foundations and Trends in
Programming Languages, 1(1-2):1–150, 2014.

19 Sebastian Burckhardt, Alexey Gotsman, Hongseok Yang, and Marek Zawirski. Replicated
data types: specification, verification, optimality. In Suresh Jagannathan and Peter Sewell,
editors, The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’14, San Diego, CA, USA, January 20-21, 2014, pages 271–284. ACM,
2014.

20 Andrea Cerone and Alexey Gotsman. Analysing Snapshot Isolation. J. ACM, 65(2):11:1–11:41,
2018.

S. M. Beillahi, A. Bouajjani, and C. Enea 30:17

21 Andrei Marian Dan, Yuri Meshman, Martin T. Vechev, and Eran Yahav. Effective abstractions
for verification under relaxed memory models. Computer Languages, Systems & Structures,
47:62–76, 2017.

22 Egor Derevenetc and Roland Meyer. Robustness against Power is PSpace-complete. In
Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias, editors, Automata,
Languages, and Programming - 41st International Colloquium, ICALP 2014, Copenhagen,
Denmark, July 8-11, 2014, Proceedings, Part II, volume 8573 of Lecture Notes in Computer
Science, pages 158–170. Springer, 2014.

23 Jiaqing Du, Sameh Elnikety, Amitabha Roy, and Willy Zwaenepoel. Orbe: scalable causal
consistency using dependency matrices and physical clocks. In Guy M. Lohman, editor, ACM
Symposium on Cloud Computing, SOCC ’13, Santa Clara, CA, USA, October 1-3, 2013, pages
11:1–11:14. ACM, 2013.

24 Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility of Distributed Consensus
with One Faulty Process. J. ACM, 32(2):374–382, 1985.

25 Seth Gilbert and Nancy A. Lynch. Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services. SIGACT News, 33(2):51–59, 2002.

26 Alexey Gotsman, Hongseok Yang, Carla Ferreira, Mahsa Najafzadeh, and Marc Shapiro. ’Cause
I’m strong enough: reasoning about consistency choices in distributed systems. In Rastislav
Bodík and Rupak Majumdar, editors, Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2016, St. Petersburg, FL, USA,
January 20 - 22, 2016, pages 371–384. ACM, 2016.

27 Dexter Kozen. Lower Bounds for Natural Proof Systems. In 18th Annual Symposium on
Foundations of Computer Science, Providence, Rhode Island, USA, 31 October - 1 November
1977, pages 254–266. IEEE Computer Society, 1977.

28 Arthur Kurath. Analyzing Serializability of Cassandra Applications. Master’s thesis, ETH
Zurich, Switzerland, 2017.

29 Ori Lahav and Viktor Vafeiadis. Owicki-Gries Reasoning for Weak Memory Models. In
Magnús M. Halldórsson, Kazuo Iwama, Naoki Kobayashi, and Bettina Speckmann, editors,
Automata, Languages, and Programming - 42nd International Colloquium, ICALP 2015, Kyoto,
Japan, July 6-10, 2015, Proceedings, Part II, volume 9135 of Lecture Notes in Computer
Science, pages 311–323. Springer, 2015.

30 Leslie Lamport. Time, Clocks, and the Ordering of Events in a Distributed System. Commun.
ACM, 21(7):558–565, 1978.

31 Leslie Lamport. How to Make a Multiprocessor Computer That Correctly Executes Multipro-
cess Programs. IEEE Trans. Computers, 28(9):690–691, 1979.

32 Richard J Lipton and Jonathan S Sandberg. PRAM: A scalable shared memory. Technical
Report TR-180-88, Princeton University, Department of Computer Science, August 1988.

33 Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen. Don’t settle
for eventual: scalable causal consistency for wide-area storage with COPS. In Ted Wobber
and Peter Druschel, editors, Proceedings of the 23rd ACM Symposium on Operating Systems
Principles 2011, SOSP 2011, Cascais, Portugal, October 23-26, 2011, pages 401–416. ACM,
2011.

34 Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen. Stronger
Semantics for Low-Latency Geo-Replicated Storage. In Nick Feamster and Jeffrey C. Mogul,
editors, Proceedings of the 10th USENIX Symposium on Networked Systems Design and
Implementation, NSDI 2013, Lombard, IL, USA, April 2-5, 2013, pages 313–328. USENIX
Association, 2013.

35 Kartik Nagar and Suresh Jagannathan. Automatic Detection of Serializability Violations
Under Weak Consistency. In 29th Intern. Conf. on Concurrency Theory (CONCUR’18),
September 2018. to appear.

CONCUR 2019

30:18 Robustness Against Transactional Causal Consistency

36 Mahsa Najafzadeh, Alexey Gotsman, Hongseok Yang, Carla Ferreira, and Marc Shapiro. The
CISE tool: proving weakly-consistent applications correct. In Peter Alvaro and Alysson Bessani,
editors, Proceedings of the 2nd Workshop on the Principles and Practice of Consistency for
Distributed Data, PaPoC@EuroSys 2016, London, United Kingdom, April 18, 2016, pages
2:1–2:3. ACM, 2016.

37 Christos H. Papadimitriou. The serializability of concurrent database updates. J. ACM,
26(4):631–653, 1979.

38 Matthieu Perrin, Achour Mostéfaoui, and Claude Jard. Causal consistency: beyond memory.
In Rafael Asenjo and Tim Harris, editors, Proceedings of the 21st ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPoPP 2016, Barcelona, Spain, March
12-16, 2016, pages 26:1–26:12. ACM, 2016.

39 Nuno M. Preguiça, Marek Zawirski, Annette Bieniusa, Sérgio Duarte, Valter Balegas, Carlos
Baquero, and Marc Shapiro. SwiftCloud: Fault-Tolerant Geo-Replication Integrated all the
Way to the Client Machine. In 33rd IEEE International Symposium on Reliable Distributed
Systems Workshops, SRDS Workshops 2014, Nara, Japan, October 6-9, 2014, pages 30–33.
IEEE Computer Society, 2014.

40 Charles Rackoff. The Covering and Boundedness Problems for Vector Addition Systems.
Theor. Comput. Sci., 6:223–231, 1978.

41 Dennis E. Shasha and Marc Snir. Efficient and Correct Execution of Parallel Programs that
Share Memory. ACM Trans. Program. Lang. Syst., 10(2):282–312, 1988.

Expressive Power of Broadcast Consensus
Protocols
Michael Blondin
Département d’informatique, Université de Sherbrooke, Sherbrooke, Canada
michael.blondin@usherbrooke.ca

Javier Esparza
Fakultät für Informatik, Technische Universität München, Garching bei München, Germany
esparza@in.tum.de

Stefan Jaax
Fakultät für Informatik, Technische Universität München, Garching bei München, Germany
jaax@in.tum.de

Abstract
Population protocols are a formal model of computation by identical, anonymous mobile agents
interacting in pairs. Their computational power is rather limited: Angluin et al. have shown
that they can only compute the predicates over Nk expressible in Presburger arithmetic. For this
reason, several extensions of the model have been proposed, including the addition of devices called
cover-time services, absence detectors, and clocks. All these extensions increase the expressive power
to the class of predicates over Nk lying in the complexity class NL when the input is given in unary.
However, these devices are difficult to implement, since they require that an agent atomically receives
messages from all other agents in a population of unknown size; moreover, the agent must know that
they have all been received. Inspired by the work of the verification community on Emerson and
Namjoshi’s broadcast protocols, we show that NL-power is also achieved by extending population
protocols with reliable broadcasts, a simpler, standard communication primitive.

2012 ACM Subject Classification Theory of computation→ Distributed computing models; Theory
of computation → Complexity classes; Theory of computation → Automata over infinite objects

Keywords and phrases population protocols, complexity theory, counter machines, distributed
computing

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2019.31

Related Version https://arxiv.org/abs/1902.01668

Funding Michael Blondin: Supported by the Fonds de recherche du Québec – Nature et technologies
(FRQNT), by a Quebec–Bavaria project funded by the Fonds de recherche du Québec (FRQ), and
by the Natural Sciences and Engineering Research Council of Canada (NSERC).
Javier Esparza: Supported by an ERC Advanced Grant (787367: PaVeS).
Stefan Jaax: Supported by an ERC Advanced Grant (787367: PaVeS).

Acknowledgements Part of this work was realized while Stefan Jaax was visiting the Université de
Sherbrooke. We warmly thank the anonymous reviewers for their helpful comments and suggestions.

1 Introduction

Population protocols are a theoretical model for the study of ad hoc networks of tiny
computing devices without any infrastructure [5, 6], intensely investigated in recent years
(see e.g. [2, 3, 4, 14]). The model postulates a “soup” of indistinguishable agents that behave
identically, and only have a fixed number of bits of memory, i.e., a finite number of local states.
Agents repeatedly interact in pairs, changing their states according to a joint transition
function. A global fairness condition ensures that every finite sequence of interactions that

© Michael Blondin, Javier Esparza, and Stefan Jaax;
licensed under Creative Commons License CC-BY

30th International Conference on Concurrency Theory (CONCUR 2019).
Editors: Wan Fokkink and Rob van Glabbeek; Article No. 31; pp. 31:1–31:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-2914-2734
mailto:michael.blondin@usherbrooke.ca
https://orcid.org/0000-0001-9862-4919
mailto:esparza@in.tum.de
https://orcid.org/0000-0001-5789-8091
mailto:jaax@in.tum.de
https://doi.org/10.4230/LIPIcs.CONCUR.2019.31
https://arxiv.org/abs/1902.01668
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

31:2 Expressive Power of Broadcast Consensus Protocols

becomes enabled infinitely often is also executed infinitely often. The purpose of a population
protocol is to allow agents to collectively compute some information about their initial
configuration, defined as the function that assigns to each local state the number of agents
that initially occupy it. For example, assume that initially each agent picks a boolean value
by choosing, say, q0 or q1 as its initial state. The many majority protocols described in
the literature allow the agents to eventually reach a stable consensus on the value chosen
by a majority of the agents. More formally, let x0 and x1 denote the initial numbers of
agents in states q0 and q1; majority protocols compute the predicate ϕ : N × N → {0, 1}
given by ϕ(x0, x1) = (x1 ≥ x0). Throughout the paper, we use the term “predicate” as an
abbreviation for “function from Nk to {0, 1} for some k”.

In a seminal paper, Angluin et al. proved that population protocols compute exactly the
predicates expressible in Presburger arithmetic [6, 7]. Thus, for example, agents can decide
if they are at least a certain number, if at least 2/3 of them voted the same way, or, more
generally, if the vector (x1, x2, . . . , xn) representing the number of agents that picked option
1, 2, . . . , n in an election with n choices is a solution of a system of linear inequalities. On
the other hand, they cannot decide if they are a square or a prime number, or if the product
of the number of votes for options 1 and 2 exceeds the number of votes for option 3. Much
work has been devoted to designing more powerful formalisms and analyzing their expressive
power. In particular, population protocols have recently been extended with capabilities
allowing an agent to obtain global information about the current configuration, which we
proceed to describe.

In [22], Michail and Spirakis extend the population protocol model with absence detectors,
by means of which an agent knows, for every state, whether the state is currently populated or
not. Further, they implement absence detectors by a weaker object called a cover-time service,
which allows an agent to deduce if it has interacted with every other agent in the system.
They prove that protocols with cover-time can compute all predicates in DSPACE(logn) and
can only compute predicates in NSPACE(logn) = NL, where n is the number of agents1.

In [8], Aspnes observes that cover-time services are a kind of internal clock mechanism,
and introduces clocked population protocols. Clocked protocols have a clock oracle that
signals to one or more agents that the population has reached a bottom strongly connected
component of the configuration graph, again an item of global information. Aspnes shows
that clocked protocols can compute exactly the predicates in NL.

Absence detectors, cover-time services, and clocked protocols are difficult to implement,
since they require that an agent reliably receives information from all other agents; moreover,
the agent needs to know that it has already received messages from all other agents before
making a move, which is particularly difficult because agents are assumed to have no identities
and to ignore the size of the population. In this paper, we propose a much simpler extension
(from an implementation point of view): We allow agents to perform reliable broadcasts,
a standard operation in concurrency and distributed computing. We are inspired by the
broadcast protocol model introduced by Emerson and Namjoshi in [15] to describe bus-based
hardware protocols. The model has been used and further studied in many other contributions,
e.g. [16, 18, 12, 24, 9]. In broadcast protocols, agents can perform binary interactions, as in
the population protocol model, but, additionally, an agent can also broadcast a signal to all
other agents, which are guaranteed to react to it. Broadcast protocols are rather simple to

1 Observe that, for example, n agents can decide whether n is prime. Indeed, a Turing machine can
decide if n is a prime number in Θ(log n) space by going through all numbers from 2 to n − 1, and
checking for each of them if they divide n.

M. Blondin, J. Esparza, and S. Jaax 31:3

implement with current technology on mobile agents moving in a limited area. Broadcasts
also appear in biological systems. For example, Uhlendorf et al. describe a system in which
a controller adds a sugar or saline solution to a population of yeasts, to which all the yeasts
react [27]. An idealized model of the system, which is essentially a broadcast protocol, has
been analyzed by Bertrand et al. in [9].

In this paper, we show that population protocols with reliable broadcasts also compute
precisely the predicates in NL, and are therefore as powerful as absence detectors or clocks.
To prove this result, we first define the notion of silent semi-computation, a weaker notion
than standard computation, and prove that broadcast protocols silently semi-compute all
protocols in NL. This result makes crucial use of the ability of broadcast protocols to “restart”
the whole population nondeterministically whenever something bad or unexpected is detected.
We then prove that silent semi-computability and computability coincide for the class NL.

In a second contribution, we explore in more detail the minimal requirements for achieving
NL power. On the one hand, we show that it is enough to allow a single agent to broadcast
a single signal. On the other hand, we prove that the addition of a reset, which causes all
agents to return to their initial states, does not increase the power of population protocols.

2 Preliminaries

Multisets. A multiset over a finite set E is a mapping M : E → N. The set of all multisets
over E is denoted NE . For every e ∈ E, M(e) denotes the number of occurrences of e in
M . We sometimes denote multisets using a set-like notation, e.g. Hf, g, gI is the multiset
M such that M(f) = 1, M(g) = 2 and M(e) = 0 for every e ∈ E \ {f, g}. Addition and
comparison are extended to multisets componentwise, i.e. (M + M ′)(e) def= M(e) + M ′(e)
for every e ∈ E, and M ≤ M ′

def⇐⇒ M(e) ≤ M ′(e) for every e ∈ E. We define multiset
difference as (M �M ′)(e) def= max(M(e)−M ′(e), 0) for every e ∈ E. The empty multiset is
denoted 0 and, for every e ∈ E, we write e def= HeI. Finally, we define the support and size of
M ∈ NE respectively as JMK def= {e ∈ E : M(e) > 0} and |M | def=

∑
e∈EM(e).

Population protocols. A population over a finite set E is a multiset P ∈ NE such that
|P | ≥ 2. The set of all populations over E is denoted by Pop(E). A population protocol with
leaders (population protocol for short) is a tuple P = (Q,R,Σ, L, I, O) where:

Q is a non-empty finite set of states,
R ⊆ (Q×Q)× (Q×Q) is a set of rendez-vous transitions,
Σ is a non-empty finite input alphabet,
I : Σ→ Q is the input function mapping input symbols to states,
L ∈ NQ is the multiset of leaders, and
O : Q→ {0, 1} is the output function mapping states to boolean values.

Following the standard convention, we call elements of Pop(Q) configurations. Intuitively,
a configuration C describes a collection of identical finite-state agents with Q as set of states,
containing C(q) agents in state q for every q ∈ Q, and at least two agents in total.

We write (p, q) 7→ (p′, q′) to denote that (p, q, p′, q′) ∈ R. The relation Step: Pop(Q)→
Pop(Q) is defined by: (C,C ′) ∈ Step iff there exists (p, q, p′, q′) ∈ R such that C ≥ Hp, qI and
C ′ = C�Hp, qI+ Hp′, q′I. We write C −→ C ′ if (C,C ′) ∈ Step, and C ∗−→ C ′ if (C,C ′) ∈ Step∗,
the reflexive and transitive closure of Step. If C ∗−→ C ′, then we say that C ′ is reachable from
C. An execution is an infinite sequence of configurations C0C1 · · · such that Ci −→ Ci+1 for
every i ∈ N. An execution C0C1 · · · is fair if for every step C −→ C ′ the following holds: if
Ci = C for infinitely many indices i ∈ N, then Cj = C ′ for infinitely many indices j ∈ N.

CONCUR 2019

31:4 Expressive Power of Broadcast Consensus Protocols

We now explain the roles of the input function I and the multiset L of leaders. The
elements of Pop(Σ) are called inputs. For every input X ∈ Pop(Σ), let I(X) ∈ Pop(Q)
denote the configuration defined by

I(X)(q) def=
∑

{σ∈Σ:I(σ)=q}

X(σ) for every q ∈ Q.

A configuration C is initial if C = I(X) + L for some input X. Intuitively, the agents of
I(X) encode the input, while those of L are a fixed number of agents, traditionally called
leaders, that perform the computation together with the agents of I(X).

Predicate computed by a protocol. If O(p) = O(q) for every p, q ∈ JCK, then C is a
consensus configuration, and O(C) denotes the unique output of the states in JCK. We
say that a consensus configuration C is a b-consensus if O(C) = b. An execution C0C1 · · ·
stabilizes to b ∈ {0, 1} if there exists n ∈ N such that Ci is a b-consensus for every i ≥ n.

A protocol P over an input alphabet Σ computes a predicate ϕ : Pop(Σ) → {0, 1} if
for every input X ∈ Pop(Σ), every fair execution of P starting at the initial configuration
I(X) + L stabilizes to ϕ(X).

Throughout the paper, we assume Σ = {A1, . . . , Ak} for some k > 0. Abusing language,
we identify population M ∈ Pop(Σ) to vector α = (M(A1), . . . ,M(Ak)), and say that P
computes a predicate ϕ : Nk → {0, 1} of arity k. In the rest of the paper, the term “predicate”
is used with the meaning “function from Nk to {0, 1}”. It is known that:

I Theorem 1 ([7]). Population protocols compute exactly the predicates expressible in
Presburger arithmetic, i.e. the first-order theory of the natural numbers with addition.

3 Broadcast consensus protocols

Broadcast protocols were introduced by Emerson and Namjoshi in [15] as a formal model of
bus-based hardware protocols, such as those for cache coherency. The model has also been
applied to the verification of multithreaded programs [12], and to idealized modeling of control
problems for living organisms [27, 9]. Its theory has been further studied in [16, 18, 24].

Agents of broadcast protocols can communicate in pairs, as in population protocols, and,
additionally, they can also communicate by means of a reliable broadcast. An agent can
broadcast a signal to all other agents, which after receiving the signal move to a new state.
Broadcasts are routinely used in wireless ad-hoc and sensor networks (see e.g. [1, 28]), and
so they are easy to implement on the same kind of systems targeted by population protocols.
They can also model idealized versions of communication in natural computing. For example,
in [9] they are used to model “communication” in which an experimenter “broadcasts” a
signal to a colony of yeasts by increasing the concentration of a nutrient in a solution.

We introduce broadcast consensus protocols, i.e., broadcast protocols whose goal is to
compute a predicate in the computation-by-consensus paradigm.

I Definition 2. A broadcast consensus protocol is a tuple P = (Q,R,B,Σ, L, I, O), where
all components but B are defined as for population protocols, and B is a set of broadcast
transitions. A broadcast transition is a triple (q, r, f) where q, r ∈ Q and f : Q → Q is a
transfer function.

The relation Step ⊆ Pop(Q) × Pop(Q) of P is defined as follows. A pair (C,C ′) of
configurations belongs to Step iff

M. Blondin, J. Esparza, and S. Jaax 31:5

there exists (p, q) 7→ (p′, q′) ∈ R such that C ≥ Hp, qI and C ′ = C � Hp, qI + Hp′, q′I; or
there exists a transition (q, r, f) ∈ B such that C(q) ≥ 1 and C ′ is the configuration
computed from C in the following three steps:

C1 = C � HqI, (1)

C2(q′) =
∑

r′∈f−1(q′)

C1(r′) for every q′ ∈ Q, (2)

C ′ = C2 + HrI. (3)

Intuitively, (1)–(3) is interpreted as follows: (1) an agent at state q broadcasts a signal and
leaves q, yielding C1; (2) all other agents receive the signal and move to the states indicated
by the function f , yielding C2; and (3) the broadcasting agent enters state r, yielding C ′.
Correspondingly, instead of (q, r, f) we use q 7→ r; f as notation for a broadcast transition.

Beyond Presburger arithmetic. As a first illustration of the power of broadcast protocols,
we show that their expressive power goes beyond Presburger arithmetic, and so beyond the
power of population protocols. We present a broadcast consensus protocol for the predicate
ϕ, defined as ϕ(x) = 1 iff x > 1 and x is a power of two. For readability, we use the
notation q 7→ q′; [q1 7→ q′1, . . . , qn 7→ q′n] for a broadcast transition, where f(qi) = q′i and
where transfers of the form qi 7→ qi may be omitted.

Let P = (Q,R,B,Σ, L, I, O) be the broadcast consensus protocol where
Q

def= {x, x, x̃, 0, 1,⊥}, Σ def= {x}, I def= x 7→ x, L def= 0, O(q) = 1 def⇐⇒ q = 1, and R and B are
defined as follows:

R contains the rendez-vous transition s : (x, x) 7→ (x, 0);
B contains the broadcast transitions r : ⊥ 7→ x; [q 7→ x : q ∈ Q] and

s : x 7→ x;

 x 7→ ⊥
x 7→ x

0 7→ 1

 t0 : x 7→ x;
[

1 7→ 0
]

t0 : x 7→ 0;

 x 7→ ⊥
x 7→ 0
1 7→ ⊥

 t1 : x 7→ 1;

 x 7→ ⊥
x 7→ ⊥
0 7→ ⊥

 .

Intuitively, P repeatedly halves the number of agents in state x, and it accepts iff it never
obtains an odd remainder. More precisely, the transitions of P are intended to be fired as
follows, where C denotes the current configuration:

while C(x) 6= 1:
while C(x) ≥ 2: fire s /* split agents equally from x to x and 0 */
if C(x) = 0: fire s /* move agents from x to x if no remainder */

if C(x) = 0: fire t1 /* if no remainder, then accept */
else: fire t0 t0 /* otherwise, reject */

It is easy to show that P produces a (lasting) consensus, and the right one, if transitions are
executed as above. However, an arbitrary execution may not follow the above procedure.
Firing transition t0 when not intended has no incidence on the outcome. Moreover, if another
transition is fired when it should not be, then s, t0 or t1 will detect this error by moving an
agent to state ⊥. In this case, by fairness, r eventually resets the agents back to the initial
configuration and, again by fairness, transitions are eventually fired as intended.

I Proposition 3. The broadcast consensus protocol P described above computes the predicate
ϕ, defined as ϕ(x) = 1 iff x > 1 and x is a power of two.

CONCUR 2019

31:6 Expressive Power of Broadcast Consensus Protocols

Leaderless broadcast protocols. A broadcast protocol P = (Q,R,B,Σ, L, I, O) is leaderless
if L = 0. It can be shown that leaderless broadcast consensus protocols compute the same
predicates as the general class. We only sketch the argument. First, a broadcast protocol
with leader multiset L can be simulated by a protocol with a single leader. Indeed, the
protocol can be designed so that the first task of the leader is to “recruit” the other leaders
of L from among the agents. Second, a protocol with one leader can be simulated by a
leaderless protocol because, loosely speaking, a broadcast protocol can elect a leader in a
single computation step2. Indeed, if initially all agents are in a state, say q, then a broadcast
q 7→ `; f , where f(q) = q′, sends exactly one agent to leader state `, and all other agents to
state q′. It is simple to construct P ′ using this feature, and the details are omitted.

In the rest of the paper, we use protocols with leaders to simplify the constructions, but
all results (except Proposition 17) remain valid for leaderless protocols.

4 Broadcast consensus protocols compute exactly NL

In this section, we prove our main theorem: a predicate is computable by a broadcast
consensus protocol iff it is in NL. We follow the convention and say that a predicate ϕ
belongs to NL if there is a nondeterministic Turing machine that accepts in O(logn)-space
exactly the tuples (x1, x2, . . . , xk) ∈ Nk, encoded in unary, such that ϕ(x1, x2, . . . , xk) holds.

The proof is divided in two parts. Section 4.1 proves the easier direction: predicates
computable by broadcast consensus protocols are in NL. Section 4.2 proves the converse,
which is more involved.

4.1 Predicates computable by broadcast consensus protocols are in NL
We prove the result in more generality. We define a generic computational model in which
the possible steps between configurations are given by an arbitrary relation preserving the
number of agents. Formally, a generic consensus protocol is a tuple P = (Q,Step,Σ, L, I, O)
where Q,Σ, L, I, O are defined as for population protocols, and Step ⊆ Pop(Q)× Pop(Q) is
the step relation between populations, satisfying |C| = |C ′| for every (C,C ′) ∈ Step.

Clearly, broadcast consensus protocols are generic consensus protocols. Further, it is easy
to see that if Step is the one-step relation of a broadcast protocol, then Step ∈ NL. Indeed,
Step ∈ NL if there is a nondeterministic Turing machine that given a pair of configurations
(C,C ′) with n agents, uses O(logn) space and accepts iff (C,C ′) ∈ Step. A quick inspection
of the two conditions in the definition of Step (Definition 2) shows that this is the case.

Thus, it suffices to prove that generic consensus protocols satisfying Step ∈ NL can only
compute predicates in NL. We sketch the proof, more details can be found in the full version
of the paper.

I Proposition 4. Let P = (Q,Step,Σ, L, I, O) be a generic consensus protocol computing a
predicate ϕ. If Step ∈ NL, then ϕ ∈ NL. In particular, predicates computable by broadcast
consensus protocols are in NL.

Proof. We show that there is a nondeterministic Turing machine that decides whether
ϕ(x) = 1 holds, and uses O(log |x|) space. Let G = (V,E) be the graph where V is the set
of all configurations of P of size |x|, and (C,C ′) ∈ E iff C −→ C ′.

2 Unlike population protocols, where efficient leader election is non-trivial and much studied; see e.g. [14].

M. Blondin, J. Esparza, and S. Jaax 31:7

It is easy to see that ϕ(x) = 1 iff G contains a configuration C of size |C| = |I(x)| = |x|
satisfying (1) C0

∗−→ C; and (2) every configuration reachable from C, including C itself, is
a 1-consensus. Therefore, we can decide ϕ(x) = 1 by guessing C, and checking (1) and (2)
in O(log |I(x)|) space. For (1), this follows from the fact that graph reachability is in NL.
For (2), we observe that determining whether some configuration reachable from C is not a
1-consensus can be done in NL, and we use the fact that NL = coNL [20]. J

I Remark 5. Protocols with absence detector [22] are a class of generic consensus protocols,
and hence Proposition 4 can be used to give an alternative proof of the fact that these
protocols only compute predicates in NL.

4.2 Predicates in NL are computable by broadcast consensus protocols
The proof is involved, and we start by describing its structure. In Section 4.2.1, we show
that it suffices to prove that every predicate in NL is silently semi-computable. In the rest of
the section, we proceed to prove this in three steps. Loosely speaking, we show that:

predicates computable by nondeterministic Turing machines in O(n) space can also be
computed by counter machines with counters polynomially bounded in n (Section 4.2.2);
predicates computed by polynomially bounded counter machines can also be computed
by n-bounded counter machines, i.e. in which the sum of the values of all counters never
exceeds their initial sum (Section 4.2.3);
predicates computed by n-bounded counter machines can be silently semi-computed by
broadcast protocols. (Section 4.2.4).

Finally, Section 4.2.5 puts all parts of the proof together.

4.2.1 Silent semi-computation
Recall that, loosely speaking, a protocol computes ϕ if it converges to 1 for inputs that satisfy
ϕ, and it converges to 0 for inputs that do not satisfy ϕ. Additionally, a protocol silently
computes ϕ if convergence to b ∈ {0, 1} happens by reaching a terminal b-consensus, i.e., a
configuration C that is a b-consensus and from which one can only reach C itself. (Intuitively,
the protocol eventually becomes “silent” because no agent changes state anymore, and hence
communication “stops”.) We say that a protocol silently semi-computes ϕ if it reaches a
terminal 1-consensus for inputs that satisfy ϕ, and no terminal configuration for other inputs.

I Definition 6. A broadcast consensus protocol P silently semi-computes a k-ary predicate
ϕ if for every α ∈ Nk the following properties hold:
1. if ϕ(α) = 1, then every fair execution of P starting at I(α) eventually reaches a terminal

1-consensus configuration;
2. if ϕ(α) = 0, then no fair execution of P starting at I(α) eventually reaches a terminal

configuration.3

We show that if a predicate and its complement are both silently semi-computable by
broadcast consensus protocols, say P1 and P0, then the predicate is also computable by a
broadcast consensus protocol P which, intuitively, behaves as follows under input α. At
every moment in time, P is simulating either P1 or P0. Initially, P simulates P0. Assume
P is simulating Pi and the current configuration is C. If C is a terminal configuration of

3 Since every finite execution can be extended to a fair one, this condition is actually equivalent to “no
terminal configuration is reachable from I(α)”.

CONCUR 2019

31:8 Expressive Power of Broadcast Consensus Protocols

Pi, then P terminates too. Otherwise, P nondeterministically chooses one of three options:
continue thesimulation of Pi, “reset” the computation to I0(α), i.e., start simulating P0, or
“reset” the computation to I1(α). Conditions 1 and 2 ensure that exactly one of P0 and P1
can reach a terminal configuration, namely Pϕ(α). Fairness ensures that P will eventually
reach a terminal configuration of Pϕ(α), and so, by condition 1, that it will always reach the
right consensus. Hence, P silently computes ϕ.

The “reset” is implemented by means of a broadcast that sends every agent to its initial
state in the configuration Ij(α); for this, the states of P are partitioned into classes, one for
each input symbol x ∈ X. Every agent moves only within the states of one of the classes,
and so every agent “remembers” its initial state in both P0 and P1.

I Lemma 7. Let ϕ be an m-ary predicate, and let ϕ be the predicate defined by ϕ(α) def=
1 − ϕ(α) for every α ∈ Nm. Further let P1 and P0 be broadcast consensus protocols that
silently semi-compute ϕ and ϕ, respectively. The following holds: there exists a broadcast
consensus protocol P that silently computes ϕ.

Proof. Let P1 = (Q1, R1, B1,Σ, I1, O1) and P0 = (Q0, R0, B0,Σ, I0, O0) be protocols that
silently semi-compute ϕ and ϕ, respectively. Assume w.l.o.g. that Q1 and Q0 are disjoint.
We construct a protocol P = (Q,R,B,Σ, I, O) that computes ϕ.

For the sake of clarity we refrain from giving a fully formal description, but we provide
enough details to show that the design idea above can indeed be implemented.

States and mappings. The set of states of P is defined as:

Q
def= Σ× (Q1 ∪Q0 ∪ {reset})

If an agent is in state (x, q), we say that x is its origin and that q is its position. The
initial position of an agent is its initial state in P0, i.e. I(x) def= (x, I0(x)). Transitions will
be designed so that agents may update their position, but not their origin. Alternatively,
instead of applying a transition, agents can nondeterministically choose to transition from
(x, q) ∈ X × (Q1 ∪ Q0) to (x, reset). An agent in state (x, reset) eventually resets the
simulation to either P0 or P1.

Simulation transitions. We define transitions that proceed with the simulation of P0 and
P1 as follows. For every i ∈ {1, 0}, every x, y ∈ Σ, and every non-silent rendez-vous transition
(q, r) 7→ (q′, r′) of Ri, we add the following rendez-vous transitions to R:

(x, q), (y, r) 7→ (x, q′), (y, r′) and (x, q), (y, r) 7→ (x, reset), (y, reset).

The first transition implements the simulation, while the second transition enables resets
when the simulation has not reached a terminal configuration. For every broadcast transition
q 7→ q′; f of Bi and every x ∈ Σ, we add the following broadcast transitions to B:

(x, q) 7→ (x, q′); f ′

(x, q) 7→ (x, reset); f ′

where f ′ only acts on Qi by f ′(y, r)
def= (y, f(r)) for every (y, r) ∈ Σ×Qi. The first transition

implements the simulation of a broadcast in the original protocols, while the second transition
enables a reset.

M. Blondin, J. Esparza, and S. Jaax 31:9

Reset transitions. We define transitions that trigger a new simulation of either P0 or P1.
For every i ∈ {1, 0}, let fi : Q→ Q be the function defined as fi(x, q)

def= (x, Ii(x)) for every
(x, q) ∈ Q. For every i ∈ {1, 0} and every x ∈ Σ, we add the following broadcast transition
to B: (x, reset) 7→ (x, Ii(x)); fi. J

Using Lemma 7, we may now prove the following:

I Proposition 8. If every predicate in NL is silently semi-computable by broadcast consensus
protocols, then every predicate in NL is silently computable (and so computable) by broadcast
consensus protocols.

Proof. Assume every predicate in NL is silently semi-computable by broadcast consensus
protocols, and let ϕ be a predicate in NL. We resort to the powerful result stating that
predicates in coNL and NL coincide. This is an immediate corollary of the coNL = NL
theorem for languages [20, 26, 23], and the fact that one can check in constant space whether
a given word encodes a vector of natural numbers of fixed arity. Thus, both ϕ and ϕ are
predicates in NL, and so, by assumption, silently semi-computable by broadcast consensus
protocols. By Lemma 7, they are silently computable by broadcast consensus protocols. J

4.2.2 Simulation of Turing machines by counter machines
We recall that nondeterministic Turing machines working in O(n) space can be simulated by
counter machines whose counters are polynomially bounded in n, and so that both models
compute the same predicates.

Let X = {x1, x2, . . . , xk} and Ins = {inc(x), dec(x), zro(x), nzr(x), nop | x ∈ X}. A
k-counter machine M over counters X is a tuple (Q,X,∆,m, q0, qa, qr), where Q is a finite
set of control states; ∆ ⊆ Q × Ins × Q is the transition relation; m ≤ k is the number of
input counters; and q0, qa, qr are the initial, accepting, and rejecting states, respectively.

A configuration ofM is a pair C = (q,v) ∈ Q× Nk consisting of a control state q and
counter values v. For every i ∈ [k], we denote the value of counter xi in C by C(xi)

def= vi.
The size of C is |C| def=

∑k
i=1 C(xi).

Let ei be the i-th row of the k × k identity matrix. Given ins ∈ Ins, we define the
relation ins−−→ over configurations as follows: (q,v) ins−−→ (q′,v′) iff (q, ins, q′) ∈ ∆ and one of
the following holds: ins = inc(xi) and v′ = v + ei; ins = dec(xi), vi > 0, and v′ = v − ei;
ins = zro(xi), vi = 0, and v′ = v; ins = nzr(xi), vi > 0, and v′ = v; ins = nop and v′ = v.

For every α ∈ Nm, the initial configuration ofM with input α is defined as:

Cα
def= (q0, (α1,α2, . . . ,αm, 0, . . . , 0︸ ︷︷ ︸

k−m times

)).

We sayM accepts α if there exist counter values v ∈ Nk satisfying Cα
∗−→ (qa,v). We say

M rejects α if M does not accept α and for all configurations C ′ with Cα
∗−→ C ′, there

exists v ∈ Nk satisfying C ′ ∗−→ (qr,v). We sayM computes a predicate ϕ : Nm → {0, 1} if
M accepts all inputs α such that ϕ(α) = 1, and rejects all α such that ϕ(α) = 0.

A counter machineM is f(n)-bounded if |C| ≤ f(|Cα|) holds for every initial configuration
Cα and every configuration C reachable from Cα. It is well-known that counter machines
can simulate Turing machines:

I Theorem 9 ([19, Theorem 3.1]). A predicate is computable by an s(n)-space-bounded
Turing machine iff it is computable by a 2s(n)-bounded counter machine.

CONCUR 2019

31:10 Expressive Power of Broadcast Consensus Protocols

In [19], a weaker version of Theorem 9 is proven that applies to deterministic Turing and
counter machines only. However, the proof can be easily adapted to the nondeterministic
setting we consider here.

I Corollary 10. A predicate is in NL iff it is computable by a polynomially bounded counter
machine.

4.2.3 Simulation of polynomially bounded counter machines by
n-bounded counter machines

I Lemma 11. For every polynomially bounded counter machine that computes some predicate
ϕ, there exists an n-bounded counter machine that computes ϕ.

Proof. We sketch the main idea of the proof; details can be found in the full version of the
paper. Let c ∈ N>0 and let M be an nc-bounded counter machine with k counters. To
simulateM by an n-bounded counter machineM, we need some way to represent any value
` ∈ [0, nc] by means of counters with values in [0, n]. We encode such a value ` by its base
n+ 1 representation over c counters. Zero-tests are performed by zero-testing all c counters
sequentially. Nonzero-tests are implemented similarly with parallel tests. Incrementation
and decrementation are implemented with gadgets to (a) assign 0 to a counter; (b) assign n
to a counter; (c) test whether a counter value equals n.

This construction is only weakly n-bounded, in the sense that all counters are indeed
bounded by n, but the overall sum can reach k ·n. To circumvent this issue, we simulateM by
another counter machineM′ whose counters symbolically hold values from multiple counters
of M. In more details, the counters are defined as {yS : S ⊆ X}. Intuitively, if counter
yS has value a, then it contributes by a to the value of each counter of S. For example,
if X = {x1, x2, x3} and the input size is n = 6, then counter values (x1, x2, x3) = (6, 1, 4)
ofM can be represented inM′ as y{x1,x2,x3} = 1, y{x1,x3} = 3, y{x1} = 2, and yS = 0 for
every other S. Under such a representation, the sum of all counters equals n. Moreover, all
instructions can be implemented quite easily. J

4.2.4 Simulation of n-bounded counter machines by broadcast
consensus protocols

Let M = (Q,X,∆,m, q0, qa, qr) be an n-bounded counter machine that computes some
predicate ϕ : Nm → {0, 1}. We construct a broadcast protocol P = (Q′, R,B,Σ, L, I, O) that
silently semi-computes ϕ.

States and mappings. Let X ′ def= X ∪ {idle, err}. The states of P are defined as

Q′
def= Q× {0, 1}︸ ︷︷ ︸

leader states

∪ X ′ ×X × {0, 1}︸ ︷︷ ︸
nonleader states

.

The protocol will be designed in such a way that there is always exactly one agent, called the
leader, in states Q× {0, 1}. Whenever the leader is in state (q, b), we say that its position
is q, and its opinion is b. Every other agent will remain in a state from X ′ ×X × {0, 1}.
Whenever a nonleader agent is in state (x, y, b), we say that its position is x, its origin is y,
and its opinion is b. Intuitively, the leader is in charge of storing the control state ofM, and
the nonleaders are in charge of storing the counter values ofM.

M. Blondin, J. Esparza, and S. Jaax 31:11

The protocol has a single leader whose initial position is the initial control state ofM,
i.e. L def= H(q0, 0)I. Moreover, every nonleader agent initially has its origin set to its initial
position, which will remain unchanged by definition of the forthcoming transition relation:
I(x) def= (x, x, 0) for every x ∈ X. The output of each agent is its opinion:

O(q, b) def= b for every q ∈ Q, x ∈ X ′, y ∈ X, b ∈ {0, 1}.
O(x, y, b) def= b

We now describe how P simulates the instructions ofM.

Decrementation/incrementation. For every transition q dec(x)−−−−→ r ∈ ∆, every y ∈ X and
every b, b′ ∈ {0, 1}, we add to R the rendez-vous transition:

(q, b), (x, y, b′) 7→ (r, b), (idle, y, b′).

These transitions change the position of one agent from x to idle, and thus decrement the
number of agents in position x.

Similarly, for every transition q inc(x)−−−−→ r, every y ∈ X and every b, b′ ∈ {0, 1}, we add to
R the rendez-vous transition:

(q, b), (idle, y, b′) 7→ (r, b), (x, y, b′).

These transitions change the position of an idle agent to x, and thus increment the number
of agents in position x. If no agent is in position err, then at least one idle agent is available
when a counter needs to be incremented, sinceM is n-bounded.

Nonzero-tests. For every q nzr(x)−−−−→ r ∈ ∆, every y ∈ X and every b, b′ ∈ {0, 1}, we add to
R the rendez-vous transition:

(q, b), (x, y, b′) 7→ (r, b), (x, y, b′).

These transitions can only be executed if there is at least one agent in position x, and thus
only if the value of x is nonzero.

Zero-tests. For a given x ∈ X, let fxerr : Q′ → Q′ be the function that maps every nonleader
in position x to the error position, i.e. fxerr(x, y, b)

def= (err, y, b) for every y ∈ X, b ∈ {0, 1},
and fx is the identity for all other states.

For every transition q
zro(x)−−−−→ r ∈ ∆ and every b ∈ {0, 1}, we add to B the broadcast

transition (q, b) 7→ (r, b); fxerr. If such a transition occurs, then nonleaders in position x move
to err. Thus, an error is detected iff the value of x is nonzero.

To recover from errors, P can be reset to its initial configuration as follows. Let frst : Q′ →
Q′ be the function that sends every state back to its origin, i.e.

frst(q, b)
def= (q0, 0) for every q ∈ Q, b ∈ {0, 1},

frst(x, y, b)
def= (y, y, 0) for every x ∈ X ′, y ∈ X, b ∈ {0, 1}.

For every y ∈ X and every b ∈ {0, 1}, we add the following broadcast transition to B to
reset P to its initial configuration:

(err, y, b) 7→ (y, y, 0); frst.

CONCUR 2019

31:12 Expressive Power of Broadcast Consensus Protocols

Acceptance. For every q ∈ Q \ {qa} and b ∈ {0, 1}, we add to B the broadcast transition
(q, b) 7→ (q0, 0); frst. Intuitively, as long as the leader’s position differs from the accepting
control state qa, it can reset P to its initial configuration. This ensures that P can try all
computations.

Let ferr : Q′ → Q′ be the function that changes the opinion of each state to 1, i.e.

ferr(q, b) def= (q, 1) for every q ∈ Q, b ∈ {0, 1},

ferr(x, y, b) def= (x, y, 1) for every x ∈ X ′, y ∈ X, b ∈ {0, 1}.

For every b ∈ {0, 1}, we add the following transition to B:

tone,b : (qa, b)→ (qa, 1); fone.

Intuitively, these transitions change the opinion of every agent to 1. If such a transition
occurs in a configuration with no agent in err, then no agent can change its state anymore,
and the stable consensus 1 has been reached.

Correctness. Let us fix some some input α ∈ Nm. Let C0 and D0 be respectively the initial
configurations ofM and P on input α. Abusing notation, for every D ∈ Pop(Q′), let

D(x) def=
∑

(x,y,b)∈Q′
D(x, y, b).

The two following propositions state that every execution of M has a corresponding
execution in P and vice versa. The proofs are routine.

I Proposition 12. Let C be a configuration of M such that C is in control state q and
C0

∗−→ C. There exists a configuration D ∈ Pop(Q′) such that (i) D0
∗−→ D; (ii) D(x) = C(x)

for every x ∈ X; (iii) D(err) = 0; and (iv) D(q, b) = 1 for some b ∈ {0, 1}.

I Proposition 13. Let D ∈ Pop(Q′) be such that D0
∗−→ D. If D(err) = 0, then there is a

configuration C ofM such that (i) C0
∗−→ C; (ii) C(x) = D(x) for every x ∈ X; and (iii) if

D(q, b) = 1 for some (q, b) ∈ Q′, then C is in control state q.

We may now prove that P silently semi-computes ϕ.

I Proposition 14. For every n-bounded counter machineM that computes some predicate
ϕ, there exists a broadcast consensus protocol that silently semi-computes ϕ.

Proof. We show that P silently semi-computes ϕ by proving the two properties of Definition 6.
Let α be an input.
1. Assume ϕ(α) = 1. Then M accepts α, and so there is a configuration C such that

C0
∗−→ C and C is in control state qa. By Proposition 12, there exists some configuration

D ∈ Pop(Q′) satisfying D0
∗−→ D, D(err) = 0 and D(qa, b) = 1. Since M halts when

reaching qa, the only transition enabled at D is tone,b, and its application yields a terminal
configuration D′ of consensus 1. Further, every configuration reachable from D0, where
the leader is not in position qa or where some nonleader is in position err, can be set
back to D0 via some reset transition. Therefore, every fair execution of P starting at
I(α) = C0 will eventually reach D′.

2. Assume ϕ(α) = 0. We prove by contradiction that no configuration D reachable from D0
is terminal. Assume the contrary. We must have D(qa, 1) = 1, D(err) = 0 and O(D) = 1,
for otherwise some broadcast transition with frst or fone would be enabled. From this
and by Proposition 13, there exists some configuration C ofM in control state qa and
satisfying C0

∗−→ C. Thus,M accepts α, contradicting ϕ(α) = 0. J

M. Blondin, J. Esparza, and S. Jaax 31:13

4.2.5 Main theorem
We prove our main result, namely that broadcast consensus protocols precisely compute the
predicates in NL.

I Theorem 15. Broadcast consensus protocols compute exactly the predicates in NL.

Proof. Proposition 4 shows that every predicate computable by broadcast consensus protocols
is in NL. For the other direction, let ϕ be a predicate in NL. Since NL = coNL by Immerman-
Stelepcsényi’s theorem, the complement predicate ϕ is also in NL. Thus, ϕ and ϕ are
computable by O(logn)-space-bounded nondeterministic Turing machines. By Theorem 9
and Proposition 11, ϕ and ϕ are computable by polynomially bounded counter machines,
and thus by n-bounded counter machines. Therefore, by Proposition 14, ϕ and ϕ are silently
semi-computable by broadcast consensus protocols. By Proposition 8, this implies that ϕ is
silently computable by a broadcast consensus protocol. J

Actually, the proof shows this slightly stronger result:

I Corollary 16. A predicate is computable by a broadcast consensus protocol iff it is silently
computable by a broadcast consensus protocol. In particular, broadcast consensus protocols
silently compute all predicates in NL.

5 Subclasses of broadcast consensus protocols

While broadcasting is a natural, well understood, and much used communication mechanism,
it also consumes far more energy than rendez-vous communication. In particular, agents
able to broadcast are more expensive to implement. In this section, we briefly analyze which
restrictions can be imposed on the broadcast model without reducing its computational
power. We show that all predicates in NL can be computed by protocols satisfying two
properties:
1. only one agent broadcasts; all other agents only use rendez-vous communication.
2. the broadcasting agent only needs to send one signal, meaning that the receivers’ response

is independent of the broadcast signal.

Finally, we show that a third restriction does decrease the computational power. In
simulations of the previous section, broadcasts are often used to “reset” the system. Since
computational models with resets have been devoted quite some attention [21, 25, 13, 11],
we investigate the computational power of protocols with resets.

Protocols with only one broadcasting agent. Loosely speaking, a broadcast protocol with
one broadcasting agent is a broadcast protocol P = (Q,R,B,Σ, L, I, O) with a set Q` of
leader states such that L = HqI for some q ∈ Q` (i.e., there is exactly one leader), and whose
transitions ensure that the leader always remains within Q`, that no other agent enters
Q`, and that only agents in Q` can trigger broadcast transitions. Protocols with multiple
broadcasting agents can be simulated by protocols with one broadcasting agent, say b. Instead
of directly broadcasting, an agent communicates with b by rendez-vous, and delegates to
b the task of executing the broadcast. More precisely, a broadcast transition q 7→ q′; f is
simulated by a rendez-vous transition (q, q`) 7→ (qaux, q`,f), followed by a broadcast transition
q`,f 7→ q`; (f ∪ {qaux 7→ q′}).

CONCUR 2019

31:14 Expressive Power of Broadcast Consensus Protocols

Single-signal broadcast protocols. In single-signal protocols the receivers’ response is
independent of the broadcast signal. Formally, a broadcast protocol (Q,R,B,Σ, I, O) is a
single-signal protocol if there exists a function f : Q→ Q such that B ⊆ Q2 × {f}.

I Proposition 17. Predicates computable by broadcast consensus protocols are also computable
by single-signal broadcast protocols.

Proof. We give a proof sketch; details can be found in the full version of the paper. We
simulate a broadcast protocol P by a single-signal protocol P ′. The main point is to simulate
a broadcast step C1

q1 7→q2;g−−−−−→ C2 of P by a sequence of steps of P ′.
In P, an agent at state q1, say a, moves to q2, and broadcasts the signal with meaning

“react according to g”. Intuitively, in P ′, agent a broadcasts the unique signal of P ′, which
has the meaning “freeze”. An agent that receives the signal, say b, becomes “frozen”. Frozen
agents can only be “awoken” by a rendez-vous with a. When the rendez-vous happens, a
tells b which state it has to move to according to g.

The problem with this procedure is that a has no way to know if it has already performed
a rendez-vous with all frozen agents. Thus, frozen agents can spontaneously move to a state
err indicating “I am tired of waiting”. If an agent is in this state, then eventually all agents
go back to their initial states, reinitializing the computation. This is achieved by letting
agents in state err move to their initial states while broadcasting the “freeze” signal. J

Protocols with reset. In protocols with reset, all broadcasts transitions reset the protocol to
its initial configuration. Formally, a population protocol with reset is a broadcast protocol P =
(Q,R,B,Σ, I, O) such that for every finite execution C0C1 · · ·Ck from an initial configuration
C0, the following holds: Ck

b−→ C ′ implies C ′ = C0 for every b ∈ B and every C ′ ∈ Pop(Q).

I Proposition 18. Every predicate computable by a population protocol with reset is
Presburger-definable, and thus computable by a standard population protocol.

Proof. We give a proof sketch; details can be found in the full version of the paper. Let
P = (Q,R,B,Σ, I, O) be a population protocol with reset that computes some predicate. We
show that the set of accepting initial configurations of P , denoted I1, is Presburger-definable
as follows. Let:
P ′ be the population protocol obtained from P by eliminating the resets;
N be the set of configurations C of P ′ from which no reset can occur, i.e., no configuration
reachable from C enables a reset of P;
S1 be the set of configurations C of P ′ that are stable 1-consensuses, i.e., O(C ′) = 1 for
every C ′ reachable from C;
B be the set of configurations C of P ′ that belong to a bottom strongly connected
component of the configuration graph, i.e., C can reach C ′ iff C ′ can reach C.

We show that an initial configuration C belongs to I1 iff it belongs to S1 or it can reach
a configuration from S1 ∩ B ∩ N . Using results from [17], showing in particular that B is
Presburger-definable, we show that I1 is Presburger-definable. J

6 Conclusion

We have studied the expressive power of broadcast consensus protocols: an extension
of population protocols with reliable broadcasts, a standard communication primitive in
concurrency and distributed computing. We have shown that, despite their simplicity, they

M. Blondin, J. Esparza, and S. Jaax 31:15

precisely compute predicates from the complexity class NL, and are thus as expressive
as several other proposals from the literature which require a primitive more difficult to
implement: receiving messages from all agents, instead of sending messages to all agents.

As future work, we wish to study properties beyond expressiveness, such as state com-
plexity and space vs. speed trade-offs. It would also be interesting to tackle the formal
verification of broadcast consensus protocols. Although this is challenging as it goes beyond
Presburger arithmetic and the decidability frontier, it has recently been shown that models
with broadcasts admit more tractable approximations [10].

References
1 Mehran Abolhasan, Tadeusz A. Wysocki, and Eryk Dutkiewicz. A review of routing protocols

for mobile ad hoc networks. Ad Hoc Networks, 2(1):1–22, 2004. doi:10.1016/S1570-8705(03)
00043-X.

2 Dan Alistarh, James Aspnes, David Eisenstat, Rati Gelashvili, and Ronald L. Rivest.
Time-Space Trade-offs in Population Protocols. In Proc. Twenty-Eighth Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 2560–2579, 2017. doi:10.1137/1.
9781611974782.169.

3 Dan Alistarh, James Aspnes, and Rati Gelashvili. Space-Optimal Majority in Population
Protocols. In Proc. Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 2221–2239, 2018. doi:10.1137/1.9781611975031.144.

4 Dan Alistarh and Rati Gelashvili. Recent Algorithmic Advances in Population Protocols.
SIGACT News, 49(3):63–73, 2018. doi:10.1145/3289137.3289150.

5 Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Peralta. Computation
in networks of passively mobile finite-state sensors. In Proc. 23rd Annual ACM Symposium on
Principles of Distributed Computing (PODC), pages 290–299, 2004. doi:10.1145/1011767.
1011810.

6 Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Peralta. Computation
in networks of passively mobile finite-state sensors. Distributed Computing, 18(4):235–253,
2006.

7 Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert. The computational
power of population protocols. Distributed Computing, 20(4):279–304, 2007. doi:10.1007/
s00446-007-0040-2.

8 James Aspnes. Clocked Population Protocols. In Proc. ACM Symposium on Principles of
Distributed Computing (PODC), pages 431–440, 2017.

9 Nathalie Bertrand, Miheer Dewaskar, Blaise Genest, and Hugo Gimbert. Controlling a
Population. In Proc. 28th International Conference on Concurrency Theory (CONCUR),
volume 85, pages 12:1–12:16, 2017. doi:10.4230/LIPIcs.CONCUR.2017.12.

10 Michael Blondin, Christoph Haase, and Filip Mazowiecki. Affine Extensions of Integer Vector
Addition Systems with States. In Proc. 29th International Conference on Concurrency Theory
(CONCUR), pages 14:1–14:17, 2018. doi:10.4230/LIPIcs.CONCUR.2018.14.

11 Dmitry Chistikov, Christoph Haase, and Simon Halfon. Context-free commutative grammars
with integer counters and resets. Theoretical Computer Science, 735:147–161, 2018. doi:
10.1016/j.tcs.2016.06.017.

12 Giorgio Delzanno, Jean-François Raskin, and Laurent Van Begin. Towards the Automated
Verification of Multithreaded Java Programs. In Proc. 8th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS), pages 173–187, 2002.
doi:10.1007/3-540-46002-0_13.

13 Catherine Dufourd, Alain Finkel, and Philippe Schnoebelen. Reset Nets Between Decidability
and Undecidability. In Proc. 25th International Colloquium on Automata, Languages and
Programming (ICALP), pages 103–115, 1998. doi:10.1007/BFb0055044.

CONCUR 2019

https://doi.org/10.1016/S1570-8705(03)00043-X
https://doi.org/10.1016/S1570-8705(03)00043-X
https://doi.org/10.1137/1.9781611974782.169
https://doi.org/10.1137/1.9781611974782.169
https://doi.org/10.1137/1.9781611975031.144
https://doi.org/10.1145/3289137.3289150
https://doi.org/10.1145/1011767.1011810
https://doi.org/10.1145/1011767.1011810
https://doi.org/10.1007/s00446-007-0040-2
https://doi.org/10.1007/s00446-007-0040-2
https://doi.org/10.4230/LIPIcs.CONCUR.2017.12
https://doi.org/10.4230/LIPIcs.CONCUR.2018.14
https://doi.org/10.1016/j.tcs.2016.06.017
https://doi.org/10.1016/j.tcs.2016.06.017
https://doi.org/10.1007/3-540-46002-0_13
https://doi.org/10.1007/BFb0055044

31:16 Expressive Power of Broadcast Consensus Protocols

14 Robert Elsässer and Tomasz Radzik. Recent Results in Population Protocols for Exact Majority
and Leader Election. Bulletin of the EATCS, 126, 2018.

15 E. Allen Emerson and Kedar S. Namjoshi. On Model Checking for Non-Deterministic Infinite-
State Systems. In Proc. Thirteenth Annual IEEE Symposium on Logic in Computer Science
(LICS), pages 70–80, 1998. doi:10.1109/LICS.1998.705644.

16 Javier Esparza, Alain Finkel, and Richard Mayr. On the Verification of Broadcast Protocols.
In Proc. 14th Annual IEEE Symposium on Logic in Computer Science (LICS), pages 352–359,
1999. doi:10.1109/LICS.1999.782630.

17 Javier Esparza, Pierre Ganty, Jérôme Leroux, and Rupak Majumdar. Verification of population
protocols. Acta Informatica, 54(2):191–215, 2017. doi:10.1007/s00236-016-0272-3.

18 Alain Finkel and Jérôme Leroux. How to Compose Presburger-Accelerations: Applications to
Broadcast Protocols. In Proc. 22nd Conference on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS), pages 145–156, 2002. doi:10.1007/3-540-36206-1_
14.

19 Patrick C. Fischer, Albert R. Meyer, and Arnold L. Rosenberg. Counter Machines and Counter
Languages. Mathematical Systems Theory, 2(3):265–283, 1968.

20 Neil Immerman. Nondeterministic Space is Closed Under Complementation. SIAM Journal
on Computing, 17(5):935–938, 1988. doi:10.1137/0217058.

21 David Lee and Mihalis Yannakakis. Testing Finite-State Machines: State Identification and
Verification. IEEE Transactions on Computers, 43(3):306–320, 1994. doi:10.1109/12.272431.

22 Othon Michail and Paul G. Spirakis. Terminating population protocols via some minimal
global knowledge assumptions. Journal of Parallel and Distributed Computing, 81-82:1–10,
2015.

23 Christos H. Papadimitriou. Computational complexity. Academic Internet Publ., 2007.
24 Sylvain Schmitz and Philippe Schnoebelen. The Power of Well-Structured Systems. In

Proc. 24th International Conference on Concurrency Theory (CONCUR), pages 5–24, 2013.
doi:10.1007/978-3-642-40184-8_2.

25 Philippe Schnoebelen. Revisiting Ackermann-Hardness for Lossy Counter Machines and Reset
Petri Nets. In Proc. 35th International Symposium on Mathematical Foundations of Computer
Science (MFCS), pages 616–628, 2010. doi:10.1007/978-3-642-15155-2_54.

26 Róbert Szelepcsényi. The Method of Forced Enumeration for Nondeterministic Automata.
Acta Informatica, 26(3):279–284, 1988. doi:10.1007/BF00299636.

27 Jannis Uhlendorf, Agnès Miermont, Thierry Delaveau, Gilles Charvin, François Fages, Samuel
Bottani, Pascal Hersen, and Gregory Batt. In silico control of biomolecular processes. In
Computational Methods in Synthetic Biology, pages 277–285. Marchisio, Mario Andrea, 2015.
doi:10.1007/978-1-4939-1878-2_13.

28 Jennifer Yick, Biswanath Mukherjee, and Dipak Ghosal. Wireless sensor network survey.
Computer Networks, 52(12):2292–2330, 2008. doi:10.1016/j.comnet.2008.04.002.

https://doi.org/10.1109/LICS.1998.705644
https://doi.org/10.1109/LICS.1999.782630
https://doi.org/10.1007/s00236-016-0272-3
https://doi.org/10.1007/3-540-36206-1_14
https://doi.org/10.1007/3-540-36206-1_14
https://doi.org/10.1137/0217058
https://doi.org/10.1109/12.272431
https://doi.org/10.1007/978-3-642-40184-8_2
https://doi.org/10.1007/978-3-642-15155-2_54
https://doi.org/10.1007/BF00299636
https://doi.org/10.1007/978-1-4939-1878-2_13
https://doi.org/10.1016/j.comnet.2008.04.002

Reconfiguration and Message Losses in
Parameterized Broadcast Networks
Nathalie Bertrand
Univ. Rennes, Inria, CNRS, IRISA – Rennes, France

Patricia Bouyer
LSV, CNRS & ENS Paris-Saclay, Univ. Paris-Saclay – Cachan, France

Anirban Majumdar
Univ. Rennes, Inria, CNRS, IRISA – Rennes, France
LSV, CNRS & ENS Paris-Saclay, Univ. Paris-Saclay – Cachan, France

Abstract
Broadcast networks allow one to model networks of identical nodes communicating through message
broadcasts. Their parameterized verification aims at proving a property holds for any number
of nodes, under any communication topology, and on all possible executions. We focus on the
coverability problem which dually asks whether there exists an execution that visits a configuration
exhibiting some given state of the broadcast protocol. Coverability is known to be undecidable for
static networks, i.e. when the number of nodes and communication topology is fixed along executions.
In contrast, it is decidable in PTIME when the communication topology may change arbitrarily
along executions, that is for reconfigurable networks. Surprisingly, no lower nor upper bounds on the
minimal number of nodes, or the minimal length of covering execution in reconfigurable networks,
appear in the literature.

In this paper we show tight bounds for cutoff and length, which happen to be linear and quadratic,
respectively, in the number of states of the protocol. We also introduce an intermediary model with
static communication topology and non-deterministic message losses upon sending. We show that
the same tight bounds apply to lossy networks, although, reconfigurable executions may be linearly
more succinct than lossy executions. Finally, we show NP-completeness for the natural optimisation
problem associated with the cutoff.

2012 ACM Subject Classification Theory of computation → Verification by model checking

Keywords and phrases model checking, parameterized verification, broadcast networks

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2019.32

Funding The second author was supported by ERC project EQualIS (308087).

1 Introduction

Parameterized verification. Systems formed of many identical agents arise in many concrete
areas: distributed algorithms, populations, communication or cache-coherence protocols,
chemical reactions etc. Models for such systems depend on the communication or interaction
means between the agents. For example pairwise interactions are commonly used for
populations of individuals, whereas selective broadcast communications are more relevant for
communication protocols on ad-hoc networks. The capacity of the agents, and thus models
that are used to represent their behaviour also vary.

Verifying such systems amounts to checking that a property holds independently of the
number of agents. Typically, a consensus algorithm should be correct for any number of
participants. We refer to these systems as parameterized systems, and the parameter is
the number of agents. The verification of parameterized systems started in the late 80’s

© Nathalie Bertrand, Patricia Bouyer, and Anirban Majumdar;
licensed under Creative Commons License CC-BY

30th International Conference on Concurrency Theory (CONCUR 2019).
Editors: Wan Fokkink and Rob van Glabbeek; Article No. 32; pp. 32:1–32:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-9957-5394
https://orcid.org/0000-0002-2823-0911
https://doi.org/10.4230/LIPIcs.CONCUR.2019.32
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

32:2 Reconfiguration and Message Losses in Parameterized Broadcast Networks

and recently regained attention from the model-checking community [11, 8, 6, 1]. It can be
seen as particular cases of infinite-state-system verification, and the fact that all agents are
identical can sometimes lead to efficient algorithms [5].

Broadcast networks. This paper targets the application to protocols over ad-hoc networks,
and we thus focus on the model of broadcast networks [3]. A broadcast network is composed
of several nodes that execute the same broadcast protocol. The latter is a finite automaton,
where transitions are labeled with message sendings or message receptions. Configuration in
broadcast networks is then comprised of a set of agents, their current local states, together
with a communication topology (which represents which agents are within radio range). A
transition represents the effect of one agent sending a message to its neighbours.

Parameterized verification of broadcast networks amounts to checking a given property
independently of the initial configuration, and in particular independently of the number
of agents and communication topology. A natural property one can be interested in is
coverability: a state of the broadcast protocol is coverable if some execution leads to a
configuration in which one node is in that local state. When considering error states, a
positive instance for the coverability problem thus corresponds to a network that can exhibit
a bad behaviour.

Coverability is undecidable for static broadcast networks [3], i.e. when the communication
topology is fixed along executions. Decidability can be recovered by relaxing the semantics and
allowing non-deterministic reconfigurations of the communication topology. In reconfigurable
broadcast networks, coverability of a control state is decidable in PTIME [2]. A simple
saturation algorithm allows to compute the set of all states of the broadcast protocol that
can be covered.

Cutoff and covering length. Two important characteristics of positive instances of the
coverability problem are the cutoff and the covering length. First, the cutoff is the minimal
number of agents for which a covering execution exists. The notion of cutoff is particularly
relevant for reconfigurable broadcast networks since they enjoy a monotonicity property: if a
state can be covered from a configuration, it can also be from any configuration with more
nodes. Second, the covering length is the minimal number of steps for covering executions. It
weighs how fast a network execution can go wrong. Both the cutoff and the covering length
are somehow complexity measures for the coverability problem. Surprisingly, no upper nor
lower bounds on these values appear in the literature for reconfigurable broadcast networks.

Contributions. In this paper, we prove a tight linear bound for the cutoff, and a tight
quadratic bound for the covering length in reconfigurable broadcast networks. Both are
expressed in the number of states of the broadcast protocol. These are obtained by refining
the saturation algorithm that computes the set of coverable states, and finely analysing it.

Another contribution is to introduce lossy broadcast networks, in which the communication
topology is fixed, however errors in message transmission may occur. In contrast with
broadcast networks with losses that appear in the literature [4], in our model, message
losses happen upon sending, rather than upon reception. This makes a crucial difference:
reconfiguration of the communication topology can easily be encoded by losses upon reception,
whereas it is not obvious for losses upon sending. Perhaps surprisingly, we prove that the set
of states that can be covered in reconfigurable semantics agrees with the one in static lossy
semantics. Using the same refined saturation algorithm, we prove that same tight bounds
hold for lossy broadcast networks: the cutoff is linear, and the covering length is quadratic

N. Bertrand, P. Bouyer, and A. Majumdar 32:3

(in the number of states of the broadcast protocol). The two semantics thus appear quite
similar, yet, we show that the reconfigurable semantics can be linearly more succinct (in
terms of number of nodes) than the lossy semantics.

Finally, we study a natural decision problem related to the cutoff: decide whether a state is
coverable (in either semantics) with a fixed number of nodes. We prove it to be NP-complete.

Outline. In Section 2, we define the broadcast networks, with static, reconfiurable and
lossy semantics. In Section 3, we present our tight bounds for cutoff and covering length. In
Section 4, we show our succinctness result. In Section 5, we give our NP-completeness result.

2 Broadcast networks

2.1 Static broadcast networks
I Definition 1. A broadcast protocol is a tuple P = (Q, I,Σ,∆) where Q is a finite set
of control states; I ⊆ Q is the set of initial control states; Σ is a finite alphabet; and
∆ ⊆ (Q× {!a, ?a | a ∈ Σ} ×Q) is the transition relation.

For ease of readability, we often write q
!a−→ q′ (resp. q ?a−→ q′) for (q, !a, q′) ∈ ∆

(resp. (q, ?a, q′) ∈ ∆). We assume all broadcast networks to be complete for receptions: for
every q ∈ Q and a ∈ Σ, there exists q′ such that q ?a−→ q′.

A broadcast protocol is represented in Figure 1. In this example and in the whole paper,
for concision purposes, we assume that if the reception of a message is unspecified from
some state, it implicitly represents a self-loop. For example here, from q1, receiving a leads
to q1 again.

q0 q1 q2 q3 q4

r1

⊥!a

?a !b1 ?a !b2

?b1 ?b2

?bi

Figure 1 Example of a broadcast protocol.

Broadcast networks involve several copies, or nodes, of the same broadcast protocol P . A
configuration is an undirected graph whose vertices are labelled with a state of Q. Transitions
between configurations happen by broadcasts from a node to its neighbours.

Formally, given a broadcast protocol P = (Q, I,Σ,∆), a configuration is an undirected
graph γ = (N,E, L) where N is a finite set of nodes; E ⊆ N× N is a symmetric and irreflexive
relation describing the set of edges; finally, L : N→ Q is the labelling function. We let Γ(P)
denote the (infinite) set of Q-labelled graphs. Given a configuration γ ∈ Γ(P), we write
n ∼ n′ whenever (n, n′) ∈ E and we let Neighγ(n) = {n′ ∈ N | n ∼ n′} be the neighbourhood
of n, i.e. the set of nodes adjacent to n. Finally L(γ) denotes the set of labels appearing in
nodes of γ. A configuration (N,E, L) is called initial if L(N) ⊆ I.

The operational semantics of a static broadcast network for a given broadcast protocol P
is an infinite-state transition system T (P). Intuitively, each node of a configuration runs
protocol P, and may send/receive messages to/from its neighbours. From a configuration
γ = (N,E, L), there is a step to γ′ = (N′,E′, L′) if N′ = N, E′ = E, and there exists n ∈ N
and a ∈ Σ such that (L(n), !a, L′(n)) ∈ ∆, and for every n′ ∈ N, if n′ ∈ Neighγ(n), then

CONCUR 2019

32:4 Reconfiguration and Message Losses in Parameterized Broadcast Networks

(L(n′), ?a, L′(n′)) ∈ ∆, otherwise L′(n′) = L(n′): a step reflects how nodes evolve when one of
them broadcasts a message to its neighbours. We write γ n,!a−−→s γ

′, or simply γ →s γ
′ (the s

subscript emphasizes that the communication topology is static).
An execution of the static broadcast network is a sequence ρ = (γi)0≤i≤r of configurations

(N,E, Li) such that γ0 is an initial configuration, and for every 0 ≤ i < r, γi →s γi+1. We
write #nodes(ρ) for the number of nodes in γ0, #steps(ρ) for the number r of steps along ρ,
and for any node n ∈ N,#steps(ρ, n) for the number of broadcasts, called the active length, of
node n along ρ. Note that, along an execution, the number of nodes and the communication
topology are fixed. The set of all static executions is denoted Execs(P).

Coverability problem

Given a broadcast protocol P and a subset of target states F ⊆ Q, we write COVERs(P, F)
for the set of all covering executions, that is, executions that visit a configuration with a
node labelled by a state in F :

COVERs(P, F) = {(γi)0≤i≤r ∈ Execs(P) | L(γr) ∩ F 6= ∅}.

The coverability problem is a decision problem that takes a broadcast protocol P and a subset
of target states F as inputs, and outputs whether COVERs(P, F) is nonempty. For broadcast
networks, the coverability problem is a parameterized verification problem, since the number
of initial configurations is infinite. It is known that coverability is undecidable for static
broadcast networks [3], since one can use the communication topology to build chains that
may encode values of counters, and hence simulate Minsky machines [10].

If the broadcast protocol P allows to cover the subset F , we define the cutoff as the
minimal number of nodes required in an execution to cover F . Similarly, we define the
covering length as the length of a shortest finite execution covering F . Those values are
important to characterize the complexity of a broadcast protocol: assuming a safe set of
states, coverability of the complement set represents bad behaviours, and cutoff and covering
length measure the size of minimal witnesses for violation of the safety property.

2.2 Reconfigurable broadcast networks
To circumvent the undecidability of coverability for static broadcast networks, one attempt is
to introduce non-deterministic reconfiguration of the communication topology. This solution
also allows one to model arbitrary mobility of the nodes, which is meaningful, e.g. for mobile
ad-hoc networks [3].

Under this semantics, configurations are the same as under the static semantics. Trans-
itions between configurations however are enhanced by the ability to modify the communica-
tion topology before performing a broadcast. Formally, from a configuration γ = (N,E, L),
there is a step to γ′ = (N′,E′, L′) if N′ = N, and there exists n ∈ N and a ∈ Σ such that
(L(n), !a, L′(n)) ∈ ∆, and for every n′ ∈ N, if n′ ∈ Neighγ′(n), then (L(n), ?a, L′(n′)) ∈ ∆,
otherwise L′(n′) = L(n′): a step thus reflects that the communication topology may change
from E to E′ followed by the broadcast of a message from a node to its neighbours in the
new topology. We write γ n,!a−−→r γ

′, or simply γ →r γ
′.

Similarly to the static case, we write Execr(P) and COVERr(P, F) for, respectively the
set of all reconfigurable executions in P, and the set of all reconfigurable executions in P
that cover F . We will also use the same notations #nodes(ρ), #steps(ρ) and #steps(ρ, n) as
in the static case.

N. Bertrand, P. Bouyer, and A. Majumdar 32:5

Figure 7 (with n = 2) gives an example of reconfigurable execution for the broadcast
protocol of Figure 1 (which covers). Note that the communication topology indeed evolves
along the execution. Here the colored nodes broadcast a message in the step leading to the
next configuration.

A noticeable property of reconfigurable broadcast networks is the following copycat
property. Such a monotonicity property was originally shown in [7] for asynchronous shared-
memory systems, and it also applies to our context.

I Proposition 2 (Copycat for reconfigurable semantics). Given ρ : γ0 →r γ1 · · · →r γs an
execution, with γs = (N,E, L), for every q ∈ L(γs), for every nq ∈ N such that L(nq) = q,
there exists t ∈ N and an execution ρ′ : γ′0 →r γ

′
1 · · · →r γ

′
t with γ′t = (N′,E′, L′) such that

|N′| = |N|+1, there is an injection ι : N→ N′ with for every n ∈ N, L′(ι(n)) = L(n), and for
the extra node nfresh ∈ N′ \ ι(N), L′(nfresh) = q, and #steps(ρ′, nfresh) = #steps(ρ, nq).

Intuitively, the new node nfresh will copy the moves of node nq: it performs the same broadcasts
(but to nobody) and receives the same messages. More precisely, when nq broadcasts in ρ, it
does so also in ρ′ and then we disconnect all the nodes and nfresh repeats the broadcast (no
other node is affected because of the disconnection); when nq receives a message in ρ, we
connect nfresh to the same neighbours as nq (i.e., ι(n) ∼′ nfresh if and only if n ∼ nq) so that
nfresh also receives the same message in ρ′.

Relying on the copycat property, when reconfigurations are allowed, the coverability
problem becomes decidable and solvable in polynomial time.

I Theorem 3 ([2]). Coverability is decidable in PTIME for reconfigurable broadcast networks.

More precisely, a simple saturation algorithm allows one to compute in polynomial time,
the set of all states that can be covered. Despite this complexity result, to the best of
our knowledge, no bounds on the cutoff or length of witness executions are stated in the
literature.

2.3 Broadcast networks with messages losses
Communication failures were studied for broadcast networks, assuming non-deterministic
message losses could happen: when a message is broadcast, some of the neighbours of the
sending node may not receive it [4]. As observed by the authors, the coverability problem
for such networks easily reduces to the coverability problem in reconfigurable networks by
considering a complete topology, and message losses are simulated by reconfigurations. Thus,
message losses upon reception are equivalent to reconfiguration of the communication topology.

We propose an alternative semantics here: when a message is broadcast, it either reaches
all neighbours of the sending node, or none of them. This is relevant in contexts where
broadcasts are performed in an atomic manner and may fail. In contrast to message losses
upon reception, it is not obvious to simulate arbitrary reconfigurations of the communication
topology with such message losses.

Formally, from a configuration γ = (N,E, L), there is a step to γ′ = (N′,E′, L′) if N′ = N,
E′ = E and there exists n ∈ N and a ∈ Σ such that (L(n), !a, L′(n)) ∈ ∆, and either (a) for
every n′ 6= n, L′(n′) = L(n′) (no one has received the message, it has been lost), or (b) if
n′ ∈ Neighγ′(n), then (L(n′), ?a, L′(n′)) ∈ ∆, otherwise L′(n′) = L(n′): a step thus reflects that
the broadcast message may be lost when it is sent. We write γ n,!a−−→l γ

′ or simply γ →l γ
′.

Similarly to the static and reconfigurable semantics, #steps(ρ, n) is the number of broadcasts
(including lost ones) by node n along ρ; and we write #nonlost_steps(ρ, n) for the number of
successful broadcasts by node n along ρ.

CONCUR 2019

32:6 Reconfiguration and Message Losses in Parameterized Broadcast Networks

For lossy executions also, we use the following notations: Execl(P) and COVERl(P, F).
Any lossy execution can be seen as a reconfigurable execution. Indeed, a lossy execution
with communication topology E can be transformed into a reconfigurable one in which
the communication topology of each configuration is either ∅ or E, depending on whether
the next broadcast is lost or not. Therefore, with slight abuse of notation, we write
Execl(P) ⊆ Execr(P).

Figure 2 gives an example of a lossy execution for the broadcast protocol of Figure 1.
Note that in the third transition, some node indeed performs a lossy broadcast, emphasized
by the subscript “lost”. As before, the colored nodes broadcast a message in the step leading
to the next configuration.

q0

q0

q0

q0

q0 !a−→l
q1

q0

q0

q1

q0

!b1−→l
q2

r1

⊥

q1

q0

!b1−→llost

q2

r1

⊥

q2

q0

!a−→l
q2

⊥ q0

q3

r1

!b2−→l
q2

⊥ ⊥

q4

Figure 2 Example of a lossy execution on the protocol from Figure 1.

3 Tight bounds for reconfigurable and lossy broadcast networks

In this section, we will show tight bounds for the cutoff and the minimal length of a witness
execution for the coverability problem. These hold both for the reconfigurable and the
lossy semantics.

3.1 Upper bounds on cutoff and covering length for reconfigurable
networks

First, we will refine the polytime saturation algorithm of [2], which computes all states
which can be covered in the reconfigurable semantics. We will then show that, based on
the underlying computation, one can construct small witnesses for the two semantics (linear
number of nodes and quadratic number of steps). While it would be enough to show the
result for the lossy semantics (since, given a broadcast protocol P, Execl(P) ⊆ Execr(P)),
for pedagogical reasons, we provide the two proofs, starting with the simplest one for
reconfigurable semantics.

Let us fix for the rest of this section, a protocol P = (Q, I,Σ,∆). We slightly modify the
algorithm given in [2] as follows: we include at most one state to the set S in each iteration.
Additionally, we associate a labelling function c : S → N with the set S in every iteration.
More formally, we consider the modification of the previous saturation algorithm as shown
in Algorithm 1.

N. Bertrand, P. Bouyer, and A. Majumdar 32:7

Algorithm 1 Refined saturation algorithm for coverability.
1: S := I; c(S) := |I|; S′ := ∅
2: while S 6= S′ do
3: S′ := S; c := c(S)
4: if ∃(q1, !a, q2) ∈ ∆ s.t. q1 ∈ S′ and q2 6∈ S′ then
5: S := S ∪ {q2}; c(S) := c+ 1
6: else if ∃(q1, !a, q2) ∈ ∆ and (q′1, ?a, q′2) ∈ ∆ s.t. q1, q2, q

′
1 ∈ S′ and q′2 6∈ S′ then

7: S := S ∪ {q′2}; c(S) := c+ 2
8: end if
9: end while

10: return S

In Algorithm 1, the variable c counts the number of nodes that are sufficient to cover the
current set S, as we will prove later.

I Lemma 4 ([2]). Algorithm 1 terminates and returns the set of coverable states. In
particular, COVERr(P, F) 6= ∅ iff F ∩ S 6= ∅.

Let S0, S1, . . . , Sm be the sets after each iteration of the algorithm, with S0 = I and
Sm = S. We fix an ordering on the states in S on the basis of insertion in S: for all 1 ≤ i ≤ m,
qi is such that qi ∈ Si \ Si−1. In the following, we show the desired upper bounds, proving
that there exists an execution of size O(n) and length O(n2) covering at the same time all
states of Sm.

I Theorem 5. Let P = (Q, I,Σ,∆) be a broadcast protocol, and F ⊆ Q. If COVERr(P, F) 6=
∅ (that is, if F ∩ S 6= ∅), then there exists ρ ∈ COVERr(P, F) with #nodes(ρ) ≤ 2|Q| and
#steps(ρ) ≤ 2|Q|2.

Theorem 5 is a consequence of the following Lemma.

I Lemma 6. For every step i of Algorithm 1, there exists an initial configuration γ0, a
configuration γ and a reconfigurable execution ρ : γ0

∗−→r γ such that L(γ) = Si, #nodes(ρ) =
c(Si), and maxn #steps(ρ, n) ≤ i.

Proof. The lemma is proved by induction on i. The base case i = 0 is obvious: take the
initial configuration γ0 with |I| nodes, and label each node with a different initial state; its
size is |I|, and the length of the execution is 0, hence so is the maximum active length.

To prove the induction step, we distinguish two cases: depending on whether qi+1 was
added as the target state of a broadcast transition q !a−→ for some q ∈ Si; or whether qi+1 is
the target state of a reception from some q ∈ Si with matching broadcast between two states
already in Si.

Case 1: There exists q ∈ Si with q
!a−→ qi+1. We apply the induction hypothesis to step

i, and exhibit an execution ρ : γ0
∗−→r γ such that L(γ) = Si, #nodes(ρ) = c(Si) and

maxn #steps(ρ, n) ≤ i. Applying the copycat property (see Proposition 2), we construct
an execution ρ′ : γ′0

∗−→r γ
′ such that γ′0 has one node more than γ0, and, focusing on

the nodes (since we are in a reconfigurable setting, edges in the configuration are not
important), γ′ coincides with γ, with an extra node n labelled by q. We then disconnect
all nodes and extend with a transition γ′ n,!a−−→r γ

′′, which makes only progress node n
from q to qi+1; the resulting execution is denoted ρ′′. Then:

CONCUR 2019

32:8 Reconfiguration and Message Losses in Parameterized Broadcast Networks

1. L(γ′′) = Si ∪ {qi+1} = Si+1,
2. #nodes(ρ′′) = c(Si) + 1 = c(Si+1),
3. maxn #steps(ρ′′, n) ≤ maxn #steps(ρ, n) + 1 ≤ i+ 1; Indeed, the active length of the

copycat node along ρ′ coincides with the active length of some existing node along ρ,
and it is increased only by 1 in ρ′′.

This proves the induction step in the first case.
Case 2: There exists q, q′, q′′ ∈ Si with q

?a−→ qi+1 and q′ !a−→ q′′. The idea is similar to the
previous case, but one should apply the copycat property twice, to both q and q′. We
formalize this.
We apply the induction hypothesis to step i, and exhibit an execution ρ : γ0

∗−→r γ such that
L(γ) = Si, #nodes(ρ) = c(Si) and maxn #steps(ρ, n) ≤ i. Applying the copycat property
(see Proposition 2) twice, to both q and q′, we construct an execution ρ′ : γ′0

∗−→r γ
′ such

that γ′0 has two nodes more than γ0, and, focusing on the nodes, γ′ coincides with γ, with
one extra node n labelled by q and one extra node n′ labelled by q′. We then connect
nodes n and n′ and disconnect all other nodes, and extend with a transition γ′ n′,!a−−−→r γ

′′;
this makes node n progress from q to qi+1 and node n′ progress from q′ to q′′; all other
nodes are unchanged; the resulting execution is denoted ρ′′. Then:
1. L(γ′′) = Si ∪ {q′′, qi+1} = Si+1 since q′′ ∈ Si,
2. #nodes(ρ′′) = c(Si) + 2 = c(Si+1),
3. maxn #steps(ρ′′, n) ≤ maxn #steps(ρ, n) + 1 ≤ i+ 1; Indeed the active length of any of

the copycat node along ρ′ coincides with the active length of some existing node along
ρ, and it is increased by at most 1 in ρ′′.

This proves the induction step in the second case, which allows to conclude the proof
of the lemma. J

To conclude the proof of Theorem 5, we recall that Algorithm 1 is sound and complete:
Sm is the set of states that can be covered. Hence, from Lemma 6, we deduce that if
COVERr(P, F) 6= ∅, then there is ρ ∈ COVERr(P, F) such that:
1. L(γ) = Sm;
2. #nodes(ρ) = c(Sm) ≤ |I|+ 2m ≤ |I|+ 2(|Q| − |I|) = 2|Q| − |I|;
3. maxn #steps(ρ, n) ≤ m ≤ |Q| − |I|.
Therefore #steps(ρ) ≤

(
#nodes(ρ)

)
·
(

maxn #steps(ρ, n)
)
≤ 2|Q|2, so that we established

the desired bounds for Theorem 5.

3.2 Upper bounds on cutoff and covering length for lossy networks
Perhaps surprisingly, Algorithm 1 also computes the set of states that can be covered by
lossy executions. Concerning coverable states, the reconfigurable and lossy semantics thus
agree. In Section 4, we will show that reconfigurable covering executions can be linearly
more succinct than lossy covering executions.

I Lemma 7. Algorithm 1 returns the set of coverable states for lossy broadcast networks. In
particular, COVERl(P, F) 6= ∅ iff F ∩ S 6= ∅.

Indeed, we have Execl(P) ⊆ Execr(P). Therefore COVERl(P, F) 6= ∅ implies
COVERr(P, F) 6= ∅ and by Lemma 4, we conclude F ∩ S 6= ∅. The other direction of
Lemma 7 is a consequence of the following theorem.

I Theorem 8. Let P = (Q, I,Σ,∆) be a broadcast protocol, and F ⊆ Q. If S ∩ F 6= ∅, then
there exists ρ ∈ COVERl(P, F) with #nodes(ρ) ≤ 2|Q| and #steps(ρ) ≤ 2|Q|2.

N. Bertrand, P. Bouyer, and A. Majumdar 32:9

Before going to the proof of Theorem 8, we show a copycat property for the lossy
broadcast networks, as a counterpart of Proposition 2 for the lossy semantics. Since the
communication topology is static in lossy networks, the following proposition explicitly relates
the communication topologies in the initial execution and its copycat extension.

I Proposition 9 (Copycat for lossy semantics). Given ρ : γ0 →l γ1 · · · →l γr an execution,
with γr = (N,E, L), for every q ∈ L(γr), for every nq ∈ N such that L(nq) = q, there
exists s ∈ N and an execution ρ′ : γ′0 →l γ′1 · · · →l γ′s with γ′s = (N′,E′, L′) such that
|N′| = |N|+1, there is an injection ι : N → N′ with for every n ∈ N, L′(ι(n)) = L(n), and
for the extra node nfresh ∈ N′ \ ι(N), L′(nfresh) = q, for every n ∈ N, nfresh ∼′ ι(n) iff nq ∼ n,
#steps(ρ′, nfresh) = #steps(ρ, nq), and #nonlost_steps(ρ′, nfresh) = 0.

Proof. First notice that, from our definition of lossy semantics, the topology should be the
same in γ0 and in γr, hence we can write γ0 = (N,E, L0), and more generally, for every
i, γi = (N,E, Li). Define N′ as a finite set such that |N′| = |N| + 1, and fix an injection
ι : N→ N′. Write nfresh for the unique element of N′ \ ι(N). Set L′0(ι(n)) = L0(n) for every
n ∈ N, and L′0(nfresh) = L0(nq). Define the edge relation E′ by its induced edge relation ∼′
such that ι(n) ∼′ ι(n′) iff n ∼ n′, and nfresh ∼′ ι(n′) iff nq ∼ n′.

The idea will then be to make nfresh follow what nq is doing. Roughly, if nq is receiving a
message to progress, then we will connect nfresh to a relevant node to also receive the message;
if nq is broadcasting a message, then we will make nfresh broadcast a message and lose, so
that no other node is impacted.

Formally, we will show by induction on i that for every 0 ≤ i ≤ r, there is an execution
ρ′i : γ′0 →l γ

′
1 · · · →l γ

′
f(i) for some f(i), such that L′i(ι(n)) = Li(n) for every n ∈ N and

L′i(nfresh) = Li(nq). The initial case i = 0 is obvious. We then assume that we have constructed
a relevant ρ′i for some i < r, and we will extend it to ρ′i+1 as follows. We make a case
distinction depending on the nature of the step γi →l γi+1:

Assume γi
n,!a−−→l γi+1 is a broadcast message with nq 6= n, then ρ′i+1 is obtained by

extending ρ′i with the broadcast γ′f(i)
ι(n),!a−−−−→ γ′f(i)+1, with the condition that it should

be lost if and only if it was lost in the original execution. For checking correctness, we
distinguish two cases:

the broadcast message was not lost, and nq ∼ n. Then, it is the case that nfresh ∼′ ι(n),
hence nfresh also receives the message. By resolving properly the nondeterminism, we
can make the label of nfresh become the same as the label of nq in γ′f(i)+1. Note also
that all nodes in ι(N) can progress to the same states as those of N in γi+1;
the broadcast message was lost, or nq 6∼ n, then it is the case that the label of nq has
not been changed in γi

n,!a−−→l γi+1, and so will the label of the fresh node in γ′f(i).

Assume γi
nq,!a−−−→l γi+1 is a broadcast message, then we extend ρ′i with the two steps

γ′f(i)
ι(nq),!a−−−−−→ γ′f(i)+1

nfresh,!a−−−−→ γ′f(i)+2 (resolving nondeterminism in a similar way as in

γi
nq,!a−−−→l γi+1), and we make the last broadcast lossy whereas the broadcast from ι(nq)

is lossy if and only if it was lossy in γi →l γi+1.

This concludes the induction. Notice that in the constructed execution, node nfresh does not
make any real sending. J

For any configuration γ = (N,E, L) and a node n, we write L(n) = × if n is not important
anymore in the execution, in other words all the required conditions in γ′ such that γ ∗−→l γ

′

are still satisfied whatever L(n) is.

CONCUR 2019

32:10 Reconfiguration and Message Losses in Parameterized Broadcast Networks

Recall the saturation algorithm and the ordering of the sets and the states: S0 =
I, S1, . . . , Sm = S are the sets after each iteration and qi is the state such that qi ∈ Si \ Si−1
for all 1 ≤ i ≤ m. We will refine the construction from the proof of Lemma 6 (in the context
of reconfigurable broadcast networks), and build inductively a lossy execution covering all
states in Si. Since the topology is static, some nodes which have “finished their jobs” will
remain connected to other nodes, and may therefore continue to change states (contrary to
Lemma 6 where they could be fully disconnected). Hence, in every such execution, every
state q ∈ Si (which is then covered by the execution) will have a main corresponding node,
whose label will remain q. All nodes which are not the main node of a state will be assigned
×, since their labels will become meaningless.

We formalize this idea in the lemma below. However, for better understanding, we
also illustrate this inductive construction of a witness execution in Figure 4 on the simple
broadcast protocol from Figure 3. Configurations are represented vertically: they involve 10
nodes, and the communication topology is given for the first configuration only, for the sake
of readability. To save space, several broadcasts (of the same message type, from different
nodes) may happen in a macrostep that merges several steps. This is for instance the case in
the first macrostep, where a is being broadcast from the node in set S1, as well as from the
first node in set S2. Dashed arrows are used to represent that a node is not involved in some
macrostep and thus stays in the same state. In the execution, the nodes that are performing
a real broadcast are colored yellow, the ones which receive a message are colored gray, and
blue nodes indicate the main nodes for the coverable states.

I Lemma 10. For every step i of the refined saturation algorithm, there exists a configuration
γ = (N,E, L) and an execution ρ : γ0

∗−→l γ such that:
L(γ) \ {×} = Si and #nodes(ρ) = c(Si),
maxn #steps(ρ, n) ≤ i and maxn #nonlost_steps(ρ, n) ≤ 1,
for every q ∈ Si, there exists nmain

q ∈ N such that
L(nmain

q) = q and #nonlost_steps(ρ, nmain
q) = 0,

nmain
q ∼ n implies L(n) = ×, and if n /∈ {nmain

q | q ∈ Si}, then L(n) = ×.

Proof. We do the proof by induction on i. The case i = 0 is obvious, by picking one
main node per initial state in I, and by disconnecting all nodes; hence forming an initial
configuration satisfying all the requirements.

To prove the induction step, we distinguish two cases: depending on whether qi+1 was
added as the target state of a broadcast action !a from some q ∈ Si; or whether qi+1 is the
target state of a reception from some q ∈ Si with matching broadcast between two states
already in Si.

Case 1: There exists q ∈ Si with q
!a−→ qi+1. We apply the induction hypothesis to step i,

and exhibit the various elements of the statement. Applying the copycat property for
lossy broadcast systems (that is, Proposition 9) with node nmain

q , we build an execution
ρ′ : γ′0

∗−→l γ
′ such that γ′ = (N,E, L′) with |N′| = |N|+ 1, and an appropriate injection ι.

The fresh node nfresh is connected to nodes to which nmain
q was connected before; hence, by

induction hypothesis, it is only connected to nodes labelled with ×. Then we extend ρ′

with γ′ nfresh,!a−−−−→ γ′′ and lose the message (this is for condition #nonlost_steps(ρ, nmain
q) = 0

to be satisfied). We declare nmain
qi+1

= nfresh. All requirements for γ′′ are easily checked to
be satisfied (when a node is labelled with × in γ′, then it remains labelled by × in γ′′).

N. Bertrand, P. Bouyer, and A. Majumdar 32:11

q0 q1q2q3 q4 q5q6
!a?a!b ?b !c?c

Figure 3 Illustrating example for the saturation algorithm.

S0

S1

S2

S3

S4

S5

S6

q0

q0

q0

q0

q0

q0

q0

q0

q0

q0

q1

×

q2

q2

q2

q0

q0

q0

q2

q2

q2

q1

q1

q1

q2

q3

×

q4

q4

q4

q2

q4

q4

q3

q5

×

q6

q0

q1

×

q2

q3

×

q4

!a
lost

!a

?a

?a

?a

!a
lost

!a
lost

!a
lost

?a !b
lost

!b
lost

!b

?b

?b

?b

!c
lost

!c

?c

Figure 4 Applying saturation algorithm on protocol in Figure 3 in lossy semantics. Configurations
are represented vertically; for readability, macrosteps merge several broadcasts.

Case 2: There exist q, q′, q′′ ∈ Si such that q ?a−→ qi+1 and q′ !a−→ q′′. We apply the induction
hypothesis to step i, and exhibit the various elements of the statement. Applying twice
the copycat property (that is, Proposition 9), once with node nmain

q and once with node
nmain
q′ , we build an execution ρ′ : γ′0

∗−→l γ
′ such that γ′ = (N,E, L′) with |N′| = |N|+ 2,

and an appropriate injection ι. The two fresh nodes nfresh and n′fresh are only connected to
×-nodes in γ′ (by induction hypothesis on nmain

q and nmain
q′ respectively). We transform γ′0

into γ′′0 by connecting the two nodes nfresh and n′fresh. By Proposition 9, we know that
those two nodes don’t perform any real sending (i.e., #nonlost_steps(ρ′, nfresh) = 0 and

CONCUR 2019

32:12 Reconfiguration and Message Losses in Parameterized Broadcast Networks

q0 q1 q2 q3 q4 · · ·
!a1 ?b1 !a2 ?b2 !an ?bn

!b1 !b2 !bn

Figure 5 Broadcast protocol with linear cutoff and quadratic covering length.

#nonlost_steps(ρ′, n′fresh) = 0), hence this new connection will not affect the labels of the
nodes, and we can safely apply the same transitions as in ρ′ from γ′′0 to get an execution
ρ′′ : γ′′0

∗−→l γ
′′, where γ′′ coincides with γ′, with an extra connection between nodes nfresh

and n′fresh. Then, we extend ρ′′ with γ′′ n′
fresh,!a−−−−→ γ′′′. We assume it is a real sending, hence:

node nfresh can progress from state q to qi+1, and node n′fresh can progress from q′ to q′′. All
other nodes which are connected to n′fresh are labelled by × in γ′′, hence cannot be really
affected by that sending. We relabel n′fresh to ×, and declare nmain

qi+1
= nfresh. The expected

conditions of the statement are easily checked to be satisfied by this new execution. J

Bounds are then obtained similarly to the reconfigurable case, see page 8.

3.3 Matching lower bounds for reconfigurable and lossy networks
In this section, we show that the linear bound on the cutoff and the quadratic bound
on the length of witness executions are tight, both for the reconfigurable and the lossy
broadcast networks.

I Theorem 11. There exists a family of broadcast protocols (Pn)n with Pn = (Qn, In,Σn,∆n),
and target states Fn ⊆ Qn with |Qn| ∈ O(n), such that for every n, COVERr(Pn, Fn) 6= ∅,
COVERl(Pn, Fn) 6= ∅, and any witness reconfigurable or lossy execution has size O(n) and
length O(n2).

Proof. Consider Pn, as depicted in Figure 5 with 2n+1 states and Fn = { }. Any covering
reconfigurable execution involves at least n+1 nodes, and has at least n2+5n

2 steps. Indeed,
intuitively, the process responsible for broadcasting bi is blocked in q2i−1, so that n such
processes are needed, plus one process in ; moreover, n+2−i broadcasts of ai and one
broadcast of each bi happen. J

4 Succinctness of reconfigurations compared to losses

In this section, we show that reconfigurable executions can be linearly more succinct than
lossy executions, in terms of number of nodes. Given the tight linear bound on cutoff, this is
somehow optimal.

I Theorem 12. There exists a family of broadcast protocols (Pn)n with Pn = (Qn, In,Σn,∆n)
and target states Fn ⊆ Qn such that for every n:

there exists a reconfigurable covering execution in Pnwith 3 nodes; and
any lossy covering execution in Pn requires O(n) nodes.

Proof. Pn is depicted in Figure 6. It has 3n+2 states and we let Fn = { }. A covering
reconfigurable execution of size 3 is given in Figure 7. Colored nodes broadcast a message
in the step leading to the next configuration. Along that execution, the top node always
remains at q0 and alternatively broadcasts a to the middle node and disconnects; the middle
node follows the chain of qi states and alternatively broadcasts bi’s to the bottom node which
gradually progresses along the chain of states ri and reaches .

N. Bertrand, P. Bouyer, and A. Majumdar 32:13

q0 q1 q2 q3 q4 · · · q2n

r1

⊥

r2 · · ·

!a

?a !b1 ?a !b2 ?a !bn

?b1 ?b2 ?bn

?bi

Figure 6 Example where reconfigurable semantics needs less nodes than lossy semantics.

q0

q0

q0

!a−→r
q1

q0

q0

!b1−→r
q2

r1

q0

!a−→r
q3

r1

q0

!b2−→r
· · · !bn−→r

q2n

q0

Figure 7 Covering reconfigurable execution with 3 nodes on the protocol from Figure 6.

Let us argue that in the lossy semantics, O(n) nodes are needed to cover . Obviously,
one node, say n , is needed to reach the target state, after having received sequentially all
the bi’s (which should then correspond to real broadcasts). Towards a contradiction, assume
there is a node n which makes n progress twice, that is, n is connected to n and performs
at least two real broadcasts, say !bi and !bj with i < j. Node n needs to receive j − i > 0
times the message a after the real !bi has occurred, hence there must be at least one node
in state q0 connected to n after the real !bi by n. This is not possible, since this node has
received the real !bi while being in q0, leading to ⊥ if i > 1, otherwise ⊥ or r1. Hence, each
broadcast !bi needs to be sent by a different node. This requires at least n+1 nodes, say
{ni | 1 ≤ i ≤ n} ∪ {n }: node ni is responsible for broadcasting (with no loss) bi and n
progresses towards . Notice that n might be the node responsible for broadcasting all the
a’s. We conclude that n+1 is a lower bound on the number of nodes needed to cover in
the lossy semantics.

To complete this example, observe that n+1 nodes do actually suffice in lossy semantics
to cover . Let N = {ni | 1 ≤ i ≤ n} ∪ {n } and consider the static communication topology
defined by ni ∼ n for every i. In the covering lossy execution, node n initially broadcasts
a’s, so that all its neighbours, the ni’s can move to q2i−1, using lost sendings. Then the each
node ni broadcasts its message bito n , starting with n1 until nn, so that n reaches . J

5 Complexity of deciding the size of minimal witnesses

We now consider the following decision problem of determining the minimal size of coverability
witnesses for both the reconfigurable and lossy semantics.

Minimum number of nodes for coverability (MinCover)
Input: A broadcast protocol P, a set of states F ⊆ Q, and k ∈ N.
Question: Does there exist a reconfigurable/lossy execution ρ covering some state in F ,
and with #nodes(ρ) = k?

By the copycat properties (for both semantics), if there is a covering execution of size less
than k, then there is one of size exactly k.

CONCUR 2019

32:14 Reconfiguration and Message Losses in Parameterized Broadcast Networks

s1 s2 . . . sm

q1 q2 q3 · · · qn

!a11, !a12, · · · !a21, !a22, · · · !am1, !am2, · · ·

?a1 ?a2 ?a3 ?an

Figure 8 Illustration of the reduction to prove NP-hardness of MinCover.

I Theorem 13. MinCover is NP-complete for both reconfigurable and lossy broadcast
networks.

The NP-hardness of MinCover is proved by reduction from SetCover, which is known
to be NP-complete [9]. Recall that SetCover takes as input a finite set of elements U , a
collection S of subsets of U and an integer k, and returns yes iff there exists a subcollection
of S of size at most k that covers U .

Given an instance of the SetCover problem (U ,S, k) with U = {a1, a2, . . . , an} and
S = {S1, S2, . . . , Sm}, we build a protocol P = (Q, I,Σ,∆) as depicted in Figure 8, where
we assume Si = {ai1, ai2, . . . } for every i.

We can then show that U has a cover using S of size k if and only if there exists a
reconfigurable/lossy execution for P covering F and with k+1 nodes.

For the NP-membership, it suffices to observe that the length of a minimal covering
execution is polynomially bounded, thanks to Theorem 5 and 8. Moreover, configurations
and updates of configurations by given transitions can be represented in and computed in
a compact way. It is thus possible to implement a guess-and-check NP-algorithm for the
MinCover problem, that non deterministically guesses an execution with k nodes of maximal
length that is polynomially bounded in the size of the broadcast protocol.

6 Conclusion

In this paper, we have given a tight linear bound on the cutoff and a tight quadratic bound
on the covering length for reconfigurable broadcast networks. We have also proposed a new
semantics for broadcast networks with a static topology, where messages can be lost at
sending. Similar tight bounds can be proven for that new semantics. Proofs are based on a
refinement of the saturation algorithm of [2], and on fine analysis of copycat lemmas. As a
side result of these constructions, we get that the set of states which can be covered by the
two semantics is actually the same, but that the reconfigurable semantics can be linearly
more succinct (in terms of number of nodes). We also prove the NP-completeness for the
existence of a witness execution with the minimal number of nodes.

As future work, we want to pursue the study of the model with stochastic losses, and
design analysis algorithms for various quantitative questions. Also, in this work we have
not studied the tradeoff between number of nodes and length of covering computation. The
precise interplay between number of nodes and length of covering execution is a possible
direction for future work.

References
1 Roderick Bloem, Swen Jacobs, Ayrat Khalimov, Igor Konnov, Sasha Rubin, Helmut

Veith, and Josef Widder. Decidability of Parameterized Verification. Synthesis Lectures
on Distributed Computing Theory. Morgan & Claypool Publishers, 2015. doi:10.2200/
S00658ED1V01Y201508DCT013.

http://dx.doi.org/10.2200/S00658ED1V01Y201508DCT013
http://dx.doi.org/10.2200/S00658ED1V01Y201508DCT013

N. Bertrand, P. Bouyer, and A. Majumdar 32:15

2 Giorgio Delzanno, Arnaud Sangnier, Riccardo Traverso, and Gianluigi Zavattaro. On the Com-
plexity of Parameterized Reachability in Reconfigurable Broadcast Networks. In Proceedings of
the 32nd Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS’12), volume 18 of Leibniz International Proceedings in Informatics, pages 289–300.
Leibniz-Zentrum für Informatik, December 2012. doi:10.4230/LIPIcs.FSTTCS.2012.289.

3 Giorgio Delzanno, Arnaud Sangnier, and Gianluigi Zavattaro. Parameterized Verification of
Ad Hoc Networks. In Proceedings of the 21st International Conference on Concurrency Theory
(CONCUR’10), volume 6269 of Lecture Notes in Computer Science, pages 313–327. Springer,
September 2010. doi:10.1007/978-3-642-15375-4_22.

4 Giorgio Delzanno, Arnaud Sangnier, and Gianluigi Zavattaro. Verification of Ad Hoc Networks
with Node and Communication Failures. In Proceedings of the 32nd International Conference
on Formal Techniques for Distributed Systems (FMOODS/FORTE’12), volume 7273 of Lecture
Notes in Computer Science. Springer, 2012.

5 E. Allen Emerson and A. Prasad Sistla. Symmetry and model checking. Formal Methods in
System Design, 9(1-2):105–131, August 1996. doi:10.1007/BF00625970.

6 Javier Esparza. Keeping a Crowd Safe: On the Complexity of Parameterized Verification
(Invited Talk). In Proceedings of the 31st Symposium on Theoretical Aspects of Computer
Science (STACS’14), volume 25 of Leibniz International Proceedings in Informatics, pages
1–10. Leibniz-Zentrum für Informatik, March 2014. doi:10.4230/LIPIcs.STACS.2014.1.

7 Javier Esparza, Pierre Ganty, and Rupak Majumdar. Parameterized verification of asyn-
chronous shared-memory systems. In Proceedings of the 25th International Conference on
Computer Aided Verification (CAV’13), volume 8044 of Lecture Notes in Computer Science,
pages 124–140. Springer, July 2013. doi:10.1007/978-3-642-39799-8_8.

8 Steven M. German and A. Prasad Sistla. Reasoning about Systems with Many Processes.
Journal of the ACM, 39(3):675–735, July 1992. doi:10.1145/146637.146681.

9 Richard M. Karp. Reducibility among Combinatorial Problems. In Complexity of Computer
Computations, The IBM Research Symposia Series, pages 85–103, 1972.

10 Marvin Minsky. Computation: Finite and Infinite Machines. Prentice Hall International, 1967.
11 Ichiro Suzuki. Proving Properties of a Ring of Finite-State Machines. Information Processing

Letters, 28(4):213–214, 1988. doi:10.1016/0020-0190(88)90211-6.

CONCUR 2019

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2012.289
http://dx.doi.org/10.1007/978-3-642-15375-4_22
http://dx.doi.org/10.1007/BF00625970
http://dx.doi.org/10.4230/LIPIcs.STACS.2014.1
http://dx.doi.org/10.1007/978-3-642-39799-8_8
http://dx.doi.org/10.1145/146637.146681
http://dx.doi.org/10.1016/0020-0190(88)90211-6

Verification of Randomized Consensus Algorithms
Under Round-Rigid Adversaries
Nathalie Bertrand
Univ. Rennes, Inria, CNRS, IRISA, Rennes, France
nathalie.bertrand@inria.fr

Igor Konnov
University of Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France
igor.konnov@inria.fr

Marijana Lazić
TU München, 85748 Garching bei München, Germany
lazic@in.tum.de

Josef Widder
TU Wien, 1040 Vienna, Austria
Interchain Foundation, 6340 Baar, Switzerland
widder@forsyte.at

Abstract
Randomized fault-tolerant distributed algorithms pose a number of challenges for automated
verification: (i) parameterization in the number of processes and faults, (ii) randomized choices and
probabilistic properties, and (iii) an unbounded number of asynchronous rounds. This combination
makes verification hard. Challenge (i) was recently addressed in the framework of threshold automata.

We extend threshold automata to model randomized consensus algorithms that perform an
unbounded number of asynchronous rounds. For non-probabilistic properties, we show that it is
necessary and sufficient to verify these properties under round-rigid schedules, that is, schedules where
processes enter round r only after all processes finished round r− 1. For almost-sure termination, we
analyze these algorithms under round-rigid adversaries, that is, fair adversaries that only generate
round-rigid schedules. This allows us to do compositional and inductive reasoning that reduces
verification of the asynchronous multi-round algorithms to model checking of a one-round threshold
automaton. We apply this framework and automatically verify the following classic algorithms: Ben-
Or’s and Bracha’s seminal consensus algorithms for crashes and Byzantine faults, 2-set agreement
for crash faults, and RS-Bosco for the Byzantine case.

2012 ACM Subject Classification Software and its engineering → Software verification; Software
and its engineering → Software fault tolerance; Theory of computation → Logic and verification

Keywords and phrases threshold automata, counter systems, parameterized verification, randomized
distributed algorithms, Byzantine faults

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2019.33

Related Version Full version with proofs is available at https://hal.inria.fr/hal-01925533.

Funding Supported by the Austrian Science Fund (FWF) via the National Research Network RiSE
(S11403, S11405), project PRAVDA (P27722), and Doctoral College LogiCS (W1255-N23); by
the Vienna Science and Technology Fund (WWTF) via project APALACHE (ICT15-103); and by
the European Research Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 787367 (PaVeS). Experiments presented in this
paper were carried out using the Grid’5000 testbed, supported by a scientific interest group hosted
by Inria and including CNRS, RENATER, and others, see https://www.grid5000.fr.

© Nathalie Bertrand, Igor Konnov, Marijana Lazić, and Josef Widder;
licensed under Creative Commons License CC-BY

30th International Conference on Concurrency Theory (CONCUR 2019).
Editors: Wan Fokkink and Rob van Glabbeek; Article No. 33; pp. 33:1–33:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-9957-5394
mailto:nathalie.bertrand@inria.fr
https://orcid.org/0000-0001-6629-3377
mailto:igor.konnov@inria.fr
https://orcid.org/0000-0002-9222-6191
mailto:lazic@in.tum.de
https://orcid.org/0000-0003-2795-611X
mailto:widder@forsyte.at
https://doi.org/10.4230/LIPIcs.CONCUR.2019.33
https://hal.inria.fr/hal-01925533
https://www.grid5000.fr
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

33:2 Verification of Randomized Consensus Algorithms Under Round-Rigid Adversaries

1 bool v := input_value({0, 1});
2 int r := 1;
3 while (true) do
4 send (R,r,v) to all;
5 wait for n − t messages (R,r,∗);
6 if received (n + t) / 2 messages (R,r,w)
7 then send (P,r,w,D) to all;
8 else send (P,r,?) to all;
9 wait for n − t messages (P,r,∗);

10 if received at least t + 1
11 messages (P,r,w,D) then {
12 v := w;
13 if received at least (n + t) / 2
14 messages (P,r,w,D)
15 then decide w;
16 } else v := random({0, 1});
17 r := r + 1;
18 od

Figure 1 Pseudo code of Ben-Or’s algorithm for Byzantine faults.

1 Introduction

Fault-tolerant distributed algorithms like Paxos and Blockchain recently receive much atten-
tion. Still, these systems are out of reach with current automated verification techniques.
One problem comes from the scale: these systems should be verified for a very large (ide-
ally even an unbounded) number of participants. In addition, many systems (including
Blockchain), provide probabilistic guarantees. To check their correctness, one has to reason
about randomized distributed algorithms in the parameterized setting.

In this paper, we make first steps towards parameterized verification of fault-tolerant
randomized distributed algorithms. We consider consensus algorithms that follow the ideas
of Ben-Or [3]. Interestingly, these algorithms were analyzed in [17, 15] where probabilistic
reasoning was done using the probabilistic model checker PRISM [16] for systems of 10-
20 processes, while only safety was verified in the parameterized setting using Cadence
SMV. From a different perspective, these algorithms extend asynchronous threshold-guarded
distributed algorithms from [12, 10] with two features (i) a random choice (coin toss), and
(ii) repeated executions of the same algorithm until it converges (with probability 1).

A prominent example is Ben-Or’s fault-tolerant consensus algorithm [3] given in Figure 1.
It circumvents the impossibility of asynchronous consensus [9] by relaxing the termination
requirement to almost-sure termination, i.e., termination with probability 1. Here processes
execute an infinite sequence of asynchronous loop iterations, which are called rounds r. Each
round consists of two stages where they first exchange messages tagged R, wait until the
number of received messages reaches a certain threshold (given as expression over parameters
in line 5) and then exchange messages tagged P . In the code, n is the number of processes,
among which at most t are Byzantine faulty (which may send conflicting information). The
correctness of the algorithm should be verified for all values of the parameters n and t that
meet a so-called resilience condition, e.g., n > 3t. Carefully chosen thresholds (n− t, (n+ t)/2
and t+ 1) on the number of received messages of a given type, ensure agreement, i.e., that
two correct processes never decide on different values. At the end of a round, if there is no
“strong majority” for a value, i.e., less than (n+ t)/2 messages were received (cf. line 13), a
process picks a new value randomly in line 16.

While these non-trivial threshold expressions can be dealt with using the methods in [10],
several challenges remain. The technique in [10] can be used to verify one iteration of the
round from Figure 1 only. However, consensus algorithms should prevent that there are no two
rounds r and r′ such that a process decides 0 in r and another decides 1 in r′. This calls for a
compositional approach that allows one to compose verification results for individual rounds.
A challenge in the composition is that distributed algorithms implement “asynchronous
rounds”, i.e., during a run processes may be in different rounds at the same time.

N. Bertrand, I. Konnov, M. Lazić, and J. Widder 33:3

I0

I1

J0

J1

SR SP

E0

CT0

CT1
D1

D0

E1

r1 : >

r2 : >

r3 : > 7→ x0++

r4 : > 7→ x1++

r8

r9

r12

r11r7

r5
r6 r10

1/2

1/2

r5 : x0 +x1 ≥ n− t−f ∧x0 ≥ (n+ t)/2−f 7→ y0++

r6 : x0 +x1 ≥ n− t−f ∧x1 ≥ (n+ t)/2−f 7→ y1++

r7 : x0 + x1 ≥ n− t− f ∧ x0 ≥ (n− 3t)/2− f

∧ x1 ≥ (n− 3t)/2− f 7→ y?++

r8 : y0 + y1 + y? ≥ n− t− f ∧ y? ≥ (n− 3t)/2− f

∧ y0 ≥ t + 1− f

r9 : y0 + y1 + y? ≥ n− t− f ∧ y0 ≥ (n + t)/2− f

r10 : y0 + y1 + y? ≥ n− t− f ∧ y? ≥ (n− 3t)/2− f

∧ y? ≥ n− 2t− f − 1

Figure 2 Ben-Or’s algorithm as PTA with resilience condition n > 3t ∧ t > 0 ∧ t ≥ f ≥ 0.

In addition, the combination of distributed aspects and probabilities makes reasoning
difficult. Quoting Lehmann and Rabin [18], “proofs of correctness for probabilistic dis-
tributed systems are extremely slippery”. This advocates the development of automated
verification techniques for probabilistic properties of randomized distributed algorithms in
the parameterized setting.

Contributions. We extend the threshold automata framework from [10] to round-based
algorithms with coin toss transitions. For the new framework we achieve the following:
1. For safety verification we introduce a method for compositional round-based reasoning.

This allows us to invoke a reduction similar to the one in [8, 6, 7]. We highlight necessary
fairness conditions on individual rounds. This provides us with specifications to be
checked on a one-round automaton.

2. We reduce probabilistic liveness verification to proving termination with positive prob-
ability within a fixed number of rounds. To do so, we restrict ourselves to round-rigid
adversaries, that is, adversaries that respect the round ordering. In contrast to existing
work that proves almost-sure termination for fixed number of participants, these are the
first parameterized model checking results for probabilistic properties.

3. We check the specifications that emerge from points 1. and 2. and thus verify challenging
benchmarks in the parameterized setting. We verify Ben-Or’s [3] and Bracha’s [5] classic
algorithms, and more recent algorithms such as 2-set agreement [21], and RS-Bosco [23].

2 Overview

We introduce probabilistic threshold automata to model randomized threshold-based algo-
rithms. An example of such an automaton is given in Figure 2. Nodes represent local states
(or locations) of processes, which move along the labeled edges or forks. Edges and forks
are called rules. Labels have the form ϕ 7→ u, meaning that a process can move along the
edge only if ϕ evaluates to true, and this is followed by the update u of shared variables.
Additionally, each tine of a fork is labeled with a number in the [0, 1] interval, representing
the probability of a process moving along the fork to end up at the target location of the tine.
If we ignore the dashed arrows in Figure 2, a threshold automaton captures the behavior of
a process in one round, that is, a loop iteration in Figure 1.

The code in Figure 1 refers to numbers of received messages and, as is typical for
distributed algorithms, their relation to sent messages (that is the semantics of send and
receive) is not explicit in the pseudo code. To formalize the behavior, the encoding in the
threshold automaton directly refers to the numbers of sent messages, and they are encoded
in the shared variables xi and yi. The algorithm is parameterized: n is the number of

CONCUR 2019

33:4 Verification of Randomized Consensus Algorithms Under Round-Rigid Adversaries

processes, t is the assumed number of faults and f is the actual number of faults. It should be
demonstrated to work under the resilience condition n > 3t∧ t ≥ f ∧ t > 0. For instance, the
locations J0 and J1 capture that a loop is entered with v being 0 and 1, respectively. Sending
an (R, r, 0) and (R, r, 1) message is captured by the increments on the shared variables x0
and x1 in the rules r3 and r4, respectively; e.g., a process that is in location J0 uses rule
r3 to go to location SR (“sent R message”), and increments x0 in doing so. Waiting for R
and P messages in the lines 5 and 9, is captured by looping in the locations SR and SP .
In line 7 a process sends, e.g., a (P, r, 0, D) message if it has received n − t messages out
of which (n + t)/2 are (R, r, 0) messages. This is captured in the guard of rule r5 where
x0 + x1 ≥ n− t− f checks the number of received messages in total, and x0 ≥ (n+ t)/2− f
checks for the specific messages containing 0. The “−f” term models that in the message
passing semantics underlying Figure 1, f messages from Byzantine faults may be received in
addition to the messages sent by correct processes (modeled by shared variables in Figure 2).
The branching at the end of the loop from lines 10 to 18 is captured by the rules outgoing of
SP . In particular rule r10 captures the coin toss in line 16. The non-determinism due to
faults and asynchrony is captured by multiple rules being enabled in the same configuration.

Liveness properties of distributed algorithms typically require fairness constraints, e.g.,
every message sent by a correct process to a correct process is eventually received. For
instance, this implies in Figure 1 that if n− t correct processes have sent messages of the
form (R, 1, ∗) and (n+ t)/2 correct processes have sent messages of the form (R, 1, 0) then
every correct process should eventually execute line 7, and proceed to line 9. We capture
this by the following fairness constraint: if x0 + x1 ≥ n− t ∧ x0 ≥ (n+ t)/2 – that is, rule
r5 is enabled without the help of the f faulty processes but by “correct processes alone” –
then the source location of rule r5, namely SR should eventually be evacuated, that is, its
corresponding counter should eventually be 0.

The dashed edges, called round switch rules, encode how a process, after finishing a round,
starts the next one. The round number r serves as the loop iterator in Figure 1, and in each
iteration, processes send messages that carry r. To capture this, our semantics will introduce
fresh shared variables initialized with 0 for each round r. Because there are infinitely many
rounds, this means a priori we have infinitely many variables.

As parameterized verification of threshold automata is in general undecidable [14], we
consider the so-called “canonic” restrictions here, i.e., only increments on shared variables,
and no increments of the same variable within loops. These restrictions still allow us to
model many threshold-based fault-tolerant distributed algorithms [10]. As a result, threshold
automata without probabilistic forks and round switching rules can be automatically checked
for safety and liveness [10]. Adding forks and round switches is required to adequately
model randomized distributed algorithms. Here we will use a convenient restriction that
requires that coin-toss transitions only appear at the end of a round, e.g., line 16 of Figure 1.
Intuitively, as discussed in Section 1, a coin-toss is only necessary if there is no strong
majority. Thus, all our benchmarks have this feature, and we exploit it in Section 7.

In order to overcome the issue of infinitely many rounds, we prove in Section 6 that we
can verify probabilistic threshold automata by analyzing a one-round automaton that fits
in the framework of [10]. We prove that we can reorder transitions of any fair execution
such that their round numbers are in an increasing order. The obtained ordered execution is
stutter equivalent with the original one, and thus, they satisfy the same LTL-X properties over
the atomic propositions describing only one round. In other words, our targeted concurrent
systems can be transformed to a sequential composition of one-round systems.

N. Bertrand, I. Konnov, M. Lazić, and J. Widder 33:5

The main problem with isolating a one-round system is that consensus specifications
often talk about at least two different rounds. In this case we need to use round invariants
that imply the specifications. For example, if we want to verify agreement, we have to check
whether two processes decide different values, possibly in different rounds. We do this in two
steps: (i) we check the round invariant that no process changes its decision from round to
round, and (ii) we check that within a round no two processes disagree.

Finally, verifying almost-sure termination under round-rigid adversaries calls for distinct
arguments. Our methodology follows the lines of the manual proof of Ben Or’s consensus
algorithm by Aguilera and Toueg [1]. However, our arguments are not specific to Ben
Or’s algorithm, and we apply it to other randomized distributed algorithms (see Section 8).
Compared to their paper-and-pencil proof, the threshold automata framework required us to
provide a more formal setting and a more informative proof, also pinpointing the needed
hypothesis. The crucial parts of our proof are automatically checked by the model checker
ByMC [13]. Hence the established correctness stands on less slippery ground, which addresses
the mentioned concerns of Lehmann and Rabin.

3 The Probabilistic Threshold Automata Framework

A probabilistic threshold automaton PTA is a tuple (L,V,R,RC), where
L is a finite set of locations, that contains the following disjoint subsets: initial locations
I, final locations F , and border locations B, with |B| = |I|;
V is a set of variables. It is partitioned in two sets: Π contains parameter variables, and
Γ contains shared variables;
R is a finite set of rules; and
RC , the resilience condition, is a formula in linear integer arithmetic over parameter
variables.

In the following we introduce rules in detail, and give syntactic restrictions on locations.
The resilience condition RC only appears in the definition of the semantics in Section 3.1.

A rule r is a tuple (from, δto, ϕ, ~u) where from ∈ L is the source location, δto ∈ Dist(L) is
a probability distribution over the destination locations, ~u ∈ N|Γ|0 is the update vector, and ϕ
is a guard, i.e., a conjunction of expressions of the form b ·x ≥ ā ·pᵀ +a0 or b ·x < ā ·pᵀ +a0,
where x ∈ Γ is a shared variable, ā ∈ Z|Π| is a vector of integers, a0, b ∈ Z, and p is the
vector of all parameters. If r.δto is a Dirac distribution, i.e., there exists ` ∈ L such that
r.δto(`) = 1, we call r a Dirac rule, and write it as (from, `, ϕ, ~u). Destination locations of
non-Dirac rules are in F (coin-toss transitions only happen at the end of a round).

Probabilistic threshold automata model algorithms with successive identical rounds.
Informally, a round happens between border locations and final locations. Then round switch
rules let processes move from final locations of a given round to border locations of the next
round. From each border location there is exactly one Dirac rule to an initial location, and
it has a form (`, `′, true,~0) where ` ∈ B and `′ ∈ I. As |B| = |I|, one can think of border
locations as copies of initial locations. It remains to model from which final locations to
which border location (that is, initial for the next round) processes move. This is done by
round switch rules. They can be described as Dirac rules (`, `′, true,~0) with ` ∈ F and
`′ ∈ B. The set of round switch rules is denoted by S ⊆ R.

A location is in B if and only if all the incoming edges are in S. Similarly, a location is
in F if and only if there is only one outgoing edge and it is in S.

Figure 2 depicts a PTA with border locations B = {I0, I1}, initial locations I = {J0, J1},
and final locations F = {E0, E1, D0, D1, CT0, CT1}. The only rule that is not Dirac rule
is r10, and round switch rules are represented by dashed arrows.

CONCUR 2019

33:6 Verification of Randomized Consensus Algorithms Under Round-Rigid Adversaries

3.1 Probabilistic Counter Systems
A resilience condition RC defines the set of admissible parameters PRC = {p ∈ N|Π|0 : p |=
RC}. We introduce a function N : PRC → N0 that maps a vector of admissible parameters
to a number of modeled processes in the system. For instance, for the automaton in Figure 2,
N is the function (n, t, f) 7→ n− f , as we model only the n− f correct processes explicitly,
while the effect of faulty processes is captured in non-deterministic choices between different
guards as discussed in Section 2. Given a PTA and a function N , we define the semantics,
called probabilistic counter system Sys(PTA), to be the infinite-state MDP (Σ, I,Act,∆),
where Σ is the set of configurations for PTA among which I ⊆ Σ are initial, the set of actions
is Act = R× N0 and ∆: Σ× Act→ Dist(Σ) is the probabilistic transition function.

Configurations. In a configuration σ = (~κ, ~g,p), a function σ.~κ : L×N0 → N0 defines values
of location counters per round, a function σ.~g : Γ×N0 → N0 defines shared variable values per
round, and a vector σ.p ∈ N|Π|0 defines parameter values. We denote the vector (~g[x, k])x∈Γ
of shared variables in a round k by ~g[k], and by ~κ[k] we denote the vector (~κ[`, k])`∈L of
local state counters in a round k.

A configuration σ = (~κ, ~g,p) is initial if all processes are in initial states of round 0, and
all global variables evaluate to 0, that is, if for every x ∈ Γ and k ∈ N0 we have σ.~g[x, k] = 0,
if

∑
`∈B σ.~κ[`, 0] = N(p), and finally if σ.~κ[`, k] = 0, for every (`, k) ∈ (L \ B)× {0} ∪ L×N.
A threshold guard evaluates to true in a configuration σ for a round k, written σ, k |= ϕ,

if for all its conjuncts b · x ≥ ā · pᵀ + a0, it holds that b · σ.~g[x, k] ≥ ā · (σ.pᵀ) + a0 (and
similarly for conjuncts of the other form, i.e., b · x < ā · pᵀ + a0).

Actions. An action α = (r, k) ∈ Act stands for the execution of a rule r in round k (by
a single process). We write α.from for r.from, α.δto for r.δto, etc. An action α = (r, k) is
unlocked in a configuration σ, if its guard evaluates to true in its round, that is σ, k |= r.ϕ.
An action α = (r, k) is applicable to a configuration σ if α is unlocked in σ, and there is
at least one process in the source location r.from, formally, σ.~κ[r.from, k] ≥ 1. When an
action α is applicable to σ, and when ` is a potential destination location for the probabilistic
action α, we write apply(σ, α, `) for the resulting configuration: parameters are unchanged,
shared variables are updated according to the update vector r.~u, and the values of counters
are modified in a natural way: as a process moves from r.from to ` in round k, counter
~κ[r.from, k] is decreased by 1 and ~κ[`, k] is increased by 1. The probabilistic transition
function ∆ is defined by: ∆(σ, α)(σ′) = α.δto(`) if apply(σ, α, `) = σ′, and 0 otherwise.

3.2 Non-probabilistic Counter Systems
Non-probabilistic threshold automata are defined in [12], and they can be seen as a special
case of probabilistic threshold automata where all rules are Dirac rules.

With a PTA, one can naturally associate a non-probabilistic threshold automaton, by
replacing probabilities with non-determinism.

I Definition 1. Given a PTA = (L,V,R,RC), its (non-probabilistic) threshold automaton
is TAPTA = (L,V,Rnp,RC) where the set of rules Rnp is defined as {r` = (from, `, ϕ, ~u) : r =
(from, δto, ϕ, ~u) ∈ R ∧ ` ∈ L ∧ δto(`) > 0}.

We write TA instead of TAPTA when the automaton PTA is clear from the context. Every
rule from Rnp corresponds to exactly one rule in R, and for every rule in R there is at least
one corresponding rule in Rnp (and exactly one for Dirac rules).

N. Bertrand, I. Konnov, M. Lazić, and J. Widder 33:7

If we understand a TA as a PTA where all rules are Dirac rules, we can define transitions
using the partial function apply in order to obtain an infinite (non-probabilistic) counter
system, which we denote by Sys∞(TA). Moreover, since in this case R = Rnp, actions of
the PTA exactly match transitions of its TA. We obtain σ′ by applying t = (r, k) to σ,
and write this as σ′ = t(σ), if and only if for the destination location ` of r holds that
apply(σ, t, `) = σ′.

Also, starting from a PTA, one can define the counter system Sys(PTA), and consequently
its non-probabilistic counterpart Sysnp(PTA). As the definitions of Sysnp(PTA) and Sys∞(TA)
are equivalent for a given PTA, we are free to choose one, and always use Sys∞(TA).

A (finite or infinite) sequence of transitions is called schedule, and it is often denoted
by τ . A schedule τ = t1, t2, . . . , t|τ | is applicable to a configuration σ if there is a sequence
of configurations σ = σ0, σ1, . . . , σ|τ | such that for every 1 ≤ i ≤ |τ | we have that ti is
applicable to σi−1 and σi = ti(σi−1). A path is an alternating sequence of configurations
and transitions, for example σ0, t1, σ1, . . . , t|τ |, σ|τ |, such that for every ti, 1 ≤ i ≤ |τ |, in the
sequence, we have that ti is applicable to σi−1 and σi = ti(σi−1). Given a configuration σ0
and a schedule τ = t1, t2, . . . , t|τ |, we denote by path(σ0, τ) a path σ0, t1, σ1, . . . , t|τ |, σ|τ |
where ti(σi−1) = σi, 1 ≤ i ≤ |τ |. Similarly we define an infinite schedule τ = t1, t2, . . .,
and an infinite path σ0, t1, σ1, . . ., also denoted by path(σ0, τ). An infinite path is fair if
no transition is applicable forever from some point on. Equivalently, when a transition is
applicable, eventually either its guard becomes false, or all processes leave its source location.

Since every transition in Sys∞(TA) comes from an action in Sys(PTA), note that every
path in Sys∞(TA) is a valid path in Sys(PTA).

3.3 Adversaries

As usual, the non-determinism is resolved by a so-called adversary. Let Paths be the set of
all finite paths in Sys(PTA). An adversary is a function a : Paths→ Act, that given a finite
path π selects an action applicable to the last configuration of π. Given a configuration σ
and an adversary a, we generate a family of paths, depending on the outcomes of non-Dirac
transitions. We denote this set by paths(σ, a). An adversary a is fair if all paths in paths(σ, a)
are fair. As usual, the Markov Decision Process (MDP) Sys(PTA) together with an initial
configuration σ and an adversary a induce a Markov chain, writtenMσ

a . We write Pσa for
the probability measure over infinite paths starting at σ in the latter Markov chain.

We call an adversary a round-rigid if it is fair, and if every sequence of actions it produces
can be decomposed to a concatenation of sequences of action of the form s1 · sp1 · s2 · sp2...,
where for all k ∈ N, we have that sk contains only Dirac actions of round k, and spk contains
only non-Dirac actions of round k. We denote the set of all round-rigid adversaries by AR.

3.4 Atomic Propositions and Stutter Equivalence

The atomic propositions we consider describe non-emptiness of a location ` ∈ L \ B in a
round k, i.e., whether there is at least one process in location ` in round k. Formally, the set of
all such propositions for a round k ∈ N0 is denoted by APk = {p(`, k) : ` ∈ L\B}. For every k
we define a labeling function λk : Σ → 2APk such that p(`, k) ∈ λk(σ) iff σ.~κ[`, k] > 0. By
abusing notation, we write “~κ[`, k] > 0” and “~κ[`, k] = 0” instead of p(`, k) and ¬p(`, k), resp.

We denote by π1 ,k π2 that the paths π1 and π2 are stutter equivalent [2] w.r.t. APk.
Two counter systems C0 and C1 are stutter equivalent w.r.t. APk, written C0 ,k C1, if for
every path π from Ci there is a path π′ from C1−i such that π ,k π′, for i ∈ {0, 1}.

CONCUR 2019

33:8 Verification of Randomized Consensus Algorithms Under Round-Rigid Adversaries

4 Consensus Properties and their Verification

In probabilistic (binary) consensus every correct process has an initial value from {0, 1}.
It consists of safety specifications and an almost-sure termination requirement, which we
consider in its round-rigid variant:
Agreement: No two correct processes decide differently.
Validity: If all correct processes have v as the initial value, then no process decides 1− v.
Probabilistic wait-free termination: Under every round-rigid adversary, with probability 1

every correct process eventually decides.

We now discuss the formalization of these specifications in the context of Ben-Or’s
algorithm whose threshold automaton is given in Figure 2.

Formalization. In order to formulate and analyze the specifications, we partition every
set I, B, and F , into two subsets I0] I1, B0] B1, and F0] F1, respectively. For every
v ∈ {0, 1}, the partitions satisfy the following:
(R1) The processes that are initially in a location ` ∈ Iv have the initial value v.
(R2) Rules connecting locations from B and I respect the partitioning, i.e., they connect Bv

and Iv. Similarly, rules connecting locations from F and B respect the partitioning.
We introduce two subsets Dv ⊆ Fv, for v ∈ {0, 1}. Intuitively, a process is in Dv in a round k
if and only if it decides v in that round. Now we can express the specifications as follows:
Agreement: For both values v ∈ {0, 1} the following holds:

∀k ∈ N0,∀k′ ∈ N0. A
(
F

∨
`∈Dv

~κ[`, k] > 0 → G
∧

`′∈D1−v

~κ[`′, k′] = 0
)

(1)

Validity: For both v ∈ {0, 1} it holds

∀k ∈ N0. A
(∧

`∈Iv

~κ[`, 0] = 0 → G
∧

`′∈Dv

~κ[`′, k] = 0
)

(2)

Probabilistic wait-free termination: For every round-rigid adversary a

Pa

(∨
k∈N0

∨
v∈{0,1}

G
∧

`∈F\Dv

~κ[`, k] = 0
)

= 1 (3)

Agreement and validity are non-probabilistic properties, and thus can be analyzed on the
non-probabilistic counter system Sys∞(TA). For verifying probabilistic wait-free termination,
we make explicit the following assumption that is present in all our benchmarks: all non-Dirac
transitions have non-zero probability to lead to an Fv location, for both values v ∈ {0, 1}.

In Section 5 we formalize safety specifications and reduce them to single-round specifica-
tions. In Section 6 we reduce verification of multi-round counter systems to verification of
single-round systems. In Section 7 we discuss our approach to probabilistic termination.

5 Reduction to Specifications with one Round Quantifier

Agreement contains two round variables k and k′, and Validity considers rounds 0 and k.
Thus, both involve two round numbers. As ByMC can only analyze one round systems [10],
the properties are only allowed to use one round number. In this section we show how to
check formulas (1) and (2) by checking properties that refer to one round. Namely, we
introduce round invariants (4) and (5), and prove that they imply Agreement and Validity.

N. Bertrand, I. Konnov, M. Lazić, and J. Widder 33:9

The first round invariant claims that in every round and in every path, once a process
decides v in a round, no process ever enters a location from F1−v in that round. Formally:

∀k ∈ N0. A
(
F

∨
`∈Dv

~κ[`, k] > 0 → G
∧

`′∈F1−v

~κ[`′, k] = 0
)

(4)

The second round invariant claims that in every round in every path, if no process starts
a round with a value v, then no process terminates that round with value v. Formally:

∀k ∈ N0. A
(
G

∧
`∈Iv

~κ[`, k] = 0 → G
∧

`′∈Fv

~κ[`′, k] = 0
)

(5)

The following proposition is proved using restriction (R2) and by an inductive argument
over the round number.

I Proposition 2. If Sys∞(TA) |= (4) ∧ (5), then Sys∞(TA) |= (1) ∧ (2).

6 Reduction to Single-Round Counter System

Given a property of one round, our goal is to prove that there is a counterexample to the
property in the multi-round system iff there is a counterexample in a single-round system.
This is formulated in Theorem 6, and it allows us to use ByMC on a single-round system.

The proof idea contains two parts. First, in Section 6.1 we prove that one can replace an
arbitrary finite schedule with a round-rigid one, while preserving atomic propositions of a
fixed round. We show that swapping two adjacent transitions that do not respect the order
over round numbers in an execution, gives us a legal stutter equivalent execution, i.e., an
execution satisfying the same LTL-X properties.

Second, in Section 6.2 we extend this reasoning to infinite schedules, and lift it from
schedules to transition systems. The main idea is to do inductive and compositional reasoning
over the rounds. To do so, we need well-defined round boundaries, which is the case if
every round that is started is also finished; a property we can automatically check for fair
schedules. In more detail, regarding propositions for one round, we show that the multi-round
transition system is stutter equivalent to a single-round transition system. This holds under
the assumption that all fair executions of a single-round transition system terminate, and
this can be checked using the technique from [10]. As stutter equivalence of systems implies
preservation of LTL-X properties, this is sufficient to prove the main goal of the section.

6.1 Reduction from arbitrary schedules to round-rigid schedules
I Definition 3. A schedule τ = (r1, k1) · (r2, k2) · . . . · (rm, km), m ∈ N0, is called round-rigid
if for every 1 ≤ i < j ≤ m, we have ki ≤ kj.

The following proposition shows that any finite schedule can be re-ordered into a round-
rigid one that is stutter equivalent regarding LTL-X formulas over proposition from APk, for
all rounds k. It is proved using arguments on the commutativity of transitions, similar to [8].

I Proposition 4. For every configuration σ and every finite schedule τ applicable to σ, there
is a round-rigid schedule τ ′ such that the following holds:
(a) Schedule τ ′ is applicable to configuration σ.
(b) τ ′ and τ reach the same configuration when applied to σ, i.e., τ ′(σ) = τ(σ).
(c) For every k ∈ N0 we have path(σ, τ) ,k path(σ, τ ′).

Thus, instead of reasoning about all finite schedules of Sys∞(TA), it is sufficient to reason
about its round-rigid schedules. In the following section we use this to simplify the verification
further, namely to a single-round counter system.

CONCUR 2019

33:10 Verification of Randomized Consensus Algorithms Under Round-Rigid Adversaries

I0

I1

J0

J1

SR SP

E0

CT0

CT1
D1

D0

E1

r1 : >

r2 : >

r3 : > 7→ x0++

r4 : > 7→ x1++

r8

r9

r12

r11r7

r5

r6
r10,CT0

r10,CT1

I ′0

I ′1

Figure 3 The single-round threshold automaton TArd obtained from PTA in Figure 2.

6.2 From round-rigid schedules to single-round counter system
For each PTA, we define a single-round threshold automaton that can be analyzed with the
tools of [12] and [10]. Roughly speaking, we focus on one round, but also keep the border
locations of the next round, where we add self-loops. Figure 3 represents the single-round
threshold automaton associated with the PTA from Figure 2. We can prove that for specific
fairness constraints, this automaton shows the same behavior as a round in Sys∞(TA).

We restrict ourselves to fair schedules, that is, those where no transition is applicable
forever. We also assume that every fair schedule of a single-round system terminates, i.e.,
eventually every process reaches a state from B′. Under the fairness assumption we check
the latter assumption with ByMC [13]. Moreover, we restrict ourselves to non-blocking
threshold automata, that is, we require that in each configuration each location has at least
one outgoing rule unlocked. As we use TAs to model distributed algorithms, this is no
restriction: locations in which no progress should be made unless certain thresholds are
reached, typically have self-loops that are guarded with true (e.g. SR and SP). Thus for
our benchmarks one can easily check whether they are non-blocking using SMT (we have to
check that there is no evaluation of the variables such that all outgoing rules are disabled).

IDefinition 5. Given a PTA = (L,V,R,RC) or its TA = (L,V,Rnp,RC), we define a single-
round threshold automaton TArd = (L ∪ B′,V,Rrd,RC), where B′ = {`′ : ` ∈ B} are copies
of border locations, and Rrd = (Rnp \S)∪S ′∪Rloop, where Rloop = {(`′, `′, true,~0) : `′ ∈ B′}
are self-loop rules at locations from B′ and S ′ = {(from, `′, true,~0) : (from, `, true,~0) ∈
S with `′ ∈ B′} consists of modifications of round switch rules. Initial locations of TArd are
the locations from B ⊆ L.

For a TArd and a k ∈ N0 we define a counter system Sysk(TArd) as the tuple (Σk, Ik, Rk).
A configuration is a tuple σ = (~κ, ~g,p) ∈ Σk, where σ.~κ : D → N0 defines values of the
counters, for D = (L× {k}) ∪ (B′ × {k + 1}); and σ.~g : Γ× {k} → N0 defines shared variable
values; and σ.p ∈ N|Π|0 is a vector of parameter values.

Note that by using D in the definition of σ.~κ above, every configuration σ ∈ Sysk(TArd)
can be extended to a valid configuration of Sys∞(TA), by assigning zero to all other counters
and global variables. In the following, we identify a configuration in Sysk(TArd) with its
extension in Sys∞(TA), since they have the same labeling function λk, for every k ∈ N0.

We define ΣkB ⊆ Σk, for a k ∈ N0, to be the set of all configurations σ where every process
is in a location from B, and all shared variables are set to zero in k, formally, σ.~g[x, k] = 0 for
all x ∈ Γ, and

∑
`∈B σ.~κ[`, k] = N(p), and σ.~κ[`, i] = 0 for all (`, i) ∈ D \ (B × {k}). We call

these configurations border configurations for k. The set of initial states Ik is a subset of ΣkB.
We define the transition relation R as in Sys∞(TA), i.e., two configurations are in the

relation Rk if and only if they (or more precisely, their above described extensions) are in R.

N. Bertrand, I. Konnov, M. Lazić, and J. Widder 33:11

For every k ∈ N0 and every σ ∈ Σk
B, there is a corresponding configuration σ′ ∈ Σ0

B
obtained from σ by renaming the round k to round 0. Let fk be the renaming function, i.e.,
σ′ = fk(σ). Let us define Σu ⊆ Σ0

B to be the union of all renamed initial configurations from
all rounds, that is, {fk(σ) : k ∈ N0, σ ∈ Ik}.

I Theorem 6. Let TA be non-blocking, and let all fair executions of Sys0(TArd) w.r.t. Σ0
B

terminate. Given a formula ϕ[i] from LTL-X over APi, for a round variable i, we have
(A) Sys0(TArd) |= Eϕ[0] w.r.t. initial configurations Σu if and only if
(B) there exists k ∈ N0 such that Sys∞(TA) |= Eϕ[k].

Proof sketch. The theorem is proved using the following arguments. In statement (B), the
existential quantification over k corresponds to the defintion of Σu as union, over all rounds,
of projections of all reachable initial configurations of that round.

Implication (B)→ (A) exploits the fact that all rounds are equivalent up to renaming of
round numbers (with the exception of possible initial configurations).

Implication (A)→ (B), note that an initial configuration in Σu is not necessarily initial in
round 0, so that one cannot a priori take k = 0. Let us explain how to extend an execution
of round k into an infinite execution in Sys∞(TA). By termination, all rounds up to k−1
terminate, so that there is execution that reaches a configuration where all processes are in
initial locations of round k. The executions or round k mimick the ones of round 0 (modulo
the round number). Finally, the non-blocking assumption is required to be always able to
extend to infinite executions after round k is terminated. J

In Section 4 we showed how to reduce our specifications to formulas of the form ∀k ∈
N0. Aψ[k]. Theorem 6 deals with negations of such formulas, i.e., with existence of a round k
such that formula Eϕ[k] holds. Thus, we can check specifications on the single-round system.

7 Probabilistic Wait-Free Termination

We start by defining two conditions that are sufficient to establish Probabilistic Wait-Free
Termination under round-rigid adversaries. Condition (C1) states the existence of a positive
probability lower-bound for all processes ending round k with equal final values. Condition
(C2) states that if all correct processes start round k with the same value, then they all will
decide on that value in that round.

(C1) There is a bound p ∈ (0, 1], such that for every round-rigid adversary a, and every k ∈ N0,
and every configuration σk with parameters p that is initial for round k, it holds that

Pσk
a

(∨
v∈{0,1}

G
(∧

`∈Fv

~κ[`, k] = 0
))

> p.

(C2) For every v ∈ {0, 1}, ∀k ∈ N0. A
(
G

∧
`∈I1−v

~κ[`, k] = 0 → G
∧
`′∈F\Dv

~κ[`′, k] = 0
)
.

Combining (C1) and (C2), under every round-rigid adversary, from any initial configuration
of round k, the probability that all correct processes decide before end of round k+1 is at
least p. Thus the probability not to decide within 2n rounds is at most (1− p)n, which tends
to 0 when n tends to infinity. This reasoning follows the arguments of [1].

I Proposition 7. If Sys∞(PTA) |= (C1) ∧ (C2), then Sys∞(PTA) |= (3).

Observe (C2) is a non-probabilistic property of the same form as (5), so that we can
check (C2) using the method of Section 6.

CONCUR 2019

33:12 Verification of Randomized Consensus Algorithms Under Round-Rigid Adversaries

In the rest of this section, we detail how to reduce the verification of (C1), to a verification
task that can be handled by ByMC. First observe that (C1) contains a single round variable,
and recall that we restrict to round-rigid adversaries, so that it is sufficient to check them
(omitting the round variables) on the single-round system. We introduce analogous objects
as in the non-probabilistic case: PTArd (analogously to Definition 5), and its counter
system Sys(PTArd).

7.1 Reducing probabilistic to non-probabilistic specifications
Since probabilistic transitions end in final locations, they cannot appear on a cycle in PTArd.
Therefore, for fixed parameter valuation p, any path contains at most N(p) probabilistic
transitions, and its probability is therefore uniformly lower-bounded. As a consequence:

I Lemma 8. Let p ∈ PRC be a parameter valuation. In Sys(PTArd), for every LTL formula ϕ
over atomic proposition AP, the following two statements are equivalent:
(a) ∃p > 0, ∀σ ∈ Ip, ∀a ∈ AR. Pσa

(
ϕ
)
> p,

(b) ∀σ ∈ Ip, ∀a ∈ AR, ∃π ∈ paths(σ, a). π |= ϕ.

7.2 Verifying (C1) on a non-probabilistic TA
Applying Lemma 8, proving (C1) is equivalent to proving the following property on Sys(PTArd)

∀σ ∈ Ip, ∀a ∈ AR, ∃π ∈ paths(σ, a). π |=
∨

v∈{0,1}
G (

∧
`∈Fv

~κ[`] = 0). (6)

In the sequel, we explain how to reduce the verification of (6) to checking the simpler formula
A

∨
v∈{0,1}G (

∧
`∈Fv

~κ[`] = 0) on a single-round non-probabilistic TA obtained from PTArd.
As in Section 6, it is possible to modify PTArd into a non-probabilistic TA, by replacing

probabilistic choices by non-determinism. Still, the quantifier alternation of (6) (universal
over initial configurations and adversaries vs. existential on paths) is not in the fragment
handled by ByMC [13]. Once an initial configuration σ and an adversary a are fixed, the
remaining branching is induced by non-Dirac transitions. By assumption, these transitions
lead to final locations only, to both F0 and F1, and under round-rigid adversaries, they are
the last transitions to be fired. To prove (6), it is sufficient to prove that all processes that
fire only Dirac transitions will reach final locations of the same type (F0 or F1). If this is the
case, then the existence of a path corresponds to all non-Dirac transitions being resolved in
the same way. This allows us to remove the non-Dirac transitions from the model as follows.
Given a PTArd, we define a threshold automaton TAm with locations L (without B′) such
that for every non-Dirac rule r = (from, δto, ϕ, ~u) in PTA, all locations ` with δto(`) > 0 are
merged into a new location `mrg in TAm. Note that this location must belong to F . Naturally,
instead of a non-Dirac rule r we obtain a Dirac rule (from, `mrg, ϕ, ~u). Also we add self-loops
at all final locations. Paths in Sys(TAm) correspond to prefixes of paths in Sys(PTArd). In
Sys(TAm), from a configuration σ, an adversary a yields a unique path, that is, paths(σ, a) is
a singleton set. Thus, the existential quantifier from (6) can be replaced by the universal one.

By construction, property (6) on PTArd is equivalent to A
∨
v∈{0,1}G (

∧
`∈Fv

~κ[`] = 0)
on Sys(TAm). The latter can be checked automatically by ByMC, allowing us to prove (C1).

8 Experiments

We have applied the approach presented in Sections 4–7 to five randomized fault-tolerant
distributed algorithms. (The benchmarks and the instructions on running the experiments
are available from: https://forsyte.at/software/bymc/artifact42/.)

https://forsyte.at/software/bymc/artifact42/

N. Bertrand, I. Konnov, M. Lazić, and J. Widder 33:13

Table 1 Temporal properties verified in our experiments for value 0.

Label Name Automaton Formula

S1 agreement_0 N AG (¬Ex{D0}) ∨ G (¬Ex{D1, E1})
S2 validity_0 N AAll{V0} → G (¬Ex{D1, E1})
S3 completeness_0 N AAll{V0} → G (¬Ex{D1, E1})
S4 round-term N A fair → FAll{D0, D1, E0, E1, CT}
S5 decide-or-flip P A fair → F (All{D0, E0, CT} ∨All{D1, E1, CT})
S1’ sim-agreement N AG (¬Ex{D0, E0} ∨ ¬Ex{D1, E1})
S1” 2-agreement N AG (¬Ex{D0, E0} ∨ ¬Ex{D1, E1} ∨ ¬Ex{D2, E2})

1. Protocol 1 for randomized consensus by Ben-Or [3], with two kinds of crashes: clean
crashes (ben-or-cc), for which a process either sends to all processes or none, and dirty
crashes (ben-or-dc), for which a process may send to a subset of processes. This algorithm
works correctly when n > 2t.

2. Protocol 2 for randomized Byzantine consensus (ben-or-byz) by Ben-Or [3]. This algorithm
tolerates Byzantine faults when n > 5t.

3. Protocol 2 for randomized consensus (rabc-c) by Bracha [5]. It runs as a high-level
algorithm together with a low-level broadcast that turns Byzantine faults into “little
more than fail-stop (faults)”. We check only the high-level algorithm for clean crashes.

4. k-set agreement for crash faults (kset) by Raynal [21], for k = 2. This algorithm works in
presense of clean crashes when n > 3t.

5. Randomized Byzantine one-step consensus (rs-bosco) by Song and van Renesse [23]. This
algorithm tolerates Byzantine faults when n > 3t, and it terminates fast when n > 7t or
n > 5t and f = 0.

Following the reduction approach of Sections 4–7, for each benchmark, we have encoded
two versions of one-round threshold automata: an N-automaton that models a coin toss
by a non-deterministic choice in a coin-toss location, and is used for the non-probabilistic
reasoning, and a P-automaton that never leaves the coin-toss location and which is used to
prove probabilistic wait-free termination. Both automata are given as the input to Byzantine
Model Checker (ByMC) [13], which implements the parameterized model checking techniques
for safety [11] and liveness [10] of counter systems of threshold automata.

Both automata follow the pattern shown in Figure 2: They start in one of the initial
locations (e.g., V0 or V1), progress by switching locations and incrementing shared variables
and end up in a location that corresponds to a decision (e.g., D0 or D1), an estimate of a
decision (e.g., E0 or E1), or a coin toss (CT).

Table 1 summarizes the temporal properties that were verified in our experiments. Given
the set of all possible locations L, a set Y = {`1, . . . , `m} ⊆ L of locations, and the designated
crashed location CR ∈ L, we use the shorthand notation: Ex{`1, . . . , `m} for

∨
`∈Y ~κ[`] 6= 0

and All{`1, . . . , `m} for
∧
`∈L\Y (~κ[`] = 0 ∨ ` = CR). For rs-bosco and kset, instead of

checking S1, we check S1’ and S1”.
Table 2 presents the computational results of our experiments: column |L| shows the

number of automata locations, column |R| shows the number of automata rules, column |S|
shows the number of SMT queries (which depends on the structure of the automaton and
the specification), column time shows the computation times – either in seconds or in the
format HH:MM. As the N-automata have more rules than the P-automata, column |R| shows
the figures for N-automata. To save space, we omit the figures for memory use from the
table: Benchmarks 1–5 need 30–170 MB, whereas rs-bosco needs up to 1.5 GB per CPU.

CONCUR 2019

33:14 Verification of Randomized Consensus Algorithms Under Round-Rigid Adversaries

Table 2 The experiments for first 5 rows were run on a single computer (Apple MacBook Pro
2018, 16GB). The experiments for last row (rs-bosco) were run in Grid5000 on 32 nodes (2 CPUs
Intel Xeon Gold 6130, 16 cores/CPU, 192GB). Wall times are given.

Automaton S1/S1’/S1” S2 S3 S4 S5

Name |L| |R| |S| Time |S| Time |S| Time |S| Time |S| Time

ben-or-cc 10 27 9 1 5 0 5 0 5 0 5 0

ben-or-dc 10 32 9 1 5 1 5 0 5 0 5 1

ben-or-byz 9 18 3 1 2 0 2 0 2 0 2 1

rabc-cr 11 31 9 0 5 1 5 1 5 0 5 0

kset 13 58 65 3 65 17 65 12 65 39 65 40

rs-bosco 19 48 156M 3:21 156M 3:02 156M 3:21 TO TO 156M 3:43

The benchmark rs-bosco is a challenge for the technique of [10]: Its threshold automaton
has 12 threshold guards that can change their values almost in any order. Additional
combinations are produced by the temporal formulas. Although ByMC reduces the number
of combinations by analyzing dependencies between the guards, it still produces between
11! and 14! SMT queries. Hence, we ran the experiments for rs-bosco on 1024 CPU cores
of Grid5000 and gave the wall time results in Table 2. (To find the total computing time,
multiply wall time by 1024.) ByMC timed out on the property S4 after 1 day (shown as TO).

For all the benchmarks in Table 2, ByMC has reported that the specifications hold. By
changing n > 3t to n > 2t, we found that rabc-cr can handle more faults (the original n > 3t
was needed to implement the underlying communication structure which we assume given in
the experiments). In other cases, whenever we changed the parameters, that is, increased
the number of faults beyond the known bound, the tool reported a counterexample.

9 Conclusions

Our proof methodology for almost sure termination applies to round-rigid adversaries only.
As future work we shall prove that verifying almost-sure termination under round-rigid
adversaries is sufficient to prove it for more general adversaries. Transforming an adversary
into a round-rigid one while preserving the probabilistic properties over the induced paths,
comes up against the fact that, depending on the outcome of a coin toss in some step at
round k, different rules may be triggered later for processes in rounds less than k.

A few contributions address automated verification of probabilistic parameterized sys-
tems [22, 4, 20, 19]. In contrast to these, our processes are not finite-state, due to the round
numbers and parameterized guards. The seminal work by Pnueli and Zuck [22] requires
shared variables to be bounded and cannot use arithmetic thresholds different from 1 and n.
Algorithms for well-structured transition systems [4] do not directly apply to multi-parameter
systems produced by probabilistic threshold automata. Regular model checking [20, 19]
cannot handle arithmetic resilience conditions such as n > 3t, nor unbounded shared variables.

References
1 Marcos Aguilera and Sam Toueg. The correctness proof of Ben-Or’s randomized consensus

algorithm. Distributed Computing, pages 1–11, 2012. online first.
2 Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press, 2008.
3 Michael Ben-Or. Another Advantage of Free Choice: Completely Asynchronous Agreement

Protocols (Extended Abstract). In PODC, pages 27–30, 1983.

N. Bertrand, I. Konnov, M. Lazić, and J. Widder 33:15

4 Nathalie Bertrand and Paulin Fournier. Parameterized Verification of Many Identical Proba-
bilistic Timed Processes. In FSTTCS, volume 24 of LIPIcs, pages 501–513, 2013.

5 Gabriel Bracha. Asynchronous Byzantine Agreement Protocols. Inf. Comput., 75(2):130–143,
1987.

6 Mouna Chaouch-Saad, Bernadette Charron-Bost, and Stephan Merz. A Reduction Theorem
for the Verification of Round-Based Distributed Algorithms. In RP, volume 5797 of LNCS,
pages 93–106, 2009.

7 Andrei Damian, Cezara Drăgoi, Alexandru Militaru, and Josef Widder. Communication-closed
asynchronous protocols. In CAV, 2019. (to appear).

8 Tzilla Elrad and Nissim Francez. Decomposition of Distributed Programs into Communication-
Closed Layers. Sci. Comput. Program., 2(3):155–173, 1982.

9 Michael J. Fischer, Nancy A. Lynch, and M. S. Paterson. Impossibility of Distributed Consensus
with one Faulty Process. J. ACM, 32(2):374–382, 1985.

10 Igor Konnov, Marijana Lazić, Helmut Veith, and Josef Widder. A Short Counterexample
Property for Safety and Liveness Verification of Fault-tolerant Distributed Algorithms. In
POPL, pages 719–734, 2017.

11 Igor Konnov, Marijana Lazic, Helmut Veith, and Josef Widder. Para2: Parameterized
Path Reduction, Acceleration, and SMT for Reachability in Threshold-Guarded Distributed
Algorithms. Formal Methods in System Design, 51(2):270–307, 2017.

12 Igor Konnov, Helmut Veith, and Josef Widder. On the Completeness of Bounded Model Check-
ing for Threshold-Based Distributed Algorithms: Reachability. Information and Computation,
252:95–109, 2017.

13 Igor Konnov and Josef Widder. ByMC: Byzantine model checker. In ISoLA (3), volume 11246
of LNCS, pages 327–342. Springer, 2018.

14 Jure Kukovec, Igor Konnov, and Josef Widder. Reachability in Parameterized Systems: All
Flavors of Threshold Automata. In CONCUR, pages 19:1–19:17, 2018.

15 Marta Z. Kwiatkowska and Gethin Norman. Verifying Randomized Byzantine Agreement. In
FORTE, pages 194–209, 2002.

16 Marta Z. Kwiatkowska, Gethin Norman, and David Parker. PRISM 4.0: Verification of
probabilistic real-time systems. In CAV, pages 585–591, 2011.

17 Marta Z. Kwiatkowska, Gethin Norman, and Roberto Segala. Automated Verification of a
Randomized Distributed Consensus Protocol Using Cadence SMV and PRISM. In CAV, pages
194–206, 2001.

18 Daniel J. Lehmann and Michael O. Rabin. On the Advantages of Free Choice: A Symmetric
and Fully Distributed Solution to the Dining Philosophers Problem. In POPL, pages 133–138,
1981.

19 Ondrej Lengál, Anthony Widjaja Lin, Rupak Majumdar, and Philipp Rümmer. Fair Termina-
tion for Parameterized Probabilistic Concurrent Systems. In TACAS, volume 10205 of LNCS,
pages 499–517, 2017. doi:10.1007/978-3-662-54577-5_29.

20 Anthony Widjaja Lin and Philipp Rümmer. Liveness of Randomised Parameterised Systems
under Arbitrary Schedulers. In CAV, volume 9780 of LNCS, pages 112–133. Springer, 2016.
doi:10.1007/978-3-319-41540-6_7.

21 Achour Mostéfaoui, Hamouma Moumen, and Michel Raynal. Randomized k-set agreement in
crash-prone and Byzantine asynchronous systems. Theor. Comput. Sci., 709:80–97, 2018.

22 Amir Pnueli and Lenore D. Zuck. Verification of Multiprocess Probabilistic Protocols. Dis-
tributed Computing, 1(1):53–72, 1986. doi:10.1007/BF01843570.

23 Yee Jiun Song and Robbert van Renesse. Bosco: One-Step Byzantine Asynchronous Consensus.
In DISC, volume 5218 of LNCS, pages 438–450, 2008.

CONCUR 2019

https://doi.org/10.1007/978-3-662-54577-5_29
https://doi.org/10.1007/978-3-319-41540-6_7
https://doi.org/10.1007/BF01843570

A Sound Foundation for the Topological Approach
to Task Solvability
Jérémy Ledent
École Polytechnique, Palaiseau, France
jeremy.ledent@lix.polytechnique.fr

Samuel Mimram
École Polytechnique, Palaiseau, France
samuel.mimram@lix.polytechnique.fr

Abstract
The area of fault-tolerant distributed computability is concerned with the solvability of decision
tasks in various computational models where the processes might crash. A very successful approach
to prove impossibility results in this context is that of combinatorial topology, started by Herlihy and
Shavit’s paper in 1999. They proved that, for wait-free protocols where the processes communicate
through read/write registers, a task is solvable if and only if there exists some map between simplicial
complexes satisfying some properties. This approach was then extended to many different contexts,
where the processes have access to various synchronization and communication primitives. Usually,
in those cases, the existence of a simplicial map from the protocol complex to the output complex
is taken as the definition of what it means to solve a task. In particular, no proof is provided of
the fact that this abstract topological definition agrees with a more concrete operational definition
of task solvability. In this paper, we bridge this gap by proving a version of Herlihy and Shavit’s
theorem that applies to any kind of object. First, we start with a very general way of specifying
concurrent objects, and we define what it means to implement an object B in a computational
model where the processes are allowed to communicate through shared objects A1, . . . , Ak. Then,
we derive the notion of a decision task as a special case of concurrent object. Finally, we prove an
analogue of Herlihy and Shavit’s theorem in this context. In particular, our version of the theorem
subsumes all the uses of the combinatorial topology approach that we are aware of.

2012 ACM Subject Classification Theory of computation → Concurrency

Keywords and phrases Fault-tolerant protocols, Asynchronous computability, Combinatorial topo-
logy, Protocol complex, Distributed task

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2019.34

1 Introduction

The typical framework in which one studies distributed computing is that of asynchronous
processes communicating through shared objects. A wide variety of computational models
have been introduced, depending on the communication primitives the processes are allowed
to use, and the assumptions made on the kind of failures that might happen during the
computation. The area of fault-tolerant computability [6] studies what kind of decision tasks
can be solved in such models. To solve a task, each process starts with a private input
value, and after communicating with the other processes, it has to decide on an output.
For instance, a well-known task is consensus, where the processes must agree on one of
their inputs.

A very well-studied setting is the one of wait-free protocols communicating through shared
read/write registers. In order to prove impossibility results in this context, people started
developing powerful mathematical tools based on algebraic topology [1, 13]. The fundamental
paper by Herlihy and Shavit [10] provides a topological characterization of the tasks that can
be solved by a wait-free protocol using read/write registers: they proved the asynchronous

© Jérémy Ledent and Samuel Mimram;
licensed under Creative Commons License CC-BY

30th International Conference on Concurrency Theory (CONCUR 2019).
Editors: Wan Fokkink and Rob van Glabbeek; Article No. 34; pp. 34:1–34:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jeremy.ledent@lix.polytechnique.fr
mailto:samuel.mimram@lix.polytechnique.fr
https://doi.org/10.4230/LIPIcs.CONCUR.2019.34
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

34:2 A Sound Foundation for the Topological Approach to Task Solvability

computability theorem, which says that a read/write protocol solves a decision task if and
only if there exists a map from a subdivision of the input complex to the output complex,
which is carried by the task specification. The subdivided simplicial complex that appears in
this theorem was the first occurrence of a protocol complex, a very compact way of expressing
combinatorially the partial knowledge that each process acquires during the computation.

Soon thereafter, it became clear that this method actually extends beyond the setting of
read/write registers: many other computational models can also be described as protocol
complexes. This idea gave birth to the combinatorial topology approach to distributed
computing [6]. Generalizing the ideas behind the asynchronous computability theorem, one
can define an abstract notion of protocol using so-called carrier maps between an input
complex and a protocol complex. Then, we can take Herlihy and Shavit’s characterization as
the definition of what it means for a protocol to solve a task. This abstract approach is very
appealing because it offers a great deal of generality: for example, the set-agreement task
cannot be solved in any computational model whose protocol complex is a pseudomanifold [6,
Chapter 9]. We are thus able to prove impossibility results for a wide class of computational
models, instead of studying them one at a time. In principle, most computational models
and synchronization primitives can be formulated using the protocol complex formalism:
it has been used in the literature to model processes communicating using test-and-set
objects [8], (N, k)-consensus objects [7], weak symmetry breaking and renaming [4], or
various synchronous or asynchronous message passing primitives [9].

The drawback of this high level of abstraction is that we have to trust that our protocol
complex faithfully represents the behavior of the objects that we want to model. When we
want to define, for example, the protocol complex which is supposed to model test-and-set
computation, we must define it carefully so that the simplicial notion of “solving” a task
will agree with the concrete operational semantics of test-and-set objects. Ideally, one would
have to prove another version of the asynchronous computability theorem for test-and-set
protocols, relating a concrete notion of solvability with the abstract simplicial definition.
This is usually not done in practice, since it is often clear intuitively that the proposed notion
of protocol complex makes sense operationally.

In this paper, we generalize the asynchronous computability theorem to a large class
of concurrent objects. In Section 2, we define the “concrete” notion of solvability that
we will later prove equivalent to the simplicial one. Our goal is to model processes which
communicate though arbitrary shared objects. In particular, our notion of object is general
enough to include all the objects mentioned above. Our notion of object specification is
discussed more thoroughly in [5] where, in particular, we prove that it is equivalent to
specifications based on interval-linearizability [2]. In Section 3, we discuss the notion of task
and compare it to the notion of one-shot object. It had been remarked recently that tasks are
less expressive than one-shot objects [2]. We explore more in depth the relationship between
the two, and as a result we obtain a characterization of the one-shot objects that correspond
to tasks. Finally, in Section 4, we state and prove our generalized asynchronous computability
theorem. It encompasses the original theorem of Herlihy and Shavit for read/write registers,
as well as all the other variants that have been implicitly used in the literature.

2 A computational model based on trace semantics

In this section, we define a concrete semantics for protocols where the processes communicate
through shared objects. What we mean here by “concrete” is that it is based on interleavings
of execution traces, as opposed to the abstract topological semantics of Section 4. The

J. Ledent and S. Mimram 34:3

formalism that we use here (i.e., all of Section 2) was developed and discussed more thoroughly
in a previous article [5]. It is quite similar to other trace-based operational semantics found
in the literature [12, 3]. There are mainly two things that we need to define: in Section 2.1,
we give a very general way of specifying concurrent objects, and in Section 2.2, we define
what it means to implement a new object B, assuming we have access to objects A1, . . . , Ak.

2.1 Specifying concurrent objects
Our goal here is to define a notion of concurrent object which includes all the objects that
are relevant to fault-tolerant computability. As it was remarked in [2], the tasks studied
in this field cannot be specified using common techniques such as linerizability [11]. Thus,
they introduced the notion of interval-linearizability in order to unify tasks and objects. The
definition that we use here was introduced in [5] and shown to be equivalent to interval-
linearizability. In the rest of the paper, we suppose fixed a number n ∈ N of processes
and write [n] = {0, 1, . . . , n− 1} for the set of process names (a process is identified by its
number). We also suppose fixed a set V of values which can be exchanged between processes
and objects (typically V = N). The set A of possible actions for an object is defined as

A = {ixi | i ∈ [n], x ∈ V} ∪ {ryi | i ∈ [n], y ∈ V}

An action is thus either
ixi : an invocation of the object by the process i with input value x,
ryi : a response of the object to the process i with output value y.

An execution trace is a finite sequence of actions, i.e., an element of A∗; we write ε for the
empty trace and T · T ′ for the concatenation of two traces T and T ′. Given a process i ∈ [n],
the i-th projection πi(T) of a trace T ∈ T is the trace obtained from T by removing all
the actions of the form ixj or rxj with j 6= i. A trace T ∈ T is alternating if for all i ∈ [n],
πi(T) is either empty or it begins with an invocation and alternates between invocations and
responses, i.e., using the traditional notation of regular expressions:

πi(T) ∈
(⋃
x,y∈V

ixi · r
y
i

)∗
·
(⋃
x∈V

ixi + ε
)

We write T ⊆ A∗ for the set of alternating traces. In the remaining of the paper, we will
only consider alternating traces, and often drop the adjective “alternating”. If πi(T) ends
with an invocation, we call it a pending invocation. An alternating trace T is complete if it
does not have any pending invocation.

I Definition 1. A concurrent specification σ is a subset of T which is
(1) prefix-closed: if T · T ′ ∈ σ then T ∈ σ,
(2) non-empty: ε ∈ σ,
(3) receptive: if T ∈ σ and πi(T) has no pending invocation, then T · ixi ∈ σ for every x ∈ V,
(4) total: if T ∈ σ and πi(T) has a pending invocation, there exists x ∈ V such that T ·rxi ∈ σ,
(5) is closed under expansion:

if T · aj · ixi · T ′ ∈ σ where aj is an action of process j 6= i, then T · ixi · aj · T ′ ∈ σ.
if T · ryi · aj · T ′ ∈ σ where aj is an action of process j 6= i, then T · aj · ryi · T ′ ∈ σ.

We write CSpec for the set of concurrent specifications.

A concurrent specification σ is the set of all executions that we consider acceptable: a
protocol implements the specification σ if all the execution traces that it generates belong
to σ (this will be detailed in Section 2.2). The axioms (1-3) are quite natural and commonly

CONCUR 2019

34:4 A Sound Foundation for the Topological Approach to Task Solvability

considered in the literature (e.g. in [11]). They can be read as follows: (1) an object can do
one action at a time, (2) an object can do nothing, (3) it is always possible to invoke an
object. The axiom (4) states that objects always answer and in a non-blocking way; this
is a less fundamental axiom and more of a design choice, since we want to model wait-free
computation. Note that receptivity (3) does not force objects to accept all inputs: we could
have a distinguished “error” value which is returned in case of an invalid input. Similarly,
an object with several inputs, or several interacting methods (for example, a stack) can be
modeled by choosing a suitable set of values V.

The condition (5) might seem more surprising, and will be crucial to establish the
correspondence between tasks and objects in Section 3. Some consequences of this condition,
and the reasons why it is a desirable property of concurrent specifications, are discussed
more thoroughly in [5]. Intuitively, this condition says that if a given execution is correct,
then a similar execution where some process is idle for a while just after invoking, or just
before responding, must also be correct, since both executions are indistinguishable. In
particular, condition (5) implies that invocations “commute”: we have T · ixi · i

y
j · T ′ ∈ σ iff

T · iyj · ixi ·T ′ ∈ σ, and similarly for responses. We say that two traces T, T ′ ∈ T are equivalent,
written T ≡ T ′, if one is obtained from the other by reordering the actions within each block
of consecutive invocations or consecutive responses. Generally, in the rest of the paper, we
are only interested in studying traces up to equivalence.

2.2 Program semantics
In this section, we provide an operational model for concurrent programs communicating
through shared objects. We assume given a set Obj of objects: they might be, for instance,
concurrent data structures that have already been implemented, and that our programs are
able to use in order to compute and communicate. We do not want to depend on a particular
implementation of these objects, but on their specification. Thus, each object comes with
its concurrent specification (as in Definition 1), which is the set of behaviors that it might
exhibit. Note that our model does not have any special construct for reading and writing in
the shared memory: we assume that the memory itself is given as an object in Obj, with an
appropriate specification. Thus, the only meaningful action a program can take is to call
one of the objects; and possibly do some local computation to determine what the next call
should be.

To abstract away the syntax of the programming language, we use an automata-like
representation, which roughly corresponds to the control-flow graph of the program.

consensus (v) {
a.write(v);
x = t&s();
if (x == 0)

return v;
else

v’ = b.read ();
return v’;

} δ = 0 δ = (b, read) δ = 1 δ = (b, read)

δ = (t&s, ()) δ = (t&s, ())

δ = (a, (write, 0)) δ = (a, (write, 1))

⊥
τ(0) τ(1)

τ(done) τ(done)

τ(0) τ(1) τ(0) τ(1)

The example above shows an implementation of binary consensus among two processes,
using three objects: two read-write registers a and b, and a test-and-set object t&s. In a
given state of the automaton, the decision function δ indicates which is the next object that

J. Ledent and S. Mimram 34:5

the program will call, and the transition function τ says what the next state will be depending
on the return value of the call. The pseudo-code and automaton above represent the program
run by one of the two processes, the other process should switch the role of a and b.

We suppose fixed a set Obj of objects, along with their concurrent specification spec(o) ∈
CSpec for each o ∈ Obj. Here, a program is basically a piece of code (executed by one of
the processes) which takes a value as input, makes several calls to the objects in Obj (using
algebraic operations to combine their results) and finally returns a value. Formally,

I Definition 2. A program is a quadruple (Q,⊥, δ, τ) consisting of:
a (possibly infinite) set Q of local states containing an idle state ⊥ ∈ Q,
a decision function δ : Q \ {⊥} → (Obj× V) t V,
a transition function τ : Q× V → Q \ {⊥}.

The idle state is the one where the program is waiting to be called with some input value x,
in which case it will go to state τ(⊥, x). After that, the decision function gives the next step
of the process depending on the current state: either call some object with some input value,
or terminate and output some value. In the case where an object is called, the transition
function gives the new local state of the process, depending on the previous state and the
value returned by the object.

A protocol P is given by a program Pi = (Qi,⊥i, δi, τi) for each process i ∈ [n]. The
global state of a protocol P is an element q = (q0, . . . , qn−1) of Q =

∏
iQi, consisting of

a state for each process Pi. The initial state is qinit = (⊥0, . . . ,⊥n−1) and, given a global
state q, we write q[i← q′i] for the state where the i-th component qi has been replaced by q′i.
We now describe the set A of possible actions for P , as well as their effect ∆ : Q×A → Q

on global states.
ixi : the i-th process is called with input value x ∈ V. The local state qi of process i is
changed from ⊥i to τi(⊥i, x):

∆(q, ixi) = q[i← τi(⊥i, x)]

where the state on the right is q where qi has been replaced by τi(⊥i, x).
i(o)xi : the i-th process invokes the object o ∈ Obj with input value x ∈ V. This does not
have any effect on the global state:

∆(q, i(o)xi) = q

r(o)xi : the object o ∈ Obj returns some output value x ∈ V to the i-th process. The local
state of process i is updated according to its transition function τi:

∆(q, r(o)xi) = q[i← τi(qi, x)]

rxi : the i-th process has finished computing, returning the output value x ∈ V. It goes
back to idle state:

∆(q, rxi) = q[i← ⊥i]

The actions of the form ixi and rxi (resp. i(o)xi and r(o)xi) are called outer (resp. inner)
actions. Given a trace T ∈ A∗ and an object o, we denote by To, called the inner projection
on o, the trace obtained from T by keeping only the inner actions of the form i(o)xi or
r(o)yi . The function ∆ is extended as expected as a function ∆ : Q × A∗ → Q, i.e.,
∆(q, T ·T ′) = ∆(∆(q, T), T ′) and ∆(q, ε) = q. A trace is valid if at each step in the execution,
the next action is taken according to the decision function δ. Formally:

CONCUR 2019

34:6 A Sound Foundation for the Topological Approach to Task Solvability

I Definition 3. A trace T ∈ A∗ is valid when for every strict prefix U of T , writing
T = U · a · V and q = ∆(qinit, U), with a ∈ A, we have:

if a = ixi then qi = ⊥i,
if a = ryi then qi 6= ⊥i and δi(qi) = y,
if a = i(o)xi then qi 6= ⊥i and δi(qi) = (o, x),
if a = r(o)yi then qi 6= ⊥i.

Moreover, we require that for every object o ∈ Obj, the inner projection To belongs to spec(o).
The set of valid traces for P is written TP ⊆ A∗.

A protocol P is wait-free if there is no valid infinite trace (i.e., all its prefixes are valid)
involving only inner-i-actions after some position: in other words, a process running alone
will eventually decide an output value. Given a trace T ∈ A∗, we write π(T) for the trace
obtained by keeping only outer actions.

I Definition 4. The semantics of a protocol P is the set of traces JP K = {π(T) | T ∈ TP }
and P implements a concurrent specification σ whenever JP K ⊆ σ, i.e., all the outer traces
that P can produce are correct with respect to σ.

An important property that was proved in [5] is that JP K itself is a concurrent specification
in the sense of Definition 1. Indeed, given any protocol P , we should be able to specify
abstractly what P is doing: that specification is precisely JP K. In particular, since JP K satisfies
all the axioms of concurrent specifications, we are sure that these axioms are reasonable, in
the sense that they are validated in our model.

3 Tasks as a particular kind of one-shot objects

The topological approach to distributed computing [6] is not interested in implementing
long-lived objects as in the previous section, but in solving decision tasks. In a decision task,
each process starts with a private input value, it communicates with the other processes by
using some shared objects, and then it must eventually decide an output value. The most
well-known example is the consensus task, where the processes have to agree on a common
output value. Thus, in a decision task, all the processes start the computation together,
and once a process has decided an output value, it does not take part in the computation
anymore. This is contrasted with concurrent objects, where new processes can start and
terminate at any point during the computation, and a single process is allowed to make
several consecutive calls to the object.

In this section, we compare tasks and one-shot objects, that is, objects which can be
called only once by each process. It was already observed in [2] that tasks are weaker than
one-shot objects: some objects cannot be expressed as a task. They defined a notion of
“extended task” which is as expressive as one-shot objects. Our goal here is dual: we want to
characterize the subclass of one-shot objects which correspond to tasks.

We start by giving a formal definition of tasks. The formalism that we use here is inspired
of the one used in Herlihy and Shavit’s paper [10]. Readers familiar with the topological
definition of a task should recognize that this a direct reformulation of it. Recall that the
set of values is written V and n is the number of processes. Let ⊥ be a fresh symbol which
is not in V. A vector is a tuple U ∈ (V ∪ {⊥})n, such that at least one component of U is
not ⊥. We write Ui for the i-th component of U , and U [i← x] for the vector U where the
i-th component Ui has been replaced by x ∈ V. Given two vectors U and V , we say that U
matches V when Ui = ⊥ iff Vi = ⊥. We say that U is a face of V , written U � V , when for
all i, either Ui = Vi or Ui = ⊥. A vector U is maximal if none of its components is ⊥. If X
is a set of vectors, its downward closure is ↓X = {U | U � V for some V ∈ X}.

J. Ledent and S. Mimram 34:7

I Definition 5. A task is a triple Θ = (I,O,∆) such that:
I = Vn and O ⊆ Vn are sets of maximal vectors. The elements of I (resp. of O) and
their faces are called input vectors (resp. output vectors).
∆ ⊆ ↓I × ↓O is a relation between input and output vectors, such that:

∆ only relates matching vectors,
for every input vector U ∈ ↓I, ∆(U) 6= ∅,
for all input vectors U � U ′, ∆(U) ⊆ ↓∆(U ′).

Above, we write ∆(U) = {V | (U, V) ∈ ∆}. Intuitively, the task specification says that if
each process i starts with the input Ui, the set ∆(U) consists of all the output vectors that
are considered acceptable outputs. A ‘⊥’ component in a vector represents a process which
is not participating in the computation, either because it crashed, or because it was so slow
that all the other processes terminated before it could take any steps. With that in mind,
the third condition on ∆ asserts that, if such a “slow” process wakes up, there is at least
one valid output which is compatible with what the other processes already decided. Note
that, to match the receptivity property of concurrent specifications, we are requiring I = Vn,
i.e., a task must specify what the outputs should be given any input vector. This is not a
restriction compared to the usual definition of a task: if we do not care about what happens
on some of the input vectors, we can simply consider that every output is correct.

We now describe how we can turn a task into a one-shot object. Given a vector U , the
set {i ∈ [n] | Ui 6= ⊥} is called the participating set of U . A pair (U, V) ∈ ∆, where U and V
have participating set I = {i1, . . . , ik}, corresponds to a correct execution trace of the form
iUi1
i1
· · · iUik

ik
· rVi1
i1
· · · rVik

ik
, that is, a trace where all the participating processes invoke with the

input values from U , and then they all respond with the output values from V . Remember
that the order of consecutive invocations or consecutive responses does not matter. For
convenience, we will write such a trace iU · rV .

Thus, the task specification ∆ gives us a set of execution traces {iU · rV | (U, V) ∈ ∆} ⊆ T .
But this set does not satisfy the conditions of Definition 1: we need to specify which traces
are correct or not, among the traces of other “shapes” (i.e., traces where invocations and
responses are interleaved). For example, consider a trace of the form iU · rV · ixj · r

y
j , where

(U, V) ∈ ∆ have a participating set I, and j /∈ I. Intuitively, this represents the situation
where all the processes in I ran together without hearing from j, and after all of these
processes terminated, the process j ran alone with input x and decided output y. What
should be the condition on x and y for this trace to be considered correct? The most sensible
answer is that we should require (U [j ← x], V [j ← y]) ∈ ∆. The next definition generalizes
this idea to traces of any shape.

I Definition 6. Let Θ = (I,O,∆) be a task. We define the one-shot concurrent specification
G(Θ) ⊆ T as the set of execution traces T ∈ T such that:

T is one-shot, i.e., every process has at most one invocation and one response in T ,
there exists a completion T ′ of T (obtained by appending responses to the pending in-
vocations), such that for every non-empty prefix S of T ′ which is complete, we have
(US , VS) ∈ ∆, where the i-th component of US (resp. VS) is x if ixi (resp., rxi) appears
in S, and ⊥ otherwise.

I Proposition 7. G(Θ) is a one-shot concurrent specification, i.e., it satisfies the properties
of Definition 1, except that we only require receptivity among one-shot traces.

CONCUR 2019

34:8 A Sound Foundation for the Topological Approach to Task Solvability

Proof. Prefix-closure (1) and non-emptiness (2) are obvious.
(3’): Let T ∈ G(Θ) and assume that no action from process i occurs in T . Let x ∈ V , we
want to show that T · ixi ∈ G(Θ). Let T ′ = T · T̂ be the completion of T that appears
in the definition of G(Θ) (T̂ consists of responses to the pending invocations of T). In
particular, since T ′ is complete and a prefix of itself, we have (UT ′ , VT ′) ∈ ∆.
What we have to do is find a response to the invocation ixi that obeys the specification of
the task Θ. Since i does not participate in T , the vector UT ′ has a ⊥ at position i, and
so UT ′ � UT ′ [i← x]. Thus, we have ∆(UT ′) ⊆ ↓∆(UT ′ [i← x]), since Θ is a task. So in
particular VT ′ ∈ ↓∆(UT ′ [i ← x]), which means that there is some W ∈ ∆(UT ′ [i ← x])
which extends VT ′ . Let y ∈ V be the i-th component of W . Pick the complete trace
T ′′ = T · ixi · T̂ · r

y
i . Then we can check that (UT ′′ , VT ′′) = (UT ′ [i ← x],W) ∈ ∆, and

since all the other complete prefixes of T ′′ are also complete prefixes of T , we finally get
T · ixi ∈ G(Θ).
(4): Let T ∈ G(Θ) and assume that πi(T) has a pending invocation. Using the same
notations as before, the suffix T̂ must contain a response ryi to this invocation. Then just
by switching the order of the responses in T̂ , we obtain T · ryi ∈ G(Θ).
(5): Let T = T1 · aj · ixi · T2 ∈ G(Θ), with j 6= i, and take the same notations as in the
previous cases. We claim that T1 · ixi · aj · T2 · T̂ satisfies the conditions of Definition 6.
The only way that this could fail is if the complete prefix S is T1 · ixi : all other cases are
covered by the fact that T ∈ G(Θ). But T1 · ixi cannot be complete since it has a pending
invocation. So T1 · ixi · aj · T2 ∈ G(Θ).
The second half of condition (5) is proved similarly. J

There is also a map in the other direction: from a one-shot concurrent specification σ,
we can produce a task F (σ). This direction is much easier to define, all we have to do is
keep all the traces of σ which consist of a sequence of invocations followed by a sequence of
responses, and put in ∆ the corresponding pair (U, V).

I Definition 8. Given a one-shot concurrent specification σ ⊆ T , the task F (σ) = (I,O,∆) is
defined as follows. For each trace T ∈ σ of the form T = ix1

i1
· · · ixk

ik
·ry1
i1
· · · ryk

ik
(we say that T is

fully-concurrent), we define the vectors UT (resp., VT) whose ij-th component is xj (resp., yj)
and all the other components are ⊥. Then ∆ = {(UT , VT) | T ∈ σ is fully-concurrent}, and I
(resp., O) is the set of all the maximal input (resp., output) vectors that appear in ∆.

I Proposition 9. F (σ) is a task.

Proof. First, we justify that ∆ ⊆ ↓I × ↓O. Let (UT , VT) ∈ ∆ for some trace T . We want
to show that UT and VT are faces of maximal vectors that appear in ∆. We will find a
fully-concurrent trace T ′ ∈ σ such that UT � UT ′ and VT � VT ′ . For each process i that
does not participate in T , by the receptivity property of σ, we can add an invocation ixi at
the end of T . By totality, this invocation has an appropriate response ryi , that we add at the
end of the trace. Then by applying the expansion property several times, we can push all
the new invocations to the left to obtain the trace T ′ ∈ σ which is fully-concurrent.

We then check that the three conditions on ∆ are satisfied. ∆ always relates matching
vectors because the trace T has matching invocation and responses. For any input vector U ,
we can use totality of σ to find matching responses, which shows that ∆(U) 6= ∅. Finally,
given two input vectors U � U ′, and an element V of ∆(U), let T be the trace witnessing
that (U, V) ∈ ∆. Then, as in the first paragraph, we can add the missing invocations by
receptivity, and matching responses by totality, and get a fully-concurrent trace by expansion.
This yields a pair (U ′, V ′) ∈ ∆, with V � V ′, which is what we want. J

J. Ledent and S. Mimram 34:9

The maps F and G are not inverse of each-other: as we stated in the introduction of the
section, one-shot objects are more expressive than tasks (an example of a simple object which
cannot be expressed as a task is exhibited in [2]). But the next Theorem shows that we still
have a close correspondence between tasks and objects. Given two tasks Θ = (I,O,∆) and
Θ′ = (I ′, O′,∆′), we write Θ ⊆ Θ′ when ∆ ⊆ ∆′.

I Theorem 10. The maps F and G are monotonic, and they form a Galois connection
between tasks and one-shot objects: for every task Θ and one-shot specification σ, we have

σ ⊆ G(Θ) ⇐⇒ F (σ) ⊆ Θ

Moreover, the following equality holds: F ◦G(Θ) = Θ.

Proof. The monotonicity of F and G follows directly from the definitions. In the rest of the
proof, we write F (σ) = (I ′, O′,∆′).

(⇒): Assume σ ⊆ G(Θ). Let (UT , VT) ∈ ∆′, for some fully-concurrent trace T ∈ σ. So,
we also have T ∈ G(Θ). Since T is already complete (and a prefix of itself), we obtain
(UT , VT) ∈ ∆.
(⇐): Conversely, assume F (σ) ⊆ Θ, and let T ∈ σ. First, we complete T by adding
response events to the pending invocations using totality. We get a trace T ′ = T · T̂ ∈ σ.
Let S be a prefix of T ′ which is complete. By prefix-closure, we get S ∈ σ. Then, using
the expansion property, we can push all the invocations to the left in order to get a trace
S′ ∈ σ which is fully-concurrent. Moreover, since S′ is obtained by reordering the actions
of S, we have US = US′ and VS = VS′ . By definition of F (σ), we have (US′ , VS′) ∈ F (σ),
so by assumption (US , VS) = (US′ , VS′) ∈ G(Θ).
From the first implication, since G(Θ) ⊆ G(Θ), we get F ◦ G(Θ) ⊆ Θ. To prove the
other inclusion, take (U, V) ∈ ∆, and consider the associated trace T = iU · rV . We have
(by construction) U = UT and V = VT , so we just need to check that T ∈ G(Θ). But
since T is already complete, and the only complete non-empty prefix of T is T itself, with
(UT , VT) ∈ ∆, this is the case. J

Theorem 10 tells us a lot about the relationship between tasks and one-shot objects. The
implication from left to right explains in what sense G is a canonical way to turn a task into
a one-shot object: G(Θ) is the largest one-shot specification whose set of fully-concurrent
traces obeys the task Θ. Moreover, the equality F ◦G = id, tells us that G is an injection of
tasks into one-shot objects. Thus, the objects that we are interested in are precisely the ones
in the image of G.

I Definition 11. A task object σ is a one-shot concurrent specification which can be written
as σ = G(Θ) for some task Θ.

The maps F and G form a bijection between tasks and task objects: indeed, given a task
object σ = G(Θ), we have G ◦ F (σ) = G ◦ F ◦G(Θ) = G(Θ) = σ. Conversely, if a one-shot
object σ satisfies σ = G ◦ F (σ), then it is a task object (corresponding to the task F (σ)).
Thus, we have a characterization of task objects, which does not refer to the notion of task:
σ is a task object iff G ◦ F (σ) = σ. In fact, since the inclusion σ ⊆ G ◦ F (σ) holds for any
one-shot object (as a consequence of Theorem 10), we even have the equivalence: σ is a task
object iff G ◦ F (σ) ⊆ σ. If we reformulate this inclusion by unfolding the definitions of F
and G, we obtain a kind of closure property, in the style of Definition 1:
(6) Task property: for every complete one-shot trace T ∈ T , if for every complete prefix S

of T , expanding S gives a fully-concurrent trace S′ ∈ σ, then T ∈ σ.
Then, a task object is a set of one-shot traces that satisfies the axioms (1)− (6).

CONCUR 2019

34:10 A Sound Foundation for the Topological Approach to Task Solvability

4 An asynchronous computability theorem for arbitrary objects

The asynchronous computability theorem of Herlihy and Shavit [10] states that a task Θ
has a wait-free protocol using read/write registers if and only if there exists a chromatic
subdivision of the input complex, and a chromatic simplicial map from this subdivision to
the output complex, that satisfies some conditions. That statement actually combines two
claims: (a) a given protocol P using read/write registers solves the task Θ if and only if there
exists a chromatic simplicial map from the protocol complex of P to the output complex,
satisfying some conditions; and (b) to study task solvability using read/write registers, we
can restrict to a particular class of protocols (iterated immediate snapshots) whose protocol
complexes are subdivisions of the input complex.

In this section, we will prove a generalization of claim (a), which works not only for
read/write registers, but for protocols which are allowed to use any combination of arbitrary
objects, as defined in Section 2.2. We will not have a counterpart of claim (b), since this
characterization is specific to the particular case of protocols using read/write registers.

4.1 Preliminaries
We first recall the definitions from combinatorial topology that we will be using. A more
thorough account of these notions can be found in [6]. A simplicial complex C = (V, S)
consists of a set V of vertices and a non-empty set S of finite subsets of V called simplices,
such that:

for each vertex v ∈ V , {v} ∈ S, and
S is closed under containment, i.e., if X ∈ S and Y ⊆ X, then Y ∈ S.

We sometimes abuse notations and write X ∈ C instead of X ∈ S to mean that X is a
simplex of C. If Y ⊆ X, we say that Y is a face of X. The simplices which are maximal
w.r.t. inclusion are called facets. The dimension of a simplex X ∈ S is dim(X) = |X| − 1.
The dimension of the simplicial complex C is dim(C) = sup{dim(X) | X ∈ S}. A simplicial
complex is pure if all its facets have the same dimension (which is also the dimension of the
complex). We say that a simplicial complex C = (V, S) is a subcomplex of C′ = (V ′, S′) when
S ⊆ S′, and we write it C ⊆ C′.

Fix a finite set A whose elements are called colors. A chromatic simplicial complex
C = (V, S, χ) consists of a simplicial complex (V, S) equipped with a coloring map χ : V → A

such that every simplex X ∈ S has vertices of different colors. A chromatic simplicial map
f : C → C′ from C = (V, S, χ) to C′ = (V ′, S′, χ′) is a mapping f : V → V ′ between the
vertices of the two complexes, such that:

the image of a simplex is a simplex, i.e., for every X ∈ S, f(X) := {f(v) | v ∈ X} ∈ S′,
f is color-preserving, i.e., for every v ∈ V , χ′(f(v)) = χ(v).

A chromatic carrier map Φ from C to C′, written Φ : C → 2C′ , assigns to each simplex X ∈ S
a subcomplex Φ(X) of C′, such that:

Φ is monotonic, i.e., if Y ⊆ X then Φ(Y) ⊆ Φ(X),
Φ is rigid, i.e., for every simplex X ∈ S of dimension d, Φ(X) is pure of dimension d,
Φ is chromatic, i.e., for every X ∈ S, χ(X) = χ′(Φ(X)), where χ(X) = {χ(v) | v ∈ X}
and χ′(Φ(X)) =

⋃
Z∈Φ(X) χ

′(Z).
Given a chromatic carrier map Φ : C → 2C′ and a chromatic simplicial map f : C′ → C′′, their
composition f ◦ Φ : C → 2C′′ is defined as (f ◦ Φ)(X) =

⋃
Z∈Φ(X) f(Z). Finally, given two

chromatic carrier maps Φ and Ψ from C to C′, we say that Φ is carried by Ψ, written Φ ⊆ Ψ,
when for every simplex X ∈ C, Φ(X) ⊆ Ψ(X).

J. Ledent and S. Mimram 34:11

4.2 Simplicial tasks
The notion of task that we had in Definition 5 was a direct reformulation of the usual
definition that is used in the context of combinatorial topology. We now recall the usual
definition, and explain briefly why it is the same as Definition 5. Recall that the set of
values is V, and n is the number of processes. From now on, when we talk about chromatic
complexes, the underlying set of colors will be [n].

I Definition 12. A simplicial task is a triple (I,O,Ξ), where:
I = (VI , SI , χI) is the pure chromatic simplicial complex of dimension (n− 1), whose
vertices are of the form (i, v) for all i ∈ [n] and v ∈ V, and which contains all the simplices
that are well-colored. I is called the input complex.
O = (VO, SO, χO, `O) is a pure chromatic simplicial complex of dimension (n−1), together
with a labeling `O : VO → V, such that every vertex is uniquely identified by its color and
its label. O is called the output complex.
Ξ : I → 2O is a chromatic carrier map from I to O.

As in Definition 5, we force the input complex to contain every possible combination
of input values, which is unusual but can safely be assumed without loss of generality.
There is a straightforward bijection between tasks and simplicial tasks. Consider a task
Θ = (I,O,∆) in the sense of Definition 5. A vector U ∈ (V ∪ {⊥})n corresponds to the
simplex X = {(i, Ui) | i ∈ [n] and Ui 6= ⊥}, where the vertex (i, Ui) is colored by i and labeled
by Ui. Two matching vectors correspond to simplices with the same dimension and set of
colors. A maximal vector (i.e., with no ⊥ component) corresponds to a simplex of dimension
(n − 1). Thus, the sets of maximal vectors I and O of a task correspond to the facets of
the corresponding simplicial complexes I and O; and their downward closures ↓I and ↓O
correspond to I and O. The fact that the relation ∆ ⊆ ↓ I × ↓O relates only matching
vectors, along with the non-emptiness of ∆(U), is equivalent to saying that the corresponding
carrier map is rigid and chromatic. The last remaining condition is monotonicity of ∆, which
must also hold for carrier maps. With that correspondence in mind, in the rest of the section,
we will not distinguish tasks and simplicial tasks.

4.3 Simplicial protocols
The topological version of a protocol is defined similarly as for simplicial tasks:

I Definition 13. A simplicial protocol is a triple (I,P,Ψ), where:
I = (VI , SI , χI) is the pure chromatic simplicial complex of dimension (n− 1), whose
vertices are of the form (i, v) for all i ∈ [n] and v ∈ V, and which contains all the simplices
that are well-colored. I is called the input complex.
P = (VP , SP , χP , `P) is a pure chromatic simplicial complex of dimension (n−1), together
with a labeling `P : VP → Views, where Views is an arbitrary set of views, such that every
vertex is uniquely identified by its color and its label. P is called the protocol complex.
Ψ : I → 2P is a chromatic carrier map from I to P.

The intended meaning of Definitions 12 and 13 is the following: the simplicial protocol
(I,P,Ψ) solves the simplicial task (I,O,Ξ) if there exists a chromatic simplicial map
δ : P → O such that δ ◦Ψ is carried by Ξ. In [6], this is taken as the definition of what it
means for a protocol to solve a task. In Section 2, we have given more concrete definitions of
protocols and solvability; our goal here is to properly define the protocol complex associated
to a given protocol, so that these two definitions of solvability will agree.

CONCUR 2019

34:12 A Sound Foundation for the Topological Approach to Task Solvability

Let Obj be the set of objects that our programs are allowed to use. Let P = (Pi)i∈[n] be
a wait-free protocol in the sense of Section 2.2. Recall that each Pi = (Qi,⊥i, δi, τi) is the
program of process i. As before, we write A = {ixi , rxi , i(o)xi , r(o)xi | o ∈ Obj, i ∈ [n], x ∈ V}
for the set of actions of the protocol. The effect of a trace T ∈ A∗ on global states is the
function denoted by ∆ : Q×A∗ → Q.

The states q ∈ Qi \ {⊥i} such that δi(q) ∈ V are called the final states of process i. Let
Fi ⊆ Qi denote the set of final states of process i. A trace T ∈ A∗ is one-shot if it contains at
most one outer invocation ixi and one outer response rxi for each process i. In particular, there
is no restriction on the number of inner actions, since the objects in Obj are not assumed to
be one-shot. A one-shot trace T ∈ A∗ is terminating if after executing it, each process which
participates in T ends in a final state. More formally, if we write q = ∆(qinit, T), for each i
such that ixi occurs in T , we must have qi ∈ Fi. Note that in a valid terminating trace, no
action rxi occurs: when a process is in a final state, the process is ready to return its output
value, but it did not return it yet.

We can now define the protocol complex P = (VP , SP , χP , `P) associated to P . The set
of views is Views =

⋃
i Fi. The vertices are of the form (i, qi) where i ∈ [n] is a process

number and qi ∈ Fi is a final state of process i. Such a vertex is colored by i and labeled
by qi. Finally, for each one-shot trace T which is valid and terminating, we get a simplex
YT = {(i, qi) | i participates in T} ∈ SP , where qi is the i-th component of ∆(qinit, T). The
carrier map Ψ : I → 2P is defined as follows. For X ∈ I an input simplex, we let S = χI(X)
be the set of participating processes, and (vi)i∈S their input values. Then, Ψ(X) consists of
all simplexes YT where T is a valid terminating one-shot trace such that every invocation
that occurs in T is of the form ivi

i for some i ∈ S.
It is straightforward to see that P is chromatic, and that Ψ is monotonic and chromatic.

To check that P is pure of dimension (n− 1), let YT be a simplex of P. We want to extend
it to an (n− 1)-dimensional simplex. To do so, first we append at the end of the trace T
invocations ixi for each process i that does not participate in T . Since we assumed that the
protocol P is wait-free, we can run each of these processes until it reaches a final state. Thus,
we get a trace T ′ which is valid and terminating, and the corresponding simplex YT ′ is of
dimension (n− 1) and contains YT . Checking that Ψ is rigid is similar.

4.4 Asynchronous computability theorem
Let Θ = (I,O,Ξ) be a task, P = (Pi)i∈[n] a protocol, and (I,P,Ψ) its associated simplicial
protocol as described in the previous section. Notice that, since we defined the vertices of P
to be pairs (i, qi) where qi ∈ Fi is a final state of process i, there is a map δ : VP → V defined
as δ(i, qi) = δi(qi), where δi is the decision function of the program Pi.

The following Theorem gives a topological characterization of what it means for the
protocol P to implement (in the sense of Definition 4) the task Θ:

I Theorem 14. The protocol P implements the task-object G(Θ) if and only if the map
δ : VP → V induces a chromatic simplicial map δ : P → O such that δ ◦Ψ is carried by Ξ.

Proof. In this proof, to distinguish between the execution traces of P (on the alphabet
{ixi , rxi , i(o)xi , r(o)xi }) and the outer traces (on the alphabet {ixi , rxi }), we use lowercase letters
t, t′, s, s′ for the former and capital letters T, T ′, S, S′ for the latter.

(⇒): Assume that P implements the object G(Θ), i.e., every trace T ∈ JP K satisfies the
conditions of Definition 6. First, we want to define the map δ : VP → VO. Let (i, qi) ∈ VP
be a vertex of P; we would like to take δ(i, qi) = (i, δi(qi)), but we do not know yet that it
is a vertex of O. The vertex (i, qi) belongs to a (n − 1)-dimensional simplex Yt for some

J. Ledent and S. Mimram 34:13

execution trace t which is valid, one-shot and terminating. Let q = ∆(qinit, t) be the global
state after executing t. In particular, the i-th component of q is qi. For each j ∈ [n], write
dj = δj(qj) the value that process j is about to decide in the trace t. We also write vj ∈ V
the input value of process j in t. Let t′ denote the trace obtained by appending responses rdj

j

at the end of t. Then t′ is still a valid trace, so if we write T = π(t) its projection, we get
T ∈ JP K ⊆ G(Θ). Since T is a complete trace, that means it respects the task specification,
i.e., {(j, dj) | j ∈ [n]} ∈ Ξ({(j, vj) | j ∈ [n]}). In particular, (i, di) is in the image of Ξ, so it
is a vertex of O.

The map δ : VP → VO is obviously chromatic. Let us show that it is a simplicial map.
Let Yt ∈ SP be a simplex of P . Let S ⊆ [n] be the set of processes participating in t, then Yt
is of the form Yt = {(i, qi) | i ∈ S}, and δ(Yt) = {(i, di) | i ∈ S}. As we did in the previous
paragraph, we can add responses rdi

i for i ∈ S at the end of the trace t, to obtain a complete
valid trace whose projection is in JP K, and thus also in G(Θ). This implies that δ(Yt) is in
the image of Ξ, so it is a simplex of O.

Finally, we need to show that δ◦Ψ is carried by Ξ. Let X ∈ I be an input simplex, and let
Z ∈ (δ ◦Ψ)(X) be an output simplex. Then Z must be of the form δ(Yt) for some Yt ∈ Ψ(X).
We write S ⊆ [n] the set of participating processes of X, and (vi)i∈S their input values. So, t
is a valid terminating one-shot trace such that every invocation in t is of the form ivi

i for some
i ∈ S. Let S′ ⊆ S be the participating set of t. Let q = ∆(qinit, t) be the global state after
executing t; we have Yt = {(i, qi) | i ∈ S′}, and δ(Yt) = {(i, di) | i ∈ S′}. Once again, we can
append appropriate responses rdi

i to the trace t, and then we obtain π(t′) = T ∈ JP K ⊆ G(Θ).
So, we obtain δ(Yt) ∈ Ξ({(i, vi) | i ∈ S′}). Since {(i, vi) | i ∈ S′} ⊆ X, by monotonicity of Ξ,
we finally get δ(Yt) ∈ Ξ(X).

(⇐): Assume that the induced map δ : VP → VO defined as δ(i, qi) = δi(qi) is a chromatic
simplicial map from P to O, and that δ ◦ Ψ is carried by Ξ. We want to prove that P
implements the object G(Θ), i.e., that JP K ⊆ G(Θ). Let T ∈ JP K be a one-shot outer trace,
and t such that π(t) = T a valid execution trace for P . To show that T ∈ G(Θ), we must
first complete it, that is, find valid responses to the pending invocations of T . Since the
protocol P is wait-free, we can just run the pending processes one by one until they all reach
a final state: formally, this amounts to appending inner actions to the trace t according to
its program, until a final state qi is reached. Then, we add the appropriate response rδi(qi)

i to
obtain a trace t′, which extends t, is still valid, and which does not have pending invocations.
The projection T ′ = π(t′) ∈ JP K is an extension of T where we added responses to the
pending invocations of T .

Now that we have T ′, we have to prove the following property on every non-empty
prefix S of T ′ which is complete (including S = T ′): the simplex ZS must belong to Ξ(XS),
where XS is the input simplex XS = {(i, vi) | ivi

i occurs in S} and ZS is the output simplex
ZS = {(i, di) | rdi

i occurs in S}. Our goal is now to decompose ZS as ZS = δ(Y) for some
Y ∈ Ψ(XS). Let s be the prefix of t′ whose projection is π(s) = S. We write s′ for the
trace obtained by removing from s all the outer responses, i.e., actions of the form rdi

i . We
claim that s′ is still a valid trace: indeed, no action from process i can occur after the outer
response (otherwise s would not be one-shot), and the only effect of rdi

i is to change the local
state of i, which does not affect the validity of the actions of other processes. Moreover, in
the global states q = ∆(qinit, s

′), every process that participates in s′ is in a final state, in
other words, s′ is terminating. Thus, we have a simplex Ys′ ∈ SP in the protocol complex
consisting of all the vertices (i, qi) where i participates in s′. Since s′, s and S all have the
same participating set, Ys′ ∈ Ψ(XS). And since di = δi(qi) (because in s′, process i is ready
to decide rdi

i), δ(Ys′) = ZS .
This decomposition of ZS shows that ZS ∈ δ ◦Ψ(XS). Since we assumed that δ ◦Ψ is

carried by Ξ, this implies ZS ∈ Ξ(XS), which concludes the proof. J

CONCUR 2019

34:14 A Sound Foundation for the Topological Approach to Task Solvability

Despite the verbosity of the proof, nothing complicated is going on: we are just putting
together all the definitions of the paper. In particular, the crucial definitions that allow the
proof to go through are the expansion property (5) in Definition 1; the map G (Definition 6)
that characterizes the objects which correspond to tasks; and the definition of the protocol
complex P associated to a protocol P in Section 4.3.

If we instantiate Theorem 14 with Obj containing only an iterated immediate snapshot
object, combined with the fact that immediate snapshot protocol complexes are subdivisions
of the input complex, we obtain Herlihy and Shavit’s asynchronous computability theorem
for read/write registers. In general, if we fix a particular set of objects Obj, to prove that
a task cannot be solved using the objects of Obj, one needs to find a topological invariant
which holds in any protocol complex P associated to any protocol P . This is usually where
all the difficulty of the proof lies, and of course Theorem 14 does not help with that part.
What the Theorem says is merely that solvability in the sense of protocol complexes agrees
with the more basic notion of solvability defined in Section 4.

5 Conclusion

We have extended Herlihy and Shavit’s asynchronous computability theorem, which gives a
topological characterization of the solvability of tasks, not only in the context of read/write
registers, but for a large class of arbitrary objects. This shows the soundness of the topological
approach to fault-tolerant computability, as described for example in [6], where the existence
of a simplicial map from the protocol complex to the output complex is taken as the definition
of task solvability. A practical benefit of our proof is that we gave a general definition of
what the protocol complex should be to model arbitrary objects. One can now instantiate
this definition with a given protocol, without risk of making a mistake. This work paves
the way towards a better understanding of the protocol complex: rather than seeing it as a
huge, monolithic combinatorial object, we would like to construct it in a modular way, by
decomposing it into more basic components.

To establish this theorem, we had to study the distinction between tasks and one-shot
objects. We characterized the class of one-shot objects which correspond to tasks, and this
result might be of independent interest. A natural continuation of this work would be to try
to characterize the solvability of all one-shot objects, possibly using the notion of refined
task introduced in [2]. Another generalization would be to extend it to t-resilient solvability,
instead of focusing on wait-free protocols.

References
1 Elizabeth Borowsky and Eli Gafni. Generalized FLP Impossibility Result for T-resilient

Asynchronous Computations. In Proceedings of the Twenty-fifth Annual ACM Symposium
on Theory of Computing, STOC ’93, pages 91–100, New York, NY, USA, 1993. ACM. doi:
10.1145/167088.167119.

2 Armando Castañeda, Sergio Rajsbaum, and Michel Raynal. Unifying Concurrent Objects and
Distributed Tasks: Interval-Linearizability. J. ACM, 65(6):45:1–45:42, 2018. doi:10.1145/
3266457.

3 Ivana Filipović, Peter O’Hearn, Noam Rinetzky, and Hongseok Yang. Abstraction for concur-
rent objects. Theoretical Computer Science, 411(51):4379–4398, 2010. European Symposium
on Programming 2009.

4 Eli Gafni, Sergio Rajsbaum, and Maurice Herlihy. Subconsensus Tasks: Renaming Is Weaker
Than Set Agreement. In Shlomi Dolev, editor, Distributed Computing, pages 329–338. Springer
Berlin Heidelberg, 2006.

https://doi.org/10.1145/167088.167119
https://doi.org/10.1145/167088.167119
https://doi.org/10.1145/3266457
https://doi.org/10.1145/3266457

J. Ledent and S. Mimram 34:15

5 Éric Goubault, Jérémy Ledent, and Samuel Mimram. Concurrent Specifications Beyond
Linearizability. In 22nd International Conference on Principles of Distributed Systems,
OPODIS 2018, pages 28:1–28:16, 2018. doi:10.4230/LIPIcs.OPODIS.2018.28.

6 Maurice Herlihy, Dmitry Kozlov, and Sergio Rajsbaum. Distributed Computing Through
Combinatorial Topology. Morgan Kaufmann Publishers Inc., 2013.

7 Maurice Herlihy and Sergio Rajsbaum. Set Consensus Using Arbitrary Objects (Preliminary
Version). In Proceedings of the Thirteenth Annual ACM Symposium on Principles of Distributed
Computing, PODC ’94, pages 324–333, New York, NY, USA, 1994. ACM. doi:10.1145/197917.
198119.

8 Maurice Herlihy and Sergio Rajsbaum. Algebraic topology and distributed computing: a primer,
pages 203–217. Springer Berlin Heidelberg, 1995. doi:10.1007/BFb0015245.

9 Maurice Herlihy, Sergio Rajsbaum, and Mark R. Tuttle. Unifying Synchronous and Asyn-
chronous Message-passing Models. In Proceedings of the Seventeenth Annual ACM Symposium
on Principles of Distributed Computing, PODC ’98, pages 133–142, New York, NY, USA, 1998.
ACM. doi:10.1145/277697.277722.

10 Maurice Herlihy and Nir Shavit. The Topological Structure of Asynchronous Computability.
J. ACM, 46(6):858–923, November 1999. doi:10.1145/331524.331529.

11 Maurice Herlihy and Jeannette M. Wing. Linearizability: A Correctness Condition for
Concurrent Objects. ACM Transactions on Programming Languages and Systems, 12(3):463–
492, 1990.

12 Nancy A. Lynch and Mark R. Tuttle. An introduction to input/output automata. CWI
Quarterly, 2:219–246, 1989. URL: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=
10.1.1.83.7751.

13 Michael Saks and Fotios Zaharoglou. Wait-free K-set Agreement is Impossible: The Topology
of Public Knowledge. In Proceedings of the Twenty-fifth Annual ACM Symposium on Theory
of Computing, STOC ’93, pages 101–110, New York, NY, USA, 1993. ACM. doi:10.1145/
167088.167122.

CONCUR 2019

https://doi.org/10.4230/LIPIcs.OPODIS.2018.28
https://doi.org/10.1145/197917.198119
https://doi.org/10.1145/197917.198119
https://doi.org/10.1007/BFb0015245
https://doi.org/10.1145/277697.277722
https://doi.org/10.1145/331524.331529
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.83.7751
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.83.7751
https://doi.org/10.1145/167088.167122
https://doi.org/10.1145/167088.167122

Game-Based Local Model Checking for the
Coalgebraic µ-Calculus
Daniel Hausmann
Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
daniel.hausmann@fau.de

Lutz Schröder
Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
lutz.schroeder@fau.de

Abstract
The coalgebraic µ-calculus is a generic framework for fixpoint logics with varying branching types
that subsumes, besides the standard relational µ-calculus, such diverse logics as the graded µ-calculus,
the monotone µ-calculus, the probabilistic µ-calculus, and the alternating-time µ-calculus. In the
present work, we give a local model checking algorithm for the coalgebraic µ-calculus using a
coalgebraic variant of parity games that runs, under mild assumptions on the complexity of the
so-called one-step satisfaction problem, in time pk where p is a polynomial in the formula and
model size and where k is the alternation depth of the formula. We show moreover that under the
same assumptions, the model checking problem is in NP ∩ coNP, improving the complexity in all
mentioned non-relational cases. If one-step satisfaction can be solved by means of small finite games,
we moreover obtain standard parity games, ensuring quasi-polynomial run time. This applies in
particular to the monotone µ-calculus, the alternating-time µ-calculus, and the graded µ-calculus
with grades coded in unary.

2012 ACM Subject Classification Theory of computation → Modal and temporal logics; Theory of
computation → Verification by model checking

Keywords and phrases Model checking, µ-calculus, coalgebraic logic, graded µ-calculus, probabilistic
µ-calculus, parity games

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2019.35

Funding Work forms part of the DFG project Generic Algorithmic Methods for Modal and Hybrid
Logics (SCHR 1118/5-3).

1 Introduction

One of the most central and established computation tasks in the verification of concurrent
software is model checking, i.e. to determine whether a given system state satisfies a temporal
specification (e.g. [2]). The complexity of model checking is generally fairly sensitive to
variations in the logic, more so than satisfiability checking, which for fairly wide ranges
of branching time temporal logics (such as PDL, CTL and the µ-calculus) tends to be
ExpTime-complete. For instance, CTL allows model checking in polynomial time, while
LTL (and more generally CTL∗) model checking is PSpace-complete (e.g. [27]). In fact, the
input of model checking is naturally split into two parts, the model and the formula, and the
complexity analysis is typically phrased in terms of model size and formula size separately.

Model checking for µ-calculus formulae typically proceeds by a reduction to computing
winning regions in parity games, and in fact the two problems are linear-time equivalent [11].
In consequence, the current best upper bound for the time complexity of µ-calculus model
checking has recently dropped when Calude et al. [4] showed that parity games can be solved
in quasi-polynomial time; in fact, further improvement seems possible as the exact complexity
of parity game solving remains open.

© Daniel Hausmann and Lutz Schröder;
licensed under Creative Commons License CC-BY

30th International Conference on Concurrency Theory (CONCUR 2019).
Editors: Wan Fokkink and Rob van Glabbeek; Article No. 35; pp. 35:1–35:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:daniel.hausmann@fau.de
mailto:lutz.schroeder@fau.de
https://doi.org/10.4230/LIPIcs.CONCUR.2019.35
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

35:2 Game-Based Local Model Checking for the Coalgebraic µ-Calculus

Besides model checking relational systems, there is a long-standing and growing interest
in systems with additional structure, e.g. probabilities, weights, multi-player games, or
neighbourhoods. To name just a few concrete examples, the alternating-time µ-calculus [1] is
interpreted over concurrent game structures; the (two-valued) probabilistic µ-calculus [6, 21]
over Markov chains, and the monotone µ-calculus [12] (the ambient fixpoint logic of concurrent
dynamic logic (CPDL) [25] and Parikh’s game logic [23]) over (monotone) neighbourhood
structures. The graded µ-calculus [20], standardly interpreted over relational structures, has
an equivalent and more natural semantics over integer-weighted structures [10]. As a unifying
framework for such fixpoint logics beyond relational semantics, the coalgebraic µ-calculus [6]
has emerged. It works within the paradigm of universal coalgebra [26], i.e. encapsulates the
system type as a set functor and systems as coalgebras for this functor; the interpretation of
modalities is based on predicate liftings as used in the broader field of coalgebraic logic [8].

Our present contribution is a generic local model checking algorithm for the coalgebraic
µ-calculus, which can be instantiated easily to concrete µ-calculi including all the ones
mentioned above, where by local we mean that the algorithm allows establishing satisfaction
of a formula in a given state without calculating full extensions of all subformulae across
all states. Under mild assumptions on the concrete functor and predicate liftings defining
the logic, our algorithm runs in time pk where p is a polynomial in the size of the formula
and the model and k is the alternation depth of the formula; in particular, the algorithm
runs in polynomial time on alternation-free coalgebraic µ-calculi, or more generally on
formulae of bounded alternation depth. Further analysis shows moreover that under the
same assumptions, the model checking problem is in fact in NP ∩ coNP. The algorithm is
based on a coalgebraic generalization of parity games, in which some steps consist in calls to
a one-step satisfaction checker that essentially just implements the modalities. In some cases,
notably the monotone µ-calculus, the alternating-time µ-calculus, and the graded µ-calculus,
we can replace one-step satisfaction checking with suitable finite one-step satisfaction games,
obtaining a standard (rather than coalgebraic) parity game. Exploiting the mentioned recent
results on parity game solving, we obtain quasi-polynomial runtime in cases where these
one-step satisfaction games are sufficiently small; in particular, we show that the monotone
µ-calculus, the alternating-time µ-calculus, and the graded µ-calculus with unary coding of
grades all admit model checking in quasi-polynomial time, to our knowledge new results.

Related Work. Model checking games for the monotone µ-calculus have been studied by
Hansen et al. [15], without complexity analysis. For the alternating-time µ-calculus, Alur
et al. [1] describe a model checking procedure that works essentially by fixpoint iteration,
and runs in time O((m · l)k+1) where m is the number of transitions, l the length of the
formula, and k its alternation depth. An upper bound UP ∩ coUP for model checking
the probabilistic µ-calculus is stated in [21]. The complexity of model checking the graded
µ-calculus is mentioned by Ferrante et al. [13] in work otherwise concerned with the more
complex problem of module checking, giving an upper bound ExpTime for numbers in both
systems and formulae coded in binary. We improve this bound to NP ∩ coNP under binary
coding, and to quasi-polynomial time under unary coding, and moreover give a deterministic
algorithm that is exponential only in the alternation depth.

Cîrstea et al. [9] provide an automata-based model checking procedure for quantitative
linear time logics over systems with weights in a partial commutative semiring, using
coalgebraic methods. Satisfiability checking in the coalgebraic µ-calculus has been shown to
be in ExpTime [6, 17]. For purposes of the present paper, the most relevant piece of related
work is Hasuo et al.’s [16] model checking algorithm for the coalgebraic µ-calculus, which

D. Hausmann and L. Schröder 35:3

is based on fixpoint computation using progress measures in a highly general setting. The
bound on the run time stated in [16] has roughly the form pr where p is a polynomial in
the number of states of the model and the size of the formula understood as the number of
nodes in its parse tree, and r is the number of least fixpoint operators. The bound is thus
independent of the size of the transition structure of models and the actual representation
size of the formula (which may in general contain, e.g., integer or rational numbers); this
can clearly hold only under strong assumptions on both the system type and the syntax of
formulae, mentioned implicitly in [16] on p. 728. In particular, the overall representation
size of models must be polynomially bounded in the number of states. The analyis in [16]
therefore does not apply to our main examples; e.g. a concurrent game structure with just one
state can have an unbounded number of transitions; integer-weighted transition systems can
involve unboundedly large integer numbers; and a monotone neighbourhood frame can have
exponentially more (even minimal) neighbourhoods than states. Another important difference
is that we make the intermediate game theoretic constructions in the algorithm explicit, while
game constructions are eliminated in favour of a direct implementation of progress measures
in [16]. Immediate benefits include exponential dependence only on alternation depth instead
of number of least fixpoint operators, materializing an improvement conjectured by Hasuo et
al.; the local nature of our model checking algorithm; and quasi-polynomial runtime for the
above-mentioned cases admitting small one-step satisfaction games. As a long-term benefit,
we expect algorithmic improvements paralleling the development in standard parity games
also for our coalgebraic parity games, and hence for the complexity of coalgebraic µ-calculus
model checking in general.

2 The Coalgebraic µ-Calculus

We proceed to recall basic definitions and examples in universal coalgebra [26] and the
coalgebraic µ-calculus [6].

The abstraction principle underlying universal coalgebra is to encapsulate system types
as functors, for our present purposes on the category of sets. Such a functor T : Set→ Set
maps every set X to a set T (X), and every map f : X → Y to a map Tf : T (X)→ T (Y),
preserving identities and composition. We think of T (X) as a type of structured collections
over X; a basic example is the covariant powerset functor P, which assigns to each set its
powerset and acts on maps by taking forward image. Systems of the intended type are
then cast as T -coalgebras (C, ξ) (or just ξ) consisting of a set C of states and a transition
map ξ : C → T (C), thought of as assigning to each state x ∈ C a structured collection
ξ(x) ∈ T (C) of successors. E.g. a P-coalgebra ξ : C → P(C) assigns to each state a set of
successors; that is, P-coalgebras are transition systems. We will see additional examples
later. A coalgebra is finite if its state set is finite.

Following the paradigm of coalgebraic logic [8], we fix a set Λ of modal operators (in
principle of any finite arity but restricted to unary modalities in the technical development for
the sake of readability; our proofs generalize by essentially writing more indices), which we
interpret over T -coalgebras for a functor T as predicate liftings, i.e. natural transformations

[[♥]]X : 2X → 2T (X) for ♥ ∈ Λ.

Here, the index X, omitted when clear from the context, ranges over all sets; 2X denotes the
set of maps X → 2 into the two-element set 2 = {⊥,>}, isomorphic to the powerset of X
(i.e. 2− is the contravariant powerset functor); and naturality means that [[♥]]X(f−1[A]) =

CONCUR 2019

35:4 Game-Based Local Model Checking for the Coalgebraic µ-Calculus

(Tf)−1[[[♥]]Y (A)] for f : X → Y and A ∈ 2Y . Thus, the predicate lifing [[♥]] indeed lifts
predicates on a base set X to predicates on the set T (X). Two standard examples for T = P
are the predicate liftings for the standard � and ♦ modalities, given by

[[�]]X(A) = {B ∈ P(X) | B ⊆ A} and [[♦]]X(A) = {B ∈ P(X) | A ∩B 6= ∅}.

Since we mean to form fixpoint logics, we need to require that every [[♥]] is monotone,
that is, A ⊆ B ⊆ X implies J♥KX(A) ⊆ J♥KX(B). To support negation, we assume
moreover that Λ is closed under duals, i.e. for each ♥ ∈ Λ we have ♥ ∈ Λ such that
[[♥]]X(A) = T (X) \ [[♥]]X(X \A), chosen so that ♥ = ♥ (e.g. � = ♦, ♦ = �).

To introduce the syntax of the coalgebraic µ-calculus, we fix a set Var of fixpoint variables.
We let the meta-variable η range over the standard fixpoint operators µ (least fixpoint), ν
(greatest fixpoint). The set of formulae φ, ψ is then defined by the grammar

ψ, φ := > | ⊥ | ψ ∨ φ | ψ ∧ φ | ♥ψ | X | ηX.ψ (♥ ∈ Λ, X ∈ Var).

Note that the grammar does not include propositional atoms; these can, if desired, be treated
as nullary modalities (Example 1). Negation is not included explicitly but can be defined,
as usual, by taking negation normal forms. Fixpoint operators bind their variables, giving
rise to the usual notions of bound and free variables; we denote the set of free variables of a
formula ψ by FV(ψ). A formula ψ is closed if FV(ψ) = ∅. Given a T -coalgebra ξ : C → T (C)
and a valuation σ : Var→ P(C), the extension

[[φ]]σ ⊆ C

of a formula φ is defined recursively by the expected clauses for the propositional operators
([[>]]σ = C; [[⊥]]σ = ∅; [[φ ∧ ψ]]σ = [[φ]]σ∩ [[ψ]]σ; [[φ ∨ ψ]]σ = [[φ]]σ∪ [[ψ]]σ); by JXKσ = σ(X) and

J♥ψKσ = ξ−1[J♥K(JψKσ)];

and by JµX.ψKσ = LFPJψKXσ , JνX.ψKσ = GFPJψKXσ where the map JψKXσ : P(C) → P(C)
is defined by JψKXσ (A) = JψKσ[X 7→A] for A ⊆ C, with (σ[X 7→ A])(X) = A and (σ[X 7→
A])(Y) = σ(Y) for X 6= Y , and LFP and GFP take least and greatest fixpoints of mono-
tone functions on P(C), respectively; monotonicity of JψKXσ is clearly an invariant of the
recursive definition.

The alternation depth ad(ηX.ψ) of a fixpoint ηX.ψ is the depth of alternating nesting of
such fixpoints in ψ that depend on X; we assign odd numbers to least fixpoints and even
numbers to greatest fixpoints. E.g. for ψ = νX.φ and φ = µY.(p ∧ ♥X) ∨ ♥Y , we have
ad(ψ) = 2, ad(φ) = 1. For a detailed definition of alternation depth, see e.g. [22].

I Example 1. We proceed to see some standard examples of coalgebraic semantics, see [28,
6, 29] for more details.
1. Relational µ-calculus: As indicated above, we obtain a version of the standard relational µ-

calculus [19] without propositional atoms by taking T = P and Λ = {�,♦} with predicate
liftings as described previously. We can add a set At of propositional atoms p, q, . . . by
regarding them as nullary modalities, and interpret p ∈ At over the extended functor
T = P(At)× P by the nullary predicate lifting [[p]]X = {(P,B) ∈ P(At)× P(X) | p ∈ P}.
E.g. the formula νX. µY. ((p∧�X)∨ (q ∧�Y)) says that on every path from the current
state, p holds everywhere except possibly on finite segments where q holds. Similarly,
we can introduce a set Act of actions, and index modalites over actions a ∈ Act. We
interpret the indexed modalities �a,♦a over the functor T = PAct, e.g. the box by
[[�a]]X(A) = {f ∈ P(X)Act | f(a) ⊆ A}. We can similarly add propositional atoms and
actions to all examples that follow.

D. Hausmann and L. Schröder 35:5

2. Graded µ-calculus: The graded µ-calculus [20] has modalities 〈b〉, [b], indexed over b ∈ N,
read “in more than b successors” and “in all but at most b successors”, respectively. These
can be interpreted over relational structures but it is technically more convenient to
use multigraphs, i.e. transition systems with edge weights (multiplicities) in N ∪ {∞},
which are coalgebras for the multiset functor B. The latter maps a set X to the
set B(X) = (N ∪ {∞})X of maps X → (N ∪ {∞}); we treat elements β ∈ B(X) as
(N ∪ {∞})-valued discrete measures on X, and in particular write β(A) =

∑
x∈A β(x)

for A ⊆ X. For a map f : X → Y , the map B(f) : B(X) → B(Y) is then given by
B(f)(β)(y) = β(f−1[{y}]). Over B-coalgebras, we interpret 〈b〉 and [b] by the mutually
dual predicate liftings

[[〈b〉]]X(A) = {β ∈ B(X) | β(A) > b} and [[[b]]]X(A) = {β ∈ B(X) | β(X \A) ≤ b}.

E.g. the formula νX. (φ ∧ ♦1X) says that the current state is the root of an infinite tree
with branching degree at least 2 (counting multiplicities) on which φ holds everywhere.

3. Probabilistic µ-calculus: Let D denote the discrete distribution functor, defined on sets by
D(X) = {β : X → [0, 1] |

∑
x∈X β(x) = 1}. That is, D(X) is the set of discrete probability

distributions on X; coalgebras for D are just Markov chains. Similarly as for the graded
µ-calculus, we take modalities [p], 〈p〉 indexed over p ∈ [0, 1] ∩Q, interpreted over D by
[[〈p〉]]X(A) = {β ∈ D(X) | β(A) > p} and J[p]KX(A) = {β ∈ D(X) | β(X \A) ≤ p} (using
the same measure-theoretic notation as in the previous item). The arising coalgebraic
µ-calculus is the probabilistic µ-calculus [6, 21].

4. Monotone µ-calculus: The monotone neighbourhood functor M maps a set X to the set
M(X) = {A ∈ 2(2X) | A upwards closed} of set systems over X that are upwards closed
under subset inclusion (i.e. A ∈ A and A ⊆ B imply B ∈ A). Coalgebras for M are
monotone neighbourhood frames in the sense of Scott-Montague semantics [5]. We take
Λ = {�,♦} and interpret � overM by the predicate lifting

[[�]]X(A) = {A ∈M(X) | A ∈ A} = {A ∈M(X) | ∃B ∈ A. B ⊆ A},

and ♦ by the corresponding dual lifting, [[♦]]X(A) = {A ∈M(X) | (X \A) /∈ A} = {A ∈
M(X) | ∀B ∈ A. B∩A 6= ∅}. The arising coalgebraic µ-calculus is known as the monotone
µ-calculus [12]. When we add propositional atoms and actions, and replace M with
its subfunctor Ms defined by Ms(X) = {A ∈ M(X) | ∅ /∈ A 3 X}, whose coalgebras
are serial monotone neighbourhood frames, we arrive at the ambient fixpoint logic of
concurrent dynamic logic [25] and Parikh’s game logic [23]. In game logic, actions are
understood as atomic games of Angel vs. Demon, and we read �aφ as “Angel has a
strategy to enforce φ in game a”. Game logic is then mainly concerned with composite
games, formed by the control operators of dynamic logic and additional ones; the semantics
can be encoded into fixpoint definitions. For instance, the formula νX. p∧�aX says that
Angel can enforce p in the composite game where a is played repeatedly, with Demon
deciding when to stop.

5. Alternating-time µ-calculus: Fix a set N = {1, . . . , n} of agents. Using alternative
notation from coalition logic [24], we present the alternating-time µ-calculus (AMC) [1]
by modalities [D], 〈D〉 indexed over coalitions D ⊆ N , read “D can enforce” and “D
cannot prevent”, respectively. We define a functor G by

G(X) = {(k1, . . . , kn, f) | k1, . . . , kn ∈ N \ {0}, f :
(∏

i∈N [ki]
)
→ X}

where we write [k] = {1, . . . , k}. We understand (k1, . . . , kn, f) ∈ G(X) as a one-step
concurrent game with ki available moves for agent i ∈ N , and outcomes in X determined
by the outcome function f from a joint choice of moves by all the agents. For D ⊆ N ,

CONCUR 2019

35:6 Game-Based Local Model Checking for the Coalgebraic µ-Calculus

we write SD =
∏
i∈D[ki]. Given joint choices sD ∈ SD, sN\D ∈ SN\D of moves for

D and N \ D respectively, we write (sD, sN\D) ∈ sN for the joint move of all agents
induced in the evident way. In this notation, we interpret the modalities [D] over G by
the predicate lifting

[[[D]]]X(A) = {(k1, . . . , kn, f) ∈ G(X) | ∃sD ∈ SD.∀sN\D ∈ SN\D. f(sD, sN\D) ∈ A},

and the modalities 〈D〉 by dualization. This captures exactly the semantics of the AMC:
G-coalgebras are precisely concurrent game structures [1], i.e. assign a one-step concurrent
game to each state, and [D]φ says that the agents in D have a joint move such that
whatever the agents in N \D do, the next state will satisfy φ. E.g. µX. p ∨ [D]X says
that coalition D can eventually enforce that p is satisfied (a property expressible already
in alternating-time temporal logic ATL [1]).

We fix the data T , Λ and a predicate lifting [[♥]] for each ♥ ∈ Λ for the rest of the paper.
We assume given a suitable representation size for the modalities in Λ; this is relevant in
particular when Λ is infinite, e.g. for the graded and the probabilistic µ-calculus. We generally
assume that numbers are coded in binary, except in the treatment of the graded µ-calculus
via one-step satisfaction games in Section 5.

We write size(ψ) for the ensuing representation size of a formula ψ, counting the represent-
ation size for each modality and 1 for other connectives and variables. Similarly, we assume
given a representation of elements of T (X) for finite sets X, with associated representation
size size(s) for elements s ∈ T (X). Again, we generally assume that numbers in s (e.g. in
probablity distributions) are encoded in binary, except in Section 5. Moreover, we represent
monotone neighbourhood systems A by set systems A0 ⊆ A that generate A by upwards
closure; otherwise, representations are essentially obvious.

The size size(ξ) of a finite coalgebra ξ : C → T (C) is then defined as
∑
x∈C(1+size(ξ(x))).

We also fix the input for the model checking algorithm: First, we fix a T -coalgebra (C, ξ)
with C finite; second, we fix a closed target formula χ, assuming w.l.o.g. that χ is clean,
i.e. that every fixpoint variable is bound by at most one fixpoint operator in χ. For a
variable X ∈ V that is bound in χ, we then write θ(X) to denote the formula ηX.ψ that
is a subformula of χ. Let Cl(χ) be the closure (that is, the set of subformulae) of χ. We
have |Cl(χ)| ≤ |χ| ≤ |size(χ)|, where |χ| denotes the number of operators or variables in χ
(ignoring representation sizes). We put k = max{ad(ηX.ψ) | ηX.ψ ∈ Cl(χ)}.

3 Local Model Checking for the Coalgebraic µ-Calculus

We proceed to introduce and analyse our model checking algorithm which essentially is a
more general version of the fixpoint iteration algorithm for standard parity games [3]. The
algorithm will interface with the functor via the following computational problem:

I Definition 2 (One-step satisfaction problem). Let T be a functor and let C be a set. The
one-step satisfaction problem for inputs s ∈ T (C), ♥ ∈ Λ and U ⊆ C consists in deciding
whether s ∈ J♥KU . We denote the time it takes to solve the problem for input s,♥, U by
t(size(s), size(♥), |C|), having |U | ≤ |C|.

We discuss the one-step satisfaction problem for some of the logics from Example 1:

D. Hausmann and L. Schröder 35:7

I Example 3.
1. In the relational case, with T = P, Λ = {♦,�}, to check one-step satisfaction for

s ∈ P(C),♦, U ⊆ C, we have to check whether s intersects with U ; and to check
one-step satisfaction for s,�, U , we have to check whether s is a subset of U . So
t(size(s), size(♥), |C|) ≤ |C| for ♥ ∈ Λ, assuming that containment in sets can be checked
in constant time.

2. In the graded case, with T = B, Λ = {〈b〉, [b] | b ∈ N}, to check one-step satisfaction
for s ∈ B(C), 〈b〉, U ⊆ C, we have to check whether

∑
u∈U s(u) > b; to check one-

step satisfaction for s, [b], U , we have to check whether
∑
u∈(C\U) s(u) ≤ b. Hence

t(size(s), size(♥), |C|) ≤ size(♥) · |C| for ♥ ∈ Λ; this holds even if grades are coded in
binary since binary numbers can be added and compared in linear time.

3. In the probabilistic case, with T = D, Λ = {〈p〉, [p] | p ∈ Q ∩ [0, 1]}, to check one-step
satisfaction for s ∈ D(C), 〈p〉, U ⊆ C, we have to check whether

∑
u∈U s(u) > p; to check

one-step satisfaction for s, [p], U , we have to check whether
∑
u∈(C\U) s(u) ≤ p. Hence

t(size(s), size(♥), |C|) ∈ O(((|C| ·size(s))2) · |C|) for ♥ ∈ Λ. This holds even if probabilities
are coded in binary since quotients of o-bit binary numbers can be added in time O(o2);
there are at most |C| summation steps, and since each summation step increases the
number of bits of the denominator of the summand by at most size(s), each summation
step can be done in time (|C| · size(s))2.

Since our model checking algorithm can be seen as an algorithm for solving a coalgebraic
variant of parity games, we now recall some basic notions of parity games (see e.g. [14]).

I Definition 4 (Parity games). A parity game (V,E, α) consists of a set of nodes V , a set
of moves E ⊆ V × V and a priority function α : V → N. Furthermore, each node belongs
to exactly one of the players Eloise or Abelard (where we denote Eloise’s nodes by V∃ and
Abelard’s nodes by V∀). A play ρ = v0, v1, . . . ⊆ V ∗ ∪ V ω is a (finite or infinite) sequence of
nodes such that for all i ≥ 0 such that ρ contains at least i+ 1 nodes, we have (vi, vi+1) ∈ E.
We say that an infinite play ρ = v0, v1, . . . is even, if the largest priority that occurs infinitely
often in it is even (formally, if max{α(v) | ∀j. (vj = v)⇒ ∃j′ > j. (vj′ = v) and ∃j. vj = v} is
an even number), and odd otherwise; finite plays are required to end in nodes that have no
outgoing move. Player Eloise wins all even plays and finite plays that end in an Abelard-node;
player Abelard wins all other plays. The size of a parity game (V,E, α) is |V |. A (history-free)
Eloise-strategy s : V∃ ⇀ V is a partial function that assigns moves s(x) to Eloise-nodes
x ∈ dom(s). A play ρ = v0, v1, . . . follows a strategy s if for all i ≥ 0 such that vi ∈ V∃,
vi+1 = s(vi). An Eloise-strategy wins a node v ∈ V if Eloise wins all plays that start at v
and follow s. We have a dual notion of Abelard-strategies; solving a parity game consists in
computing the winning regions of the two players, that is, the sets of states that they win.

A crucial property of parity games is that they are history-free determined [14], that is, that
every node in a parity game is won by exactly one of the two players and then there is a
history-free strategy for the respective player that wins the node.

One natural way to solve a parity game is by fixpoint iteration [3] (which essentially
computes a particular progress measure annotation [18] of the game). Algorithms that use
this method repeatedly apply a function (denoted by Ψ in Section 3.1 in [3] and sometimes
also referred to as is_mother , see e.g. Section 4.2 in [20]) that evaluates the allowed moves at
each node to compute the set of nodes that are won by player Eloise under the assumption that
sets of nodes computed by previous iterations of the function are also won by her. Intuitively,
the algorithm keeps a set of currently allowed nodes Yi for each priority i in memory; one
iteration of the function is_mother then computes the set of nodes is_mother(Y0, . . . , Yk)

CONCUR 2019

35:8 Game-Based Local Model Checking for the Coalgebraic µ-Calculus

which have some priority j and which either belong to Eloise and have some move to a node
from Yj or belong to Abelard and only have moves to nodes from Yj . The repeated application
of this function is defined in terms of a nested fixpoint (referred to as Φd in [3], Section
3.1). The winning region for Abelard is computed as the dual fixpoint of the complementary
function is_mother . Our model checking algorithm proceeds in a very similar fashion, but
crucially uses instances of the one-step satisfaction problem to evaluate modal nodes. We
proceed to define our variants of the is_mother and is_mother functions which we call f
and g for brevity in this work.

I Definition 5. For V = Cl(χ)×C, we define the tracing function h : V → P(V) by putting

h(ψ, x) =

∅ if ψ = ⊥ or ψ = >
{(ψ1, x), (ψ2, x)} if ψ = ψ1 ∨ ψ2 or ψ = ψ1 ∧ ψ2

{(ψ1, x)} if ψ = ηX.ψ1

{(θ(X), x)} if ψ = X

{(ψ1, y) | y ∈ C} if ψ = ♥ψ1

A non-modal formula ψ can be traced to the formula φ at x if and only if (φ, x) ∈ h(ψ, x),
so e.g. a conjunction ψ1 ∧ ψ2 can be traced to ψ1 and to ψ2, all at some state x. A modal
formula ♥ψ1 can be traced from x to the formula ψ1 at any state y (that is, we have
(ψ1, y) ∈ h(♥ψ1, x) for all y ∈ C); for instance, ♦ψ can be traced from some state x to
ψ at any state y ∈ C. Hence h(ψ, x) computes the set of nodes that are relevant for the
(one-step) satisfaction of ψ at x. For a given set G ⊆ V , we then define k + 1-ary functions
f, g : (P(G))k+1 → P(G) by putting, for Y = (Y0, . . . , Yk) ∈ (P(G))k+1,

f(Y) ={(>, x) | (>, x) ∈ G} ∪ {(♥ψ, x) ∈ G | ξ(x) ∈ J♥K{y | (ψ, y) ∈ Y0}}∪
{(ψ ∨ φ, x) ∈ G | h(ψ ∨ φ, x) ∩ Y0 6= ∅} ∪ {(ψ ∧ φ, x) ∈ G | h(ψ ∧ φ, x) ⊆ Y0}∪
{(ηX.ψ, x) ∈ G | h(ηX.ψ, x) ⊆ Y0} ∪ {(X,x) | h(X,x) ⊆ Yad(θ(X))}

g(Y) ={(⊥, x) | (⊥, x) ∈ G} ∪ {(♥ψ, x) ∈ G | ξ(x) /∈ J♥K{y | (ψ, y) ∈ (G \ Y0)}}∪
{(ψ ∨ φ, x) ∈ G | h(ψ ∨ φ, x) ⊆ Y0} ∪ {(ψ ∧ φ, x) ∈ G | h(ψ ∧ φ, x) ∩ Y0 6= ∅}∪
{(ηX.ψ, x) ∈ G | h(ηX.ψ, x) ⊆ Y0} ∪ {(X,x) ∈ G | h(X,x) ⊆ Yad(θ(X))}.

Finally, we put

EG = ηkYk.η1Y1.η0Y0.f(Y) and AG = ηkYk.η1Y1.η0Y0.g(Y),

where ηi is GFP if i is even and LFP otherwise and where LFP = GFP and GFP = LFP.

For instance, we have (X,x) ∈ f(Y) if (θ(X), x) ∈ Yp where p = ad(θ(X)), that is, when
passing the fixpoint variable X, priority p occurs in the game. We also have e.g. (ψ ∨ φ, x) ∈
f(Y) if (ψ, x) ∈ Y0 or (φ, x) ∈ Y0 but (ψ ∨ φ, x) ∈ g(Y) if (ψ, x) ∈ Y0 and (φ, x) ∈ Y0;
the latter constraint comes with the intuition that g is used to derive non-satisfaction of
formulas. Checking whether some pair (♥ψ, x) is contained in f(Y) or g(Y) is an instance of
the one-step satisfaction problem with input ξ(x),♥,{y | (ψ, y) ∈ U} for some U ⊆ V ; since
size(ξ(x)) ≤ size(C), size(♥) ≤ size(χ) and {y | (ψ, y) ∈ U} ⊆ C, the instance can be solved
in time t(size(C), size(χ), |C|).

The sets EG and AG can be seen as winning regions for the two players Eloise and Abelard
in a coalgebraic parity game with set of nodes G ⊆ V that is very similar to a model checking
parity game but uses instances of the one-step satisfaction problem instead of modal moves.

D. Hausmann and L. Schröder 35:9

Intuitively, Eloise has, for all nodes (ψ, x) ∈ EG and for all disjunctions that are encountered
when checking satisfaction of ψ at x, a choice such that the combination of her choices
guarantees that no trace of ψ through ξ that starts at x unfolds some least fixpoint infinitely
often without also unfolding a surrounding fixpoint infinitely often.

We now introduce our local model checking algorithm, which iteratively adds nodes from V

to a growing set of nodes G and computes the sets EG and AG in optional intermediate
model checking steps. The algorithm hence inherently supports local model checking [30]
since the coalgebraic model checking game is constructed step by step and the partially
constructed game can be solved on-the-fly, that is, at any time while building up the game,
terminating as soon as one of the players has a strategy that wins the initial node in the
game played over G. Since the model sizes in model checking tend to be exponential in
the sizes of formulas, on-the-fly solving seems to be a valuable capability as it allows to cut
down the search space of the algorithm; a concrete implementation of the algorithm and an
evaluation of this aspect remains a task for future work though.

Algorithm 1: Local model checking.
To decide whether x ∈ JχK, initialize U = {(χ, x)}, G = ∅.
1. Expansion: pick some (ψ, y) ∈ U , add it to G and remove it from U , and add

those pairs from h(ψ, y) that are not already contained in G to U .
2. (Optional) Check: compute EG and/or AG. If (χ, x) ∈ EG, then return “yes”, if

(χ, x) ∈ AG, then return “no”.
3. Loop: if U 6= ∅, then continue with step 1).
4. Final Check: compute EG. If (χ, x) ∈ EG, then return “yes”, otherwise return

“no”.

In the final checking step, all nodes that are reachable from (χ, x) using h have been added
to G so that EG = G \AG, i.e. every node – including (χ, x) – is won by exactly one of the
players; in the optional intermediate checking steps however, there may be nodes for which
no player has a winning strategy yet.

The correctness statement then reads as follows.

I Lemma 6. We have (χ, x) ∈ EV if and only if x ∈ JχK.

Proof sketch. Let (χ, x) ∈ EV . We use lexicalically ordered vectors of natural numbers as
a measure for the computation of the nested fixpoint EV (similar in spirit to coalgebraic
progress measures [16]) and then show x ∈ JχK by nested induction and coinduction, using the
measure to ensure termination of the inductive parts of the proof. For the converse direction,
let x ∈ JχK. Again we use lexicalically ordered vectors of natural numbers as a measure, but
this time for the satisfaction of fixpoint formulas in models. The proof of x ∈ EV then is
again by nested induction and coinduction, using the latter vectors as termination measure
for the inductive parts. J

I Lemma 7. The algorithm runs in time O(|V | · t(size(C), size(χ), |C|) · |V |k+1).

Proof. The runtime of the algorithm is dominated by the time it takes to compute EV . We
have to compute a k + 1-nested fixpoint which can be done by fixpoint iteration, that is, by
computing f(Y) for some Y at most |V |k+1 times. A single computation of f(Y) can be
implemented to run in time |V | · t(size(C), size(χ), |C|) since we have to solve the one-step
satisfaction problem at most for all (♥ψ, x) ∈ V , that is, at most |V | times. J

CONCUR 2019

35:10 Game-Based Local Model Checking for the Coalgebraic µ-Calculus

This yields the following bounds in concrete instances:

I Corollary 8. We obtain the following upper time bounds for the model checking problems
of the respective µ-calculi:
1. for the graded µ-calculus: O((|χ| · |C|2 · size(χ) · (|χ| · |C|)k+1);
2. for the probabilistic µ-calculus: O((|χ| · |C|4 · (size(C))2 · (|χ| · |C|)k+1);

Proof. Immediate from Lemma 7 by the observations from Example 3. J

4 Coalgebraic Model Checking in NP ∩ coNP

As a side result, we now show that if the one-step satisfaction problem of a coalgebraic logic
is in P, then the model checking problem of the µ-calculus over this logic is in NP ∩ coNP.
We derive this result independently of our local model checking algorithm, with the help of
the exponentially sized evaluation games for the coalgebraic µ-calculus from Definition 3.5.
in [7], which we briefly recall below; the authors of [7] use a slightly different but equivalent
formulation of the games that uses the Fischer-Ladner closure instead of Cl(χ).

I Definition 9 (Evaluation games, [7]). The evaluation game for χ is a parity game Eχ =
(W,E,α) with set of nodes W = V ∪ ({♥ψ ∈ Cl(χ)} ×P(C)), set of moves E ⊆W ×W and
priority function α : W → N. For nodes (ψ, x) ∈ V such that ψ is not a modal operator, we
put E(ψ, x) = h(ψ, x); for ♥ψ ∈ Cl(χ), we put

E(♥ψ, x) = {(♥ψ,U) | U ⊆ C, ξ(x) ∈ J♥K(U)},

and for U ⊆ C, we put E(♥ψ,U) = {(ψ, y) | y ∈ U}. Nodes (⊥, x), (ψ1 ∨ ψ2, x) and (♥ψ, x)
belong to player Eloise and nodes (>, x), (ψ1 ∧ ψ2, x) and (♥ψ,U) belong to player Abelard;
the ownership of nodes (ηX.ψ, x) and (X,x) is irrelevant since such nodes have exactly one
outgoing move. All nodes (ψ, x) ∈ V such that ψ is not a fixpoint variable and all nodes
(ψ,U) ∈ Cl(χ)× P(C) have priority 0; nodes (X,x) ∈ V have priority α(X,x) = ad(θ(X)).

For modal nodes (♥ψ, x), Eloise has to pick a set U of states in such a way that ξ(x) is
contained in the predicate on T (C) obtained by lifting U with J♥K (that is, ξ(x) ∈ J♥K(U));
player Abelard in turn can challenge, for all y ∈ U , whether ψ is satisfied at y, that is, he
can move from (♥ψ,U) to all nodes (y, ψ) with y ∈ U . As we have V ≤ |χ| · |C| and hence
W ≤ |χ|(|C|+ 2|C|), the sizes of evaluation games are exponential in the number of states of
the input models.

Under the stated assumptions on the one-step satisfaction problem, our algorithm can be
understood as a method to solve these exponential-sized parity games in time pk where p is a
polynomial in the formula size and the model size, by avoiding a full unfolding of the game.

I Lemma 10. We have (χ, x) ∈ EV if and only if Eloise wins the node (χ, x) in Eχ.

Proof. Directly from Lemma 6 and Theorem 3.6 in [7]. J

We now obtain the announced criterion for model checking in NP ∩ coNP:

I Theorem 11. If the one-step satisfaction problem for a coalgebraic logic is in P, then the
model checking problem for the µ-calculus over this logic is in NP ∩ coNP.

Proof sketch. We recall that the coalgebraic µ-calculus is closed under negation so that it
suffices to show containment in NP. A history-free Eloise-strategy turns an exponential-sized
evaluation game into a polynomial-sized graph since it picks, for each modal node, exactly

D. Hausmann and L. Schröder 35:11

one of the exponentially many moves that are available to Eloise. We nondeterministically
guess whether the input formula is satisfied at the input state or not; depending on this guess,
we then guess a history-free winning strategy in the evaluation game for the input formula
or its negation, and verify that it indeed is a winning strategy for the respective game. This
verification can be done in polynomial time since the guessed strategy turns the game into a
graph of polynomial size and since the one-step satisfaction problem (which has to be solved
once for each node in the graph) can be solved in polynomial time by assumption. J

5 Small model checking games

As we have recalled in Definition 9, the one-step satisfaction problem can also be encoded in
terms of the evalution games from [7]; this particular encoding however involves guessing
sets of states and hence leads to games of exponential size. We now introduce the notions of
one-step satisfaction arenas and games, which we use as an alternative game-based means to
decide one-step satisfaction of modal operators; for certain logics, including the monotone
µ-calculus, the graded µ-calculus with grades coded in unary, and the alternating-time
µ-calculus, this enables the construction of polynomial-size parity games for model checking,
which can be fed directly to parity game solvers and profit automatically from advances in
parity game solving.

I Definition 12 (One-step satisfaction arenas). Recall that T is a functor and Λ a set of
modal operators. Let C be a set. A one-step satisfaction arena A♥,t for ♥ ∈ Λ and t ∈ T (C)
consists of a set V♥,t of nodes that is made up of

the initial node (♥, t),
a set I♥,t of inner nodes,
the set C of exit nodes,

and an acyclic set E♥,t ⊆ V♥,t × V♥,t of moves such that E♥,t(x) = ∅ for all exit nodes
x ∈ C. Additionally, the initial and the inner nodes belong to exactly one of the players
Eloise or Abelard.

I Example 13.
1. For T = P, one-step satisfaction arenas have depth one and hence do not have inner

nodes. The initial node (♦, t) belongs to Eloise and she can move to any state y ∈ t;
formally, we put E♦,t(♦, t) = {y | y ∈ t}.

2. For the (serial) monotone µ-calculus, one-step satisfaction arenas have depth two. As
set of inner nodes, we choose I♦,t = t; the initial node (♦, t) belongs to player Eloise
and all nodes from I♦,t belong to player Abelard. The moves are defined by putting
E♦,t(♦, t) = {A | A ∈ t} and E♦,t(A) = {y | y ∈ A}. The one-step satisfaction arenas
thus have |I♦,t| = |t| ∈ O(size(C)) ⊆ 2O(|C|) inner nodes.

3. For graded logic, the one-step satisfaction arena for 〈b〉 and t ∈ B(C) has the set
I〈b〉,t = {1, . . . , |C|+ 1} × {0, . . . , b} × {0, 1} as inner nodes and there is a referee move
from the initial node (〈b〉, t) to (1, 0, 0) ∈ I〈b〉,t. We assume a linear ordering on C and
let vn denote the n-th element in the according sequence of states. Nodes (n, c, 0) belong
to player Eloise and nodes (n, c, 1) to player Abelard. We have moves

E〈b〉,t(n, c, 0) = {(n,min(b+ 1, c+ t(vn)), 1), (n+ 1, c, 0)}
E〈b〉,t(n, c, 1) = {vn, (n+ 1, c, 0)},

where we assume n ≤ |C| in the first clause. Nodes (|C|+ 1, c, 0) have no successors and
they belong to player Abelard if c > b and to player Eloise if c ≤ b. Note how we stop
counting when the counter c reaches b+ 1 by taking min(b+ 1, c+ t(vn)) as new counter.

CONCUR 2019

35:12 Game-Based Local Model Checking for the Coalgebraic µ-Calculus

The one-step satisfaction arena for (〈b〉, t) contains |I〈b〉,t| = 2(|C|+ 1)(b+ 1) ∈ O(|C| · b)
inner nodes. The estimate on |I〈b〉,t| is thus linear in the size of 〈b〉 if grades are coded in
unary, and exponential if grades are coded in binary.

4. For probabilistic logic, we proceed analogously to the graded case; however, the obtained
one-step arenas are of exponential size, even when probabilities are coded in unary. We
define the one-step satisfaction arena for 〈p〉 and t to have the set I〈p〉,t = {1, . . . , |C|+
1}×Pt×{0, 1} as inner nodes, where Pt = {q ∈ Q | q ≤ p,∃U ⊆ C.

∑
u∈U t(u) = q}∪{∗}

(that is, Pt is the set of probabilities q ≤ p that can be encountered when summing up
any combination of probabilities that t assigns to states). There is a referee move from
the initial node (〈p〉, t) to (1, 0, 0) ∈ I〈p〉,t. Again, we assume a linear ordering on C and
let vn denote the n-th element in the according sequence of states. Nodes (n, c, 0) belong
to player Eloise and nodes (n, c, 1) to player Abelard. We have moves

E〈p〉,t(n, c, 0) = {(n, c⊕ t(vn), 1), (n+ 1, c, 0)} E〈p〉,t(n, c, 1) = {vn, (n+ 1, c, 0)},

where we assume n ≤ |C| in the first clause. Here, c ⊕ t(vn) = c + t(vn) if c 6= ∗ and
c+ t(vn) ≤ p and c⊕ t(vn) = ∗ if c = ∗ or c+ t(vn) > p, that is, we stop counting once
a probability greater than p has been reached. Nodes (|C|+ 1, c, 0) have no successors
and they belong to player Abelard if c = ∗ and to player Eloise if c 6= ∗. The one-step
satisfaction arena for (〈p〉, t) contains |I〈p〉,t| = 2(|C|+ 1)|Pt| ∈ O(|C| · |Pt|) inner nodes;
we have |Pt| ≤ 2|C| + 1.

5. For alternating-time logic, let N = {1, . . . , n} be the set of agents. For the one-step satis-
faction arena for ([D], t) with D ⊆ N , t = (k1, . . . , kn, f) ∈ G(C), and f : (

∏
i∈N [ki])→ C,

we put I[D],t = SD. The arena has the initial node ([D], t) that belongs to player Eloise
while all inner nodes sD ∈ SD belong to player Abelard. The moves are defined by

E[D],t([D], t) = {sD | sD ∈ SD} E[D],t(sD) = {f(sD, sN\D) | sN\D ∈ SN\D}.

The one-step satisfaction arena for ([D], t) has |I[D],t| = |SD| ∈ O(size(C)) inner nodes.
6. Also, we can always take the general one-step arena with initial node (♥, t), belonging

to Eloise, set of inner nodes I♥,t = {U ⊆ C | t ∈ J♥K(U)} (having |I♥,t| ≤ 2|C|),
all belonging to Abelard, and with moves E♥,t(♥, t) = {U ⊆ C | t ∈ J♥K(U)} and
E♥,t(U) = {y | y ∈ U}.

In all examples, except the last one, the one-step satisfaction arenas for dual modal operators
are obtained by simply switching the ownership of nodes.

I Definition 14 (One-step games). A one-step game (A♥,t, U) consists of a one-step satis-
faction arena A♥,t for ♥ and t together with a set U ⊆ C of states, encoding a winning
condition; player Eloise wins the game (A♥,t, U) if she has a strategy s such that all plays in
A♥,t that start at (♥, t) and that are played according to s end in exit nodes c ∈ U or in
inner nodes that belong to Abelard. A one-step satisfaction arena A♥,t for ♥ and t is one-step
sound and complete if for all U ⊆ C, we have t ∈ J♥KU if and only if Eloise wins the one-step
game (A♥,t, U).

I Example 15. The one-step satisfaction arenas from Example 13 all are one-step sound
and complete:
1. In the relational case, let t ∈ P(C) and U ⊆ C. We have t ∈ J♦KU if and only if t∩U 6= ∅

which in turn is the case if and only if there is some y ∈ t such that y ∈ U . Since Eloise
can move from (♦, t) to y if and only if y ∈ t, the last statement is true if and only if
Eloise wins the game (A♦,t, U).

D. Hausmann and L. Schröder 35:13

2. For the (serial) mononotone µ-calculus, let t ∈ P(P(C)) and U ⊆ C. We have t ∈ J♦KU
if and only if there is some A ∈ t such that A ⊆ U . The latter is the case if and only if
there is some A ∈ t (so that Eloise can move from (♦, t) to A) such that for all y ∈ A, we
have y ∈ U and hence an according Abelard-move from B to the exit node y. The move
from (♦, t) to A thus constitutes a winning strategy for Eloise.

3. For graded logic, assume input 〈b〉 where b ∈ N and t ∈ B(C) and let U ⊆ C. We have
t ∈ J〈b〉KU if and only if

∑
a∈U t(a) > b. So let

∑
a∈U t(a) > b. The function s defined by

s(n, c, 0) = (n,min(b+ 1, c+ t(vn), 1) if vn ∈ U and s(n, c, 0) = (n+ 1, c, 0) if vn /∈ U is a
strategy that ensures that all plays of the game end at exit nodes y ∈ U or at the inner
node s(|C|+1,

∑
a∈U t(a), 0) which belongs to Abelard. The former is the case since s uses

exactly nodes vn ∈ U to increase the counter so that Abelard can only reach exit nodes
from U . The latter is the case since there is just one play that reaches an ending node
s(|C|+ 1, c, 0) for some c and during this play, s moves in such a way that the counter
sums up the t(a) for all a ∈ U . For the converse direction, let Eloise have a winning
strategy in the game (A〈b〉,t, U). Using this strategy, Eloise only uses states vn ∈ U to
increase the counter; there is just a single final inner node of the shape (|C|+ 1, c, 0) to
which the strategy can lead and this node belongs to Abelard by assumption so that we
have c > b. There is some set A ⊆ U such that if the play that leads to this final node,
the counter sums up all t(a) for a ∈ A. Thus we have we have c = t(A) ≤ t(U) and hence
t(U) > b, as required.

4. For probabilistic logic, the proof is analogous to the proof for graded logic.
5. For alternating-time logic, assume input [D] where D ⊆ {1, . . . , n} and t ∈ G(C) where

t = (k1, . . . , kn, f) and let U ⊆ C. We have t ∈ J[D]KU if and only if there is some
sD ∈ SD such that for all sN\D ∈ SN\D, we have f(sD, sN\D) ∈ U . So assume that
the latter is the case. The move from ([D], t) to sD constitutes a winning strategy
for Eloise since for all Abelard-moves from sD to some exit node f(sD, sN\D), we have
f(sD, sN\D) ∈ U by assumption. For the converse direction, let there be a winning
strategy for Eloise in the game (A[D],t, U) that moves from ([D], t) to some sD such that
for all Abelard-moves from sD to some f(sD, sN\D), we have f(sD, sN\D) ∈ U . Then we
have ∃sD ∈ SD.∀sN\D ∈ SN\D.f(sD, sN\D) ∈ U .

6. The general one-step arenas from Example 13.6 are easily seen to be one-step sound and
complete. However, when using these one-step arenas, the model checking games from
Definition 16 below are essentially just the evaluation games recalled in Definition 9.

In the following, we assume that one-step sound and complete one-step satisfaction arenas
are available for all ♥ and t and that the sets of inner nodes of all these arenas are disjoint.
We continue to define our modular model checking game by plugging the one-step satisfaction
arenas into the modal steps of a standard parity model checking game:

IDefinition 16 (Coalgebraic model checking games). Themodel checking game Gχ = (W,E,α)
for χ is a parity game that is played over the set of nodes

V ′ = V ∪
⋃

♥ψ∈Cl(χ),x∈C

({ψ} × V♥,ξ(x)).

The set of moves E ⊆W ×W is defined by putting E(ψ, x) = h(ψ, x) if (ψ, x) ∈ V and ψ is
not a modal operator; for (♥ψ, x) ∈ V , we put E(♥ψ, x) = {(ψ, (♥, ξ(x)))}, that is, there is a
referee move from such nodes to the initial node of the one-step arena for ♥ and ξ(x), paired
with the formula ψ. For nodes (ψ, v) ∈ {ψ} × V♥,ξ(x) such that v ∈ V♥,ξ(x) is not an exit
node, we put E(ψ, v) = {ψ}×E♥,ξ(x)(v), that is, at such nodes, the moves are inherited from

CONCUR 2019

35:14 Game-Based Local Model Checking for the Coalgebraic µ-Calculus

the arena A♥,ξ(x) and take place only in the second component. Nodes (>, x) and (ψ1∧ψ2, x)
belong to player Abelard, nodes (⊥, x) and (ψ1∨ψ2, x) belong to player Eloise. The ownership
of nodes (ηX.ψ, x), (X,x) and (♥ψ, x) is irrelevant. Nodes (ψ, v) ∈ {ψ} × V♥,ξ(x) such that
v ∈ V♥,ξ(x) is not an exit node are owned by the player that owns v in the arena A♥,ξ(x). All
nodes, including the nodes from the one-step satisfaction arenas, have priority 0, with the
exception of nodes (X,x) ∈ V which have priority α(X,x) = ad(θ(X)).

The game Gχ is a parity game with k priorities and |V |+
∑
♥ψ∈Cl(χ),x∈C |I♥,ξ(x)| nodes.

I Theorem 17. We have x ∈ JχK if and only if Eloise wins the node (χ, x) in Gχ.

Proof. We have that Eloise wins the node (χ, x) in Gχ if and only if Eloise wins the node
(χ, x) in the evaluation game (recalling Definition 9): the only difference between Gχ and
the evaluation game for χ is the modal step. If Eloise wins a node (♥ψ, x) in the evaluation
game, then there is a set U such that ξ(x) ∈ J♥K(U) and Eloise wins all nodes (ψ, y) such
that y ∈ U . It suffices to show that Eloise can win the one-step satisfaction game (A♥,ξ(x), U);
this however is the case since the one-step arena A♥,ξ(x) for ♥ and ξ(x) is one-step complete.
Conversely, let Eloise win a node (♥ψ, x) in Gχ. Then there is some set U ⊆ C of exit nodes
such that Eloise wins all nodes from {ψ} × U as well as the one-step game (A♥,ξ(x), U). By
one-step soundness of the one-step arena A♥,ξ(x), we have ξ(x) ∈ J♥K(U) so that in the
evaluation game, Eloise can move from (♥ψ, x) to (♥ψ,U) and for each Abelard-move from
(♥ψ,U) to (ψ, y) such that y ∈ U , Eloise wins (ψ, y). Lemmas 10 and 6 – or alternatively,
Theorem 3.6 in [7] – finish the proof. J

Using parity games, we can decide the model checking problem in quasi-polynomial time if
the one-step satisfaction arenas are of at most quasi-polynomial size.

I Corollary 18. Let q(size(χ), size(C)) denote the maximal number of inner nodes of the one-
step satisfaction arenas that are used when constructing the model checking game for χ and C.
Model checking C against χ can be done in time O(((|χ| · |C|) · q(size(χ), size(C)))log(k)+6).

Proof. The model checking game Gχ consists of at most |χ| · |C| one-step satisfaction games
that are plugged into one parity game of size |χ| · |C|, resulting in a parity game of size
O((|χ| · |C|) · q(size(χ), size(C))) and with k priorities. Using the methods from [4], this game
can be solved in time O(((|χ| · |C|) · q(size(χ), size(C)))log(k)+6). J

I Corollary 19. We obtain the following quasi-polynomial upper time bounds for the model
checking problems of the respective µ-calculi:
1. for the relational µ-calculus: O((|χ| · |C|)log(k)+6);
2. for the (serial) monotone µ-calculus: O((|χ| · |C| · size(C))log(k)+6);
3. for the graded µ-calculus with grades coded in unary: O((|χ| · |C|2 · size(χ))log(k)+6);
4. for the alternating-time µ-calculus: O((|χ| · |C| · size(C))log(k)+6).

Proof. Immediate from Corollary 18 by the observations from Example 13. J

6 Conclusion

We have presented an algorithm to solve the model checking problem for coalgebraic µ-calculi
in time pk, where p is a polynomial in the input formula size and the input model size and
where k is the alternation depth of the input formula; while the algorithm is correct for all
instances of the coalgebraic µ-calculus, the runtime analysis relies on the assumption that
the one-step satisfaction problem of the base logic is in P. This holds in many instance

D. Hausmann and L. Schröder 35:15

logics, including the graded µ-calculus and the probabilistic µ-calculus, even if grades and
probabilities are coded in binary. We also have shown that under the same assumption on
the one-step satisfaction problem, the model checking problem of a coalgebraic µ-calculus
is in NP ∩ coNP. Our approach relies centrally on a coalgebraic variant of parity games,
whose algorithmics we will develop further in future research. For certain logics, including
the graded µ-calculus with grades coded in unary, the alternating-time µ-calculus and the
monotone µ-calculus, we have shown how to construct model checking games as standard
parity games of polynomial size; this enables the efficient use of standard parity game solvers
in model checking, and also transfers any future progress on solving parity games directly to
model checking for such logics.

References
1 Rajeev Alur, Thomas Henzinger, and Orna Kupferman. Alternating-time temporal logic. J.

ACM, 49:672–713, 2002.
2 Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press, 2008.
3 Florian Bruse, Michael Falk, and Martin Lange. The Fixpoint-Iteration Algorithm for Parity

Games. In Games, Automata, Logics and Formal Verification, GandALF 2014, volume 161 of
EPTCS, pages 116–130, 2014.

4 Cristian Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, and Frank Stephan. Deciding
parity games in quasipolynomial time. In Theory of Computing, STOC 2017, pages 252–263.
ACM, 2017.

5 Brian F. Chellas. Modal Logic. Cambridge University Press, 1980.
6 Corina Cîrstea, Clemens Kupke, and Dirk Pattinson. EXPTIME tableaux for the coalgebraic

µ-calculus. In Computer Science Logic, CSL 2009, volume 5771 of LNCS, pages 179–193.
Springer, 2009.

7 Corina Cîrstea, Clemens Kupke, and Dirk Pattinson. EXPTIME tableaux for the coalgebraic
µ-calculus. Log. Meth. Comput. Sci., 7, 2011.

8 Corina Cîrstea, Alexander Kurz, Dirk Pattinson, Lutz Schröder, and Yde Venema. Modal
logics are coalgebraic. Comput. J., 54:31–41, 2011.

9 Corina Cîrstea, Shunsuke Shimizu, and Ichiro Hasuo. Parity Automata for Quantitative
Linear Time Logics. In Algebra and Coalgebra in Computer Science, CALCO 2017, volume 72
of LIPIcs, pages 7:1–7:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017. URL:
http://www.dagstuhl.de/dagpub/978-3-95977-033-0.

10 Giovanna D’Agostino and Albert Visser. Finality regained: A coalgebraic study of Scott-sets
and multisets. Arch. Math. Logic, 41:267–298, 2002.

11 E. Allen Emerson, Charanjit Jutla, and A. Prasad Sistla. On model checking for the µ-calculus
and its fragments. Theor. Comput. Sci., 258:491–522, 2001. URL: http://dx.nodoi.org/10.
1016/S0304-3975(00)00034-7.

12 Sebastian Enqvist, Fatemeh Seifan, and Yde Venema. Monadic Second-Order Logic and
Bisimulation Invariance for Coalgebras. In Logic in Computer Science, LICS 2015. IEEE,
2015.

13 Alessandro Ferrante, Aniello Murano, and Mimmo Parente. Enriched µ-Calculi Module
Checking. Log. Methods Comput. Sci., 4(3), 2008.

14 Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata, Logics, and Infinite
Games: A Guide to Current Research, volume 2500 of LNCS. Springer, 2002. doi:10.1007/
3-540-36387-4.

15 Helle Hvid Hansen, Clemens Kupke, Johannes Marti, and Yde Venema. Parity Games and
Automata for Game Logic. In Dynamic Logic. New Trends and Applications, DALI 2017,
volume 10669 of LNCS, pages 115–132. Springer, 2018.

CONCUR 2019

http://www.dagstuhl.de/dagpub/978-3-95977-033-0
http://dx.nodoi.org/10.1016/S0304-3975(00)00034-7
http://dx.nodoi.org/10.1016/S0304-3975(00)00034-7
http://dx.doi.org/10.1007/3-540-36387-4
http://dx.doi.org/10.1007/3-540-36387-4

35:16 Game-Based Local Model Checking for the Coalgebraic µ-Calculus

16 Ichiro Hasuo, Shunsuke Shimizu, and Corina Cîrstea. Lattice-theoretic Progress Measures and
Coalgebraic Model Checking. In Principles of Programming Languages, POPL 2016, pages
718–732. ACM, 2016.

17 Daniel Hausmann and Lutz Schröder. Optimal Satisfiability Checking for Arithmetic µ-Calculi.
In Foundations of Software Science and Computation Structures, FOSSACS 2019, volume
11425 of LNCS, pages 277–294. Springer, 2019.

18 Marcin Jurdziński. Small Progress Measures for Solving Parity Games. In Horst Reichel and
Sophie Tison, editors, Symposium on Theoretical Aspects of Computer Science, STACS 2000,
pages 290–301, Berlin, Heidelberg, 2000. Springer Berlin Heidelberg.

19 Dexter Kozen. Results on the propositional µ-calculus. Theor. Comput. Sci., 27:333–354, 1983.
20 Orna Kupferman, Ulrike Sattler, and Moshe Vardi. The Complexity of the Graded µ-Calculus.

In Automated Deduction, CADE 02, volume 2392 of LNCS, pages 423–437. Springer, 2002.
21 Wanwei Liu, Lei Song, Ji Wang, and Lijun Zhang. A Simple Probabilistic Extension of Modal

Mu-calculus. In International Joint Conference on Artificial Intelligence, IJCAI 2015, pages
882–888. AAAI Press, 2015.

22 Damian Niwinski. On Fixed-Point Clones (Extended Abstract). In Automata, Languages and
Programming, ICALP 1986, volume 226 of LNCS, pages 464–473. Springer, 1986.

23 Rohit Parikh. The logic of games and its applications. Ann. Discr. Math., 24:111–140, 1985.
24 Marc Pauly. A Modal Logic for Coalitional Power in Games. J. Logic Comput., 12:149–166,

2002.
25 David Peleg. Concurrent dynamic logic. J. ACM, 34:450–479, 1987. URL: http://nodoi.acm.

org/10.1145/23005.23008.
26 Jan Rutten. Universal Coalgebra: A Theory of Systems. Theor. Comput. Sci., 249:3–80, 2000.
27 Philippe Schnoebelen. The Complexity of Temporal Logic Model Checking. In Advances in

Modal Logic, AiML 2002, pages 393–436. College Publications, 2003.
28 Lutz Schröder and Dirk Pattinson. Strong completeness of coalgebraic modal logics. In

Theoretical Aspects of Computer Science, STACS 09, pages 673–684. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik; Dagstuhl, Germany, 2009.

29 Lutz Schröder and Yde Venema. Completeness of Flat Coalgebraic Fixpoint Logics. ACM
Trans. Comput. Log., 19(1):4:1–4:34, 2018.

30 Colin Stirling and David Walker. Local model checking in the modal mu-calculus. Theoretical
Computer Science, 89(1):161–177, 1991.

http://nodoi.acm.org/10.1145/23005.23008
http://nodoi.acm.org/10.1145/23005.23008

Graded Monads and Graded Logics
for the Linear Time – Branching Time Spectrum
Ulrich Dorsch
Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

Stefan Milius
Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

Lutz Schröder
Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

Abstract
State-based models of concurrent systems are traditionally considered under a variety of notions
of process equivalence. In the case of labelled transition systems, these equivalences range from
trace equivalence to (strong) bisimilarity, and are organized in what is known as the linear time
– branching time spectrum. A combination of universal coalgebra and graded monads provides
a generic framework in which the semantics of concurrency can be parametrized both over the
branching type of the underlying transition systems and over the granularity of process equivalence.
We show in the present paper that this framework of graded semantics does subsume the most
important equivalences from the linear time – branching time spectrum. An important feature of
graded semantics is that it allows for the principled extraction of characteristic modal logics. We
have established invariance of these graded logics under the given graded semantics in earlier work; in
the present paper, we extend the logical framework with an explicit propositional layer and provide
a generic expressiveness criterion that generalizes the classical Hennessy-Milner theorem to coarser
notions of process equivalence. We extract graded logics for a range of graded semantics on labelled
transition systems and probabilistic systems, and give exemplary proofs of their expressiveness based
on our generic criterion.

2012 ACM Subject Classification Theory of computation → Concurrency; Theory of computation
→ Modal and temporal logics

Keywords and phrases Linear Time, Branching Time, Monads, System Equivalences, Modal Logics,
Expressiveness

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2019.36

Related Version Full version with all proof details available at https://arxiv.org/abs/1812.01317.

Funding This work forms part of the DFG-funded project COAX (MI 717/5-2 and SCHR 1118/12-2).

1 Introduction

State-based models of concurrent systems are standardly considered under a wide range of
system equivalences, typically located between two extremes respectively representing linear
time and branching time views of system evolution. Over labelled transition systems, one
specifically has the well-known linear time – branching time spectrum of system equivalences
between trace equivalence and bisimilarity [42]. Similarly, e.g. probabilistic automata have
been equipped with various semantics including strong bisimilarity [29], probabilistic (convex)
bisimilarity [38], and distribution bisimilarity (e.g. [11,16]). New equivalences keep appearing
in the literature, e.g. for non-deterministic probabilistic systems [5, 43].

This motivates the search for unifying principles that allow for a generic treatment of
process equivalences of varying degrees of granularity and for systems of different branching
types (non-deterministic, probabilistic etc.). As regards the variation of the branching type,

© Ulrich Dorsch, Stefan Milius, and Lutz Schröder;
licensed under Creative Commons License CC-BY

30th International Conference on Concurrency Theory (CONCUR 2019).
Editors: Wan Fokkink and Rob van Glabbeek; Article No. 36; pp. 36:1–36:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.CONCUR.2019.36
https://arxiv.org/abs/1812.01317
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

36:2 Graded Monads and Graded Logics for the Linear Time – Branching Time Spectrum

universal coalgebra [35] has emerged as a widely-used uniform framework for state-based
systems covering a broad range of branching types including besides non-deterministic and
probabilistic, or more generally weighted, branching also, e.g., alternating, neighbourhood-
based, or game-based systems. It is based on modelling the system type as an endofunctor
on some base category, often the category of sets.

Unified treatments of system equivalences, on the other hand, are so far less well-
established, and their applicability is often more restricted. Existing approaches include
coalgebraic trace semantics in Kleisli [18] and Eilenberg-Moore categories [5, 6, 23, 26, 39, 43],
respectively. Both semantics are based on decomposing the coalgebraic type functor into
a monad, the branching type, and a functor, the transition type (in different orders), and
require suitable distributive laws between these parts; correspondingly, they grow naturally
out of the functor but on the other hand apply only to functors that admit the respective
form of decomposition. In the present work, we build on a more general approach introduced
by Pattinson and two of us, based on mapping the coalgebraic type functor into a graded
monad [31]. Graded monads correspond to algebraic theories where operations come with an
explicit notion of depth, and allow for a stepwise evaluation of process semantics. Maybe most
notably, graded monads systematically support a reasonable notion of graded logic where
modalities are interpreted as graded algebras for the given graded monad. This approach
applies to all cases covered in the mentioned previous frameworks, and additional cases that
do not fit any of the earlier setups. We emphasize that graded monads are geared towards
inductively defined equivalences such as finite trace semantics and finite-depth bisimilarity;
we leave a similarly general treatment of infinite-depth equivalences such as infinite trace
equivalence and unbounded-depth bisimilarity to future work. To avoid excessive verbosity,
we restrict to models with finite branching throughout. Under finite branching, finite-depth
equivalences typically coincide with their infinite-depth counterparts, e.g. states of finitely
branching labelled transition systems are bisimilar iff they are finite-depth bisimilar, and
infinite-trace equivalent iff they are finite-trace equivalent.

Our goal in the present work is to illustrate the level of generality achievable by means of
graded monads in the dimension of system equivalences. We thus pick a fixed coalgebraic
type, that of labelled transition systems, and elaborate how a number of equivalences from
the linear time – branching time spectrum are cast as graded monads. In the process, we
demonstrate how to extract logical characterizations of the respective equivalences from most
of the given graded monads. For the time being, none of the logics we find are sensationally
new, and in fact van Glabbeek already provides logical characterizations in his exposition
of the linear time – branching time spectrum [42]; an overview of characteristic logics for
non-deterministic and probabilistic equivalences is given by Bernardo and Botta [2]. The
emphasis in the examples is mainly on showing how the respective logics are developed
uniformly from general principles.

Using these examples as a backdrop, we develop the theory of graded monads and graded
logics further. In particular,

we give a more economical characterization of depth-1 graded monads involving only two
functors (rather than an infinite sequence of functors);
we extend the logical framework by a treatment of propositional operators – previously
regarded as integrated into the modalities – as first class citizens;
we prove, as our main technical result, a generic expressiveness criterion for graded logics
guaranteeing that inequivalent states are separated by a trace formula.

Our expressiveness criterion subsumes, at the branching-time end of the spectrum, the
classical Hennessy-Milner theorem [19] and its coalgebraic generalization [33,36] as well as
expressiveness of probabilistic modal logic with only conjunction [12]; we show that it also

U. Dorsch, S. Milius, and L. Schröder 36:3

covers expressiveness of the respective graded logics for more coarse-grained equivalences
along the linear time – branching time spectrum. To illustrate generality also in the branching
type, we moreover provide an example in a probabilistic setting, specifically we apply our
expressiveness criterion to show expressiveness of a quantitative modal logic for probabilistic
trace equivalence.

Related Work. Fahrenberg and Legay [17] characterize equivalences on the linear time –
branching time spectrum by suitable classes of modal transition systems. We have already
mentioned previous work on coalgebraic trace semantics in Kleisli and Eilenberg-Moore
categories [5,6,18,23,26,39,43]. A common feature of these approaches is that, more precisely
speaking, they model language semantics rather than trace semantics – i.e. they work in
settings with explicit successful termination, and consider only successfully terminating
traces. When we say that graded monads apply to all scenarios covered by these approaches,
we mean more specifically that the respective language semantics are obtained by a further
canonical quotienting of our trace semantics [31]. Having said that graded monads are
strictly more general than Kleisli and Eilenberg-Moore style trace semantics, we hasten to
add that the more specific setups have their own specific benefits including final coalgebra
characterizations and, in the Eilenberg-Moore setting, generic determinization procedures. A
further important piece of related work is Klin and Rot’s method of defining trace semantics
via the choice of a particular flavour of trace logic [28]. In a sense, this approach is opposite
to ours: A trace logic is posited, and then two states are declared equivalent if they satisfy
the same trace formulae. In our approach via graded monads, we instead pursue the ambition
of first fixing a semantic notion of equivalence, and then designing a logic that characterizes
this equivalence. Like Klin and Rot, we view trace equivalence as an inductive notion, and
in particular limit attention to finite traces; coalgebraic approaches to infinite traces exist,
and mostly work within the Kleisli-style setup [7–10,20,25,41]. Jacobs, Levy and Rot [22]
use corecursive algebras to provide a unifying categorical view on the above-mentioned
approaches to traces via Kleisli- and Eilenberg-Moore categories and trace logics, respectively.
This framework does not appear to subsume the approach via graded monads, and like for
the previous approaches we are not aware that it covers semantics from the linear time –
branching time spectrum other than the end points (bisimilarity and trace equivalence).

2 Preliminaries: Coalgebra

We recall basic definitions and results in (universal) coalgebra [35], a framework for the unified
treatment of a wide range of reactive systems. We write 1 = {?} for a fixed one-element
set, and ! : X → 1 for the unique map from a set X into 1. We write f · g for the composite
of maps g : X → Y , f : Y → Z, and 〈f, g〉 : X → Y × Z for the pair map x 7→ (f(x), g(x))
formed from maps f : X → Y , g : X → Z.

Coalgebra encapsulates the branching type of a given species of systems as a functor, for
purposes of the present paper on the category of sets. Such a functor G : Set→ Set assigns
to each set X a set GX, whose elements we think of as structured collections over X, and to
each map f : X → Y a map Gf : GX → GY , preserving identities and composition. E.g. the
(covariant) powerset functor P assigns to each set X the powerset PX of X, and to each
map f : X → Y the map Pf : PX → PY that takes direct images. (We mostly omit the
description of the action of functors on maps in the sequel.) Systems with branching type
described by G are then abstracted as G-coalgebras, i.e. pairs (X, γ) consisting of a set X
of states and a map γ : X → GX, the transition map, which assigns to each state x ∈ X a
structured collection γ(x) of successors. For instance, a P-coalgebra assigns to each state a
set of successors, and thus is the same as a transition system.

CONCUR 2019

36:4 Graded Monads and Graded Logics for the Linear Time – Branching Time Spectrum

I Example 2.1.
1. Fix a set A of actions. The functor A × (−) assigns to each set X the set A × X;

composing this functor with the powerset functor, we obtain the functor G = P(A× (−))
whose coalgebras are precisely labelled transition systems (LTS): A G-coalgebra assigns to
each state x a set of pairs (σ, y), indicating that y is a successor of x under the action σ.

2. The (finite) distribution functor D maps a set X to the set of finitely supported discrete
probability distributions on X. These can be represented as probability mass functions
µ : X → [0, 1], with

∑
x∈X µ(x) = 1 and with the support {x ∈ X | µ(x) > 0} being finite.

Coalgebras for D are precisely Markov chains. Composing with A× (−) as above, we
obtain the functor D(A× (−)), whose coalgebras are generative probabilistic transition
systems, i.e. assign to each state a distribution over pairs consisting of an action and a
successor state.

As indicated in the introduction, we restrict attention to finitary functors G, in which every
element t ∈ GX is represented using only finitely many elements of X; formally, each set GX
is the union of all sets GiY [GY] where Y ranges over finite subsets of X and iY denotes the
injection iY : Y ↪→ X. Concretely, this means that we restrict the set A of actions to be
finite, and work with the finite powerset functor Pω (which maps a set X to the set of its
finite subsets) in lieu of P. (D as defined above is already finitary.)

Coalgebra comes with a natural notion of behavioural equivalence of states. A morphism
f : (X, γ)→ (Y, δ) of G-coalgebras is a map f : X → Y that commutes with the transition
maps, i.e. δ · f = Gf · γ. Such a morphism is seen as preserving the behaviour of states (that
is, behaviour is defined as being whatever is preserved under morphisms), and consequently
states x ∈ X, z ∈ Z in coalgebras (X, γ), (Z, ζ) are behaviourally equivalent if there exist
coalgebra morphisms f : (X, γ) → (Y, δ), g : (Z, ζ) → (Y, δ) such that f(x) = g(z). For
instance, states in LTSs are behaviourally equivalent iff they are bisimilar in the standard
sense, and similarly, behavioural equivalence on generative probabilistic transition systems
coincides with the standard notion of probabilistic bisimilarity [27]. We have an alternative
notion of finite-depth behavioural equivalence: Given a G-coalgebra (X, γ), we define a
series of maps γn : X → Gn1 inductively by taking γ0 to be the unique map X → 1, and
γn+1 = Gγn · γ. (These are the first ω steps of the canonical cone from X into the final
sequence of G [1].) Then states x, y in coalgebras (X, γ), (Z, ζ) are finite-depth behaviourally
equivalent if γn(x) = ζn(y) for all n; in the case where G is finitary, finite-depth behavioural
equivalence coincides with behavioural equivalence [44].

3 Graded Monads and Graded Theories

We proceed to recall background on system semantics via graded monads introduced in our
previous work [31]. We formulate some of our results over general base categories C, using
basic notions from category theory [30, 34]; for the understanding of the examples, it will
suffice to think of C = Set. Graded monads were originally introduced by Smirnov [40]
(with grades in a commutative monoid, which we instantiate to the natural numbers):

I Definition 3.1 (Graded Monads). A graded monad M on a category C consists of a family
of functors (Mn : C → C)n<ω, a natural transformation η : Id → M0 (the unit) and a
family of natural transformations µnk : MnMk → Mn+k for n, k < ω, (the multiplication),
satisfying the unit laws, µ0n · ηMn = idMn = µn0 ·Mnη, for all n < ω, and the associative
law µn,k+m ·Mnµ

km = µn+k,m · µnkMm for all k, n,m < ω.

U. Dorsch, S. Milius, and L. Schröder 36:5

Note that it follows that (M0, η, µ
00) is a (plain) monad. For C = Set, the standard equivalent

presentation of monads as algebraic theories carries over to graded monads. Whereas for
a monad T , the set TX consists of terms over X modulo equations of the corresponding
algebraic theory, for a graded monad (Mn)n<ω, MnX consists of terms of uniform depth n
modulo equations:

I Definition 3.2 (Graded Theories [31]). A graded theory (Σ, E, d) consists of an algebraic
theory, i.e. a (possibly class-sized and infinitary) algebraic signature Σ and a class E of
equations, and an assignment d of a depth d(f) < ω to every operation symbol f ∈ Σ. This
induces a notion of a term having uniform depth n: all variables have uniform depth 0, and
f(t1, . . . , tn) with d(f) = k has uniform depth n + k if all ti have uniform depth n. (In
particular, a constant c has uniform depth n for all n ≥ d(c)). We require that all equations
t = s in E have uniform depth, i.e. that both t and s have uniform depth n for some n.
Moreover, we require that for every set X and every k < ω, the class of terms of uniform
depth k over variables from X modulo provable equality is small (i.e. in bijection with a set).

Graded theories and graded monads on Set are essentially equivalent concepts [31,40]. In
particular, a graded theory (Σ, E, d) induces a graded monad M by taking MnX to be the
set of Σ-terms over X of uniform depth n, modulo equality derivable under E.

I Example 3.3. We recall some examples of graded monads and theories [31].
1. For every endofunctor F on C, the n-fold composition Mn = Fn yields a graded monad

with unit η = idId and µnk = idFn+k .
2. As indicated in the introduction, distributive laws yield graded monads: Suppose that we

are given a monad (T, η, µ), an endofunctor F on C and a distributive law of F over T (a
so-called Kleisli law), i.e. a natural transformation λ : FT → TF such that λ · Fη = ηF

and λ · Fµ = µF · Tλ · λT . Define natural transformations λn : FnT → TFn inductively
by λ0 = idT and λn+1 = λnF · Fnλ. Then we obtain a graded monad with Mn = TFn,
unit η, and multiplication µnk = µFn+1 · TλnF k. The situation is similar for distributive
laws of T over F (so-called Eilenberg-Moore laws).

3. As a special case of 2., for every monad (T, η, µ) on Set and every set A, we obtain a
graded monad with MnX = T (An ×X). Of particular interest to us will be the case
where T = Pω, which is generated by the algebraic theory of join semilattices (with
bottom). The arising graded monad Mn = Pω(An ×X), which is associated with trace
equivalence, is generated by the graded theory consisting, at depth 0, of the operations
and equations of join semilattices, and additionally a unary operation of depth 1 for each
σ ∈ A, subject to (depth-1) equations expressing that these unary operations distribute
over joins.

Depth-1 Graded Monads and Theories where operations and equations have depth at
most 1 are a particularly convenient case for purposes of building algebras of graded monads;
in the following, we elaborate on this condition.

I Definition 3.4 (Depth-1 Graded Theory [31]). A graded theory is called depth-1 if all its
operations and equations have depth at most 1. A graded monad on Set is depth-1 if it can
be generated by a depth-1 graded theory.

I Proposition 3.5 (Depth-1 Graded Monads [31]). A graded monad ((Mn), η, (µnk)) on Set
is depth-1 iff the diagram below is objectwise a coequalizer diagram in SetM0 for all n < ω:

M1M0Mn

M1µ
0n

//

µ10Mn

//M1Mn
µ1n

//M1+n . (1)

CONCUR 2019

36:6 Graded Monads and Graded Logics for the Linear Time – Branching Time Spectrum

I Example 3.6. All graded monads in Example 3.3 are depth 1: for 1., this is easy to see,
for 3., it follows from the presentation as a graded theory, and for 2., see [15].

One may use the equivalent property of Proposition 3.5 to define depth-1 graded monads over
arbitrary base categories [31]. We show next that depth-1 graded monads may be specified
by giving only M0, M1, the unit η, and µnk for n+ k ≤ 1.

I Theorem 3.7. Depth-1 graded monads are in bijective correspondence with 6-tuples
(M0,M1, η, µ

00, µ10, µ01) such that the given data satisfy all applicable instances of the graded
monad laws.

Semantics via Graded Monads. We next recall how graded monads define graded semantics:

I Definition 3.8 (Graded semantics [31]). Given a set functor G, a graded semantics for
G-coalgebras consists of a graded monad ((Mn), η, (µnk)) and a natural transformation
α : G→M1. The α-pretrace sequence (γ(n) : X →MnX)n<ω for a G-coalgebra γ : X → GX

is defined by

γ(0) = (X ηX−−→M0X) and γ(n+1) = (X αX ·γ−−−→M1X
M1γ

(n)

−−−−−→M1MnX
µ1n

X−−→Mn+1X).

The α-trace sequence Tαγ is the sequence (Mn! · γ(n) : X →Mn1)n<ω.
In Set, two states x ∈ X, y ∈ Y of coalgebras γ : X → GX and δ : Y → GY are α-trace

(or graded) equivalent if Mn! · γ(n)(x) = Mn! · δ(n)(y) for all n < ω.

Intuitively,MnX consists of all length-n pretraces, i.e. traces paired with a poststate, andMn1
consists of all length-n traces, obtained by erasing the poststate. Thus, a graded semantics
extracts length-1 pretraces from successor structures. In the following two examples we have
M1 = G; however, in general M1 and G can differ (Section 4).

I Example 3.9. Recall from Section 2 that a G-coalgebra for the functor G = Pω(A×−)
is just a finitely branching LTS. We recall two graded semantics that model the extreme
ends of the linear time – branching time spectrum [31]; more examples will be given in the
next section

1. Trace equivalence. For x, y ∈ X and w ∈ A∗, we write x w−→ y if y can be reached from
x on a path whose labels yield the word w, and T (x) = {w ∈ A∗ | ∃y ∈ X. x w−→ y}
denotes the set of traces of x ∈ X. States x, y are trace equivalent if T (x) = T (y). To
capture trace semantics of labelled transition systems we consider the graded monad with
MnX = P(An ×X) (see Example 3.3.3). The natural transformation α is the identity.
For a G-coalgebra (X, γ) and x ∈ X we have that γ(n)(x) is the set of pairs (w, y) with
w ∈ An and x

w−→ y, i.e. pairs of length-n traces and their corresponding poststate.
Consequently, the n-th component Mn! · γ(n) of the α-trace sequence maps x to the set
of its length-n traces. Thus, α-trace equivalence is standard trace equivalence [42].
Note that the equations presenting the graded monad Mn in Example 3.3.3 bear a
striking resemblance to the ones given by van Glabbeek to axiomatize trace equivalence
of processes, with the difference that in his axiomatization actions do not distribute over
the empty join. In fact, a.0 = 0 is clearly not valid for processes under trace equivalence.
In the graded setting, this equation just expresses the fact that a trace which ends in a
deadlock after n steps cannot be extended to a trace of length n+ 1.

2. Bisimilarity. By the discussion of the final sequence of a functor G (Section 2), the
graded monad with MnX = GnX (Example 3.3.1), with α being the identity again,
captures finite-depth behavioural equivalence, and hence behavioural equivalence when G
is finitary. In particular, on finitely branching LTS, α-trace equivalence is bisimilarity
in this case.

U. Dorsch, S. Milius, and L. Schröder 36:7

4 A Spectrum of Graded Monads

We present graded monads for a range of equivalences on the linear time – branching time
spectrum as well as probabilistic trace equivalence for generative probabilistic systems (GPS),
giving in each case a graded theory and a description of the arising graded monads. Some
of our equations bear some similarity to van Glabbeek’s axioms for equality of process
terms. There are also important differences, however. In particular, some of van Glabbeek’s
axioms are implications, while ours are purely equational; moreover, van Glabbeek’s axioms
sometimes nest actions, while we employ only depth-1 equations (which precludes nesting of
actions) in order to enable the extraction of characteristic logics later. All graded theories
we introduce contain the theory of join semilattices, or in the case of GPS convex algebras,
whose operations are assigned depth 0; we mention only the additional operations needed.
We use terminology introduced in Example 3.9.

Completed Trace Semantics refines trace semantics by distinguishing whether traces can
end in a deadlock. We define a depth-1 graded theory by extending the graded theory for trace
semantics (Example 3.3) with a constant depth-1 operation ? denoting deadlock. The induced
graded monad has M0X = Pω(X), M1 = Pω(A×X + 1) (and MnX = Pω(An ×X +A<n)
where A<n denotes the set of words over A of length less than n). The natural transformation
αX : Pω(A×X)→M1X is given by α(∅) = {?} and α(S) = S ⊆ A×X+1 for ∅ 6= S ⊆ A×X.

Readiness and Failures Semantics refine completed trace semantics by distinguishing which
actions are available (readiness) or unavailable (failures) after executing a trace. Formally,
given an LTS, seen as a coalgebra γ : X → Pω(A×X), we write I(x) = Pωπ1 ·γ(x) = π1[γ(x)]
(π1 being the first projection) for the set of actions available at x, the ready set of x. A ready
pair of a state x is a pair (w,A) ∈ A∗ × Pω(A) such that there exists z with x

w→ z and
A = I(z); a failure pair is defined in the same way except that A ∩ I(z) = ∅. Two states are
readiness (failures) equivalent if they have the same ready (failure) pairs.

We define a depth-1 graded theory by extending the graded theory for trace semantics
(Example 3.3) with constant depth-1 operations A for ready (failure) sets A ⊆ A. In case of
failures we add a monotonicity condition A + A ∪ B = A ∪ B on the constant operations
for the failure sets. The resulting graded monads both have M0X = PωX, and moreover
M1X = Pω(A×X+PωA) for readiness andM1X = P↓ω(A×X+PωA) for failures, where P↓ω
is down-closed finite powerset, w.r.t. the discrete order on A×X and set inclusion on PωA.
The natural transformation αX : Pω(A×X)→M1X is defined by αX(S) = S ∪ {π1[S]} for
readiness and αX(S) = S ∪ {A ⊆ A | A ∩ π1[S] = ∅} for failures semantics.

Ready Trace and Failure Trace Semantics refine readiness and failures semantics, re-
spectively, by distinguishing which actions are available (ready trace) or unavailable (fail-
ure trace) at each step of the trace. Formally, a ready trace of a state x is a sequence
A0a1A1 . . . anAn ∈ (PωA×A)∗×PωA such that there exist transitions x = x0

a1→ x1 . . .
an→ xn

where each xi has ready set I(xi) = Ai. A failure trace has the same shape but we require
that each Ai is a failure set of xi, i.e. I(xi)∩Ai = ∅. States are ready (failure) trace equivalent
if they have the same ready (failure) traces.

For ready traces, we define a depth-1 graded theory with depth-1 operations 〈A, σ〉
for σ ∈ A, A ⊆ A and a depth-1 constant ?, denoting deadlock, and equations
〈A, σ〉(

∑
j∈J xj) =

∑
j∈J〈A, σ〉(xj). The resulting graded monad is simply the graded

monad capturing completed trace semantics for labelled transition systems where the set

CONCUR 2019

36:8 Graded Monads and Graded Logics for the Linear Time – Branching Time Spectrum

of actions is changed from A to PωA × A. For failure traces, we additionally impose the
equation 〈A, σ〉(x) + 〈A∪B, σ〉(x) = 〈A∪B, σ〉(x), which in the set-based description of the
graded monad corresponds to downward closure of failure sets.

The resulting graded monads both have M0X = PωX; for ready traces, M1X =
Pω((PωA×A)×X + 1) and for failure traces, M1X = P↓ω((PωA×A)×X + 1), where P↓ω
is down-closed finite powerset, w.r.t. the order imposed by the above equation.

For ready trace semantics we define the natural transformation αX : Pω(A×X)→M1X

by αX(∅) = {?} and αX(S) = {((π1[S], σ), x) | (σ, x) ∈ S}) for S 6= ∅. For failure traces we
define αX(∅) = {?} and α(S) = {((A, σ), x) | (σ, x) ∈ S,A ∩ π1[S] = ∅} for S 6= ∅; note that
in the latter case, α(S) is closed under decreasing failure sets.

Simulation Equivalence declares two states to be equivalent if they simulate each other
in the standard sense. We define a depth-1 graded theory with the same signature as for
trace equivalence but instead of join preservation require only that each σ is monotone, i.e.
σ(x + y) + σ(x) = σ(x + y). The arising graded monad Mn is equivalently described as
follows. We define the sets MnX inductively, along with an ordering on MnX. We take
M0X = PωX, ordered by set inclusion. We then order the elements of A ×MnX by the
product ordering of the discrete order on A and the given ordering on MnX, and take
Mn+1X to be the set of downclosed subsets of A×MnX, denoted P↓ω(A×MnX), ordered
by set inclusion. The natural transformation αX : P(A×X)→ P↓ω(A×Pω(X)) is defined
by αX(S) = ↓{(s, {x}) | (s, x) ∈ S}, where ↓ denotes downclosure.

Ready Simulation Equivalence refines simulation equivalence by requiring additionally
that related states have the same ready set. States x and y are ready similar if they are
related by some ready simulation, and ready simulation equivalent if there are mutually
ready similar. The depth-1 graded theory combines the signature for ready traces with the
equations for simulation, i.e. only requires the operations 〈A, σ〉 to be monotone.

Probabilistic Trace Equivalence is the standard trace semantics for generative probabilistic
systems (GPS), equivalently, coalgebras for the functor D(A× Id) where D is the monad of
finitary distributions (Example 2.1). Probabilistic trace equivalence is captured by the graded
monad MnX = D(An×X), as described in Example 3.3.2. The corresponding graded theory
arises by replacing the join-semilattice structure featuring in the above graded theory for trace
equivalence by the one of convex algebras, i.e. the algebras for the monad D. Recall [13, 14]
that a convex algebra is a set X equipped with finite convex sum operations: For every
p ∈ [0, 1] there is a binary operation �p on X, and these operations satisfy the equations
x�p x = x, x�p y = y�1−p x, x�0 y = y, x�p (y�q z) = (x�p/r y)�r z, where p, q ∈ [0, 1],
x, y, z ∈ X, and r = (p+(1−p)q) > 0 (i.e. p+q > 0) in the last equation [21]. Again, we have
depth-1 operations σ for action σ ∈ A, now satisfying the equations σ(x�p y) = σ(x)�pσ(y).

5 Graded Logics

Our next goal is to extract characteristic logics from graded monads in a systematic way,
with characterizing meaning that states are logically indistinguishable iff they are equivalent
under the semantics at hand. We will refer to these logics as graded logics; the implication
from graded equivalence to logical indistinguishability is called invariance, and the converse
implication expressiveness. E.g. standard modal logic with the full set of Boolean connectives
is invariant under bisimilarity, and the corresponding expressiveness result is known as the
Hennessy-Milner theorem. This result has been lifted to coalgebraic generality early on,

U. Dorsch, S. Milius, and L. Schröder 36:9

giving rise to the coalgebraic Hennessy-Milner theorem [33, 36]. In previous work [31], we
have related graded semantics to modal logics extracted from the graded monad in the
envisaged fashion. These logics are invariant by construction; the main new result we present
here is a generic expressiveness criterion, to be discussed in Section 6. The key ingredient
in this criterion are canonical graded algebras, which we newly introduce here, providing a
recursive-evaluation style reformulation of the semantics of graded logics.

A further key issue in characteristic modal logics is the choice of propositional operators;
e.g. notice that when ♦σ denotes the usual Hennessy-Milner style diamond operator for an
action σ, the formula ♦σ>∧ ♦τ> is invariant under trace equivalence (i.e. the corresponding
property is closed under under trace equivalence) but the formula ♦σ(♦σ> ∧ ♦τ>), built
from the former by simply prefixing with ♦σ, is not, the problem being precisely the use of
conjunction. While in our original setup, propositional operators were kept implicit, that is,
incorporated into the set of modalities, we provide an explicit treatment of propositional
operators in the present paper. Besides adding transparency to the syntax and semantics,
having first-class propositional operators will be a prerequisite for the formulation of the
expressiveness theorem.

Coalgebraic Modal Logic. To provide context, we briefly recall the setup of coalgebraic
modal logic [33, 36]. Let 2 denote the set {⊥,>} of Boolean truth values; we think of the
set 2X of maps X → 2 as the set of predicates on X. Coalgebraic logic in general abstracts
systems as coalgebras for a functor G, like we do here; fixes a set Λ of modalities (unary for
the sake of readability); and then interprets a modality L ∈ Λ by the choice of a predicate
lifting, i.e. a natural transformation

JLKX : 2X → 2GX .

By the Yoneda lemma, such natural transformations are in bijective correspondence with
maps G2→ 2 [36], which we shall also denote as JLK. In the latter formulation, the recursive
clause defining the interpretation JLφK : X → 2, for a modal formula φ, as a state predicate
in a G-coalgebra γ : X → GX is then

JLφK = (X γ−→ GX
GJφK−−−→ G2 JLK−−→ 2). (2)

E.g. taking G = Pω(A×−) (for labelled transition systems), we obtain the standard semantics
of the Hennessy-Milner diamond modality ♦σ for σ ∈ A via the predicate lifting

J♦σKX(f) = {B ∈ Pω(A×X) | ∃x. (σ, x) ∈ B ∧ f(x) = >} (for f : X → 2).

It is easy to see that coalgebraic modal logic, which combines coalgebraic modalities with
the full set of Boolean connectives, is invariant under finite-depth behavioural equival-
ence (Section 2). Generalizing the classical Hennessy-Milner theorem [19], the coalgebraic
Hennessy-Milner theorem [33,36] shows that conversely, coalgebraic modal logic characterizes
behavioural equivalence, i.e. logical indistinguishability implies behavioural equivalence,
provided that G is finitary (implying coincidence of behavioural equivalence and finite-depth
behavioural equivalence) and Λ is separating, i.e. for every finite set X, the set

Λ(2X) = {JLK(f) | f ∈ 2X}

of maps GX → 2 is jointly injective.
We proceed to introduce the syntax and semantics of graded logics.

CONCUR 2019

36:10 Graded Monads and Graded Logics for the Linear Time – Branching Time Spectrum

Syntax. We parametrize the syntax of graded logics over
a set Θ of truth constants,
a set O of propositional operators with assigned finite arities, and
a set Λ of modalities with assigned arities.

For readability, we will restrict the technical exposition to unary modalities; the treatment
of higher arities requires no more than additional indexing (and we will use 0-ary modalities
in the examples). E.g. standard Hennessy-Milner logic is given by Λ = {♦σ | σ ∈ A} and O
containing all Boolean connectives. Other logics will be determined by additional or different
modalities, and often by fewer propositional operators. Formulae of the logic are restricted
to have uniform depth, where propositional operators have depth 0 and modalities have
depth 1; a somewhat particular feature is that truth constants can have top-level occurrences
only in depth-0 formulae. That is, formulae φ, φ1, . . . of depth 0 are given by the grammar

φ ::= p(φ1, . . . , φk) | c (p ∈ O k-ary, c ∈ Θ),

and formulae φ of depth n+ 1 by

φ ::= p(φ1, . . . , φk) | Lψ (p ∈ O k-ary, L ∈ Λ)

where φ1, . . . , φn range over formulae of depth n+ 1 and ψ over formulae of depth n.

Semantics. The semantics of graded logics is parametrized over the choice of a functor G, a
depth-1 graded monad M = ((Mn)n<ω, η, (µnk)n,k<ω), and a graded semantics α : G→M1,
which we fix for the remainder of the paper. It was originally given by translating formulae
into graded algebras and then defining formula evaluation by the universal property of (Mn1)
as a free graded algebra [31]; here, we reformulate the semantics in a more standard style by
recursive clauses, using canonical graded algebras. In general, the notion of graded algebra is
defined as follows [31].

I Definition 5.1 (Graded algebras). Let n < ω. A (graded) Mn-algebra A =
((Ak)k≤n, (amk)m+k≤n) consists of carrier sets Ak and structure maps

amk : MmAk → Am+k

satisfying the laws

Ak M0Ak MmMrAk MmAr+k

Ak Mm+rAk Am+r+k

ηAk

a0k

Mma
rk

µmr
Ak am,r+k

am+r,k

(3)

for all k ≤ n (left) and all m, r, k such that m + r + k ≤ n (right), respectively. An
Mn-morphism f from A to an Mn-algebra B = ((Bk)k≤n, (bmk)m+k≤n) consists of maps
fk : Ak → Bk, k ≤ n, such that fm+k · amk = bmk ·Mmfk for all m, k such that m+ k ≤ n.

We view the carrier Ak of an Mn-algebra as the set of algebra elements that have already
absorbed operations up to depth k. As in the case of plain monads, we can equivalently
describe graded algebras in terms of graded theories: IfM is generated by a graded theory T =
(Σ, E, d), then an Mn-algebra interprets each operation f ∈ Σ of arity r and depth d(f) = m

by maps fAk : Ark → Am+k for all k such that m + k ≤ n; this gives rise to an inductively
defined interpretation of terms (specifically, given a valuation of variables in Am, terms of
uniform depth k receive values in Ak+m, for k +m ≤ n), and subsequently to the expected
notion of satisfaction of equations.

U. Dorsch, S. Milius, and L. Schröder 36:11

While in general, graded algebras are monolithic objects, for depth-1 graded monads we
can construct them in a modular fashion from M1-algebras [31]; we thus restrict attention to
M0- andM1-algebras in the following. We note that anM0-algebra is just an Eilenberg-Moore
algebra for the monad M0. An M1-Algebra A consists of M0-algebras (A0, a

00 : M0A0 → A0)
and (A1, a

01 : M0A1 → A1), and a main structure map a10 : M1A0 → A1 satisfying two
instances of the right-hand diagram in (3), one of which says that a10 is a morphism of
M0-algebras (homomorphy), and the other that the diagram

M1M0A0 M1A0 A1,
µ10

M1a
00

a10
(4)

which by the laws of graded monads consists of M0-algebra morphisms, commutes (coequaliz-
ation). We will often refer to an M1-algebra by just its main structure map.

We will use M1-algebras as interpretations of the modalities in graded logics, generalizing
the previously recalled interpretation of modalities as maps G2 → 2 in branching-time
coalgebraic modal logic. We fix an M0-algebra Ω of truth values, with structure map
o : M0Ω → Ω (e.g. for G = Pω, Ω is a join semilattice). Powers Ωn of Ω are again
M0-algebras. A modality L ∈ Λ is interpreted as an M1-algebra A = JLK with carriers
A0 = A1 = Ω and a01 = a00 = o. Such an M1-algebra is thus specified by its main structure
map a10 : M1Ω→ Ω alone, so following the convention indicated above we often write JLK
for just this map. The evaluation of modalities is defined using canonical M1-algebras:

I Definition 5.2 (Canonical algebras). The 0-part of an M1-algebra A is the M0-algebra
(A0, a

00). Taking 0-parts defines a functor U0 from M1-algebras to M0-algebras. An M1-
algebra is canonical if it is free, w.r.t. U0, over its 0-part. For A canonical and a modality
L ∈ Λ, we denote the unique morphism A1 → Ω extending an M0-morphism f : A0 → Ω to
an M1-morphism A→ JLK by JLK(f), i.e. JLK(f) is the unique M0-morphism such that the
following equation holds:

(M1A0
M1f−−−→M1Ω JLK−−→ Ω) = (M1A0

a10

−−→ A1
JLK(f)−−−−→ Ω). (5)

I Lemma 5.3. An M1-algebra A is canonical iff (4) is a (reflexive) coequalizer diagram in
the category of M0-algebras.

By the above lemma, we obtain a key example of canonical M1-algebras:

I Corollary 5.4. If M is a depth-1 graded monad, then for every n and every set X, the
M1-algebra with carriers MnX,Mn+1X and multiplication as algebra structure is canonical.

Further, we interpret truth constants c ∈ Θ as elements of Ω, understood as maps ĉ : 1→ Ω,
and k-ary propositional operators p ∈ O as M0-homomorphisms JpK : Ωk → Ω. In our
examples on the linear time – branching time spectrum, M0 is either the identity or, most of
the time, the finite powerset monad. In the former case, all truth functions areM0-morphisms.
In the latter case, the M0-morphisms Ωk → Ω are the join-continuous functions; in the
standard case where Ω = 2 is the set of Boolean truth values, such functions f have the form
f(x1, . . . , xk) = xi1 ∨ · · · ∨ xil , where i1, . . . , il ∈ {1, . . . , k}. We will see one case where M0
is the distribution monad; then M0-morphisms are affine maps.

The semantics of a formula φ in graded logic is defined recursively as an M0-morphism
JφK : (Mn1, µ0n

1)→ (Ω, o) by

JcK = (M01 M0ĉ−−−→M0Ω o−→ Ω) Jp(φ1, . . . , φk)K = JpK · 〈Jφ1K, . . . , JφkK〉 JLφK = JLK(JφK).

CONCUR 2019

36:12 Graded Monads and Graded Logics for the Linear Time – Branching Time Spectrum

The evaluation of φ in a coalgebra γ : X → GX is then given by composing with the trace
sequence, i.e. as

X
Mn!·γ(n)

−−−−−−→Mn1 JφK−−→ Ω. (6)

In particular, graded logics are, by construction, invariant under the graded semantics.

I Example 5.5 (Graded logics). We recall the two most basic examples, fixing Ω = 2 in both
cases, and > as the only truth constant:
1. Finite-depth behavioural equivalence: Recall that the graded monad MnX = GnX

captures finite-depth behavioural equivalence on G-coalgebras. Since M0 is the identity
monad, M0-algebras are just sets. Thus, every function 2k → 2 is an M0-morphism, so we
can use all Boolean operators as propositional operators. Moreover, M1-algebras are just
maps a10 : GA0 → A1. Such an M1-algebra is canonical iff a10 is an isomorphism, and
modalities are interpreted as M1-algebras G2→ 2, with the evaluation according to (5)
and (6) corresponding precisely to the semantics of modalities in coalgebraic logic (2).
Summing up, we obtain precisely coalgebraic modal logic as summarized above in this
case. In our running example G = Pω(A× (−)), we take modalities ♦σ as above, with
J♦σK : Pω(A× 2)→ 2 defined by J♦σK(S) = > iff (σ,>) ∈ S, obtaining precisely classical
Hennessy-Milner logic [19].

2. Trace equivalence: Recall that the trace semantics of labelled transition systems with
actions in A is modelled by the graded monad MnX = Pω(An ×X). As indicated above,
in this case we can use disjunction as a propositional operator since M0 = Pω. Since the
graded theory for Mn specifies for each σ ∈ A a unary depth-1 operation that distributes
over joins, we find that the maps J♦σK from the previous example (unlike their duals �σ)
induce M1-algebras also in this case, so we obtain a graded trace logic featuring precisely
diamonds and disjunction, as expected.

We defer the discussion of further examples, including ones where Ω = [0, 1], to the next
section, where we will simultaneously illustrate the generic expressiveness result (Example 6.5).

I Remark 5.6. One important class of examples where the above approach to characteristic
logics will not work without substantial further development are simulation-like equivalences,
whose characteristic logics need conjunction [42]. Conjunction is not an M0-morphism for
the corresponding graded monads identified in Section 4, which both have M0 = Pω. A
related and maybe more fundamental observation is that formula evaluation is not M0-
morphic in the presence of conjunction; e.g. over simulation equivalence, the evaluation map
M11 = P↓ω(A×Pω(1))→ 2 of the formula ♦σ>∧♦τ> fails to be join-continuous for distinct
σ, τ ∈ A. We leave the extension of our logical framework to such cases to future work,
expecting a solution in elaborating the theory of graded monads, theories, and algebras over
the category of partially ordered sets, where simulations live more naturally (e.g. [24]).

6 Expressiveness

We now present our main result, an expressiveness criterion for graded logics, which states
that a graded logic characterizes the given graded semantics if it has enough modalities
propositional operators, and truth constants. Both the criterion and its proof now fall into
place naturally and easily, owing to the groundwork laid in the previous section, in particular
the reformulation of the semantics in terms of canonical algebras:

U. Dorsch, S. Milius, and L. Schröder 36:13

I Definition 6.1. We say that a graded logic with set Ω of truth values and sets Θ, O, Λ of
truth constants, propositional operators, and modalities, respectively, is
1. depth-0 separating if the family of maps JcK : M01 → Ω, for truth constants c ∈ Θ, is

jointly injective; and
2. depth-1 separating if, whenever A is a canonical M1-algebra and A is a jointly injective

set of M0-homomorphisms A0 → Ω that is closed under the propositional operators in O
(in the sense that JpK · 〈f1, . . . , fk〉 ∈ A for f1, . . . , fk ∈ A and k-ary p ∈ O), then the set
Λ(A) := {JLK(f) : A1 → Ω | L ∈ Λ, f ∈ A} of maps is jointly injective.

I Theorem 6.2 (Expressiveness). If a graded logic is both depth-0 separating and depth-1
separating, then it is expressive.

I Example 6.3 (Logics for bisimilarity). We note first that the existing coalgebraic Hennessy-
Milner theorem, for branching time equivalences and coalgebraic modal logic with full Boolean
base over a finitary functor G [33,36], as recalled in Section 5, is a special case of Theorem 6.2:
We have already seen in Example 5.5 that coalgebraic modal logic in the above sense is
an instance of our framework for the graded monad MnX = GnX. Since M0 = id in this
case, depth-0 separation is vacuous. As indicated in Example 5.5, canonical M1-algebras are
w.l.o.g. of the form id : GX → GX, where for purposes of proving depth-1 separation, we
can restrict to finite X since G is finitary. Then, a set A as in Definition 6.1 is already the
whole powerset 2X , so depth-1 separation is exactly the previous notion of separation.

A well-known particular case is probabilistic bisimilarity on Markov chains, for which
an expressive logic needs only probabilistic modalities ♦p “with probability at least p” and
conjunction [12]. This result (later extended to more complex composite functors [32]) is
also easily recovered as an instance of Theorem 6.2, using the same standard lemma from
measure theory as in op. cit., which states that measures are uniquely determined by their
values on a generating set of the underlying σ-algebra that is closed under finite intersections
(corresponding to the set A from Definition 6.1 being closed under conjunction).

I Remark 6.4. For behavioural equivalence, i.e. MnX = GnX as in the above example, the
inductive proof of our expressiveness theorem essentially instantiates to Pattinson’s proof of
the coalgebraic Hennessy-Milner theorem by induction over the terminal sequence [33]. One
should note that although the coalgebraic Hennessy-Milner theorem can be shown to hold for
larger cardinal bounds on the branching by means of a direct quotienting construction [36],
the terminal sequence argument goes beyond finite branching only in corner cases.

I Example 6.5 (Expressive graded logics on the linear time – branching time spectrum). We
next extract graded logics from some of the graded monads for the linear time – branching
time spectrum introduced in Section 4, and show how in each case, expressiveness is an
instance of Theorem 6.2. Bisimilarity is already covered by the previous example. Depth-0
separation is almost always trivial and not mentioned further. Unless mentioned otherwise,
all logics have disjunction, enabled by M0 being powerset as discussed in the previous section.
Most of the time, the logics are essentially already given by van Glabbeek (with the exception
that we show that one can add disjunction) [42]; the emphasis is entirely on uniformization.
1. Trace equivalence: As seen in Example 5.5, the graded logic for trace equivalence features

(disjunction and) diamond modalities ♦σ indexed over actions σ ∈ A. The ensuing proof
of depth-1 separation uses canonicity of a given M1-algebra A only to obtain that the
structure map a10 is surjective. The other key point is that a jointly injective collection A

of M0-homomorphisms A0 → 2, i.e. join preserving maps, has the stronger separation
property that whenever x 6≤ y then there exists f ∈ A such that f(x) = > and f(y) = ⊥.

CONCUR 2019

36:14 Graded Monads and Graded Logics for the Linear Time – Branching Time Spectrum

2. Graded logics for completed traces, readiness, failures, ready traces, and failure traces
are developed from the above by adding constants or additionally indexing modalities
over sets of actions, with only little change to the proofs of depth-1 separation. For
completed trace equivalence, we just add a 0-ary modality ? indicating deadlock. For
ready trace equivalence, we index the diamond modalities ♦σ with sets I ⊆ A; formulae
♦σ,Iφ are then read ‘the current ready set is I, and there is a σ-successor satisfying φ’.
For failure trace equivalence we proceed in the same way but read the index I as ‘I is a
failure set at the current state’. For readiness equivalence and failures equivalence, we
keep the modalities ♦σ unchanged from trace equivalence and instead introduce 0-ary
modalities rI indicating that I is the ready set or a failure set, respectively, at the current
state, thus ensuring that formulae do not continue after postulating a ready set.

I Example 6.6 (Probabilistic traces). We have recalled in Section 4 that probabilistic trace
equivalence of generative probabilistic transition systems can be captured as a graded
semantics using the graded monad MnX = D(An × X), with M0-algebras being convex
algebras. In earlier work [31] we have noted that a logic over the set Ω = [0, 1] of truth
values (with the usual convex algebra structure) featuring rational truth constants, affine
combinations as propositional operators (as indicated in Section 5), and modal operators 〈σ〉,
interpreted by M1-algebras J〈σ〉K : M1[0, 1]→ [0, 1] defined by J〈σ〉K(µ) =

∑
r∈[0,1] rµ(σ, r) is

invariant under probabilistic trace equivalence. By our expressiveness criterion, we recover
the result that this logic is expressive for probabilistic trace semantics (see e.g. [2]).

7 Conclusion and Future Work

We have provided graded monads modelling a range of process equivalences on the linear time
– branching time spectrum, presented in terms of carefully designed graded algebraic theories.
From these graded monads, we have extracted characteristic modal logics for the respective
equivalences systematically, following a paradigm of graded logics that grows out of a natural
notion of graded algebra. Our main technical results concern the further development of the
general framework for graded logics; in particular, we have introduced a first-class notion of
propositional operator, and we have established a criterion for expressiveness of graded logics
that simultaneously takes into account the expressive power of the modalities and that of the
propositional base. (An open question that remains is whether an expressive logic always
exists, as it does in the branching-time setting [36].) Instances of this result include, for
instance, the coalgebraic Hennessy-Milner theorem [33, 36], Desharnais et al.’s expressiveness
result for probabilistic modal logic with only conjunction [12], and expressiveness for various
logics for trace-like equivalences on non-deterministic and probabilistic systems. The emphasis
in the examples has been on well-researched equivalences and logics for the basic case of
labelled transition systems, aimed at demonstrating the versatility of graded monads and
graded logics along the axis of granularity of system equivalence. The framework as a
whole is however parametric also over the branching type of systems and in fact over the
base category determining the structure of state spaces; an important direction for future
research is therefore to capture (possibly new) equivalences and extract expressive logics on
other system types such as probabilistic systems (we have already seen probabilistic trace
equivalence as an instance; see [4] for a comparison of some equivalences on probabilistic
automata, which combine probabilities and non-determinism) and nominal systems, e.g.
nominal automata [3, 37]. Moreover, we plan to extend the framework of graded logics to
cover also temporal logics, using graded algebras of unbounded depth.

U. Dorsch, S. Milius, and L. Schröder 36:15

References
1 Jirí Adámek and Václav Koubek. Remarks on Fixed Points of Functors. In Fundamentals

of Computation Theory, FCT 1977, LNCS, pages 199–205. Springer, 1977. doi:10.1007/
3-540-08442-8_86.

2 Marco Bernardo and Stefania Botta. A survey of modal logics characterising behavioural
equivalences for non-deterministic and stochastic systems. Math. Struct. Comput. Sci., 18:29–
55, 2008.

3 Mikołaj Bojańczyk, Bartek Klin, and Slawomir Lasota. Automata theory in nominal sets. Log.
Methods Comput. Sci., 10(3), 2014. doi:10.2168/LMCS-10(3:4)2014.

4 Filippo Bonchi, Alexandra Silva, and Ana Sokolova. The Power of Convex Algebras. In
Concurrency Theory, CONCUR 2017, volume 85 of LIPIcs, pages 23:1–23:18. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2017.

5 Filippo Bonchi, Ana Sokolova, and Valeria Vignudelli. The Theory of Traces for Systems with
Nondeterminism and Probability. In Logic in Computer Science, LICS 2019. IEEE, 2019.

6 Marcello Bonsangue, Stefan Milius, and Alexandra Silva. Sound and complete axiomatizations
of coalgebraic language equivalence. ACM Trans. Comput. Log., 14, 2013.

7 Corina Cîrstea. Maximal traces and path-based coalgebraic temporal logics. Theoret. Comput.
Sci., 412(38):5025–5042, 2011. doi:10.1016/j.tcs.2011.04.025.

8 Corina Cîrstea. A Coalgebraic Approach to Linear-Time Logics. In Foundations of Software
Science and Computation Structures, FoSSaCS 2014, volume 8412 of LNCS, pages 426–440.
Springer, 2014.

9 Corina Cîrstea. Canonical Coalgebraic Linear Time Logics. In Algebra and Coalgebra in
Computer Science, CALCO 2015, Leibniz International Proceedings in Informatics, 2015.

10 Corina Cîrstea. From Branching to Linear Time, Coalgebraically. Fund. Inform., 150(3-4):379–
406, 2017. doi:10.3233/FI-2017-1474.

11 Yuxin Deng, Rob van Glabbeek, Matthew Hennessy, and Carroll Morgan. Characterising
Testing Preorders for Finite Probabilistic Processes. Log. Meth. Comput. Sci., 4(4), 2008.
doi:10.2168/LMCS-4(4:4)2008.

12 Josee Desharnais, Abbas Edalat, and Prakash Panangaden. A Logical Characterization of
Bisimulation for Labeled Markov Processes. In Logic in Computer Science, LICS 1998, pages
478–487. IEEE Computer Society, 1998.

13 Ernst-Erich Doberkat. Eilenberg-Moore algebras for stochastic relations. Inf. Comput.,
204(12):1756–1781, 2006. doi:10.1016/j.ic.2006.09.001.

14 Ernst-Erich Doberkat. Erratum and Addendum: Eilenberg-Moore algebras for stochastic
relations. Inf. Comput., 206(12):1476–1484, 2008. doi:10.1016/j.ic.2008.08.002.

15 Ulrich Dorsch, Stefan Milius, and Lutz Schröder. Graded Monads and Graded Logics for the
Linear Time – Branching Time Spectrum, 2019. arXiv:1812.01317.

16 Laurent Doyen, Thomas Henzinger, and Jean-François Raskin. Equivalence of Labeled Markov
Chains. Int. J. Found. Comput. Sci., 19(3):549–563, 2008. doi:10.1142/S0129054108005814.

17 Uli Fahrenberg and Axel Legay. A Linear-Time-Branching-Time Spectrum of Behavioral
Specification Theories. In Theory and Practice of Computer Science, SOFSEM 2017, volume
10139 of LNCS, pages 49–61. Springer, 2017. doi:10.1007/978-3-319-51963-0.

18 Ichiro Hasuo, Bart Jacobs, and Ana Sokolova. Generic Trace Semantics via Coinduction. Log.
Meth. Comput. Sci., 3, 2007. doi:10.2168/LMCS-3(4:11)2007.

19 M. Hennessy and R. Milner. Algebraic Laws for Non-Determinism and Concurrency. J. ACM,
32:137–161, 1985.

20 Bart Jacobs. Trace Semantics for Coalgebras. In J. Adámek and S. Milius, editors, Coalgebraic
Methods in Computer Science, CMCS 2004, volume 106 of ENTCS, pages 167–184. Elsevier,
2004. doi:10.1016/j.entcs.2004.02.031.

21 Bart Jacobs. Convexity, Duality and Effects. In C.S. Calude and V. Sassone, editors, Proc. TCS
2010, volume 323 of IFIP AICT, pages 1–19, 2010.

CONCUR 2019

https://doi.org/10.1007/3-540-08442-8_86
https://doi.org/10.1007/3-540-08442-8_86
https://doi.org/10.2168/LMCS-10(3:4)2014
https://doi.org/10.1016/j.tcs.2011.04.025
https://doi.org/10.3233/FI-2017-1474
https://doi.org/10.2168/LMCS-4(4:4)2008
https://doi.org/10.1016/j.ic.2006.09.001
https://doi.org/10.1016/j.ic.2008.08.002
http://arxiv.org/abs/1812.01317
https://doi.org/10.1142/S0129054108005814
https://doi.org/10.1007/978-3-319-51963-0
https://doi.org/10.2168/LMCS-3(4:11)2007
https://doi.org/10.1016/j.entcs.2004.02.031

36:16 Graded Monads and Graded Logics for the Linear Time – Branching Time Spectrum

22 Bart Jacobs, Paul B. Levy, and Jurriaan Rot. Steps and Traces. In Corina Cîrstea, editor,
Proc. CMCS 2018, volume 11202 of LNCS, pages 122–143. Springer, 2018.

23 Bart Jacobs, Alexandra Silva, and Ana Sokolova. Trace Semantics via Determinization. In
Coalgebraic Methods in Computer Science, CMCS 2012, volume 7399 of LNCS, pages 109–129.
Springer, 2012. doi:10.1007/978-3-642-32784-1.

24 Krzysztof Kapulkin, Alexander Kurz, and Jiri Velebil. Expressiveness of Positive Coalgebraic
Logic. In Advances in Modal Logic, AiML 2012, pages 368–385. College Publications, 2012.

25 Henning Kerstan and Barbara König. Coalgebraic Trace Semantics for Continuous Probabilistic
Transition Systems. Log. Meth. Comput. Sci., 9(4), 2013. doi:10.2168/LMCS-9(4:16)2013.

26 Christian Kissig and Alexander Kurz. Generic Trace Logics. arXiv preprint 1103.3239, 2011.
27 Bartek Klin. Structural Operational Semantics for Weighted Transition Systems. In Semantics

and Algebraic Specification, volume 5700 of LNCS, pages 121–139. Springer, 2009.
28 Bartek Klin and Juriaan Rot. Coalgebraic trace semantics via forgetful logics. In Foundations

of Software Science and Computation Structures, FoSSaCS 2015, volume 9034 of LNCS, pages
151–166. Springer, 2015.

29 K. Larsen and A. Skou. Bisimulation through probabilistic testing. Inf. Comput., 94:1–28,
1991.

30 Saunders MacLane. Categories for the working mathematician. Springer, 2nd edition, 1998.
31 Stefan Milius, Dirk Pattinson, and Lutz Schröder. Generic Trace Semantics and Graded

Monads. In Algebra and Coalgebra in Computer Science, CALCO 2015, Leibniz International
Proceedings in Informatics, 2015.

32 Lawrence Moss and Ignacio Viglizzo. Final coalgebras for functors on measurable spaces. Inf.
Comput., 204(4):610–636, 2006. doi:10.1016/j.ic.2005.04.006.

33 D. Pattinson. Expressive Logics for Coalgebras via Terminal Sequence Induction. Notre Dame
J. Formal Log., 45:19–33, 2004.

34 Benjamin Pierce. Basic category theory for computer scientists. MIT Press, 1991.
35 J. Rutten. Universal Coalgebra: A Theory of Systems. Theoret. Comput. Sci., 249:3–80, 2000.
36 Lutz Schröder. Expressivity of Coalgebraic Modal Logic: The Limits and Beyond. Theoret.

Comput. Sci., 390:230–247, 2008.
37 Lutz Schröder, Dexter Kozen, Stefan Milius, and Thorsten Wißmann. Nominal Automata with

Name Binding. In Foundations of Software Science and Computation Structures, FOSSACS
2017, volume 10203 of LNCS, pages 124–142, 2017. doi:10.1007/978-3-662-54458-7.

38 Roberto Segala and Nancy Lynch. Probabilistic Simulations for Probabilistic Processes. In
Concurrency Theory, CONCUR 1994, volume 836 of LNCS, pages 481–496. Springer, 1994.
doi:10.1007/978-3-540-48654-1.

39 Alexandra Silva, Filippo Bonchi, Marcello Bonsangue, and Jan Rutten. Generalizing determ-
inization from automata to coalgebras. Log. Methods Comput. Sci, 9(1:9), 2013.

40 A. Smirnov. Graded Monads and Rings of Polynomials. J. Math. Sci., 151:3032–3051, 2008.
41 Natsuki Urabe and Ichiro Hasuo. Coalgebraic Infinite Traces and Kleisli Simulations. In

Algebra and Coalgebra in Computer Science, CALCO 2015, volume 35 of LIPIcs, pages 320–335.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2015.

42 R. van Glabbeek. The Linear Time – Branching Time Spectrum I; The Semantics of Concrete,
Sequential Processes. In J. Bergstra, A. Ponse, and S. Smolka, editors, Handbook of Process
Algebra, pages 3–99. Elsevier, 2001. doi:10.1016/B978-044482830-9/50019-9.

43 Gerco van Heerdt, Justin Hsu, Joël Ouaknine, and Alexandra Silva. Convex Language
Semantics for Nondeterministic Probabilistic Automata. In Theoretical Aspects of Comput-
ing. ICTAC 2018, volume 11187 of LNCS, pages 472–492. Springer, 2018. doi:10.1007/
978-3-030-02508-3.

44 James Worrell. On the final sequence of a finitary set functor. Theor. Comput. Sci., 338:184–199,
2005.

https://doi.org/10.1007/978-3-642-32784-1
https://doi.org/10.2168/LMCS-9(4:16)2013
https://doi.org/10.1016/j.ic.2005.04.006
https://doi.org/10.1007/978-3-662-54458-7
https://doi.org/10.1007/978-3-540-48654-1
https://doi.org/10.1016/B978-044482830-9/50019-9
https://doi.org/10.1007/978-3-030-02508-3
https://doi.org/10.1007/978-3-030-02508-3

Bialgebraic Semantics for String Diagrams
Filippo Bonchi
University of Pisa, Italy

Robin Piedeleu
University College London, UK

Pawel Sobocinski
University of Southampton, UK

Fabio Zanasi
University College London, UK

Abstract
Turi and Plotkin’s bialgebraic semantics is an abstract approach to specifying the operational
semantics of a system, by means of a distributive law between its syntax (encoded as a monad) and
its dynamics (an endofunctor). This setup is instrumental in showing that a semantic specification
(a coalgebra) satisfies desirable properties: in particular, that it is compositional.

In this work, we use the bialgebraic approach to derive well-behaved structural operational
semantics of string diagrams, a graphical syntax that is increasingly used in the study of interacting
systems across different disciplines. Our analysis relies on representing the two-dimensional operations
underlying string diagrams in various categories as a monad, and their bialgebraic semantics in
terms of a distributive law for that monad.

As a proof of concept, we provide bialgebraic compositional semantics for a versatile string
diagrammatic language which has been used to model both signal flow graphs (control theory) and
Petri nets (concurrency theory). Moreover, our approach reveals a correspondence between two
different interpretations of the Frobenius equations on string diagrams and two synchronisation
mechanisms for processes, à la Hoare and à la Milner.

2012 ACM Subject Classification Theory of computation → Categorical semantics

Keywords and phrases String Diagram, Structural Operational Semantics, Bialgebraic semantics

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2019.37

Related Version A full version of the paper is available at [7], https://arxiv.org/abs/1906.01519.

Acknowledgements RP and FZ acknowledge support from EPSRC grant EP/R020604/1.

1 Introduction

Starting from the seminal works of Hoare and Milner, there was an explosion [16,17,27,36,42]
of interest in process calculi: formal languages for specifying and reasoning about concurrent
systems. The beauty of the approach, and often the focus of research, lies in compositionality:
essentially, the behaviour of composite systems – usually understood as some kind of process
equivalence, the most famous of which is bisimilarity – ought to be a function of the behaviour
of its components. The central place of compositionality led to the study of syntactic formats
for semantic specifications [4, 19,25]; succinctly stated, syntactic operations with semantics
defined using such formats are homomorphic wrt the semantic space of behaviours.

Another thread of concurrency theory research [26,30,40] uses graphical formalisms, such
as Petri nets. These often have the advantage of highlighting connectivity, distribution and
the communication topology of systems. They tend to be popular with practitioners in
part because of their intuitive and human-readable depictions, an aspect that should not be

© Filippo Bonchi, Robin Piedeleu, Pawel Sobocinski, and Fabio Zanasi;
licensed under Creative Commons License CC-BY

30th International Conference on Concurrency Theory (CONCUR 2019).
Editors: Wan Fokkink and Rob van Glabbeek; Article No. 37; pp. 37:1–37:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.CONCUR.2019.37
https://arxiv.org/abs/1906.01519
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

37:2 Bialgebraic Semantics for String Diagrams

underestimated: indeed, pedagogical texts introducing CCS [27] and CSP [36] often resort to
pictures that give intuition about topological aspects of syntactic specifications. However,
compositionality has not – historically – been a principal focus of research.

In this paper we propose a framework that allows us to eat our cake and have it too. We
use string diagrams [43] which have an intuitive graphical rendering, but also come with
algebraic operations for composition. String diagrams combine the best of both worlds: they
are a (2-dimensional) syntax, but also convey important topological information about the
systems they specify. They have been used in recent years to give compositional accounts of
quantum circuits [1,18], signal flow graphs [2,10,21], Petri nets [6], and electrical circuits [3,24],
amongst several other applications.

Our main contribution is the adaptation of Turi and Plotkin’s bialgebraic semantics
(abstract GSOS) [32,45] for string diagrams. By doing so, we provide a principled justification
and theoretical framework for giving definitions of operational semantics to the generators
and operations of string diagrams, which are those of monoidal categories. More precisely we
deal with string diagrams for symmetric monoidal categories which organise themselves as
arrows of a particularly simple and well-behaved class known as props. Similar operational
definitions have been used in the work on the algebra of Span(Graph) [31], tile logic [23], the
wire calculus [44] and recent work on modelling signal flow graphs and Petri nets [6, 10]. In
each case, semantics was given either monolithically or via a set of SOS rules. The link with
bialgebraic framework – developed in this paper – provides us a powerful theoretical tool
that (i) justifies these operational definitions and (ii) guarantees compositionality.

In a nutshell, in the bialgebraic approach, the syntax of a language is the initial algebra
(the algebra of terms) TΣ for a signature functor Σ. A certain kind of distributive law,
an abstract GSOS specification [45], induces a coalgebra (a state machine) β : TΣ → FTΣ
capturing the operational semantics of the language. The final F-coalgebra Ω provides the
denotational universe: intuitively, the space of all possible behaviours. The unique coalgebra
map [[·]]β : TΣ → Ω represents the denotational semantics assigning to each term its behaviour.

TΣ
[[·]]β

//

β

��

Ω

��

F(TΣ)
F([[·]]β)

// F(Ω)

(1)

The crucial observation is that (1) lives in the category of Σ-algebras: Ω also carries a
Σ-algebra structure and the denotational semantics is an algebra homomorphism. This means
that the behaviour of a composite system is determined by the behaviour of the components,
e.g. [[s+ t]] = [[s]] + [[t]], for an operation + in Σ.

We show that the above framework can be adapted to the algebra of string diagrams.
The end result is a picture analogous to (1), but living in the category of props and prop
morphism. As a result, the denotational map is a prop morphism, and thus guarantees
compositionality with respect to sequential and parallel composition of string diagrams.

Adapting the bialgebraic approach to the 2-dimensional syntax of props requires some
technical work since, e.g. the composition operation of monoidal categories is a dependent
operation. For this reason we need to adapt the usual notion of a syntax endofunctor on
the category of sets; instead we work in a category Sig whose objects are spans N←− Σ −→ N,
with the two legs giving the number of dangling wires on the left and right of each diagram.
The operations of props are captured as a Sig-endofunctor, which yields string-diagrams-as-
initial-algebra, and a quotient of the resulting free monad, whose algebras are precisely props.

F. Bonchi, R. Piedeleu, P. Sobocinski, and F. Zanasi 37:3

: (1, 0) : (1, 2) x

k

: (1, 1) k : (1, 1) : (2, 1) : (0, 1)

: (0, 1) : (2, 1) x

k

: (1, 1) k : (1, 1) : (1, 2) : (1, 0)

: (0, 0) : (1, 1) : (2, 2)
c : (k1, k2) d : (k2, k3)

c ; d : (k1, k3)

c : (k1, l1) d : (k2, l2)

c⊕d : (k1+k2, l1+l2)

Figure 1 Sorting discipline for CircR.

k−→
ε

k−−→
k k

k l−−→
k+l

ε−→0
ε−→
k

k k−−−→
k

k+l−−−→
k l

0−→
ε

k
l−→
l·k k k

l·k−−→
l

k x

k
l−→
k

x

l

x

k
k−→
l

x

l

Figure 2 Structural Operational Semantics for the generators of CircR. Intuitively, from left to
right, these are elementary connectors modelling discard, copy, one-place register, multiplication by
a scalar, addition, and the constant zero.

In addition to the basic laws of props, we also consider the further imposition of the
equations of special Frobenius algebras. We illustrate the role of this algebraic structure
with our running example, a string diagrammatic process calculus CircR that has two
Frobenius structures and can be equipped with two different semantics, one which provides a
compositional account of signal flow graphs for linear time invariant dynamical systems [10],
and one which is a compositional account of Petri nets [6].

We conclude with an observation that ties our work back to classical concepts of process
calculi and show that the two Frobenius structures of CircR are closely related to two different,
well-known synchronisation patterns, namely those of Hoare’s CSP [27] and Milner’s CCS [36].

Structure of the paper. In §2 we introduce our main example and recall some preliminaries,
followed by a recapitulation of bialgebraic approach in §3. We develop the technical aspects
of string-diagrams-as-syntax in §4 and adapt the bialgebraic approach in §5. Finally, we
exhibit the connection with classical synchronisation mechanisms in §6 and conclude in §7.

2 Motivating Example

As our motivating example, we recall from [6, 9, 11] a basic language CircR given by the

grammar below. Values k in x

k

and k range over elements of a given semiring R.

c, d ::= | | x

k

| k | | | | | x

k

| k | | | (2)
| | | | c ; d | c⊕ d (3)

The language does not feature variables; on the other hand, a simple sorting discipline is
necessary. A sort is a pair (n, m), with n,m ∈ N. Henceforth we will consider only terms
sortable according to the rules in Figure 1. An easy induction confirms uniqueness of sorting.

The operational meaning of terms is defined recursively by the structural rules in Figs. 2
and 3 where k, l range over R and a, b, c over R?, the set of words over R. We denote the
empty word by ε and concatenation of a, b by ab. As expected +, · and 0 denote respectively

CONCUR 2019

37:4 Bialgebraic Semantics for String Diagrams

c
a−→
b
c′ d

b−→
c
d′

λsq

c ; d a−→
c
c′ ; d′

s
a1−−→
b1

c′ d
a2−−→
b2

d′

λmp

c⊕ d a1a2−−−−→
b1b2

d′ ⊕ d′

λε
ε−→
ε

λid
k−→
k

λsy
k l−−→
l k

Figure 3 Structural operational semantics for the operations of CircR.

the sum, the product and zero of the semiring R. For any term c : (n, m), the rules yield
a labelled transition system where each transition has form c

a−→
b
d. By induction, it is

immediate that d has the same sort as c, the word a has length n, and b has length m.

Our chief focus in this paper is the study of semantics specifications of the kind given in
Figs. 2 and 3. So far, the technical difference with typical GSOS examples [4] is the presence
of a sorting discipline. A more significant difference, which we will now highlight, is that
sorted terms are considered up-to the laws of symmetric monoidal categories. As such, they
are “2-dimensional syntax” and enjoy a pictorial representation in terms of string diagrams.

2.1 From Terms to String Diagrams
In (2)-(3) we purposefully used a graphical rendering of the components. Indeed, terms of
CircR are usually represented graphically, according to the convention that c ; c′ is drawn

c c0...
...

... and c⊕ c′ is drawn c

c0 ...

...
...

...

. For instance, the term ((;)⊕) ; ((⊕

(; x

k

;))) ; ((;)⊕) is depicted as the following diagram.

pk ::=
x
k (4)

Given this graphical convention, a sort gives the number of dangling wires on each side of
the diagram induced by a term. A transition c a−→

b
d means that c may evolve to d when the

values on the dangling wires on the left are a and those on the right are b. When R is the
natural numbers, the diagram in (4) behaves as a place of a Petri nets containing k tokens:
any number of tokens can be inserted from its left and at most k tokens can be removed
from its right. Indeed, by the rules in Figs. 2 and 3, pk

i−→
o
pk′ iff o ≤ k and k′ = i+ k − o.

The graphical notation is appealing as it highlights connectivity and the capability for
resource exchange. However, syntactically different terms can yield the same diagram, e.g.
(⊕) ; (⊕) ; (⊕) ; (⊕ x

k

) ; (⊕) ; (⊕) ; (⊕)
also yields (4). Indeed, one defines diagrams to be terms modulo structural congruence,
denoted by ≡. This is the smallest congruence over terms generated by the equations of
strict symmetric monoidal categories (SMCs):

(f ⊕ g)⊕ h ≡ f ⊕ (g ⊕ h) (ε⊕ f) ≡ f (f ⊕ ε) ≡ f σ1,1 ; σ1,1 ≡ id2 (5)
(f ; g)⊕ (h ; i) ≡ (f ⊕ h) ; (g ⊕ i) (f ; g) ; h ≡ f ; (g ; h) (f ; idm) ≡ f (6)

(idn; f) ≡ f (σ1,n; (f ⊕ id1)) ≡ (id1 ⊕ f);σ1,m (σn,1; (id1 ⊕ g)) ≡ (g ⊕ id1);σm,1 (7)

F. Bonchi, R. Piedeleu, P. Sobocinski, and F. Zanasi 37:5

≡ ≡

≡ ≡ ≡ ≡

≡ ≡ ≡

Figure 4 Axioms of special Frobenius bimonoids.

where identities idn : (n, n) and symmetries σn,m : (n+m, m+ n) can be recursively
defined starting from id0 := and σ1,1 := . Therefore, sorted diagrams c : (n, m)
are the arrows n→ m of an SMC with objects the natural numbers, also called a prop [35].

2.2 Frobenius Bimonoids

We will also consider additional algebraic structure for the black (, , ,) and
the white (, , ,) components. When R is the field of reals, CircR models
linear dynamical systems [2, 11, 21] and both the black and the white structures form special
Frobenius bimonoids, meaning the axioms of Fig. 4 hold, replacing the gray circles by either
black or white. When R is the semiring of natural numbers, CircR models Petri nets [6]
and only the black structure satisfies these equations. In § 6, we shall see that the black
Frobenius structure gives rise to the synchronisation mechanism used by Hoare in CSP [28],
while the white Frobenius structure to that used by Milner in CCS [36].

3 Background: Bialgebras and GSOS Specifications

For more detailed background and simple examples showcasing the notions recalled below,
we refer the reader to the extended version of the present work [7].

Distributive laws and bialgebras. A distributive law of a monad (T , η, µ) over an endofunc-
tor F is a natural transformation λ : T F ⇒ FT s.t. λ ◦ ηF = Fη and λ ◦µF = Fµ ◦λT ◦ T λ.
A λ-bialgebra is a triple (X,α, β) s.t. (X,α) is an Eilenberg-Moore algebra for T , (X,β) is
a F-coalgebra and Fα ◦ λX ◦ T β = β ◦ α. Bialgebra morphisms are both T -algebra and
F-coalgebra morphisms.

Given a coalgebra β : X → FT X for a monad (T , η, µ) and a functor F , if there exists
a distributive law λ : T F ⇒ FT , one can form a coalgebra β] : T X → FT X defined as
T X T β−−→ T FT X λTX−−−→ FT T X Fµ−−→ FT X. Most importantly, (T X,µ, β]) is a λ-bialgebra.

Free monads. We recall the construction of the monad F† : C → C freely generated by a
functor F : C → C. Assume that C has coproducts and that, for all objects X of C, there exists
an initial X + F-algebra that we denote as X + F(F†X) [ηX ,κX]−−−−−→ F†X. It is easy to check
that the assignment X 7→ F†X induces a functor F† : C → C. The map ηX : X → F†X gives
rise to the unit of the monad; the multiplication µX : F†F†X → F†X is the unique algebra
morphism from the initial F†X + F-algebra to the algebra F†X + F(F†X) [id,κX]−−−−→ F†X.

CONCUR 2019

37:6 Bialgebraic Semantics for String Diagrams

GSOS specifications. An abstract GSOS specification is a natural transformation λ : SF ⇒
FS†, where F is a functor representing the coalgebraic behaviour, S is a functor representing
the syntax. It is important to recall the following fact.

I Proposition 1 ([34]). Any GSOS spec. λ : SF ⇒ FS† yields a distrib. law λ† : S†F ⇒ FS†.

Coproduct of GSOS specifications. Suppose we have two functors S1,S2 : C → C capturing
two syntaxes, a functor F : C → C for the coalgebraic behaviour, and two GSOS specifications
λ1 : S1F ⇒ FS†1 and λ2 : S2F ⇒ FS†2 . Then we can construct a GSOS specification
λ1 · λ2 : (S1 + S2)F ⇒ F(S1 + S2)†. The details are in [7].

Quotients of monads and distributive laws. Given the correspondence between finitary
monads and algebraic theories [29], it natural to consider quotients of monads by additional
equations. Following [13, 15, 41], for a monad T on a category C, T -equations can be defined
as a tuple E = (A, l, r) consisting of a functor A : C → C and natural transformations
l, r : A ⇒ T . The intuition is that A acts as the variables of each equation, whose left- and
right-hand sides are l and r, respectively. Assuming mild conditions that generalise the
properties of Set (see [41, Ass. 7.1.2]), one constructs the quotient of T by T -equations. The
conditions hold in our setting: categories of presheaves over a discrete index category.

I Proposition 2 (cf. [41]). If C = SetD for discrete D, T -equations E yield a monad
T/E : C → C with algebras precisely T -algebras T A α−→ A that satisfy E, in the sense that
α ◦ lA = α ◦ rA. Moreover, there exists a monad morphism qE : T → T/E with epi components.

One may also quotient distributive laws, provided these are compatible with the new
equations. Fix an endofunctor F and a monad T on SetD, together with T -equations
E = (A, l, r). We say that a distributive law λ : T F ⇒ FT preserves equations E if, for all

A ∈ C, the following diagram commutes: AFA lFA
//

rFA

// T FA
λA
// FT A

FqEA
// FT/EA .

I Proposition 3 (cf. [41]). If λ : T F → FT preserves equations E then there exists a (unique)
distributive law λ/E : T/EF ⇒ FT/E such that λ/E ◦ qEF = FqE ◦ λ.

4 Diagrammatic Syntax as Monads

4.1 The Category of Signatures
Syntax and semantics of string diagrams will be specified in the category Sig := Span(Set)(N,N),
where objects are spans N←− Σ −→ N in Set and arrows are span morphisms: given objects
N s←− X t−→ N and N s′←− Σ′ t

′

−→ N, an arrow is a function f : Σ→ Σ′ such that t′ ◦ f = t and
s′◦f = s. We think of an object of Sig as a signature, i.e. a set of symbols Σ equipped with arity
and coarity functions a, c : Σ→ N. We write Σ(n,m) for the set {d ∈ Σ | 〈a, c〉(d) = (n,m)}
of operations with arity n and coarity m. Note that we allow coarities different from 1: this
is because string diagrams express monoidal algebraic theories, not merely cartesian ones.

Since the objects in Sig are spans with identical domain and codomain, we will often write
Σ for the entire span N a←− Σ c−→ N. In particular, N means the identity span N id←− N id−→ N.

I Example 4. Recall the language CircR from § 2. Line (2) of its syntax together with the
first two lines of the sorting discipline in Fig. 1 define a signature Σ: every axiom d : (n, m)
gives the symbol d arity n and coarity m. For instance, Σ(1, 2) = { , }.

F. Bonchi, R. Piedeleu, P. Sobocinski, and F. Zanasi 37:7

For computing (co)limits, it is useful to observe that Sig is isomorphic to the presheaf
category SetN×N, where N× N is the discrete category with objects pairs (n,m) ∈ N× N.

4.2 Functors on Signatures
We turn to (co)algebras of endofunctors F : Sig→ Sig generated by the following grammar:

F ::= Id | Σ | N | F ; F | F ⊕ F | F + F | F × F | G

where G ranges over functors G : Set→ Set and Σ is a span N←− Σ −→ N. In more detail:
Id : Sig→ Sig is the identity functor.
Σ: Sig→ Sig is the constant functor mapping every object to N←− Σ −→ N and every arrow
to idΣ; an important special case is N : Sig→ Sig the constant functor to N id←− N id−→ N.
(·) ; (·) : Sig2 → Sig is sequential composition for signatures. On objects, Σ1 ; Σ2 is

N s1◦π1←−−−− {(d1, d2) ∈ Σ1 × Σ2 | t1(d1) = s2(d2)} t2◦π2−−−→ N.

Since the above is a Set-pullback, the action on arrows is inducted by the universal
property. Note that, up to iso, (·) ; (·) : Sig2 → Sig is associative with unit N : Sig→ Sig.
(·)⊕ (·) : Sig2 → Sig is parallel composition for signatures, with Σ1 ⊕ Σ2 given by:

N +◦(s1×s2)←−−−−−−− Σ1 × Σ2
+◦(t1×t2)−−−−−−→ N

where +: N×N→ N is usual N-addition. Again (·)⊕ (·) : Sig2 → Sig associates up to iso.
For the remaining functors, we use the fact that Sig ∼= SetN×N, which guarantees
(co)completeness, with limits and colimits constructed pointwise in Set. Thus, for spans
Σ1 and Σ2, their coproduct is N

[s1,s2]←−−−− Σ1 + Σ2
[t1,t2]−−−−→ N and the carrier of the product

is {(d1, d2) | s1(d1) = s2(d2) and t1(d1) = t2(d2)}, with the two obvious morphisms to N.
The isomorphism Sig ∼= SetN×N also yields the extension of an arbitrary endofunctor
G : Set → Set to a functor Ḡ : Sig → Sig defined by post-composition with G, that is
Ḡ(Σ) = G ◦ Σ for all Σ: N × N → Set. In particular, we shall often use the functor Pκ
obtained by post-composition with the κ-bounded powerset functor Pκ : Set→ Set.1

Next we use these endofunctors to construct monads that capture the two-dimensional
algebraic structure of string diagrams. In § 4.3 we construct the monad encoding the
symmetric monoidal structure of props and in § 4.4 we construct the monad for the Frobenius
structure of Carboni-Walters props. Later, in § 5, we shall use these monads to define
compositional bialgebraic semantics for string diagrams of each of these categorical structures.

4.3 The Prop Monad
Here we define a monad on Sig with algebras precisely props: symmetric strict monoidal
categories with objects the natural numbers, where the monoidal product on objects is
addition. Together with identity-on-objects symmetric monoidal functors they form a category
PROP. The first step is to encapsulate the operations of props as a Sig-endofunctor.

SSM := (Id ; Id) + ι+ (Id⊕ Id) + ε+ σ : Sig→ Sig. (8)

1 Boundedness is needed to ensure the existence of a final coalgebra, see § 5.1. In our leading example
CircR, κ can be taken to be the cardinality of the semiring R.

CONCUR 2019

37:8 Bialgebraic Semantics for String Diagrams

In the type of SSM, Id ; Id : Sig→ Sig is sequential composition and ι the identity arrow on
object 1, i.e. the constant functor to N h←− {id1}

h−→ N, with h : id1 7→ 1. Similarly, Id⊕ Id is
the monoidal product with unit ε, i.e. the constant functor to N q←− {0} q−→ N, with q : 0 7→ 0.
Finally, σ is the basic symmetry: the constant functor to N f←− {σ1,1}

f−→ N, with f : σ1,1 7→ 2.
The free monad S†SM on SSM is the functor mapping a span Σ to the span of Σ-terms

obtained by sequential and parallel composition, together with symmetries and identities –
with the identity idn defined by parallel composition of n copies of id1.

Algebras for this monad are spans Σ together with span morphisms identity : ι → Σ,
composition : Σ ; Σ → Σ, parallel : Σ ⊕ Σ → Σ, unit : ε → Σ, and swap : σ → Σ. This
information almost defines a prop CΣ: the carrier Σ of the span is the set of arrows of CΣ,
containing special arrows idn and σn,m for identities and symmetries, compose assigns to
every pairs of composable arrows their composition, and ⊕ assigns to every pair of arrows their
monoidal product. The missing data is the usual equations (5)-(7) of symmetric monoidal
categories. Thus, in order to obtain props as algebras, we quotient the monad S†SM by those
equation, expressed abstractly as a triple ESM = (A, l, r), as described in § 3. The functor
A : Sig→ Sig, defined below, has summands following the order (5)-(7):

(Id⊕Id⊕Id)+Id+Id+σ+((Id ;Id)⊕ (Id ;Id))+(Id ;Id ;Id)+Id+Id+Id+1 +Id+1 (9)

Here, Id+1 is the functor adding 1 to the arity/coarity of each element of a given span
N a←− Σ c−→ N. We also need natural transformations l, r : A → S†SM that define the left- and
right-hand side of each equation. For instance, for fixed Σ ∈ Sig and (n,m) ∈ N× N:

an element of Σ ; Σ ; Σ (sixth summand of (9)) is a tuple (f, g, h) of Σ-elements, where
f is of type (n,w), g of type (w, v), and h of type (v,m), for arbitrary w, v ∈ N. We
let lΣ map (f, g, h) to the term (f ; g) ; h of type (n,m) in S†SM(Σ), and rΣ to the term
f ; (g ; h). Thus this component gives the second equation in (6) (associativity).
the seventh summand Id in (9) yields a Σ-term f , which lΣ : Σ→ S†SM(Σ) maps to f ; idm
and rσ : Σ→ S†SM(Σ) maps to f , thus yielding the final equation in (6).
an element in Σ+1 (last summand of (9)) of type (n + 1,m+ 1) is a Σ-term g of type
(n,m), which is mapped by lΣ to (σn,1 ; (id1 ⊕ g)) and by rσ to (g ⊕ id1) ; σm,1, both
elements of S†SM(Σ) of type (n+ 1,m+ 1), thus giving the final equation in (7).

The remainder of the definition of l, r : A → S†SM, handles the remaining equations in (5)-(7),
and should be clear from the above. Now, using Proposition 2, we quotient the monad S†SM by
(A, l, r), obtaining a monad that we call SPROP. We can then conclude by construction that the
Eilenberg-Moore category EM(SPROP) for the monad SPROP (with objects the SPROP-algebras,
and arrows the SPROP-algebra homomorphisms) is precisely PROP.

I Proposition 5. EM(SPROP) ∼= PROP.

I Example 6. The monad SPROP takes Σ to the prop freely generated by Σ. Taking Σ as in
Example 4, one obtains SPROP(Σ) with arrows n→ m string diagrams of CircR of sort (n, m).

4.4 The Carboni-Walters Monad
The treatment we gave to props may be applied to other categorical structures. For space
reasons, we only consider one additional such structure: Carboni-Walters (CW) props, also
called “hypergraph categories” [22]. Here each object n carries a distinguished special
Frobenius bimonoid compatible with the monoidal product: it can be defined recursively
using parallel compositions of the Frobenius structure on the generating object 1.

F. Bonchi, R. Piedeleu, P. Sobocinski, and F. Zanasi 37:9

I Definition 7. A CW prop is a prop with morphisms : 1→ 2, : 1→ 0, : 2→ 1,
: 0→ 1 satisfying the equations of special Frobenius bimonoids (Fig. 4).

CW props with prop morphisms preserving the Frobenius bimonoid form a subcategory
CW of PROP. We can now extend the prop monad of § 4.3 to obtain a monad with
algebras CW props. The signature is that of a prop with the additional Frobenius structure.
Let : Sig → Sig be the functor constant at N s←− { } t−→ N with s() = 1 and
t() = 2. Similarly, we introduce the constant functors : Sig→ Sig, : Sig→ Sig
and : Sig→ Sig for the other generators. Let SFR := SPROP + + + + .

We now need to quotient SFR by the defining equations of special Frobenius bimonoids
(Fig. 4). We omit the detailed encoding of these equations as a triple ECW = (ACW, lCW, rCW)
since it presents no conceptual difficulty. Let SCW be the quotient of SFR by these equations.
As for props, we obtain EM(SCW) ∼= CW by construction.

5 Bialgebraic Semantics for String Diagrams

Now that we have established monads for our categorical structures of interest, we study
coalgebras that capture behaviour for string diagrams in these categories, and distributive
laws that yield the desired bialgebraic semantics. We fix our “behaviour” functor to

F := Pκ(L ; Id ; L) : Sig→ Sig

where L : Sig→ Sig is the label functor constant at the span N |·|←− A∗ |·|−→ N, with A∗ the set
of words on some set of labels A. The map | · | : A∗ → N takes w ∈ A∗ to its length |w| ∈ N.
An F -coalgebra is a span morphism Σ→ Pκ(L ; Σ ; L); a function that takes f ∈ Σ(n,m) to
a set of transitions (v, g, w) with the appropriate sorts, i.e. g ∈ Σ(n,m), |v| = n and |w| = m.

The data of an F-coalgebra β : Σ → Pκ(L ; Σ ; L) is that of a transition relation. For
instance, fix labels A = {a, b} and let x, y ∈ Σ(1, 2) and z ∈ Σ(1, 1); suppose also that β
maps x to {(b ; y ; ab), (a ; x ; aa)}, y to ∅ and z to {(b ; z ; a)}. Then β can be written:

x
b−→
a b

y x
a−−→
a a

x z
b−→
a
z (10)

I Example 8. In our main example, Fig. 2 defines a coalgebra β : Σ→ Pκ(L ; Σ ; L) where Σ
is the signature from Example 4 and the set of labels is R. For instance β() = {(k, , ε) |
k ∈ R}. Note the κ bounding Pκ is the cardinality of R.

In the sequel we shall construct distributive laws between the above behaviour functor
and monads encoding the various categorical structures defined in the previous section.

5.1 Bialgebraic Semantics for Props
The modularity of SPROP can be exploited to define a distributive law of the SPROP over F .
Recall from § 4.3 that SPROP is a quotient of S†SM. We start by letting F = Pκ(L ; Id ; L)
interact with the individual summands of SSM (see (8)), corresponding to the operations of
props. This amounts to defining GSOS specifications:

λsq : Pκ(L ; Id ; L) ; Pκ(L ; Id ; L)⇒ Pκ(L ; (Id ; Id)† ; L) (sequential composition)
λid : ι⇒ Pκ(L ; ι† ; L) (identity)
λmp : Pκ(L ; Id ; L)⊕ Pκ(L ; Id ; L)⇒ Pκ(L ; (Id⊕ Id)† ; L) (monoidal product)
λε : ε⇒ Pκ(L ; ε† ; L) (product unit)
λsy : σ ⇒ Pκ(L ; σ† ; L) (symmetry)

CONCUR 2019

37:10 Bialgebraic Semantics for String Diagrams

Definitions of these maps are succinctly given via derivation rules, see Fig. 3.
We explain this in detail for λsq, the others are similar. Given Σ ∈ Sig, an element of type

(n,m) in the domain Pκ(L ; Σ ; L) ; Pκ(L ; Σ ; L) is a pair (A,B), where, for some z ∈ N,

A is a set of triples (a, c′, b) ∈ L(n, n)× Σ(n, z)× L(z, z), and

B is a set of triples (b, d′, c) ∈ L(z, z)× Σ(z,m)× L(m,m).

Then λsq
Σ (A,B) := {(a, c′ ; d′, c) | (a, c′, b) ∈ A, (b, d′, c) ∈ B}. Following the conven-

tion (10), we can write this data as: a−→
c
c′ ; d′ ∈ λsq

Σ (A,B) if a−→
b
c′ ∈ A and b−→

c
d′ ∈ B.

This leads us to the more compact version of λsq as the transition rule in Fig.3.
Next, take the coproduct of GSOS specifications λsq, λid, λmp, λε and λsy (see [7] for

the details) to obtain λ : SSMF ⇒ FS†SM. By Proposition 1, this yields distributive law
λ† : S†SMF ⇒ FS

†
SM.

The last step is to upgrade λ† to a distributive law λ†/SMC over the quotient SPROP of S†SM by
the equations (5)-(7) of SMCs. By Proposition 3, this is well-defined if λ† preserves ESM. We
show compatibility with associativity of sequential composition – the other equations can be
verified similarly. This amounts to checking that if λ† allows the derivation for s1 ; (s2 ; s3)
as below left, then there exists a derivation for (s1 ; s2) ; s3 as on the right, and vice-versa.

s1
u−→
v
s1

s2
v−→
w
s2 s3

w−→
x
s3

s2 ; s3
v−→
x
s2 ; s3

s1 ; (s2 ; s3) u−→
x
s1 ; (s2 ; s3)

s1
u−→
v
s1 s2

v−→
w
s2

s1 ; s2
u−→
w
s1 ; s2 s3

w−→
x
s3

(s1 ; s2) ; s3
u−→
x

(s1 ; s2) ; s3

By Proposition 3, we can therefore upgrade λ† to a distributive law λ†/SM : SPROPF ⇒ FSPROP.
We are now ready to construct the compositional semantics as a morphism into the final

coalgebra. One starts with a coalgebra β : Σ→ F(SPROP(Σ)) that describes the behaviour of
Σ-operations, assigning to each a set of transitions, as in (10). The difference with (10) is
that, because F is applied to SPROP(Σ) instead of just Σ, the right-hand side of each transition
contains not just a Σ-operation, but a string diagram: a Σ-term modulo the laws of SMCs.

As recalled in § 3, using the distributive law λ†/SM we can lift β : Σ → F(SPROP(Σ))
to a λ†/SM-bialgebra, β] : SPROP(Σ) → F(SPROP(Σ)). Since this is a F-coalgebra, the final
F-coalgebra Ω (the existence of which is shown in [7]) yields a semantics [[·]]β as below.
The operational semantics of a string diagram c is β](c), obtained from (i) transitions for
Σ-operations given by β and (ii) the derivation rules (Fig. 3) of λ†/SM. Instead, [[c]]β is the
observable behaviour: intuitively, its transition systems modulo bisimilarity.

SPROP(Σ)
[[·]]β

//

β]

��

Ω

��

F(SPROP(Σ))
F([[·]]β)

// F(Ω)

The bialgebraic semantics framework ensures that SPROP(Σ) and Ω are SPROP-algebras, which
by Proposition 5 are props. This means that the final coalgebra Ω is a prop and that [[·]]β
is a prop morphism, preserving identities, symmetries and guaranteeing compositionality:
[[s ; t]]β = [[s]]β ; [[t]]β and [[s⊕ t]]β = [[s]]β ⊕ [[t]]β .

I Example 9. Coming back to our running example, in Example 8 we showed that rules
in Fig. 2 induce a coalgebra of type Σ → F(Σ). Since each operation in Σ is itself a
string diagram (formally, via the unit ηΣ : Σ→ SPROP(Σ)), the same rules induce a coalgebra

F. Bonchi, R. Piedeleu, P. Sobocinski, and F. Zanasi 37:11

β : Σ→ FSPROP(Σ), which has the type required for the above construction. The resulting
coalgebra β] : SPROP(Σ)→ FSPROP(Σ) assigns to each diagram of SPROP(Σ) the set of transitions
specified by the combined operational semantics of Figs. 2 and 3. The preceding discussion
implies that, when e.g. R = N, bisimilarity for the Petri nets of [6] is a congruence.

5.2 Bialgebraic Semantics for Carboni-Walters Props

In this section we shall see two different ways of extending the GSOS specification of § 5.1
for CW props (see § 4.4). They correspond to the operational semantics of the black and
white (co)monoids as given in Fig. 2. In the next section, we will see that these two different
extensions give rise to two classic forms of synchronisation: à la Hoare and à la Milner.

Black distributive law. The first interprets the operations of the Frobenius structure
as label synchronisation: from the black node derivations on the left of Fig. 2 we get
GSOS specifications given by natural transformations ⇒ F(†), ⇒ F(†),

⇒ F(†), and ⇒ F(†). Recall that, here, we use the diagrams to denote
their associated functors Sig → Sig. By taking the coproduct of these and λ, the GSOS
specification for props from § 5.1, we obtain a specification λ• for SFR. It is straightforward
to verify that λ†• : S†FRF ⇒ FS

†
FR preserves the equations of special Frobenius bimonoids

(Fig. 4), yielding a distributive law λ†•/CW : S†CWF ⇒ FS
†
CW. As before, with λ†•/CW we obtain a

bialgebra β]• : SCW(Σ)→ FSCW(Σ) from any coalgebra β : Σ→ FSCW(Σ).

White distributive law. When the set of labels A is an Abelian group, it is possible to give
a different GSOS specifications for the Frobenius structure, capturing the group operation
of A: from the white node derivations on the right of Fig. 2 we get GSOS specifications

⇒ F(†), ⇒ F(†), ⇒ F(†), and ⇒ F(†). Using a now
familiar procedure we obtain a GSOS specifications λ◦ for SFR. The group structure on A
guarantees [39] that λ†◦ : S†FRF ⇒ FS

†
FR preserves the equations of special Frobenius bimonoids

(Fig. 4). Therefore we get a distributive law λ†◦/CW : S†CWF ⇒ FS
†
CW.

I Remark 10. Given the results in this section, one could ask if bialgebraic semantics works
for any categorical structure. A notable case in which it fails is that of Lawvere theories [29].
These can be seen as props with a natural comonoid structure on each object [12]. One may
define a monad for Lawvere theories following the same recipe as above. However, it turns out
that this monad is incompatible with the GSOS specification for the comonoid given in Fig. 2.
To see the problem consider a term d that can perform two transitions nondeterministically:
d

ε−→
a
d and d

ε−→
b
d. The naturality of the comonoid forces d ; ≈ d ⊕ d but d ;

can only perform the a a and b b transitions while d ⊕ d can also perform a b or b a. Thus
the specification would not be compositional. For more details, we refer the reader to the
appendix of [7].

6 Black and White Frobenius as Hoare and Milner Synchronisation

The role of this section is twofold: on the one hand we demonstrate how classical process
calculus syntax benefits from a string diagrammatic treatment; on the other we draw attention
towards a surprising observation, namely that the black and white Frobenius structures
discussed previously provide the synchronisation mechanism of, respectively, CSP and CCS.

CONCUR 2019

37:12 Bialgebraic Semantics for String Diagrams

6.1 Syntax
We consider a minimal process calculus for simplicity. Assume a countable set N of names,
a1, a2, . . . and a set V of process variables, f, g, . . . , equipped with a function ar : V → N
that assigns the set of names that the process may use: ar(f) = n means that the process f
uses only names {a1, . . . , an}. This is Hoare’s [28] notion of alphabet for process variables.

Roughly speaking, in a string diagram, dangling wires perform the job of variables.
To ease the translation of terms to diagrams, we include permutations of names in the
syntax, hereafter denoted by σ. For a permutation σ : N → N , its support is the set
supp(σ) = {ai | ai 6= σ(ai)}; σ is finitely supported if supp(σ) is finite. For each finitely
supported permutation σ its degree is defined as the greatest i ∈ N such that ai ∈ supp(σ).

The set of processes is defined recursively as follows

P := P |P, νai(P), f, Pσ

where ai ∈ N , f ∈ V and σ is a finitely supported permutation of names. The symbol |
stands for the parallel composition of processes. The symbol νai stands for the restriction, or
hiding, of the name ai. Observe that there are no primitives for prefixes, non-deterministic
choice or recursion: these will appear in the declaration of process variables which we will
describe in § 6.2. The idea here is to separate the behaviour, specified in the declaration
of process variables, and the communication topology of the network, given by the syntax
above. The notion of alphabet can be defined for all processes as follows:

al(P |Q)=al(P)∪al(Q) al(νai(P))=al(P)\{ai} al(f)={a1, . . . , aar(f)} al(Pσ)=σ[al(P)]

From one-dimensional to two-dimensional syntax. We use a typing discipline to guide
the translation of terms to string diagrams:

n ` P n ` Q

n ` P |Q

n+ 1 ` P
n ` νan+1(P)

ar(f) = n

n ` f

n ` P degree(σ) ≤ n
n ` Pσ

n ` P

n+ 1 ` P
(11)

The meaning of the types is explained by the following lemma, easily proven by induction.

I Lemma 11. If n ` P then al(P) ⊆ {a1, . . . an}.

We will translate processes to the CW prop freely generated from Σ = {f : (n, 0) |
f ∈ V and ar(f) = n}; in particular a typed process n ` P results in a string diagram of
SCW(Σ)(n, 0). The translation 〈〈·〉〉 is defined recursively on typed terms as follows:

〈〈n ` P |Q〉〉 =
〈〈P 〉〉

〈〈Q〉〉
n 〈〈n ` νan+1(P)〉〉 =

n
〈〈P 〉〉

〈〈n ` f〉〉 = f
n 〈〈n ` Pσ〉〉 = 〈〈P 〉〉n

σ
n 〈〈n+ 1 ` P 〉〉 = 〈〈P 〉〉

n

where for σ with degree(σ) < n, σ : n→ n is the obvious corresponding arrow in SCW(Σ).

I Example 12. Let V = {f, g} with ar(f) = 1 and ar(g) = 2. Let [a2/a1] : N → N be the
permutation swapping a1 and a2. One can easily check that 1 ` νa2(f[a2/a1] | g). Then
〈〈1 ` νa2(f[a2/a1] | g)〉〉 is as on the right.

f

g ≡
f
g

F. Bonchi, R. Piedeleu, P. Sobocinski, and F. Zanasi 37:13

6.2 Semantics
In order to give semantics to the calculus, we assume a set A of actions, α, β, Since,
we will consider different sets of actions (for Hoare and Milner synchronisation), we assume
them to be functions of type N →M for some monoid (M,+, 0). The support of an action
α is the set {ai | α(ai) 6= 0}. The alphabet of α, written al(α) is identified with its support.

For Hoare synchronisation, the monoid M is (2,∪, 0), while for Milner it is (Z,+, 0). In
both cases, we will write ai for the function mapping the name ai to 1 and all the others to
0. For Milner synchronisation, write ai for the function mapping ai to −1.

To give semantics to processes, we need a process declaration for each f ∈ V . That is, an
expression f:=

∑
i∈I αi.Pi, for some finite set I, αi ∈ A and processes Pi such that

{a1, . . . aar(f)} ⊆
⋃
i∈I

al(αi) ∪
⋃
i∈I

al(Pi) (12)

The basic behaviour of process declarations is captured by the three rules below.

f 0−→ f

f:=
∑
i∈I

αi.Pi

f αi−→ Pi

P
α−→ P ′

Pσ
α◦σ−−→ P ′σ

(13)

I Example 13. Recall f and g from Example 12. Assume declarations f:=a1.νa2(f[a2/a1] | g)
and g:=a1.g + a2.g. Observe that they respect (12). We have that g a1−→ g and g a2−→ g while
f a1−→ νa2(f[a2/a1] | g). Similarly f[a2/a1] a2−→ (νa2(f[a2/a1] | g))[a2/a1].

To define the semantics of parallel and restriction, we need to distinguish between the Hoare
and Milner synchronisation patterns.

Hoare synchronisation. Here actions are functions α : N → 2, which can equivalently be
thought of as subsets of N . The synchronisation mechanism presented below is analogous
to the one used in CSP [28]. The main difference is the level of concurrency: the classical
semantics [28] is purely interleaving, while for us it is a step semantics. Essentially, in P |Q,
the processes P and Q may evolve independently on the non-shared names, i.e. the evolution
of two or more processes may happen at the same time. It is for this reason that our actions
are sets of names. The operational semantics of parallel and restriction is given by rules

P
α−→ P ′ Q

β−→ Q′ α ∩ al(Q) = β ∩ al(P)

P |Q α∪β−−−→ P ′|Q′

P
α−→ P ′

νai(P) α\{ai}−−−−→ νai(P ′)
(14)

We write α−→H for the transition systems generated by the rules (13), (14). By a simple
inductive argument, using (12) as base case, we see that for all processes P , if P α−→ P ′ then
α ⊆ al(P). The rule for parallel, therefore, ensures that P and Q synchronise over all of
their shared names. The rule for restriction hides ai from the environment. For instance, if
α = {ai}, then νai(P) ∅−→ νai(P ′). If α = {aj} with aj 6= ai, then νai(P) {aj}−−−→ νai(P ′).

I Example 14. Recall f and g from Example 13. We have that f a1−→H νa2(f[a2/a1] | g).
From νa2(f[a2/a1] | g), there are two possibilities: either f[a2/a1] and g synchronise on a2,
and in this case we have νa2(f[a2/a1] | g) ∅−→, or g proceeds without synchronising on a1,
therefore νa2(f[a2/a1] | g) {a1}−−−→H since a1 belongs to al(g) and not to al(f[a2/a1]).

CONCUR 2019

37:14 Bialgebraic Semantics for String Diagrams

Milner synchronisation. We take A = ZN . Sum of functions, denoted by +, is defined
pointwise and we write 0 for its unit, the constant 0 function.

P
α−→ P ′ Q

β−→ Q′

P |Q α+β−−−→ P ′|Q′
P

α−→ P ′

α(ai) = 0
νai(P) α−→ νai(P ′)

(15)

We write α−→M for the transition system generated by the rules (13), (15).
Functions in ZN to represent concurrent occurrences of CCS send and receive actions.

A single CCS action a is the function mapping a to 1 and all other names to 0. Similarly,
the action ā maps a to −1 and the other names to 0. The silent action τ is the function
0. With this in mind, it is easy to see that, similarly to CCS, the rightmost rule forbids
νai(P) α−→ νai(P ′) whenever α = ai or α = āi. CCS-like synchronisation is obtained by the
leftmost rule: when α = ai and β = āi, one has that P |Q 0−→ P ′|Q′.

A simple inductive argument confirms that P 0−→ P for any process P . Then, by the
leftmost rule again, one has that whenever Q β−→ Q′, then P |Q β−→ P |Q′. Note, however, that
as in § 6.2, while our synchronisation mechanism is essentially Milner’s CSS handshake, our
semantics is not interleaving and allows for step concurrency. It is worth remarking that the
operational rules in (15) have already been studied by Milner in its work on SCCS [37].

Semantic correspondence. For an action α : N → M with al(α) ⊆ {a1, . . . an}, we write
n ` α for the restriction {a1, . . . , an} →M . Define coalgebras βb, βw : Σ→ Pκ(L ; SCW(Σ) ; L)
for each f ∈ Σn,0 where f:=

∑
i∈I αi.Pi as

βb(f) = βw(f) =
{(
n ` αi, 〈〈Pi〉〉, •

)
| i ∈ I} ∪ {

(
n ` 0, f, •

)}
.

For both βb and βw, L is the span N |·|←− A∗ |·|−→ N, but A = 2 for βb and A = Z for βw.
Via the distributive law (§ 5.2) for the black Frobenius, we obtain the coalgebra

β]b : SCW(Σ) → Pκ(L ; SCW(Σ) ; L). Via the white Frobenius, we obtain β]w : SCW(Σ) →
Pκ(L ; SCW(Σ) ; L). We write c β−→

α b
d for (α, β, d) ∈ β]b(c) and c β−→

α w
d for (α, β, d) ∈ β]w(c).

The correspondence can now be stated formally.

I Theorem 15. Let n ` P and n ` α such that al(α) ⊆ al(P).

Hoare is black. If P α−→H P ′ then 〈〈P〉〉
n n`α−−−→• b

〈〈P ′〉〉
n . Vice versa, if

〈〈P〉〉
n n`α−−−→• b d

n then there is n ` P ′ s.t. P α−→H P
′ and 〈〈P ′〉〉

n = d
n .

Milner is white. If P α−→M P ′ then 〈〈P〉〉
n n`α−−−→• w

〈〈P ′〉〉
n . Vice versa, if

〈〈P〉〉
n n`α−−−→• w d

n then there is n ` P ′ s.t. P α−→M P ′ and 〈〈P ′〉〉
n = d

n .

I Example 16. We illustrate the semantic correspondence by returning to Example 13.
Diagrammatically, it yields the following transitions:

f
g

1−→• b

f
g and

f
g

0−→• b

f
gg

0−→• b
. . .

F. Bonchi, R. Piedeleu, P. Sobocinski, and F. Zanasi 37:15

7 Related and Future Work

The terminology Hoare and Milner synchronisation is used in Synchronised Hyperedge
Replacement (SHR) [20, 33]. Our work is closely related to SHR: indeed, the prop SCW(Σ)
has arrows open hypergraphs, where hyperedges are labeled with elements of Σ [5]. To
define a coalgebra β : Σ → FSCW(Σ) is to specify a transition system for each label in Σ.
Then, constructing the coalgebra β] : SCW(Σ)→ FSCW(Σ) from a distributive law amounts to
giving a transition system to all hypergraphs according to some synchronisation policy (e.g.
à la Hoare or à la Milner). SHR systems equipped with Hoare and Milner synchronisation
are therefore instances of our approach. A major difference is our focus on the algebraic
aspects: e.g. since string diagrams can be regarded as syntax as well as combinatorial entities,
their syntactic nature allows for the bialgebraic approach, and simple inductive proofs. The
operational rules in Figure 3 are also those of tile systems [23]. However, in the context of
tiles, transitions are arrows of the vertical category: this forces every state to perform at least
one identity transition. For example, it is not possible to consider empty sets of transitions,
which can be a useful feature in the string diagrammatic approach, see [8].

Amongst the many other related models, it is worth mentioning bigraphs [38]. While also
graphical, bigraphs can be nested hierarchically, a capability that we have not considered.
Moreover, the behaviour functor F in § 5 forces the labels and the arriving states to have
the same sort as the starting states. Therefore, fundamental mobility mechanisms such as
scope-extrusion cannot immediately be addressed within our framework. We are confident,
however, that the solid algebraic foundation we have laid here for the operational semantics
of two-dimensional syntax will be needed to shed light on such concepts as hierarchical
composition and mobility. Some ideas may come from [14].

References
1 Samson Abramsky and Bob Coecke. A Categorical Semantics of Quantum Protocols. In LICS

2004, pages 415–425, 2004. doi:10.1109/LICS.2004.1319636.
2 John Baez and Jason Erbele. Categories In Control. Theory Appl. Categ., 30:836–881, 2015.

arXiv:1405.6881.
3 John Baez and Brendan Fong. A compositional framework for passive linear circuits. J.

Complex Netw., 54:5, 2015.
4 Bard Bloom, Sorin Istrail, and Albert R. Meyer. Bisimulation can’t be traced. J. ACM,

42(1):232–268, 1995.
5 Filippo Bonchi, Fabio Gadducci, Aleks Kissinger, Paweł Sobociński, and Fabio Zanasi. Re-

writing modulo symmetric monoidal structure. In LICS 2016, pages 1–10, 2016.
6 Filippo Bonchi, Joshua Holland, Robin Piedeleu, Paweł Sobociński, and Fabio Zanasi. Dia-

grammatic Algebra: from Linear to Concurrent Systems. In POPL 2019, page 25, 2019.
7 Filippo Bonchi, Robin Piedeleu, Paweł Sobociński, and Fabio Zanasi. Bialgebraic Semantics

for String Diagrams. CoRR, 2019. arXiv:1906.01519.
8 Filippo Bonchi, Robin Piedeleu, Paweł Sobociński, and Fabio Zanasi. Graphical Affine Algebra.

In To appear in LICS 2019, 2019.
9 Filippo Bonchi, Paweł Sobociński, and Fabio Zanasi. A Categorical Semantics of Signal Flow

Graphs. In CONCUR 2014, pages 435–450, 2014.
10 Filippo Bonchi, Paweł Sobociński, and Fabio Zanasi. Full Abstraction for Signal Flow Graphs.

In POPL 2015, pages 515–526, 2015.
11 Filippo Bonchi, Paweł Sobociński, and Fabio Zanasi. The Calculus of Signal Flow Diagrams I:

Linear relations on streams. Inf. Comput., 252:2–29, 2017. doi:10.1016/j.ic.2016.03.002.
12 Filippo Bonchi, Pawel Sobociński, and Fabio Zanasi. Deconstructing Lawvere with distributive

laws. J. Log. Algebr. Meth. Program., 95:128–146, 2018. doi:10.1016/j.jlamp.2017.12.002.

CONCUR 2019

https://doi.org/10.1109/LICS.2004.1319636
http://arxiv.org/abs/1405.6881
http://arxiv.org/abs/1906.01519
https://doi.org/10.1016/j.ic.2016.03.002
https://doi.org/10.1016/j.jlamp.2017.12.002

37:16 Bialgebraic Semantics for String Diagrams

13 Marcello M. Bonsangue, Helle Hvid Hansen, Alexander Kurz, and Jurriaan Rot. Presenting
Distributive Laws. In Algebra and Coalgebra in Computer Science - 5th International Con-
ference, CALCO 2013, Warsaw, Poland, September 3-6, 2013. Proceedings, pages 95–109,
2013.

14 Roberto Bruni, Ugo Montanari, Gordon D. Plotkin, and Daniele Terreni. On Hierarchical
Graphs: reconciling Bigraphs, Gs-monoidal Theories and Gs-graphs. Fundam. Inform., 134(3–
4):287–317, 2014.

15 Maria Grazia Buscemi and Ugo Montanari. A First Order Coalgebraic Model of pi-Calculus
Early Observational Equivalence. In Lubos Brim, Petr Jancar, Mojmír Kretínský, and Antonín
Kucera, editors, CONCUR 2002 - Concurrency Theory, 13th International Conference, Brno,
Czech Republic, August 20-23, 2002, Proceedings, volume 2421 of Lecture Notes in Computer
Science, pages 449–465. Springer, 2002. doi:10.1007/3-540-45694-5_30.

16 Luca Cardelli and Andrew D. Gordon. Mobile ambients. Theor. Comput. Sci., 240(1):177–213,
2000.

17 Giuseppe Castagna, Jan Vitek, and Francesco Zappa Nardelli. The Seal Calculus. Inform.
Comput., 201(1):1–54, 2005.

18 Bob Coecke and Ross Duncan. Interacting Quantum Observables. In ICALP 2008, pages
298–310, 2008.

19 Robert De Simone. Higher-level synchronising devices in Meije-SCCS. Theor. Comput. Sci.,
37:245–267, 1985.

20 Pierpaolo Degano and Ugo Montanari. A model for distributed systems based on graph
rewriting. J. ACM, 34(2):411–449, 1987.

21 Brendan Fong, Paolo Rapisarda, and Paweł Sobociński. A categorical approach to open and
interconnected dynamical systems. In LICS 2016, pages 1–10, 2016.

22 Brendan Fong and David I. Spivak. Hypergraph Categories. CoRR, abs/1806.08304, 2018.
arXiv:1806.08304.

23 Fabio Gadducci and Ugo Montanari. The tile model. In Proof, Language and Interaction:
Essays in Honour of Robin Milner, pages 133–166. MIT Press, 2000.

24 Dan R. Ghica. Diagrammatic Reasoning for Delay-Insensitive Asynchronous Circuits. In
Abramsky Festschrift, pages 52–68, 2013. doi:10.1007/978-3-642-38164-5_5.

25 Jan Friso Groote. Transition system specifications with negative premises. Theor. Comput.
Sci., 118(2):263–299, 1993.

26 David Harel. Statecharts: A visual formalism for complex systems. Sci. Comput. Program.,
8(3):231–274, 1987.

27 C. A. R. Hoare. Communicating Sequential Processes. Commun. ACM, 21(8):666–677, August
1978.

28 C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, Inc., 1985.
29 Martin Hyland and John Power. Lawvere theories and monads. In Computation, Meaning,

and Logic, pages 437–458, 2007.
30 Kurt Jensen. Coloured Petri nets: basic concepts, analysis methods and practical use, volume 1.

Springer Science & Business Media, 2013.
31 Piergiulio Katis, Nicoletta Sabadini, and Robert Frank Carslaw Walters. Span(Graph): an

algebra of transition systems. In AMAST 1997, volume 1349 of LNCS, pages 322–336. Springer,
1997. doi:10.1007/bfb0000479.

32 Bartek Klin. Bialgebras for structural operational semantics: an introduction. Theor. Comput.
Sci., 412(38):5043–5069, 2011.

33 Ivan Lanese and Ugo Montanari. Hoare vs Milner: Comparing Synchronizations in a Graphical
Framework With Mobility. Electr. Notes Theor. Comput. Sci., 154(2):55–72, 2006. doi:
10.1016/j.entcs.2005.03.032.

34 Marina Lenisa, John Power, and Hiroshi Watanabe. Distributivity for endofunctors, pointed
and co-pointed endofunctors, monads and comonads. Electr. Notes Theor. Comput. Sci.,
33:230–260, 2000.

https://doi.org/10.1007/3-540-45694-5_30
http://arxiv.org/abs/1806.08304
https://doi.org/10.1007/978-3-642-38164-5_5
https://doi.org/10.1007/bfb0000479
https://doi.org/10.1016/j.entcs.2005.03.032
https://doi.org/10.1016/j.entcs.2005.03.032

F. Bonchi, R. Piedeleu, P. Sobocinski, and F. Zanasi 37:17

35 Saunders Mac Lane. Categorical Algebra. B. Am. Math. Soc., 71:40–106, 1965.
36 Robin Milner. A Calculus of Communicating Systems. Springer-Verlag, 1982.
37 Robin Milner. Calculi for synchrony and asynchrony. Theor. Comput. Sci., 25(3):267–310,

1983.
38 Robin Milner. The space and motion of communicating agents. Cambridge University Press,

2009.
39 Dusko Pavlovic. Quantum and classical structures in nondeterministic computation. In QI

2009, pages 143–157, 2009.
40 Wolfgang Reisig. Petri nets: an introduction, volume 4. Springer Science & Business Media,

2012.
41 Jurriaan Rot. Enhanced Coinduction. PhD thesis, University of Leiden, 2015.
42 Davide Sangiorgi and David Walker. PI-Calculus: A Theory of Mobile Processes. Cambridge

University Press, 2001.
43 Peter Selinger. A survey of graphical languages for monoidal categories. Springer Lecture

Notes in Physics, 13(813):289–355, 2011.
44 Paweł Sobociński. A non-interleaving process calculus for multi-party synchronisation. In ICE

2009, pages 87–98, 2009. doi:10.4204/EPTCS.12.6.
45 Daniele Turi and Gordon Plotkin. Towards a mathematical operational semantics. In LICS

1997, pages 280–291, 1997.

CONCUR 2019

https://doi.org/10.4204/EPTCS.12.6

A Sound Algorithm for Asynchronous Session
Subtyping
Mario Bravetti
Department of Computer Science / INRIA FoCUS Team, University of Bologna, Italy

Marco Carbone
IT University of Copenhagen, Denmark

Julien Lange
University of Kent, UK

Nobuko Yoshida
Imperial College London, UK

Gianluigi Zavattaro
Department of Computer Science / INRIA FoCUS Team, University of Bologna, Italy

Abstract
Session types, types for structuring communication between endpoints in distributed systems, are
recently being integrated into mainstream programming languages. In practice, a very important
notion for dealing with such types is that of subtyping, since it allows for typing larger classes of
system, where a program has not precisely the expected behavior but a similar one. Unfortunately,
recent work has shown that subtyping for session types in an asynchronous setting is undecidable.
To cope with this negative result, the only approaches we are aware of either restrict the syntax
of session types or limit communication (by considering forms of bounded asynchrony). Both
approaches are too restrictive in practice, hence we proceed differently by presenting an algorithm for
checking subtyping which is sound, but not complete (in some cases it terminates without returning
a decisive verdict). The algorithm is based on a tree representation of the coinductive definition of
asynchronous subtyping; this tree could be infinite, and the algorithm checks for the presence of
finite witnesses of infinite successful subtrees. Furthermore, we provide a tool that implements our
algorithm and we apply it to many examples that cannot be managed with the previous approaches.

2012 ACM Subject Classification Theory of computation → Concurrency

Keywords and phrases Session types, Concurrency, Subtyping, Algorithm

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2019.38

Related Version A full version of this paper is available at https://arxiv.org/abs/1907.00421.

Funding H2020-MSCA-RISE Project 778233 (BEHAPI); EPSRC EP/K034413/1, EP/K011715/1,
EP/L00058X/1, EP/N027833/1, and EP/N028201/1.

1 Introduction

Session types are behavioural types that specify the structure of communication between
the endpoints of a distributed system or the processes of a concurrent program. In recent
years, session types have been integrated into several mainstream programming languages
(see, e.g., [4, 19, 25, 28–30, 32]) where they specify the pattern of interactions that each
endpoint must follow, i.e., a communication protocol. The notion of duality is at the core of
theories based on session types, where it guarantees that each send (resp. receive) action is
matched by a corresponding receive (resp. send) action, and thus rules out deadlocks and
orphan messages. A two-party communication protocol specified as a pair of session types
is “correct” (deadlock free, etc) when these types are dual of each other. Unfortunately, in

© Mario Bravetti, Marco Carbone, Julien Lange, Nobuko Yoshida, and Gianluigi Zavattaro;
licensed under Creative Commons License CC-BY

30th International Conference on Concurrency Theory (CONCUR 2019).
Editors: Wan Fokkink and Rob van Glabbeek; Article No. 38; pp. 38:1–38:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-5193-2914
https://orcid.org/0000-0001-9479-2632
https://orcid.org/0000-0001-9697-1378
https://orcid.org/0000-0002-3925-8557
https://orcid.org/0000-0003-3313-6409
https://doi.org/10.4230/LIPIcs.CONCUR.2019.38
https://arxiv.org/abs/1907.00421
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

38:2 A Sound Algorithm for Asynchronous Session Subtyping

q1

q2 q3

!hq?ok

?ko

!lq q1

q2

!hq !lq ?ok?ko

q1

q2

?hq ?lq !ok!ko

MR MC = MS MS

Figure 1 Video streaming example. MR is the (refined) session type of the client, MC is a
supertype of MR, and MS is the session type of the server.

practice, duality is a too strict prerequisite, since it does not provide programmers with
the flexibility necessary to build practical implementations of a given protocol. A natural
solution for relaxing this rigid constraint is to adopt a notion of (session) subtyping which
lets programmers implement refinements of the specification (given as a session type). In
particular, an endpoint implemented as program P2 with type M2 can always be safely
replaced by another program P1 with type M1 whenever M1 is a subtype of M2 (written
M1 4M2 in this paper).

The two main known notions of subtyping for session types differ in the type of commu-
nication they support: either synchronous (rendez-vous) or asynchronous (over unbounded
FIFO channels). Synchronous session subtyping only allows for a subtype to implement
fewer internal choices (sends), and more external choices (receives), than its supertype.
Hence checking whether two types are related can be done efficiently (quadratic time wrt.
the size of the types [23]). Synchronous session subtyping is of limited interest in modern
programming languages such as Go and Rust, which provide asynchronous communication
over channels. Indeed, in an asynchronous setting, the programmer needs to be able to
make the best of the flexibility given by non-blocking send actions. This is precisely what
the asynchronous session subtyping offers: it widens the synchronous subtyping relation by
allowing the subtype to anticipate send actions, when this does not affect its communication
partner. We illustrate the salient points of the asynchronous session subtyping with Figure 1,
which depicts the hypothetical session types of the client and server endpoints of a video
streaming service, represented as communicating machines – an equivalent formalism [6, 13].
Machine MS (right) is a server which can deal with two types of requests: it can receive
either a message lq (low-quality) or a message hq (high-quality). After receiving a message of
either type, the server replies with ok or ko, indicating whether the request can be fulfilled,
then it returns to its starting state. Machine MC (middle) represents the type of the client.
It is the dual of the server MS (written MS), as required in standard two-party session types
without subtyping. A programmer may want to implement a slightly improved program
which behaves as Machine MR (left). This version requests high-quality (hq) streaming first,
and falls back to low-quality (lq) if the request is denied (it received ko). In fact, machine
MR is an (asynchronous) subtype of machine MC . Indeed, MR is able to receive the same
set of messages as MC , each of the sent messages are also allowed by MC , and the system
consisting of the parallel composition of machines MR and MS is free from deadlocks and
orphan messages. We will use this example in the rest of the paper to illustrate our theory.

Recently, we have proven that checking whether two types are in the asynchronous
subtyping relation is, unfortunately, undecidable [7, 8, 24]. In order to mitigate this negative
result, some theoretical algorithms have been proposed for restricted subclasses of session
types. These restrictions can be divided into two main categories: syntactical restrictions,
i.e., allowing only one type of non-unary branching (internal or external), or adding bounds
to the size of the FIFO communication channels. Both types of restrictions are problematic

M. Bravetti, M. Carbone, J. Lange, N. Yoshida, and G. Zavattaro 38:3

in practice. Syntactic restrictions disallow protocols featuring both types of internal/external
choices, e.g., the machines MC and MS in Figure 1 contain (non-unary) external and internal
choices. On the other hand, applying a bound to the subtyping relation is generally difficult
because (i) it may be undecidable whether such a bound exists, (ii) the channel bounds used
in the implementation (if any) might not be known at compile time, and (iii) very simple
systems, such as the one in Figure 1, require unbounded communication channels.

In this paper, we give an algorithm that can soundly deal with a much larger class
of session types. Rather than imposing syntactical restrictions or bounds, we describe
an algorithm whose termination condition is based on a well-quasi order between pairs of
candidate subtypes. This condition allows us to construct a finite tree representation of the
coinductive definition of asynchronous subtyping, which we use to synthesise intermediate
automata. Finally, we give a sufficient condition for asynchronous subtyping based on a
compatibility relation between these intermediate automata. This compatibility check is
similar to that of subtyping for recursive types [3,16,21,23]. We provide a full implementation
of our algorithm and show that it performs well on examples taken from the literature.

2 Communicating Machines and Asynchronous Subtyping

In this section, we recall the definition of two-party communicating machines, that commu-
nicate over unbounded FIFO channels (§ 2.1), and define asynchronous subtyping for session
types [10,11], which we adapt to communicating machines, following [8] (§ 2.2).

2.1 Communicating Machines
Let A be a (finite) alphabet, ranged over by a, b, etc. We let ω, ω′, etc. range over words in
A∗. The set of send (resp. receive) actions is Act ! = {!}×A, (resp. Act? = {?}×A). The set
of actions is Act = Act ! ∪Act?, ranged over by `, where send action !a puts message a on an
(unbounded) buffer, while receive action ?a represents the consumption of a from a buffer.
We define dir(!a) def= ! and dir(?a) def= ? and let ψ and ϕ range over Act∗. We write · for the
concatenation operator on words.

In this work, we only consider communicating machines which correspond to (two-party)
session types. Hence, we focus on deterministic (communicating) finite-state machines,
without mixed states (i.e., states that can fire both send and receive actions) as in [13,14].

I Definition 1 (Communicating Machine). A communicating machine M is a tuple (Q, q0, δ)
where Q is the (finite) set of states, q0 ∈ Q is the initial state, and δ ∈ Q × Act × Q

is a transition relation such that ∀q, q′, q′′ ∈ Q. ∀`, `′ ∈ Act : (1) (q, `, q′), (q, `′, q′′) ∈ δ

implies dir(`) = dir(`′), and (2) (q, `, q′), (q, `, q′′) ∈ δ implies q′ = q′′. We write q `−→ q′ for
(q, `, q′) ∈ δ, omit unnecessary labels, and write −→∗ for the reflexive transitive closure of −→.

Condition (1) enforces directed states, while Condition (2) enforces determinism.
Given M = (Q, q0, δ), we say that q ∈ Q is final, written q 9, iff ∀q′ ∈ Q. ∀` ∈

Act. (q, `, q′) /∈ δ. A state q ∈ Q is sending (resp. receiving) iff q is not final and ∀q′ ∈ Q. ∀` ∈
Act. (q, `, q′) ∈ δ. dir(`) = ! (resp. dir(`) = ?). We write δ(q, `) for q′ iff (q, `, q′) ∈ δ.

We write q0
`1···`k−−−−→ qk iff there are q1, . . . , qk−1 ∈ Q such that qi−1

`i−→ qi for 1 ≤ i ≤ k.
Given a list of messages ω = a1 · · · ak (k ≥ 0), we write ?ω for the list ?a1 · · ·?ak and !ω for
!a1 · · ·!ak. We write q !−→∗ q′ iff ∃ω ∈ A. q !ω−→ q′ and q ?−→∗ q′ iff ∃ω ∈ A. q ?ω−→ q′ (note that ω
may be empty, in which case q = q′). Given ψ ∈ Act∗ we write snd(ψ) (resp. rcv(ψ)) for the
largest sub-sequence of ψ which consists only of the messages of send (resp. receive) actions.

CONCUR 2019

38:4 A Sound Algorithm for Asynchronous Session Subtyping

2.2 Asynchronous Session Subtyping
Input trees and contexts. In order to formalise the subtyping relation, we use syntactic
constructs used to record the input actions that have been anticipated by a candidate
supertype, e.g., machine M2 in Definition 5, as well as the local states it may reach.

I Definition 2 (Input Tree). An input tree is a term of the grammar: T ::= q | 〈ai : Ti〉i∈I .

In the sequel, we use TQ to denote the input trees over states q ∈ Q. An input context is an
input tree with a “hole” in the place of a sub-term.

I Definition 3 (Input Context). An input context is a term of A ::= []j | 〈ai : Ai〉i∈I ,
where all indices j, denoted by I(A), are distinct and are associated to holes.

For input trees and contexts of the form 〈ai : Ti〉i∈I and 〈ai : Ai〉i∈I , we assume that I 6= ∅,
∀i 6= j ∈ I. ai 6= aj , and that the order of the sub-terms is irrelevant. When convenient, we
use set-builder notation to construct input trees or contexts, e.g., 〈ai : Ti | i ∈ I〉.

Given an input context A and an input context Ai for each i in I(A), we write A[Ai]i∈I(A)

for the input context obtained by replacing each hole []i in A by the input context Ai. We
write A[Ti]i∈I(A) for the input tree where holes are replaced by input trees.

Auxiliary functions. In the rest of the paper we use the following auxiliary functions on
communicating machines. Given a machine M = (Q, q0, δ) and a state q ∈ Q, we define:

cycle(?, q) ⇐⇒ ∃ω ∈ A∗, ω′ ∈ A+, q′ ∈ Q. q ?ω−−→ q′
?ω′

−−→ q′ (with ? ∈ {!, ?}),
in(q) = {a | ∃q′.q ?a−→ q′} and out(q) = {a | ∃q′.q !a−→ q′},
let the partial function inTree(·) be defined as:

inTree(q) =

⊥ if cycle(?, q)
q if in(q) = ∅
〈ai : inTree(δ(q, ?ai))〉i∈I if in(q) = {ai | i ∈ I} 6= ∅

Predicate cycle(?, q) says that, from q, we can reach a cycle with only sends (resp. receives),
depending on whether ? =! or ? =?. The function in(q) (resp. out(q)) returns the messages
that can be received (resp. sent) in q. When defined, inTree(q) returns the tree containing all
sequences of messages which can be received from q until a final or sending state is reached.
Intuitively, inTree(q) is undefined when cycle(?, q) as it would return an infinite tree.

I Example 4. GivenMC (Figure 1), we have inTree(q1)=q1 and inTree(q2)=〈ok : q1, ko : q1〉.

Asynchronous subtyping. We present our definition of asynchronous subtyping (following
the orphan-message-free version from [11]). Our definition is a simple adaptation1 of [8,
Definition 2.4] (given on syntactical session types) to the setting of communicating machines.

I Definition 5 (Asynchronous Subtyping). Let Mi = (Qi, q0i , δi) for i ∈ {1, 2}. R is an
asynchronous subtyping relation on Q1 × TQ2 such that (p, T) ∈ R implies what follows:
1. if p9 then T = q such that q 9;
2. if p is a receiving state then

1 In definitions for syntactical session types, e.g., [26], input contexts are used to accumulate inputs that
precede anticipated outputs; here, having no specific syntax for inputs, we use input trees instead.

M. Bravetti, M. Carbone, J. Lange, N. Yoshida, and G. Zavattaro 38:5

a. if T = q then q is receiving and ∀q′ ∈ Q2 s.t. q
?a−→ q′. ∃p′ s.t. p ?a−→ p′ ∧ (p′, q′) ∈ R;

b. if T = 〈ai : Ti〉i∈I then ∀i ∈ I. ∃p′ s.t. p ?ai−−→ p′ ∧ (p′, Ti) ∈ R;
3. if p is a sending state then

a. if T = q then q is sending and ∀p′ ∈ Q1 s.t. p
!a−→ p′. ∃q′ s.t. q !a−→ q′ ∧ (p′, q′) ∈ R or

b. if T = A[qi]i∈I then let Ai[qi,h]h∈Hi = inTree(qi) and if p !a−→ p′ then
∀i ∈ I.∀h ∈ Hi. ∃q′i,h. qi,h

!a−→ q′i,h∧(p′,A[Ai[q′i,h]h∈Hi]i∈I) ∈ R and, if A[Ai[]h∈Hi]i∈I
is not a single hole, then ¬cycle(!, p).

M1 is an asynchronous subtype ofM2, writtenM1 4M2, if there is an asynchronous subtyping
relation R such that (q01 , q02) ∈ R.

The relationM1 4M2 checks thatM1 is a subtype ofM2 by executingM1 and simulating
its execution with M2. M1 may fire send actions earlier than M2, in which case M2 is allowed
to fire these actions even if it needs to fire some receive actions first. These receive actions are
accumulated in an input context and are expected to be subsequently matched by M1. Due
to the presence of such an input context, the states reached by M2 during the computation
are represented as input trees. The definition first differentiates the type of state p:
Final. In (1), if M1 is in a final state, then M2 is in a final state with an empty input context.
Receiving. Case (2) says that if M1 is in a receiving state, then either (2a) the input context

is empty (T = q) and M1 must be able to receive all messages that M2 can receive; or,
(2b) M1 must be able to consume all the messages at the root of the input tree.

Sending. Case (3) says that if M1 is a sending state then either: (3a) the input context is
empty (T = q) and M2 must be able to send all messages that M1 can send; or, (3b) M2
must be able to send every a thatM1 can send, possibly after some receive actions recorded
in each Ai[qi,h]h∈Hi . Note that whichever receiving path M1 chooses in the continuation,
M2 must be able to simulate it, hence the send action !a should be available at the end of
each receiving path. Moreover, whenever there are accumulated inputs, we require that
cycle(!, p) does not hold, guaranteeing that subtyping preserves orphan-message freedom,
i.e., such accumulated receive actions will be eventually executed.

Observe that Case (2) enforces a form of contra-variance for receive actions, while Case (3)
enforces a form of covariance for send actions. In Figure 1, we have MR4MC (see § 3).

3 A Sound Algorithm for Asynchronous Subtyping

Our subtyping algorithm takes two machinesM1 andM2 and produces three possible outputs:
true, false, or unknown, which respectively indicate that M1 4M2, M1 64M2, or that the
algorithm was unable to prove one of these two results. The algorithm is in three stages. (1)
It builds the simulation tree of M1 and M2 (see Definition 7) that represents sequences of
checks between M1 and M2, corresponding to the checks in the definition of asynchronous
subtyping. Simulation trees may be infinite, but the function terminates whenever: it reaches
a node that cannot be expanded, it visits a node whose label has been seen along the path
from the root, or it expands a node whose ancestors validate a termination condition that
we formalise in Theorem 13. The resulting tree satisfies one of the following conditions: (i)
it contains a leaf that could not be expanded because the node represents an unsuccessful
check between M1 and M2 (in which case the algorithm returns false), (ii) all leaves are
successful final configurations, see Condition (1) of Definition 5, in which case the algorithm
replies true, or (iii) for each leaf n it is possible to identify a corresponding ancestor anc(n).
In this last case the tree and the identified ancestors are passed onto the next stage. (2)
The algorithm divides the finite tree into several subtrees rooted at those ancestors that do

CONCUR 2019

38:6 A Sound Algorithm for Asynchronous Session Subtyping

not have other ancestors above them (see the strategy that we outline on page 10). (3) The
final stage analyses whether each subtree is of one of the two following kinds. (i) All the
leaves in the subtree have the same label as their ancestors: in this case the subtree contains
all the needed subtyping checks. (ii) The subtree is a witness subtree (see Definition 20),
meaning that all the checks that may be considered in continuations of the finite subtree are
guaranteed to be successful as well. If all the identified subtrees are of one of the these two
kinds, the algorithm replies true. Otherwise, it replies unknown.

3.1 Generating Asynchronous Simulation Trees
We first define labelled trees, of which our simulation trees are instances; then, we give the
operational rules for generating a simulation tree from a pair of communicating machines.

I Definition 6 (Labelled Tree). A labelled tree is a tree2 (N,n0, ↪−→,L,Σ,Γ), consisting of
nodes N , root n0 ∈ N , edges ↪−→ ⊆ N × Σ×N , and node labelling function L : N 7−−→ Γ.

Hereafter, we write n σ
↪−→ n′ when (n, σ, n′) ∈↪−→ and write n1

σ1···σk
↪−−−−→ nk+1 when there are

n1, . . . , nk+1, such that ni
σi
↪−→ ni+1 for all 1 ≤ i ≤ k. We write n ↪−→ n′ when n σ

↪−→ n′ for
some σ and the label is not relevant. As usual, we write ↪−→∗ for the reflexive and transitive
closure of ↪−→, and ↪−→+ for its transitive closure. Given an edge label σ ∈ Σ and two node
labels α, β ∈ Γ, we use α σ

↪−→ β as a shorthand for ∀n. L(n) = α⇒ ∃n′. L(n′) = β ∧ n σ
↪−→ n′.

Moreover, we reason up-to tree isomorphism, i.e., two labelled trees are equivalent if there
exists a bijective node renaming that preserves both node labelling and labelled transitions.

We can then define simulation trees, labelled trees representing all possible configurations
reachable by the asynchronous subtyping simulation game.

I Definition 7 (Simulation Tree). Let M1 = (P, p0, δ1) and M2 = (Q, q0, δ2) be two commu-
nicating machines. Their simulation tree, written simtree(M1,M2), is the minimal labelled
tree (N,n0, ↪−→,L,Act, P × TQ), with L(n0) = p0 4 q0, generated by the following rules:

p
?a−→ p′ q

?a−→ q′ in(p) ⊇ in(q)

p4 q
?a
↪−→ p′4 q′

(In)
p

!a−→ p′ q
!a−→ q′ out(p) ⊆ out(q)

p4 q
!a
↪−→ p′4 q′

(Out)

p
?ak−−→ p′ k ∈ I in(p) ⊇ {ai | i ∈ I }

p4〈ai : Ai[qi,j]j∈Ji〉i∈I
?ak
↪−−→ p′4Ak[qk,j]j∈Jk

(InCtx)

p
!a−→ p′ ¬cycle(!, p)

∀j ∈ J.
(
inTree(qj)=Aj [qj,h]h∈Hj ∧ ∀h ∈ Hj .(out(p) ⊆ out(qj,h) ∧ qj,h

!a−→ q′j,h)
)

p4A[qj]j∈J
!a
↪−→ p′4A[Aj [q′j,h]h∈Hj]j∈J

(OutAcc)

Given machines M1 and M2, Definition 7 generates a tree whose nodes are labelled by
terms of the form p4A[qi]i∈I where p represents the state of M1, A represents the receive
actions accumulated by M2, and each qi represents the state of machine M2 after each path
of accumulated receive actions from the root of A to the ith hole. Note that we overload the
symbol 4 used for asynchronous subtyping (Definition 5), however the actual meaning is
always made clear by the context. We comment each rule in detail below.

2 A tree is a connected directed graph without cycles: ∀n ∈ N. n0 ↪−→∗ n ∧ ∀n, n′ ∈ N. n ↪−→+ n′. n 6= n′.

M. Bravetti, M. Carbone, J. Lange, N. Yoshida, and G. Zavattaro 38:7

q1 4 q1

q2 4 q2 q1 4 q1q3 4 q1

q1 4 q2 ok
q2

ko
q2

4q2

q1 4 q2

q3 4 q2

ok
q2

ko
q2

4q1

ok
ok
q2

ko
q2

ko
ok
q2

ko
q2

4q2 ok
q2

ko
q2

4q3

ok
q2

ko
q2

4q1

ok
ok
q2

ko
q2

ko
ok
q2

ko
q2

4q1

ok
ok

ok
q2

ko
q2

ko
ok
q2

ko
q2

ko
ok

ok
q2

ko
q2

ko
ok
q2

ko
q2

4q2

ok
ok
q2

ko
q2

ko
ok
q2

ko
q2

4q1
ok

ok
q2

ko
q2

ko
ok
q2

ko
q2

4q3

ok
ok

ok
q2

ko
q2

ko
ok
q2

ko
q2

ko
ok

ok
q2

ko
q2

ko
ok
q2

ko
q2

4q1

!hq
?ok?ko

!lq
!hq

?ok

?ko

!lq

!hq

?ko

?ok

!lq

!hq

?ok
?ko

!lq

n0

n1 n2n3

n4

n5

n6

n7

n8

n9
n10

n11

n12
n13

n14n15
n16

Figure 2 Part of the simulation tree (solid edges only) and candidate tree forMR 4MC (Figure 1).
The root is circled in thicker line. The node identities are shown at the bottom left of each label.

Rules (In) and (Out) enforce contra-variance of inputs and covariance of outputs, respect-
ively, when no accumulated receive actions are recorded, i.e., A is a single hole. Rule (In)
corresponds to Case (2a) of Definition 5, while rule (Out) corresponds to Case (3a).
Rule (InCtx) is applicable when the input tree A is non-empty and the state p (of M1) is
able to perform a receive action corresponding to any message located at the root of the input
tree (contra-variance of receive actions). This rule corresponds to Case (2b) of Definition 5.
Rule (OutAcc) allows M2 to execute some receive actions before matching a send action
executed by M1. This rule corresponds to Case (3b) of Definition 5. Intuitively, each send
action outgoing from state p must also be eventually executable from each of the states qj
(in M2) which occur in the input tree A[qj]j∈J . The possible combinations of receive actions
executable from each qj before executing !a is recorded in Aj , using inTree(qj). We assume
that the premises of this rule only hold when all invocations of inTree(·) are defined. Each
tree of accumulated receive actions is appended to its respective branch of the input context
A, using the notation A[Aj [q′j,h]h∈Hj]j∈J . The premise out(p) ⊆ out(qj,h) ∧ qj,h

!a−→ q′j,h
guarantees that each qj,h can perform the send actions available from p (covariance of send
actions). The additional premise ¬cycle(!, p) corresponds to that of Case (3b) of Definition 5.

I Example 8. Figure 2 gives a graphical view of the initial part of the simulation tree
simtree(MR,MC). Consider the solid edges only for now. Observe that all branches of the
simulation tree are infinite; some traverse nodes with infinitely many different labels, due to
the unbounded growth of the input trees (e.g., the one repeatedly performing transitions
!hq·?ko·!lq); while others traverse nodes with finitely many distinct labels (e.g., the one
performing first transitions !hq·?ko·!lq and then repeatedly performing !hq·?ok).

We adapt the terminology of [20] and say that a node n of simtree(M1,M2) is a leaf if it
has no successors. A leaf n is successful iff L(n) = p4 q, with p and q final; all other leaves
are unsuccessful. A branch (a full path through the tree) is successful iff it is infinite or
finishes with a successful leaf; otherwise it is unsuccessful. Using this terminology, we relate
asynchronous subtyping (Definition 5) with simulation trees (Definition 7) in Theorem 9.

I Theorem 9. Let M1 = (P, p0, δ1) and M2 = (Q, q0, δ2) be two communicating machines.
All branches in simtree(M1,M2) are successful if and only if M1 4M2.

CONCUR 2019

38:8 A Sound Algorithm for Asynchronous Session Subtyping

3.2 A Simulation Tree-Based Algorithm

Checking whether all branches in simtree(M1,M2) are successful is undecidable. This is a
consequence of the undecidability of asynchronous session subtyping [7, 8, 24]. The problem
follows from the presence of infinite branches that cannot be algorithmically identified. Our
approach is to characterise finite subtrees (called witness subtrees) such that all the branches
that traverse such finite subtrees are guaranteed to be infinite.

The presentation of our algorithm is in three parts. In Part (1), we give the definition
of the kind of finite subtree (of a simulation tree) we are interested in (called candidate
subtrees). In Part (2), we give an algorithm to extract candidate subtrees from a simulation
tree simtree(M1,M2). In Part (3) we show how to check whether a candidate subtree (which
is finite) is a witness of infinite branches (hence successful) in the simulation tree.

Part 1. Characterising finite and candidate sub-trees. We define the candidate subtrees
of a simulation tree, which are finite subtrees accompanied by an ancestor function mapping
each boundary node n to a node located on the path from the root of the tree to n.

I Definition 10 (Finite Subtree). A finite subtree (r,B) of a labelled tree S = (N,n0, ↪−→,
L,Σ,Γ), with r being the subtree root and B the finite set of its leaves (boundary nodes), is
the subgraph of S such that: (1) ∀n∈B. r ↪−→∗ n; (2) ∀n∈B. 6 ∃n′∈B. n ↪−→+ n′; and (3)
∀n ∈ N. r ↪−→∗ n =⇒ ∃n′ ∈ B. n ↪−→∗ n′ ∨n′ ↪−→∗ n. We use nodes(S, r,B) = {n ∈ N | ∃n′ ∈
B. r ↪−→∗ n ↪−→∗ n′} to denote the (finite) set of nodes of the finite subtree (r,B). Notice that
r ∈ nodes(S, r,B) and B ⊆ nodes(S, r,B).

Condition (1) requires that each boundary node can be reached from the root of the subtree.
Condition (2) guarantees that the boundary nodes are not connected, i.e., they are on
different paths from the root. Condition (3) enforces that each branch of the tree passing
through the root r contains a boundary node.

I Definition 11 (Candidate Subtree). Let M1 = (P, p0, δ1) and M2 = (Q, q0, δ2) be two
communicating machines with simtree(M1,M2) = (N,n0, ↪−→,L,Act, P × TQ). A candidate
subtree of simtree(M1,M2) is a finite subtree (r,B) paired with a function anc : B 7−−→
nodes(simtree(M1,M2), r, B)\B such that, for all n ∈ B, we have: anc(n) ↪−→+ n and there
are p,A,A′, I, J, {qj | j ∈ J} and {qi | i ∈ I} such that

L(n) = p4A[qi]i∈I ∧ L(anc(n)) = p4A′[qj]j∈J ∧ {qi | i ∈ I} ⊆ {qj | j ∈ J}

A candidate subtree is a finite subtree accompanied by a total function on its boundary nodes.
The purpose of function anc is to map each boundary node n to a “similar” ancestor n′ such
that: n′ is a node (different from n) on the path from the root r to n (recall that we have
r /∈ B) such that the two labels of n′ and n share the same state p ofM1, and the states ofM2
(that populate the holes in the leaves of the input context of the boundary node) are a subset
of those considered for the ancestor. We write img(anc) for {n | ∃n′ ∈ B. anc(n′) = n}, i.e.,
img(anc) is the set of ancestors of a given candidate subtree.

I Example 12. Figure 2 depicts a finite subtree of simtree(MR,MC). The anc function is
represented by the dashed edges from boundary nodes to ancestors. We can distinguish
distinct candidate subtrees in Figure 2, for instance one rooted at n0 and with boundary
{n2, n6, n11, n14, n16}, another one rooted at n8 and with boundary {n11, n14, n16}.

M. Bravetti, M. Carbone, J. Lange, N. Yoshida, and G. Zavattaro 38:9

Part 2. Identifying candidate subtrees. We now describe how to generate a finite subtree
of the simulation tree, from which we extract candidate subtrees. Since simulation trees are
potentially infinite, we need to identify termination conditions (i.e., conditions on nodes that
become the boundary of the generated finite subtree).

We first need to define the auxiliary function extract(A, ω), which checks the presence of
a sequence of messages ω in an input context A, and extracts the residual input context.

extract(A, ω) =

A if ω = ε

extract(Ai, ω′) if ω = ai · ω′,A = 〈aj : Aj〉j∈J , and i ∈ J
⊥ otherwise

Our termination condition is formalised in Theorem 13 below. This result follows from
an argument based on the finiteness of the states of M1 and of the sets of states from M2
(which populate the holes of the input contexts in the labels of the nodes in the simulation
tree). We write minHeight(A) for the smallest heighti(A), with i ∈ I(A), where heighti(A) is
the length of the path from the root of the input context A to the ith hole.

I Theorem 13. Let M1 = (P, p0, δ1) and M2 = (Q, q0, δ2) be two communicating machines
with simtree(M1,M2) = (N,n0, ↪−→,L,Act, P × TQ). For each infinite path n0 ↪−→ n1 ↪−→
n2 · · · ↪−→ ni ↪−→ · · · there exist i < j < k, with

L(ni) = p4Ai[qh]h∈Hi L(nj) = p4Aj [q′h]h∈Hj L(nk) = p4Ak[q′′h]h∈Hk

s.t. {q′h | h ∈ Hj} ⊆ {qh | h ∈ Hi} and {q′′h | h ∈ Hk} ⊆ {qh | h ∈ Hi}; and, for ni
ψ
↪−→ nj:

i) rcv(ψ) = ω1 · ω2 with ω1 s.t. ∃t, z. extract(Ai, ω1) = []t ∧ extract(Ak, ω1) = []z, or
ii) minHeight(extract(Ai, rcv(ψ))) ≤ minHeight(extract(Ak, rcv(ψ))).

Intuitively, the theorem above says that for each infinite branch in the simulation tree, we
can find special nodes ni, nj and nk such that the set of states in Aj (resp. Ak) is included
in that of Ai and the receive actions in the path from ni to nj are such that: either (i) only
a precise prefix of such actions will be taken from the receive actions accumulated in ni and
nk or (ii) all of them will be taken from the receive actions in which case nk must have
accumulated more receive actions than ni. Case (i) deals with infinite branches with only
finite labels (hence finite accumulation) while case (ii) considers those cases in which there
is unbounded accumulation along the infinite branch.
Based on Theorem 13, the following algorithm generates a finite subtree of simtree(M1,M2):

Compute, initially starting from the root, the branches3 of simtree(M1,M2) stopping
when one of the following types of node is encountered: a leaf, or a node n with a label
already seen along the path from the root to n, or a node nk (with the corresponding
node ni) as those described by the above Theorem 13.

I Example 14. Consider the finite subtree in Figure 2. It is precisely the finite subtree
identified as described above: we stop generating the simulation tree at nodes n2, n6, n11,
and n14 (because their labels have been already seen at the corresponding ancestors n0,
n4, n8, and n12) and n16 (because of the ancestors n8 and n12 such that n8, n12 and n16
correspond to the nodes ni, nj and nk of Theorem 13).

3 The order nodes are generated is not important (our implementation uses a DFS approach, cf. §4).

CONCUR 2019

38:10 A Sound Algorithm for Asynchronous Session Subtyping

When the computed finite subtree contains an unsuccessful leaf, we can immediately conclude
that the considered communicating machines are not related. Otherwise, we extract smaller
finite subtrees (from the subtree) that are potential candidates to be subsequently checked.

We define the anc function as follows: for boundary nodes n with an ancestor n′
such that L(n) = L(n′) we define anc(n) = n′; for boundary nodes nk (with the
corresponding node ni) as those described by in Theorem 13 we define anc(nk) = ni.
The extraction of the finite subtrees is done by characterising their roots (and taking
as boundary the reachable boundary nodes): let P = {n ∈ img(anc) | ∃n′. anc(n′) =
n ∧ L(n) 6= L(n′)}, the set of such roots is R = {n ∈ P | 6 ∃n′ ∈ P. n′ ↪−→+ n}.

Intuitively, to extract subtrees, we restrict our attention to the set P of ancestors with a
label different from their corresponding boundary node (corresponding to branches that can
generate unbounded accumulation). We then consider the forest of subtrees rooted in nodes
in P without an ancestor in P . Notice that for successful leaves we do not define anc; hence,
only extracted subtrees without successful nodes have a completely defined anc function.
These are candidate subtrees that will be checked as described in the next step.

I Example 15. Consider the finite subtree in Figure 2. Following the strategy above we ex-
tract from it the candidate subtree rooted at n8 (white nodes), with boundary {n11, n14, n16}.
Note that each ancestor node above n8 has a label identical to its boundary node.

Part 3. Checking whether the candidate subtrees are witnesses of infinite branches.
The final step of our algorithm consists in verifying a property on the identified candidate
subtrees which guarantees that all branches traversing the root of the candidate subtree are
infinite, hence successful. A candidate subtree satisfies this property when it is also a witness
subtree, which is the key notion (Definition 20) presented in this third part.

In order for a subtree to be a witness, we require that any behaviour in the simulation tree
going beyond the subtree is the infinite repetition of the behaviour already observed in the
considered finite subtree. This infinite repetition is only possible if whatever receive actions
are accumulated in the input context A (using Rule (OutAcc)) are eventually executed by the
candidate subtype M1 in Rule (InCtx). The compatibility check between what receive actions
can be accumulated and what is eventually executed is done by first synthesising a pair
of intermediate automata from a candidate subtree, that represent the possible (repeated)
accumulation of the candidate supertype M2 and the possible (repeated) receive actions
of the candidate subtype M1, and then by checking that these automata are compatible.
For convenience, we define these intermediate automata as a system of (possibly) mutually
recursive equations, which we call a system of input tree equations.

I Definition 16 (Input Tree Equations). Given a set of variables V, ranged over by X, an
input tree definition is a term of the grammar E ::= X | 〈ai : Ei〉i∈I | 〈Ei〉i∈I .
A system of input tree equations is a tuple G = (V, X0,E) consisting of a set of variables V,
an initial variable X0 ∈ V, and with E consisting of exactly one input tree definition X def= E,
with E ∈ TV , for each X ∈ V, where TV denotes the input tree definitions on variables V.

Given an input tree definition of the form 〈ai : Ei〉i∈I or 〈Ei〉i∈I , we assume that I 6= ∅,
∀i 6= j ∈ I. ai 6= aj , and that the order of the sub-terms is irrelevant. Whenever convenient,
we use set-builder notation to construct an input tree definition, e.g., 〈Ei | i ∈ I〉. In an
input tree equation, the construct 〈ai : Ei〉i∈I represents the capability of accumulating (or
actually executing) the receive actions on each message ai then behaving as in Ei. The
construct 〈Ei〉i∈I represents a silent choice between the different capabilities Ei.

M. Bravetti, M. Carbone, J. Lange, N. Yoshida, and G. Zavattaro 38:11

X2,n8

X2,n9X2,n10

X2,n12

X2,n13 X2,n15

X0
?ko
?ok

?ok?ko
?ko ?ok

?ko ?ok
?ok?ko

Yn8

Yn9

Yn10Yn12

Yn13

Yn15

?ok

?ko?ok

?ko

G G′

Figure 3 Graphical view of the input tree equations for MR 4MC (Figure 1). The starting
variables are X0 and Yn8 . Silent choices are diamond-shaped nodes, other nodes are rectangles.

I Definition 17 (Input Tree Compatibility). Given two systems of input tree equations
G = (V, X0,E) and G′ = (V ′, X ′0,E′), such that V ∩V ′ = ∅, we say that G is compatible with
G′, written G v G′, if there exists a relation R ⊆ TV × T ′V s.t. (X0, X

′
0) ∈ R and:

if (X,E) ∈ R then (E′, E) ∈ R with X def= E′;

if (E,X) ∈ R then (E,E′) ∈ R with X def= E′;
if (〈Ei〉i∈I , E) ∈ R then ∀i ∈ I. (Ei, E) ∈ R;
if (E, 〈Ei〉i∈I) ∈ R then ∀i ∈ I. (E,Ei) ∈ R;
if (〈ai : Ei〉i∈I , 〈aj : E′j〉j∈J) ∈ R then I ⊆ J and ∀i ∈ I. (Ei, E′i) ∈ R.

Intuitively, G v G′ verifies the compatibility between G, which represents the receive actions
that can be accumulated in the context A, and G′, which represents the receive actions that
can be actually executed. The first two items of Definition 17 let a variable be replaced by
its definition. The next two items explore all the successors of silent choices. The last item
guarantees that all the receive actions accumulated in G, cf. Rule (OutAcc), can be actually
matched by receive actions in G′, cf. Rule (InCtx).

I Example 18. A graphical representations of two systems of input tree equations is in
Figure 3. We have G v G′ since all non-silent choices have the same outgoing transitions.

Before giving the definition of witness subtree, we introduce a few auxiliary functions on
which it relies. Given ω ∈ A∗, and a state q ∈ Q, we define accTree(q, ω) as follows:

accTree(q, ω) =

[q]k with k fresh if ω = ε

A[accTree(q′i, ω′)]i∈I if ω = a · ω′,A[qi]i∈I = inTree(q),∀i∈I. qi
!a−→ q′i

⊥ otherwise

Function accTree(q, ω) is a key ingredient of the witness subtree definition as it allows for
the construction of the accumulation of receive actions (represented as an input tree) that is
generated from a state q mimicking the sequence of send actions sending the messages in ω.

We use the auxiliary function minAcc(n, q, ψ) below to ensure that the effect of performing
the transitions from an ancestor to a boundary node is that of increasing (possibly non-
strictly) the accumulated receive actions. Here, n represents a known lower bound for the
length of a sequence of receive actions accumulated in an input context A, i.e., the length of
a path from the root of A to one of its holes. Assuming that this hole contains the state q,
the function returns a lower bound for the length of such a sequence of accumulated receive
actions after the transitions in ψ have been executed. Formally, given a natural number n, a
sequence of action ψ ∈ Act∗, and a state q ∈ Q we define this function as follows:

CONCUR 2019

38:12 A Sound Algorithm for Asynchronous Session Subtyping

minAcc(n, q, ψ)=

n if ψ = ε

minAcc(n− 1, q, ψ′) if ψ = ?a · ψ′ ∧ n > 0
mini∈IminAcc(n+heighti(A), qi, ψ′) if ψ=!a·ψ′∧accTree(q, a)=A[qi]i∈I

⊥ otherwise

I Example 19. Consider the transitions from node n7 to n9 in Figure 2. There are two
send actions !lq and !hq that cannot be directly fired from state q2 which is a receiving
state; the effect is to accumulate receive actions. Such an accumulation is computed by
accTree(q2, lq · hq) = 〈ko : 〈ko : q2, ok : q2〉, ok : 〈ko : q2, ok : q2〉〉. For this sequence
of transitions, the effect on the (minimal) length of the accumulated receive actions can
be computed by minAcc(0, q2, !lq·!hq) = 2; meaning that before executing the sequence of
transitions !lq·!hq state q2 has not accumulated receive actions in front, while at the end an
input context with minimal depth 2 is generated as accumulation.

We finally give the definition of witness subtree.

I Definition 20 (Witness Subtree). Let M1 = (P, p0, δ1) and M2 = (Q, q0, δ2) be two
communicating machines with simtree(M1,M2) = (N,n0, ↪−→,L,Act, P × TQ). A candidate
subtree of simtree(M1,M2) with root r and boundary B is a witness if the following holds:
1. For all n ∈ B, given ψ such that anc(n)

ψ
↪−→ n, we have |rcv(ψ)| > 0.

2. For all n ∈ img(anc) and n′ ∈ img(anc) ∪B such that n
ψ
↪−→ n′, L(n) = p4A[qi]i∈I , and

L(n′) = p′4A′[qj]j∈J , we have that ∀i ∈ I:
a. {qh | h ∈ H s.t. accTree(qi, snd(ψ)) = A′′[qh]h∈H} ⊆ {qj | j ∈ J};
b. if n′ ∈ B then minAcc(minHeight(A), qi, ψ) ≥ minHeight(A).

3. G v G′ where
a. G = ({X0} ∪ {Xq,n | q ∈ Q,n ∈ nodes(S, r,B)\B}, X0,E) with E defined as follows:

i. X0
def= T{Xq,r/q | q ∈ Q}, with L(r) = p4T

ii. Xq,n
def={

〈Xq,tr(n′) | ∃a.n
?a
↪−→ n′〉 if ∃a.n ?a

↪−→
〈A[Xq′

i
,tr(n′)]i∈I | ∃a.n

!a
↪−→ n′ ∧ inTree(q)=A[qi]i∈I∧ ∀i∈I.qi

!a−→ q′i〉 otherwise
b. G′ = ({Yn | n ∈ nodes(S, r,B)\B}, Yr,E′) with E′ defined as follows:

Yn
def=

{
〈Ytr(n′) | n

!a
↪−→ n′〉 if ∃n′.n

!a
↪−→ n′

〈a : Ytr(n′) | n
?a
↪−→ n′〉 if ∃n′.n

?a
↪−→ n′

with tr(n) = n, if n 6∈ B;
tr(n) = anc(n), otherwise.

Condition (1) requires the existence of a receive transition between an ancestor and
a boundary node. This implies that if the behaviour beyond the witness subtree is the
repetition of behaviour already observed in the subtree, then there cannot be send-only
cycles. Condition (2a) requires that the transitions from ancestors to boundary nodes (or to
other ancestors) are such that they include those behaviour that can be computed by the
accTree function. We assume that this condition does not hold if accTree(qi, snd(ψ)) = ⊥ for
any i ∈ I; hence the states qi of M2 in an ancestor are able to mimic all the send actions
performed by M1 along the sequences of transitions in the witness subtree starting from the
considered ancestor. Condition (2b) ensures that by repeating transitions from ancestors
to boundary nodes, the accumulation of receive actions is, overall, increasing. In other
words, the rate at which accumulation is taking place is higher than the rate at which the
context is reduced by Rule (InCtx). Condition (3) checks that the receive actions that can be

M. Bravetti, M. Carbone, J. Lange, N. Yoshida, and G. Zavattaro 38:13

accumulated by M2(represented by G) and those that are expected to be actually executed
by M1 (represented by G′) are compatible. In G, there is an equation for the root node and
for each pair consisting of a local state in M2 and a node n in the witness subtree. The
equation for the root node is given in (3(a)i), where we simply transform an input context
into an input tree definition. The other equations are given in (3(a)ii), where we use the
partial function inTree(q). Each equation represents what can be accumulated by starting
from node n (focusing on local state q). In G′, there is an equation for each node n in the
witness subtree, as defined in (3b) There are two types of equations depending on type of
transitions outgoing from node n. A send transition leads to silent choices, while receive
transitions generate corresponding receive choices.

I Example 21. The candidate subtree rooted at n8 in Figure 2 satisfies Definition 2. (1)
Each path from an ancestor to a boundary node includes at least one receive action. (2a)
For each sequence of transitions from an ancestor to a boundary node (or another ancestor)
the behaviour of the states of M2, as computed by the accTree function, has already been
observed. (2b) For each sequence of transitions from an ancestor to a boundary node, the
rate at which receive actions are accumulated is higher than or equal to the rate at which
they are removed from the accumulation. (3) The systems of input tree equations G (3a)
and G′ (3b) are given in Figure 3, and are compatible, see Example 18.

We conclude by stating our main result; given a simulation tree with a witness subtree
with root r, all the branches in the simulation tree traversing r are infinite (hence successful).

I Theorem 22. Let M1 = (P, p0, δ1) and M2 = (Q, q0, δ2) be two communicating machines
with simtree(M1,M2) = (N,n0, ↪−→,L,Act, P ×TQ). If simtree(M1,M2) has a witness subtree
with root r then for every node n ∈ N such that r ↪−→∗ n there exists n′ such that n ↪−→ n′.

Hence, we can conclude that if the candidate subtrees of simtree(M1,M2) identified
following the strategy explained in Part (2) are also witness subtrees, then we have M1 4M2.
I Remark 23. When our algorithm finds a successful leaf, a previously seen label, or a witness
subtree in each branch then the machines are in the subtyping relation. If an unsuccessful
leaf is found (while generating the initial finite subtree as described in Part (2)), then the
machines are not in the subtyping relation. In all other cases, the algorithm is unable to
give a decisive verdict (i.e., the result is unknown). There are two possible causes for an
unknown result: either (i) it is impossible to extract a forest of candidate subtrees (i.e., there
are successful leaves below some ancestor) or (ii) some candidate subtree is not a witness.

4 Evaluation, Related Work, and Conclusions

Evaluation. To evaluate the cost and applicability of our algorithm, we have produced a
faithful implementation of it, which constructs the simulation tree in a depth-first search
manner, while recording the nodes visited in different branches to avoid re-computing several
times the same subtrees. We have run our tool on 174 tests which were either taken from
the literature on asynchronous subtyping [10, 24], or handcrafted to test the limits of our
approach. All of these tests terminate under a second. Out of these tests, 92 are negative (the
types are not in the subtyping relation) and our tool gives the expected result (false) for all
of them. The other 82 tests are positive (the types are in the subtyping relation) and our tool
gives the expected result (true) for all but 8 tests, for which it returns unknown. All of these
8 examples feature complex accumulation patterns that our theory cannot recognise, e.g.,
Example 24. The implementation and our test data are available on our GitHub repository [5].

CONCUR 2019

38:14 A Sound Algorithm for Asynchronous Session Subtyping

The implementation includes an additional optimisation which performs a check for M2 4M1
(relying on a previous result showing that M1 4M2 ⇐⇒ M2 4M1 [7, 24]) when the result
of checking M1 4M2 is unknown.

I Example 24. Given the machines below, simtree(M1,M2) contains infinitely many nodes
with labels of the form: q1 4〈a : 〈a : 〈a : 〈· · ·〉, b : q3〉, b : q3〉, b : q3〉.

M1: q1q2 q5

q4q3

?a

!x

?b

!x !x
!x M2: q1q2 q3

?a

!x

?b
!x

Each of these nodes has two successors, one where ?a is fired (the machines stay in the larger
loop), and one where ?b is fired (the machines move to their smaller loop). The machines
can always enter this send-only cycle, hence Condition (1) of Definition 20 never applies.

Related work. Gay and Hole [16, 17] introduced (synchronous) subtyping for session types
and show it is decidable. Mostrous et al. [27] adapted the notion of session subtyping to
asynchronous communication, by introducing delayed inputs. Later, Chen et al. [10, 11]
provided an alternative definition prohibiting orphan messages, we used this definition in
this work. Recently, asynchronous subtyping was shown to be undecidable by encoding it as
an equivalent question in the setting of Turing machines [24] and queue machines [7]. Recent
work [7, 8, 24] investigated restrictions to achieve decidability, these restrictions are either on
the size of the FIFO channels or syntactical. In the latter case, we recall the single-out and
single-in restrictions, i.e., where all output (respectively input) choices are singletons.

The relationship between communicating machines and (multiparty asynchronous) session
types has been studied in [13,14]. Communicating machines are Turing-complete, hence most
of their properties are undecidable [6]. Many variations have been introduced in order to
recover decidability, e.g., using (existential or universal) bounds [18], restricting to different
types of topologies [22, 31], or using bag or lossy channels instead of FIFO queues [1, 2, 9, 12].

Conclusions and future work. We have proposed a sound algorithm for checking asyn-
chronous session subtyping, showing that it is still possible to decide whether two types are
related for many nontrivial examples. Our algorithm is based on a (potentially infinite) tree
representation of the coinductive definition of asynchronous subtyping; it checks for the pres-
ence of finite witnesses of infinite successful subtrees. We have provided an implementation
and applied it to examples that cannot be recognised by previous approaches. Although the
(worst-case) complexity of our algorithm is rather high (the termination condition expects to
encounter a set of states already encountered, of which there may be exponentially many),
our implementation shows that it actually terminates under a second for machines of size
comparable to typical communication protocols used in real programs, e.g., Go programs
feature between three and four communication primitives per channel and whose branching
construct feature two branches, on average [15].

As future work, we plan to enrich our algorithm to recognise subtypes featuring more
complex accumulation patterns, e.g., Example 24. Moreover, due to the tight correspondence
with safety of communicating machines [24], we plan to investigate the possibility of using
our approach to characterise a novel decidable subclass of communicating machines.

M. Bravetti, M. Carbone, J. Lange, N. Yoshida, and G. Zavattaro 38:15

References
1 Parosh Aziz Abdulla, Ahmed Bouajjani, and Bengt Jonsson. On-the-Fly Analysis of Systems

with Unbounded, Lossy FIFO Channels. In CAV 1998, pages 305–318, 1998. doi:10.1007/
BFb0028754.

2 Parosh Aziz Abdulla and Bengt Jonsson. Verifying Programs with Unreliable Channels. In
(LICS 1993), pages 160–170, 1993. doi:10.1109/LICS.1993.287591.

3 Roberto M. Amadio and Luca Cardelli. Subtyping Recursive Types. ACM Trans. Program.
Lang. Syst., 15(4):575–631, 1993. doi:10.1145/155183.155231.

4 Davide Ancona, Viviana Bono, Mario Bravetti, Joana Campos, Giuseppe Castagna, Pierre-
Malo Deniélou, Simon J. Gay, Nils Gesbert, Elena Giachino, Raymond Hu, Einar Broch
Johnsen, Francisco Martins, Viviana Mascardi, Fabrizio Montesi, Rumyana Neykova, Nicholas
Ng, Luca Padovani, Vasco T. Vasconcelos, and Nobuko Yoshida. Behavioral Types in Pro-
gramming Languages. Foundations and Trends in Programming Languages, 3(2-3):95–230,
2016. doi:10.1561/2500000031.

5 The Authors. A sound algorithm for asynchronous session subtyping. https://github.com/
julien-lange/asynchronous-subtyping, 2019.

6 Daniel Brand and Pitro Zafiropulo. On Communicating Finite-State Machines. J. ACM,
30(2):323–342, 1983. doi:10.1145/322374.322380.

7 Mario Bravetti, Marco Carbone, and Gianluigi Zavattaro. Undecidability of asynchronous
session subtyping. Inf. Comput., 256:300–320, 2017.

8 Mario Bravetti, Marco Carbone, and Gianluigi Zavattaro. On the boundary between decidab-
ility and undecidability of asynchronous session subtyping. Theor. Comput. Sci., 722:19–51,
2018. doi:10.1016/j.tcs.2018.02.010.

9 Gérard Cécé, Alain Finkel, and S. Purushothaman Iyer. Unreliable Channels are Easier to Verify
Than Perfect Channels. Inf. Comput., 124(1):20–31, 1996. doi:10.1006/inco.1996.0003.

10 Tzu-Chun Chen, Mariangiola Dezani-Ciancaglini, Alceste Scalas, and Nobuko Yoshida. On
the Preciseness of Subtyping in Session Types. Logical Methods in Computer Science, 13(2),
2017. doi:10.23638/LMCS-13(2:12)2017.

11 Tzu-Chun Chen, Mariangiola Dezani-Ciancaglini, and Nobuko Yoshida. On the Preciseness of
Subtyping in Session Types. In PPDP 2014, pages 146–135. ACM Press, 2014.

12 Lorenzo Clemente, Frédéric Herbreteau, and Grégoire Sutre. Decidable Topologies for Com-
municating Automata with FIFO and Bag Channels. In CONCUR 2014, pages 281–296, 2014.
doi:10.1007/978-3-662-44584-6_20.

13 Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty Session Types Meet Communicating
Automata. In ESOP 2012, pages 194–213, 2012. doi:10.1007/978-3-642-28869-2_10.

14 Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty Compatibility in Communicating
Automata: Characterisation and Synthesis of Global Session Types. In ICALP 2013, pages
174–186, 2013. doi:10.1007/978-3-642-39212-2_18.

15 N. Dilley and J. Lange. An Empirical Study of Messaging Passing Concurrency in Go
Projects. In 2019 IEEE 26th International Conference on Software Analysis, Evolution and
Reengineering (SANER), pages 377–387, February 2019. doi:10.1109/SANER.2019.8668036.

16 Simon J. Gay and Malcolm Hole. Types and Subtypes for Client-Server Interactions. In ESOP
1999, pages 74–90, 1999. doi:10.1007/3-540-49099-X_6.

17 Simon J. Gay and Malcolm Hole. Subtyping for session types in the pi calculus. Acta Inf.,
42(2-3):191–225, 2005. doi:10.1007/s00236-005-0177-z.

18 Blaise Genest, Dietrich Kuske, and Anca Muscholl. On Communicating Automata with
Bounded Channels. Fundam. Inform., 80(1-3):147–167, 2007. URL: http://content.
iospress.com/articles/fundamenta-informaticae/fi80-1-3-09.

19 Raymond Hu and Nobuko Yoshida. Hybrid Session Verification Through Endpoint API
Generation. In FASE 2016, pages 401–418, 2016. doi:10.1007/978-3-662-49665-7_24.

20 Petr Jancar and Faron Moller. Techniques for Decidability and Undecidability of Bisimilarity.
In CONCUR 1999, pages 30–45, 1999. doi:10.1007/3-540-48320-9_5.

CONCUR 2019

https://doi.org/10.1007/BFb0028754
https://doi.org/10.1007/BFb0028754
https://doi.org/10.1109/LICS.1993.287591
https://doi.org/10.1145/155183.155231
https://doi.org/10.1561/2500000031
https://github.com/julien-lange/asynchronous-subtyping
https://github.com/julien-lange/asynchronous-subtyping
https://doi.org/10.1145/322374.322380
https://doi.org/10.1016/j.tcs.2018.02.010
https://doi.org/10.1006/inco.1996.0003
https://doi.org/10.23638/LMCS-13(2:12)2017
https://doi.org/10.1007/978-3-662-44584-6_20
https://doi.org/10.1007/978-3-642-28869-2_10
https://doi.org/10.1007/978-3-642-39212-2_18
https://doi.org/10.1109/SANER.2019.8668036
https://doi.org/10.1007/3-540-49099-X_6
https://doi.org/10.1007/s00236-005-0177-z
http://content.iospress.com/articles/fundamenta-informaticae/fi80-1-3-09
http://content.iospress.com/articles/fundamenta-informaticae/fi80-1-3-09
https://doi.org/10.1007/978-3-662-49665-7_24
https://doi.org/10.1007/3-540-48320-9_5

38:16 A Sound Algorithm for Asynchronous Session Subtyping

21 Dexter Kozen, Jens Palsberg, and Michael I. Schwartzbach. Efficient Recursive Subtyp-
ing. Mathematical Structures in Computer Science, 5(1):113–125, 1995. doi:10.1017/
S0960129500000657.

22 Salvatore La Torre, P. Madhusudan, and Gennaro Parlato. Context-Bounded Analysis
of Concurrent Queue Systems. In TACAS 2008, pages 299–314, 2008. doi:10.1007/
978-3-540-78800-3_21.

23 Julien Lange and Nobuko Yoshida. Characteristic Formulae for Session Types. In TACAS,
volume 9636 of Lecture Notes in Computer Science, pages 833–850. Springer, 2016.

24 Julien Lange and Nobuko Yoshida. On the Undecidability of Asynchronous Session Subtyping.
In FoSSaCS, volume 10203 of Lecture Notes in Computer Science, pages 441–457, 2017.

25 Sam Lindley and J. Garrett Morris. Embedding session types in Haskell. In Haskell 2016,
pages 133–145, 2016. doi:10.1145/2976002.2976018.

26 Dimitris Mostrous and Nobuko Yoshida. Session typing and asynchronous subtyping for the
higher-order π-calculus. Inf. Comput., 241:227–263, 2015. doi:10.1016/j.ic.2015.02.002.

27 Dimitris Mostrous, Nobuko Yoshida, and Kohei Honda. Global Principal Typing in Partially
Commutative Asynchronous Sessions. In ESOP 2009, pages 316–332, 2009. doi:10.1007/
978-3-642-00590-9_23.

28 Rumyana Neykova, Raymond Hu, Nobuko Yoshida, and Fahd Abdeljallal. A Session Type
Provider: Compile-time API Generation for Distributed Protocols with Interaction Refinements
in F]. In CC 2018. ACM, 2018.

29 Dominic A. Orchard and Nobuko Yoshida. Effects as sessions, sessions as effects. In POPL
2016, pages 568–581, 2016. doi:10.1145/2837614.2837634.

30 Luca Padovani. A simple library implementation of binary sessions. J. Funct. Program., 27:e4,
2017. doi:10.1017/S0956796816000289.

31 Wuxu Peng and S. Purushothaman. Analysis of a Class of Communicating Finite State
Machines. Acta Inf., 29(6/7):499–522, 1992. doi:10.1007/BF01185558.

32 Alceste Scalas and Nobuko Yoshida. Lightweight Session Programming in Scala. In ECOOP
2016, pages 21:1–21:28, 2016. doi:10.4230/LIPIcs.ECOOP.2016.21.

https://doi.org/10.1017/S0960129500000657
https://doi.org/10.1017/S0960129500000657
https://doi.org/10.1007/978-3-540-78800-3_21
https://doi.org/10.1007/978-3-540-78800-3_21
https://doi.org/10.1145/2976002.2976018
https://doi.org/10.1016/j.ic.2015.02.002
https://doi.org/10.1007/978-3-642-00590-9_23
https://doi.org/10.1007/978-3-642-00590-9_23
https://doi.org/10.1145/2837614.2837634
https://doi.org/10.1017/S0956796816000289
https://doi.org/10.1007/BF01185558
https://doi.org/10.4230/LIPIcs.ECOOP.2016.21

Domain-Aware Session Types
Luís Caires
Universidade Nova de Lisboa, Portugal

Jorge A. Pérez
University of Groningen, The Netherlands

Frank Pfenning
Carnegie Mellon University, Pittsburgh, PA, USA

Bernardo Toninho
Universidade Nova de Lisboa, Portugal

Abstract
We develop a generalization of existing Curry-Howard interpretations of (binary) session types by
relying on an extension of linear logic with features from hybrid logic, in particular modal worlds
that indicate domains. These worlds govern domain migration, subject to a parametric accessibility
relation familiar from the Kripke semantics of modal logic. The result is an expressive new typed
process framework for domain-aware, message-passing concurrency. Its logical foundations ensure
that well-typed processes enjoy session fidelity, global progress, and termination. Typing also ensures
that processes only communicate with accessible domains and so respect the accessibility relation.

Remarkably, our domain-aware framework can specify scenarios in which domain information
is available only at runtime; flexible accessibility relations can be cleanly defined and statically
enforced. As a specific application, we introduce domain-aware multiparty session types, in which
global protocols can express arbitrarily nested sub-protocols via domain migration. We develop a
precise analysis of these multiparty protocols by reduction to our binary domain-aware framework:
complex domain-aware protocols can be reasoned about at the right level of abstraction, ensuring
also the principled transfer of key correctness properties from the binary to the multiparty setting.

2012 ACM Subject Classification Theory of computation→ Process calculi; Theory of computation
→ Type structures; Software and its engineering → Message passing

Keywords and phrases Session Types, Linear Logic, Process Calculi, Hybrid Logic

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2019.39

Related Version Omitted proofs and extended examples: http://arxiv.org/abs/1907.01318.

Funding Caires and Toninho are supported by NOVA LINCS (Ref. UID/CEC/04516/2019). Pérez
is supported by the NWO VIDI Project No. 016.Vidi.189.046: “Unifying Correctness for Communic-
ating Software”. Pfenning is supported by NSF Grant No. CCF-1718267: “Enriching Session Types
for Practical Concurrent Programming”.

1 Introduction

The goal of this paper is to show how existing Curry-Howard interpretations of session
types [10, 11] can be generalized to a domain-aware setting by relying on an extension of
linear logic with features from hybrid logic [40, 5]. These extended logical foundations of
message-passing concurrency allow us to analyze complex domain-aware concurrent systems
(including those governed by multiparty protocols) in a precise and principled manner.

Software systems typically rely on communication between heterogeneous services; at their
heart, these systems rely on message-passing protocols that combine mobility, concurrency,
and distribution. As distributed services are often virtualized, protocols should span diverse
software and hardware domains. These domains can have multiple interpretations, such as
the location where services reside, or the principals on whose behalf they act. Concurrent

© Luís Caires, Jorge A. Pérez, Frank Pfenning, and Bernardo Toninho;
licensed under Creative Commons License CC-BY

30th International Conference on Concurrency Theory (CONCUR 2019).
Editors: Wan Fokkink and Rob van Glabbeek; Article No. 39; pp. 39:1–39:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-3215-6734
https://orcid.org/0000-0002-1452-6180
https://orcid.org/0000-0002-0746-7514
https://doi.org/10.4230/LIPIcs.CONCUR.2019.39
http://arxiv.org/abs/1907.01318
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

39:2 Domain-Aware Session Types

behavior is then increasingly domain-aware: a partner’s potential for interaction is influenced
not only by the domains it is involved in at various protocol phases (its context), but also
by connectedness relations among domains. Moreover, domain architectures are rarely fully
specified: to aid modularity and platform independence, system participants (e.g., developers,
platform vendors, service clients) often have only partial views of actual domain structures.
Despite their importance in communication correctness and trustworthiness at large, the
formal status of domains within typed models of message-passing systems remains unexplored.

This paper contributes to typed approaches to the analysis of domain-aware commu-
nications, with a focus on session-based concurrency. This approach specifies the intended
message-passing protocols as session types [30, 31, 24]. Different type theories for binary
and multiparty (n-ary) protocols have been developed. In both cases, typed specifications
can be conveniently coupled with π-calculus processes [36], in which so-called session chan-
nels connect exactly two subsystems. Communication correctness usually results from two
properties: session fidelity (type preservation) and deadlock freedom (progress). The former
says that well-typed processes always evolve to well-typed processes (a safety property); the
latter says that well-typed processes will never get into a stuck state (a liveness property).

A key motivation for this paper is the sharp contrast between (a) the growing relevance
of domain-awareness in message-passing, concurrent systems and (b) the expressiveness of
existing session type frameworks, binary and multiparty, which cannot adequately specify
(let alone enforce) domain-related requirements. Indeed, existing session types frameworks,
including those based on Curry-Howard interpretations [10, 47, 14], capture communication
behavior at a level of abstraction in which even basic domain-aware assertions (e.g., “Shipper
resides in domain AmazonUS”) cannot be expressed. As an unfortunate consequence, the
effectiveness of the analysis techniques derived from these frameworks is rather limited.

To better illustrate our point, consider a common distributed design pattern: a middleware
agent (mw) which answers requests from clients (cl), sometimes offloading the requests to a
server (serv) to better manage local resource availability. In the framework of multiparty
session types [32] this protocol can be represented as the global type:

cl�mw:{request〈req〉. mw�cl:{ reply〈ans〉. mw�serv:{done.end} , wait.mw�serv:{req〈data〉.
serv�mw:{reply〈ans〉.mw�cl:{reply〈ans〉.end}}}}}

The client first sends a request to the middleware, which answers back with either a reply
message containing the answer or a wait message, signaling that the server will be contacted to
produce the final reply. While this multiparty protocol captures the intended communication
behavior, it does not capture that protocols for the middleware and the server often involve
some form of privilege escalation or specific authentication – ensuring, e.g., that the server
interaction is adequately isolated from the client, or that the escalation must precede the
server interactions. These requirements simply cannot be represented in existing frameworks.

Our work addresses this crucial limitation by generalizing Curry-Howard interpretations
of session types by appealing to hybrid logic features. We develop a logically motivated
typed process framework in which worlds from modal logics precisely and uniformly define
the notion of domain in session-based concurrency. At the level of binary sessions, domains
manifest themselves through point-to-point domain migration and communication. In
multiparty sessions, domain migration is specified choreographically through the new construct
p moves q̃ toω forG1 ; G2, where participant p leads a migration of participants q̃ to domain
ω in order to perform protocol G1, who then migrate back to perform protocol G2.

Consider the global type Offload , mw� serv:{req〈data〉.serv� mw:{reply〈ans〉.end}}
in our previous example. Our framework allows us to refactor the global type above as:

cl�mw:{request〈req〉. mw�cl:{ reply〈ans〉.mw�serv:{done.end} , wait.mw�serv:{init.
mw moves serv towpriv for Offload ; mw�cl:{reply〈ans〉.end}}}}

L. Caires, J. A. Pérez, F. Pfenning, and B. Toninho 39:3

By considering a first-class multiparty domain migration primitive at the type and process
levels, we can specify that the offload portion of the protocol takes place after the middleware
and the server migrate to a private domain wpriv, as well as ensuring that only accessible
domains can be interacted with. For instance, the type for the server that is mechanically
projected from the protocol above ensures that the server first migrates to the private domain,
communicates with the middleware, and then migrates back to its initial domain.

Perhaps surprisingly, our domain-aware multiparty sessions are studied within a context
of logical binary domain-aware sessions, arising from a propositions-as-types interpretation
of hybrid linear logic [22, 18], with strong static correctness guarantees derived from the
logical nature of the system. Multiparty domain-awareness arises through an interpretation
of multiparty protocols as medium processes [7] that orchestrate the multiparty interaction
while enforcing the necessary domain-level constraints and migration steps.

Contributions. The key contributions of this work are:
1. A process model with explicit domain-based migration (§ 2). We present a session

π-calculus with domains that can be communicated via novel domain movement prefixes.
2. A session type discipline for domain-aware interacting processes (§ 3). Building upon

an extension of linear logic with features from hybrid logic [22, 18] we generalize the
Curry-Howard interpretation of session types [10, 11] by interpreting (modal) worlds as
domains where session behavior resides. In our system, types can specify domain migration
and communication; domain mobility is governed by a parametric accessibility relation.
Judgments stipulate the services used and realized by processes and the domains where
sessions should be present. Our type discipline statically enforces session fidelity, global
progress and, notably, that communication can only happen between accessible domains.

3. As a specific application, we introduce a framework of domain-aware multiparty ses-
sions (§ 4) that uniformly extends the standard multiparty session framework of [32] with
domain-aware migration and communication primitives. Our development leverages our
logically motivated domain-aware binary sessions (§ 3) to give a precise semantics to
multiparty sessions through a (typed) medium process that acts as an orchestrator of
domain-aware multiparty interactions, lifting the strong correctness properties of typed
processes to the multiparty setting. We show that mediums soundly and completely
encode the local behaviors of participants in a domain-aware multiparty session.

We conclude with a discussion of related work (§ 5) and concluding remarks (§ 6).

2 Process Model

We introduce a synchronous π-calculus [42] with labeled choice and explicit domain migration
and communication. We write ω, ω′, ω′′ to stand for a concrete domain (w,w′, . . .) or a
domain variable (α, α′, . . .). Domains are handled at a high-level of abstraction, with their
identities being attached to session channels. Just as the π-calculus allows for communication
over names and name mobility, our model also allows for domain communication and mobility.
These features are justified with the typing discipline of § 3.

I Definition 2.1. Given infinite, disjoint sets Λ of names (x, y, z, u, v), L of labels l1, l2, . . . ,
W of domain tags (w,w′, w′′) and V of domain variables (α, β, γ), respectively, the set of
processes (P,Q,R) is defined by

P ::= 0 | P | Q | (νy)P | x〈y〉.P | x(y).P | !x(y).P
| [x↔y] | x .

{
li : Pi

}
i∈I | x /li;P

| x〈y@ω〉.P | x(y@ω).P | x〈ω〉.P | x(α).P

CONCUR 2019

39:4 Domain-Aware Session Types

Domain-aware prefixes are present only in the last line. As we make precise in the typed
setting of § 3, these constructs realize mobility and domain communication, in the usual sense
of the π-calculus: migration to a domain is always associated to mobility with a fresh name.

The operators 0 (inaction), P | Q (parallel composition) and (νy)P (name restriction)
are standard. We then have x〈y〉.P (send y on x and proceed as P), x(y).P (receive z on x
and proceed as P with parameter y replaced by z), and !x(y).P which denotes replicated
(persistent) input. The forwarding construct [x↔ y] equates x and y; it is a primitive
representation of a copycat process. The last two constructs in the second line define a
labeled choice mechanism: x .

{
li : Pi

}
i∈I is a process that awaits some label lj (with j ∈ I)

and proceeds as Pj . Dually, the process x /li;P emits a label li and proceeds as P .
The first two operators in the third line define explicit domain migration: given a domain

ω, x〈y@ω〉.P denotes a process that is prepared to migrate the communication actions in P
on endpoint x, to session y on ω. Complementarily, process x(y@ω).P signals an endpoint x
to move to ω, providing P with the appropriate session endpoint that is then bound to y. In
a typed setting, domain movement will be always associated with a fresh session channel.
Alternatively, this form of coordinated migration can be read as an explicit form of agreement
(or authentication) in trusted domains. Finally, the last two operators in the third line define
output and input of domains, x〈ω〉.P and x(α).P , respectively. These constructs allow for
domain information to be obtained and propagated across processes dynamically.

Following [41], we abbreviate (νy)x〈y〉 and (νy)x〈y@ω〉 as x〈y〉 and x〈y@ω〉, respectively.
In (νy)P , x(y).P , and x(y@ω).P the distinguished occurrence of name y is binding with
scope P . Similarly for α in x(α).P . We identify processes up to consistent renaming of bound
names and variables, writing ≡α for this congruence. P{x/y} denotes the capture-avoiding
substitution of x for y in P . While structural congruence ≡ expresses standard identities on
the basic structure of processes (cf. [9]), reduction expresses their behavior.

Reduction (P → Q) is the binary relation defined by the rules below and closed under
structural congruence; it specifies the computations that a process performs on its own.

x〈y〉.Q | x(z).P → Q | P{y/z} x〈y〉.Q | !x(z).P → Q | P{y/z} | !x(z).P
x〈y@ω〉.P | x(z@ω′).Q→ P | Q{y/z} x〈ω〉.P | x(α).Q→ P | Q{ω/α}
(νx)([x↔y] | P)→ P{y/x} Q→ Q′ ⇒ P | Q→ P | Q′
P → Q⇒ (νy)P → (νy)Q x /lj ;P | x .

{
li : Qi

}
i∈I → P | Qj (j ∈ I)

For the sake of generality, reduction allows dual endpoints with the same name to interact,
independently of the domains of their subjects. The type system introduced next will ensure,
among other things, local reductions, disallowing synchronisations among distinct domains.

3 Domain-aware Session Types via Hybrid Logic

This section develops a new domain-aware formulation of binary session types. Our system
is based on a Curry-Howard interpretation of a linear variant of so-called hybrid logic, and
can be seen as an extension of the interpretation of [10, 11] to hybrid (linear) logic. Hybrid
logic is often used as an umbrella term for a class of logics that extend the expressiveness of
propositional logic by considering modal worlds as syntactic objects that occur in propositions.

As in [10, 11], propositions are interpreted as session types of communication channels,
proofs as typing derivations, and proof reduction as process communication. As main
novelties, here we interpret: logical worlds as domains; the hybrid connective @ω A as the
type of a session that migrates to an accessible domain ω; and type-level quantification over
worlds ∀α.A and ∃α.A as domain communication. We also consider a type-level operator

L. Caires, J. A. Pérez, F. Pfenning, and B. Toninho 39:5

↓α.A (read “here”) which binds the current domain of the session to α in A. The syntax of
domain-aware session types is given in Def. 3.1, where w,w1, . . . stand for domains drawn
from W, and where α, β and ω, ω′ are used as in the syntax of processes.

I Definition 3.1 (Domain-aware Session Types). The syntax of types (A,B,C) is defined by

A ::= 1 | A(B | A⊗B | &{li : Ai}i∈I | ⊕{li : Ai}i∈I | !A
| @ω A | ∀α.A | ∃α.A | ↓α.A

Types are the propositions of intuitionistic linear logic where the additives A&B and A⊕B
are generalized to a labelled n-ary variant. Propositions take the standard interpretation as
session types, extended with hybrid logic operators [5], with worlds interpreted as domains
that are explicitly subject to an accessibility relation (in the style of [43]) that is tracked
by environment Ω. Intuitively, Ω is made up of direct accessibility hypotheses of the form
ω1 ≺ ω2, meaning that domain ω2 is accessible from ω1.

Types are assigned to channel names; a type assignment x:A[ω] enforces the use of name
x according to session A, in the domain ω. A type environment is a collection of type
assignments. Besides the accessibility environment Ω just mentioned, our typing judgments
consider two kinds of type environments: a linear part ∆ and an unrestricted part Γ. They
are subject to different structural properties: weakening and contraction principles hold for
Γ but not for ∆. Empty environments are written as ‘ · ’. We then consider two judgments:

(i) Ω ` ω1 ≺ ω2 and (ii) Ω; Γ; ∆ ` P :: z:A[ω]

Judgment (i) states that ω1 can directly access ω2 under the hypotheses in Ω. We write
≺∗ for the reflexive, transitive closure of ≺, and ω1 6≺∗ ω2 when ω1 ≺∗ ω2 does not hold.
Judgment (ii) states that process P offers the session behavior specified by type A on
channel z; the session s resides at domain ω, under the accessibility hypotheses Ω, using
unrestricted sessions in Γ and linear sessions in ∆. Note that each hypothesis in Γ and ∆ is
labeled with a specific domain. We omit Ω when it is clear from context.

Typing Rules. Selected typing rules are given in Fig. 1; see [9] for the full listing. Right
rules (marked with R) specify how to offer a session of a given type, left rules (marked
with L) define how to use a session. The hybrid nature of the system induces a notion of
well-formedness of sequents: a sequent Ω; Γ; ∆ ` P :: z : C[ω1] is well-formed if Ω ` ω1 ≺∗ ω2
for every x:A[ω2] ∈ ∆, which we abbreviate as Ω ` ω1 ≺∗ ∆, meaning that all domains
mentioned in ∆ are accessible from ω1 (not necessarily in a single direct step). No such
domain requirement is imposed on Γ. If an end sequent is well-formed, every sequent in its
proof will also be well-formed. All rules (read bottom-up) preserve this invariant; only (cut),
(copy), (@R), (∀L) and (∃R) require explicit checks, which we discuss below. This invariant
statically excludes interaction between sessions in accessible domains (cf. Theorem 3.7).

We briefly discuss some of the typing rules, first noting that we consider processes modulo
structural congruence; hence, typability is closed under ≡ by definition. Type A (B

denotes a session that inputs a session of type A and proceeds as B. To offer z:A(B at
domain ω, we input y along z that will offer A at ω and proceed, now offering z:B at ω:

((R)
Ω; Γ; ∆, y:A[ω] ` P :: z:B[ω]

Ω; Γ; ∆ ` z(y).P :: z:A(B[ω]
(⊗R)

Ω; Γ; ∆1 ` P :: y:A[ω] Ω; Γ; ∆2 ` Q :: z:B[ω]
Ω; Γ; ∆1,∆2 ` z〈y〉.(P | Q) :: z:A⊗B[ω]

Dually, A⊗B denotes a session that outputs a session that will offer A and continue as B.
To offer z:A⊗B, we output a fresh name y with type A along z and proceed offering z:B.

CONCUR 2019

39:6 Domain-Aware Session Types

The (cut) rule allows us to compose process P , which offers x:A[ω2], with process Q,
which uses x:A[ω2] to offer z:C[ω1]. We require that domain ω2 is accessible from ω1 (i.e.,
ω1 ≺∗ ω2). We also require ω1 ≺∗ ∆1: the domains mentioned in ∆1 (the context for P) must
be accessible from ω1, which follows from the transitive closure of the accessibility relation
(≺∗) using the intermediary domain ω2. As in [10, 11], composition binds the name x:

(cut)
Ω ` ω1 ≺∗ ω2 Ω ` ω1 ≺∗ ∆1 Ω; Γ; ∆1 ` P :: x:A[ω2] Ω; Γ; ∆2, x:A[ω2] ` Q :: z:C[ω1]

Ω; Γ; ∆1,∆2 ` (νx)(P | Q) :: z:C[ω1]

Type 1 means that no further interaction will take place on the session; names of type 1
may be passed around as opaque values. &{li : Ai}i∈I types a session channel that offers
its partner a choice between the Ai behaviors, each uniquely identified by a label li. Dually,
⊕{li : Ai}i∈I types a session that selects some behavior Ai by emitting the corresponding
label. For flexibility and consistency with merge-based projectability in multiparty session
types, rules for choice and selection induce a standard notion of session subtyping [26].

Type !A types a shared (non-linear) channel, to be used by a server for spawning an
arbitrary number of new sessions (possibly none), each one conforming to type A.

Following our previous remark on well-formed sequents, the only rules that appeal to
accessibility are (@R), (@L), (copy), and (cut). These conditions are directly associated with
varying degrees of flexibility in terms of typability, depending on what relationship is imposed
between the domain to the left and to the right of the turnstile in the left rules. Notably, our
system leverages the accessibility judgment to enforce that communication is only allowed
between processes whose sessions are in (transitively) accessible domains.

The type operator @ω realizes a domain migration mechanism which is specified both
at the level of types and processes via name mobility tagged with a domain name. Thus, a
channel typed with @ω2A denotes that behavior A is available by first moving to domain ω2,
directly accessible from the current domain. More precisely, we have:

(@R)

Ω ` ω1 ≺ ω2

Ω ` ω2 ≺∗ ∆ Ω; Γ; ∆ ` P :: y:A[ω2]
Ω; Γ; ∆ ` z〈y@ω2〉.P :: z:@ω2A[ω1]

(@L)
Ω, ω2 ≺ ω3; Γ; ∆, y:A[ω3] ` P :: z:C[ω1]

Ω; Γ; ∆, x:@ω3A[ω2] ` x(y@ω3).P :: z:C[ω1]

Hence, a process offering a behavior z:@ω2 A at ω1 ensures: (i) behavior A is available at ω2
along a fresh session channel y that is emitted along z and (ii) ω2 is directly accessible from
ω1. To maintain well-formedness of the sequent we also must check that all domains in ∆ are
still accessible from ω2. Dually, using a service x:@ω3A[ω2] entails receiving a channel y that
will offer behavior A at domain ω3 (and also allowing the usage of the fact that ω2 ≺ ω3).

Domain-quantified sessions introduce domains as fresh parameters to types: a particular
service can be specified with the ability to refer to any existing directly accessible domain
(via universal quantification) or to some a priori unspecified accessible domain:

(∀R)
Ω, ω1 ≺ α; Γ; ∆ ` P :: z:A[ω1] α 6∈ Ω,Γ,∆, ω1

Ω; Γ; ∆ ` z(α).P :: z:∀α.A[ω1]

(∀L)
Ω ` ω2 ≺ ω3

Ω; Γ; ∆, x:A{ω3/α}[ω2] ` Q :: z:C[ω1]
Ω; Γ; ∆, x:∀α.A[ω2] ` x〈ω3〉.Q :: z:C[ω1]

Rule (∀R) states that a process seeking to offer ∀α.A[ω1] denotes a service that is located
at domain ω1 but that may refer to any fresh domain directly accessible from ω1 in its
specification (e.g. through the use of @). Operationally, this means that the process must be
ready to receive from its client a reference to the domain being referred to in the type, which
is bound to α (occurring fresh in the typing derivation). Dually, Rule (∀L) indicates that a
process interacting with a service of type x:∀α.A[ω2] must make concrete the domain that
is directly accessible from ω2 it wishes to use, which is achieved by the appropriate output
action. Rules (∃L) and (∃R) for the existential quantifier have a dual reading.

L. Caires, J. A. Pérez, F. Pfenning, and B. Toninho 39:7

Finally, the type-level operator ↓α.A allows for a type to refer to its current domain:

(↓R)
Ω; Γ; ∆ ` P :: z:A{ω/α}[ω]

Ω; Γ; ∆ ` P :: z:↓α.A[ω]
(↓L)

Ω; Γ; ∆, x:A{ω/α}[ω] ` P :: z:C
Ω; Γ; ∆, x:↓α.A[ω] ` P :: z:C

The typing rules that govern ↓α.A are completely symmetric and produce no action at the
process level, merely instantiating the domain variable α with the current domain ω of the
session. As will be made clear in § 4, this connective plays a crucial role in ensuring the
correctness of our analysis of multiparty domain-aware sessions in our logical setting.

By developing our type theory with an explicit domain accessibility judgment, we can
consider the accessibility relation as a parameter of the framework. This allows changing
accessibility relations and their properties without having to alter the entire system. To
consider the simplest possible accessibility relation, the only defining rule for accessibility
would be Rule (whyp) in Fig. 1. To consider an accessibility relation which is an equivalence
relation we would add reflexivity, transitivity, and symmetry rules to the judgment.

Discussion and Examples. Being an interpretation of hybridized linear logic, our domain-
aware theory is conservative wrt the Curry-Howard interpretation of session types in [10, 11],
in the following sense: the system in [10, 11] corresponds to the case where every session
resides at the same domain. As in [10, 11], the sequent calculus for the underlying (hybrid)
linear logic can be recovered from our typing rules by erasing processes and name assignments.

Conversely, a fundamental consequence of our hybrid interpretation is that it refines the
session type structure in non-trivial ways. By requiring that communication only occurs
between sessions located at the same (or accessible) domain we effectively introduce a new
layer of reasoning to session type systems. To illustrate this feature, consider the following
session type WStore, which specifies a simple interaction between a web store and its clients:

WStore , addCart(&{buy : Pay , quit : 1} Pay , CCNum(⊕{ok : Rcpt⊗ 1 , nok : 1}

WStore allows clients to checkout their shopping carts by emitting a buy message or to quit.
In the former case, the client pays for the purchase by sending their credit card data. If
a banking service (not shown) approves the transaction (via an ok message), a receipt is
emitted. Representable in existing session type systems (e.g. [10, 47, 31]), types WStore and
Pay describe the intended communications but fail to capture the crucial fact that in practice
the client’s sensitive information should only be requested after entering a secure domain. To
address this limitation, we can use type-level domain migration to refine WStore and Pay:

WStoresec , addCart(&{buy : @sec Paybnk, quit : 1}
Paybnk , CCNum(⊕{ok : (@bnkRcpt)⊗ 1,nok : 1}

WStoresec decrees that the interactions pertinent to type Paybnk should be preceded by a
migration step to the trusted domain sec, which should be directly accessible from WStoresec’s
current domain. The type also specifies that the receipt must originate from a bank domain
bnk (e.g., ensuring that the receipt is never produced by the store without entering bnk).
When considering the interactions with a client (at domain c) that checks out their cart, we
reach a state that is typed with the following judgment:

c ≺ ws; ·;x:@secPaybnk[ws] ` Client :: z:@sec1[c]

At this point, it is impossible for a (typed) client to interact with the behavior that is
protected by the domain sec, since it is not the case that c ≺∗ sec. That is, no judgment
of the form c ≺ ws; ·; Paybnk[sec] ` Client′ :: z:T [c] is derivable. This ensures, e.g., that a

CONCUR 2019

39:8 Domain-Aware Session Types

(whyp)
Ω, ω1 ≺ ω2 ` ω1 ≺ ω2

(id)
Ω; Γ;x:A[ω] ` [x↔z] :: z:A[ω]

(@R)
Ω ` ω1 ≺ ω2 Ω ` ω2 ≺∗ ∆ Ω; Γ; ∆ ` P :: y:A[ω2]

Ω; Γ; ∆ ` z〈y@ω2〉.P :: z:@ω2A[ω1]

(@L)
Ω, ω2 ≺ ω3; Γ; ∆, y:A[ω3] ` P :: z:C[ω1]

Ω; Γ; ∆, x:@ω3A[ω2] ` x(y@ω3).P :: z:C[ω1]
(∀R)
Ω, ω1 ≺ α; Γ; ∆ ` P :: z:A[ω1] α 6∈ Ω,Γ,∆, ω1

Ω; Γ; ∆ ` z(α).P :: z:∀α.A[ω1]

(∀L)
Ω ` ω2 ≺ ω3 Ω; Γ; ∆, x:A{ω3/α}[ω2] ` Q :: z:C[ω1]

Ω; Γ; ∆, x:∀α.A[ω2] ` x〈ω3〉.Q :: z:C[ω1]

(∃R)
Ω ` ω1 ≺ ω2 Ω; Γ; ∆ ` P :: z:A{ω2/α}[ω1]

Ω; Γ; ∆ ` z〈ω2〉.P :: z:∃α.A[ω1]
(∃L)

Ω, ω2 ≺ α; Γ; ∆, x:A[ω2] ` Q :: z:C[ω1]
Ω; Γ; ∆, x:∃α.A[ω2] ` x(α).Q :: z:C[ω1]

(↓R)
Ω; Γ; ∆ ` P :: z:A{ω/α}[ω]

Ω; Γ; ∆ ` P :: z:↓α.A[ω]
(↓L)

Ω; Γ; ∆, x:A{ω/α}[ω] ` P :: z:C
Ω; Γ; ∆, x:↓α.A[ω] ` P :: z:C

(copy)
Ω ` ω1 ≺∗ ω2 Ω; Γ, u:A[ω2]; ∆, y:A[ω2] ` P :: z:C[ω1]

Ω; Γ, u:A[ω2]; ∆ ` u〈y〉.P :: z:C[ω1]

(cut)
Ω ` ω1 ≺∗ ω2 Ω ` ω2 ≺∗ ∆1 Ω; Γ; ∆1 ` P :: x:A[ω2] Ω; Γ; ∆2, x:A[ω2] ` Q :: z:C[ω1]

Ω; Γ; ∆1,∆2 ` (νx)(P | Q) :: z:C[ω1]

Figure 1 Typing Rules (Excerpt – see [9]).

client cannot exploit the payment platform of the web store by accessing the trusted domain
in unforeseen ways. The client can only communicate in the secure domain after the web
store service has migrated accordingly, as shown by the judgment

c ≺ ws, ws ≺ sec; ·;x′:Paybnk[sec] ` Client′ :: z′:1[sec].

Technical Results. We state the main results of type safety via type preservation (The-
orem 3.3) and global progress (Theorem 3.4). These results directly ensure session fidelity
and deadlock-freedom. Typing also ensures termination, i.e., processes do not exhibit infinite
reduction paths (Theorem 3.5). We note that in the presence of termination, our progress
result ensures that communication actions are always guaranteed to take place. Moreover, as
a property specific to domain-aware processes, we show domain preservation, i.e., processes
respect their domain accessibility conditions (Theorem 3.7). The formal development of
these results relies on a domain-aware labeled transition system [9], defined as a simple
generalization of the early labelled transition system for the session π-calculus given in [10, 11].

Type Safety and Termination. Following [10, 11], our proof of type preservation relies on
a simulation between reductions in the session-typed π-calculus and logical proof reductions.

I Lemma 3.2 (Domain Substitution). Suppose Ω ` ω1 ≺ ω2. Then we have:
If Ω, ω1 ≺ α,Ω′; Γ; ∆ ` P :: z:A[ω] then
Ω,Ω′{ω2/α}; Γ{ω2/α}; ∆{ω2/α} ` P{ω2/α} :: z:A[ω{ω2/α}].

Ω, α ≺ ω2,Ω′; Γ; ∆ ` P :: z:A[ω] then
Ω,Ω′{ω1/α}; Γ{ω1/α}; ∆{ω1/α} ` P{ω1/α} :: z:A[ω{ω1/α}].

Safe domain communication relies on domain substitution preserving typing (Lemma 3.2).

I Theorem 3.3 (Type Preservation). If Ω; Γ; ∆ ` P :: z:A[ω] and P −→ Q then
Ω; Γ; ∆ ` Q :: z:A[ω].

L. Caires, J. A. Pérez, F. Pfenning, and B. Toninho 39:9

Proof (Sketch). The proof mirrors those of [10, 11, 8, 44], relying on a series of lemmas
relating the result of dual process actions (via our LTS semantics) with typable parallel
compositions through the (cut) rule [9]. For session type constructors of [10], the results are
unchanged. For the domain-aware session type constructors, the development is identical
that of [8] and [44], which deal with communication of types and data terms, respectively. J

Following [10, 11], the proof of global progress relies on a notion of a live process, which
intuitively consists of a process that has not yet fully carried out its ascribed session behavior,
and thus is a parallel composition of processes where at least one is a non-replicated process,
guarded by some action. Formally, we define live(P) if and only if P ≡ (νñ)(π.Q | R), for
some R, names ñ and a non-replicated guarded process π.Q.

I Theorem 3.4 (Global Progress). If Ω; ·; · ` P :: x:1[ω] and live(P) then ∃Q s.t. P −→ Q.

Note that Theorem 3.4 is without loss of generality since using the cut rules we can compose
arbitrary well-typed processes together and x need not occur in P due to Rule (1R).

Termination (strong normalization) is a relevant property for interactive systems: while
from a global perspective they are meant to run forever, at a local level participants should
always react within a finite amount of time, and never engage into infinite internal behavior.
We say that a process P terminates, noted P ⇓, if there is no infinite reduction path from P .

I Theorem 3.5 (Termination). If Ω; Γ; ∆ ` P :: x:A[ω] then P ⇓.

Proof (Sketch). By adapting the linear logical relations given in [38, 39, 8]. For the system
in § 3 without quantifiers, the logical relations correspond to those in [38, 39], extended to
carry over Ω. When considering quantifiers, the logical relations resemble those proposed for
polymorphic session types in [8], noting that no impredicativity concerns are involved. J

Domain Preservation. As a consequence of the hybrid nature of our system, well-typed
processes are guaranteed not only to faithfully perform their prescribed behavior in a deadlock-
free manner, but they also do so without breaking the constraints put in place on domain
accessibility given by our well-formedness constraint on sequents.

I Theorem 3.6. Let E be a derivation of Ω; Γ; ∆ ` P :: z:A[ω]. If Ω; Γ; ∆ ` P :: z:A[ω] is
well-formed then every sub-derivation in E well-formed.

While inaccessible domains can appear in Γ, such channels can never be used and thus
can not appear in a well-typed process due to the restriction on the (copy) rule. Combining
Theorems 3.3 and 3.6 we can then show that even if a session in the environment changes
domains, typing ensures that such a domain will be (transitively) accessible:

I Theorem 3.7. Let (1) Ω; Γ; ∆,∆′ ` (νx)(P | Q) :: z : A[ω], (2) Ω; Γ; ∆ ` P :: x:B[ω′′],
and (3) Ω; Γ; ∆′, x:B[ω′] ` Q :: z:A[ω]. If (νx)(P | Q) −→ (νx)(P ′ | Q′) then: (a) Ω; Γ; ∆ `
P ′ :: x′:B′[ω′′], for some x′, B′, ω′′; (b) Ω; Γ,∆′, x′:B′[ω′′] ` Q′ :: z:A[ω]; (c) ω ≺∗ ω′′.

4 Domain-Aware Multiparty Session Types

We now shift our attention to multiparty session types [32]. We consider the standard
ingredients: global types, local types, and the projection function that connects the two. Our
global types include a new domain-aware construct, p moves q̃ toω forG1 ; G2; our local types
exploit the hybrid session types from Def. 3.1. Rather than defining a separate type system
based on local types for the process model of § 2, our analysis of multiparty protocols extends

CONCUR 2019

39:10 Domain-Aware Session Types

the approach defined in [7], which uses medium processes to characterize correct multiparty
implementations. The advantages are twofold: on the one hand, medium processes provide a
precise semantics for global types; on the other hand, they enable the principled transfer of
the correctness properties established in § 3 for binary sessions (type preservation, global
progress, termination, domain preservation) to the multiparty setting. Below, participants
are ranged over by p, q, r, . . .; we write q̃ to denote a finite set of participants q1, . . . , qn.

Besides the new domain-aware global type, our syntax of global types includes constructs
from [32, 21]. We consider value passing in branching (cf. U below), fully supporting
delegation. To streamline the presentation, we consider global types without recursion.

I Definition 4.1 (Global and Local Types). Define global types (G) and local types (T) as

U ::= bool | nat | str | . . . | T
G ::= end | p�q:{li〈Ui〉.Gi}i∈I | p moves q̃ toω forG1 ; G2

T ::= end | p?{li〈Ui〉.Ti}i∈I | p!{li〈Ui〉.Ti}i∈I | ∀α.T | ∃α.T | @αT | ↓α.T

The completed global type is denoted end. Given a finite I and pairwise different
labels, p� q:{li〈Ui〉.Gi}i∈I specifies that by choosing label li, participant p may send a
message of type Ui to participant q, and then continue as Gi. We decree p 6= q, so reflexive
interactions are disallowed. The global type p moves q̃ toω forG1 ; G2 specifies the migration
of participants p, q̃ to domain ω in order to perform the sub-protocol G1; this migration is lead
by p. Subsequently, all of p, q̃ migrate from ω back to their original domains and protocol
G2 is executed. This intuition will be made precise by the medium processes for global types
(cf. Def. 4.8). Notice that G1 and G2 may involve different sets of participants. In writing
p moves q̃ toω forG1 ; G2 we assume two natural conditions: (a) all migrating participants
intervene in the sub-protocol (i.e., the set of participants of G1 is exactly p, q̃) and (b) domain
ω is accessible (via ≺) by all these migrating participants in G1. While subprotocols and
session delegation may appear as similar, delegation supports a different idiom altogether,
and has no support for domain awareness. Unlike delegation, with subprotocols we can
specify a point where some of the participants perform a certain protocol within the same
multiparty session and then return to the main session as an ensemble.

I Definition 4.2. The set of participants of G (denoted part(G)) is defined as: part(end) = ∅,
part(p� q:{li〈Ui〉.Gi}i∈I) = {p, q} ∪

⋃
i∈I part(Gi), part(p moves q̃ toω forG1 ; G2) = {p} ∪

q̃ ∪ part(G1) ∪ part(G2). We sometimes write p ∈ G to mean p ∈ part(G).

Global types are projected onto participants so as to obtain local types. The terminated
local type is end. The local type p?{li〈Ui〉.Ti}i∈I denotes an offer of a set of labeled
alternatives; the local type p!{li〈Ui〉.Ti}i∈I denotes a behavior that chooses one of such
alternatives. Exploiting the domain-aware framework in § 3, we introduce four new local
types. They increase the expressiveness of standard local types by specifying universal and
existential quantification over domains (∀α.T and ∃α.T), migration to a specific domain
(@αT), and a reference to the current domain (↓α. T , with α occurring in T).

We now define (merge-based) projection for global types [21]. To this end, we rely on a
merge operator on local types, which in our case considers messages U .

I Definition 4.3 (Merge). We define t as the commutative partial operator on base and
local types such that bool t bool = bool (and analogously for other base types), and
1. T t T = T , where T is one of the following: end, p!{li〈Ui〉.Ti}i∈I , @ωT , ∀α.T , or ∃α.T ;
2. p?{lk〈Uk〉.Tk}k∈K t p?{l ′j〈U ′j〉.T ′j}j∈J =

p?
(
{lk〈Uk〉.Tk}k∈K\J ∪ {l ′j〈U ′j〉.T ′j}j∈J\K ∪ {ll〈Ul t U ′l 〉.(Tl t T ′l)}l∈K∩J

)
and is undefined otherwise.

L. Caires, J. A. Pérez, F. Pfenning, and B. Toninho 39:11

Therefore, for U1 t U2 to be defined there are two options: (a) U1 and U2 are identical
base, terminated, selection, or “hybrid” local types; (b) U1 and U2 are branching types, but
not necessarily identical: they may offer different options but with the condition that the
behavior in labels occurring in both U1 and U2 must be mergeable.

To define projection and medium processes for the global type p moves q̃ toω forG1 ; G2,
we require ways of “fusing” local types and processes. The intent is to capture in a single
(sequential) specification the behavior of two distinct (sequential) specifications, i.e., those
corresponding to protocols G1 and G2. For local types, we have the following definition,
which safely appends a local type to another:

I Definition 4.4 (Local Type Fusion). The fusion of T1 and T2, written T1 ◦ T2, is given by:

p!{li〈Ui〉.Ti}i∈I ◦ T = p!{li〈Ui〉.(Ti ◦ T)}i∈I end ◦ T = T

p?{li〈Ui〉.Ti}i∈I ◦ T = p?{li〈Ui〉.(Ti ◦ T)}i∈I (∃α.T1) ◦ T = ∃α.(T1 ◦ T)
(∀α.T1) ◦ T = ∀α.(T1 ◦ T) (@αT1) ◦ T = @α(T1 ◦ T)
(↓α.T1) ◦ T = ↓α.(T1 ◦ T)

This way, e.g., if T1 = ∃α.@α p?{l1〈Int〉.end , l2〈Bool〉.end} and T2 = @ω q!{l〈Str〉.end}, then
T1 ◦T2 = ∃α.@α p?{l1〈Int〉.@ω q!{l〈Str〉.end} , l2〈Bool〉.@ω q!{l〈Str〉.end}}. We can now define:

I Definition 4.5 (Merge-based Projection [21]). Let G be a global type. The merge-based
projection of G under participant r, denoted G�r, is defined as end�r = end and

p�q:{li〈Ui〉.Gi}i∈I�r =

p!{li〈Ui〉.Gi�r}i∈I if r = p

p?{li〈Ui〉.Gi�r}i∈I if r = q

ti∈I Gi�r otherwise (t as in Def. 4.3)

(p moves q̃ toω forG1 ; G2)�r =

↓β.(∃α.@αG1�r) ◦@β G2�r if r = p

↓β.(∀α.@αG1�r) ◦@β G2�r if r ∈ q̃

G2�r otherwise
When no side condition holds, the map is undefined.

The projection for the type p moves q̃ tow forG1 ; G2 is one of the key points in our analysis.
The local type for p, the leader of the migration, starts by binding the identity of its current
domain (say, ωp) to β. Then, the (fresh) domain ω is communicated, and there is a migration
step to ω, which is where protocol G1�p will be performed. Finally, there is a migration step
from ω back to ωp; once there, the protocol G2�p will be performed. The local type for all of
qi ∈ q̃ follows accordingly: they expect ω from p; the migration from their original domains
to ω (and back) is as for p. For participants in G1, the fusion on local types (Def. 4.4) defines
a local type that includes the actions for G1 but also for G2, if any: a participant in G1 need
not be involved in G2. Interestingly, the resulting local types ↓β.(∃α.@αG1�p) ◦@β G2�p
and ↓β.(∀α.@αG1�qi)◦@β G2�qi define a precise combination of hybrid connectives whereby
each migration step is bound by a quantifier or the current domain.

The following notion of well-formedness for global types is standard:

I Definition 4.6 (Well-Formed Global Types [32]). We say that global type G is well-formed
(WF, in the following) if the projection G�r is defined for all r ∈ G.

Analyzing Global Types via Medium Processes. A medium process is a well-typed process
from § 2 that captures the communication behavior of the domain-aware global types of
Def. 4.1. Here we define medium processes and establish two fundamental characterization
results for them (Theorems 4.11 and 4.12). We shall consider names indexed by participants:

CONCUR 2019

39:12 Domain-Aware Session Types

given a name c and a participant p, we use cp to denote the name along which the session
behavior of p will be made available. This way, if p 6= q then cp 6= cq. To define mediums, we
need to append or fuse sequential processes, just as Def. 4.4 fuses local types:

I Definition 4.7 (Fusion of Processes). We define ◦ as the partial operator on well-typed
processes such that (with π ∈ {c(y), c〈ω〉, c(α), c〈y@ω〉, c(y@ω), c /l}) :

c〈y〉.([u↔y] | P) ◦Q , c〈y〉.([u↔y] | (P ◦Q)) 0 ◦Q , Q

c .
{

li : Pi
}
i∈I
◦Q , c .

{
li : (Pi ◦Q)

}
i∈I

(π.P) ◦Q , π.(P ◦Q)

and is undefined otherwise.

The previous definition suffices to define a medium process (or simply medium), which uses
indexed names to uniformly capture the behavior of a global type:

I Definition 4.8 (Medium Process). Let G be a global type (cf. Def. 4.1), c̃ be a set of
indexed names, and ω̃ a set of domains. The medium of G, denoted Mω̃JGK(c̃), is defined as:

0 if G = end

cp .
{

li : cp(u).cq /li; cq〈v〉.([u↔v] | Mω̃JGiK(c̃))
}
i∈I

if G = p�q:{li〈Ui〉.Gi}i∈I

cp(α).cq1〈α〉. · · · .cqn〈α〉. if G = p moves q1, . . . , qn tow forG1 ; G2

cp(yp@α).cq1 (yq1 @α). · · · .cqn (yqn @α).
Mω̃{α/ωp,...,α/ωqn}JG1K(ỹ) ◦

(yp(mp@ωp).yq1 (mq1 @ωq1). · · · .yqn (mqn @ωqn).
Mω̃JG2K(m̃))

where Mω̃JG1K(c̃) ◦Mω̃JG2K(c̃) is as in Def. 4.7.

The medium for G = p � q:{li〈Ui〉.Gi}i∈I exploits four prefixes to mediate in the
interaction between the implementations of p and q: the first two prefixes (on name cp)
capture the label selected by p and the subsequently received value; the third and fourth
prefixes (on name cq) propagate the choice and forward the value sent by p to q. We omit
the forwarding and value exchange when the interaction does not involve a value payload.

The medium for G = p moves q1, . . . , qn tow forG1 ; G2 showcases the expressivity and
convenience of our domain-aware process framework. In this case, the medium’s behavior
takes place through the following steps: First, Mω̃JGK(c̃) inputs a domain identifier (say, ω)
from p which is forwarded to q1, . . . , qn, the other participants of G1. Secondly, the roles
p, q1, . . . , qn migrate from their domains ωp, ωq1 . . . , ωqn

to ω. At this point, the medium
for G1 can execute, keeping track the current domain ω for all participants. Finally, the
participants of G1 migrate back to their original domains and the medium for G2 executes.

Recalling the domain-aware global type of § 1, we produce its medium process:

ccl .
{

request : ccl(r).cmw /request; cmw〈v〉.([r↔v] |
cmw .

{
reply : cmw(a).ccl /reply; ccl〈n〉.([a↔n] | cmw .

{
done : cserv /done; 0

}
),

wait : ccl /wait; cmw .
{

init : cserv /init; cmw(wpriv).cserv〈wpriv〉.
cmw(ymw@wpriv).cserv(yserv@wpriv).M ˜wprivJOffloadK(ymw, yserv) ◦
(ymw(zmw@wmw).yserv(zserv@wserv).
zmw .

{
reply : zmw(a).ccl /reply; ccl〈n〉.([a↔n] | 0)

}
)
}}

)
}

The medium ensures the client’s domain remains fixed through the entire interaction,
regardless of whether the middleware chooses to interact with the server. This showcases
how our medium transparently manages domain migration of participants.

L. Caires, J. A. Pérez, F. Pfenning, and B. Toninho 39:13

Characterization Results. We state results that offer a sound and complete account of
the relationship between: (i) a global type G (and its local types), (ii) its medium process
Mω̃JGK(c̃), and (iii) process implementations for the participants {p1, . . . , pn} of G. In a
nutshell, these results say that the typeful composition of Mω̃JGK(c̃) with processes for each
p1, . . . , pn (well-typed in the system of § 3) performs the intended global type. Crucially, these
processes reside in distinct domains and can be independently developed, guided by their local
type – they need not know about the medium’s existence or structure. The results generalize
those in [7] to the domain-aware setting. Given a global type G with part(G) = {p1, . . . , pn},
below we write npart(G) to denote the set of indexed names {cp1 , . . . , cpn

}. We define:

I Definition 4.9 (Compositional Typing). We say Ω; Γ; ∆ ` Mω̃JGK(c̃) :: z:C is a composi-
tional typing if: (i) it is a valid typing derivation; (ii) npart(G) ⊆ dom(∆); and (iii) C = 1.

A compositional typing says that Mω̃JGK(c̃) depends on behaviors associated to each parti-
cipant of G; it also specifies that Mω̃JGK(c̃) does not offer any behaviors of its own.

The following definition relates binary session types and local types: the main difference is
that the former do not mention participants. Below, B ranges over base types (bool, nat, . . .).

I Definition 4.10 (Local Types→Binary Types). Mapping 〈〈·〉〉 from local types T (Def. 4.1)
into binary types A (Def. 3.1) is inductively defined as 〈〈end〉〉 = 〈〈B〉〉 = 1 and

〈〈p!{li〈Ui〉.Ti}i∈I〉〉 = ⊕{li : 〈〈Ui〉〉 ⊗ 〈〈Ti〉〉}i∈I 〈〈∀α.T 〉〉 = ∀α.〈〈T 〉〉
〈〈p?{li〈Ui〉.Ti}i∈I〉〉 = &{li : 〈〈Ui〉〉(〈〈Ti〉〉}i∈I 〈〈∃α.T 〉〉 = ∃α.〈〈T 〉〉
〈〈@ωT 〉〉 = @ω〈〈T 〉〉 〈〈↓α.T 〉〉 = ↓α.〈〈T 〉〉

Our first characterization result ensures that well-formedness of a global type G guarantees
the typability of its medium Mω̃JGK(c̃) using binary session types. Hence, it ensures that
multiparty protocols can be analyzed by composing the medium with independently obtained,
well-typed implementations for each protocol participant. Crucially, the resulting well-typed
process will inherit all correctness properties ensured by binary typability established in § 3.

I Theorem 4.11 (Global Types → Typed Mediums). If G is WF with part(G)= {p1, . . . , pn}
then Ω; Γ; cp1 :〈〈G� p1〉〉[ω1], . . . , cpn

:〈〈G� pn〉〉[ωn] ` Mω̃JGK(c̃) :: z : 1[ωm] is a compositional
typing, for some Ω, Γ, with ω̃ = ω1, . . . , ωn. We assume that ωi ≺ ωm for all i ∈ {1, . . . , n}
(the medium’s domain is accessible by all), and that i 6= j implies ωi 6= ωj.

The second characterization result, given next, is the converse of Theorem 4.11: binary
typability precisely delineates the interactions that underlie well-formed multiparty protocols.
We need an auxiliary relation on local types, written �t↓ , that relates types with branching
and “here” type operators, which have silent process interpretations (cf. Figure 1 and [9]).
First, we have T1 �t↓ T2 if there is a T ′ such that T1 t T ′ = T2 (cf. Def. 4.3). Second,
we have T1 �t↓ T2 if (i) T1 = T ′ and T2 = ↓ α.T ′ and α does not occur in T ′; but also if
(ii) T1 = ↓α.T ′ and T2 = T ′{ω/α}. (See [9] for a formal definition of �t↓).

I Theorem 4.12 (Well-Typed Mediums→ Global Types). Let G be a global type (cf. Def. 4.1).
If Ω; Γ; cp1 :A1[ω1], . . . , cpn

:An[ωn] ` Mω̃JGK(c̃) :: z : 1[ωm] is a compositional typing then
∃T1, . . . , Tn such that G�pj �t↓ Tj and 〈〈Tj〉〉 = Aj, for all pj ∈ part(G).

The above theorems offer a static guarantee that connects multiparty protocols and well-typed
processes. They can be used to establish also dynamic guarantees relating the behavior
of a global type G and that of its associated set of multiparty systems (i.e., the typeful
composition of Mω̃JGK(c̃) with processes for each of pi ∈ part(G)). These dynamic guarantees
can be easily obtained by combining Theorems 4.11 and 4.12 with the approach in [7].

CONCUR 2019

39:14 Domain-Aware Session Types

5 Related Work

There is a rich history of works on the logical foundations of concurrency (see, e.g., [4, 27, 1, 3]),
which has been extended to session-based concurrency by Wadler [47], Dal Lago and Di
Giamberardino [35], and others. Medium-based analyses of multiparty sessions were developed
in [7] and used in an account of multiparty sessions in an extended classical linear logic [14].

Two salient calculi with distributed features are the Ambient calculus [16], in which
processes move across ambients (abstractions of administrative domains), and the distributed
π-calculus (Dpi) [29], which extends the π-calculus with flat locations, local communication,
and process migration. While domains in our model may be read as locations, this is just one
specific interpretation; they admit various alternative readings (e.g., administrative domains,
security-related levels), leveraging the partial view of the domain hierarchy. Type systems
for Ambient calculi such as [15, 6] enforce security and communication-oriented properties in
terms of ambient movement but do not cover issues of structured interaction, central in our
work. Garralda et al. [25] integrate binary sessions in an Ambient calculus, ensuring that
session protocols are undisturbed by ambient mobility. In contrast, our type system ensures
that both migration and communication are safe and, for the first time in such a setting,
satisfy global progress (i.e., session protocols never jeopardize migration and vice-versa).

The multiparty sessions with nested protocols of Demangeon and Honda [19] include
a nesting construct that is similar to our new global type p moves q̃ tow forG1 ; G2, which
also introduces nesting. The focus in [19] is on modularity in choreographic programming;
domains nor domain migration are not addressed. The nested protocols in [19] can have local
participants and may be parameterized on data from previous actions. We conjecture that
our approach can accommodate local participants in a similar way. Data parameterization
can be transposed to our logical setting via dependent session types [44, 46]. Asynchrony and
recursive behaviors can also be integrated by exploiting existing logical foundations [23, 45].

Balzer et al. [2] overlay a notion of world and accessibility on a system of shared session
types to ensure deadlock-freedom. Their work differs substantially from ours: they instantiate
accessibility as a partial-order, equip sessions with multiple worlds and are not conservative
wrt linear logic, being closer to partial-order-based typings for deadlock-freedom [34, 37].

6 Concluding Remarks

We developed a Curry-Howard interpretation of hybrid linear logic as domain-aware session
types. Present in processes and types, domain-awareness can account for scenarios where
domain information is only determined at runtime. The resulting type system features strong
correctness properties for well-typed processes (session fidelity, global progress, termination).
Moreover, by leveraging a parametric accessibility relation, it rules out processes that
communicate with inaccessible domains, thus going beyond the scope of previous works.

As an application of our framework, we presented the first systematic study of domain-
awareness in a multiparty setting, considering multiparty sessions with domain-aware migra-
tion and communication whose semantics is given by a typed (binary) medium process that
orchestrates the multiparty protocol. Embedded in a fully distributed domain structure, our
medium is shown to strongly encode domain-aware multiparty sessions; it naturally allows us
to transpose the correctness properties of our logical development to the multiparty setting.

Our work opens up interesting avenues for future work. Mediums can be seen as monitors
that enforce the specification of a domain-aware multiparty session. We plan to investigate
contract-enforcing mediums building upon works such as [28, 33, 20], which study runtime
monitoring in session-based systems. Our enforcement of communication across accessible

L. Caires, J. A. Pérez, F. Pfenning, and B. Toninho 39:15

domains suggests high-level similarities with information flow analyses in multiparty sessions
(cf. [13, 12, 17]), but does not capture the directionality needed to model such analyses
outright. It would be insightful to establish the precise relationship with such prior works.

References
1 Samson Abramsky. Computational Interpretations of Linear Logic. Theor. Comput. Sci.,

111(1&2):3–57, 1993. doi:10.1016/0304-3975(93)90181-R.
2 Stephanie Balzer, Bernardo Toninho, and Frank Pfenning. Manifest Deadlock-Freedom for

Shared Session Types. In Programming Languages and Systems - 28th European Symposium
on Programming, ESOP 2019, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2019, Prague, Czech Republic, April 6-11, 2019, Proceedings,
pages 611–639, 2019.

3 Emmanuel Beffara. A Concurrent Model for Linear Logic. Electr. Notes Theor. Comput. Sci.,
155:147–168, 2006. doi:10.1016/j.entcs.2005.11.055.

4 Gianluigi Bellin and Philip J. Scott. On the pi-Calculus and Linear Logic. Theor. Comput.
Sci., 135(1):11–65, 1994. doi:10.1016/0304-3975(94)00104-9.

5 Torben Braüner and Valeria de Paiva. Intuitionistic Hybrid Logic. J. of App. Log., 4:231–255,
2006.

6 Michele Bugliesi and Giuseppe Castagna. Behavioural typing for safe ambients. Comput.
Lang., 28(1):61–99, 2002. doi:10.1016/S0096-0551(02)00008-5.

7 Luís Caires and Jorge A. Pérez. Multiparty Session Types Within a Canonical Binary Theory,
and Beyond. In Formal Techniques for Distributed Objects, Components, and Systems - 36th
IFIP WG 6.1 International Conference, FORTE 2016, Held as Part of the 11th International
Federated Conference on Distributed Computing Techniques, DisCoTec 2016, Heraklion, Crete,
Greece, June 6-9, 2016, Proceedings, pages 74–95, 2016. Extended version with proofs at
https://sites.google.com/a/jorgeaperez.net/www/publications/medium16long.pdf.

8 Luís Caires, Jorge A. Pérez, Frank Pfenning, and Bernardo Toninho. Behavioral Polymorphism
and Parametricity in Session-Based Communication. In ESOP, volume 7792 of LNCS. Springer,
2013. doi:10.1007/978-3-642-37036-6_19.

9 Luís Caires, Jorge A. Pérez, Frank Pfenning, and Bernardo Toninho. Domain-Aware Session
Types (Extended Version). CoRR, abs/1907.01318, 2019. arXiv:1907.01318.

10 Luís Caires and Frank Pfenning. Session Types as Intuitionistic Linear Propositions.
In CONCUR, volume 6269 of LNCS, pages 222–236. Springer, 2010. doi:10.1007/
978-3-642-15375-4_16.

11 Luís Caires, Frank Pfenning, and Bernardo Toninho. Linear logic propositions as session
types. Mathematical Structures in Computer Science, 26(3):367–423, 2016. doi:10.1017/
S0960129514000218.

12 Sara Capecchi, Ilaria Castellani, and Mariangiola Dezani-Ciancaglini. Information Flow Safety
in Multiparty Sessions. In Bas Luttik and Frank Valencia, editors, EXPRESS, volume 64 of
EPTCS, pages 16–30, 2011. doi:10.4204/EPTCS.64.2.

13 Sara Capecchi, Ilaria Castellani, Mariangiola Dezani-Ciancaglini, and Tamara Rezk. Session
Types for Access and Information Flow Control. In CONCUR, volume 6269 of LNCS, pages
237–252. Springer, 2010. doi:10.1007/978-3-642-15375-4_17.

14 Marco Carbone, Sam Lindley, Fabrizio Montesi, Carsten Schürmann, and Philip Wadler.
Coherence Generalises Duality: A Logical Explanation of Multiparty Session Types. In 27th
International Conference on Concurrency Theory, CONCUR 2016, August 23-26, 2016, Québec
City, Canada, pages 33:1–33:15, 2016.

15 Luca Cardelli, Giorgio Ghelli, and Andrew D. Gordon. Types for the Ambient Calculus. Inf.
Comput., 177(2):160–194, 2002. doi:10.1006/inco.2001.3121.

16 Luca Cardelli and Andrew D. Gordon. Mobile ambients. Theor. Comput. Sci., 240(1):177–213,
2000. doi:10.1016/S0304-3975(99)00231-5.

CONCUR 2019

https://doi.org/10.1016/0304-3975(93)90181-R
https://doi.org/10.1016/j.entcs.2005.11.055
https://doi.org/10.1016/0304-3975(94)00104-9
https://doi.org/10.1016/S0096-0551(02)00008-5
https://sites.google.com/a/jorgeaperez.net/www/publications/medium16long.pdf
https://doi.org/10.1007/978-3-642-37036-6_19
http://arxiv.org/abs/1907.01318
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.1017/S0960129514000218
https://doi.org/10.1017/S0960129514000218
https://doi.org/10.4204/EPTCS.64.2
https://doi.org/10.1007/978-3-642-15375-4_17
https://doi.org/10.1006/inco.2001.3121
https://doi.org/10.1016/S0304-3975(99)00231-5

39:16 Domain-Aware Session Types

17 Ilaria Castellani, Mariangiola Dezani-Ciancaglini, and Jorge A. Pérez. Self-adaptation and
secure information flow in multiparty communications. Formal Asp. Comput., 28(4):669–696,
2016. doi:10.1007/s00165-016-0381-3.

18 Kaustuv Chaudhuri, Carlos Olarte, Elaine Pimentel, and Joëlle Despeyroux. Hybrid Linear
Logic, revisited. Mathematical Structures in Computer Science, 2019. URL: https://hal.
inria.fr/hal-01968154.

19 Romain Demangeon and Kohei Honda. Nested Protocols in Session Types. In CONCUR
2012 - Concurrency Theory - 23rd International Conference, CONCUR 2012, Newcastle
upon Tyne, UK, September 4-7, 2012. Proceedings, pages 272–286, 2012. doi:10.1007/
978-3-642-32940-1_20.

20 Romain Demangeon, Kohei Honda, Raymond Hu, Rumyana Neykova, and Nobuko Yoshida.
Practical interruptible conversations: distributed dynamic verification with multiparty session
types and Python. Formal Methods in System Design, 46(3):197–225, 2015. doi:10.1007/
s10703-014-0218-8.

21 Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty Compatibility in Communicating
Automata: Characterisation and Synthesis of Global Session Types. In Fedor V. Fomin,
Rusins Freivalds, Marta Z. Kwiatkowska, and David Peleg, editors, Automata, Languages,
and Programming - 40th International Colloquium, ICALP 2013, Riga, Latvia, July 8-12,
2013, Proceedings, Part II, volume 7966 of Lecture Notes in Computer Science, pages 174–186.
Springer, 2013. doi:10.1007/978-3-642-39212-2_18.

22 Joëlle Despeyroux, Carlos Olarte, and Elaine Pimentel. Hybrid and Subexponential Linear
Logics. Electr. Notes Theor. Comput. Sci., 332:95–111, 2017.

23 Henry DeYoung, Luís Caires, Frank Pfenning, and Bernardo Toninho. Cut Reduction in
Linear Logic as Asynchronous Session-Typed Communication. In Computer Science Logic
(CSL’12) - 26th International Workshop/21st Annual Conference of the EACSL, CSL 2012,
September 3-6, 2012, Fontainebleau, France, pages 228–242, 2012.

24 Mariangiola Dezani-Ciancaglini and Ugo de’Liguoro. Sessions and Session Types: An
Overview. In WS-FM 2009, volume 6194 of LNCS, pages 1–28. Springer, 2010. doi:
10.1007/978-3-642-14458-5_1.

25 Pablo Garralda, Adriana B. Compagnoni, and Mariangiola Dezani-Ciancaglini. BASS: boxed
ambients with safe sessions. In Annalisa Bossi and Michael J. Maher, editors, PPDP, pages
61–72. ACM, 2006. doi:10.1145/1140335.1140344.

26 Simon J. Gay and Malcolm Hole. Subtyping for session types in the pi calculus. Acta Inf.,
42(2-3):191–225, 2005. doi:10.1007/s00236-005-0177-z.

27 Jean-Yves Girard and Yves Lafont. Linear Logic and Lazy Computation. In TAPSOFT’87:
Proceedings of the International Joint Conference on Theory and Practice of Software Devel-
opment, pages 52–66, 1987. doi:10.1007/BFb0014972.

28 Hannah Gommerstadt, Limin Jia, and Frank Pfenning. Session-Typed Concurrent Contracts.
In Programming Languages and Systems - 27th European Symposium on Programming, ESOP
2018, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings, pages 771–798, 2018.

29 Matthew Hennessy and James Riely. Resource Access Control in Systems of Mobile Agents.
Inf. Comput., 173(1):82–120, 2002. doi:10.1006/inco.2001.3089.

30 Kohei Honda. Types for Dynamic Interaction. In CONCUR, volume 715 of LNCS, pages
509–523. Springer, 1993. doi:10.1007/3-540-57208-2_35.

31 Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo. Language Primitives and
Type Discipline for Structured Communication-Based Programming. In ESOP’98, LNCS.
Springer, 1998. doi:10.1007/BFb0053567.

32 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types. In
George C. Necula and Philip Wadler, editors, Proceedings of the 35th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2008, San Francisco, California,
USA, January 7-12, 2008, pages 273–284. ACM, 2008. doi:10.1145/1328438.1328472.

https://doi.org/10.1007/s00165-016-0381-3
https://hal.inria.fr/hal-01968154
https://hal.inria.fr/hal-01968154
https://doi.org/10.1007/978-3-642-32940-1_20
https://doi.org/10.1007/978-3-642-32940-1_20
https://doi.org/10.1007/s10703-014-0218-8
https://doi.org/10.1007/s10703-014-0218-8
https://doi.org/10.1007/978-3-642-39212-2_18
https://doi.org/10.1007/978-3-642-14458-5_1
https://doi.org/10.1007/978-3-642-14458-5_1
https://doi.org/10.1145/1140335.1140344
https://doi.org/10.1007/s00236-005-0177-z
https://doi.org/10.1007/BFb0014972
https://doi.org/10.1006/inco.2001.3089
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1145/1328438.1328472

L. Caires, J. A. Pérez, F. Pfenning, and B. Toninho 39:17

33 Limin Jia, Hannah Gommerstadt, and Frank Pfenning. Monitors and blame assignment
for higher-order session types. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2016, St. Petersburg, FL, USA,
January 20 - 22, 2016, pages 582–594, 2016.

34 Naoki Kobayashi. A New Type System for Deadlock-Free Processes. In CONCUR 2006 -
Concurrency Theory, 17th International Conference, CONCUR 2006, Bonn, Germany, August
27-30, 2006, Proceedings, pages 233–247, 2006.

35 Ugo Dal Lago and Paolo Di Giamberardino. Soft Session Types. In EXPRESS, volume 64 of
EPTCS, pages 59–73, 2011. doi:10.4204/EPTCS.64.5.

36 Robin Milner, Joachim Parrow, and David Walker. A Calculus of Mobile Processes, part I/II.
Inf. Comput., 100(1):1–77, 1992.

37 Luca Padovani. Deadlock and lock freedom in the linear π-calculus. In Joint Meeting of the
Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-
Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), CSL-LICS ’14,
Vienna, Austria, July 14 - 18, 2014, pages 72:1–72:10, 2014.

38 Jorge A. Pérez, Luís Caires, Frank Pfenning, and Bernardo Toninho. Linear Logical Relations
for Session-Based Concurrency. In ESOP, volume 7211 of LNCS, pages 539–558. Springer,
2012. doi:10.1007/978-3-642-28869-2_27.

39 Jorge A. Pérez, Luís Caires, Frank Pfenning, and Bernardo Toninho. Linear logical relations
and observational equivalences for session-based concurrency. Inf. Comput., 239:254–302, 2014.
doi:10.1016/j.ic.2014.08.001.

40 Jason Reed. Hybridizing a Logical Framework. Electr. Notes Theor. Comput. Sci., 174(6):135–
148, 2007.

41 Davide Sangiorgi. pi-Calculus, Internal Mobility, and Agent-Passing Calculi. Theor. Comput.
Sci., 167(1&2):235–274, 1996. doi:10.1016/0304-3975(96)00075-8.

42 Davide Sangiorgi and David Walker. The π-calculus: A Theory of Mobile Processes. Cambridge
University Press, New York, NY, USA, 2001.

43 Alex K. Simpson. The proof theory and semantics of intuitionistic modal logic. PhD thesis,
University of Edinburgh, UK, 1994. URL: http://hdl.handle.net/1842/407.

44 Bernardo Toninho, Luís Caires, and Frank Pfenning. Dependent session types via intuitionistic
linear type theory. In Proc. of PPDP ’11, pages 161–172, New York, NY, USA, 2011. ACM.
doi:10.1145/2003476.2003499.

45 Bernardo Toninho, Luís Caires, and Frank Pfenning. Corecursion and Non-divergence in
Session-Typed Processes. In Trustworthy Global Computing - 9th International Symposium,
TGC 2014, Rome, Italy, September 5-6, 2014. Revised Selected Papers, pages 159–175, 2014.

46 Bernardo Toninho and Nobuko Yoshida. Depending on Session-Typed Processes. In Found-
ations of Software Science and Computation Structures - 21st International Conference,
FOSSACS 2018, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings, pages 128–145,
2018.

47 Philip Wadler. Propositions as sessions. J. Funct. Program., 24(2-3):384–418, 2014. doi:
10.1017/S095679681400001X.

CONCUR 2019

https://doi.org/10.4204/EPTCS.64.5
https://doi.org/10.1007/978-3-642-28869-2_27
https://doi.org/10.1016/j.ic.2014.08.001
https://doi.org/10.1016/0304-3975(96)00075-8
http://hdl.handle.net/1842/407
https://doi.org/10.1145/2003476.2003499
https://doi.org/10.1017/S095679681400001X
https://doi.org/10.1017/S095679681400001X

Reordering Derivatives of Trace Closures of
Regular Languages
Hendrik Maarand
Department of Software Science, Tallinn University of Technology, Estonia
hendrik@cs.ioc.ee

Tarmo Uustalu
School of Computer Science, Reykjavik University, Iceland
Department of Software Science, Tallinn University of Technology, Estonia
tarmo@ru.is

Abstract
We provide syntactic derivative-like operations, defined by recursion on regular expressions, in
the styles of both Brzozowski and Antimirov, for trace closures of regular languages. Just as the
Brzozowski and Antimirov derivative operations for regular languages, these syntactic reordering
derivative operations yield deterministic and nondeterministic automata respectively. But trace
closures of regular languages are in general not regular, hence these automata cannot generally be
finite. Still, as we show, for star-connected expressions, the Antimirov and Brzozowski automata,
suitably quotiented, are finite. We also define a refined version of the Antimirov reordering
derivative operation where parts-of-derivatives (states of the automaton) are nonempty lists of
regular expressions rather than single regular expressions. We define the uniform scattering rank
of a language and show that, for a regexp whose language has finite uniform scattering rank, the
truncation of the (generally infinite) refined Antimirov automaton, obtained by removing long states,
is finite without any quotienting, but still accepts the trace closure. We also show that star-connected
languages have finite uniform scattering rank.

2012 ACM Subject Classification Theory of computation → Regular languages; Theory of compu-
tation → Concurrency

Keywords and phrases Mazurkiewicz traces, trace closure, regular languages, finite automata,
language derivatives, scattering rank, star-connected expressions

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2019.40

Related Version A full version of this article is available as a preprint [12], https://arxiv.org/
abs/1908.03551.

Funding Both authors: supported by the Estonian Ministry of Education and Research institutional
grant no. IUT33-13.
Hendrik Maarand: supported by the ERDF funded Estonian national CoE project EXCITE (2014-
2020.4.01.15-0018).

Acknowledgements We thank Pierre-Louis Curien, Jacques Sakarovitch, Simon Doherty, Georg
Struth and Ralf Hinze for inspiring discussions, and our anonymous reviewers for the exceptionally
thorough and constructive feedback they gave us.

1 Introduction

Traces were introduced to concurrency theory by Mazurkiewicz [13, 14] as an alternative to
words. A word can be seen as a linear order that is labelled with letters of the alphabet.
Intuitively, the main idea of traces is that the linear order, corresponding to sequentiality, is
replaced with a partial order. Sets of words (or word languages) can be used to describe the
behaviour of concurrent systems. Similarly, sets of traces (or trace languages) can also be
used for this purpose. The difference is that descriptions in terms of traces do not distinguish

© Hendrik Maarand and Tarmo Uustalu;
licensed under Creative Commons License CC-BY

30th International Conference on Concurrency Theory (CONCUR 2019).
Editors: Wan Fokkink and Rob van Glabbeek; Article No. 40; pp. 40:1–40:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-1967-4297
mailto:hendrik@cs.ioc.ee
https://orcid.org/0000-0002-1297-0579
mailto:tarmo@ru.is
https://doi.org/10.4230/LIPIcs.CONCUR.2019.40
https://arxiv.org/abs/1908.03551
https://arxiv.org/abs/1908.03551
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

40:2 Reordering Derivatives of Trace Closures of Regular Languages

between different linear extensions (words) of the same partial order (trace) – they are
considered equivalent. Different linear extensions of the same partial order can be seen as
different observations of the same behaviour.

Given a word language L and a letter a, the derivative of L along a is the language
consisting of all the words v such that av belongs to L. An essential difference between words
and traces is that a nonempty word (a linear order) has its first letter as the unique minimal
element, but a nonempty trace (a partial order) may have several minimal elements. A trace
from a trace language can be derived along any of its minimal letters. Clearly, a minimal
letter of a trace need not be the first letter of a word representing this trace.

It is well-known that the derivative of a regular word language along a letter is again
regular. Brzozowski [5] showed that a regexp for it can be computed from a regexp for the
given language, and Antimirov [2] then further optimized this result. We show that these
syntactic derivative operations generalize to trace closures (i.e., closures under equivalence)
of regular word languages in the form of syntactic reordering derivative operations.

The syntactic derivative operations for regular word languages provide ways to construct
automata from a regexp. The Brzozowski derivative operation is a function on regexps
while the Antimirov derivative operation is a relation. Accordingly, they yield deterministic
and nondeterministic automata. The set of Brzozowski derivatives of a regexp (modulo
appropriate equations) and the set of Antimirov parts-of-derivatives are finite, hence so are
the resulting automata. Our generalizations to trace closures of regular languages similarly
give deterministic and nondeterministic automata, but these cannot be finite in general.
Still, as we show, for a star-connected expression, the Antimirov and Brzozowski automata,
suitably quotiented, are finite. We also develop a finer version of the Antimirov reordering
derivative, where parts-of-derivatives are nonempty lists of regexps rather than single regexps,
and we show that the set of expressions that can appear in these lists for a given initial
regexp is finite. We introduce a new notion of uniform scattering rank of a language (a
variant of Hashiguchi’s scattering rank [7]) and show that, for a regexp whose language has
finite uniform rank, a truncation of the refined reordering Antimirov automaton accepts its
trace closure despite the removed states, and is finite, without any quotienting.

A full version of this article, with proofs and background material on classical language
derivatives and trace closures of regular languages is available as a preprint [12].

2 Preliminaries on Word Languages

An alphabet Σ is a finite set (of letters). A word over Σ is a finite sequence of letters. The
set Σ∗ of all words over Σ is the free monoid on Σ with the empty word ε as the unit and
concatenation of words (denoted by · that can be omitted) as the multiplication. We write
|u| for the length of a word u and also |X| for the size of a subalphabet X. By |u|a we mean
the number of occurrences of a in u. By Σ(u) we denote the set of letters that appear in u.

A (word) language is a subset of Σ∗. The empty word and concatenation of words lift to
word languages via 1 =df {ε} and L · L′ =df {uv | u ∈ L ∧ v ∈ L′}.

2.1 Derivatives of a Language
A word language L is said to be nullable L↓, if ε ∈ L. The derivative (or left quotient)1 of L
along a word u is defined by DuL =df {v | uv ∈ L}. For any L, we have DεL = L as well
as DuvL = Dv(DuL) for any u, v ∈ Σ∗, i.e., the operation D : PΣ∗ × Σ∗ → PΣ∗ is a right
action of Σ∗ on PΣ∗. We also have L = {ε | L↓}∪

⋃
{{a} ·DaL | a ∈ Σ}, and for any u ∈ Σ∗,

we have u ∈ L iff (DuL)↓.

1 We use the word “derivative” both for languages and expressions, reserving the word “quotient” for
quotients of sets by equivalence relations.

H. Maarand and T. Uustalu 40:3

2.2 Regular Languages
The set RE of regular expressions (in short, regexps) over Σ is given by the grammar
E,F ::= a | 0 | E + F | 1 | EF | E∗ where a ranges over Σ.

The word-language semantics of regular expressions is given by a function J_K : RE→ PΣ∗
defined recursively by

JaK =df {a} J1K =df 1
J0K =df ∅ JEF K =df JEK · JF K

JE + F K =df JEK ∪ JF K JE∗K =df µX.1 ∪ JEK ·X

A word language L is said to be regular (or rational) if L = JEK for some regexp E.
Kleene algebras are defined by an equational theory. It was shown by Kozen [11] that the
set {JEK | E ∈ RE} of all regular languages together with the language operations ∅, ∪, 1,
·, (_)∗ is the free Kleene algebra on Σ. An important property for us is that E .= F iff
JEK = JF K where .= refers to valid equations in the Kleene algebra theory.

Kleene’s theorem [9] says that a word language is rational iff it is recognizable, i.e., accepted
by a finite deterministic automaton (acceptance by a finite nondeterministic automaton is
an equivalent condition because of determinizability [17]).

2.3 Brzozowski and Antimirov Derivatives
Derivatives of regular languages are regular. A remarkable fact is that they can be computed
syntactically, on the level of regular expressions. There are two constructions for this, due to
Brzozowski [5] and Antimirov [2]. The Brzozowski and Antimirov derivative operations yield
deterministic resp. nondeterministic automata accepting the language of a regular expression
E. The Antimirov automaton is finite. The Brzozowski automaton becomes finite when
quotiented by associativity, commutativity and idempotence for +. Identified up to the
Kleene algebra theory, the states of the Brzozowski automaton correspond to the derivatives
of the language JEK. Regular languages can be characterized as languages with finitely
many derivatives.

3 Trace Closures of Regular Languages

3.1 Trace Closure of a Word Language
An independence alphabet is an alphabet Σ together with an irreflexive and symmetric relation
I ⊆ Σ× Σ called the independence relation. The complement D of I, which is reflexive and
symmetric, is called dependence. We extend independence to words by saying that two words
u and v are independent, uIv, if aIb for all a, b such that a ∈ Σ(u) and b ∈ Σ(v).

Let ∼I⊆ Σ∗ × Σ∗ be the least congruence relation on the free monoid Σ∗ such that aIb
implies ab ∼I ba for all a, b ∈ Σ. If uIv, then uv ∼I vu.

A (Mazurkiewicz) trace is an equivalence class of words wrt. ∼I . The equivalence class of
a word w is denoted by [w]I .

A word a1 . . . an where ai ∈ Σ yields a directed node-labelled acyclic graph as follows.
Take the vertex set to be V =df {1, . . . , n} and label vertex i with ai. Take the edge set to
be E =df {(i, j) | i < j ∧ aiDaj}. This graph (V,E) for a word w is called the dependence
graph of w and is denoted by 〈w〉D. If w ∼I z, then the dependence graphs of w and z are
isomorphic, i.e., traces can be identified with dependence graphs up to isomorphism.

The set Σ∗/∼I of all traces is the free partially commutative monoid on (Σ, I). If I = ∅,
then Σ∗/∼I ∼= Σ∗, the set of words, i.e., we recover the free monoid. If I = {(a, b) | a 6= b},
then Σ∗/∼I ∼=Mf(Σ), the set of finite multisets over Σ, i.e., the free commutative monoid.

CONCUR 2019

40:4 Reordering Derivatives of Trace Closures of Regular Languages

A trace language is a subset of Σ∗/∼I . Trace languages are in bijection with word
languages that are (trace) closed in the sense that, if z ∈ L and w ∼I z, then also w ∈ L. If
T is a trace language, then its flattening L =df

⋃
T is a closed word language. On the other

hand, the trace language corresponding to a closed word language L is T =df {t ∈ Σ∗/∼I |
∃z ∈ t. z ∈ L} = {t ∈ Σ∗/∼I | ∀z ∈ t. z ∈ L}.

Given a general (not necessarily closed) word language L, we define its (trace) closure [L]I
as the least closed word language that contains L. Clearly [L]I = {w ∈ Σ∗ | ∃z ∈ L.w ∼I z}
and also [L]I =

⋃
{t ∈ Σ∗/∼I | ∃z ∈ t. z ∈ L}. For any L, we have [[L]I]I = [L]I , so [_]I is a

closure operator. Note also that L is closed iff [L]I = L.
As seen in Section 2.1, the derivative of a word language is the set of all suffixes for a

prefix. We now look at what the prefixes and suffixes of a word as a representative of a trace
should be. For a word vuv′ such that vIu, we can consider u to be its prefix, up to reordering,
and vv′ to be the suffix. This is because an equivalent word uvv′ strictly has u as a prefix
and vv′ as the suffix. Similarly, we may also want to consider u′ to be a prefix of vuv′ when
u′ ∼I u since u′vv′ ∼I uvv′ ∼I vuv′. Note that if a is such a prefix of z, then, by irreflexivity
of I, this a is the first a of z. In general, when u is a prefix of z, then the letter occurrences
in u uniquely map to letter occurrences in z. We scale these ideas to allow u to be scattered
in z as z = v0u1v1 . . . unvn in either the sense that u = u1 . . . un or u ∼I u1 . . . un. We also
define bounded versions of scattering that become relevant in Section 5.

I Definition 1. For all u1, . . . , un ∈ Σ+, v0 ∈ Σ∗, v1 . . . , vn−1 ∈ Σ+, vn ∈ Σ∗, z ∈ Σ∗,
u1, . . . , un C z B v0, . . . , vn =df z = v0u1v1 . . . unvn ∧ ∀i.∀j < i. vjIui.

I Definition 2. For all u, v, z ∈ Σ∗,
1. uC z B v =df ∃n ∈ N, u1, . . . , un, v0, . . . , vn. u = u1 . . . un ∧ v = v0 . . . vn ∧

u1, . . . , un C z B v0, . . . , vn;
2. u ∼C z B v =df ∃u′. u ∼I u′ ∧ u′ C z B v;
3. u ∼C z B∼ v =df ∃u′, v′. u ∼I u′ ∧ u′ C z B v′ ∧ v′ ∼I v.

I Lemma 3. For any u, v, z ∈ Σ∗,
uC z B v ⇐⇒ ∃!n ∈ N, u1, . . . , un, v0, . . . , vn. u = u1 . . . un ∧ v = v0 . . . vn ∧

u1, . . . , un C z B v0, . . . , vn.

I Definition 4. For all u, v, z ∈ Σ∗ and N ∈ N,
1. uCN z B v =df ∃n ≤ N, u1, . . . , un, v0, . . . , vn. u1, . . . , un C z B v0, . . . , vn;
2. (and u ∼CN z B v and u ∼CN z B∼ v are defined analogously).

I Example 5. Let Σ =df {a, b, c} and aIb and aIc. Take z =df aabcba. We have abCzBacba
since a, bC z B ε, a, cba. We can visualize this by underlining the subwords of u =df ab in
z = εaabcba. This scattering is valid because εIa, εIb and aIb: recall that Def. 1 requires
all underlined subwords ui to be independent with all non-underlined subwords vi to their
left in z. Similarly we have aa, aC z B ε, bcb, ε because z = εaabcbaε, εIaa, εIa and bcbIa.
Note that neither aabcbaε nor aabcbaε satisfies the conditions about independence and thus
there is no v such that baC z B v. We do have ba ∼C z B acba though, since ba ∼I ab and
a, bC z B ε, a, cba.

I Proposition 6. For all u, v, z ∈ Σ∗, uv ∼I z ⇐⇒ u ∼C z B∼ v.

3.2 Trace-Closing Semantics of Regular Expressions
We now define a nonstandard word-language semantics of regexps that directly interprets E
as the trace closure [JEK]I of its standard regular word-language denotation JEK.

H. Maarand and T. Uustalu 40:5

We have [{a}]I = {a}, [∅]I = ∅, [L ∪ L′]I = [L]I ∪ [L′]I and [1]I = 1. But for general
I, we do not have [L · L′]I = [L]I · [L′]I . For example, for Σ =df {a, b} and aIb, we have
[{a}]I = {a}, [{b}]I = {b} whereas [{ab}]I = {ab, ba} 6= {ab} = [{a}]I · [{b}]I . Hence we
need a different concatenation operation.

I Definition 7.
1. The I-reordering concatenation of words ·I : Σ∗ × Σ∗ → PΣ∗ is defined by

ε ·I v =df {v}
u ·I ε =df {u}

au ·I bv =df {a} · (u ·I bv) ∪ {b | auIb} · (au ·I v)

2. The lifting of I-reordering concatenation to languages is defined by

L ·I L′ =df
⋃
{u ·I v | u ∈ L ∧ v ∈ L′}

Note that {b | auIb} acts as a test: it is either ∅ or {b}.

I Example 8. Let Σ =df {a, b} and aIb. Then a ·I b = {ab, ba}, aa ·I b = {aab, aba, baa},
a ·I bb = {abb, bab, bba} and ab ·I ba = {abba}. The last example shows that although
I-reordering concatenation is defined quite similarly to shuffle, it is different.

I Proposition 9. For any u, v, z ∈ Σ∗, z ∈ u ·I v ⇐⇒ uC z B v.

I Proposition 10. For any languages L and L′, [L · L′]I = [L]I ·I [L′]I .

Evidently, if I = ∅, then reordering concatenation is just ordinary concatenation: u ·∅ v =
{uv}. For I = Σ × Σ, which is forbidden in independence alphabets, as I is required to
be irreflexive, it is shuffle: u ·Σ×Σ v = u tt v. For general I, it has properties similar to
concatenation. In particular, we have

1 ·I L = L ∅ ·I L = ∅
L ·I 1 = L (L1 ∪ L2) ·I L = L1 ·I L ∪ L2 ·I L

(L ·I L′) ·I L′′ = L ·I (L′ ·I L′′) (L1 tt L2) ·I (L′1 tt L′2) ⊆ (L1 ·I L′1) tt (L2 ·I L′2)

but also other equations of the concurrent Kleene algebra theory introduced in [8].
We are ready to introduce the closing semantics of regular expressions.

I Definition 11. The trace-closing semantics J_KI : RE → PΣ∗ of regular expressions is
defined recursively by

JaKI =df {a} J1KI =df 1
J0KI =df ∅ JEF KI =df JEKI ·I JF KI

JE + F KI =df JEKI ∪ JF KI JE∗KI =df µX.1 ∪ JEKI ·I X

Compared to the standard semantics of regular expressions, the difference is in the
handling of the EF case (and consequently also the E∗ case) due to the cross-commutation
that happens in concatenation of traces and must be accounted for by ·I .

With I = ∅, we fall back to the standard interpretation of regular expressions: JEK∅ = JEK.
For I a general independence relation, we obtain the desired property that the semantics
delivers the trace closure of the language of the regexp.

I Proposition 12. For any E, JEKI is trace closed; moreover, JEKI = [JEK]I .

CONCUR 2019

40:6 Reordering Derivatives of Trace Closures of Regular Languages

3.3 Properties of Trace Closures of Regular Languages
Trace closures of regular languages are theoretically interesting, as they have intricate
properties. For a thorough survey, see Ochmański’s handbook chapter [16].

The most important property for us is that the trace closure of a regular language is
not necessarily regular. Consider Σ =df {a, b}, aIb. Let L =df J(ab)∗K. The language
[L]I = {u | |u|a = |u|b} is not regular.

The class of trace closures of regular languages over an independence alphabet behaves
quite differently from the class of regular languages over an alphabet. For example, the
class of trace closures of regular languages over (Σ, I) is closed under complement iff I is
quasi-transitive (i.e., its reflexive closure is transitive) [3, 1, 18] (cf. [16, Thm. 6.2.5]); the
question of whether the trace closure of the language of a regexp over (Σ, I) is regular is
decidable iff I is quasi-transitive [19] (cf. [16, Thm. 6.2.7]).

A closed language is regular iff the corresponding trace language is accepted by a finite
asynchronous (a.k.a. Zielonka) automaton [21, 22]. In Section 4.4, we will see further
characterizations of regular closed languages based on star-connected expressions.

4 Reordering Derivatives

We are now ready to generalize the Brzozowski and Antimirov constructions for trace closures
of regular languages. To this end, we switch to what we call reordering derivatives.

4.1 Reordering Derivative of a Language
Let (Σ, I) be a fixed independence alphabet. We generalize the concepts of (semantic) nullab-
ility and derivative of a language to concepts of reorderable part and reordering derivative.

I Definition 13. We define the I-reorderable part of a language L wrt. a word u by RI
uL =df

{v ∈ L | vIu} and the I-reordering derivative along u by DI
uL =df {v | ∃z ∈ L. u ∼C z B v}.

By Prop. 9, we can equivalently say that DI
uL = {v | ∃z ∈ L. z ∈ [u]I ·I v}. For a single-letter

word a, we get DI
aL = {vlvr | vlavr ∈ L ∧ vlIa} = {v | ∃z ∈ L. z ∈ a ·I v}. That is, we

require some reordering of u (resp. a) to be a prefix, up to reordering, of some word z in
L with v as the corresponding strict suffix. (In other words, for the sake of precision and
emphasis, we allow reordering of letters within u and across u and v, but not within v.)

I Example 14. Let Σ =df {a, b, c} and aIb. Take L =df {ε, a, b, ca, aa, bbb, babca, abbaba}.
We have RI

aL = RI
aaL = {ε, b, bbb}, DI

aL = {ε, a, bbca, bbaba} and DI
aaL = {ε, bbba}.

In the special case I = ∅, we have R∅εL = L, R∅uL = {ε | L↓} for any u 6= ε, and
D∅uL = DuL. In the general case, the reorderable part and reordering derivative enjoy the
following properties.

I Lemma 15. For every L,
1. RI

εL = L; for every u, v ∈ Σ∗, RI
v(RI

uL) = RI
uvL;

2. for every u, u′ ∈ Σ∗, RI
Σ(u)L = RI

Σ(u′)L.

We extend RI to subsets of Σ: by RI
XL, we mean RI

uL where u is any enumeration of X.

I Lemma 16. For every L,
1. DI

εL = L; for any u, v ∈ Σ∗, DI
v(DI

uL) = DI
uvL;

2. for any u, u′ ∈ Σ∗ such that u ∼I u′, we have DI
uL = DI

u′L.

H. Maarand and T. Uustalu 40:7

I Proposition 17. For every L,
1. for any u ∈ Σ∗, Du([L]I) = [DI

uL]I ;
if L is closed (i.e., [L]I = L), then, for any u ∈ Σ∗, DI

uL is closed and DuL = DI
uL;

2. for any u, v ∈ Σ∗, uv ∈ [L]I iff v ∈ [DI
uL]I ;

3. for any u ∈ Σ∗, u ∈ [L]I iff (DI
uL)↓;

4. [L]I = {ε | L↓} ∪
⋃

a∈Σ{a} · [DI
aL]I .

I Example 18. Let Σ =df {a, b} and aIb. Take L to be the regular language J(ab)∗K. We
have already noted that the language [L]I = {u | |u|a = |u|b} is not regular. For any n ∈ N,
DI

bnL = {an} · L = Jan(ab)∗K whereas Dbn([L]I) = {an} ·I [L]I = {u | |u|a = |u|b + n}.
We can see that [L]I has infinitely many derivatives, none of which are regular, and L has
infinitely many reordering derivatives, all regular.

4.2 Brzozowski Reordering Derivative

The reorderable parts and reordering derivatives of regular languages turn out to be regular.
We now show that they can be computed syntactically, generalizing the classical syntactic
nullability and Brzozowski derivative operations [5].

I Definition 19. The I-reorderable part and the Brzozowski I-reordering derivative of a
regexp are given by functions RI , DI : RE × Σ → RE and RI , DI : RE × Σ∗ → RE defined
recursively by

RI
ab =df if aIb then b else 0 DI

ab =df if a = b then 1 else 0
RI

a0 =df 0 DI
a0 =df 0

RI
a(E + F) =df RI

aE +RI
aF DI

a(E + F) =df DI
aE +DI

aF

RI
a1 =df 1 DI

a1 =df 0
RI

a(EF) =df (RI
aE)(RI

aF) DI
a(EF) =df (DI

aE)F + (RI
aE)(DI

aF)
RI

a(E∗) =df (RI
aE)∗ DI

a(E∗) =df (RI
aE)∗(DI

aE)E∗

RI
εE =df E DI

εE =df E

RI
uaE =df RI

a(RI
uE) DI

uaE =df DI
a(DI

uE)

The regexp RuE is nothing but E with all occurrences of letters dependent with u replaced
with 0. The definition of D is more interesting. Compared to the classical Brzozowski
derivative, the nullability condition E↓ in the EF case has been replaced with concatenation
with the reorderable part RI

aE, and the E∗ case has also been adjusted.
The functions R and D on regexps compute their semantic counterparts on the corres-

ponding regular languages.

I Proposition 20. For any E,
1. for any a ∈ Σ, RI

aJEK = JRI
aEK and DI

aJEK = JDI
aEK;

2. for any u ∈ Σ∗, RI
uJEK = JRI

uEK and DI
uJEK = JDI

uEK.

I Proposition 21. For any E,
1. for any a ∈ Σ, v ∈ Σ∗, av ∈ JEKI ⇐⇒ v ∈ JDI

aEKI ;
2. for any u, v ∈ Σ∗, uv ∈ JEKI ⇐⇒ v ∈ JDI

uEKI ;
3. for any u ∈ Σ∗, u ∈ JEKI ⇐⇒ (DI

uE)↓.

CONCUR 2019

40:8 Reordering Derivatives of Trace Closures of Regular Languages

I Example 22. Let Σ =df {a, b}, aIb and E =df aa+ ab+ b.

DI
bE = DI

baa+DI
bab+DI

b b

= ((DI
ba)a+ (RI

ba)(DI
ba)) + ((DI

ba)b+ (RI
ba)(DI

b b)) +DI
b b

= (0a+ a0) + (0b+ a1) + 1 .= a+ 1

DI
b (E∗) = (RI

bE)∗(DI
bE)E∗

= (aa+ a0 + 0)∗((0a+ a0) + (0b+ a1) + 1)E∗ .= (aa)∗(a+ 1)E∗

DI
bb(E∗) .= DI

b ((aa)∗(a+ 1)E∗) .= (aa)∗(a+ 1)(aa)∗(a+ 1)E∗

As with the classical Brzozowski derivative, we can use the reordering Brzozowski
derivative to construct deterministic automata. For a regexp E, take QE =df {DI

uE | u ∈ Σ∗},
qE
0 =df E, FE =df {E′ ∈ QE | E′↓}, δE

a E
′ =df D

I
aE
′ for E′ ∈ QE . By Prop. 21, this

automaton accepts the closure JEKI . But even quotiented by the full Kleene algebra theory,
the quotient of QE is not necessarily finite, i.e., we may be able to construct infinitely many
different languages by taking reordering derivatives. For the regexp from Example 18, we
have DI

bn((ab)∗) .= an(ab)∗, so it has infinitely many Brzozowski reordering derivatives even
up to the Kleene algebra theory. This is only to be expected, as the closure J(ab)∗KI is not
regular and cannot possibly have an accepting finite automaton.

4.3 Antimirov Reordering Derivative
Like the classical Brzozowski derivative that was optimized by Antimirov [2], the Brzozowski
reordering derivative construction can be optimized by switching from functions on regexps
to multivalued functions or relations.

I Definition 23. The Antimirov I-reordering parts-of-derivatives of a regexp along a letter
and a word are relations →I ⊆ RE×Σ×RE and →I∗ ⊆ RE×Σ∗ ×RE defined inductively by

a→I (a, 1)
E →I (a,E′)

E + F →I (a,E′)
F →I (a, F ′)

E + F →I (a, F ′)

E →I (a,E′)
EF →I (a,E′F)

F →I (a, F ′)
EF →I (a, (RI

aE)F ′)
E →I (a,E′)

E∗ →I (a, (RI
aE)∗E′E∗)

E →I∗ (ε, E)
E →I∗ (u,E′) E′ →I (a,E′′)

E →I∗ (ua,E′′)

Here RI is defined as before. Similarly to the Brzozowski reordering derivative from the
previous subsection, the condition E↓ in the second EF rule has has been replaced with
concatenation with RI

aE, and the E∗ rule has been adjusted.
Collectively, the Antimirov reordering parts-of-derivatives of a regexp E compute the

semantic reordering derivative of the language JEK.

I Proposition 24. For any E,
1. for any a ∈ Σ, DI

aJEK =
⋃
{JE′K | E →I (a,E′)};

2. for any u ∈ Σ∗, DI
uJEK =

⋃
{JE′K | E →I∗ (u,E′)}.

I Proposition 25. For any E,
1. for any a ∈ Σ, v ∈ Σ∗, av ∈ JEKI ⇐⇒ ∃E′. E →I (a,E′) ∧ v ∈ JE′KI ;
2. for any u, v ∈ Σ∗, uv ∈ JEKI ⇐⇒ ∃E′. E →I∗ (u,E′) ∧ v ∈ JE′KI ;
3. for any u ∈ Σ∗, u ∈ JEKI ⇐⇒ ∃E′. E →I∗ (u,E′) ∧ E′↓.

H. Maarand and T. Uustalu 40:9

I Example 26. Let us revisit Example 22. The Antimirov reordering parts-of-derivatives of
E along b are a1 and 1:

b→I (b, 1)
ab→I (b, a1)

ab+ b→I (b, a1)
aa+ ab+ b→I (b, a1)

b→I (b, 1)
ab+ b→I (b, 1)

aa+ ab+ b→I (b, 1)

The Antimirov reordering parts-of-derivatives of E∗ along b are therefore E∗b (a1)E∗ and
E∗b 1E∗ where Eb =df R

I
bE = aa+a0+0. Recall that, for the Brzozowski reordering derivative,

we computed DI
bE = (0a+ a0) + (0b+ a1) + 1 and DI

bE
∗ = E∗b ((0a+ a0) + (0b+ a1) + 1)E∗.

Like the classical Antimirov construction, the Antimirov reordering parts-of-derivatives
of a regexp E give a nondeterministic automaton by QE =df {E′ | ∃u ∈ Σ∗. E →I∗ (u,E′)},
IE =df {E}, FE =df {E′ ∈ QE | E′↓}, E′ →E (a,E′′) =df E

′ →I (a,E′′) for E′, E′′ ∈ QE .
This automaton accepts JEKI by Prop. 25, but is generally infinite, also if quotiented by
the full Kleene algebra theory. Revisiting Example 18 again, (ab)∗ must have infinitely
many Antimirov reordering parts-of-derivatives modulo the Kleene algebra theory since
J(ab)∗KI is not regular and cannot have a finite accepting nondeterministic automaton.
Specifically, it has (a0)∗((a1) . . . ((a0)∗((a1)(ab)∗)) . . .) .= an(ab)∗ as its single reordering
part-of-derivative along bn.

However, if quotienting the Antimirov automaton for E by some sound theory (a theory
weaker than the Kleene algebra theory) makes it finite, then the Brzozowski automaton can
also be quotiented to become finite.

I Proposition 27. For any E,
1. for any a ∈ Σ, DI

aE
.=

∑
{E′ | E →I (a,E′)};

2. for any u ∈ Σ∗, DI
uE

.=
∑
{E′ | E →I∗ (u,E′)}

(using the semilattice equations for 0,+, that 0 is zero, and distributivity of · over +).

I Corollary 28. If some quotient of the Antimirov automaton for E (accepting JEKI) is
finite, then also some quotient of the Brzozowski automaton is finite.

4.4 Star-Connected Expressions
Star-connected expressions are important as they characterize regular closed languages. A
corollary of that is a further characterization of such languages in terms of a “concurrent”
semantics of regexps that interprets Kleene star nonstandardly as “concurrent star”.

I Definition 29. A word w ∈ Σ∗ is connected if its dependence graph 〈w〉D is connected. A
language L ⊆ Σ∗ is connected if every word w ∈ L is connected.

I Definition 30.
1. Star-connected expressions are a subset of the set of all regexps defined inductively by: 0,

1 and a ∈ Σ are star-connected. If E and F are star-connected, then so are E + F and
EF . If E is star-connected and JEK is connected, then E∗ is star-connected.

2. A language L is said to be star-connected if L = JEK for some star-connected regexp.

Ochmański [15] proved that a closed language is regular iff it is the closure of a star-
connected language (cf. [16, Thm. 6.3.13]). This means that, for any regexp E, the language
JEKI is regular iff there exists a (generally different!) star-connected expression E′ such
that JEKI = JE′KI . As a corollary, a closed language is regular iff it is the closure of the
concurrent denotation of some regexp (cf. [16, Thm. 6.3.16]).

CONCUR 2019

40:10 Reordering Derivatives of Trace Closures of Regular Languages

4.5 Automaton Finiteness for Star-Connected Expressions
We now show that the set of Antimirov reordering parts-of-derivatives of a star-connected
expression is finite modulo suitable equations.

I Lemma 31. If JEK is connected, then, for every u ∈ Σ+ and E′ such that E →I∗ (u,E′),
either RI

uE
′ .= 0 or RI

uE
′ .= 1 (using the equations involving 0 and 1 only and that 0 is zero).

I Lemma 32. If JEK is connected and E∗ →I∗ (u,E′), then there exists E′′ such that
E′

.= E′′ (using, additionally, the monoid equations for 1, · and the equation F ∗ · F ∗ .= F ∗)
and E′′ contains at most |Σ| subexpressions of the form (RI

XE)∗ where ∅ ⊂ X ⊆ Σ.

I Proposition 33. If E is star-connected, then a suitable sound quotient of the state set
{E′ | ∃u ∈ Σ∗. E →I∗ (u,E′)} of the Antimirov automaton for E (accepting JEKI) is finite.

5 Uniform Scattering Rank of a Language

We proceed to defining the notion of uniform scattering rank of a language and show that
star-connected expressions define languages with uniform scattering rank.

5.1 Scattering Rank vs. Uniform Scattering Rank
The notion of scattering rank of a language (a.k.a. distribution rank, k-block testability) was
introduced by Hashiguchi [7].

I Definition 34. A language L has (I-scattering) rank at most N if
∀u, v. uv ∈ [L]I =⇒ ∃z ∈ L. u ∼CN z B∼ v.

Hashiguchi [7] showed that having rank is a sufficient condition for regularity of the trace
closure of a regular language (cf. [16, Prop. 6.3.2]). But it is not a necessary condition: for
Σ =df {a, b}, aIb, the language L =df J(aa+ab+ba+bb)∗K has rank 1 (as does any nontrivial
closed language), but it is not star-connected.

We wanted to show that a truncation of the refined Antimirov automaton (which we
define in Section 6) is finite for regexps whose language has rank (i.e., the language has rank
at most N for some N ∈ N). But it turns out, as we shall see, that rank does not quite work
for this. For this reason, we introduce a stronger notion that we call uniform scattering rank.

I Definition 35. A language L has uniform (I-scattering) rank at most N if
∀w ∈ [L]I . ∃z ∈ L. ∀u, v. w = uv =⇒ u ∼CN z B∼ v.

The difference between the two definitions is that, in the uniform case, the choice of z
depends only on w whereas, in the non-uniform case, it depends on the particular split of w
as w = uv, i.e., for every such split of w we may choose a different z.

I Lemma 36. If L has uniform rank at most N , then L has rank at most N .

The converse of the above lemma does not hold – there are languages with uniform rank
greater than rank. Furthermore, there are languages that have rank but no uniform rank.

I Proposition 37. Let Σ =df {a, b, c}, aIb and E =df a
∗b∗c(ab)∗(a∗+b∗)+(ab)∗(a∗+b∗)ca∗b∗.

The language JEK has rank 2, but no uniform rank.

H. Maarand and T. Uustalu 40:11

5.2 Star-Connected Languages Have Uniform Rank
Klunder et al. [10] established that star-connected languages have rank. We will now show
that star-connected languages also have uniform rank, by strengthening their proof.

It can be seen that if L1 and L2 have uniform rank at most N1 and N2, then L1 ∪ L2
has uniform rank at most max(N1, N2) and L1 · L2 has uniform rank at most N1 +N2. If a
general L has uniform rank at most N , then L∗ need not have uniform rank. For example,
for Σ =df {a, b}, aIb, the language {ab} has uniform rank 1, but {ab}∗ is without rank,
so also without uniform rank. But if L is also connected, then L∗ has uniform rank at
most (N + 1) · |Σ|.

I Proposition 38. If E is star-connected, then the language JEK has uniform rank.

6 Antimirov Reordering Derivative and Uniform Rank

We have seen that the reordering language derivative DI
uL allows u to be scattered in a word

z ∈ L as u1, . . . , un C z B v0, . . . , vn where u ∼I u1 . . . un. We will now consider a version of
the Antimirov reordering derivative operation that delivers lists of regexps for the possible
v0, . . . , vn rather than just single regexps for their concatenations v0 . . . vn.

6.1 Refined Antimirov Reordering Derivative
The refined reordering parts-of-derivative of a regexp E along a letter a are pairs of regexps
El, Er. For any word w = av ∈ JEKI , there must be an equivalent word z = vlavr ∈ JEK.
Instead of describing the words vlvr obtainable by removing a minimal occurrence of a
in a word z ∈ JEK, the refined parts-of-derivative describe the subwords vl, vr that were
to the left and right of this a in z: it must be the case that vl ∈ JElK and vr ∈ JErK for
one of the pairs El, Er. For a longer word u, the refined reordering derivative operation
gives lists of regexps E0, . . . , En fixing what the lists of subwords v0, . . . , vn can be in words
z = v0u1v1 . . . unvn ∈ JEK equivalent to a given word w = uv ∈ JEKI .

I Definition 39. The (unbounded and bounded) refined Antimirov I-reordering parts-of-
derivatives of a regexp along a letter and a word are given by relations→I ⊆ RE×Σ×RE×RE,
⇒I ⊆ RE+ × Σ × RE+, →I∗ ⊆ RE × Σ∗ × RE+, ⇒I

N ⊆ RE+≤N+1 × Σ × RE+≤N+1, and
→I∗

N ⊆ RE× Σ∗ × RE+≤N+1 defined inductively by

a→I (a; 1, 1)
E →I (a;El, Er)

E + F →I (a;El, Er)
F →I (a;Fl, Fr)

E + F →I (a;Fl, Fr)

E →I (a;El, Er)
EF →I (a;El, ErF)

F →I (a;Fl, Fr)
EF →I (a; (RI

aE)Fl, Fr)
E →I (a;El, Er)

E∗ →I (a; (RI
aE)∗El, ErE

∗)

E →I (a;El, Er) |Γ,∆| < N

Γ, E,∆⇒I
N (a;RI

aΓ, El, Er,∆)
E →I (a;El, Er) El↓ |Γ| > 0

Γ, E,∆⇒I
N (a;RI

aΓ, Er,∆)

E →I (a;El, Er) Er↓ |∆| > 0
Γ, E,∆⇒I

N (a;RI
aΓ, El,∆)

E →I (a;El, Er) El↓ Er↓ |Γ| > 0 |∆| > 0
Γ, E,∆⇒I

N (a;RI
aΓ,∆)

E →I∗
N (ε;E)

E →I∗
N (u; Γ) Γ⇒I

N (a; Γ′)
E →I∗

N (ua; Γ′)

By RE+≤N+1 we mean nonempty lists of regexps of length at most N + 1. The relations ⇒I

and →I∗ are defined exactly as ⇒I
N and →I∗

N but with the condition |Γ,∆| < N of the first
rule of ⇒I

N dropped. The operation RI
a is extended to lists of regexps in the obvious way.

CONCUR 2019

40:12 Reordering Derivatives of Trace Closures of Regular Languages

We have several rules for deriving a list of regexps along a. If E is split into El, Er and
neither of them is nullable, then, in the N -bounded case, we require that the given list is
shorter than N + 1 since the new list will be longer by 1. If one of El, Er is nullable, not
the first resp. last in the list and we choose to drop it, then the new list will be of the same
length. If both are nullable, not the first resp. last and we opt to drop both, then the new list
will be shorter by 1. They must be droppable under these conditions to handle the situation
when a word z has been split as v0u1v1 . . . ukvkuk+1 . . . unvn and vk is further being split as
vlavr while vl or vr is empty. If k 6= 0 and vl is empty, we must join uk and a into uka. If
k 6= n and vr is empty, we must join a and uk+1 into auk+1. If k is neither 0 nor n and both
vl and vr are empty, we must join all three of uk, a and uk+1 into ukauk+1. The length of
the new list of regexps is always at least 2.

I Proposition 40. For any E,
1. for any a ∈ Σ, vl, vr ∈ Σ∗,

vlIa ∧ vlavr ∈ JEK ⇐⇒ ∃El, Er. E →I (a;El, Er) ∧ vl ∈ JElK ∧ vr ∈ JErK;

2. for any u ∈ Σ∗, n ∈ N, v0 ∈ Σ∗, v1, . . . , vn−1 ∈ Σ+, vn ∈ Σ∗,

∃z ∈ Σ∗, u1, . . . , un ∈ Σ+. z ∈ JEK ∧ u ∼I u1 . . . un ∧ u1, . . . , un C z B v0, . . . , vn

⇐⇒
∃E0, . . . , En. E →I∗ (u;E0, . . . , En) ∧ ∀j. vj ∈ JEjK.

I Proposition 41. For any E,
1. for any a ∈ Σ, v ∈ Σ∗, the following are equivalent:

a. av ∈ JEKI ;
b. ∃vl, vr ∈ Σ∗. v ∼I vlvr ∧ vlIa ∧ vlavr ∈ JEK;
c. ∃vl, vr ∈ Σ∗.

v ∼I vlvr ∧ ∃El, Er. E →I (a;El, Er) ∧ vl ∈ JElK ∧ vr ∈ JErK;
d. ∃vl, vr ∈ Σ∗.

v ∈ vl ·I vr ∧ ∃El, Er. E →I (a;El, Er) ∧ vl ∈ JElKI ∧ vr ∈ JErKI .
2. for any u, v ∈ Σ∗, the following are equivalent:

a. uv ∈ JEKI ;
b. ∃z ∈ JEK. u ∼C z B∼ v;
c. ∃n ∈ N, v0 ∈ Σ∗, v1, . . . , vn−1 ∈ Σ+, vn ∈ Σ∗. v ∼I v0v1 . . . vn ∧

∃E0, . . . , En. E →I∗ (u;E0, . . . , En) ∧ ∀j. vj ∈ JEjK;
d. ∃n ∈ N, v0 ∈ Σ∗, v1, . . . , vn−1 ∈ Σ+, vn ∈ Σ∗. v ∈ v0 ·I v1 ·I . . . ·I vn ∧

∃E0, . . . , En. E →I∗ (u;E0, . . . , En) ∧ ∀j. vj ∈ JEjKI .
3. for any u ∈ Σ∗,

u ∈ JEKI ⇐⇒ (u = ε ∧ E↓) ∨ (u 6= ε ∧ ∃E0, E1. E →I∗ (u;E0, E1) ∧ E0↓ ∧ E1↓).

I Corollary 42. For any E such that JEK has uniform rank at most N ,
1. for any u, v ∈ Σ∗, the following are equivalent:

a. uv ∈ JEKI ;
b. ∃z ∈ JEK. ∀u′, u′′. u = u′u′′ =⇒ u′ ∼CN z B∼ u′′v;
c. ∃n ≤ N, v0 ∈ Σ∗, v1, . . . , vn−1 ∈ Σ+, vn ∈ Σ∗. v ∼I v0v1 . . . vn ∧

∃E0, . . . , En. E →I∗
N (u;E0, . . . , En) ∧ ∀j. vj ∈ JEjK;

d. ∃n ≤ N, v0 ∈ Σ∗, v1, . . . , vn−1 ∈ Σ+, vn ∈ Σ∗. v ∈ v0 ·I v1 ·I . . . ·I vn ∧
∃E0, . . . , En. E →I∗

N (u;E0, . . . , En) ∧ ∀j. vj ∈ JEjKI .
2. for any u ∈ Σ∗,

u ∈ JEKI ⇐⇒ (u = ε ∧ E↓) ∨ (u 6= ε ∧ ∃E0, E1. E →I∗
N (u;E0, E1) ∧ E0↓ ∧ E1↓).

H. Maarand and T. Uustalu 40:13

I Example 43. We go back to Example 22. Recall that E =df aa + ab + b and Eb =df
RI

bE = aa+ a0 + 0. Here is one of the refined reordering parts-of-derivatives of E∗ along bb.

E∗ →I∗
2 (ε;E∗)

b→I (b; 1, 1)
ab→I (b; a1, 1)

ab+ b→I (b; a1, 1)
aa+ ab+ b→I (b; a1, 1)
E∗ →I (b;E∗b (a1), 1E∗) 0 < 2

E∗ ⇒I
2 (b;E∗b (a1), 1E∗)

E∗ →I∗
2 (b;E∗b (a1), 1E∗)

b→I (b; 1, 1)
ab→I (b; a1, 1)

ab+ b→I (b; a1, 1)
aa+ ab+ b→I (b; a1, 1)
E∗ →I (b;E∗b (a1), 1E∗)

1E∗ →I (b; 1(E∗b (a1)), 1E∗) 1 < 2
E∗b (a1), 1E∗ ⇒I

2 (b;E∗b (a1), 1(E∗b (a1)), 1E∗)
E∗ →I∗

2 (bb;E∗b (a1), 1(E∗b (a1)), 1E∗)

In this example, we chose N =df 2. The regexp 1(E∗b (a1)) .= (aa)∗a is not nullable, so we
could not have dropped it. From here we cannot continue by deriving along a third b by again
taking it from the summand ab of E in 1E∗, as this would produce another nondroppable
1(E∗b (a1)) and make the list too long (longer than 3). For example, we are not allowed to
establish w =df bbbaaa ∈ JE∗KI (by deriving E∗ along w and checking if we can arrive at
E0, E1 with both E0, E1 nullable), mandated by z =df ababab ∈ JE∗K, but we are allowed
to do so because of z′ =df bbabaa ∈ JE∗K. The word z is not useful since among the splits
of w as w = uv there is u =df bbb, v =df aaa, which splits z as u ∼C z B∼ v scattering
u into 3 blocks as z = ababab (we underline the letters from u); the full sequence of these
corresponding splits of z is ababab, ababab, ababab, ababab, ababab, ababab, ababab. The word
z′, on the contrary, is fine because, for every split of w as w = uv, there are at most two
blocks of letters from u in z′: bbabaa, bbabaa, bbabaa, bbabaa, bbabaa, bbabaa, bbabaa. The
choice N = 2 suffices for accepting all of JE∗KI , since JE∗K happens to have uniform rank 2.

The refined Antimirov reordering parts-of-derivatives of a regexp E give a nondeterministic
automaton by QE =df {Γ | ∃u ∈ Σ∗. E →I∗ (u; Γ)}, IE =df {E}, FE =df {E | E↓} ∪
{E0, E1 ∈ QE | E0↓ ∧E1↓}, Γ→E (a; Γ′) =df Γ⇒I (a; Γ′) for Γ,Γ′ ∈ QE . By Prop. 41, this
automaton accepts JEKI . It is generally not finite as QE can contain states Γ of any length.

Given N ∈ N, another automaton is obtained by restricting QE , FE and →E to QE
N =df

{Γ | ∃u ∈ Σ∗. E →I∗
N (u; Γ)}, FE

N =df {E | E↓} ∪ {E0, E1 ∈ QE
N | E0↓ ∧ E1↓}, Γ →E

N

(a; Γ′) =df Γ⇒I
N (a; Γ′) for Γ,Γ′ ∈ QE

N . By Cor. 42, if JEK has uniform rank at most N , then
this smaller automaton accepts JEKI despite the truncation. If JEK does not have uniform
rank or we choose N smaller than the uniform rank, then the N -truncated automaton
recognizes a proper subset of JEKI . Prop. 37 gives an example of this: however we choose N ,
the N -truncated automaton fails to accept the word anbncanbn for n > N . This happens
because JEK does not have uniform rank (and that it has rank 2 does not help).

6.2 Automaton Finiteness for Regular Expressions with Uniform Rank

Is the N -truncated Antimirov automaton finite? The states Γ of QE
N are all of length at most

N + 1, so there is hope. The automaton will be finite if we can find a finite set containing all
the individual regexps E′ appearing in the states Γ. We now define such a set E→∗.

CONCUR 2019

40:14 Reordering Derivatives of Trace Closures of Regular Languages

I Definition 44. We define functions (_) +,R, (_)→+, (_)→∗ : RE→ PRE by

a + =df {1} (E + F) + =df E + ∪ F +

0 + =df ∅ 1 + =df ∅

(EF) + =df E + ∪ F + ∪ E + · {F} ∪ {E} · F + ∪ E + · F +

(E∗) + =df E + ∪ {E∗} · E + ∪ E + · {E∗} ∪ E + · ({E∗} · E +) ∪ (E + · {E∗}) · E +

RE =df {RI
XE | X ⊆ Σ}

E→+ =df R(E +)
E→∗ =df {E} ∪ E→+

I Proposition 45.
1. For any E, the set E→∗ is finite.
2. For any E and X, we have (RI

XE)→∗ ⊆ RI
X(E→∗).

3. For any E, a and El, Er, if E →I (a;El, Er), then El ∈ RI
a(E +) and Er ∈ E +.

4. For any E,E′, X, a, E′l , E′r, if E′ ∈ RI
X(E +) and E′ →I (a;E′l , E′r),

then E′l ∈ RI
Xa(E +) and E′r ∈ RI

X(E +).
5. For any E, u and E0, . . . , En, if E →I∗ (u;E0, . . . , En), then ∀j. Ej ∈ E→∗.

I Proposition 46. For every E and N , the state set {Γ | ∃u ∈ Σ∗. E →I∗
N (u; Γ)} of the

N -truncated refined Antimirov automaton for E (accepting JEKI if JEK has uniform rank at
most N) is finite.

7 Related Work

Syntactic derivative constructions for regular expressions extended with constructors for
(versions of) the shuffle operation have been considered, for example, by Sulzmann and
Thiemann [20] for the Brzozowski derivative and by Broda et al. [4] for the Antimirov
derivative. This is relevant to our derivatives since L ·I L′ is by definition a language between
L · L′ and L tt L′. Thus our Brzozowski and Antimirov reordering derivatives of EF must
be between the classical Brzozowski and Antimirov derivatives of EF and E tt F .

8 Conclusion and Future Work

We have shown that the Brzozowski and Antimirov derivative operations generalize to trace
closures of regular languages in the form of reordering derivative operations. The sets of
Brzozowski resp. Antimirov reordering (parts-of-)derivatives of a regexp are generally infinite,
so the deterministic and nondeterministic automata that they give, accepting the trace closure,
are generally infinite. Still, if the regexp is star-connected, their appropriate quotients are
finite. Also, the set of N -bounded refined Antimirov reordering parts-of-derivatives is finite
without quotienting, and we showed that, if the language of the regexp has uniform rank at
most N , the N -truncated refined Antimirov automaton accepts the trace closure. We also
proved that star-connected expressions define languages with finite uniform rank.

Our intended application for this is operational semantics in the context of relaxed
memory (where, e.g., shadow writes, i.e., writes from local buffers to shared memory, can
be reorderable with other actions). For sequential composition EF it is usually required
that, to execute any action from F , execution of E must have completed. In the jargon of
derivatives, this is to say that for an action from F to become executable, what is left of E
has to have become nullable (i.e., one can consider the execution of E completed). With
reordering derivatives, we can execute an action from F successfully even when what is left
of E is not nullable. It suffices that some sequence of actions to complete the residual of E
is reorderable with the selected action of F .

H. Maarand and T. Uustalu 40:15

In the definitions of the derivative operations we only use I in one direction, i.e., we do
not make use of its symmetry. It would be interesting to see if our results can be generalized
to the setting of semi-commutations [6] and which changes are required for that.

References
1 IJsbrand Jan Aalbersberg and Emo Welzl. Trace Languages Defined by Regular String

Languages. Theor. Inf. Appl., 20(2):103–119, 1986. doi:10.1051/ita/1986200201031.
2 Valentin M. Antimirov. Partial Derivatives of Regular Expressions and Finite Automaton

Constructions. Theor. Comput. Sci., 155(2):291–319, 1996. doi:10.1016/0304-3975(95)
00182-4.

3 Alberto Bertoni, Giancarlo Mauri, and Nicoletta Sabadini. Unambiguous Regular Trace
Languages. In Janos Demetrovics, Gyula Katona, and Arto Salomaa, editors, Algebra,
Combinatorics, and Logic in Computer Science, volume 42 of Colloquia Mathematica Societas
János Bolyai, pages 113–123. North-Holland, 1986.

4 Sabine Broda, António Machiavelo, Nelma Moreira, and Rogério Reis. Partial Derivative
Automaton for Regular Expressions with Shuffle. In Jeffrey Shallit and Alexander Okhotin,
editors, Descriptional Complexity of Formal Systems: 17th International Workshop, DCFS
2015, Waterloo, ON, Canada, June 25-27, 2015, Proceedings, volume 9118 of Lecture Notes in
Computer Science, pages 21–32. Springer, 2015. doi:10.1007/978-3-319-19225-3_2.

5 Janusz A. Brzozowski. Derivatives of Regular Expressions. J. ACM, 11(4):481–494, 1964.
doi:10.1145/321239.321249.

6 Mireille Clerbout and Michel Latteux. Semi-commutations. Inf. Comput., 73(1):59–74, 1987.
doi:10.1016/0890-5401(87)90040-X.

7 Kosaburo Hashiguchi. Recognizable Closures and Submonoids of Free Partially Commutative
Monoids. Theor. Comput. Sci., 86(2):233–241, 1991. doi:10.1016/0304-3975(91)90019-X.

8 Tony Hoare, Bernhard Möller, Georg Struth, and Ian Wehrman. Concurrent Kleene Algebra
and Its Foundations. J. Log. Algebr. Program., 80(6):266–296, 2011. doi:10.1016/j.jlap.
2011.04.005.

9 Stephen C. Kleene. Representation of Events in Nerve Sets and Finite Automata. In Claude E.
Shannon and John McCarthy, editors, Automata Studies, volume 34 of Annals of Mathematics
Studies, pages 3–42. Princeton University Press, 1956.

10 Barbara Klunder, Edward Ochmański, and Krystyna Stawikowska. On Star-Connected
Flat Languages. Fund. Inf., 67(1–3):93–105, 2005. URL: http://content.iospress.com/
articles/fundamenta-informaticae/fi67-1-3-08.

11 Dexter Kozen. A Completeness Theorem for Kleene Algebras and the Algebra of Regular
Events. Inf. Comput., 110(2):366–390, 1994. doi:10.1006/inco.1994.1037.

12 Hendrik Maarand and Tarmo Uustalu. Reordering Derivatives of Trace Closures of Regular
Languages. arXiv preprint 1908.03551, 2019. arXiv:1908.03551.

13 Antoni Mazurkiewicz. Concurrent Program Schemes and Their Interpretations. DAIMI Rep.
PB-78, University of Aarhus, 1978.

14 Antoni Mazurkiewicz. Introduction to Trace Theory. In Volker Diekert, editor, The Book of
Traces, pages 3–41. World Scientific, 1995. doi:10.1142/9789814261456_0001.

15 Edward Ochmański. Regular Behaviour of Concurrent Systems. Bull. EATCS, 27:56–67, 1985.
16 Edward Ochmański. Recognizable Trace Languages. In Volker Diekert, editor, The Book of

Traces, pages 167–204. World Scientific, 1995. doi:10.1142/9789814261456_0006.
17 Michael O. Rabin and Dana S. Scott. Finite Automata and Their Decision Problems. IBM J.

Res. Devel., 3(2):114–125, 1959. doi:10.1147/rd.32.0114.
18 Jacques Sakarovitch. On Regular Trace Languages. Theor. Comput. Sci., 52:59–75, 1987.

doi:10.1016/0304-3975(87)90080-6.
19 Jacques Sakarovitch. The “Last” Decision Problem for Rational Trace Languages. In Imre

Simon, editor, LATIN ’92, 1st Latin American Symposium on Theoretical Informatics, São
Paulo, Brazil, April 6-10, 1992, Proceedings, volume 583 of Lecture Notes in Computer Science,
pages 460–473. Springer, 1992. doi:10.1007/BFb0023848.

CONCUR 2019

https://doi.org/10.1051/ita/1986200201031
https://doi.org/10.1016/0304-3975(95)00182-4
https://doi.org/10.1016/0304-3975(95)00182-4
https://doi.org/10.1007/978-3-319-19225-3_2
https://doi.org/10.1145/321239.321249
https://doi.org/10.1016/0890-5401(87)90040-X
https://doi.org/10.1016/0304-3975(91)90019-X
https://doi.org/10.1016/j.jlap.2011.04.005
https://doi.org/10.1016/j.jlap.2011.04.005
http://content.iospress.com/articles/fundamenta-informaticae/fi67-1-3-08
http://content.iospress.com/articles/fundamenta-informaticae/fi67-1-3-08
https://doi.org/10.1006/inco.1994.1037
http://arxiv.org/abs/1908.03551
https://doi.org/10.1142/9789814261456_0001
https://doi.org/10.1142/9789814261456_0006
https://doi.org/10.1147/rd.32.0114
https://doi.org/10.1016/0304-3975(87)90080-6
https://doi.org/10.1007/BFb0023848

40:16 Reordering Derivatives of Trace Closures of Regular Languages

20 Martin Sulzmann and Peter Thiemann. Derivatives for Regular Shuffle Expressions. In Adrian-
Horia Dediu, Enrico Formenti, Carlos Martín-Vide, and Bianca Truthe, editors, Language
and Automata Theory and Applications: 9th International Conference, LATA 2015, Nice,
France, March 2-6, 2015, Proceedings, volume 8977 of Lecture Notes in Computer Science,
pages 275–286. Springer, 2015. doi:10.1007/978-3-319-15579-1_21.

21 Wiesław Zielonka. Notes on Finite Asynchronous Automata. Theor. Inf. Appl., 21(2):99–135,
1987. doi:10.1051/ita/1987210200991.

22 Wiesław Zielonka. Asynchronous Automata. In Volker Diekert, editor, The Book of Traces,
pages 205–247. World Scientific, 1995. doi:10.1142/9789814261456_0007.

https://doi.org/10.1007/978-3-319-15579-1_21
https://doi.org/10.1051/ita/1987210200991
https://doi.org/10.1142/9789814261456_0007

Kleene Algebra with Observations
Tobias Kappé
University College London, UK
tkappe@cs.ucl.ac.uk

Paul Brunet
University College London, UK

Jurriaan Rot
University College London, UK
Radboud University, Nijmegen, The Netherlands

Alexandra Silva
University College London, UK

Jana Wagemaker
University College London, UK

Fabio Zanasi
University College London, UK

Abstract
Kleene algebra with tests (KAT) is an algebraic framework for reasoning about the control flow of
sequential programs. Generalising KAT to reason about concurrent programs is not straightforward,
because axioms native to KAT in conjunction with expected axioms for concurrency lead to an
anomalous equation. In this paper, we propose Kleene algebra with observations (KAO), a variant
of KAT, as an alternative foundation for extending KAT to a concurrent setting. We characterise
the free model of KAO, and establish a decision procedure w.r.t. its equational theory.

2012 ACM Subject Classification Theory of computation→ Formal languages and automata theory

Keywords and phrases Concurrent Kleene algebra, Kleene algebra with tests, free model, axiomat-
isation, decision procedure

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2019.41

Related Version A full version of the paper is available at https://arxiv.org/abs/1811.10401.

Funding ERC Starting Grant ProFoundNet (679127)
Jurriaan Rot: Marie Curie Fellowship (795119)
Alexandra Silva: Leverhulme Prize (PLP–2016–129)
Fabio Zanasi: EPSRC grant (EP/R020604/1)

Acknowledgements We are grateful to Jean-Baptiste Jeannin, Dan Frumin and Damien Pous
individually, for their input which helped contextualise this work.

1 Introduction

The axioms of Kleene algebra (KA) [22, 9] correspond well to program composition [14],
making them a valuable tool for studying equivalences between programs from an algebraic
perspective. An extension of Kleene algebra known as Kleene algebra with tests (KAT) [24]
adds primitives for conditional branching, and is particularly useful when proving validity of
program transformations, such as optimisations applied by a compiler [28, 41].

As a matter of fact, KAT is sufficiently abstract to express not only program behaviour,
but also program specifications; consequently, its laws can be used to compare programs to
specifications [25, 1]. What makes this connection especially powerful is that KA (resp. KAT)

© Tobias Kappé, Paul Brunet, Jurriaan Rot, Alexandra Silva, Jana Wagemaker, and Fabio Zanasi;
licensed under Creative Commons License CC-BY

30th International Conference on Concurrency Theory (CONCUR 2019).
Editors: Wan Fokkink and Rob van Glabbeek; Article No. 41; pp. 41:1–41:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-6068-880X
mailto:tkappe@cs.ucl.ac.uk
https://orcid.org/0000-0002-9762-6872
https://orcid.org/0000-0001-5014-9784
https://doi.org/10.4230/LIPIcs.CONCUR.2019.41
https://arxiv.org/abs/1811.10401
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

41:2 Kleene Algebra with Observations

is known to be sound and complete with respect to a language model [5, 30, 23, 29], meaning
that an equation is valid in any KA (resp. KAT) precisely when it holds in the corresponding
language model. Practical algorithms for deciding language equivalence [17, 6, 34] enable
checking equations in KA or KAT, and hence automated verification becomes feasible [10].

More recently, Kleene algebra has been extended with a parallel composition operator,
yielding concurrent Kleene algebra (CKA) [15, 13, 16]. Crucially, CKA includes the exchange
law, which encodes interleaving, i.e., the (partial) sequentialisation of threads. Like its
predecessors, CKA can be applied to verify (concurrent) programs by reasoning about
equivalences [16]. The equational theory of CKA has also been characterised in terms of a
language-like semantics [32, 21], where equivalence is known to be decidable [7].

Since both KAT and CKA are conservative extensions of KA, this prompted Jipsen and
Moshier [19] to study a marriage between the two, dubbed concurrent Kleene algebra with
tests (CKAT). The aim of CKAT is to extend CKA with Boolean guards, and thus arrive at a
new algebraic perspective on verification of concurrent programs with conditional branching.

The starting point of this paper is the realisation that CKAT is not a suitable model
of concurrent programs. This is because for any test p and CKAT-term e, one can prove
p · e · p ≡CKAT 0, an equation that appears to have no reasonable interpretation for programs.
The derivation goes as follows:

0 5KAT p · e · p 5CKA e ‖ (p · p) ≡KAT e ‖ 0 ≡CKA 0 .

As we shall see, this is possible because of the interplay between the exchange law and
the fact that KAT identifies conjunction of tests with their sequential composition. For
sequential programs, this identification is perfectly reasonable. In the context of concurrency
with interleaving, however, actions from another thread may be scheduled in between two
sequentially composed tests, whereas the conjunction of tests executes atomically. Indeed,
an action scheduled between the tests might very well change the result of the second test.

It thus appears that, to reason algebraically about programs with both tests and con-
currency, one needs a perspective on conditional branching where the conjunction of two
tests is not necessarily the same as executing one test after the other. The remit of this
paper is to propose an alternative to KAT, which we call Kleene algebra with observations
(KAO), that makes exactly this distinction. We claim that, because of this change, KAO
is more amenable to a sensible extension with primitives for concurrency. Establishing the
meta-theory of KAO turns out to be a technically demanding task. We therefore devote this
paper to such foundations, and leave development of concurrent KAO to follow-up work.

Concretely, we characterise the equational theory of KAO in terms of a language model
(Section 5). Furthermore, we show that we can decide equality of these languages (and
hence the equational theory of KAO) by deciding language equivalence of non-deterministic
finite automata (Section 6). Both proofs show a clear separation of concerns: their kernel is
idiomatic to KAO, and some well-known results from KA complete the argument.

For space reasons, detailed proofs are only included in the full version of this paper [20];
here, we sketch the main insights needed to prove the core propositions and theorems.

2 Preliminaries

We start by outlining some concepts and elementary results.

Boolean algebra. We use 2 to denote the set {0, 1}. The powerset (i.e., set of subsets) of a
set S is denoted 2S . We fix a finite set Ω of symbols called observables.

T. Kappé, P. Brunet, J. Rot, A. Silva, J. Wagemaker and F. Zanasi 41:3

The propositional terms over Ω, denoted TP , are generated by the grammar

p, q ::= ⊥ | > | o ∈ Ω | p ∨ q | p ∧ q | p .

We write ≡BA for the smallest congruence on TP that satisfies the axioms of Boolean algebra,
i.e., such that for all p, q, r ∈ TP the following hold:

p ∨ ⊥ ≡BA p p ∨ q ≡BA q ∨ p p ∨ p ≡BA > p ∨ (q ∨ r) ≡BA (p ∨ q) ∨ r

p ∧ > ≡BA p p ∧ q ≡BA q ∧ p p ∧ p ≡BA ⊥ p ∧ (q ∧ r) ≡BA (p ∧ q) ∧ r

p ∨ (q ∧ r) ≡BA (p ∨ q) ∧ (p ∨ r) p ∧ (q ∨ r) ≡BA (p ∧ q) ∨ (p ∧ r) .

The set of atoms, denoted A, is defined as 2Ω. The semantics of propositional terms is given
by the map J−KBA : TP → 2A, as follows:

J⊥KBA = ∅ JoKBA = {α ∈ A : o ∈ α} Jp ∨ qKBA = JpKBA ∪ JqKBA

J>KBA = A JpKBA = A \ JpKBA Jp ∧ qKBA = JpKBA ∩ JqKBA .

We also write p 5BA q as a shorthand for p ∨ q ≡BA q.
It is known that J−KBA characterises ≡BA (c.f. [4, Chapter 5.9]), in the following sense:

I Theorem 2.1 (Completeness for BA). Let p, q ∈ TP ; now p ≡BA q if and only if JpKBA = JqKBA.

When α ∈ A, we write πα for the Boolean term
∧
o∈α o ∧

∧
o∈Ω\α o, in which

∧
is the

obvious generalisation of ∧ for some (arbitrary) choice of bracketing and order on terms.
The following is then straightforward to prove.

I Lemma 2.2. For all α ⊆ Ω it holds that JπαKBA = {α}.

Kleene algebra. A word over a set ∆ is a sequence of symbols d0 · · · dn−1 from ∆. The
empty word is denoted ε. A set of words is called a language. Words can be concatenated: if
w and x are words, then wx is the word where the symbols of w precede those of x. If L
and L′ are languages over ∆, then L · L′ is the language of pairwise concatenations from L

and L′, i.e., {wx : w ∈ L, x ∈ L′}. We write L? for the Kleene closure of L, which is the set
{w0 · · ·wn−1 : w0, . . . , wn−1 ∈ L}. This makes ∆? the set of all words over ∆.

We fix a finite set of symbols Σ called the alphabet. The rational terms over Σ, denoted
TR, are generated by the grammar

e, f ::= 0 | 1 | a ∈ Σ | e+ f | e · f | e? .

We write ≡KA for the smallest congruence on TR that satisfies the axioms of Kleene algebra,
i.e., such that for all e, f, g ∈ TR the following hold:

e+ 0 ≡KA e e+ e ≡KA e e+ f ≡KA f + e e+ (f + g) ≡KA (e+ f) + g

e · 1 ≡KA e e ≡ 1 · e e · 0 ≡KA 0 0 ≡ 0 · e e · (f · g) ≡KA (e · f) · g

e · (f + g) ≡KA e · f + e · g 1 + e · e? ≡KA e
? e+ f · g 5KA g =⇒ f? · e 5KA g

(e+ f) · g ≡KA e · g + f · g 1 + e? · e ≡KA e
? e+ f · g 5KA f =⇒ e · g? 5KA f ,

in which e 5KA f is a shorthand for e+ f ≡KA f .

CONCUR 2019

41:4 Kleene Algebra with Observations

The semantics of rational terms is given by J−KKA : TR → 2Σ? , in the following sense:

J0KKA = ∅ JaKKA = {a} Je+ fKKA = JeKKA ∪ JfKKA

J1KKA = {ε} Je?KKA = JeK?KA Je · fKKA = JeKKA · JfKKA .

It is furthermore known that J−KKA characterises ≡KA [5, 30, 23], as follows:

I Theorem 2.3 (Completeness for KA). Let e, f ∈ TR; now e ≡KA f if and only if JeKKA = JfKKA.

We also work with matrices and vectors of rational terms. Let Q be a finite set. A
Q-vector is a function x : Q→ TR; a Q-matrix is a function M : Q×Q→ TR.

Let e ∈ TR, let x and y be Q-vectors, and let M be a Q-matrix. Addition of vectors is
defined pointwise, i.e., x+ y is the Q-vector given by (x+ y)(q) = x(q) + y(q). We can also
scale vectors, writing x # e for the Q-vector given by (x # e)(q) = x(q) · e.

Multiplication of a Q-vector by a Q-matrix yields a Q-vector, as expected:

(M · x)(q) =
∑
q′∈Q

M(q, q′) · x(q′) .

Here,
∑

is the usual generalisation of + for some (arbitrary) choice of bracketing and order
on terms; the empty sum is defined to be 0.

We write x ≡KA y when x and y are pointwise equivalent, i.e., for all q ∈ Q we have
x(q) ≡KA y(q); we extend 5KA to Q-vectors as before. Matrices over rational terms again obey
the axioms of Kleene algebra [23]. As a special case, we can obtain the following:

I Lemma 2.4. Let M be a Q-matrix. Using the entries of M and applying the operators of
Kleene algebra, we can construct a Q-matrix M?, which has the following property. Let y be
any Q-vector; now M? · y is the least (w.r.t. 5KA) Q-vector x such that M · x+ y 5KA x.

Automata and bisimulations. We briefly recall bisimulation up to congruence for language
equivalence of automata, from [6]. This will be used in Section 6.

A non-deterministic automaton (NDA) over an alphabet Σ is a triple (X, o, d) where
o : X → 2 is an output function, and d : X×Σ→ X a transition function. A non-deterministic
finite automaton (NFA) is an NDA where X is finite. It will be convenient to characterise
the semantics of an NDA (X, o, d) recursively as the unique map ` : X → 2Σ? such that

`(x) = {ε : o(x) = 1} ∪
⋃

x′∈d(x,a)

{a} · `(x′) .

This coincides with the standard definition of language acceptance for NDAs. The determin-
isation of an NDA (X, o, d) is the deterministic automaton (2X , o, d) [35], where

o(V) =
{

1 if ∃s ∈ V s.t. o(s) = 1
0 otherwise

d(V, a) =
⋃
s∈V

d(s, a) .

The congruence closure of a relation R ⊆ 2X × 2X , denoted Rc, is the least equivalence
relation such that R ⊆ Rc, and if (C,D) ∈ Rc and (E,F) ∈ Rc then (C ∪ E,D ∪ F) ∈ Rc.
A bisimulation up to congruence for an NDA (X, o, d) is a relation R ⊆ 2X × 2X such
that for all (V,W) ∈ R, we have ō(V) = ō(W) and furthermore for all a ∈ Σ, we have
(d̄(V, a), d̄(W,a)) ∈ Rc. Bisimulations up to congruence give a proof technique for language
equivalence of states of non-deterministic automata, as a consequence of the following [6].

T. Kappé, P. Brunet, J. Rot, A. Silva, J. Wagemaker and F. Zanasi 41:5

I Theorem 2.5. Let (X, o, d) be an NDA. For all U, V ∈ 2X , we have
⋃
x∈U `(x) =

⋃
x∈V `(x)

if and only if there exists a bisimulation up to congruence R for (X, o, d) such that (U, V) ∈ R.

In [6], it is shown how the construction of bisimulations up to congruence leads to a very
efficient algorithm for language equivalence.

3 The problem with CKAT

Our motivation for adjusting the axioms of KAT is based on the fact that conjunction
and sequential composition are distinct when interleaving is involved, because sequential
composition leaves a “gap” between tests that might be used by another thread, possibly
changing the outcome of the second test. We now formalise this, by detailing how combining
KAT and CKA to obtain CKAT (as in [19]) leads to the absurd equation p · e · p ≡CKAT 0.

Kleene algebra with tests. To obtain KAT, we enrich rational terms with propositions;
concretely, the set of guarded rational terms over Σ and Ω, denoted TGR, is generated by

e, f ::= 0 | 1 | a ∈ Σ | p ∈ TP | e+ f | e · f | e? .

We define ≡KAT as the smallest congruence on TGR which contains ≡BA and obeys the axioms
of ≡KA (e.g., e + e ≡KAT e). Furthermore, ≡KAT should relate constants and operators on
propositional subterms: for all p, q ∈ TP it holds that1

⊥ ≡KAT 0 > ≡KAT 1 p ∨ q ≡KAT p+ q p ∧ q ≡KAT p · q .

Guarded rational terms relate to programs by viewing actions as statements and proposi-
tions as assertions. The last axiom is therefore not strange: if we assert x = 1 followed by
y = 1 then surely, if x and y remain the same, this is equivalent to asserting x = 1 ∧ y = 1.

Concurrent Kleene algebra. To obtain CKA, we add a parallel composition operator to
KA. Concretely, the set of series-rational terms [33] over Σ, denoted TSR, is generated by

e, f ::= 0 | 1 | a ∈ Σ | e+ f | e · f | e ‖ f | e? .

We define ≡CKA as the smallest congruence on TSR which obeys the axioms that generate ≡KA,
as well as the following for all e, f, g, h ∈ TSR:

e ‖ f ≡CKA f ‖ e e ‖ 1 ≡CKA e e ‖ 0 ≡CKA 0 (e+ f) ‖ g ≡CKA e ‖ g + f ‖ g

e ‖ (f ‖ g) ≡CKA (e ‖ f) ‖ g (e ‖ f) · (g ‖ h) 5CKA (e · g) ‖ (f · h) ,

in which e 5CKA f is an abbreviation for e+ f ≡CKA f .
Here, 0 annihilates parallel composition because 0 corresponds to the program without

valid traces; hence, running e in parallel with 0 also cannot yield any traces. Distributivity
of ‖ over + witnesses that a choice within a thread can also be made outside that thread.

The last axiom, called the exchange law [15], encodes interleaving. Intuitively, it says
that when programs e · g and f · h run in parallel, their behaviour includes running their
heads in parallel (i.e., e ‖ f) followed by their tails (i.e., g ‖ h). Taken to its extreme, the
exchange law says that the behaviour of a program includes its complete linearisations.

1 This is a slightly contrived definition of KAT; one usually presents the constants and operators using
the same symbols [24]. To contrast KAO and KAT it is helpful to make this identification explicit.

CONCUR 2019

41:6 Kleene Algebra with Observations

Concurrent Kleene algebra with tests. To define CKAT [19], we choose guarded series-
rational terms over Σ and Ω, denoted TGSR, as those generated by the grammar

e, f ::= 0 | 1 | a ∈ Σ | p ∈ TP | e+ f | e · f | e ‖ f | e? .

Now, ≡CKAT is the least congruence on TGSR obeying the axioms of ≡KAT and ≡CKA.
If we view guarded series-rational terms as representations of programs, and use ≡CKAT to

reason about them, then we should expect to obtain sensible statements about programs,
since the axioms that underpin CKAT seem reasonable in that context.

To test this hypothesis, consider the guarded series-rational term p · e · p, which represents
a program that first performs an assertion p, then runs a program described by e, and asserts
the negation of p. There are choices of p and e that should make p · e · p describe a program
with valid behaviour; for instance, p could assert that x = 1, and e could be the program
x← 0. Hence, by our hypothesis, p · e · p should not, in general, be equivalent to 0, the
program without any valid behaviour. Unfortunately, the opposite is true.

I Antinomy 3.1. Let e ∈ TGSR and p ∈ TP ; now p · e · p ≡CKAT 0.

Proof. By the axiom that 1 is the unit of ‖ and the exchange law, we derive that

p · e · p ≡CKAT (p ‖ 1) · (1 ‖ e) · p 5CKAT ((p · 1) ‖ (1 · e)) · p .

By the same reasoning, and the axiom that 1 is the unit of ·, we have that

((p · 1) ‖ (1 · e)) · p ≡CKAT (p ‖ e) · (p ‖ 1) 5CKAT (p · p) ‖ (e · 1) .

Applying the unit, and using the identification of ∧ and · on tests, we find that

(p · p) ‖ (e · 1) ≡CKAT (p · p) ‖ e ≡CKAT (p ∧ p) ‖ e ≡CKAT ⊥ ‖ e .

Since ⊥ and 0 are identified, and 0 annihilates parallel composition, we have that

⊥ ‖ e ≡CKAT 0 ‖ e ≡CKAT 0 .

By the above, we have p · e · p 5CKAT 0. Since 0 5CKAT p · e · p, the claim follows. J

Another way of contextualising the above is to consider that propositional Hoare logic
can be encoded in KAT [26]. Concretely, a propositional Hoare triple {p}S{q} is valid if
p · eS · q ≡KAT 0, where eS is a straightforward encoding of S. It stands to reason that
sequential programs should similarly encode in CKAT. However, if we apply that line of
reasoning to the above, then any Hoare triple of the form {p}S{p} is valid, which would
mean that any property is an invariant of any program.

4 Kleene algebra with observations

We now propose KAO as an alternative way of embedding Boolean guards in rational terms.
This approach should prevent Antinomy 3.1, and thus make KAO more suitable for an
extension with concurrency. We start by motivating how we adapt KAT, before proceeding
with a language model and a generalisation of partial derivatives to KAO.

T. Kappé, P. Brunet, J. Rot, A. Silva, J. Wagemaker and F. Zanasi 41:7

4.1 From tests to observations
The root of the problem in Antinomy 3.1 is the axiom p · q ≡KAT p ∧ q, telling us that
(p · p) ‖ e ≡CKAT (p ∧ p) ‖ e. Interpreted as programs, these are different: in one, e can be
interleaved between p and p, which the other does not allow.

To fix this problem, we propose a new perspective on Boolean guards. Rather than
considering a guard a test, which in KAT entails an assertion valid from the last action to
the next, we consider a guard an observation, i.e., an assertion valid at that particular point
in the execution of the program. This weakens the connection between conjunction and
concatenation: if a program observes p followed by q, there is no guarantee that p and q
can be observed simultaneously. Hence, we drop the equivalence between conjunction and
concatenation of tests. We call this system weak Kleene algebra with observations; like KAT,
its axioms are based on the axioms of Boolean algebra and Kleene algebra, as follows.

I Definition 4.1 (WKAO axioms). We define ≡WKAO as the smallest congruence on TGR that
contains ≡BA and also obeys the axioms of ≡KA. Furthermore, ⊥ ≡WKAO 0 and for all p, q ∈ TP
it holds that p ∨ q ≡WKAO p+ q.

Since conjunction and concatenation no longer coincide, we have also dropped the axiom
that relates their units. This can be justified from our shift in perspective: >, i.e., the
observation that always succeeds, is an action that leaves some record in the behaviour of
the program, whereas 1, i.e., the program that does nothing, has no such obligation.2

As hinted before, it may happen that when a program observes p followed by q, both
these assertions are true simultaneously, i.e., their conjunction could have been observed;
hence, the behaviour of observing p and q should be contained in the behaviour of observing
p and then q. For instance, consider the pseudo-programs S = assert p ∧ q; e and
S′ = assert p; assert q; e. Here, S asserts that p and q hold at the same time before
proceeding with e, while S′ first asserts p, and then q. The behaviour of S should be included
in that of S′: if p and q are simultaneously observable, then the first two observations might
take place simultaneously. Encoding this in an additional axiom leads to KAO proper.

I Definition 4.2 (KAO axioms). We define ≡KAO as the smallest congruence on TGR that
contains ≡WKAO, and furthermore satisfies the contraction law: for all p, q ∈ TP it holds that
p ∧ q 5KAO p · q – where e 5KAO f is a shorthand for e+ f ≡KAO f .

We briefly return to our example programs. If we encode S as (p∧ q) · e and S′ as p · q · e,
then the behaviour of S is contained in that of S′, because (p ∧ q) · e 5KAO p · q · e.
I Remark 4.3. In the presence of the other axioms, p∧ q 5KAO p · q is equivalent to p 5KAO p · p.
Indeed, the second inequality may be inferred from the first, since p ≡KAO p∧ p. The converse
implication is obtained as follows: p∧q 5KAO (p ∧ q)·(p ∧ q) 5KAO p·q, using that p∧q 5KAO p, q.
While the contraction law is more convenient to compare terms, the axiom p 5KAO p · p will
serve implicitly as the basis for the contraction relation � defined in the next section.

4.2 A language model
The Kleene algebra variants encountered thus far have models based on rational languages,
which characterise the equivalences derivable using the axioms. To find a model for guarded
rational terms which corresponds to KAO, we start with a model of weak KAO:

2 We refer to [20, Appendix E] for further algebraic details on the consequences of identifying these units.

CONCUR 2019

41:8 Kleene Algebra with Observations

I Definition 4.4 (WKAO semantics). Let Γ = A∪Σ. Languages over Γ are called observation
languages. We define J−KWKAO : TGR → 2Γ? as follows:

J0KWKAO = ∅ JaKWKAO = {a} Je+ fKWKAO = JeKWKAO ∪ JfKWKAO Je?KWKAO = JeK?WKAO

J1KWKAO = {ε} JpKWKAO = JpKBA Je · fKWKAO = JeKWKAO · JfKWKAO ,

where it is understood that JpKBA ⊆ A ⊆ Γ ⊆ Γ?.

Observation languages are a model for guarded rational terms w.r.t. ≡WKAO:

I Lemma 4.5 (WKAO soundness). Let e, f ∈ TGR. Now, if e ≡WKAO f , then JeKWKAO = JfKWKAO.

More work is necessary to get a model of guarded rational terms w.r.t. ≡KAO. In particular,
J−KWKAO does not preserve the contraction law: if o1, o2 ∈ Ω, then

Jo1 ∧ o2KWKAO = {α ∈ A : o1, o2 ∈ α} Jo1 · o2KWKAO = {αβ ∈ A · A : o1 ∈ α, o2 ∈ β} ,

meaning that Jo1 ∧ o2KWKAO 6⊆ Jo1 · o2KWKAO, despite o1 ∧ o2 5KAO o1 · o2.3
To obtain a sound model, we need the counterpart of the contraction law on the level of

observation languages, which works out as follows

I Definition 4.6 (Contraction). We define � as the smallest relation on Γ? s.t.

w, x ∈ Γ? α ∈ A
wαx � wααx

.

When L ⊆ Γ?, we write L↓ for the �-closure of L, that is to say, the smallest observation
language such that L ⊆ L↓, and if w � x with x ∈ L↓, then w ∈ L↓.

Thus, L↓ contains all words obtained from words in L by contracting any number of repeated
atoms (but not actions) into one. Applying this closure to the semantics encodes the intuition
that repeated observations may also correspond to just one step in the execution.

With these tools, we can define a model of KAO as follows.

I Definition 4.7 (KAO semantics). We define J−KKAO : TGR → 2Γ? by JeKKAO = JeKWKAO↓.

Alternatively, we can describe J−KKAO compositionally, using the following.

I Lemma 4.8. Let e, f ∈ TGR. The following hold: (i) Je + fKKAO = JeKKAO ∪ JfKKAO, and
(ii) Je · fKKAO = (JeKKAO · JfKKAO)↓, and (iii) Je?KKAO = JeK?KAO↓.

It is now straightforward to check that J−KKAO preserves the axioms of ≡KAO.

I Lemma 4.9 (KAO soundness). Let e, f ∈ TGR. Now, if e ≡KAO f , then JeKKAO = JfKKAO.

4.3 Partial derivatives
Derivatives [8] are a powerful tool in Kleene algebra variants. In the context of programs, we
can think of derivatives as an operational semantics; they tell us whether the term represents
a program that can halt immediately (given by the termination map), as well as the program
that remains to be executed once an action is performed (given by the continuation map).

3 Incidentally, this shows that the contraction law is independent of the axioms that build ≡WKAO, i.e.,
that those axioms are not sufficient to prove the contraction law.

T. Kappé, P. Brunet, J. Rot, A. Silva, J. Wagemaker and F. Zanasi 41:9

Derivatives are typically compatible with the congruences used to reason about terms;
what’s more, they are closely connected to finite automata [8]. This makes them useful for
reasoning about language models [26, 6, 34]. We therefore introduce a form of derivatives of
guarded rational terms that works well with ≡KAO. Let us start by giving the termination
map, which is close to the termination map of rational terms compatible with ≡KA.

I Definition 4.10 (Termination). We define ε : TGR → 2 inductively, as follows:

ε(0) = 0 ε(a) = 0 ε(e+ f) = max{ε(e), ε(f)} ε(e?) = 1
ε(1) = 1 ε(p) = 0 ε(e · f) = min{ε(e), ε(f)} .

To check that ε characterises guarded rational terms that can terminate, we record the
following lemma, which says that ε(e) = 1 precisely when JeKKAO includes the empty string.

I Lemma 4.11. Let e ∈ TGR. Now ε(e) 5KAO e, and ε(e) = 1 if and only if ε ∈ JeKKAO.

Next we define the continuation map, or more specifically, partial continuation map [2]:
given a ∈ Γ, this function gives a set of terms representing possible continuations of the
program after performing a. We start with the continuation map for actions.

I Definition 4.12 (Σ-continuation). We define δ : TGR × Σ→ 2TGR inductively

δ(0, a) = δ(1, a) = ∅ δ(e+ f, a) = δ(e, a) ∪ δ(f, a)
δ(a, a′) = {1 : a = a′} δ(e · f, a) = {e′ · f : e′ ∈ δ(e, a)} ∪∆(e, f, a)
δ(p, a) = ∅ δ(e?, a) = {e′ · e? : e′ ∈ δ(e, a)} ,

where ∆(e, f, a) = δ(f, a) when ε(e) = 1, and ∅ otherwise.

Finally, we give the continuation map for observations, which is similar to the one for
actions, except that on sequential composition it is subtly different.

I Definition 4.13 (A-continuation). We define ζ : TGR ×A → 2TGR inductively

ζ(0, α) = δ(1, α) = ∅ ζ(e+ f, α) = ζ(e, α) ∪ ζ(f, α)
ζ(a, α) = ∅ ζ(e · f, α) = {e′ · f : e′ ∈ ζ(e, α)} ∪ Z(e, f, α)
ζ(p, α) = {1 : πα 5BA p} ζ(e?, α) = {e′ · e? : e′ ∈ ζ(e, α)} ,

where Z(e, f, α) = ζ(f, α) when ε(e) = 1 or ε(e′) = 1 for some e′ ∈ ζ(e, α), and ∅ otherwise.

For instance, let p, q ∈ TP . If α ∈ JpKBA ∩ JqKBA, then we can calculate that

ζ(p · q, α) = {p′ · q : p′ ∈ ζ(p, α)} ∪ Z(p, q, α) = {1 · q} ∪ {1} ,

which is to say that the program can either continue in 1 · q, where it has to make an
observation validating q, or it can choose to re-use the observation α to validate q, continuing
in Z(p, q, α) = ζ(q, α) = {1}, because 1 ∈ ζ(p, α). This notion that ζ can apply an observation
more than once to validate multiple assertions in a row can be formalised.

I Lemma 4.14. Let e ∈ TGR, α ∈ A, and e′ ∈ ζ(e, α). Now ζ(e′, α) ⊆ ζ(e, α).

To check that δ and ζ indeed output continuations of the term after the action or assertion
has been performed, we should check that they are compatible with ≡KAO.

I Lemma 4.15. Let e ∈ TGR. For all a ∈ Σ and e′ ∈ δ(e, a), we have a · e′ 5KAO e.
Furthermore, for all α ∈ A and e′ ∈ ζ(e, α), we have πα · e′ 5KAO e.

CONCUR 2019

41:10 Kleene Algebra with Observations

We also need the reach of a guarded rational term, which is meant to describe the set of
terms that can be obtained by repeatedly applying continuation maps.

I Definition 4.16 (Reach of a term). For e ∈ TGR, we define ρ : TGR → 2TGR inductively:

ρ(0) = ∅ ρ(a) = {1, a} ρ(e+ f) = ρ(e) ∪ ρ(f)
ρ(1) = {1} ρ(p) = {1, p} ρ(e · f) = {e′ · f : e′ ∈ ρ(e)} ∪ ρ(f)

ρ(e?) = {1} ∪ {e′ · e? : e′ ∈ ρ(e)} .

Indeed, ρ(e) truly contains all terms reachable from e by means of δ and ζ:

I Lemma 4.17. Let e ∈ TGR. If a ∈ Σ, then δ(e, a) ⊆ ρ(e); if e′ ∈ ρ(e), then δ(e′, a) ⊆ ρ(e).
Furthermore, if α ∈ A, then ζ(e, α) ⊆ ρ(e); if e′ ∈ ρ(e), then ζ(e′, α) ⊆ ρ(e).

It is not hard to see that for all e ∈ TGR, we have that ρ(e) is finite. Note that ρ(e) does
not, in general, contain e itself. On the other hand, ρ(e) does contain a set of terms that is
sufficient to reconstruct e, up to ≡KAO. We describe these as follows.

I Definition 4.18 (Initial factors). For e ∈ TGR, we define ι : TGR → 2TGR inductively:

ι(0) = ∅ ι(a) = {a} ι(e+ f) = ι(e) ∪ ι(f)
ι(1) = {1} ι(p) = {p} ι(e · f) = {e′ · f : e′ ∈ ι(e)}

ι(e?) = {1} ∪ {e′ · e? : e′ ∈ ι(e)} .

Now, to reconstruct e from ι(e), all we have to do is sum its elements.

I Lemma 4.19. Let e ∈ TGR. Then e ≡KAO

∑
e′∈ι(e) e

′.

5 Completeness

We now set out to show that J−KKAO characterises ≡KAO. Since soundness of J−KKAO w.r.t.
≡KAO was already shown in Lemma 4.9, it remains to prove completeness, i.e., if e and f are
interpreted equally by J−KKAO, then they can be proven equivalent via ≡KAO. To this end, we
first identify a subset of guarded rational terms for which a completeness result can be shown
by relying on the completeness result for KA. To describe these terms, we need the following.

I Definition 5.1 (Atomic and guarded terms). Let Π denote the set {πα : α ∈ A}. The set of
atomic guarded rational terms, denoted TAGR, is the subset of TGR generated by the grammar

e, f ::= 0 | 1 | a ∈ Σ | πα ∈ Π | e+ f | e · f | e? .

Furthermore, if e ∈ TGR such that JeKKAO = JeKWKAO, we say that e is closed.

Completeness of ≡KAO with respect to J−KKAO can then be established for atomic and closed
guarded rational terms as follows.

I Proposition 5.2. Let e, f ∈ TAGR be closed, and JeKKAO = JfKKAO; then e ≡KAO f .

Sketch. By noting that the semantics of an atomic and closed term coincide with the KA-
semantics (over an extended alphabet); the result then follows by appealing to completeness
of KA, and the fact that the axioms of KA are contained in those for KAO. J

T. Kappé, P. Brunet, J. Rot, A. Silva, J. Wagemaker and F. Zanasi 41:11

To show that J−KKAO characterises ≡KAO for all guarded rational terms, it suffices to find for
every e ∈ TGR a closed ê ∈ TAGR with e ≡KAO ê. After all, if we have such a transformation,
then JeKKAO = JfKKAO implies JêKKAO = Jf̂KKAO, which implies ê ≡KAO f̂ , and hence e ≡KAO f .

In the remainder of this section, we describe how to obtain a closed and atomic guarded
rational term from a guarded rational term e. This transformation works by first “dis-
assembling” e using partial derivatives; on an intuitive level, this is akin to creating a
(non-deterministic finite) automaton that accepts the observation language described by e.
Next, we “reassemble” from this representation an atomic term ê, equivalent to e; this is
analogous to constructing a rational expression from the automaton. To show that ê is closed,
we leverage Lemma 4.14, essentially arguing that the automaton obtained from e encodes �.

We extend the notation for vectors and matrices over rational terms to guarded rational
terms. We can then represent a guarded rational term by a matrix and a vector, as follows.

I Definition 5.3. For e ∈ TGR, define the ρ(e)-vector xe and ρ(e)-matrix Me by

xe(e′) = ε(e′) Me(e′, e′′) =
∑

e′′∈δ(e′,a)

a+
∑

e′′∈ζ(e′,α)

πα .

Note that, in the above, δ(e′, a) and ζ(e′, α) are finite by Lemma 4.17.
Kozen’s argument that matrices over rational terms satisfy the axioms of Kleene al-

gebra [23] generalises to guarded rational terms. This leads to a straightforward generalisation
of Lemma 2.4. For the sake of brevity, we use T to stand in for WKAO or KAO.

I Lemma 5.4. Let M be a Q-matrix. Using the entries of M and applying the operators of
Kleene algebra, we can construct a Q-matrix M?, which has the following property. Let y be
any Q-vector; now M? · y is the least (w.r.t. 5T) Q-vector x such that M · x+ y 5T x.

We can now use the above to reassemble a term from Me and xe as follows.

I Definition 5.5 (Transformation of terms). Let e ∈ TGR. We write se for the ρ(e)-vector
given by M?

e · xe, and ê for the guarded rational term given by
∑
e′∈ι(e) se(e′).

Since ê is constructed from Me and se, and these are built using atomic guarded rational
terms, ê is atomic. We carry on to show that ê ≡KAO e. To this end, the following is useful.

I Proposition 5.6 (Least solutions). Let e, f ∈ TGR. Now se # f is the least (w.r.t. 5T)
ρ(e)-vector s such that for each e′ ∈ ρ(e), it holds that

ε(e′) · f +
∑

e′′∈δ(e′,a)

a · s(e′′) +
∑

e′′∈ζ(e′,α)

πα · s(e′′) 5T s(e′) .

When s = se # f , the above is an equivalence, i.e., we can substitute 5T with ≡T.

Sketch. The least such s coincides with se = M?
e · xe, by using the property of se that we

obtain as a result of Lemma 5.4. The latter claim goes by standard argument akin to the
argument showing that the least pre-fixpoint of a monotone operator is a fixpoint. J

Using the above, we show that the contents of ρ(e) themselves qualify as a least ρ(e)-vector
satisfying system obtained from e (and fixing f = 1). More concretely, we have the following.

I Proposition 5.7. Let e ∈ TGR and e′ ∈ ρ(e). Then se(e′) ≡KAO e
′.

Sketch. The key idea is to first relate the least ρ(e)-vectors satisfying the system obtained
from e to those satisfying the systems arising from its subterms. The proof then follows by
induction on e, and some straightforward derivations. J

CONCUR 2019

41:12 Kleene Algebra with Observations

This allows us to conclude (using Lemma 4.19) that e ≡KAO ê.

I Corollary 5.8 (Transformation preserves equivalence). Let e ∈ TGR; then e ≡KAO ê.

It remains to show that ê is closed. To this end, the following characterisation is helpful:

I Lemma 5.9. Let L ⊆ Γ?, and define P as the smallest relation on Γ? satisfying the rules

ε P ε

a ∈ Γ w P x

aw P ax

α ∈ A w P x

αw P ααx
.

L↓ is the smallest subset of Γ? such that L ⊆ L↓, and if w P x with x ∈ L↓, then w ∈ L↓.

We can then employ the characterisation of se in Proposition 5.6 to show, by induction
on the length of the P-chain, that the components of se are closed.

I Proposition 5.10. Let e ∈ T . For all e′ ∈ ρ(e), it holds that se(e′) is closed.

Sketch. Note that se satisfies the system obtained from e as in Proposition 5.6, both w.r.t.
≡KAO and ≡WKAO. Using Lemma 5.9, we can then show (by induction on the number of
applications of P) that Js(e′)KWKAO ⊆ Js(e′)KKAO; the other inclusion holds trivially. J

Hence, we can conclude (using Lemma 4.8) that ê is closed as well, as follows.

I Corollary 5.11 (Transformation yields closed term). Let e ∈ TGR; now ê is closed.

We are now ready conclude with the main result of this section.

I Theorem 5.12 (Soundness and completeness). Let e, f ∈ TGR; then

e ≡KAO f ⇐⇒ JeKKAO = JfKKAO .

Sketch. Since we have a way to obtain from e ∈ TGR a closed term ê ∈ TAGR, for which it
furthermore holds that e ≡KAO ê, we can appeal to Proposition 5.2. J

6 Decision procedure

We now design a procedure that takes terms e, f ∈ TGR and decides whether JeKKAO = JfKKAO;
by Theorem 5.12, this gives us a decision procedure for e ≡KAO f . To this end, we reduce to
the problem of language equivalence between NFAs over guarded rational terms, defined using
partial derivatives. This, in turn, can be efficiently decided using bisimulation techniques.

First, observe that TGR carries a non-deterministic automaton structure.

I Definition 6.1 (Syntactic automaton). The set TGR carries an NDA structure (TGR, ε, θ)
where ε : TGR → 2 is as in Definition 4.10, and θ : TGR × Γ→ 2TGR is given by

θ(e, a) =
{
δ(e, a) if a ∈ Σ
ζ(e, a) if a ∈ A

.

We call this the syntactic automaton of guarded rational terms.

Let ` : TGR → 2Γ? be the semantics of this automaton as given in Section 2. It is easy to see
that ` is the unique function such that

`(e) = {ε : ε(e) = 1} ∪
⋃

e′∈δ(e,a)

{a} · `(e′) ∪
⋃

e′∈ζ(e,α)

{α} · `(e′) . (1)

To use this NDA for KAO equivalence, we need to show that the language accepted by the
state e ∈ TGR is JeKKAO. For this goal, it helps to algebraically characterise expressions in
terms of their derivatives. We call this a fundamental theorem of KAO, after [39, 40].

T. Kappé, P. Brunet, J. Rot, A. Silva, J. Wagemaker and F. Zanasi 41:13

I Theorem 6.2 (Fundamental theorem). For all e ∈ TGR, the following holds

e ≡KAO ε(e) +
∑

e′∈δ(e,a)

a · e′ +
∑

e′∈ζ(e,α)

πα · e′ .

Sketch. The right-to-left containment is a result of Lemmas 4.11 and 4.15. The converse is
a straightforward calculation using Proposition 5.6 and Corollary 5.8. J

Next, we turn the fundamental theorem into a statement about the KAO semantics.
Before we do, however, we need the following basic result about the KAO semantics.

I Lemma 6.3. Let us fix α ∈ A. For all e ∈ TGR, we have:
s∑

e′∈ζ(e,α)
πα · e′

{

KAO

=
⋃

e′∈ζ(e,α)

{α} · Je′KKAO .

We now arrive at a semantic analogue of the fundamental theorem.

I Proposition 6.4. For all e ∈ TGR, we have:

JeKKAO = {ε : ε(e) = 1} ∪
⋃

e′∈δ(e,a)

{a} · Je′KKAO ∪
⋃

e′∈ζ(e,α)

{α} · Je′KKAO .

Sketch. By applying soundness of ≡KAO w.r.t. J−KKAO (Lemma 4.9) to the fundamental
theorem, and using Lemma 6.3 for the term summing over the A-continuations of e. J

The language of a state in the syntactic NFA is then characterised by the KAO semantics.

I Theorem 6.5 (Soundness of translation). Let e ∈ TGR; then JeKKAO = `(e).

Sketch. A direct consequence of Proposition 6.4 and the uniqueness of ` in satisfying (1). J

To decide whether JeKKAO = JfKKAO it suffices to show that e and f are language equivalent
in the syntactic automaton. We express this in terms of ι as defined in Definition 4.18.

I Corollary 6.6. For all e, f ∈ TGR, we have

JeKKAO = JfKKAO ⇔
⋃

e′∈ι(e)

`(e′) =
⋃

f ′∈ι(f)

`(f ′) .

By construction, ι(e) ⊆ ρ(e) for every e ∈ TGR. Since ρ(e) and ρ(f) are closed under
partial derivatives, we can restrict the syntactic automaton to ρ(e) ∪ ρ(f), to obtain a finite
NDA. To decide e ≡KAO f , it suffices to decide

⋃
e′∈ι(e) `(e′) =

⋃
f ′∈ι(f) `(f ′) on this NFA.

This leads us to the main result of this section: a decision procedure for KAO.

I Theorem 6.7 (Decision procedure). For all e, f ∈ TGR, we have e ≡KAO f if and only if
there exists R such that (ι(e), ι(f)) ∈ R and R is a bisimulation up to congruence for the
syntactic automaton restricted to ρ(e) ∪ ρ(f).

Sketch. By Theorem 2.5, such an R exists precisely when
⋃
e′∈ι(e)Je

′KKAO =
⋃
f ′∈ι(f)Jf

′KKAO;
by Corollary 6.6 and Theorem 5.12 this is equivalent to e ≡KAO f . J

CONCUR 2019

41:14 Kleene Algebra with Observations

I Example 6.8. We know that for all a, b ∈ Ω we have that a∧ b 6≡KAO a · b. This also follows
from our decision procedure, which we argue by showing that any attempt to construct a
bisimulation up to congruence R containing ({a ∧ b}, {a · b}) fails.

We start with R = {({a ∧ b}, {a · b})}, and note that ε̄({a ∧ b}) = 0 = ε̄({a · b}). We
now take a derivative w.r.t. α ∈ A such that πα 5BA a ∧ b. To grow R into a bisimulation
up to congruence, all derivatives should be checked and possibly added to R; this specific
choice, however, will lead to a counterexample. We have that θ̄({a ∧ b}, α) = {1} and
θ̄({a · b}, α) = {1 · b, 1}. We add ({1}, {1 · b, 1}) to R, noting that ε̄({1}) = 1 = ε̄({1 · b, 1}),
and continue with the next derivative w.r.t. β ∈ A such that πβ 5BA b. We get θ̄({1}, β) = ∅
and θ̄({1 · b, 1}, β) = {1}. We now have (∅, {1}) ∈ R, but ε̄(∅) 6= ε̄({1}). Thus, we cannot
construct a bisimulation up to congruence R such that ({a ∧ b}, {a · b}) ∈ R.

I Remark 6.9. For KAO-expressions without observations, the derivatives with respect to an
element of A result in the empty set. Hence, for these KAO-expressions, deciding equivalence
comes down to standard derivative-based techniques for rational expressions [37].

7 Related work

This work fits in the larger tradition of Kleene algebra as a presentation of the “laws of
programming”, the latter having been studied by Hoare and collaborators [14, 13]. More
precisely, our efforts can be grouped with recent efforts to extend Kleene algebra with
concurrency [15, 13, 32, 21], and thence with Boolean guards [19].

We proved that ≡KAO is sound and complete w.r.t. J−KKAO, based on the existing complete-
ness proof for KA. By re-using completeness results for a simpler algebra, the proof shows a
clear separation of concerns between the “old” algebra being extended and the new layer of
axioms placed on top. This strategy pops up quite often in some form [29, 1, 32, 21]. We
note that unlike [29, 1], our transformation does not proceed by induction on the term, but
leverages the least fixpoints computable in every Kleene algebra. Further, the combination of
KA with additional hypotheses presented in [27] might yield another route to completeness.

The use of linear systems to study automata was pioneered by Conway [9] and Back-
house [3]. Kozen’s completeness proof expanded on this by generalising Kleene algebra to
matrices [23]. The connection between linear systems, derivatives and completeness was
studied by Kozen [26] and Jacobs [18]. To keep our presentation simple, we give our proof of
completeness in elementary terms; a proof in terms of coalgebra [38] may yet be possible.

Using bisimulation to decide language equivalence in a deterministic finite automaton
originates from Hopcroft and Karp [17]. This technique has many generalisations [36].

8 Conclusions and further work

Kleene algebra with observations (KAO) is an algebraic framework that adds Boolean guards
to Kleene algebra in such a way that a sensible extension with concurrency is still possible, in
contrast with Kleene algebra with tests (KAT). Indeed, the laws of KAO prevent the problem
presented by Antinomy 3.1. The axiomatisation of KAO, as well as the decision procedure
for equivalence, give an alternative foundation for combining KAO with concurrent Kleene
algebra to arrive at a new equational calculus of concurrent programs.

The most obvious direction of further work is to define concurrent Kleene algebra with
observations (CKAO) as the amalgamation of axioms of KAO and CKA, in pursuit of a
characterisation of its equational theory and an analogous decidability result. We conjecture

T. Kappé, P. Brunet, J. Rot, A. Silva, J. Wagemaker and F. Zanasi 41:15

that languages of sp-pomsets [12, 11, 33] over actions and atoms, closed under some suitable
relation, form the free model; a proof would likely build on [31] and re-use techniques from [21].
While the equational theory of CKAO might be decidable, we are less optimistic about a
feasible algorithm; deciding the equational theory of CKA is already expspace-complete [7].

Another avenue of future research would be to create a programming language using
KAO (or, possibly, CKAO) by instantiating actions and observations, and adding axioms
that encode the intention of those primitives. NetKAT [1, 10, 41], a language for describing
and reasoning about network behaviour is an excellent example of such an endeavour based
on KAT. Our long-term hope is that CKAO will function as a foundation for a “concurrent”
version of NetKAT aimed at describing and reasoning about networks with concurrency.

Finally, we note that the decision procedure for KAO based on bisimulation up to con-
gruence leaves room for optimisation. Besides adapting the work on symbolic algorithms for
bisimulation-based algorithms in KAT [34], the transitivity property witnessed in Lemma 4.14
seems like it could sometimes allow a bisimulation-based algorithm to decide early.

References
1 Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin, Dexter Kozen, Cole

Schlesinger, and David Walker. NetKAT: semantic foundations for networks. In POPL, pages
113–126, 2014. doi:10.1145/2535838.2535862.

2 Valentin M. Antimirov. Partial Derivatives of Regular Expressions and Finite Automaton
Constructions. Theor. Comput. Sci., 155(2):291–319, 1996. doi:10.1016/0304-3975(95)
00182-4.

3 Roland Backhouse. Closure algorithms and the star-height problem of regular languages. PhD
thesis, University of London, 1975.

4 Garrett Birkhoff and Thomas C. Bartee. Modern applied algebra. McGraw-Hill, 1970.
5 Maurice Boffa. Une remarque sur les systèmes complets d’identités rationnelles. ITA, 24:419–

428, 1990.
6 Filippo Bonchi and Damien Pous. Checking NFA equivalence with bisimulations up to

congruence. In POPL, pages 457–468, 2013. doi:10.1145/2429069.2429124.
7 Paul Brunet, Damien Pous, and Georg Struth. On Decidability of Concurrent Kleene Algebra.

In CONCUR, pages 28:1–28:15, 2017. doi:10.4230/LIPIcs.CONCUR.2017.28.
8 Janusz A. Brzozowski. Derivatives of Regular Expressions. J. ACM, 11(4):481–494, 1964.

doi:10.1145/321239.321249.
9 John Horton Conway. Regular Algebra and Finite Machines. Chapman and Hall, 1971.
10 Nate Foster, Dexter Kozen, Matthew Milano, Alexandra Silva, and Laure Thompson. A

Coalgebraic Decision Procedure for NetKAT. In POPL, pages 343–355, 2015. doi:10.1145/
2676726.2677011.

11 Jay L. Gischer. The Equational Theory of Pomsets. Theor. Comput. Sci., 61:199–224, 1988.
doi:10.1016/0304-3975(88)90124-7.

12 Jan Grabowski. On partial languages. Fundam. Inform., 4(2):427, 1981.
13 Tony Hoare. Laws of Programming: The Algebraic Unification of Theories of Concurrency. In

CONCUR, pages 1–6, 2014. doi:10.1007/978-3-662-44584-6_1.
14 Tony Hoare, Ian J. Hayes, Jifeng He, Carroll Morgan, A. W. Roscoe, Jeff W. Sanders, Ib Holm

Sørensen, J. Michael Spivey, and Bernard Sufrin. Laws of Programming. Commun. ACM,
30(8):672–686, 1987. doi:10.1145/27651.27653.

15 Tony Hoare, Bernhard Möller, Georg Struth, and Ian Wehrman. Concurrent Kleene Algebra.
In CONCUR, pages 399–414, 2009. doi:10.1007/978-3-642-04081-8_27.

16 Tony Hoare, Stephan van Staden, Bernhard Möller, Georg Struth, and Huibiao Zhu. Develop-
ments in Concurrent Kleene Algebra. J. Log. Algebr. Meth. Program., 85(4):617–636, 2016.
doi:10.1016/j.jlamp.2015.09.012.

17 John E. Hopcroft and Richard M. Karp. A linear algorithm for testing equivalence of finite
automata. Technical Report TR71-114, Cornell University, December 1971.

CONCUR 2019

https://doi.org/10.1145/2535838.2535862
https://doi.org/10.1016/0304-3975(95)00182-4
https://doi.org/10.1016/0304-3975(95)00182-4
https://doi.org/10.1145/2429069.2429124
https://doi.org/10.4230/LIPIcs.CONCUR.2017.28
https://doi.org/10.1145/321239.321249
https://doi.org/10.1145/2676726.2677011
https://doi.org/10.1145/2676726.2677011
https://doi.org/10.1016/0304-3975(88)90124-7
https://doi.org/10.1007/978-3-662-44584-6_1
https://doi.org/10.1145/27651.27653
https://doi.org/10.1007/978-3-642-04081-8_27
https://doi.org/10.1016/j.jlamp.2015.09.012

41:16 Kleene Algebra with Observations

18 Bart Jacobs. A Bialgebraic Review of Deterministic Automata, Regular Expressions and
Languages. In Algebra, Meaning, and Computation (Joseph A. Goguen festschrift), pages
375–404, 2006. doi:10.1007/11780274_20.

19 Peter Jipsen and M. Andrew Moshier. Concurrent Kleene algebra with tests and branching
automata. J. Log. Algebr. Meth. Program., 85(4):637–652, 2016. doi:10.1016/j.jlamp.2015.
12.005.

20 Tobias Kappé, Paul Brunet, Jurriaan Rot, Alexandra Silva, Jana Wagemaker, and Fabio
Zanasi. Kleene Algebra with Observations. CoRR, abs/1811.10401, 2018. arXiv:1811.10401.

21 Tobias Kappé, Paul Brunet, Alexandra Silva, and Fabio Zanasi. Concurrent Kleene Al-
gebra: Free Model and Completeness. In ESOP, pages 856–882, 2018. doi:10.1007/
978-3-319-89884-1_30.

22 Stephen C. Kleene. Representation of Events in Nerve Nets and Finite Automata. Automata
Studies, pages 3–41, 1956.

23 Dexter Kozen. A Completeness Theorem for Kleene Algebras and the Algebra of Regular
Events. Inf. Comput., 110(2):366–390, 1994. doi:10.1006/inco.1994.1037.

24 Dexter Kozen. Kleene algebra with tests and commutativity conditions. In TACAS, pages
14–33, 1996. doi:10.1007/3-540-61042-1_35.

25 Dexter Kozen. On Hoare logic and Kleene algebra with tests. ACM Trans. Comput. Log.,
1(1):60–76, 2000. doi:10.1145/343369.343378.

26 Dexter Kozen. Myhill-Nerode Relations on Automatic Systems and the Completeness of
Kleene Algebra. In STACS, pages 27–38, 2001. doi:10.1007/3-540-44693-1_3.

27 Dexter Kozen and Konstantinos Mamouras. Kleene Algebra with Equations. In ICALP, pages
280–292, 2014. doi:10.1007/978-3-662-43951-7_24.

28 Dexter Kozen and Maria-Christina Patron. Certification of Compiler Optimizations Using
Kleene Algebra with Tests. In CL, pages 568–582, 2000. doi:10.1007/3-540-44957-4_38.

29 Dexter Kozen and Frederick Smith. Kleene Algebra with Tests: Completeness and Decidability.
In CSL, pages 244–259, 1996. doi:10.1007/3-540-63172-0_43.

30 Daniel Krob. Complete Systems of B-Rational Identities. Theor. Comput. Sci., 89(2):207–343,
1991. doi:10.1016/0304-3975(91)90395-I.

31 Michael R. Laurence and Georg Struth. Completeness Theorems for Bi-Kleene Algebras
and Series-Parallel Rational Pomset Languages. In RAMiCS, pages 65–82, 2014. doi:
10.1007/978-3-319-06251-8_5.

32 Michael R. Laurence and Georg Struth. Completeness Theorems for Pomset Languages and
Concurrent Kleene Algebras, 2017. arXiv:1705.05896.

33 Kamal Lodaya and Pascal Weil. Series-parallel languages and the bounded-width property.
Theor. Comput. Sci., 237(1):347–380, 2000. doi:10.1016/S0304-3975(00)00031-1.

34 Damien Pous. Symbolic Algorithms for Language Equivalence and Kleene Algebra with Tests.
In POPL, pages 357–368, 2015. doi:10.1145/2676726.2677007.

35 Michael O. Rabin and Dana S. Scott. Finite Automata and Their Decision Problems. IBM J.
of Research and Dev., 3(2):114–125, 1959. doi:10.1147/rd.32.0114.

36 Jurriaan Rot, Filippo Bonchi, Marcello M. Bonsangue, Damien Pous, Jan Rutten, and
Alexandra Silva. Enhanced coalgebraic bisimulation. Mathematical Structures in Comput.
Sci., 27(7):1236–1264, 2017. doi:10.1017/S0960129515000523.

37 Jan J. M. M. Rutten. Automata and Coinduction (An Exercise in Coalgebra). In CONCUR,
pages 194–218, 1998. doi:10.1007/BFb0055624.

38 Jan J. M. M. Rutten. Universal coalgebra: a theory of systems. Theor. Comput. Sci.,
249(1):3–80, 2000. doi:10.1016/S0304-3975(00)00056-6.

39 Jan J. M. M. Rutten. Behavioural differential equations: a coinductive calculus of
streams, automata, and power series. Theor. Comput. Sci., 308(1-3):1–53, 2003. doi:
10.1016/S0304-3975(02)00895-2.

40 Alexandra Silva. Kleene Coalgebra. PhD thesis, Radboud Universiteit Nijmegen, 2010.
41 Steffen Smolka, Spiridon Aristides Eliopoulos, Nate Foster, and Arjun Guha. A fast compiler

for NetKAT. In ICFP, pages 328–341, 2015. doi:10.1145/2784731.2784761.

https://doi.org/10.1007/11780274_20
https://doi.org/10.1016/j.jlamp.2015.12.005
https://doi.org/10.1016/j.jlamp.2015.12.005
http://arxiv.org/abs/1811.10401
https://doi.org/10.1007/978-3-319-89884-1_30
https://doi.org/10.1007/978-3-319-89884-1_30
https://doi.org/10.1006/inco.1994.1037
https://doi.org/10.1007/3-540-61042-1_35
https://doi.org/10.1145/343369.343378
https://doi.org/10.1007/3-540-44693-1_3
https://doi.org/10.1007/978-3-662-43951-7_24
https://doi.org/10.1007/3-540-44957-4_38
https://doi.org/10.1007/3-540-63172-0_43
https://doi.org/10.1016/0304-3975(91)90395-I
https://doi.org/10.1007/978-3-319-06251-8_5
https://doi.org/10.1007/978-3-319-06251-8_5
http://arxiv.org/abs/1705.05896
https://doi.org/10.1016/S0304-3975(00)00031-1
https://doi.org/10.1145/2676726.2677007
https://doi.org/10.1147/rd.32.0114
https://doi.org/10.1017/S0960129515000523
https://doi.org/10.1007/BFb0055624
https://doi.org/10.1016/S0304-3975(00)00056-6
https://doi.org/10.1016/S0304-3975(02)00895-2
https://doi.org/10.1016/S0304-3975(02)00895-2
https://doi.org/10.1145/2784731.2784761

	p000-Frontmatter
	Preface
	Committees
	External Reviewers

	p001-Kwiatkowska
	Introduction
	Overview of progress in automated verification for neural networks
	Heuristic search for adversarial examples
	Automated verification approaches
	Towards probabilistic verification for deep neural networks

	Conclusion

	p002-Larsen
	UPPAAL Stratego
	Better and Faster Learning
	Compact Strategies
	On-line Learning

	p003-Ouaknine
	p004-VanDePol
	p005-Kretinsky
	Introduction
	Preliminaries
	The Core Idea
	Infinite-Horizon Cores
	Learning a Core
	Using Cores for Verification

	Beyond Infinite Horizon
	Finite-Horizon Cores
	Learning a Finite Core
	Implementing the function approximation
	Stability and its applications

	Experimental Evaluation
	Implementation Details
	Models
	Results
	Infinite Cores
	Finite Cores
	Heuristics

	Conclusion

	p006-Chatterjee
	Introduction
	Background
	Sure-Almost-Sure MDPs
	Sure-Almost-Sure Parity Games
	Determinacy
	General Winning
	Winning with Finite Memory

	Sure-Limit-Sure Parity Games
	Limit-Sure vs Almost-Sure
	Solving SLS MDPs and Games

	Conclusions and Future Work

	p007-Chatterjee
	Introduction
	Preliminaries
	Decremental SCCs
	Graphs with Streett Objectives
	Algorithms for MDPs
	Maximal End-Component Decomposition
	Almost-Sure Reachability
	Decremental Maximal End-Component Decomposition
	MDPs with Streett Objectives

	p008-Brihaye
	Introduction
	Preliminaries
	Window objectives
	Fixed case: better safe than sorry
	The case of end-components
	General MDPs
	Limitations and perspectives

	p009-Bacci
	Introduction
	Preliminaries and Notation
	Probabilistic Automata and Probabilistic Bisimilarity Distance
	Probabilistic Bisimilarity Distance as a Simple Stochastic Game
	A Coupling Characterisation of the Bisimilarity Distance
	Computing the Bisimilarity Distance
	Simple Policy Iteration Strategy
	Experimental Results

	Conclusion and Future Work

	p010-Chistikov
	Introduction
	Preliminaries
	(epsilon,delta)-Differential Privacy
	lv_{alpha} is not computable
	Approximation of lv_{alpha}
	A least fixed point bound ld_alpha
	A greatest fixed point bound lgd_alpha
	Examples
	Conclusion

	p011-DeVisme
	Introduction
	Preliminaries
	The Category of Event Structures
	The Categorical Product
	Semantics of CCS
	Probabilistic CCS

	Mixed Event Structures
	Definition
	Products and Sequentiality
	Labelled Mixed Event Structures
	Alternating Trees

	Concurrent Semantics of Probabilistic CCS
	Mixed Probabilisitic Event Structures
	Concurrent Semantics of PCCS

	p012-Finkel
	Introduction
	Preliminaries
	Complexity of Reachability Properties for Flat FIFO Systems
	Construction of an Equivalent Counter System
	Conclusion and Perspectives

	p013-Brihaye
	Introduction
	Preliminaries
	Characterization
	Counter graph
	PSPACE completeness

	p014-Winkler
	Introduction
	Preliminaries
	Parametric Markov models
	Existential theory of the reals

	Problem landscape
	Fixing the number of parameters
	The expressiveness of simple pMCs
	The complexity of reachability in pMCs
	The complexity of reachability in pMDPs
	Exists-exists reachability
	Exists-forall reachability

	Robust reachability
	Conclusions

	p015-Clemente
	Introduction
	Preliminaries
	Reachability Relations of One-Clock Timed Automata
	One-Clock TBPP
	Multi-Clock TBPP
	Conclusion

	p016-Govind
	Introduction
	Networks of timed automata
	Local-time semantics
	Comparing local and global runs

	Zone graphs
	Standard zone-based algorithm for reachability
	Local zone graphs

	Why are local zone graphs better than global zone graphs?
	Making local zone graphs finite
	Synchronized valuations for subsumption

	Experiments
	Conclusions

	p017-Michaliszyn
	Introduction
	The setting
	Passive learning
	Characterization
	Consequences for PAC learning
	Sample fitting

	Active learning
	Approximate learning
	Rigid approximate learning

	Almost-exact learning

	p018-Daviaud
	Introduction
	Alternating automata
	From co-Büchi and Büchi to weak
	Co-Büchi progress measures
	From co-Büchi and Büchi to weak

	Lazy parity progress measures
	From parity to Büchi via universal trees
	Open questions

	p019-Boker
	Introduction
	Preliminaries
	Good for Games Automata: Five Definitions
	Equivalence of All Definitions
	Expressiveness
	Succinctness
	Conclusions

	p020-Aghajohari
	Introduction
	Preliminaries
	Concurrent and turn-based games
	Bidding games
	Strategies, plays, and objectives

	A Framework for Proving Determinacy
	Determinacy
	Local and global determinacy
	The bidding matrix

	Transducer-based tie-breaking
	Random-Based Tie Breaking
	Advantage-Based Tie-Breaking
	Strongly-Connected Games
	Discussion and Future Work

	p021-Bruyere
	Introduction
	Preliminaries
	One-player setting
	Two-player setting
	Memoryless winning strategies for {P_2}
	Strategies for {P_1} : case of strict inequalities
	Multi-dimensional energy games

	Strategies for {P_1} : case of non-strict inequalities
	Proof of Theorem 7

	p022-Gutierrez
	Introduction
	Preliminaries
	From Mechanism Design to Equilibrium Design
	Equilibrium Design: Weak Implementation
	Equilibrium Design: Strong Implementation
	Optimality and Uniqueness of Solutions
	Optimality and Uniqueness in the Weak Domain
	Optimality and Uniqueness in the Strong Domain

	Conclusions & Related and Future Work

	p023-Bonneland
	Introduction
	Preliminaries
	Stable Reduction
	Stable Reductions on Petri Net Games
	Implementation and Experiments
	Results

	Conclusion

	p024-Exibard
	Introduction
	Data Words and Register Automata
	Synthesis of Register Transducers
	Unbounded Synthesis
	Bounded Synthesis: A Generic Approach
	The case of URA specifications
	The case of test-free NRA specifications

	Synthesis and Uniformisation
	Conclusion

	p025-Khalimov
	Introduction
	Preliminaries
	Register Automata
	Register Transducers
	Synthesis with an Infinite or Unbounded Number of System Registers

	Synthesis with a Fixed Number of System Registers
	Synthesis with a Fixed Number of System and Environment Registers

	p026-Beutner
	Introduction
	Examples
	Background
	Zielonka's Asynchronous Automata
	Control Games
	Petri Nets
	Petri Games

	Game Equivalence
	Translating Petri Games to Control Games
	Construction
	Correctness
	Generalization to Concurrency-Preserving Games
	Lower Bound

	Translating Control Games to Petri Games
	Construction
	Correctness
	Enforcing Commitment
	Lower Bounds

	New Decidable Classes
	Conclusion

	p027-Chatterjee
	Introduction
	Preliminaries
	Vector addition systems with states (VASS)
	Decision problems

	Uniform cost functions
	Integer-valued VASS: VASS(Z)
	Natural-valued VASS: VASS(N)

	General cost functions and VASS(Z)
	The finite-value problem
	The regular average-value problem
	Factorizations
	Elimination of the quadratic factor
	The linear case
	Summary

	Hardness

	General cost functions and VASS(N)

	p028-Mazowiecki
	Introduction
	Preliminaries
	Extensions of 1-BoBrVASS with doubling and halving
	Exptime-hardness
	Limitations of 1-BoBrVASS
	Conclusion

	p029-Guzman
	Introduction
	Background
	Spatial Constraint Systems
	Distributed Information
	Distributed Spaces
	Distributed Spaces as Maximum Spaces
	Distributed Spaces as Group Distributions Candidates
	Group Projections
	Group Compactness

	Computing Distributed Information
	Distributed Spaces in Distributed Lattices
	Algorithms for Distributed Lattices
	Algorithm for Arbitrary Lattices

	Conclusions and Related Work

	p030-Beillahi
	Introduction
	Causal Consistency
	Write-Write Race Freedom
	Programs Robustness
	Program Traces
	Program Semantics Under Serializability
	Robustness Problem

	Robustness Against Causal Consistency
	Robustness Violations under Causal Convergence
	Robustness Violations under Causal Memory
	Robustness Violations under Weak Causal Consistency

	Reduction to SC Reachability
	Related Work

	p031-Blondin
	Introduction
	Preliminaries
	Broadcast consensus protocols
	Broadcast consensus protocols compute exactly NL
	Predicates computable by broadcast consensus protocols are in NL
	Predicates in NL are computable by broadcast consensus protocols
	Silent semi-computation
	Simulation of Turing machines by counter machines
	Simulation of polynomially bounded counter machines by n-bounded counter machines
	Simulation of n-bounded counter machines by broadcast consensus protocols
	Main theorem

	Subclasses of broadcast consensus protocols
	Conclusion

	p032-Bertrand
	Introduction
	Broadcast networks
	Static broadcast networks
	Reconfigurable broadcast networks
	Broadcast networks with messages losses

	Tight bounds for reconfigurable and lossy broadcast networks
	Upper bounds on cutoff and covering length for reconfigurable networks
	Upper bounds on cutoff and covering length for lossy networks
	Matching lower bounds for reconfigurable and lossy networks

	Succinctness of reconfigurations compared to losses
	Complexity of deciding the size of minimal witnesses
	Conclusion

	p033-Bertrand
	Introduction
	Overview
	The Probabilistic Threshold Automata Framework
	Probabilistic Counter Systems
	Non-probabilistic Counter Systems
	Adversaries
	Atomic Propositions and Stutter Equivalence

	Consensus Properties and their Verification
	Reduction to Specifications with one Round Quantifier
	Reduction to Single-Round Counter System
	Reduction from arbitrary schedules to round-rigid schedules
	From round-rigid schedules to single-round counter system

	Probabilistic Wait-Free Termination
	Reducing probabilistic to non-probabilistic specifications
	Verifying (C1) on a non-probabilistic TA

	Experiments
	Conclusions

	p034-Ledent
	Introduction
	A computational model based on trace semantics
	Specifying concurrent objects
	Program semantics

	Tasks as a particular kind of one-shot objects
	An asynchronous computability theorem for arbitrary objects
	Preliminaries
	Simplicial tasks
	Simplicial protocols
	Asynchronous computability theorem

	Conclusion

	p035-Hausmann
	Introduction
	The Coalgebraic mu-Calculus
	Local Model Checking for the Coalgebraic mu-Calculus
	Coalgebraic Model Checking in NP cap coNP
	Small model checking games
	Conclusion

	p036-Dorsch
	Introduction
	Preliminaries: Coalgebra
	Graded Monads and Graded Theories
	A Spectrum of Graded Monads
	Graded Logics
	Expressiveness
	Conclusion and Future Work

	p037-Bonchi
	Introduction
	Motivating Example
	From Terms to String Diagrams
	Frobenius Bimonoids

	Background: Bialgebras and GSOS Specifications
	Diagrammatic Syntax as Monads
	The Category of Signatures
	Functors on Signatures
	The Prop Monad
	The Carboni-Walters Monad

	Bialgebraic Semantics for String Diagrams
	Bialgebraic Semantics for Props
	Bialgebraic Semantics for Carboni-Walters Props

	Black and White Frobenius as Hoare and Milner Synchronisation
	Syntax
	Semantics

	Related and Future Work

	p038-Bravetti
	Introduction
	Communicating Machines and Asynchronous Subtyping
	Communicating Machines
	Asynchronous Session Subtyping

	A Sound Algorithm for Asynchronous Subtyping
	Generating Asynchronous Simulation Trees
	A Simulation Tree-Based Algorithm

	Evaluation, Related Work, and Conclusions

	p039-Caires
	Introduction
	Process Model
	Domain-aware Session Types via Hybrid Logic
	Domain-Aware Multiparty Session Types
	Related Work
	Concluding Remarks

	p040-Maarand
	Introduction
	Preliminaries on Word Languages
	Derivatives of a Language
	Regular Languages
	Brzozowski and Antimirov Derivatives

	Trace Closures of Regular Languages
	Trace Closure of a Word Language
	Trace-Closing Semantics of Regular Expressions
	Properties of Trace Closures of Regular Languages

	Reordering Derivatives
	Reordering Derivative of a Language
	Brzozowski Reordering Derivative
	Antimirov Reordering Derivative
	Star-Connected Expressions
	Automaton Finiteness for Star-Connected Expressions

	Uniform Scattering Rank of a Language
	Scattering Rank vs. Uniform Scattering Rank
	Star-Connected Languages Have Uniform Rank

	Antimirov Reordering Derivative and Uniform Rank
	Refined Antimirov Reordering Derivative
	Automaton Finiteness for Regular Expressions with Uniform Rank

	Related Work
	Conclusion and Future Work

	p041-Kappe
	Introduction
	Preliminaries
	The problem with CKAT
	Kleene algebra with observations
	From tests to observations
	A language model
	Partial derivatives

	Completeness
	Decision procedure
	Related work
	Conclusions and further work

