774 research outputs found

    Wireless industrial intelligent controller for a non-linear system

    Get PDF
    Modern neural network (NN) based control schemes have surmounted many of the limitations found in the traditional control approaches. Nevertheless, these modern control techniques have only recently been introduced for use on high-specification Programmable Logic Controllers (PLCs) and usually at a very high cost in terms of the required software and hardware. This ‗intelligent‘ control in the sector of industrial automation, specifically on standard PLCs thus remains an area of study that is open to further research and development. The research documented in this thesis examined the effectiveness of linear traditional control schemes such as Proportional Integral Derivative (PID), Lead and Lead-Lag control, in comparison to non-linear NN based control schemes when applied on a strongly non-linear platform. To this end, a mechatronic-type balancing system, namely, the Ball-on-Wheel (BOW) system was designed, constructed and modelled. Thereafter various traditional and intelligent controllers were implemented in order to control the system. The BOW platform may be taken to represent any single-input, single-output (SISO) non-linear system in use in the real world. The system makes use of current industrial technology including a standard PLC as the digital computational platform, a servo drive and wireless access for remote control. The results gathered from the research revealed that NN based control schemes (i.e. Pure NN and NN-PID), although comparatively slower in response, have greater advantages over traditional controllers in that they are able to adapt to external system changes as well as system non-linearity through a process of learning. These controllers also reduce the guess work that is usually involved with the traditional control approaches where cumbersome modelling, linearization or manual tuning is required. Furthermore, the research showed that online-learning adaptive traditional controllers such as the NN-PID controller which maintains the best of both the intelligent and traditional controllers may be implemented easily and with minimum expense on standard PLCs

    Model based control strategies for a class of nonlinear mechanical sub-systems

    Get PDF
    This paper presents a comparison between various control strategies for a class of mechanical actuators common in heavy-duty industry. Typical actuator components are hydraulic or pneumatic elements with static non-linearities, which are commonly referred to as Hammerstein systems. Such static non-linearities may vary in time as a function of the load and hence classical inverse-model based control strategies may deliver sub-optimal performance. This paper investigates the ability of advanced model based control strategies to satisfy a tolerance interval for position error values, overshoot and settling time specifications. Due to the presence of static non-linearity requiring changing direction of movement, control effort is also evaluated in terms of zero crossing frequency (up-down or left-right movement). Simulation and experimental data from a lab setup suggest that sliding mode control is able to improve global performance parameters

    Modelling and control of a high redundancy actuator

    Get PDF
    The high redundancy actuation concept is a completely new approach to fault tolerance, and it is important to appreciate that it provides a transformation of the characteristics of actuators so that the actuation performance (capability) degrades slowly rather than suddenly failing, even though individual elements themselves fail. This paper aims to demonstrate the viability of the concept by showing that a highly redundant actuator, comprising a relatively large number of actuation elements, can be controlled in such a way that faults in individual elements are inherently accommodated, although some degradation in overall performance will inevitably be found. The paper introduces the notion of fault-tolerant systems and the highly redundant actuator concept. Then a model for a two by two configuration with electro-mechanical actuation elements is derived. Two classical control approaches are then considered based on frequency domain techniques. Finally simulation results under a number of faults show the viability of the approach for fault accommodation without re-configuratio

    Study of numeric Saturation Effects in Linear Digital Compensators

    Get PDF
    Saturation arithmetic is often used in finite precision digital compensators to circumvent instability due to radix overflow. The saturation limits in the digital structure lead to nonlinear behavior during large state transients. It is shown that if all recursive loops in a compensator are interrupted by at least one saturation limit, then there exists a bounded external scaling rule which assures against overflow at all nodes in the structure. Design methods are proposed based on the generalized second method of Lyapunov, which take the internal saturation limits into account to implement a robust dual-mode suboptimal control for bounded input plants. The saturating digital compensator provides linear regulation for small disturbances, and near-time-optimal control for large disturbances or changes in the operating point. Computer aided design tools are developed to facilitate the analysis and design of this class of digital compensators

    Nonlinear, Adaptive and Fault-tolerant Control for Electro-hydraulic Servo Systems

    Get PDF

    Control of out of balance servo mechanism subjected to external disturbances

    Get PDF
    There is a category of applications where cantilevered servomechanisms mounted on mobile platforms have to maintain very precise position in inertial space. These systems often referred to as stabilised or line of sight systems have to maintain precise orientation in inertial space in presence of linear and angular external disturbances. Stabilised systems, in general, are designed as balanced systems such that the pivot or centre of rotation coincides with the centre of gravity of the equipment. The research presented in this thesis investigates a general case of stabilising an out-of-balance mechanism; a balanced mechanism is a special case of these systems. The motivation for the research is to remove the requirement for balanced mechanisms enabling engineers to design more effective systems, both in terms of performance and costs, for future needs... cont'd

    Modelling, estimation and control of a twin-helicopter slung load transportation system

    Get PDF
    The development of a control system to transport and assemble cargo using two helicopters is presented in this thesis. It is more economical to use multiple lower cost helicopters in a coordinated manner to carry cargo than to use a single high performance helicopter for the transportation task. The reason for the generally higher cost of hiring high performance helicopters, is because they are not required often, and so, remain idle for most of their lifetime. Thus, using less specialised, lower performing helicopters to share the load is cheaper. Beyond just sharing the load of the cargo, the objective in this investigation is to control the attitude such that precise placement of the cargo can be made. This objective cannot be achieved using a single helicopter, unless a sophisticated tethering mechanism is developed. The installation of wind-turbine blades, powerline towers and radio masts in remote locations, are examples of where the application of this technology may be useful. The investigation of this thesis is around modelling, estimation and control of the twinhelicopter slung load transportation system. The title reflects the investigation that was required to be done to determine whether a scheme could be realisable. To test the concept, an experimental platform was developed. A small, light-weight and high performance avionics system was designed and interfaced to the helicopters. The experimentation was done indoors, and hence, the flying volume was limited. For the purpose of feedback and analysis, a motion capture system was developed to track the position and attitude of the helicopters. A high-fidelity mathematical model of a small-scale helicopter was developed. Estimation algorithms were then developed to optimally fuse the data from the instrumentation designed. The data was then used in a system identification exercise to find the parameters that capture the dynamics of the helicopter. The full constrained model of the twin-helicopter slung load dynamics was then developed. The high-fidelity multivariable, interacting system was then linearised to generate a set of uncertain plants. Unexpected resonant modes were investigated using modal analysis to understand their source. Robust controllers were designed using Quantitative Feedback Theory (QFT) for the individual helicopter attitude and altitude loops. A solution was found for the twin-helicopter load transportation system by decoupling the plant with a static pre-compensator and then designing a decentralised QFT controller for the 6 × 6 plant. The effort of this thesis is towards the (practical) realisation of a twin-helicopter aerial crane capable of attitude control; the architecture for the industrialisation of the twin-helicopter load transportation system is proposed

    Control of Inverse Response Processes by Model Predictive Control (MPC)

    Get PDF
    Due to the presence of Right Half Plane (RHP) zeros in the system, inverse response processes becomes hard to be identified and controlled. It happens when two separate effects are taking place at the same time but in different direction. Although inverse response problem is not infrequent to occur in industry especially chemical process industry, not many researchers pay attention towards controlling and solving this problem. In this paper, the author aims to compare the performance of the Model Predictive Control (MPC), Proportional Integral Derivative (PID), and Simple Internal Model Control (SIMC) in producing satisfactory control output for inverse response processes. Under this main objective, the author specifies it into three sub objectives. The first one is to design a MPC, PID, and SIMC for typical inverse response process. The second one is to measure the performance of the various controllers for set-point tracking or servo problem and lastly to compare the performance of the designed controllers. To ensure that all the objectives can be accomplished, proper methods need to be set and done throughout the progress of the project. To achieve objective 1, the author will make a proper selection on the type of controller to be used for this project and write the MATLAB coding for the selected controller, MPC, PID, and SIMC. It is crucial to identify the suitable methods and make a proper analysis on the performance of the controller. Three methods, Integral of Absolute Error (IAE), Integral of Squared Error (ISE), and Integral of Time-weighted Absolute Error (ITAE) have been proposed in order to analyse and measure the performance of the designed controller. These methods will be further elaborated in the research methodology part of this paper. And in the end, to attain last objective, the author will compare the results of measurements based on set-point tracking condition. This project principally covers the simulation analysis and project design where the author will accomplish most of the task by using the MATLAB software during the course of this project. In end of this project, the author determines that MPC provides the quickest response compared to PID and SIMC controller other than producing satisfactory overall performance and is suitable to be used to control an inverse response process. Not only that this project can achieve its objective within time constraint, it is also feasible as the project is easily understood and the software that will be used to design the controller is fairly available
    • …
    corecore