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Summary

Fluid power systems have been in use since 1795 with the first hydraulic press
patented by Joseph Bramah and today form the basis of many industries. Elec-
tro hydraulic servo systems are fluid power systems controlled in closed-loop.
They transform reference input signals into a set of movements in hydraulic
actuators (cylinders or motors) by the means of hydraulic fluid under pressure.
With the development of computing power and control techniques during the
last few decades, they are used increasingly in many industrial fields which
require high actuation forces within limited space.

However, despite numerous attractive properties, hydraulic systems are always
subject to potential leakages in their components, friction variation in their
hydraulic actuators and deficiency in their sensors. These violations of normal
behaviour reduce the system performances and can lead to system failure if
they are not detected early and handled. Moreover, the task of controlling
electro hydraulic systems for high performance operations is challenging due
to the highly nonlinear behaviour of such systems and the large amount of
uncertainties present in their models.

This thesis focuses on nonlinear adaptive fault-tolerant control for a represen-
tative electro hydraulic servo controlled motion system. The thesis extends
existing models of hydraulic systems by considering more detailed dynamics in
the servo valve and in the friction inside the hydraulic cylinder. It identifies the
model parameters using experimental data from a test bed by analysing both
the time response to standard input signals and the variation of the outputs with
different excitation frequencies. The thesis also presents a model that accurately
describes the static and dynamic normal behaviour of the system. Further, in
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this thesis, a fault detector is designed and implemented on the test bed that
successfully diagnoses internal or external leakages, friction variations in the
actuator or fault related to pressure sensors. The presented algorithm uses the
position and pressure measurements to detect and isolate faults, avoiding missed
detection and false alarm.

The thesis also develops a high performance adaptive nonlinear controller for the
hydraulic system which outperforms comparable linear controllers widely used
in the industry. Because of the controller adaptivity, uncertainties in the model
parameters can be handled. Moreover, a special attention is given to reduce the
complexity of the controller in order to demonstrate its real-time implementa-
tion. Finally the thesis combines the techniques developed in fault detection
and nonlinear control in order to develop an active fault-tolerant controller for
electro hydraulic servo systems. In order to maintain overall service and per-
formances as high as possible when a potential fault occurs, the fault-tolerant
controlled system prognoses the fault and changes its controller parameters or
structure. The consequences of an unexpected fault are avoided, high avail-
ability is ensured and the overall safety in electro hydraulic servo systems is
increased.



Resumé

Hydraulisk kraftoverførsel udgør fundamentet i mange industrielle processer til
h̊andtering og bearbejdning og har været anvendt siden Joseph Bramah paten-
terede en hydraulisk presse. I et elektro-hydrauliske servosystem omsættes ref-
erencesignaler til bevægelse ved hjælp af lukket sløjfe styring, for eksempel i
form af en computer som sender signaler til en magnetventil som regulerer
tilstrømningen af olie til en hydraulisk cylinder. Den hydrauliske cylinders posi-
tion og andre m̊alesignalet føres tilbage til computeren. Hydrauliske aktuatorer
udmærker sig ved at kunne yde meget store kræfter og momenter.

De store kræfter dannes af olie eller vand under højt tryk og hydrauliske kom-
ponenter udsættes let for lækage. Friktion og andre defekter kan udvikle sig og
s̊adanne afvigelser fra normal opførsel skal detekteres for at sikre fuld funktion-
alitet af det maskineri, som hydraulikken er en del af. Hvis fejl ikke detekteres
og h̊andteres i tide, fører de let til funktionssvigt eller nedbrud. Selve styrin-
gen af hydrauliske aktuatorer er ogs̊a vigtig, og udfordringer i forbindelse med
lukket-sløjfe styring udgøres af ikkelineære fænomener og usikkerhed omkring
parametre i dynamiske modeller for de hydrauliske enheder.

Afhandlingen fokuserer p̊a ikkelineær, adaptiv og fejltolerant styring af en hy-
draulisk servostyring. Afhandlingen udvider eksisterende modeller af hydrauliske
servosystemer ved at inkludere detaljeret modellering af servoventil og af hy-
draulikcylinder friktion. En laboratorieopstilling benyttes til at identificere
parametre i en dynamisk model og give en nøjagtig karakterisering af statisk og
dynamisk opførsel. Afhandlingen bidrager med at designe og validere algoritmer
til at detektere interne og eksterne lækager, variation i friktion i en hydraulisk
cylinder og fejl i tryksensorer. Algoritmen benytter m̊alinger af stempel van-
dring og olie tryk til at isolere de nævnte fejl og statistiske metoder benyttes til
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at undg̊a falske alarmer samtidigt med at p̊alidelig detektion opn̊as.

I afhandlingen udvikles der ogs̊a en adaptiv ikkelineær regulator for at opn̊a en
kombination af meget høj nøjagtighed og hurtig respons. Det vises at den nye
regulator er klart bedre end konventionelle styringer, som anvendes i industrien.
Regulatorens adaptive egenskab gør at den effektivt kan h̊andtere model usikker-
heder. Der er desuden arbejdet med at reducere kompleksiteten af regulatoren
for at muliggøre en implementering i real tid. Endeligt kombineres fejldetek-
tion og ikkelineær regulering til en fejltolerant styring for elektro-hydrauliske
servosystemer. Den fejltolerante regulator prognosticerer forekomsten af fejl
og skifter regulatorparametre eller tilpasser topologi af signalveje for at kunne
vedblive at fungere p̊a trods af fejl. Hvad der ellers ville være konsekvenser af
uventede fejl, ikke planlagte nedluking eller pludselig driftsstop, kan undg̊as og
dermed øges p̊alideligheden for de elektro-hydrauliske system og for den proces,
det er en del af.
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Chapter 1

Introduction

With the development of fluid power during the last few decades, electro hy-
draulic servo systems (EHSS) are used increasingly in many industrial fields
that require high actuation forces, where electric servos can not provide enough
force within limited space. EHSS include among others active suspension con-
trol, braking systems, mobile hydraulic, offshore drilling equipment or pitch
control system of wind turbines. For high pressure hydraulics the components
can be small, light-weight and sophisticated which are necessary requirements
for instance on offshore installations with limited space and load capacities.

EHSS have many and well known [3] attractive properties. Continuous improve-
ments by using the advantages or compensating for the disadvantages of fluid
power keep EHSS competitive in comparison with other forms of power. In com-
parison with electric motor systems, EHSS have several advantages. The size
of a hydraulic motor with same power is at least 10 times smaller, it has longer
service life, typically between 8000 to 10000 hours and maintenance is easier
and does not require a highly skilled professional as compared to maintenance
of sophisticated electronics. Regarding cooling, the hydraulic fluid evacuates
the heat. EHSS offer greater protection in case of failure. In the case of exceed-
ing load a typical system automatically goes into bypass (hydraulic fluid can
flow freely between the actuator chambers), and out of bypass when the load is
reduced, and in case of supply power failure, it can be designed such that it will
hold the load. In comparison, for electric motor, if the load exceeds the power
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capability, fuses or circuit breakers would interrupt the system. This situation
can possibly damage the electrical devices and motors depending on how quick
the system trips.

On the other and less glamorous side, hydraulic systems always leak. Three of
the causes are pipe connector, dynamic seals and static seals. Leakage reduces
efficiency and can be hazardous. Catastrophic hose failure needs obviously to
be avoided but also small leakage in order to prevent contamination to water
reclaim systems and pollution. Moreover leakage has a cost related to make-up
fluid, clean-up and safety. When operating at high pressure, friction phenomena
can not be ignored in EHSS. Because of the difficulty to model friction dynamics
behaviour and to identify the varying inherent parameters, a certain amount of
uncertainties are unavoidable which reduces performances of controller and fault
detection. Finally noise caused by the pump and vibrations are other drawbacks
of EHSS. These inherent drawbacks of EHSS, especially leakage and high friction
justify the use of fault-tolerant control.

Fault-tolerant control is the adjustment of the available degrees of freedom of a
system to achieve acceptable operation and prevent system failure when faults
occur. Fault prognosis is the early detection of system changes and localisa-
tion of potential fault. The process of designing fault-tolerant control can be
described in a step-by-step design procedure as illustrated in the following flow-
chart 1.1: The motivation of this dissertation is to design a robust and fault
tolerant controller for EHSS by developing and applying tools which facilitate
this procedure.

EHSS are challenging to deal with for at least three reasons. First their be-
haviour is highly nonlinear. Linearisation of the model around an operating
point gives good results only in a limited range of velocities. As a consequence
a linear model based controller designed for a large set of operating points will
have to be extremely robust if the plant nonlinearities are treated as uncertain-
ties. Moreover, a too conservative controller will offer limited performances.
Second, EHSS are difficult to model because of uncertain parameters, flow dy-
namics, temperature dependent behaviour, time varying leakage and friction,
vibrations, and the inability to measure the whole system state. Finally when a
high fidelity model is developed which renders the nonlinearities and uncertain-
ties of the real plant, its complexity makes the design of controllers and fault
detectors difficult to implement in practice. Even if better results are achieved
in simulations, the high complexity of the controllers and detectors lead to com-
puting time issues when implementation in real-time is not possible. Hence one
has to make a trade-off between a high fidelity model which can not be used in
real-time implementation and a too simple model, based on numerous assump-
tions which limit the control and fault detection performances. These difficulties
render EHSS good candidates to exploit new possibilities and methods in the
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which reconfigure the controller
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No

Yes

Yes

No

Fault tolerant Controller

Figure 1.1: Flow chart describing the procedure used in this thesis for designing
a fault-tolerant control system.
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design of nonlinear and fault-tolerant controllers whose implementation lead to
a renewed interest in electro hydraulic servo controlled motion systems.

The current preferred control method has historically been PID with feedfor-
wards models or gain scheduled control for adaptive designs. However, these
methods are to a large extent based on a linearisation of the system. Recent
nonlinear control methods have been applied to EHSS, such as passivity based
control and backstepping. Some phenomena have received less attention, for
example saturation of the valve opening, dithering, and backstepping nonlinear
control has been limited to some simplified models. Several improvement are
taken in this dissertation, by considering model extension, higher performance
controller taking into account more detailed dynamics, early fault detection
and diagnosis including both simulated and experimental validation for each
developed method. In this thesis, by combining control and fault detection, a
fault-tolerant controller for a representative electro hydraulic servo system is
achieved where the model is changed and assumptions refined depending of the
fault diagnosis. Such controllers are a further development of so called “adaptive
controllers” in the sense that not only parameters but the structure of the model
is modified according to the system behaviour. Numerous applications would
benefit from this work, from offshore drilling equipment to industrial robotic
machines, through pitch controlled wind turbines.

Contributions

To solve the problem described in the previous section, this thesis develops
tools for designing an active fault-tolerant controller for electro hydraulic servo
systems.

A high fidelity model for a representative EHSS is developed and reproduces the
static and dynamic normal behaviour of the physical system. The novelty in
the model consists in taking into account the presence of friction in both the hy-
draulic cylinder and the servo valve together with the hydraulic film formation,
the pressure dependency in the Coulomb friction and the presence of asymmet-
ric leakage flows and openings deadbands in the servo valve. After estimation
of the model parameters, the simulation results fit with the experimental ones.

Fault diagnosis techniques for EHSS are developed and implemented on a test
bed. Experimental results demonstrate the ability to detect and isolate faults
related to friction variation or leakages in the hydraulic cylinder or failure in the
pressure sensors. Changes in residuals generated using structural analysis are
detected by hypothesis testing when the system is in steady-state. Alternatively,
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extended Kalman filters provide fault diagnosis for two types of leakages when
the inputs, states and outputs of the system are varying.

Another contribution of the thesis is the development of a high performance
adaptive nonlinear controller for EHSS and its implementation on the test bed.
The inclusion of an accurate friction model in the controller design and the
reduced complexity of the controller due to a cascade structure are the main
improvements compared with existing backstepping controllers for such systems.

Finally the thesis describes a concrete implementation of an active fault-tolerant
controller on an electro hydraulic servo controlled motion system. This architec-
ture combines the techniques of fault diagnosis and nonlinear control developed
in this thesis together with fault accomodation via active controller reconfigu-
ration. The results demonstrate the effectiveness of the fault-tolerant control in
improving the performances and safety in EHSS when faults occur.

Organisation of the Thesis

The remainder of this thesis is organised as follows. Chapter 2 presents the
models and parameters estimations of an electro hydraulic servo system which
are used in the next chapters of the thesis. Comparison between simulations
and experiments in time and frequency domain as well as the model of the sys-
tem in state space are presented. Chapter 3 continues with the design of fault
detection and isolation. Residuals are generated from a structural analysis in
a first section, hypothesis tests are designed and assumptions are experimen-
tally validated in the next two sections. Finally, the designed fault detectors
are implemented for different application example in a fourth section. Chap-
ter 4 introduces the design of an adaptive nonlinear controller, using adaptive
backstepping techniques, and compare the tracking performances with linear
controllers. The last section of this chapter presents the overall architecture
of an active adaptive fault-tolerant controller and its implementation on a test
bed. Finally, chapter 5 presents the conclusion, and further research directions.
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Chapter 2

Modelling of EHSS and
Identification of their

Parameters

Chapter Abstract: This chapter presents the models and parame-

ters which will be used later in the thesis to validate the solutions of the

problems stated in chapter 1. Assumptions made in order to simplify the

models are verified, a new friction model is developed and model parame-

ters are estimated using test bed measurements for the simulation to best

fit experimental data.

Electro Hydraulic Servo Systems (EHSS) are characterised by the presence of
hydraulic flow through its components and servo control valves. The dynamics of
these elements exhibits nonlinear and complex behaviours which render the task
of modelling particularly challenging. Depending on the performances required
for the model based controller or for the fault detection and accommodation
function on one hand and the real-time implementation feasibility on the other
hand, the level of details for the model needs to be carefully considered to fulfil
the specifications. Indeed, nonlinear controller and nonlinear observer based
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fault detectors require a high fidelity model for increased performances whereas
their implementation in real-time demands low complexity algorithms.

The EHSS considered in this section is a hydraulic cylinder which translates a
mass attached to a spring-damper mechanical system. The system is depicted
in fig. 2.1 by its hydraulic and mechanical symbols and in fig. 2.2 by a picture
of the physical system on its test bed.

2.1 EHSS components

Figure 2.1: Electro Hydraulic Servo System with its parameters.

The principal components constituting the EHSS under scrutiny and numbered
in fig. 2.2 are the mass (1) set into motion by linear hydraulic actuators (3)
(equivalent to a single hydraulic cylinder for analysis) and attached to a spring-
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Figure 2.2: Test Bed for an Electro Hydraulic Servo System.

damper load (2). Flow through the actuator is controlled by a servo directional
control valve (4) and the pressure is furnished by a hydraulic pressure unit (5)
considered ideal (it delivers a constant supply pressure ps without any flow short-
coming. A position sensor (LVDT) (6) and a linear velocity sensor (tachometer
connected to a cable) (7) measure the position and velocity of the mass respec-
tively. Finaly pressure sensors (8) measure the pressures in both chambers of
the cylinder and a thermometer (9) the temperature of the hydraulic fluid in
the system. The parameters used in the model are summarised in table 2.1 and
defined in the next paragraph.

2.1.1 Notations and Definitions

Dynamical systems will be described by differential equations of the form

ẋ = f(x, u, t)

for a scalar plant where x ∈ R is the system state, u ∈ R is the input signal,
t denotes time, and the overdot “ ˙ ” denotes differentiation with respect to
time. In the case of multiple states, bold letters will represent vectors and the
differential equations can be written

ẋ = f(x,u, t)
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where x ∈ Rn and u ∈ Rm.

The load pressure pL is defined as the difference between the left chamber pres-
sure pa and the right chamber pressure pb of the hydraulic cylinder:

pL = pa − pb (2.1)

The load pressure is normalised with respect to the supply pressure ps:

pLn =
pL
ps

(2.2)

The valve coefficient α is a function of the discharge coefficient Cd, the valve
opening width w and the volumetric density of the hydraulic fluid ρ:

α = Cdw

√
1

ρ
(2.3)

the compressibility κ of a fluid with mass density ρ and pressure p is defined as:

κ =
1

ρ

∂ρ

∂p
(2.4)

The stiffness or Bulk modulus β of the fluid is defined as:

β =
1

κ
(2.5)

The compressibility coefficient βe is defined as the ratio of four times the bulk
modulus β and the total volume of fluid into consideration Vt:

βe =
4β

Vt
(2.6)

The effective area Ae for the hydraulic cylinder is the difference between the
bore section area A and the rod section area a:

Ae = A− a =
π

4

(
d2b − d2r

)
(2.7)

where db is the bore diameter of the cylinder and dr is the rod diameter.
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Table 2.1: Parameter definition

Parameter Definition [SI Unit]
Values in

Hydraulic Unit

Force balance around actuator
M Mass [kg] 41 kg
y0 Initial spring deformation [m] 78.9 mm
a Section of the rod [m2] 2036 mm2

A Inside area of the cylinder [m2] 3927 mm2

db Bore diameter of the cylinder [m] 100 mm
dr Rod diameter of the piston [m] 72 mm
Ae Effective area for the cylinder [m2] 1891 mm2

Fh Nominal hydraulic force [N] 15130 N
k Spring coefficient for the load [N/m] 11220 N/m
d Damping coefficient for the load [Ns/m] 250 Ns/m
Continuity of flow through actuator
QLeak Nominal leakage flow [m3/s] 0.5 l/min
Qa, Qb Flow in, out of the cylinder [m3/s] l/min
QL Load flow [m3/s] l/min
Vt Total volume of fluid [m3] 0.6 l
Va0, Vb0 Dead volume in chamber a, b [m3] 0.25 l, 0.35 l
str Cylinder stroke [m] 100 mm
β Bulk modulus [Pa] 10665 bar
βe Compressibility coefficient [Pa/m3] 71154 bar/l
ps Supply pressure [Pa] 80 bar
pt Tank pressure [Pa] 0 bar
Valve stage
Qn Nominal flow [m3/s] 17.7 l/min
xvmax Maximal valve opening [m] 0.17 mm
xvn0 Normalised valve opening offset [-] −6.6× 10−3

w Valve opening width [m] 31.4 mm
L Valve opening parameter [m] 0.15 mm
Cd Discharge coefficient [-] 0.6
ρ Hydraulic fluid density [kg/m3] 900 kg/m3

wv Valve natural frequency [rad/s] 110 Hz
ζv Valve damping ratio [-] 1
Kv Valve gain [1/V] 0.16 V−1

mv Valve spool mass [kg] 0.1 kg
kv Torsion spring stiffness [N/m] 47800 N/m
dv Valve damping coefficient [Ns/m] 138 Ns/m
ε1s, ε1r Normalised valve deadbands [-]

0, 0.003
ε2s, ε2r 0.005, 0.003

Continued on next page
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Table 2.1 – continued from previous page

Parameter Definition [SI Unit]
Values in

Hydraulic Unit

csa, cat Leakage flows inside the valve [m3/s]
0.035, 0.03 l/min

csb, cbt 0.035, 0.01 l/min
Friction in actuator
σ0 Micro stiffness friction coefficient [N/m] 6× 107 N/m
σ1 Micro damping friction coefficient [Ns/m] 0.1 Ns/m
σ2 Macro damping friction coefficient [Ns/m] 80 Ns/m
vb Minimum friction velocity [m/s] 0.04 m/s
1) Positive velocities
vs Stribeck velocity [m/s] 0.008 m/s
Ffric Friction force [N] N
Fc Coulomb friction [N] 785 N
Fs Stribeck friction [N] 1250 N
Fpr Preload force [N] 8 N
fcfr Coulomb friction coefficient [m2] 570 N/bar
2) Negative velocities
σ2 Macro damping friction coefficient [Ns/m] 0 Ns/m
vs Stribeck velocity [m/s] 0.005 m/s
Fc Coulomb friction [N] 520 N
Fs Stribeck friction [N] 1100 N
Fpr Preload force [N] 365 N
fcfr Coulomb friction coefficient [m2] 135 N/bar
1) Acceleration
τh Film thickness time constant [s] 0.2 s
2) Deceleration
τh Film thickness time constant [s] 2.5 s
Stiction in valve
ns Stiction coefficient [-] 0.6
ys Stiction position [m] 0.003 mm
σ1v Stiction damping [Ns/m] 0.008 Ns/m
Fst Stiction Stribeck force [N] 0.015 N
System states and input variables
y Position of the mass [m] m
v Velocity of the mass [m/s] m/s
pa, pb Pressure in chamber a, b of cylinder [Pa] bar
pL Load pressure [Pa] bar
pLn Normalised pressure [-] [-]
xv Valve opening [m] mm
xvn Normalised valve opening [-] [-]
ẋvn Normalised valve opening velocity [s−1] 1/s
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2.2 Model

Different levels of modelling must be chosen depending on which function a
model must serve. A good model avoids unnecessary complexity and over-
parametrisation but still describes the dynamical behaviour and gives a better
understanding and insight of a system. In this section, each component consti-
tuting a typical EHSS is analysed by deriving its governing equations and by
presenting the assumptions and simplifications made, leading to a global struc-
ture for EHSS models [16]. In the next section this structure is specialised or
refined to enable simulations to generate data which fit with the ones obtained
from experiments.

2.2.1 Mechanical Model

The following eq. (2.8) describes the motion of the mass M , where its acceler-
ation ÿ is related to the load pressure pL indicated in fig. 2.1, the friction force
Ffric created by the friction inside the cylinder and the force applied by the
load Fload as follows:

ÿ =
1

M
(AepL − Ffric − Fload) (2.8)

or equivalently

ÿ =
1

M
(FhpLn − Ffric − Fload) (2.9)

where Fh is the nominal hydraulic force defined as Fh = Aeps. In the case of a
spring-damper load,

Fload = k(y − y0) + dv (2.10)

where k is the spring stiffness, y0 is the deformation of the spring when the mass
position is zero, and d is the damping coefficient whose value were identified
using a calibrated tensile testing machine, see table 2.2.

2.2.2 Hydraulic Cylinder Model

The parameters describing a hydraulic single rod cylinder are shown in fig. 2.3.
Qa is the flow entering chamber a, Qb the flow exiting chamber b and QLeak is
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Table 2.2: Parameter Estimation

Parameter Value
Confidence

Interval (CI)

M [kg] 41 ±2
y0 [mm] 78.9 ±1
Ae [mm2] 1891 -0/+0.5
k [N/m] 11220 ±20
d [Ns/m] 250 ±250

the nominal leakage flow from chamber a to chamber b when the load pressure
pL is equal to the supply pressure ps. When pressurised a hydraulic fluid is

Figure 2.3: Hydraulic cylinder.

compressed causing an increase in density. This is described by means of the
fluid compressibility κ and fluid stiffness or Bulk modulus β (see definitions (2.4)
and (2.5)). By conservation of mass, the derivative of the pressure in each of the
cylinder chambers multiplied by the fluid capacitance is given by the difference
between the total flow through the chamber and the rate of increase in each
chamber volume. For example if ma and Va are the mass of fluid and total
volume respectively in chamber a:

ma = ρVa ⇒ ṁa = ρ̇Va + ρV̇a ⇒ ρ(Qa −QLeak) =
ρ

β
ṗaVa + ρV̇a
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which gives the following relations:

Va
β
ṗa −Qa +QLeakpLn +Av = 0 (2.11)

Va − Va0 −Ay = 0 (2.12)

Vb
β
ṗb +Qb −QLeakpLn − (A− a)v = 0 (2.13)

Vb − Vb0 + (A− a)y = 0 (2.14)

where Va, Vb are the total volumes on each side of the cylinder and Va0, Vb0 the
constant dead volumes on each side including hose volumes.

Assumptions In the case of double rod cylinder, i.e. symmetrical actuator,
making the assumption of equal flow entering the cylinder as flow leaving it,
eqs. (2.11-2.14) become:

Vt
4β
ṗL = QL −QLeakpLn −Aev (2.15)

where Vt = Va0 + Vb0 + strAe is the total volum of fluid. By normalising the
load pressure and load pressure rate by the supply pressure, the flow continuity
equation can be written:

ṗLn =
βe
ps

(QL −QLeakpLn −Aev) (2.16)

2.2.3 Valve Model

A drawing of an electrically operated, 2-stage servo directional control valve as
given in Bosch-Rexroth data-sheet (RE 29564-XN-100-B2/02.09) is shown in
fig. 2.4. The valve consists of a torque motor (1), a flapper between a double-
nozzle which plays the role of a hydraulic amplifier (2) and a control piston in
a sleeve (3) which is connected to the torque motor via a cantilever spring (9).

2.2.3.1 Flow Equations

The control piston (3) in fig. 2.4 in a sleeve with position xv = 0 can further
be schematically represented as in fig. 2.5 where spool overlap and underlap
can be considered varying the εi parameters, ε1s = ε1r < 0 for a symmetric
overlap and ε1s = ε1r > 0 for a symmetric underlap. Since most flow occurs
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Figure 2.4: Bosch-Rexroth electrically operated 2-stage servo directional control
valve with torque motor (1) and its coils (4) generating a force on the arma-
ture (5) and acting by means of a torque tube (6) on a hydraulic amplifier (2)
composed of a flapper plate (7) between two control orifices (8). The pressure
differential causes the position of the control piston in sleeve (3) to change,
acting on a torsion spring (9).
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Figure 2.5: Control piston with position xv = 0 in a sleeve.

at high Reynolds numbers inside the valve, the following relations between the
turbulent flow, the valve opening and the pressure drop hold:

Qa = Qas −Qar

= α
(

sign(ps − pa)
√
|ps − pa|u(xv, ε1s, L)

−sign(pa − pt)
√
|pa − pt|u(−xv, ε1r, L)

) (2.17)

Qb = Qbr −Qbs

= α
(

sign(pb − pt)
√
|pb − pt|u(xv, ε2r, L)

−sign(ps − pb)
√
|ps − pb|u(−xv, ε2s, L)

) (2.18)

where α = Cdw
√

2/ρ and where the saturation function u is defined as follows:

u(xv, ε, L) =


0 for xv ≤ −ε
xv + ε for − ε < xv < L

L for L ≤ xv
(2.19)
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In the case of critical centre valves (ε1s = ε1r = 0),

Qa = Qas −Qar

= α
(

sign(ps − pa)
√
|ps − pa|u(xv, L)

−sign(pa − pt)
√
|pa − pt|u(−xv, L)

)
(2.20)

Qb = Qbr −Qbs

= α
(

sign(pb − pt)
√
|pb − pt|u(xv, L)

−sign(ps − pb)
√
|ps − pb|u(−xv, L)

)
(2.21)

where u, the new saturation function is defined as follows:

u(xv, L) =


0 for xv ≤ 0

xv for 0 < xv < L

L for L ≤ xv
(2.22)

2.2.3.2 Symmetric Actuator

In the case of symmetric actuators, for instance a double rod hydraulic cylinder,
the model for the valve can be simplified, i.e. the number of variables reduced, if
the assumption of incompressible hydraulic fluid is taken when considering the
flow equations. Indeed, the flow entering and leaving the actuator is the same
and is called QL, the load flow. Depending on the sign of the valve opening,
two cases need to be considered:

• For xv ≥ 0 , ps ≥ pa and pb ≥ pt, eqs. (2.20) and (2.21) give:

Qa = Qb = QL

⇒ ps − pa = pb − pt

Since pL = pa − pb, an expression for pb is:

⇒ pb =
ps + pt − pL

2

which implies:

⇒ QL =
α√
2

√
ps − pt − pLu(xv, L) (2.23)
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• For xv ≤ 0 , ps ≥ pb and pa ≥ pt:

Qa = Qb = QL

⇒ ps − pb = pa − pt

⇒ pa =
ps + pt + pL

2

⇒ QL = − α√
2

√
ps − pt + pLu(−xv, L) (2.24)

Finally, considering the tank pressure equal to zero, pt = 0, and 0 ≤ pi ≤ ps,
i = a, b, the load flow QL can be written:

QL =
α√
2

√
ps − sign(xv)pLsat(xv, L) (2.25)

where the saturation function sat is defined as follows:

sat(xv, L) =


xv for − L < xv < L

L for L ≤ xv
−L for xv ≤ −L

(2.26)

Another expression for the load flow can be obtained when considering the
nominal flow Qn given in data-sheets, which is the flow when the valve piston
is fully open and the load pressure is zero. For zero tank pressure:

Qn = QL(xv = xvmax, pL = 0) = α

√
ps
2
xvmax

⇒ QL = Qn
√

1− sign(xvn)pLnsat

(
xvn,

L

xvmax

)
(2.27)

Hydraulic losses in pipes Whether or not to neglect the losses in pipes
when modelling an EHSS needs to be carefully considered. In this paragraph
the pressure drop is calculated at different flow rates for the test bed shown in
fig. 2.2. According to the manufacturer hydraulic fluid density is ρ = 900 kg/m3,
and kinematic coefficient of viscosity is ν = 50 mm2/s at T = 30◦C. The
volumetric flow qv varies from 0 toQn = 17 l/min through L = 2 m of d = 10 mm
diameter drawn tubing pipes between the servo valve and the cylinders. Seven
90◦ regular elbows and three tees are present in addition to the straight pipes.
First the Reynolds number is computed:

Re = vd/ν = 4qv/(πdν) = 1130|qv=Qn
(2.28)
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The flow being laminar the friction factor f can be expressed as f = 64/Re.
Then the head loss is:

hf = f
L

d

v2

2g
+KL

v2

2g
(2.29)

where g is gravity and KL = 5 is the loss coefficient related to the elbows and
tees. Therefore the pressure drop is:

∆p = ρghf = 8
ρKLqV

2

π2d4
+ 128

ρ qV ν L

π d4
(2.30)

The pressure drop across the pipes from the valve to the cylinders is hence
approximately equal to 0.2 bar for a 5l/min flow and 1 bar at nominal flow. It
follows that the hydraulic losses in pipes have a limited effect on the system and
hence can be neglected when considering a simple model of EHSS.

2.2.3.3 Dynamics

A complete model for a similar valve was derived in [25] and linearised around
zero input current. It leads to a fifth order model for the valve dynamics where
the five states are angular position and velocity of the flapper, difference of
pressure between each side of the valve spool, spool position and velocity, see
fig. 2.4. Modelling the dynamics of an electro hydraulic servo valve with a fifth
order transfer function as in [25] revealed to be necessary in order to design a
linear controller to achieve high bandwidth tracking performance, however in
the case of nonlinear control, the model of the valve must be reduced in order
to reduce the complexity of the controller when regarding real-time implemen-
tation issues, see chapter 4 for more details. Therefore servo valve dynamics has
been considered in the design of nonlinear controller to various extent. Some
authors neglect the spool valve resonance, the flow forces on the spool or the
pressure feedback on the flapper and use a third order model as in [29], others
ignore the dynamics of the first stage and use a second order model [44], [36],
others consider first order model [14] or no dynamics [45], [1]. Nevertheless the
importance of including an accurate model of dynamic characteristics of the
servo valve was shown already in the early 1970s [34] and its influence on posi-
tion control can easily be verified. Two models and their performances will be
considered in chapter 4 when designing a nonlinear controller. The first one is
given by a simple proportional gain, xvn = Kvun while the second one is the
second order model:

ẍvn =
−kv
mv

xvn +
−dv
mv

vvn +Kv
kv
mv

i (2.31)
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or equivalently:

ẍvn = −ω2
v

(
2 ζv
ωv

vvn + xvn − in
)

(2.32)

where mv is the mass of the spool, kv the torsion spring stiffness, dv a damp-
ing factor,ωv =

√
kv/mv and ζv = dv/(2mvωv) are respectively the natural

frequency and damping ratio of the valve, and where un is the normalised
voltage input to the voltage-to-current converter placed before the servo valve:
un = u/umax where umax is the limit voltage beyond which the valve saturates.

Remark The input signal to the servo valve coils is actually a current i consid-
ered as directly proportional to the input voltage before the voltage-to-current
converter. Therefore when normalised, un = in.

2.2.4 Friction Model

Excessive friction in hydraulic cylinders is an unwanted force. It is caused by
the presence of elastomeric seals between piston rod and cylinder bore interfaces
required to prevent leaks and hence to ensure high difference of pressure between
the two cylinder chambers. The contact materials in hydraulics differ from usual
mechanical systems where friction is due to motion of transmission element as
for example gear or roller bearings where contacts are metal on metal with
lubricants.

2.2.4.1 Static Friction Model

Friction is often considered as the sum of a constant force (Coulomb friction), a
force proportional to the relative motion velocity (viscous friction) and a force
present at low velocity (Stribeck friction). Static models provide an expression
of the friction force for a constant relative velocity. A usual expression for
hydraulic friction is:

Ffric =
(
Fc + (Fs − Fc)e−|v|/vs

)
sign(v) + σ2v

Fc = Fpr + fcfr(pa + pb)
(2.33)

where Fcsign(v) is Coulomb friction, (Fs−Fc)e−|v|/vssign(v) is Stribeck friction
and σ2v is viscous friction. Parameters Fpr and Fs can be considered constant
or position dependent for more accurate models.
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Figure 2.6: Hysteresis in friction force.

Remark Other models for static friction exist, for instance in [9] where hy-
draulic friction force is a function of the pressures in the hydraulic cylinder and
is velocity independent.

2.2.4.2 LuGre Model

Static models are not sufficient to explain dynamic behaviour, such as vary-
ing break away force or hysteresis. As an example, fig. 2.6 illustrates the
need of a dynamical friction model when the input is varying, a sine wave
u(t) = 0.5 sin(10t) in this case, since a static model is not able to fit the exper-
imental data.

The LuGre model [11] is described by the following equations:

Ffric = σ0z + σ1ż + σ2v (2.34)

ż = v − |v|
g(v)

z (2.35)

g(v) =
Fc
σ0

+
Fs − Fc
σ0

e−|v|/vs (2.36)
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Figure 2.7: Comparison between experimental (blue, red, green) and simulated
(black) data with LuGre friction model.

where z is an internal state variable representing the bristle micro displacement,
σ0 the bristle stiffness and σ1 the microdamping. Using this dynamic friction
model, it is possible to capture some of the dynamics of real friction behaviour
as shown in fig. 2.7 where a simulated model of the EHSS using LuGre friction
is compared to real data. However some phenomena are not explained by this
model at low velocity or at velocities above 5mm/s where the friction is different
if the mass accelerates or decelerates.

2.2.4.3 Modified LuGre Model

In order for the friction model to capture the differences of friction forces when
the mass is accelerating or decelerating, the lubricant film thickness dynamics
can be considered as in [42], where the authors consider not only the lag be-
haviour resulting from solid friction but also that resulting from the lubricant
film formation, with variable thickness called h. The function g describing the
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Stribeck effect is modified as follows:

ḣ =
1

τh
(hss − h) (2.37)

ż = v − σ0|v|
g(v, h)

z (2.38)

g(v, h) = Fc + [(1− h)Fs − Fc] e−|v|/vs (2.39)

where τh is the lubricant film thickness time constant and hss is the dimension-
less steady-state film thickness expressed as:

hss = Kf |v|2/3 (v ≤ vb) (2.40)

where Kf is a proportional constant and vb is the velocity at which the mag-
nitude of the steady-state force becomes minimum. Beyond the velocity vb the
film thickness is unchanged.

2.2.5 Model Linearisation

Using the first order term of a Taylor expansion, the nonlinear model can be
linearised around a local operating point of the system. Tools for studying linear
systems can be used thereafter to analyse the behaviour of the nonlinear system
on a neighbourhood of an equilibrium. However, with increasing amplitudes the
contribution from the nonlinearities is increasing leading to large discrepancies.
Therefore, a linear model is developed in this section which will be used in the
rest of the thesis when comparing nonlinear with linear techniques.

The flow equation in 2.27 can be linearised around zero normalised load pressure
pLn = 0 and with a small opening xv = ε as follows:

QL = Qn
√

1− sign(xvn)pLnxvn

⇒ QLlin =
∂QL
∂x

∣∣∣∣
(xvn,pLn)=(ε,0)

xvn +
∂QL
∂pLn

∣∣∣∣
(xvn,pLn)=(ε,0)

pLn

⇒ QLlin = Qnxvn −Qnsign(xvn)
ε

2
pLn

The system (2.9, 2.15, 2.27, 2.32) without load, Coulomb nor Stribeck friction,
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with a critical centre valve becomes:

ẏ = v (2.41)

v̇ =
−σ2l
M

v +
Fh
M
pLn (2.42)

ṗLn =
−βeAe
ps

v − βe
(
QLeak
ps

+
Qn
ps

sign(xvn)
ε

2

)
pLn +

βeQn
ps

xvn (2.43)

ẋvn = vvn (2.44)

v̇vn = −ω2
v

(
2 ζv
ωv

vvn + xvn − in
)

(2.45)

where σ2l is the value of the viscous friction when the Coulomb friction is ne-
glected. The transfer function from input i to position y is the following:

G(s) = G1(s)G2(s)G3(s) (2.46)

where G1, G2 and G3 are the transfer functions from velocity v to position y,
from normalised valve opening xvn to velocity v and from input i to normalised
valve opening xvn and are given by the following expressions in the Laplace
domain:

G1(s) =
1

s
(2.47)

G2(s) =
K2

s2/ω2
hyd + (2ζhyd/ωhyd)s+ 1

(2.48)

G3(s) =
Kv

s2/ω2
v + (2ζv/ωv)s+ 1

(2.49)

were K2, ζhyd and ωhyd are respectively the hydraulic gain, damping ratio and
eigenfrequency:

K2 =
Fh βeQn
psM

, ωhyd =

√
βe (2FhAe +Qnεσ2l + 2QLeakσ2l)

2psM

ζhyd =

√
2

4

βeQnεM + 2βeQLeakM + 2psσ2l√
psMβe (2FhAe +Qnεσ2l + 2QLeakσ2l)

The linearised system contains an open-loop integrator and two second order
poles.

Remark 1 When the leakage flow and the valve opening ε are small, the hy-
draulic damping ratio and eigenfrequency can be approximated by:

ωhyd = 2Ae

√
β

VtM
, ζhyd =

1

4

σ2l
Ae

√
Vt
βM
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Remark 2 In order to take into account the Coulomb friction in the hydraulic
cylinder, a factor ηhmc < 1 which represents the hydro-mechanical efficiency of
the cylinder can be added in eq. (2.42):

v̇ =
−σ2l
M

v +
ηhmcFh
M

pLn (2.50)

2.3 Parameter Estimation

With the help of the measurements taken on the test bed shown in fig. 2.8,
the parameters of the model developed in the previous section can be estimated
using system identification. When the identification fails to give accurate enough
results, the model structure is specialised to render the real dynamic behaviour
of the system.

Figure 2.8: Experimental setup for EHSS identification.

The parameters in table 2.3 are directly accessible via measurement or from the
manufacturer datasheet. The confidence intervals given in this section for each
parameter estimation have not been strictly calculated based on a confidence
level, but only estimated by repeating the experiments three times and by in-
cluding the tolerance intervals issued from the datasheets. They should only be
taken as a rough indication on the parameters reliability.

2.3.1 Static Parameters Estimation

Due to the complex nature of friction, orifice flows, leakages and servo valves,
several assumptions have been made to derive eqs. (2.8), (2.16), (2.27) and
(2.32). Using a system identification approach, experimental data are used to
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Table 2.3: Parameter estimation

Parameter Value
Confidence

Interval (CI)

ps [bar] 80 ±2
β [bar] 10665 ±2000
βe [bar/l] 71154 ±10000
Va0 [l] 0.25 ±0.1
Vb0 [l] 0.35 ±0.1
Vt [l] 0.6 ±0.1

validate the assumptions, to estimate the parameters and to refine the model
structure, while taking into consideration the model complexity and real-time
implementation. First the static parameters are estimated in order for the model
to fit the steady-state behaviour. In steady-state, when the load pressure, mass
velocity and valve opening are constant, eqs. (2.8), (2.16) (2.27) and (2.32)
become:

0 = FhpLn − F ssfric − Fload (2.51)

0 = QL −QLeakpLn −Aev (2.52)

QL = Qn
√

1− sign(xvn)pLnsat

(
xvn,

L

xvmax

)
(2.53)

0 = xvn − un (2.54)

The static parameters which can hence be estimated in steady-state are the
nominal flow Qn, the nominal internal leakage flow QLeak and the static param-
eters of the friction model. System identification is realised by the mean of the
experimental setup shown in fig. 2.2 or in fig. 2.8, where the load has been re-
moved in order to reduce uncertainty. Using a sequence of n stairs as input, the
mass is moved from one end to the other at n different constant velocities and
for each stair the measurements are recorded and averaged after an adequate
transition time.

2.3.1.1 Estimation of static flow and valve parameters

The results from this experiment show that for zero valve opening the mass is
moved in the negative direction, which demonstrates the presence of a valve
offset xvn0. Adding this offset in the model eqs. (2.16), (2.27) and (2.32) result
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Figure 2.9: Nominal flow estimation.

in the following relation when the valve does not saturate:

Aev = Qn
√

1− sign(un)pLn (un + xvn0)−QLeakpLn

⇒ Aev =
[√

1− sign(un)pLnun
√

1− sign(un)pLn −pLn
]  Qn
Qnxvn0
QLeak


(2.55)

With the experimental data registered for the n stairs, the values of Qn, QLeak
and xvn0 are estimated using linear least square method to best fit the data
set. For temperature T = 30◦C and supply pressure ps = 80 bar, these values
are given in table 2.1. Fig. 2.9 shows the input-velocity map for 35 different
voltage inputs in steady-state from both the experimental data and from the
model with estimated parameters. Repeating the same experiment at different
temperatures, the dependence of these parameters with temperature is estab-
lished and their variations are displayed in fig. 2.10. It is shown in fig. 2.10(a)
that the nominal load flow Qn increases by about 25% when the temperature
is increased from 22◦C, to 34◦C, where this change of temperature corresponds
to a 50% decrease in the fluid viscosity. This behaviour is resulting from the
presence of a laminar flow, showing that the flow through the valve orifice is not
completely turbulent. The Reynolds number needs hence to be calculated.
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Figure 2.10: Variation of estimated static flow and valve parameters with tem-
perature.

Low Reynolds number When the fluid velocity through the valve orifice is
small, the flow becomes laminar, and eq. (2.27) is no longer valid. However it
can still be a good representation for the flow if the discharge coefficient Cd,
instead of being constant, is decreased as the Reynolds number Re decreases.
See a typical plot of a discharge coefficient versus Reynolds number for an ori-
fice in fig. 2.11 and [20]. For

√
Re < 10, experimental results [20] show that

the discharge coefficient is directly proportional to the square root of Reynolds
number:

Cd = δ
√
Re (2.56)
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Table 2.4: Parameter estimation

Parameter Value
Confidence

Interval (CI)

Qn [l/min] 17.7 ±1
QLeak [l/min] 0.5 ±0.1
xvn0 [-] −0.0066 ±0.002
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Figure 2.11: Plot of a discharge coefficient versus Reynolds number for an orifice.

The Reynolds number can be computed as:

Re =
vordH
υ

(2.57)

where υ is the kinematic viscosity [m2/s], dH is the hydraulic diameter and vor,
the fluid velocity in the orifice:

vor =
QL
wxv

, dH =
4xvw

2w
= 2xv (2.58)

Hence the Reynolds number is also:

Re =
2QL
wυ

=
2δ
√
Re

wυCd
Qn
√

1− sign(xvn)pLnxvn (2.59)

which implies:

√
Re =

2δ

wυCd
Qn
√

1− sign(xvn)pLnxvn (2.60)

The condition
√
Re < 10 is hence equivalent to:

Qn
√

1− sign(xvn)pLnxvn < 10
wυCd

2δ
(2.61)
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or:

Qn
√

1− sign(xvn)pLnxvn < 3.7 l/min (2.62)

A more precise model can hence be obtained by considering the regime of the
orifice flow as indicated in fig. 2.12. Up to 20% of the maximum valve opening,
the flow inside the valve orifice is composed of a turbulent and a laminar flow,
whereas for larger opening the flow can be considered as purely turbulent.
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Figure 2.12: Input-velocity map from experimental data in steady-state with
flow regime area.

Flow in equals flow out In order to verify the validity of the assumption
’flow in equals flow out’ in the cylinder, simulation of the system in fig. 2.1 is
run with or without the assumption. The input signal for the simulation is a
pulse with period 0.4s, amplitude 0.1V, centred on 0V and with 50% width.
When it is not assumed that the flow in equals the flow out, Qa 6= Qb, during
the first 100ms, the simulation shows an error in the velocity of 1 mm/s (7%
relative error), see fig. 2.13. Once the pressure has built up in the cylinders
chambers, the error can then be neglected (0.07% relative error) which validates
the assumption of equality between the flow in and out of the cylinder.
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Figure 2.13: Comparison between models with or without the assumption “flow
in equals flow out” of the symmetrical cylinder. Input signal in the valve is a
pulse with period T = 0.4s and amplitude A = 0.1V. First model: flow in (=
Qa) and flow out (= Qb). Second model QL = Qa = Qb.
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Figure 2.14: Sum of chamber pressures for different valve openings in steady-
state.

Non-symmetric underlap valve For critically centred valve, the sum of
the chamber pressures pa + pb is constant and equal to the supply pressure
ps = 80 bar. However, the experimental measures of pa and pb are not in
accordance with this assumption as shown in fig. 2.14 where the pressures sum
up to 120 bar for small valve openings and down to 90 bar for larger openings. It
can also be noticed that the sum of the pressures are not symmetrical for positive
and negative valve openings. In order for the model to capture this behaviour,
a non-symmetric underlap valve needs to be considered with additional leakage
flow around the valve spool. The real flows inside the valve around zero opening
are difficult to identify and numerous trials and errors are necessary to estimate
parameters. Introducing laminar leakages between the valve openings which are
independent of the valve spool, eqs. (2.17) and (2.18) are rewritten as follows:

Qa =
√

2Qn

(√
1− panu(xvn, ε1s, L) + (1− pan)csa

−√panu(−xvn, ε1r, L)− pancat)
(2.63)

Qb =
√

2Qn (
√
pbnu(xvn, ε2r, L) + pbncsb

−
√

1− pbnu(−xvn, ε2s, L)− (1− pbn)cbt

) (2.64)
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Figure 2.15: Sum of chamber pressures for different valve openings in steady-
state when measured from experiment or simulated with modified model.

where csa, cat, csb and cbt are the laminar leakages coefficient from ps to pac
from pa to pt, from ps to pb and from pb to pt respectively (see fig. 2.5). With
the parameter values given in table 2.5 the sum of the pressures in the cylinder
chambers is shown in fig. 2.15, when measured from experiment or simulated
from the model, in steady-state for valve openings varying from -6% to 6% of
the maximum opening. With these values used in the simulation the sum of the
pressures is no longer constant equal to supply pressure but fits more closely
to the experimental data. However, an error up to 7 bars remains due to the
uncertainties inherent of leakage flow relations.
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Table 2.5: Parameter estimation

Parameter Value
Confidence

Interval (CI)

ε1s [-] 0 ±0.005
ε1r [-] 0.003 ±0.005
ε2s [-] 0.005 ±0.005
ε2r [-] 0.003 ±0.005
csa [l/min] 0.035 ±0.05
cat [l/minl] 0.01 ±0.05
csb [l/min] 0.035 ±0.05
cbt [l/min] 0.01 ±0.05
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2.3.1.2 Estimation of static friction parameters

In order to estimate the static friction model parameters used in eq. (2.33), the
friction force when zero load is applied to the system, can be calculated from
measurements with the help of eq. (2.8). Combining the two equations, the
following relation holds in steady-state:

Fh pLn =
(
Fc + (Fs − Fc)e−|v|/vs

)
sign(v) + σ2v

=
[(

1− e−|v|/vs
)

sign(v), e−|v|/vssign(v), v
] FcFs
σ2

 (2.65)

Or if pa + pb is not constant:

Fh pLn =


(
1− e−|v|/vs

)
sign(v),

(pan + pbn)
(
1− e−|v|/vs

)
sign(v),

e−|v|/vssign(v),
v


T 

Fpr
fcfr
Fs
σ2

 (2.66)

With the experimental data registered in steady-state for n different constant
inputs, using linear least square method gives a good estimate for Fc, Fpr, fcfr,
Fs and σ2 when vs and ns are known and when the data set is split in two, one set
for positive velocities and one for negative velocities. For temperature T = 30◦C
and supply pressure ps = 80 bar, these values are given in tables 2.1 and 2.6.
Fig. 2.16 shows the friction forces for 115 different velocities in steady-state from
both the experimental data and from the model with estimated parameters.

Repeating the same experiments at different temperatures, the dependence of
parameters Fc, Fs and σ2 with temperature is established and their variations
are displayed in figs. 2.17. The results can be interpreted as follows: an increase
of temperature causes the Coulomb and Stribeck frictions to increase and the
viscous friction to decrease whereas the Stribeck velocity vs tends to converge
toward a constant value equal to 0.007 m/s.
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Figure 2.16: Friction estimation.

Table 2.6: Friction parameter estimation

Parameter Value
Confidence

Interval (CI)

Positive velocities
σ2 [Ns/m] 500 ±500
vs [m/s] 0.008 ±0.001
Fc [N] 750 ±50
Fs [N] 1250 ±50
Fpr [N] 8 +50/− 8
fcfr [N] 570 ±50
Negative velocities
σ2 [Ns/m] 0 +300/− 0
vs [m/s] 0.006 ±0.001
Fc [N] 520 ±25
Fs [N] 1050 ±50
Fpr [N] 365 ±50
fcfr [N] 135 ±50
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Figure 2.17: Variation of estimated static friction parameters with temperature.
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2.3.1.3 Spool friction and dithering

The most severe nonlinearities in control valves are the stiction of the valve spool
displacement in the sleeve and hysteresis (different flow rates even at the same
valve opening depending on the moving direction of the valve spool). Ignoring
their effect in the control loop can lead to stick-slip motion and oscillations which
would degrade the performances of the controller. In order to compensate for
stiction, a high-frequency zero-mean periodic signal (dither) can be added to the
control signal. The amplitude of the dither should be so high that the stiction
is overcome and the frequency should be higher than the operating frequency
range of the system. In order to demonstrate the importance of dither, an
experiment was made where the input signal to the valve takes different constant
values, in one case with dither (frequency 400 Hz, amplitude 2% of nominal
current) and in the other case without. Values for the flow versus variable
x = xv

√
ps − sign(xv)pL in steady-state (constant velocity and load pressure)

is plotted in fig. 2.18. According to eq. (2.15) the relation is affine. From fig. 2.18
it can be seen that dithering compensates for stiction in the valve and removes
hysteresis.

2.3.2 Dynamic Parameter Estimation

Once the static parameters are estimated, the next step in the system identifi-
cation approach is to estimate the dynamic parameters comparing the experi-
mental data generated with time varying input signal and the simulated data
generated from the model developed in the previous section.

2.3.2.1 Valve dynamics

A first approach to estimate the parameters of the valve dynamics is to generate
a step response of the EHSS shown in fig. 2.8 in closed loop with a PI controller
and compare the results with two simulated models: a) with proportional valve
characteristics and b) a second order valve dynamics model (eq. (2.32)). The
results are shown in figs. 2.19 and 2.20. Fig. 2.19 shows the entire step response
and the reverse step response, while fig. 2.20 is zoomed in at the transient
response where the errors are the largest.

Besides estimating parameters to fit the experimental data closely, this experi-
ment is used to assess the performance improvement using a second order model
over a proportional model for the valve dynamics. Table 2.7 shows that the
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Figure 2.18: Importance of dither to remove hysteresis (stiction) in the valve

second order model represents a significant improvement compared to the pro-
portional model. The step response (position) is improved by 52% and by 73%,
respectively, for the RMS and MAX values. Table 2.7 also shows the RMS and
MAX values for the measured load pressure pL vs. the simulated load pres-
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Figure 2.19: Experimental and simulated results with two different valve models.
Blue: measurements, Black: second order model, Green: error second order
model, Dashed: proportional model, Red: error proportional model.

sures. The pressure RMS values for the proportional and second order model
are similar, while the MAX value shows a significant improvement for the second
order model. Hence, the effects of the valve dynamics are important to consider
in high-performance control of EHSS. Another approach consists in tuning the
valve parameters for the model to fit the frequency response of the system and
is done later in this section. The estimated values for the natural frequency ωv,
damping ratio ζv and valve gain Kv are given in table 2.8.
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Position Proportional 2nd order Improvement
RMS 7.16 · 10−4 3.41 · 10−4 52%
|MAX| 9.19 · 10−6 2.46 · 10−6 73%

Pressure Proportional 2nd order Improvement
RMS 1.94 1.96 -1%
|MAX| 98.1 46.6 110%

Table 2.7: Comparison of RMS and MAX values against experiments for a step
response using a proportional and a second order valve dynamics model. Top:
Position, Bottom: Pressure.

Table 2.8: Valve dynamics parameter estimation

Parameter Value
Confidence

Interval (CI)

Kv [V−1] 0.16 ±0.01
ωv [rad/s] 690 ±100
ζv 1 ±0.1
mv 0.1 ±0.05
kv 47800 +46000/− 30000
dv 138 +122/− 85
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Figure 2.21: Film thickness variation under stepwise increase in velocity (from
v = 0m/s to v = 0.02m/s.

2.3.2.2 Friction dynamics

Parameters estimation Using the static friction parameters found previ-
ously, the same technique as in [43] is applied to estimate the time constant
τh in case of acceleration or deceleration. From velocity and pressure mea-
surements, the film thickness is calculated by making the assumption that z is
constant immediately after a step change in velocity. For ż = 0, eqs. (2.34),
(2.38) and (2.39) give the following relation:

Ffric = sign(v)g(v, h) + σ2v (2.67)

⇒ h = 1− sign(v) (Ffric − σ2v)− Fc + Fce
−(|v|/vs)ns

Fse−(|v|/vs)
ns

(2.68)

Fig. 2.21 shows the variation of film thickness for a stepwise increase in velocity
from v = 0m/s to v = 0.02m/s. However the film thickness is greater than unity
which is not in accordance with the model. The uncertainties in the model are
too high for film thickness identification. Instead a default value of τh = 0.2 s
is chosen. Fig. 2.22 shows the variation of film thickness for a stepwise decrease
in velocity from v = 0.02m/s to v = 0.003m/s. In this case by fitting the curve
with eq. (2.37), τhn is found. See value in table 2.9.

Using the modified LuGre friction model, simulation is compared to experimen-
tal data in fig. 2.23 The film thickness becoming thinner during acceleration,
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Figure 2.22: Film thickness variation under stepwise decrease in velocity (from
v = 0.02m/s to v = 0.003m/s.
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(black) data with modified LuGre friction model.
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fig. 2.23 shows that friction is increased comparing to decelaration where the
film thickness is larger.

Table 2.9: Parameter Estimation

Parameter Value
Confidence

Interval (CI)

σ0 [N/m] 2.5× 107 +∞/− 0
σ1 [Ns/m] 108 +∞/− 108
vb 0.04 ±0.02
Acceleration
τh [s] 0.2 +0.5/− 0.1
Deceleration
τh [s] 2.5 ±0.5

Valve spool stiction Despite of the presence of dithering in the valve, a more
accurate model is obtained when considering a remaining stick-slip motion of
the valve spool near zero valve opening. Flow forces and wear can be at the
origin of this local position dependent force. Dynamics of the spool friction
needs therefore to be added to the model replacing eq. (2.32) by:

mvẍv = Kvkvi− Fstiction(xv, zs)− kvxv − dvẋv (2.69)

Fstiction = σ1v żs (2.70)

żs = xv −
|xv|
gv(xv)

zs (2.71)

gv(xv) = Fste
−(|xv|/ys)ns

(2.72)

where i is the input current, mv, kv, dv are the mass of the spool the stiffness of
the torsion spring and the damping of the spool respectively. zs is an internal
state due to the stiction and can be viewed physically as the compression of
the spool rubber seal. σ1v is the damping when stiction and gv, Fst, ns and ys
are parameters relative to stiction. The new friction model including stiction
in the valve at zero position is compared to experimental data in fig. 2.24. The
behaviour at low mass velocity is now modeled. The cause of remaining error
at low velocity between the experimental and simulated data could be the effect
of the filter used to process the velocities measurements.

When looking at the velocity response in fig. 2.25, the simulations using LuGre
and the modified LuGre including film thickness give similar results whereas a
significant improvement is observed at low velocities when using in addition the
model with stiction in the valve.
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ent friction models.

Table 2.10: Parameter Estimation

Parameter Value
Confidence

Interval (CI)

ns 0.6 ±0.2
ys [mm] 0.003 ±0.001
σ1v [Ns/m] 8× 103 +∞/− 0
Fst [N] 1.5× 10−2 ±1× 10−2
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2.3.3 Time Analysis

With the parameters estimated in the previous section the grey box model of
the EHSS is simulated and its time response is compared with the experimental
measurements. For both simulation and experiment the input signal to the valve
is a sine wave of amplitude 1V and frequency 1 Hz. The results for position,
velocity chamber pressures, load pressure and the sum of the chamber pressures
are shown in figs. 2.26 to 2.31 during four seconds.
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Figure 2.26: Position comparison between experimental measurement (blue)
and simulation (red) for a sinusoidal input.

Comparing the amplitude and frequency of the output position in fig. 2.26 , the
model fits the test bed closely. However, the trend of the output position differs
from simulation to experiment, which is caused by an uncertainty in the valve
offset xvn0 estimated previously. A look at fig. 2.27 underlines two issues: first
the velocity measurement needed to be filtered because it contains a high level
of noise and second the simulated velocity differs slightly around zero velocity
from experiment because the value for σ0 needed to be decreased in order for
the simulation to run. A too high σ0 renders the system too stiff and makes
the simulation extremely slow. The comparison of load pressure shows that
the model is in accordance with the experiment, especially when looking at
positive load pressure where the exponential decrease during the four periods is
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Figure 2.27: Velocity comparison between experimental measurement (blue)
and simulation (red) for a sinusoidal input.
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(blue) and simulation (red) for a sinusoidal input.
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Figure 2.29: Comparison in chamber a pressure between experimental measure-
ment (blue) and simulation (red) for a sinusoidal input.
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Figure 2.30: Comparison in chamber b pressure between experimental measure-
ment (blue) and simulation (red) for a sinusoidal input.
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Figure 2.31: Comparison in the sum of chamber pressures between experimental
measurement (blue) and simulation (red) for a sinusoidal input.

caused by the film formation inside the cylinder which reduces the friction force.
Stribeck friction is also noticeable each time the velocity crosses zero. Finally,
the last three figs. 2.29, 2.30 and 2.31 show that the chamber pressures, when
considered independently, also are similar if generated from the simulation or
from the experiment but with the exception of an offset of approximately 5 bars
when looking at pa or pb and approximately 10 bars when looking at the sum
of them. This offset is the result of uncertainties in the flows occurring inside
the valve and the difficulty to estimate these parameters as shown previously in
fig. 2.15.
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2.3.4 Frequency Response

The knowledge of gain and phase shift of a linear system in open-loop at different
frequencies is valuable in order to analyse the stability of this system with
feedback control. However, when nonlinearities are present, the same tools as
those used for linear systems are inappropriate since the response to a sine wave
is not a pure sine wave and the frequency response is dependent of the amplitude
of the excitation input. Nevertheless, in order to compare the simulation model
with experiments and the linearised model with the high fidelity nonlinear one,
in this section the frequency response of the EHSS behaviour is analysed, based
on the parameters estimated in the previous section.

The frequency response from input u to position y of the linearised system
in eqs. (2.41)-(2.45) is first investigated and its Bode plot is shown in fig. 4.1
together with the frequency response of the experimental test bed. The later
frequency response from measurements is obtained by conducting the following
experiment: first a stream of sine waves of amplitude 1V and with increasing
frequency ranging from 1Hz to 100Hz is generated and used as the input signal
to the servo valve while the measurements are recorded. Next the EHSS is
approximated as quasi-linear: even if the response to each of the sine waves is
not a pure sine wave, most of the energy in the output is indeed at the same
frequency ω as the input. Calculating the fundamental of the output signal, the
gain and phase shift can hence be observed for each sine wave constituting the
stream. Finally the points are graphed on the Bode plot fig. 4.1.

Since the phase begins at −90◦, the system contains an open-loop integrator.
Two second order poles are placed at frequency ωv = 110Hz for the valve dy-
namics and ωhyd = 125Hz for the hydraulic natural frequency, with damping
ratio equal to 0.8 and 0.13 respectively. Due to the sampling frequency and
the sensor dynamics the frequency response for the experiment is limited to the
range 1-100 Hz. It results from fig. 4.1 that with input amplitude of 1V the
frequency response of the linear model is in accordance with the experiment.

2.3.4.1 Linear vs. nonlinear model

EHSS are highly nonlinear systems due mainly to turbulent orifice flow inside
the servo valves, deadband and stiction inside the valve and friction inside the
actuators. In order to distinguish and isolate the effects of these nonlinearities
the linearised model is compared in frequency domain with the same model but
with separately added nonlinearities for friction and orifice flow.
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Figure 2.32: Frequency response from both experimental and simulated data
issued from the linearised EHSS model. Input is the valve input signal, output
is the mass position y.



54 Modelling of EHSS and Identification of their Parameters

Orifice flow nonlinearity Adding the nonlinearities due to the orifice flow
in the valve and the deadbands, the new frequency response is shown in fig. 2.33
and 2.34 for different amplitudes of a sine stream, together with the linearised
model (red line). The bode plot of the transfer functions from input to position
is shown in fig. 2.33 whereas the transfer function from input to normalised load
pressure is shown in fig. 2.34.
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Figure 2.33: Input to position Bode diagram using a linearised model and the
nonlinear model with different exitation amplitude: 5V, 3V and 1V.

The figures show that the nonlinearities due to the valve orifice flow have only
a minor effect on the frequency response of the EHSS. The most important
deviation is observed at resonance frequency for the transfer function from input
to normalised load pressure at higher amplitudes (i.e. higher nonlinearities)
where more damping is added to the system.



2.3 Parameter Estimation 55

10
0

10
1

10
2

10
3

−50

−40

−30

−20

−10

M
a

g
n

it
u

d
e

 (
d

B
)

Bode diagram in open−loop from input to load pressure 

10
0

10
1

10
2

10
3

−100

−50

0

50

100

P
h

a
s
e

 (
d

e
g

)

Frequency (Hz)

 

 

Linear model

nonlinear OF, amp=1

nonlinear OF, amp=3

nonlinear OF, amp=5

Figure 2.34: Input to pressure Bode diagram using a linearised model and the
nonlinear model with different exitation amplitude: 5V, 3V and 1V.
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Friction When adding the nonlinear friction model to the linear one, the
frequency responses are shown in figs. 2.35 and 2.36 for transfer function from
input to position and from input to nominal load pressure respectively, also with
several amplitudes of the sine stream.
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Figure 2.35: Input to position Bode diagram using a linearised model and the
nonlinear model with different exitation amplitude: 5V, 3V and 1V.

These figures show that the nonlinearities inherent to the friction model have
a more significant effect than those due to the orifice flow and deadband in
the valve. This is true especially when the output is the load pressure, where
for frequencies below the resonance frequency, the gain of the transfer function
is lifted for small input amplitudes. It corresponds to the case when Stribeck
friction has a dominant effect compared to viscous linear friction.

Complete EHSS The frequency response of the complete nonliner model is
now compared with the one obtained from the test bench and shown in figs. 2.37
and 2.38 when the output is the position and the normalised load pressure
respectively.

A relative small difference at frequencies ranging from 10 to 50Hz can be ob-
served when the output is position. This discrepancy can be caused by the too
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Figure 2.36: Input to pressure Bode diagram using a linearised model and the
nonlinear model with different exitation amplitude: 5V, 3V and 1V.

low value of the stiffness σ0 needed for the simulation to run. Looking at the
Bode plot in fig. 2.38, it can be noticed that the nonlinear model is accurate
enough to render the change of gains for different amplitudes of the excitations.
However the model differs from the experiment at frequencies close to 100Hz,
near the resonance frequency. Finally it can be concluded that the nonlinear
friction model is better suited than the linearised model to describe the EHSS
in the whole range of operating points and at a large range of frequencies.
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Figure 2.37: Bode diagram in open-loop from input to mass position y. Experi-
mental data in blue and green stars for input amplitude 1V and 3V respectively
and simulated data in corresponding coloured lines for input amplitude 1V and
3V.
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3V respectively and simulated data in corresponding coloured lines for input
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2.4 State Space Model

In order to design a fault-tolerant controller for EHSS in later chapters, the
model presented in this chapter will be used in the state space form which can
be written as follows:

ż(t) = f(z(t), u(t))

ẏ(t) = h(z(t), u(t))

representing the state and output equations, where z is the vector of states, u
is the input and y is the vector of outputs. The two multivariable functions f
and h are not in the general case a linear combination of states and input.

Regrouping eqs. (2.9), (2.10), (2.16), (2.27), (2.34), (2.38), (2.36), (2.37), (2.39),
(2.69), (2.70) and (2.71) the EHSS writen in state space form is:

ẏ = v (2.73)

v̇ =
−k
M

y +
−(d+ σ1 + σ2)

M
v +

Fh
M
pLn +

σ0
M

(
σ1

|v|
g(v, h)

− 1

)
z (2.74)

ż = v − σ0
|v|

g(v, h)
z (2.75)

ḣ =
1

τh
(hss(v)− h) (2.76)

ṗLn =
−βeAe
ps

v − βecLpLn +
βeQn
ps

√
1− sign(xvn)pLnsat

(
xvn,

L

xvmax

)
(2.77)

ẋvn = vvn (2.78)

v̇vn =
−(σ1v + kv)

mv
xvn +

−σ2v
mv

vvn +
σ1v
mv

|xvnxvmax|
gv(xvnxvmax)

zs +Kv
kv
mv

i (2.79)

żs = xvn −
|xvnxvmax|
gv(xvnxvmax)

zs (2.80)
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or in a more concise way:

ż1 = a12z2 (2.81)

ż2 = a21z1 + a22z2 + a23

(
σ1

|v|
g(v, z4)

− 1

)
z3 + a25z5 (2.82)

ż3 = a32z2 + a33
|z2|

g(z2, z4)
z3 (2.83)

ż4 = a42hss(z2) + a44z4) (2.84)

ż5 = a52z2 + a55z5 + a56
√

1− sign(z6)z5sat

(
z6,

L

xvmax

)
(2.85)

ż6 = a67z7 (2.86)

ż7 = a76z6 + a77z7 + a78
|xvmax z6|
gv(xvmax z6)

z8 + b7u (2.87)

ż8 = a86z6 + a88
|xvmax z6|
gv(xvmax z6)

z8 (2.88)

where the coefficients aij are defined as follows:

a12 = 1

a21 =
−k
M

a22 =
−(d+ σ1 + σ2)

M
a23 =

σ0
M

a25 =
Fh
M

a32 = 1 a33 = −σ0

a42 =
1

τh
a44 = − 1

τh

a52 =
−βeAe
ps

a55 = −βecL a56 =
βeQn
ps

a67 = 1

a76 =
−(σ1v + kv)

mv
a77 =

−σ2v
mv

a78 =
σ1v
mv

b7 = Kv
kv
mv

a86 = 1 a88 = −1

and where the states and input in eqs. (2.81-2.88) are:

z1 = y z2 = v z3 = z

z4 = h z5 = pLn z6 = xvn

z7 = vvn z8 = zs u = i
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2.5 Summary, Discussion and Conclusions

In this chapter a high fidelity model of a typical electro hydraulic servo system
has been developed and its behaviour was shown to be close to the physical
behaviour of the corresponding test bed. By the mean of modelling, a better
understanding and a good insight of the system was gained while describing
the relationships between the variables and parameters. The governing equa-
tions were first established in section 2.2 for each component and second, in
section 2.3, the system parameters were estimated using system identification
with physical test bed measurements, leading to a so called grey box model of
the EHSS. In order for the simulated results to best fit with the experimental
data, the model structure has in a second step been specialised and the effects of
nonlinearities in the valve and in the friction were analysed both in steady-state
and in transient state. Finally, the model was linearised around zero load pres-
sure and small valve opening. The effect of nonlinearities in the valve and the
friction model were analysed separately resulting in the conclusion that the non-
linearities in friction is the main cause of divergence between the linear model
and experiment for large range of frequencies and input amplitudes. The fre-
quency response of the physical system approximated as quasi-linear underlines
the role of nonlinear model to best describe the EHSS behaviour.

The main contributions in this chapter were first the development of a new
friction model including the film formation inside the hydraulic actuator and its
dynamics and the dependence of the friction model with the sum of the chamber
pressures which is not assumed constant but varies up to +50% of the supply
pressure, second the analysis and estimation of the flows around the spool of the
servo valve whose effects are significant around zero spool position. In addition
to the flows, the deadbands for a non-symmetric servo valve were estimated and
the effects of valve stiction around zero spool position were also added to the
model.

However, no matter how detailed the model is, simulations cannot reproduce
the exact same data as experiment as for example in fig. 2.31 showing the sum of
the chamber pressures for both the simulated and experimental data. The main
reason could be the difficulties with tuning the model for all frequencies and all
input sine wave amplitudes. The describing function of the model does not fit
well with the one found with the help of experiment measurements for frequen-
cies close to the resonance frequency (approximately 100Hz) as seen in fig. 2.38
for low amplitude. The dependency of certain parameters with temperature
shown in figs. 2.10 and 2.17 also needs to be taken care of and supply pressure
variation, complex behaviour of valve around zero spool position, the difficulty
to estimate deadbands in the servo valve and complex behaviour of friction at
low velocities contribute also for the inaccuracies of the model. Nevertheless,
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the improvements in modelling highly nonlinear EHSS developed in this chapter
together with the analysis of nonlinearities and their effects give a solid foun-
dation for the design in the next chapters of adaptive fault-tolerant control for
electro hydraulic servo systems.
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Chapter 3

Fault Detection and Isolation

Hydraulic pistons are indispensable in industrial fields that require high actu-
ation forces. The high difference of pressure needed inside the cylinder cham-
bers in order to deliver the necessary force can be realised only if the leakage
between the two chambers is kept small, involving considerable friction against
the piston displacement. These two parameters, friction and leakage, play an
important role in the reliability of hydraulic systems and their changes are a
direct consequence of components’ wear. According to the severity of leakage
fault, the performances of the system are correspondingly degraded and a too
high severity fault in leakage will eventually lead the system to failure. For in-
stance in the offshore case where accessibility is an important factor to consider
as it renders the cost for intervention especially high, fault detection for leakage
should be considered in order to reduce the cost of maintenance and to prevent
such systems from failures. However, due to significant non-linearities in hy-
draulic systems and the large uncertainties in their parameters, fault detection
is difficult to implement in practice.

This chapter focuses on the investigation of leakage detection using model based
methods in an experimental hydraulic test bed representing an actuator present
in various EHSS. A crucial step in these methods is the ability to develop an
accurate reference model of the system characterising its fault-free operation
(see chapter 2).
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The study of hydraulic leakage detection has received some attention in litera-
ture and numerous techniques have been developed in order to generate resid-
uals, for example in [19] where the proposed methods are based on hardware
redundancy, in [41], [30] where robust observer based methods are used for the
nonlinear system models, in [31] using artificial neural network and in [2] where
Extended Kalman Filter (EKF) is used to estimate the system states and de-
tect both internal and external leakage. EKF is probably the most widely used
nonlinear filter to determine the current mean and covariance of the states.
However, EKF has certain well known drawbacks such as filter instability due
to linearisation when sampling time is not small enough. In [38] the Unscented
Kalman Filter (UKF) is used for fault monitoring of a hydraulic system. This
approach employs recursive estimator meaning that only the current measure-
ment and estimated state from the previous time step are required to compute
the estimate for the current state. The significant characteristic of the UKF is
that it is suitable for highly nonlinear systems as opposed to other approaches
such as EKF. Once the residual signal is generated, the fault detector must
analyse and process the signal to decide on the presence of a fault.

This chapter focusses on the design of residual generator for an Electric Hy-
draulic Servo System (EHSS) and on the analysis of the residuals using statisti-
cal change detection algorithms [4], [24], [18]. A crucial step in these methods is
the ability to develop an accurate reference model of the system characterising
its fault-free operation (see chapter 2). This system is representative for a typical
nonlinear EHSS used in a commercial offshore drilling equipment. The system
is used for drilling pipe handling and for operations such as making up a string
of drilling pipe. Leakage or increased friction in an actuator could lead to pipe
damage or to hazards in operation, so both are essential to diagnose. Residual
generation is investigated for this highly nonlinear and parameter-uncertain sys-
tem, and residuals are determined from which the too high severity faults could
be diagnosed. Statistical change detection methods are employed for hypothesis
testing about faults and the performance of different filters and the effectiveness
of the proposed methods is examined in a Matlab/Simulink real-time environ-
ment. Results are validated against a test bed similar to the one described in
chapter 2 but where two leakage bypasses are added to generate two different
physical faults: internal and external leakage.

Four sections constitute the chapter, the first two focus on the theoretical design
of a fault detector whereas the two others validate the design using experimen-
tal implementation. A fault detector consists of two main parts which are a
residuals generator and a decision system as shown in fig. 3.1, where u is the
plant input, y is the plant output, r are the residual signals, f are the faults
and d are disturbances. The system considered in the rest of the chapter is the
one described in chapter 2.
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Figure 3.1: Diagnosis of systems

3.1 Residual Generator

The following constraints and measurements govern the EHSS:

c1 : QL = Qnxvn
√

1− sign(xvn)pLn (3.1)

c2 : v̇ =
1

M
(Ae pspLn − ky − dv − Ffric(z, v)) (3.2)

c3 : ˙pLn =
4β

Vtps
(QL −Aev −QLeakpLn) (3.3)

c4 : Ffric = σ0z + σ1ż + σ2v (3.4)

c5 : ż = v − |v|
g(v)

z (3.5)

c6 : g(v) =
Fc
σ0

+
Fs − Fc
σ0

e−|v|/vs (3.6)

m1 : y1 = y + w1n (3.7)

m2 : y2 = pLnps + w2n (3.8)

a1 : u1 = xvnxvmax (3.9)

d1 : v =
dy

dt
(3.10)

d2 : ÿ =
dv

dt
(3.11)
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d3 : ˙pLn =
dpLn
dt

(3.12)

d4 : ż =
dz

dt
(3.13)

A formal analysis of analytic redundancy relations, which can be used for resid-
ual generation, is obtained from the constraints of the system, eqs.(3.1 - 3.13),

C ={c1, c2, c3, c4, c5, c6,m1,m2, a1, d1, d2, d3, d4} (3.14)

The unknown variables in these constraints are

X = {QL, g, Ffric, z, ż, y, ẏ, ÿ, pLn, ˙pLn, xvn} (3.15)

and the known variables are

K = {y1, y2, u1} (3.16)

A standard structural analysis [6] reveals that the maximum number of ana-
lytical redundancy relations are |C| − |X | = 2 where | · | denotes the number
of elements in the set, also referred to as cardinality. A complete matching on
C is marked in the incidence matrix table 3.1 by ∗i using the simple ranking
algorithm ([6]), where i is the rank number.
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From the two redundancy relations found in table 3.1, the two residuals can be
written in analytic form, only from using measurement and input:

r1 =
y
(1)
2

ps
− 4β

Vtps

(
Qna1

√
1− sign(a1)

y2
ps
−Aey(1)1 −QLeak

y2
ps

)
(3.17)

r2 =
1

σ0

(
−My

(3)
1 +Ae ps

y
(1)
2

ps
− ky(1)1 − (d+ σ2)y

(2)
1

)
− y(1)1

+
|y(1)1 |

Fc + (Fs − Fc)e−|y
(1)
1 |/vs

(
−My

(2)
1 +Ae ps

y2
ps
− ky1 − (d+ σ2)y

(1)
1

)
(3.18)

The two resulting residual generators were found to be quite difficult to work
with in practice due to large parameter variations and the complex nature of the
LuGre model of friction. Instead, a simplified, steady-state model is considered.

3.1.1 Static

In steady-state, when the mass velocity ẏ is constant, eqs.(3.1-3.6) become s1
to s5 below,

s1 : Ffric = g(ẏ)sign(ẏ) + σ2ẏ (3.19)

s2 : QL = Qnxvn
√

1− sign(xvn)pLn (3.20)

s3 : 0 = AepspLn − ky − dv − Ffric (3.21)

s4 : 0 = QL −Aev −QLeakpLn (3.22)

s5 : g(v) =
Fc
σ0

+
Fs − Fc
σ0

e−|v|/vs (3.23)

m1 : y1 = y + w1n (3.24)

m2 : y2 = pLnps + w2n (3.25)

a1 : u1 = xvnxvmax (3.26)

d1 : v =
dy

dt
(3.27)

In the set of steady-state equations, C = {s1, s2, s3, s4, s5,m1,m2, a1, d1}, X =
{QL, g, Ffric, y, ẏ, pLn, xvn} and K = {y1, y2, u1, }. Therefore there are a maxi-
mum of two residuals. This gives the possibility to detect and isolate the leakage
and friction faults.
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Two unmatched constraints, that can be used for residual generation, are eqs.(3.21)
and (3.22).

Eq.(3.22) is sensitive to detect a leakage, but it is sensitive also to possible faults
related to a1, a2, m1 and m2. In a similar way eq.(3.21) can be used to detect
a fault in friction, if the pressure and position measurements are available, but
it is sensitive also to sensor faults in m1 and m2. In the rest of the chapter
only the leakage detection is considered but the fault detection in friction can
be designed using the same methods. Fault isolation is not directly obtainable
through passive diagnosis, i.e. by just observing the residuals. Instead active
fault diagnosis can be employed where perturbation signals on u1 cause response
signatures in y1, y2 and the two residuals, which depend on the type of fault
that is present, see [7], [28] and [35] and references therein.

3.1.1.1 Residual for leakage detection

During operation, for example when the force is high and velocity is zero, valve
opening xv is positive and the load pressure is high. Eq.(3.22) gives in this case
the following residual r:

0 = QL −QLeakpLn (3.28)

r = Qn xvn

√
1− y2

ps
−QLeak

y2
ps

r = Qn xvn
√

1− pLn
√

1− w2n

ps(1− pLn)
−QLeak

(
pLn +

w2n

ps

)
(3.29)

Considering w2n

ps(1−pLn)
<< 1 an Euler approximation gives:

r = Qn xvn
√

1− pLn −QLeakpLn + w′ (3.30)

where

w′ = −
(
Qn

xvn
2
√

1− pLn
+QLeak

)
w2n

ps
(3.31)

From eq.(3.31) it follows that the noise w′ in the residual is also white with
Gaussian distribution, so called white Gaussian noise (WGN). This assumption
will hold in the following sections when designing the fault detectors.

The goal of the leakage detector is to decide between two hypotheses. The null
hypothesis (H0), when only noise w′ is present in the residual, characterises an
acceptable leakage, whereas the alternative hypothesis (H1), when a constant
signal and noise is present in the residual characterises a too high leakage. The
probability of false alarm (PFA) is chosen by the designer.
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3.1.2 Dynamic

In this section the whole system is considered not only in steady-state but in
the general case when the states are varying and is described by eqs.(3.1-3.13.
In this case the design of residual generators is based on both the standard
Extended Kalman Filter and the State-Augmented Extended Kalman Filter
(SAEKF) whose algorithms are presented in [8]. The SAEKF estimates the
system states including augmented states (such as leakage) and generates resid-
uals. The EKF linearises a nonlinear model around the current estimates and
computes posteriori estimates with updated system measurements. Two leakage
related faults such as external chamber leakage at either side of the actuator and
internal leakage between the two hydraulic cylinder chambers are investigated.
If internal flow occurs, it could lead to actuator performance reduction, since
only a part of the liquid is available for actuation. When external leakage, the
fluid loss in the system also leads to drop in the load pressure and performance
reduction, which in turn can lead to severe system failure and operation stop
after a period of time. In order to detect external leakage, both chamber pres-
sures of the cylinder must be measured and the assumption of incompressible
fluid in the flow equations must be relaxed. The test bed shown in fig. 2.2 must
be modified in order to add internal or external leakage flow into the EHSS. The
new test bed is shown in fig. 3.2 where two flow control valves are added, one
between chamber A and B of the hydaulic cylinder (number 10 on the figure)
and one between chamber A and the tank (number 11). The new drawing of
the EHSS is shown in fig. 3.3.

Eqs.(3.1-3.13 are hence modified to the following constraints:

c1 : Qa = Qn
√

2
(√

1− pan kvp(xvn)−√pan kvn(xvn)
)

(3.32)

c2 : Qb = Qn
√

2
(√

pbn kvn(xvn)−
√

1− pbn kvp(xvn)
)

(3.33)

c3 : v̇ =
1

M
(Ae pspLn − Ffric(z, v)− Fload(y, v)) (3.34)

c4 : ˙pan =
β

(Vt/2 +Aey)ps
(Qa −Aev −QLi(pan − pbn)−QLepan) (3.35)

c5 : ˙pbn =
β

(Vt/2−Aey)ps
(−Qb +Aev +QLi(pan − pbn)) (3.36)

c6 : Ffric = σ0z + σ1ż + σ2v (3.37)

c7 : ż = v − |v|
g(v)

z (3.38)

c8 : g(v) =
Fc
σ0

+
Fs − Fc
σ0

e−|v|/vs (3.39)
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Figure 3.2: Test bench. 1: Mass, 2: Mechanical spring/damper, 3: Hydraulic
cylinder, 4: Servo-valve, 5: Pressure source, 6: Position sensor (LVDT), 7:
Velocity sensor (tachometer), 8: Pressure sensors, 9: Thermometer, 10: Internal
leakage flow valve, 11: External leakage flow valve (only in chamber A)

c9 : v̇v =
1

mv

(
−kvxvmaxxvn − dvvv +

kvxvmax

umax
u

)
(3.40)

m1 : y1 = y + w1n (3.41)

m2 : y2 = panps + w2n (3.42)

m3 : y3 = pbnps + w3n (3.43)

a1 : u1 = xvnxvmax (3.44)

d1 : v =
dy

dt
(3.45)

d2 : v̇ =
dv

dt
(3.46)

d3 : ˙pan =
dpan
dt

(3.47)

d4 : ˙pbn =
dpbn
dt

(3.48)

d5 : ż =
dz

dt
(3.49)

d6 : vv = xvmax
dxvn
dt

(3.50)
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Figure 3.3: Electro Hydraulic Servo System with internal leakage in the cylinder
and external leakage in cylinder chamber A.

d7 : v̇v =
dvv
dt

(3.51)

In this dissertation only an internal, external or both internal and external
leakage fault is considered and no other fault occurs.

3.1.2.1 State-Augmented Extended Kalman Filter

The first method used to generate residuals is to estimate directly the inter-
nal and external leakage flows (QLi and QLe respectively) and to substract
from them the leakage flows when the system is in a fault-free working mode.
The leakage flows are estimated by considering them as augmented states in
the system and by running a State-Augmented Extended Kalman Filter whose
algorithm is well described in [8]. This method is illustrated in fig. 3.4.
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Figure 3.4: Leakage residual generator via SAEKF.

Defining x = (y, v, pan, pbn, z, xvn, vvn) and p = (QLi, QLe) a vector of un-
known parameters and including p into the states (so called augmented states),
the EHSS can be written as:

ẋ = f(u, x, p)

ṗ = 0

y = h(u, x, p)

(3.52)

where f is the state update function and h is the measurement function. p
is constant during the propagation phase but its value is updated during the
update phase (see the algorithm in [8] for details), which allows for the filter to
estimate the flow parameters QLi and QLe as the system is running.

3.1.2.2 Extended Kalman Filter

While the SAEKF attempts to estimate the leakage flows directly, generating
one residual for each leakage flow, another method based on different Extended
Kalman Filters (without augmented states) can be used to generate residuals.
The method consists in first partitioning the two-dimensional space formed by
QLi and QLe and then generating a residual for each partition box using an
EKF for which the QLi and QLe values are the ones in the centre of the box.
Each EKF returns three residuals which are the errors between the estimated
and measured states. For example, for the ith EKF: ri1 = |ŷ−y1|, ri2 = |p̂a−y2|,
ri3 = |p̂b− y3|. The box for which the residuals take the lowest values furnishes
the estimated values for QLi and QLe. The approach is illustrated in fig. 3.5.
In order to validate the method and show that leakage fault can be detected, a
rough partition of the leakage flow space is chosen but it can be further refined
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Figure 3.5: Leakage residual generator via different EKF. Each filter uses a
different assumption about leakage flows.

if a more precise estimate is of interest. The first filter models a system with
no leakage. The second filter models a system with only internal leakage equal
to twenty percent of the nominal flow, while the third filter models a system
with only external leakage equal to one percent of the nominal flow. Finally
the fourth filter models a system with both the internal and external leakages.
In practice, an internal leakage causes a change in chamber pressures which is
about twenty times smaller than that caused by an external leakge of same flow.

The critical step in the design of the Kalman filters is the tuning of the elements
of the covariance matrices Q and R, as they affect the performance, convergence
and stability of the filters. The use of large values in Q presumes high model
noise and parameter uncertainties which increases the filter dynamics and de-
creases the steady-state performance. Matrix R is related to the measurements
noise and increasing the values of the elements of R will assume that the current
measurements are more affected by noise and thus less reliable. Consequently,
the filter gain will decrease, yielding poorer transient response. From the test
bed measurements, the standard deviations due to noise can be obtained and
the resulting variances are added into the matrix R. The matrix Q was found
through different simulations as described in [8]. The values of the elements of
the diagonal matrices Qpp, Qxx (SAEKF) and Q (EKF) are given below, where
“diag” stands for diagonal matrix. The matrix R consists of the variance of the
measured noises.

Qxx = diag(10−4, 10−3, 10−4, 10−4, 10−2, 10−2, 10−2) (3.53)

Qpp = diag(10−4 × (1.1, 2.3)) (3.54)

Q = diag(10−6 × (1, 1, 10, 10, 100, 100, 100)) (3.55)
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R = diag(10−8 × (0.5521, 2.641, 11.98, 11.98)) (3.56)

3.2 Hypothesis Testing and Decision System

3.2.1 Unknown DC levels and noise parameters

In a first step, the time n0 (time when the fault occurs) is supposed to be
known. This assumption will be relaxed in a second step. Since the leakage
in the cylinder as well as the valve parameter Qn is uncertain, the DC level
of residual (3.30) before and after the jump time, respectively A1 and A2 are
unknown. The variance of the WGN in the residual depends on the leakage in
the cylinder as shown in eq.(3.31). It is hence considered as another unknown
parameter. The hypothesis testing problem is

H0 : A1 = A2

H1 : A1 6= A2

Since this is a composite hypothesis test, the usual generalised likelihood ration
test (GLRT) is applied, which for a signal with unknown parameter vector θ in
WGN, is to decide H1 if the log-likelihood L(x) exceeds a threshold γ,

L(x) =
p(x; θ̂,H1)

p(x;H0)
> γ (3.57)

where γ is determined by the desired false alarm probability PFA and θ̂ is the
maximum likelihood estimator (MLE) of θ (maximises p(x; θ,H1)).

The probabilities for false-alarm PFA and detection PD are

PFA =

∫
{x:L(x)>γ}

p(x;Ho)dx (3.58)

PD =

∫
{x:L(x)<γ}

p(x;H1)dx. (3.59)

The MLEs of the DC levels and the variances of the residual before and after
the jump time under H0 (i.e. Â and σ̂2

0) and under H1 (i.e. Â1, Â2, σ̂2
1 and σ̂2

2
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respectively) are determined as follows [4], [24]:

Â =
1

N

N−1∑
n=0

x[n] = x̄

Â1 =
1

n0

n0−1∑
n=0

x[n]

Â2 =
1

N − n0

N−1∑
n=n0

x[n] (3.60)

σ̂2
0 =

1

N

N−1∑
n=0

(x[n]− Â)2

σ̂2
1 =

1

n0

n0−1∑
n=0

(x[n]− Â1)2

σ̂2
2 =

1

N − n0

N−1∑
n=n0

(x[n]− Â2)2

The GLRT decides H1 if

LG(x) =
p(x; Â1, Â2, σ̂2

1 , σ̂
2
2)

p(x; Â, Â, σ̂2
0 , σ̂

2
0)

> γ (3.61)

Assuming Gaussian distributions, which will be verified experimentally in Sec-
tion 3.3,

p(x; Â1, Â2, σ̂2
1 , σ̂

2
2)

p(x; Â, σ̂2
0)

=

n0−1∏
n=0

√√√√ σ̂2
0

σ̂2
1

exp

[
1

2

(
(x[n]− x̄)2

σ2
0

− (x[n]−A1)2

σ2
1

)]
×

N−1∏
n=n0

√√√√ σ̂2
0

σ̂2
2

exp

[
1

2

(
(x[n]− x̄)2

σ2
0

− (x[n]−A2)2

σ2
2

)]
,
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hence,

2 lnLG =

n0−1∑
n=0

[
ln

(
σ̂2
0

σ̂2
1

)
+

(x[n]− x̄)2

σ̂2
0

− (x[n]− Â1)2

σ̂2
1

]

+

N−1∑
n=n0

[
ln

(
σ̂2
0

σ̂2
2

)
+

(x[n]− x̄)2

σ̂2
0

− (x[n]− Â2)2

σ̂2
2

]

and by using the estimates in eq. 3.60,

2 lnLG = N ln(σ̂2
0)− n0 ln(σ̂2

1)− (N − n0) ln(σ̂2
2)

Since the logarithm is a monotonic function, the GLRT decides H1 if :

2 lnLG(x) = N ln

(
σ̂2
0

(σ̂2
1)

n0
N (σ̂2

2)
N−n0

N

)
> γ′ (3.62)

where γ′ = 2 ln γ.

3.2.2 Unknown DC levels and noise parameters and jump
time

To accommodate with unknown jump time, the transition, if it occurs, is as-
sumed not too close to the endpoints of the observation interval. n0min ≤ n0 ≤
n0max , where presumably n0min � 1 and n0max � N − 1

LG(x) =
p(x; n̂0, Â1, Â2, σ̂2

1 , σ̂
2
2)

p(x; Â, σ̂2
0)

> γ (3.63)

where n̂0 is the MLE under H1. Or equivalently,

LG(x) =
maxn0

p(x;n0,H1)

p(x;H0)
(3.64)

Since the probability density function (PDF) under H0 does not depend on n0
and is nonnegative, the test is also:

max
n0

(
2 ln

p(x;n0,H1)

p(x;H0)

)
> 2 ln γ (3.65)



80 Fault Detection and Isolation

The GLRT decides H1 if

max
n0

(
N ln

(
σ̂2
0

(σ̂2
1)

n0
N (σ̂2

2)
N−n0

N

))
> γ′ (3.66)

where, again γ′ = 2 ln γ.
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3.3 Experimental Model Validation

3.3.1 White and Uncorrelated Residuals

In order to apply the theory by [23], developed in the previous section for a
EHSS, the residual used to detect a fault in leakage needs to be white or un-
correlated. In order to validate this assumption used in the detector degign,
an experiment is conducted on the EHSS shown in fig. 3.2 whose model and
governing equations were presented in section 3.2. Position and velocity of the
mass as well as pressure in each of the cylinder chambers are recorded every
millisecond by the sensors when the EHSS is in steady-state with constant valve
opening and during a total time of 100 s Time record of the residual is given in
fig. 3.6 together with its PDF. It results from the analysis of this signal that the
distribution can be considered as Gaussian. Fig. 3.7 shows the power spectral
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Figure 3.6: Residual signal from experiment

density (PSD) of the residual build from experiment data and hereby validates
the assumption that the residual is white, i.e. its PSD is flat with frequency up
to 900 Hz. Fig. 3.8, the autocorrelation function plot, also validates the white
residual assumption by showing that each sample is uncorrelated with all the
others.

From the experimental data, noise present in the load pressure measurement
is found to be WGN with standard deviation σ = 0.0963. The same noise
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Figure 3.7: Power Spectral Density of residual from experiment.
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Figure 3.8: Normalized autocorrelation function of residual from experiment.

properties will be used in the next section to detect a simulated fault.

3.3.2 Comparison between experimental and simulated out-
puts

A comparison between simulated and experimental data is shown in figs. 3.3.2
and 3.3.2, where no leakage is included and results are not normalised.

The differences between the simulated and experimental data occurs mainly
due to the use of LuGre friction model as an approximation of the real friction
inside the cylinder, as the effect of lubricant film thickness inside the valve is
not included.
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Figure 3.9: Simulated and measured position and velocity.
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Figure 3.10: Simulated and measured pressure in chamber A and pressure in
chamber B.
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3.4 Detection and Prognosis of Faults

Two experiments are conducted where an internal leakage is introduced in the
physical system (test bed) and the model based fault detector is to diagnose the
leakage based fault.

3.4.1 Static Leakage Detection in a Position Controlled
EHSS

In a first experiment, the hydraulic cylinder is loaded with a spring and damper
and the position of the mass controlled by a proportional integral derivative
(PID) controller. The mass position variation is neglected when a sufficient
small leakage fault appears inside the cylinder. In this case, the normalised load
pressure pLn is constant equal to 3% and the normalised valve opening xvn is
0.24% before the fault occurs. This initial opening is the sign that an initial
leakage in the fault-free case is present and approximately equal to QLeak0 =
0.9 l/min. Between time t = 22.5 s and t = 25.6 s when a fault caused by an
increase of 1 l/min in the internal leakage, pLn stabilises to 3% again but xvn
takes a value of 0.5%. The residual calculated from eq. (3.29) is given in fig. 3.11
between time t = 14 s and t = 35 s.

Fig. 3.12 shows the GLRT values for different jump times. The experiment is
run for 23.5 s, the real jump time is at 22.5 s and the GLRT values are given for
assumed jump times ranging from 21.5 s to 23.45 s. The highest value of the
GLRT occurs at time close to t = 22.6 s and gives GLRT = 511, represented by
a red dot on fig. 3.12.

Fig. 3.13 shows the GLRT with unknown jump time at different end times.
For each of these end times a GLRT is run as in the previous figure and the
maximum value is returned. The red dot in fig. 3.13 hence corresponds to the
red dot in fig. 3.12. Fault detection is now possible using this latter test. For
example if the threshold γ was fixed at 30, no false alarm would occur and
the time to detect the fault would be 0.16 s. However, a different threshold is
necessary to detect when the system is back to fault-free working operation.

In order to reduce the time to detect the leakage, to reduce the false alarm rate
and to revert to non-faulty case when a fault disappears, a recursive cumula-
tive GLRT with adaptive threshold and upper bounded is implemented. The
algorithm for an upper bound h = 90 and an initial threshold γ0 = 30 follows:
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Figure 3.11: Residual signal from experiment. Fault in internal leakage occurs
between time t = 22.5 s and t = 25.6 s, from 0.9 l/min to 1.9 l/min. Position of
the mass is stabilised around a constant value with a PID controller.

Initialisation
h = 90

γ0 = 30

Loop
gk = xk − γk−1
γk = xk − sign(gk) min(|gk|,∆)

gk = max(0, gk−1 + gk)

gk = min(h, gk) (3.67)

Result
gk for increasing time tk

where xk is the value at time tk of the statistical test in eq. (3.66) and shown in
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Figure 3.12: GLRT for different values of assumed jump time after 23.5 s of
simulation. (Real jump time = 22.5 s.)

fig. 3.13, and where ∆ is the maximum difference between the threshold and the
statistical test. The motivation behind the threshold adaptivity is to decrease
the time to detect fault reversion. The values gk are given in fig. 3.14. The
alarm or stopping time is the smallest time instant at which gk crosses the given
threshold h1. For h1 equal to ten, detection time is equal to 0.16 s. The new
detector does not trigger any false alarm. The final fault detection is plotted at
the bottom of fig. 3.14.
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Figure 3.13: GLRT with unknown jump time.
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Figure 3.14: Fault detector with reversion. Thresholds h1 = 10 (above, a fault
is detected). Real fault occurs between 22.5 and 25.6 s. Red area is time to
detect. Blue area is time to revert to non-faulty case.
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3.4.2 Static Leakage Detection in a Force Controlled EHSS

A second experiment is conducted on the test bed shown in fig. 3.2, where the
hydraulic cylinder is engaged and applies a constant force on an object. In
contrast to the previous experiment where the load pressure and valve opening
were low, in this configuration the load pressure is close to the supply pressure
and the valve is open at 6% of the maximum opening. Since the load pressure
is higher, an internal leakage fault has larger effect and smaller leakage can
hence be detected. At time 16.5 s the initial internal leakage flow jumps from
0.9% to 1.3% of the nominal flow. This increase corresponds to an additional
flow of 58 ml/min when the load pressure is equal to the supply pressure. The
residual calculated from eq. (3.29) is given in fig. 3.15 between time t = 15.5 s
and t = 17.5 s. In this case, a test as designed in section 3.2 is not needed since
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Figure 3.15: Residual signal from experiment. Fault in internal leakage occurs
after time t = 16.5 s from 0.117 l/min to 0.175 l/min. The mass is in contact
with a fixed object and a constant force is applied corresponding to a load
pressure of 92% of the supply pressure.

a simple threshold at h = 0.04 for the residual can be used to detect such a
fault. Smaller leakage fault still need to be investigated. However, adjusting
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with sufficient precision a leakage flow with a correct magnitude to represent a
realistic behaviour of a leakage across hydraulic cylinder chambers is a difficult
task to realise in practice. In the following section, the simulation of a fault
using the model described in section 3.2 is hence preferred. After estimation of
the parameters in chapter 2 and noise characteristics in section 3.3, the model
fits closely to the experimental test bench. A fault occurring between time
t = 14 s and t = 15 s is introduced and is caused by an increase of 1 ml/min
in the nominal leakage flow QLeak. The residual is given in fig. 4.13, for a 20
second simulation of the EHSS in steady-state with a constant valve opening.
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Figure 3.16: Residual signal from simulation. Fault in leakage occurs between
time t = 14 s and t = 15 s.

Fig. 3.17 shows the GLRT with unknown jump time for different simulation
end times. Fault detection is now possible using this last test. For example if
the threshold γ was fixed at 100, no false alarm would occurs and the time to
detect the fault would be 0.4 s.

Using algorithm (3.67) with adaptive threshold and choosing ∆ = 50 in order
to reduce the time to detect fault reversion, the values gk are given in fig. 3.18.
The alarm or stopping time is the smallest time instant at which gk crosses the
given threshold h1. For h1 equal to 30, detection time is equal to 0.2 s. The new
detector does not trigger any false alarm. The delay of reverting to non-faulty
case from faulty is reduced if h is decreased. In the present case, h = 90 gives a
reverting time equal to 0.25 s. In order to prevent the detector from switching
excessively between the two cases, the falling edge threshold h2 is taken as half
the rising edge threshold, h1. The final fault detection is plotted at the bottom
of fig. 3.18.

The fault case simulated here demonstrates the ability of the method to diagnose
internal leakage flow fault as small as 1 ml/min when the EHSS is in steady-
state.
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non-faulty case.



94 Fault Detection and Isolation

3.4.3 Dynamic Leakage Detection

The leakage fault detection is now investigated when the system is not in steady-
state, i.e. when the inputs and outputs are not considered as constant. Two
detectors where implemented, using respectively EKF and SAEKF to generate
residuals as explained in section 3.1.2. In order to verify the performance of
the detectors, a number of simulations and experiments were carried out where
both internal and external leakages were created by opening/closing the control
flow valves mounted on corresponding bypasses (see fig. 3.2 and 3.3). Simula-
tions and experiments are implemented using Matlab/Simulink software. Four
simulated and experimental cases are taken into account such as no leakage,
internal leakage, external leakage and both internal and external leakage fault
are present. The EHSS is run in open loop and the sampling time for the in-
put and outputs is 1 ms. The input signal is a sine wave of frequency 3 Hz
and amplitude 1 V centered on 0 V. A comparison between the simulated and
experimental data is shown in figs. 3.3.2 and 3.3.2.

3.4.3.1 State Augmented Kalman Filter

Two scenarios were implemented using SAEKF. In the first scenario the mea-
surements are simulated using eqs. 3.32-3.51, where the noise is added into the
model. The system is in fault-free operating mode during the first two seconds,
then an external leakage is added during the time intervals [2;4] and [6;8] sec-
onds, whereas internal leakage is added during time interval [4;8] seconds. The
normalised simulated measurements and their estimations using SAEKF are
shown in figs. 3.19 and 3.20, while the estimated internal and external leakage
flows are shown in fig. 3.21

In the second scenario the measured outputs are taken from the physical system,
where the internal leakage occurs in time intervals [10-15] and [21-25] seconds
and external leakage occurs in time intervals [0-5] and [21-25] seconds. Outside
these intervals the system has no leakage related faults. The normalised mea-
surements and estimations are shown in fig.3.22. The position measurements
and estimations are very close and are not presented in the figure. The estimated
leakages from output measurements are shown in fig. 3.23.

In simulations and experiments the leakage levels are the same as described in
section 3.1.2 and given in percent of the nominal flow. The estimated leakages
contain oscillations but faults related to them can be detected using averaging
and thresholds. The initial state vector xi = 10−5, i = 1, . . . , 7 is the same for
both simulated and experimental scenarios.
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Figure 3.19: Simulated and estimated position and velocity.

3.4.3.2 Extended Kalman Filter

The same two scenarios are implemented using EKF. The integrals of the abso-
lute values of the errors between measurements and estimations are summarised
in table 3.2 when the measurements are simulated from the model with noise
and in table 3.3 when the measurements are issued from the sensors of the test
bed.

Each row represents a box of the partitioned leakage flow space and are labelled
by NL for no leakage flow, IL for only internal leakage flow, EL for only exter-
nal leakage flow and BL for both internal and external leakage flows. In both
simulated and experimental scenarios the leakage levels used by EKF were 0.5
and 10 percent higher than actual external and internal leakage respectively in
order to avoid perfect match between the measured and estimated states. The
results show that the external leakage is more likely to be detected than inter-
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Figure 3.20: Simulated and estimated normalised load pressures.

nal leakage. The grey cells in table 3.3 represent the true case at the current
time interval, i.e. when the model is best fit for the test bed configuration, and
ideally the residuals in these cells should be smaller than all the other boxes in
the same row. The time interval required for the fault detections depends on
the tuning of matrices Q and R as well as the model accuracy.
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Figure 3.21: Estimated external and internal leakage flows.
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Figure 3.22: Measured and estimated velocity and normalised load pressures.
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Figure 3.23: Estimated external and internal leakage flows.
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Table 3.2: Residuals generated by different EKFs via simulations.
Con Time NL EKF IL EKF EL EKF BL EKF

NL 0 s 0.0000 0.0000 0.0000 0.0000
- 0.0022 0.0028 0.0080 0.0080

0.5 s 0.0016 0.0017 0.0055 0.0057
IL 2 s 0.0001 0.0000 0.0001 0.0000

- 0.0022 0.0018 0.0089 0.0085
2.5 s 0.0013 0.0009 0.0062 0.0065

EL 4 s 0.0000 0.0001 0.0000 0.0001
- 0.0056 0.0061 0.0020 0.0027

4.5 s 0.0062 0.0059 0.0012 0.0013
BL 6 s 0.0000 0.0002 0.0001 0.0000

- 0.0058 0.0063 0.0013 0.0012
6.5 s 0.0071 0.0068 0.0012 0.0009

Table 3.3: Residuals generated by different EKFs via experiments.
Con Time NL EKF IL EKF EL EKF BL EKF

NL 7 s 0.0000 0.0000 0.0000 0.0000
- 0.0038 0.0057 0.0056 0.0066

8 s 0.0039 0.0052 0.0039 0.0038
IL 12 s 0.0000 0.0000 0.0000 0.0000

- 0.0050 0.0047 0.0048 0.0047
13 s 0.0047 0.0047 0.0051 0.0053

EL 2 s 0.0000 0.0000 0.0000 0.0000
- 0.0060 0.0060 0.0035 0.0048

3 s 0.0075 0.0079 0.0059 0.0065
BL 22 s 0.0000 0.0000 0.0000 0.0000

- 0.0045 0.0052 0.0049 0.0042
23 s 0.0084 0.0083 0.0060 0.0057
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3.5 Summary and Discussion

A fault detector for leakage in hydraulic cylinders was developed by initially
considering a high fidelity model of a nonlinear hydraulic-mechanical system,
then by implementing the fault detector on a test bed. Two different techniques
were used depending on the system being in steady-state with constant velocity
and load pressure or not. In the static case, using structural analysis, a robust
residual was generated that accommodated unknown parameters and a compos-
ite hypothesis test was derived. Test rig measurements were used to validate
the properties of residuals and experimental results demonstrated the perfor-
mance and feasibility of the proposed method regarding prognosis of leakage.
Two application examples were investigated: In the first one an internal leakage
occurs as the position of the actuated mass is stabilised to a certain value by the
mean of a controller. The second example represents the case when the system
applies a constant force on a fixed object. In the more general case when the
system is not in steady-state, since the internal friction state is not available
from measurements, extended Kalman filter and state augmented Kalman filter
were used to generate residuals. These residuals show that two types of fault,
i.e. internal, external or both internal and external leakage, can be detected
from the test bed measurements when the input is a sinusoidal signal.

Using the same methods as the one developed in this chapter, it is possible to
detect and isolate faults related to the friction inside the hydraulic cylinder. If
the system is in steady-state eq. 3.21 is used to generate a residual. Applying
hypothesis testing to this residual, a fault related to friction can be detected.
Whereas in the case of leakage detection, the same technique is also valid in
the non steady-state behaviour by using constraint c3 instead of s4, a residual
cannot be generated in non steady-state for friction fault detection since the
internal state z is not measured. However, the dynamic methods using SAEKF
or EKF can be used instead. Both Kalman filters furnish an estimation of the
state z and can be seen as a nonlinear observer for the system. The estimated
value of z together with constraint c2 lead to the generation of a residual for
friction fault detection.

Future research directions are expected to include generalisation of this fault
detector to the case of coloured noise in measurements or estimations and hence
enable the present fault detector for prognosis of friction fault detection. An-
other key issue illustrated in this chapter when designing fault detector is the ne-
cessity for the model to be in close agreement with the physical system. Indeed,
in order to detect external leakage flow, a model where the chamber pressures
in the cylinder are two distinctive states, where the valve is not symmetric and
the fluid is not considered as incompressible in the flow equations is necessary.
Moreover it has been experienced that the performances of the two Kalman
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filters are closely related to the model accuracy.

The implementation of the different fault detectors in this chapter was made
offline, i.e. the measurements were taken in real-time but not analysed simul-
taneously. Especially for the SAEKF the computational time was excessive (12
times higher than when running EKF). However, by algorithm optimisation fu-
ture reasearch directions are expected to include real-time implementation of
the fault detectors on the test bed and on the industrial counterparts in the
offshore industry.



Chapter 4

Adaptive Nonlinear Control
Design

The nonlinear nature of electro hydraulic servo systems (EHSS) and presence of
model uncertainties make use of advanced control strategies necessary in highly
demanding applications. Nonlinear adaptive and robust control techniques are
essential in order to obtain high performance for a wide range of operating
points. In this chapter, classical linear control techniques are first applied. Per-
fomances and robustness of the different linear controllers are analysed through
simulations and experiments and used as references for comparison with non-
linear advanced controllers designed in the next section. Based on Lyapunov
stability and the model developed in chapter 2, several adaptive nonlinear con-
trollers are designed and one is implemented in a last section on an experimental
test bed.

4.1 Linear Control Design

In order to understand the challenge of controlling EHSS, in this first section
the problems are illustrated by using classical controllers with linearised model.
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Figure 4.1: Input to position Bode diagram using a linearised model and the
nonlinear model with different excitation amplitude: 5V, 3V and 1V and with
the datatips used for proportional controller design.

4.1.1 Proportional Controller

Before designing high performance controllers for hydraulic servo systems, one
has to know first what performance may be attained with a simple and ubiqui-
tous proportional, integral and derivative (PID) compensator which is probably
still the industry standard, possibly combined with a feedforward model. When
the system contains an open-loop integrator, a proportional control can some-
times suffice. Fig. 4.1 shows the frequency response of the linearised model
eqs. (2.41- 2.45) in red line (the load is disconnected) and the corresponding
nonlinear model for different input amplitudes (stars) as in fig. 2.35. For a
11dB gain margin, it is read from the figure that a proportional gain of 2500
corresponding to a gain lift of 67.88 dB is necessary. Both from the model and
from experiment, it is checked that a higher gain brings the system to instability.

Using a simple proportional controller u = kP (yref − y), where yref is the
reference position, u is the input to the valve, y is the measured mass position
and kP = 2500 is the proportional gain, position tracking of a sine wave reference
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Figure 4.2: Position tracking from testbed.

followed by a sequence of steps is given in fig. 4.2, the corresponding position
error in fig. 4.3 and input usage in fig. 4.4
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Figure 4.3: Error.

Finally the performances of the controlled system are summarised in table 4.1.

It results from this analysis that the proportional controller gives moderate
performances and improvements can be achieved by increasing the bandwidth
of the closed-loop system.
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Table 4.1: Performances of the proportional controlled EHSS

Parameter Value

Steady-state error constant(Kv) 57
Gain margin 11.4 dB
Phase margin 88.9◦

Phase margin frequency 9.1 Hz
Closed-loop bandwidth 9.3 Hz
Percentage overshoot 0
Rise time 37 ms
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4.1.2 Lag Compensator

One way of improving the performances is to increase the gain of the controller
at low frequencies in order to decrease the static error to a ramp and to increase
the bandwidth. Such a controller is called a lag compensator because of the
lag introduced in the phase. Its frequency response as well as the frequency
response of the compensated system in open-loop is shown in fig. 4.5. In the
design, the gain margin was kept the same as before in order to ensure similar
robustness with regards to the uncertainties due to unmodelled nonlinearities
related to for example friction. The expression for the lag compensator is given
below:

KL(s) = 0.1
s+ 100

s+ 10
(4.1)
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Figure 4.5: Frequency response for compensated system from input to position
in open-loop.

Compared with a proportional controller, when using a lag compensator, the
performances shown in table 4.2 are improved: the bandwidth is doubled and
a tenfold improvement in the static error for a ramp is obtained. However,
the overshoot is no longer zero because of the decrease in the phase margin.
Experimental results are shown later in section 4.3 where several controllers are
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compared.

Table 4.2: Performances of the lag compensated EHSS

Parameter Value

Steady-state error constant (Kv) 570
Gain margin 11.3 dB
Phase margin 45.4◦

Phase margin frequency 13.8 Hz
Closed-loop bandwidth 20.4 Hz
Percentage overshoot (%) 30
Rise time 13 ms

4.1.3 Robust H∞ Controller

Figure 4.6: Block diagram for the linearised system.

The linearised system (2.41 - 2.45) is represented in the block diagram in Fig. 4.6
where d is a disturbance, u = i is the input, y the ouput and where:

G1(s) =
ω2
vKv

s2 + 2ζvωvs+ ω2
v

G2(s) = Qn

G3(s) =
βe

pss+ βe
(
QLeak +Qnsign(xvn) ε2

) G4(s) = Fh

G5(s) =
1

Ms+ σ2
G6(s) = Ae

G7(s) =
1

s

The H∞ optimization problem can be formulated by the general configura-
tion shown in Fig. 4.7, where yref is the reference and w1 is the noise in the
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Figure 4.7: H∞ control problem.

position measurement. The objective is to design a feedback controller KI

which minimizes the norm ‖u‖2 with respect to the measurement noise. Let
z(t) = [Wuu(t),We(y(t)− yref (t))]T and w(t) = [Wdd(t),Wn1w1(t)]T , then the
objective is equivalent to finding KI that minimizes

‖Fl(P,KI)‖∞ = max
w(t)6=0

‖z(t)‖2
‖w(t)‖2

(4.2)

which is a standard H∞ optimal control problem. The weights Wd and Wn1

describe the relative importance of the disturbances and noise signals. The noise
signal has a mean value of zero and is hence best described by its standard devi-
ation σ1. The disturbance can be considered as a sinusoidal signal of amplitude
Ad, best described by its effective value Ad/

√
2. The weight We and Wu are

chosen so that the error (y − yref ) is penalised at low frequencies and input
usage is penalised at high frequencies. Thus a low-pass filter and a high-pass
filter are chosen for the weights We and Wu respectively. The different weights
are given below:

Wd =
Ad√

2
, Ad = 10,

Wn1 = 2.8× 10−5,

We = Ae
s/Mf + ωb
s+Afωb

, Ae =
5

Mf
, Mf = 1.5, ωb = 800, Af = 0.001

Wu =
s+Bf
s+ ωb

, Bf = 0.00001
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Running the general H∞ algorithm of [15] with a tolerance of tol = 0.01 gives
a minimum value for ‖Fl(P,KI)‖∞ equal to γ∗ = 437 with a controller gain of
30.6×109 for the input. Stopping the algorithm when ‖Fl(P,KI)‖∞has reached
γ = 1.05γ∗ the controller KI gain is reduced to 593 × 103. This significant
decrease justifies the need to take γ = 1.05γ∗. Indeed the energy required by
the controller will be reduced. The controller is given below:

KI(s) =
593600(s+ 5000)(s+ 0.125)(s2 + 1106s+ 4.77e05)

(s+ 1268)(s+ 624)(s+ 5)(s2 + 829s+ 3.79e05)
× . . .

(s2 + 649s+ 2.64e06)

(s2 + 647s+ 2.63e06)

(4.3)

Implementing the new controller KI , it is now possible to simulate the compen-
sated system. Its frequency response in open-loop is plotted in fig. 4.8 together
with the proportional and lag compensated system, and its simulated perfor-
mances are shown in table 4.3. Experimental time response is shown later in
section 4.3 where several controllers are compared.
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Figure 4.8: Frequency response for compensated system from input to position
in open-loop.

Compared with the other linear controllers, the EHSS performs better regarding
bandwidth, rise time and overshoot when using H∞ optimal control but with a
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Table 4.3: Performances of the H∞ compensated EHSS

Parameter Value

Steady-state error constant (Kv) 2.7
Gain margin 11.4 dB
Phase margin 77.5◦

Phase margin frequency 17.3 Hz
Closed-loop bandwidth 24.2 Hz
Percentage overshoot (%) 0
Rise time 18 ms

higher static error as shown in fig. 4.9. If zero static error for a step is required,
an integral action must be added to the H∞ controller.
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Figure 4.9: Step response for compensated system using proportional, lag and
H∞ optimal control.

Robustness analysis The amount of uncertainties in the actuator that the
controller can tolerate before the system becomes unstable is now investigated
in order to analyse and quantify the controller robustness. The nominal single
input single output system from reference to mass position and its closed-loop
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Figure 4.10: H∞ M-∆ strucure.

transfer function stability is under scrutiny.

First, the model uncertainty, i.e. the difference between the actual system on
the testbed and the model system which was used to design the controller, is
analysed. Uncertainty can be described as parametric and unmodelled dynamics
combined into a single lumped complex perturbation ∆ normalised such that
||∆(jω)||∞ ≤ 1 as used in [39] and represented in fig. 4.10 and by the expression
below:

Gp(s) = G(s)(1 + wk(s)∆(s)); |∆(jω)| < 1,∀ω (4.4)

where Gp is any perturbed plant, G is the nominal plant, (without uncertainties)
and wk is a multiplicative weight introduced in order to normalise the pertur-
bation. This weight is obtained by choosing a low order transfer function which
satisfies:

|wk(jω)| ≥ lk(ω), ∀ω

Where lk(ω) for each frequency is the smallest radius which includes all the
possible plants and calculated as follows:

lk(ω) = max
Gp

∣∣∣∣Gp(jω)−G(jω)

G(jω)

∣∣∣∣ (4.5)

When considering the friction nonlinearities as uncertainties, the three frequency
responses shown in fig. 2.35 corresponding to three different input amplitudes
can be seen as three perturbed plants or the two frequency responses in fig. 2.37



4.1 Linear Control Design 113

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

10
1

Multiplicative uncertainty

Frequency (Hz)

M
a

g
n

it
u

d
e

 

 

Uncertainty due to nonlinear friction

Total uncertainty from experimental data

Figure 4.11: Multiplicative uncertainties caused by nonlinear friction model
(blue) and total uncertainties when considering the actual system (red). Nomi-
nal model is the linearised model

of the actual system for two different input amplitudes can also be seen as
two perturbed plants when the linearised model serves as reference. The maxi-

mum relative uncertainty, maxGp

∣∣∣Gp(jω)−G(jω)
G(jω)

∣∣∣, for each frequency is shown in

fig. 4.11. The weight wk(s) can be derived such that it lies at frequency above
the red and blue stars. At frequencies 80-120 Hz, |wk(jxω)| > 1 which means
that the Nyquist curve may pass through the origin. It follows that the input
has no effect on the output and tight control is not possible [39].

Second, the robustness of the H∞ optimal controller is investigated by calculat-
ing how much uncertainties it can tolerate before the system becomes unstable.
Using Nyquist stability condition, the requirement for robust stability can be
expressed as:

||wk||∞ < 1/||T ||∞ (4.6)

where T is the complementary sensitivity function. The value of the upper
bound, 1/|T |, for wk at different frequencies are represented in fig. 4.12. This
upper bound does not constrain the weight since it is greater than one for all
frequencies and greater than 2 between frequencies 80-120 Hz.
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4.2 Adaptive Backstepping

During the 90’s, backstepping proved to be a powerful tool for stabilizing non-
linear systems [26], where nonlinearities are not constrained by linear bounds.

However it was first limited to the so-called class of “parametric pure-feedback”
(or lower triangular) systems and global stability is achieved for the subclass
of “parametric strict-feedback systems”. Moreover when some of the states are
not measurable, solutions are restricted to a narrower class of minimum phase
systems in which the nonlinearities depend only on the output variable. For
example, in the case of a third order system, it belongs to the pure-feedback
class if it can be written as:

ẋ1 = k1x2 + ϕT1 (x1, x2)θ

ẋ2 = k2x3 + ϕT2 (x1, x2, x3)θ

ẋ3 = k3u+ ϕT3 (x1, x2, x3)θ

(4.7)

where the θ vector and the ki are constant and unknown. Restrictively, it
belongs to the strict-feedback subclass if it can be written as:

ẋ1 = k1x2 + ϕT1 (x1)θ

ẋ2 = k2x3 + ϕT2 (x1, x2)θ

ẋ3 = k3u+ ϕT3 (x1, x2, x3)θ

(4.8)

When uncertain or unknown parameters are separated from the control input
u by more than one integrator, as for example parameters k1 and θ in the first
equation of system (4.8), the matching condition or extended matching condition
no longer prevails but adaptive backstepping can still be used in order to globally
stabilise the system. In addition tuning functions developped by Krstić can be
used to remove overparametrisation. See [26] and references therein.

In this section, adaptive backstepping is applied to EHSS considering valve
dynamics, and dynamic friction model. Simulations show the benefits of this
nonlinear control design compared with linear techniques and the importance
of a high fidelity model for improving control performance.

However, adaptive backstepping requires analytical model differentiation [1]
which leads to an “explosion of terms” and hence renders the real implemen-
tation when using detailed model too difficult. However, by using a modified
structure of the controller a real implemenation of adaptive backstepping is
realised on a EHSS and exhibits good performances.
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Uncertain parameters The moving mass M which can be measured in an
experimental test rig is nonetheless considered as uncertain in order to allow
for a large range of applications as for example pick and place manipulation.
Friction parameters, which can be identified with experiment contain also uncer-
tainties due to different oil characteristics and wear inside the cylinder. Finally,
the mechanical system contains uncertainties in the load (spring coefficient and
damping coefficient which are null for the non-faulty case). The adaptive con-
trollers presented in this section handle all the uncertainties described above.

4.2.1 Backstepping without Valve Dynamics

In order to demonstrate the effects of introducing valve dynamics in the back-
stepping controller, a controller without considering valve dynamics is devel-
oped first. The complete controller including valve dynamics is presented in
section 4.2.2.

The system without valve dynamics can be rewritten as:

v̇ = − k

M
y − d+ σ2

M
ẏ +

ηhmcFh
M

pLn (4.9)

ηhmcFh
M

ṗLn = −βeAeηhmcFh
psM

v − βeQLeakηhmcFh
psM

pLn

+
βeQnηhmcFh

psM

√
1− sign(xvn)pLnsat

(
xvn,

L

xvmax

)
(4.10)

where hydraulic friction is modelled by ηhmc, hydro-mechanical efficiency of
the cylinder, and σ2, damping coefficient. Alternatively, defining the states
(x1, x2, x3) = (y, v, ηhmcFh

M pLn), the system becomes:

ẋ1 = x2 (4.11)

ẋ2 = x3 + ϕ2(x1, x2)T θ (4.12)

ẋ3 = b f(x3)u+ ϕ3(x2, x3)T θ (4.13)

where θ = [θ1, · · · , θ4]T =
[
−k
M , −(d+σ2)

M , −βeAeηhmcFh

psM
,−βeQLeak

ps

]T
is the vector

of uncertain parameters , ϕ2(x1, x2) = [x1, x2, 0, 0]T , ϕ3(x2, x3) = [0, 0, x2, x3]T ,

f(x3) =
√
ηhmcFh/M − sign(xvn)x3 is a known function and b = βe

ps
Qn

√
ηhmc

Fh

M

is an uncertain parameter.

Following the tuning function design as in [26], the state space system (4.11-
4.13), which is in a strict feedback form can be decomposed in successive
subsystems for which tuning functions τi, i = 1 . . . 3 and stabilizing functions



4.2 Adaptive Backstepping 117

αi, i = 1 . . . 3 are recursively found, leading to the final adaptive control law
u and the final update laws for the uncertain parameters θ and λ = 1

b with

estimated θ̂ and λ̂. Note that the symbol ˜ defines the estimation error, i.e.
θ̃ = θ − θ̂.

Coordinate Transformation
z1 = x1 − yr (4.14)

z2 = x2 − y(1)r − α1 (4.15)

z3 = x3 − y(2)r − α2 (4.16)

Regressor
ω1 = 0 (4.17)

ω2 = φ2 (4.18)

ω3 = φ3 −
∂α2

∂x2
φ2 (4.19)

Tuning functions for θ̂:
τ1 = 0 (4.20)

τ2 = ω2 z2 (4.21)

τ3 = τ2 + ω3 z3 (4.22)

Stabilizing functions:
α1(x1, yr) = ᾱ1 (4.23)

α2(x1, x2, θ̂, yr, ẏr) = ᾱ2 (4.24)

α3(x̄3, θ̂, ȳ
(2)
r , λ̂) =

λ̂

f(x3)
ᾱ3 (4.25)

where x̄3 = (x1, x2, x3), ȳ
(2)
r =

(
yr, y

(1)
r , y

(2)
r

)
and:

ᾱ1 = −L1 z1 (4.26)

ᾱ2 = −z1 − L2 z2 − ωT2 θ̂ +
∂α1

∂x1
x2 +

∂α1

∂yr
ẏr (4.27)

ᾱ3 = −z2 − L3 z3 − ωT3 θ̂ +
∂α2

∂θ̂
Γ τ3 +

2∑
k=1

(
∂α2

∂xk
xk+1 +

∂α2

∂y
(k−1)
r

y(k)r

)
(4.28)
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Adaptive control law:

u = α3 +
λ̂

f(x3)
y(3)r (4.29)

Parameter update laws:
˙̂
θ = Γ τ3 (4.30)

˙̂
λ = −γ sign(b)

(
y(3)r + ᾱ3

)
z3 (4.31)

Error system: The design procedure (4.14-4.31) results in the following error
system:

ż1 = −L1 z1 + z2 (4.32)

ż2 = −L2 z2 − z1 + z3 + ωT2 θ̃ (4.33)

ż3 = −L3 z3 − z2 + ωT3 θ̃ − b
(
ᾱ3 + y(3)r

)
λ̃ (4.34)

A Lyapunov function for this system is:

V =
1

2
zT z +

1

2
θ̃TΓ−1θ̃ +

|b|
2 γ

λ̃2 (4.35)

Its derivative along the solution of eqs. (4.30-4.34) is:

V̇ = −
5∑
k=1

Lk z
2
k (4.36)

which proves from the Lasalle-Yoshizawa theorem that global tracking is achieved.
The calculations for the error system and the Lyapunov derivation are not shown
in this chapter, but are similar to the more complicated calculations for the con-
troller including valve dynamics in section 4.2.2.

4.2.2 Backstepping with Valve Dynamics

In this section valve dynamics is included and it is assumed that all the states, i.e.
position and velocity of the mass, load pressure, position and velocity of the valve
spool, are measured. Defining the two additional states (x4, x5) = (xvn, ẋvn)
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the system can be rewritten as :

ẋ1 = x2

ẋ2 = x3 + ϕ2(x1, x2)T θ

ẋ3 = b f(x3)x4 + ϕ3(x2, x3)T θ

ẋ4 = x5

ẋ5 = u+ ϕ5(x4, x5)T θ

(4.37)

which is in strict-feedback form but contains an unknown virtual control coeffi-
cient bf(x3) which is not constant. A new extension of the tuning function design
from [26] is developed below in the special case where f(x) =

√
ηhmcFh/M − x:

Coordinate Transformation
z1 = x1 − yr (4.38)

z2 = x2 − y(1)r − α1 (4.39)

z3 = x3 − y(2)r − α2 (4.40)

z4 = x4 −
λ̂

f(x3)
y(3)r − α3 (4.41)

z5 = x5 −
λ̂

f(x3)
y(4)r − α4 (4.42)

Regressor
ω1 = 0 (4.43)

ω2 = φ2 (4.44)

ω3 = φ3 −
∂α2

∂x2
φ2 (4.45)

ω4 = −∂α3

∂x2
φ2 −

∂α3

∂x3
φ3 +

λ̂ y
(3)
r

2 f(x3)3
φ3 (4.46)

ω5 = φ5 −
∂α4

∂x2
φ2 −

∂α4

∂x3
φ3 +

λ̂ y
(4)
r

2 f(x3)3
φ3 (4.47)

Tuning functions for θ̂:
τ1 = 0 (4.48)

τ2 = ω2 z2 (4.49)

τ3 = τ2 + ω3 z3 (4.50)
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τ4 = τ3 + ω4 z4 (4.51)

τ5 = τ4 + ω5 z5 (4.52)

Tuning functions for b̂:
π3 = z4 z3 (4.53)

π4 = π3 −
∂α3

∂x3
f(x3)x4 z4 +

λ̂ y
(3)
r

2 f(x3)2
x4 z4 (4.54)

π5 = π4 −
∂α4

∂x3
f(x3)x4 z5 +

λ̂ y
(4)
r

2 f(x3)2
x4 z5 (4.55)

Stabilizing functions:
α1(x1, yr) = ᾱ1 (4.56)

α2(x1, x2, θ̂, yr, ẏr) = ᾱ2 (4.57)

α3(x̄3, θ̂, ȳ
(2)
r , λ̂) =

λ̂

f(x3)
ᾱ3 (4.58)

α4(x̄4, θ̂, ȳ
(3)
r , b̂, λ̂) = ᾱ4 (4.59)

α5(x̄5, θ̂, ȳ
(4)
r , b̂, λ̂) = ᾱ5 (4.60)

where x̄i = (x1, . . . , xi) and ȳ
(i)
r =

(
yr, . . . , y

(i)
r

)
for all i = 1, . . . , 5, and where

ᾱ1 = −L1 z1 (4.61)

ᾱ2 = −z1 − L2 z2 − ωT2 θ̂ +
∂α1

∂x1
x2 +

∂α1

∂yr
ẏr (4.62)

ᾱ3 = −z2 − L3 z3 − ωT3 θ̂ +
∂α2

∂θ̂
Γ τ3 +

2∑
k=1

(
∂α2

∂xk
xk+1 +

∂α2

∂y
(k−1)
r

y(k)r

)
(4.63)

ᾱ4 = −b̂ f(x3) z3 − L4 z4 − ωT4 θ̂ +
∂α3

∂θ̂
Γ τ4 +

2∑
k=1

∂α3

∂xk
xk+1

+ f(x3) b̂
∂α3

∂x3
x4 +

3∑
k=1

∂α3

∂y
(k−1)
r

y(k)r +

(
y
(3)
r

f(x3)
+
∂α3

∂λ̂

)
˙̂
λ

+

3∑
k=2

∂αk−1

∂θ̂
Γω4 zk −

λ̂ y
(3)
r b̂

2 f(x3)2
x4

(4.64)
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ᾱ5 = −z4 − L5 z5 − ωT5 θ̂ +
∂α4

∂θ̂
Γ τ5 +

4∑
k=1
k 6=3

∂α4

∂xk
xk+1 + f(x3) b̂

∂α4

∂x3
x4

+

4∑
k=1

∂α4

∂y
(k−1)
r

y(k)r +

(
y
(4)
r

f(x3)
+
∂α4

∂λ̂

)
˙̂
λ+

4∑
k=2

∂αk−1

∂θ̂
Γω5 zk

+
∂α4

∂b̂
γΠ5 −

λ̂ y
(4)
r b̂

2 f(x3)2
x4

(4.65)

Adaptive control law:

u = α5 +
λ̂

f(x3)
y(5)r (4.66)

Parameter update laws:
˙̂
θ = Γ τ5 (4.67)

˙̂
b = γ π5 (4.68)

˙̂
λ = −γ sign(b)

(
y(3)r + ᾱ3

)
z3 (4.69)

Error system: From the design procedure (4.38-4.69), the derivatives of the
error variables z1, . . . , z5 can be expressed as follows:

ż1 = ẋ1 − y(1)r = x2 − y(1)r = z2 + α1 = −L1 z1 + z2 (4.70)

ż2 = ẋ2 − y(2)r − α̇1 = x3 + ϕ2(x1, x2)T θ̂ + ϕ2(x1, x2)T θ̃ − y(2)r − α̇1

= z3 + ϕ2(x1, x2)T θ̂ + ϕ2(x1, x2)T θ̃ − α̇1 + α2

= z3 + ϕ2(x1, x2)T θ̂ + ϕ2(x1, x2)T θ̃ − α̇1 − z1 − L2 z2 − ωT2 θ̂

+
∂α1

∂x1
x2 +

∂α1

∂yr
ẏr = −L2 z2 − z1 + z3 + ωT2 θ̃ (4.71)
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ż3 = ẋ3 − y(3)r − α̇2 = b f(x3)x4 + ϕT3 θ̂ + ϕT3 θ̃ − y(3)r − α̇2

= b f(x3)

(
z4 +

λ̂

f(x3)
y(3)r + α3

)
+ ϕT3 θ̂ + ϕT3 θ̃ − y(3)r − α̇2

= b f(x3)

(
z4 +

λ̂

f(x3)
ᾱ3

)
− b λ̃ y(3)r + ϕT3 θ̂ + ϕT3 θ̃ − α̇2

= b f(x3)z4 − z2 − L3 z3 − ωT3 θ̂ +
∂α2

∂θ̂
Γ τ3 +

2∑
k=1

(
∂α2

∂xk
xk+1 +

∂α2

∂y
(k−1)
r

y(k)r

)
− b λ̃ ᾱ3 − b λ̃ y(3)r + ϕT3 θ̂ + ϕT3 θ̃ − α̇2

= −L3 z3 − z2 + b̂ f(x3)z4 +
∂α2

∂x2
φT2 θ̂ − b

(
ᾱ3 + y(3)r

)
λ̃+ ωT3 θ̃ −

∂α2

∂x2
φT2 θ̂

+ b̃ f(x3)z4 +
∂α2

∂θ̂
Γ (τ3 − τ5)

= −L3 z3 − z2 + b̂ f(x3)z4 + σ34 z4 + σ35 z5 + ωT3 θ̃ − b
(
ᾱ3 + y(3)r

)
λ̃

+ b̃ f(x3)z4 (4.72)
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ż4 = ẋ4 −
d

dt

(
λ̂

f(x3)
y(3)r

)
− α̇3

= x5 −
˙̂
λ

f(x3)
y(3)r − λ̂

d

dt

(
1

f(x3)

)
y(3)r −

λ̂

f(x3)
y(4)r − α̇3

= z5 +
λ̂

f(x3)
y(4)r − b̂ f(x3) z3 − L4 z4 − ωT4 θ̂ +

∂α3

∂θ̂
Γ τ4 +

2∑
k=1

∂α3

∂xk
xk+1

+ f(x3) b̂
∂α3

∂x3
x4 +

3∑
k=1

∂α3

∂y
(k−1)
r

y(k)r +

(
y
(3)
r

f(x3)
+
∂α3

∂λ̂

)
˙̂
λ+

3∑
k=2

∂αk−1

∂θ̂
Γω4 zk

− λ̂ y
(3)
r b̂

2 f(x3)2
x4 −

˙̂
λ

f(x3)
y(3)r − λ̂

d

dt

(
1

f(x3)

)
y(3)r −

λ̂

f(x3)
y(4)r − α̇3

= z5 − b̂ z3 − L4 z4 − ωT4 θ̂ +
∂α3

∂θ̂
Γ τ4 +

2∑
k=1

∂α3

∂xk
xk+1 + f(x3) b̂

∂α3

∂x3
x4

+

3∑
k=1

∂α3

∂y
(k−1)
r

y(k)r +
∂α3

∂λ̂

˙̂
λ+

3∑
k=2

∂αk−1

∂θ̂
Γω4 zk −

λ̂ y
(3)
r b̂

2 f(x3)2
x4

− λ̂

(
− b

2 f(x3)2
x4 −

φT3 θ̂

2 f(x3)3
− φT3 θ̃

2 f(x3)3

)
y(3)r − α̇3

= z5 − b̂ z3 − L4 z4 − ωT4 θ̂ +
∂α3

∂θ̂
Γ (τ4 − τ5)− f(x3) b̃

∂α3

∂x3
x4

+

3∑
k=2

∂αk−1

∂θ̂
Γω4 zk − λ̂

(
− φT3 θ̂

2 f(x3)3
− φT3 θ̃

2 f(x3)3

)
y(3)r −

∂α3

∂x3
φT3 θ̂

− ∂α3

∂x3
φT3 θ̃ −

∂α3

∂x2
φ2θ̂ −

∂α3

∂x2
φ2θ̃ + b̃

λ̂ y
(3)
r

2 f(x3)2
x4

= −L4 z4 − σ34z3 − b̂ z3 + z5 + σ45 z5 + ωT4 θ̃

+ b̃

(
λ̂ y

(3)
r

2 f(x3)2
x4 − f(x3)

∂α3

∂x3
x4

)
(4.73)
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ż5 = ẋ5 −
d

dt

(
λ̂

f(x3)
y(4)r

)
− α̇4

= u+ ϕT5 θ̂ + ϕT5 θ̃ −
˙̂
λ

f(x3)
y(4)r − λ̂

d

dt

(
1

f(x3)

)
y(4)r −

λ̂

f(x3)
y(5)r − α̇4

= α5 +
λ̂

f(x3)
y(5)r + ϕT5 θ̂ + ϕT5 θ̃ −

˙̂
λ

f(x3)
y(4)r

− λ̂

(
− b

2 f(x3)2
x4 −

φT3 θ̂

2 f(x3)3
− φT3 θ̃

2 f(x3)3

)
y(4)r −

λ̂

f(x3)
y(5)r − α̇4

= −z4 − L5 z5 − ωT5 θ̂ +
∂α4

∂θ̂
Γ τ5 +

4∑
k=1
k 6=3

∂α4

∂xk
xk+1 + f(x3) b̂

∂α4

∂x3
x4

+

4∑
k=1

∂α4

∂y
(k−1)
r

y(k)r +

(
y
(4)
r

f(x3)
+
∂α4

∂λ̂

)
˙̂
λ+

4∑
k=2

∂αk−1

∂θ̂
Γω5 zk

+
∂α4

∂b̂
γΠ5 −

λ̂ y
(4)
r b̂

2 f(x3)2
x4 + ϕT5 θ̂ + ϕT5 θ̃ −

˙̂
λ

f(x3)
y(4)r

− λ̂

(
− b

2 f(x3)2
x4 −

φT3 θ̂

2 f(x3)3
− φT3 θ̃

2 f(x3)3

)
y(4)r − α̇4

= −L5 z5 − σ35 z3 − σ45z4 − z4 + ωT5 θ̃ + b̃

(
λ̂ y

(4)
r

2 f(x3)2
x4 − f(x3)

∂α4

∂x3
x4

)
(4.74)

The resulting error system is:

ż1 = −L1 z1 + z2

ż2 = −L2 z2 − z1 + z3 + ωT2 θ̃

ż3 = −L3 z3 − z2 + b̂ f(x3)z4 + σ34 z4 + σ35 z5 + ωT3 θ̃ − b
(
ᾱ3 + y(3)r

)
λ̃

+ b̃ f(x3)z4

ż4 = −L4 z4 − σ34z3 − b̂ f(x3) z3 + z5 + σ55 z5 + ωT4 θ̃

+ b̃

(
λ̂ y

(3)
r

2 f(x3)2
x4 − f(x3)

∂α3

∂x3
x4

)

ż5 = −L5 z5 − σ35 z3 − σ45z4 − z4 + ωT5 θ̃ + b̃

(
λ̂ y

(4)
r

2 f(x3)2
x4 − f(x3)

∂α4

∂x3
x4

)
(4.75)
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where σik is defined as:

σ34 = −∂α2

∂θ̂
Γω4 (4.76)

σ35 = −∂α2

∂θ̂
Γω5 (4.77)

σ45 = −∂α3

∂θ̂
Γω5 (4.78)

A Lyapunov function for this system is:

V =
1

2
zT z +

1

2
θ̃TΓ−1θ̃ +

1

2 γ
b̃2 +

|b|
2 γ

λ̃2 (4.79)

Its derivative along the solutions of (4.75) is computed as:

V̇ = z1 (−L1 z1 + z2) + z2

(
−L2 z2 − z1 + z3 + ωT2 θ̃

)
+ z3

(
−L3 z3 − z2 + b̂ f(x3)z4 + σ34 z4 + σ35 z5

+ωT3 θ̃ − b
(
ᾱ3 + y(3)r

)
λ̃+ b̃ f(x3)z4

)
+ z4

(
−L4 z4 − σ34z3 − b̂ f(x3) z3 + z5 + σ45 z5

+ωT4 θ̃ + b̃

(
λ̂ y

(3)
r

2 f(x3)2
x4 − f(x3)

∂α3

∂x3
x4

))
+ z5 (−L5 z5 − σ35 z3 − σ45z4 − z4

+ωT5 θ̃ + b̃

(
λ̂ y

(4)
r

2 f(x3)2
x4 − f(x3)

∂α4

∂x3
x4

))
+ θ̃TΓ−1

˙̃
θ +

b̃

γ
˙̃
b+
|b|
γ
λ̃

˙̃
λ

= −
5∑
k=1

Lk z
2
k +

(
λ̂ y

(3)
r

2 f(x3)2
x4 z4 − f(x3)

∂α3

∂x3
x4 z4

+
λ̂ y

(4)
r

2 f(x3)2
x4 z5 − f(x3)

∂α4

∂x3
x4 z5 + f(x3)z3 z4 −

˙̂
b

γ

)
b̃

+
(
z2 ω2 + z3 ω3 + z4ω4 + z5ω5 − Γ−1

˙̂
θ
)T

θ̃ −
(
b
(
ᾱ3 + y(3)r

)
z3 −

|b|
γ

˙̂
λ

)
λ̃

(4.80)

which yields

V̇ = −
5∑
k=1

Lk z
2
k (4.81)
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Cost Original Optimized
α1 1⊗ 2⊕ 1⊗ 2⊕
α2 6⊗ 9⊕ 6⊗ 9⊕
α3 43⊗ 67⊕ 27⊗ 30⊕ 7 .
α4 707⊗ 1085⊕ 128⊗ 122⊕ 53 .
α5 29591⊗ 44486⊕ 699⊗ 513⊕ 222 .

Table 4.4: Cost of calculation in number of multiplication (⊗), number of addi-
tions (⊕) and number of assignments (.) for each stabilizing function αi. Last
column is the cost when the calculations are optimized.

which proves from the Lasalle-Yoshizawa theorem that global tracking is achieved.

Table 4.4 shows the cost of calculations for each stabilizing function at each
design step. The computation of the final control law is optimized in order to
reduce the cost of calculation and make real-time application possible. Table 4.4
shows that significant reduction in calculation time is possible by optimizing the
code.

4.2.2.1 Tracking Performance of Backstepping Controllers

In order to test the robustness of the controller, two models of the plant are
implemented. The first one, described in section 4.2.1, is used to design the
controller, whereas a second model, more realistic is used to represent the phys-
ical system. In this new model the dynamics of the valve is represented by
a second order transfer function, the friction in the cylinder is nonlinear and
Stribeck and Coulomb effects are modelled. Moreover the compressibility of the
fluid is not neglected inside the load and thus the cylinder can accumulate fluid.
Finally the uncertain parameters of the new model differ from the ones used
in the controller design by up to +/- 20%. The simulation results are given in
Figs. 4.13-4.18. Figs. 4.13 and 4.16 show the tracking for sinusoidal and step
references. Figs. 4.14 and 4.17 shows the tracking error, and Figs. 4.15 and 4.18
show the actuator (valve) input. For the Figs. 4.13-4.15 the controller gains
equal [L1, L2, L3] = [180, 180, 180], while for Figs. 4.16-4.18 the controller gains
equal [L1, L2, L3, L4, L5] = [180, 180, 180, 350, 350]. The reference position and
the tracking position are shown with dashed and plain lines, respectively. The
model used to develop both the backstepping controllers contain the following
uncertainties: M∗ = 0.9M , A∗ = 1.1A, k∗ = 0.8 k, d∗ = 0.8 d, C∗d = 0.9Cd,
w∗ = 1.1w, V ∗t = 0.8Vt, β

∗ = 0.8β, ρ∗ = 0.9 ρ, p∗ = 0.9 p. The ∗-superscript
refers to the model used by the controller.
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Figure 4.13: Simulated position tracking with the controller of section 4.2.1.
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Figure 4.14: Tracking error for Fig. 4.13.
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Figure 4.15: Simulated input (valve opening) with the controller of section 4.2.1.
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Figure 4.16: Simulated position tracking with the controller of section 4.2.2.
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Figure 4.17: Tracking error for Fig. 4.16.
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Figure 4.18: Simulated input (valve opening) with the controller of section 4.2.2.
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4.2.2.2 Comparison with PI Controller

In [10] the following comparison metrics involving the position error e(t) were
defined: Mean Positioning Accuracy (MPA), Absolute Positioning Accuracy
(APA), Weighted Position Accuracy (WPA), Saturation Index (SAT), Robust-
ness Index (RI) and Composite Index (CI). The definitions are provided below
for completeness.

The MPA is defined as as the root mean squared position error obtained for a
reference signal, averaged over a time interval T = [ts, tf ]:

MPA =

(
1

tf − ts

∫ tf

ts

e(t)2dt

)1/2

(4.82)

The APA is defined as the maximum absolute position error over a time interval
T :

APA = max
t∈T

(|e|) (4.83)

The WPA is defined over a time interval T in the form:

WPA =

(
1

tf − ts

∫ tf

ts

(
e(t)2 + ρ u(t)2

)
dt

)1/2

(4.84)

where ρ > 0 is a control weighting factor and u is the control output. The SAT
is defined as the proportion of the respective time interval during which the
controller output is saturated:

SAT =
tsat

tf − ts
(4.85)

The control output is considered saturated when the computed control is |u(t)| >
umax, where |umax| is the maximum input before saturation. The RI is defined
represents the relative error of the MPA for nominal NOM and changed VAR
plant parameters over a time interval: T :

RI =
|MPA(NOM, T )−MPA(VAR, T )|

MPA(NOM, T )
(4.86)

Finally, the CI is defined as the weighted sum of the CI, APA and WPA over a
time interval T :

CI = k1RI + k2APA+WPA (4.87)

where k1 and k2 are weighting factors.

A PD controller was compared with the other controllers on all these criteria
for the transient response (ts = 0) and the steady-state performance (ts = 10),
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as well as for a sinusoidal response and for a point-to-point response. For the
RI [10] used a 50% reduction in supply pressure.

In this chapter, the criteria APA, MPA and WPA are used to compare a PI
controller with two backstepping controllers BS1 and BS2 of sections 4.2.1 and
4.2.2, respectively. A PI controller is used instead of a PD, because the spring
in Fig. 2.1 makes the open-loop integrator disappear. The hydraulic system
considered in [10] contained an open-loop integrator. Moreover, the following
three criteria are not considered in this chapter: SAT, RI and CI. Input satu-
ration for the system in Fig. 2.1 occurs when the valve opening reaches 5mm.
This saturation only occurs for the controller in section 4.2.1. The criterion RI
is not suited to benchmarking when the nominal error is close to zero, which
is the case in this chapter. The CI makes use of the RI, and hence is also not
suited in this case. Nevertheless, the robustness of the adaptive backstepping
controller can be seen for example in Fig. 4.16, where a 20% initial error in
model parameters are introduced.

Similar to the presentation in [10], Figs. 4.19-4.21 contain 4 bars, for simulated
results using: a) sinusoidal reference (entire response), b) sinusoidal reference
(steady-state response), c) point-to-point reference (entire response), d) point-
to-point (steady-state). Fig. 4.19 shows that both backstepping controllers BS1
and BS2 perform better than the PI controller for the APA criterion, where the
BS2 controller performs significantly better. For both the MPA and the WPA,
the BS1 and the PI controllers give similar performance, while the BS2 performs
significantly better as seen in Figs. 4.20-4.21.

Because of the high complexity of these backstepping controllers, their imple-
mentation in real-time is not conducted but instead the structure of the con-
troller is modified in order to reduce the complexity and to facilitate real-time
experiments. The new design is described in the next section together with
simulation and real-time implementation.
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4.2.3 Backstepping with Valve Dynamics and Dynamic
Friction

Another related work is the paper by [37] where the authors consider back-
stepping control for a pneumatic system using a cascade control structure with
feedforward friction compensation. The main differences between [37] and the
work presented here is the inner loop controller as well as the type of system
(pneumatic vs. hydraulic-mechanical). Instead of using an inner loop containing
valve characteristics and approximated inverse valve characteristics as in [37], a
PID controller is used in the inner loop together with a backstepping procedure
in the outer loop.

One drawback of the paper [13] was the relatively high complexity of the model-
based backstepping controller and the difficulty in getting this controller to run
fast enough on a real-time system. Hence, in this section, the control structure
is re-considered by introducing an internal PID control loop for the pressure in
the cylinder. This change reduces the backstepping with three steps compared
to the paper [13]. These are shown to be related to: pressure, valve position
and velocity, and input voltage. Moreover, it is analysed how the friction model
could be extended by including Stribeck effects, Coulomb friction and dynamic
phenomena (LuGre model, [11]) and better performance obtained as compared
to linear viscous friction models.

Assumptions Besides the assumption that friction can be modeled by a dy-
namical friction model (LuGre), the three following are also considered: The
flow through the leakage between the two cylinder chambers is laminar , i.e.
proportional to the load pressure (pressure difference between the two cylinder
chambers). The spring and damper in the mechanical part are linear. Other
assumptions concerning the valve nonlinearities and valve dynamics are not
neccessary in the design of the controller thanks to the inner control structure
developed in the next section.

4.2.3.1 Controller Design

Trajectory initialization In order to improve the adaptation by making the
uncertainty errors smaller and to improve the adaptive system’s transient per-
formance, the reference trajectory is initialized, see [27], such that the state
variables are zero at time zero and the reference and its derivatives are continu-
ous up to a certain order. In the simulation, the trajectory initialization is done
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Figure 4.22: Nonlinear controller.

using a Bessel low-pass filter of order 12 with a passband edge frequency of 150
rad/s.

Cascade controller with LuGre friction model compensation The po-
sition y and velocity ẏ of the mass and the load pressure Pl are measured while
the internal state zf of the friction model, not accessible by measurement, is
estimated by a dual observer. One drawback of the controller in [13] is the
”explosion of terms” (see [1]), caused by the analytical differentiation of the
stabilizing functions from one step to the next. If numerical differentiation is
chosen instead, it can produce phase lag between synthetic inputs, requiring
higher sampling rate and increases the number of algebraic loops in the simu-
lation. In order to reduce the complexity of the controller and make it suitable
for real-time applications the backstepping design is stopped after two steps
by considering the load pressure as the input. Using a cascade structure, as
shown in Fig.4.22, the load pressure is controlled inside the inner loop by using
a PID controller. The external loop ensures a perfect output reference tracking
provided the internal loop works perfectly.
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The following equations describe the EHSS when pL is considered as the input:

ÿ = − k

M
y − d+ σ2 + σ1

M
ẏ +

A

10M
pL

+

 1

M

σ1σ0 |ẏ|

Fc + (Fs − Fc) exp
(
−ẏ
vs

) − σ0
M

 zf (4.88)

żf = ẏ − σ0|ẏ|

Fc + (Fs − Fc) exp
(
−|ẏ|
vs

)zf (4.89)

Eq.(4.88) is acceleration of the actuator tool and the load mass, where A is
the cylinder effective area. If the state variables [y, ẏ] are equal to [x1, x2] and
pLd = pL, eq.(4.88) can be rewritten as:

ẋ1 = x2 (4.90)

ẋ2 = ϕ(x1, x2)T θ + b pLd +

(
β1
|x2|
g(x2)

− β0
)
zf (4.91)

where the control coefficient b = A
10M is unknown, θ is a vector of uncertain

parameters:

θ = [θ1, θ2]T =

[
− k

M
,−d+ σ1 + σ2

M

]T
(4.92)

and ϕ(x1, x2)T = [x1 x2], g(x2) = Fc

σ0
+ Fs−Fc

σ0
exp

(
−|x2|
vs

)
, β1 = σ1

M , and

β0 = σ0

M . Two observers are used to estimate the internal friction state zf :(
β1
|x2|
g(x2)

− β0
)
zf =

|x2|
g(x2)

(
β1z̃f1 + β̃1ẑf1 + β̂1ẑf1

)
− β0z̃f0 − β̂0ẑf0 − β̃0ẑf0 (4.93)

and

˙̂zf0 = x2 −
|x2|
g(x2)

ẑf0 + ι0

˙̂zf1 = x2 −
|x2|
g(x2)

ẑf1 + ι1

where ẑ, z̃ represent the estimate of z and z− ẑ, respectively. ι0,1 are correction
terms that will be found in the next step.

Using the coordinate transformation:

z1 = x1 − yr (4.94)

z2 = x2 − ẏr − α1 (4.95)
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and the stabilizing functions:

α1 = −L1z1 (4.96)

α2 = −z1 − L2z2 − ϕT θ̂ +
∂α1

∂x1
x2 +

∂α1

∂yr
ẏr

+ β̂0ẑf0 −
|x2|
g(x2)

β̂1ẑf1 (4.97)

the adaptive control law is given by:

pLd = %̂ (α2 + ÿr) (4.98)

where %̂ is the estimate of % = 1
b computed as

˙̂% = −γ(α2 + ÿr)z2 (4.99)

and the parameter update laws are:

˙̂
θ = Γϕz2 (4.100)

˙̂
β0 = −γ0ẑf0z2 (4.101)

˙̂
β1 = γ1ẑf1

|x2|
g(x2)

z2 (4.102)

ι0 = −z2 (4.103)

ι1 =
|x2|
g(x2)

z2 (4.104)

The design procedure in eqs. (4.94)-(4.104) results in the following error system:

ż1 = ẋ1 − y(1)r = x2 − y(1)r = z2 + α1 = −L1 z1 + z2 (4.105)

ż2 = ẋ2 − y(2)r − α̇1 = ϕ(x1, x2)T θ + bu+

(
β1
|x2|
g(x2)

− β0
)
zf − y(2)r − α̇1

= ϕ(x1, x2)T θ + b%̂

(
−z1 − L2z2 − ϕT θ̂ +

∂α1

∂x1
x2 +

∂α1

∂yr
ẏr + β̂0ẑf0

− |x2|
g(x2)

β̂1ẑf1 + ÿr

)
+
|x2|
g(x2)

(
β1z̃f1 + β̃1ẑf1 + β̂1ẑf1

)
− β0z̃f0 − β̂0ẑf0

− β̃0ẑf0 − y(2)r − α̇1

= ϕ(x1, x2)T θ̃ − z1 − L2z2 − b%̃ (α2 + ÿr) +
|x2|
g(x2)

(
β1z̃f1 + β̃1ẑf1

)
− β0z̃f0 − β̃0ẑf0

(4.106)
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A Lyapunov function for this system is:

V =
1

2
zT z +

1

2
θ̃TΓ−1θ̃ +

b

2 γ
%̃2 +

β0
2
z̃2f0 +

β1
2
z̃2f1

+
1

2γ0
β̃2
0 +

1

2γ1
β̃2
1 (4.107)

Its derivative along the solution of (4.105-4.106) is:

V̇ = z1 (−L1 z1 + z2) + z2

(
ϕ(x1, x2)T θ̃ − z1 − L2z2 − b%̃ (α2 + ÿr)

+
|x2|
g(x2)

(
β1z̃f1 + β̃1ẑf1

)
− β0z̃f0 − β̃0ẑf0

)
+ θ̃TΓ−1

˙̃
θ +

b

γ
%̃ ˙̃%+ β0z̃f0 ˙̃zf0

+ β1z̃f1 ˙̃zf1 +
1

γ0
β̃0

˙̃
β0 +

1

γ1
β̃1

˙̃
β1

= −
2∑
k=1

Lk z
2
k +

(
z2ϕ− Γ−1

˙̂
θ
)T

θ̃ −
(
b (ᾱ2 + ÿr) z2 +

b

γ
˙̂%

)
%̃

+

(
z2
|x2|
g(x2)

β1 + β1

(
x2 −

|x2|
g(x2)

(z̃f1 + ẑf1)− ˙̂zf1

))
z̃f1

+

(
z2
|x2|
g(x2)

ẑf1 −
1

γ1

˙̂
β1

)
β̃1 +

(
−z2ẑf0 −

1

γ0

˙̂
β0

)
β̃0

+

(
−z2β0 + β0

(
x2 −

|x2|
g(x2)

(z̃f0 + ẑf0)− ˙̂zf0

))
z̃f0

= −
5∑
k=1

Lk z
2
k −

|x2|
g(x2)

(
β0z̃

2
f0 + β1z̃

2
f1

)
(4.108)

which proves from the Lasalle-Yoshizawa theorem that global asymptotic track-
ing is achieved if the error pLd − pL inside the inner loop converges to zero.

4.2.3.2 Simulations

In order to demonstrate its robustness the controller is simulated with the EHSS
described in [13] where dynamics of the valve spool and nonlinearities in the
valve as well as dynamic friction in the cylinder are present. Moreover the
uncertain parameters in the plant differ by up to ± 20% compared to those
used in the controller design. M∗ = 0.9M , A∗ = 1.1A, k∗ = 0.8 k, d∗ = 0.8 d,
σ∗2 = 0.9σ2, σ∗1 = 1.2σ1, σ∗0 = 0.8σ0. The ∗-superscript refers to the model
used by the controller.
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In order to test the controller at different points of operation, the reference
tracking position consists of a 5 Hz sine wave and followed by a sequence of
steps between -1 and 10 mm. The controller gains choosen for the backstepping

procedure are L1 = L2 = 70 and the adaptation gains are Γ =

[
γ0 0
0 γ1

]
,

γ0 = γ1 = 50. Position of the mass, y, tracking error, z1 and the input voltage,
u are shown in Figs. 4.23, 4.24 and 4.25 respectively, with and without friction
compensation in the controller.

Simulations are run using Matlab/Simulink with a fixed step solver of order 4
(Runge-Kutta) and 5 ms step size which is suitable for real-time implementation
(for instance using National Instrument CompactRio controller, Matlab XPC
Target or Siemens 300-series PLC’s).
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Figure 4.23: Position y. Black, blue and red line for the reference position,
the position given by the controller without and with friction compensation
respectively. L1 = L2 = 70.

Simulation results in Fig. 4.24 show that the tracking error is significantly de-
creased with friction compensation when the operating point is close to the zero
position, i.e. when the load pressure is low. It happens in the simulation at
time t = 9 to t = 11s.
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Figure 4.24: Tracking error. Blue=without friction compensation, Red=with
friction compensation. L1 = L2 = 70.

4.2.3.3 Comparison with Full Backstepping

In this section the cascade controller with friction compensation developed in
section 4.2.3.1 called CASC and the controller developed in [13] called BS2 are
compared, using the same input position reference as the previous section and
same gains for the controllers. The results are shown in Figs. 4.26 and 4.27 for
a similar input level (±2V).

The Mean Positioning Accuracy (MPA) and the Absolute Positioning Accuracy
(APA) as defined in [10] are shown in Table 4.5.
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Figure 4.26: Position y. Black, blue and red line for the reference position, the
position given by the controller BS2 and CASC respectively.
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Controller Type MPA APA
BS2 (from t = 0 to t = 9) 7.88 · 10−4 1.71 · 10−4

BS2 (from t = 9 to t = 11) 2.10 · 10−3 1.59 · 10−4

CASC (from t = 0 to t = 9) 3.90 · 10−4 7.10 · 10−5

CASC (from t = 9 to t = 11) 8.77 · 10−4 3.64 · 10−5

Improvement from t = 0 to t = 9 2.02 2.41
Improvement from t = 9 to t = 11 2.39 4.37

Table 4.5: Comparison of tracking performance between CASC and BS2 con-
troller.

The new controller CASC performs significantly better (more than a factor of
2 on both criteria), and especially for the APA improvement for positions close
to zero where the load pressure is low, as seen in Fig.4.27 (between t = 9 and
t = 11). Moreover, the number of floating point operations when using controller
CASC is considerably reduced compared to the BS2 and more suitable for real-
time implementation, see Table 4.6.

Controller Type Costs
BS2 699⊗ 513⊕ 222 .
CASC 16⊗ 15⊕ 4 .

Table 4.6: Cost of BS2 and CASC optimised calculations in number of multi-
plication and division (⊗), number of additions (⊕) and number of assignments
(.) for each control law.

4.3 Experiments

In this section the linear controllers as well as the adaptive nonlinear controller
based on backstepping techniques and cascade structure are implemented in
real-time on the test bed presented in chapter 2. The tracking performances
for each controlled EHSS are thereafter analysed using the mean positioning
accuracy and the absolute positioning accuracy metrics. The experiments are
conducted with a hydraulic fluid temperature stabilised around 30◦C and with-
out load. Real-time implementation is realised using Matlab XPC Target with
1ms step size. Position tracking and the corresponding tracking error are shown
in figs.4.28 and 4.29 for the same position reference used in simulation fig.4.26.
The same experiment is repeated for the controlled EHSS with four different
controllers, i.e. the proportional (KP ), lag (KL), H∞ (KI) and backstepping
(CASC) controllers designed previously.
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Figure 4.28: Position tracking using linear controller (proportional = blue, lag
compensator = red, H∞ = green) and nonlinear backstepping control (ma-
genta). Reference position is the black line.

All controllers successfully stabilise the system and the mass position is able to
follow in a certain extend the reference, with large steady-state error with H∞
control and large overshoot with lag control, as shown previously from simula-
tion. Next, the performances when the reference is a sine wave of frequency 30
rad/s and amplitude 1mm are investigated and position tracking together with
error tracking are shown during one period for time interval T = [5.6, 5.85] in
figs. 4.30 and 4.31 respectively.

At this frequency, the closed-loop system with lag control gives the smallest
tracking error since the phase shift is reduced compared to the other controllers.
However, at higher frequencies, the phase shift for the system with lag control
would drop quickly to −90◦ and proportional control might give better per-
formances. MPA and APA metrics for the sine wave reference signal over the
time interval T = [5.1, 5.9] are given in table 4.7. These results show that for
a sine wave reference signal of low frequency and low amplitude, the nonlinear
backstepping controller does not perform better than linear controllers. Finally
the tracking performances are analysed when the reference signal is a step of
amplitude 1 mm. Position and error tracking are shown in figs. 4.32 and 4.33
respectively.
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Figure 4.29: Position errors.

Whereas lag control leads the feedback system to a 40% overshoot and H∞
control leads to a 30% steady-state error, the backstepping controller with fric-
tion compensation gives the best performances in terms of mean positioning
accuracy, as shown also in table 4.8.
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Figure 4.30: Position tracking using linear controller (proportional = blue, lag
compensator = red, H∞ = green) and nonlinear backstepping control (ma-
genta). Reference position is the black line.
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Controller Type MPA APA
KP 11.2 · 10−3 5.9 · 10−4

KL 5.6 · 10−3 3.8 · 10−4

KI 7.3 · 10−3 4.9 · 10−4

CASC 9.1 · 10−3 6.4 · 10−4

Table 4.7: Comparison of tracking performance between proportional, lag and
backstepping controllers, KP , KL, KI and CASC respectively, when the track-
ing reference is a sine wave signal of amplitude 1 mm and frequency 30 rad/s
(from t = 5.1s to t = 5.9s)
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Figure 4.32: Position tracking using linear controller (proportional = blue, lag
compensator = red, H∞ = green) and nonlinear backstepping control (ma-
genta). Reference position is the black line.
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Figure 4.33: Position errors.

Controller Type MPA APA
KP 4.6 · 10−3 1.0 · 10−3

KL 7.0 · 10−3 1.0 · 10−3

KI 9.3 · 10−3 1.2 · 10−3

CASC 3.7 · 10−3 1.0 · 10−3

Table 4.8: Comparison of tracking performance between proportional, lag and
backstepping controllers, KP , KL, KI and CASC respectively, when the track-
ing reference is a negative step of amplitude 2mm followed by a positive step of
amplitude 1mm (from t = 14.1s to t = 15s)
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4.4 Active Fault-Tolerant Control

Hydraulic manipulators have greatly improved safety and work conditions for
operators. However, faults in hydraulic systems happen and a proper design of
control system must be considered in order to avoid a break-down of the system
or catastrophic failures.

Fault-tolerant control is a new area of automatic control and is particularly
suited for applications where safety is of high priority or for applications where
the cost of break-down, time to repair and intervention is high. Systematic
methods for fault handling were developed in [6], and its application to EHSS has
received increased attention in the last decade. Two cases can be distinguished:

The first case is passive fault-tolerant control (FTC) which can tolerate changes
and can satisfy the requirements for a certain class of fault without the need to
identify or diagnose the faults. For this purpose, robust or adaptive controllers
are used. Passive FTC is best suited for slowly varying parameters and not for
abrupt changes. Application to EHSS have been shown in [32], [21] or [22] were
the controller used are based on quantitative feedback theory (QFT), or in [40]
by using robust H∞ control. QFT will not be dealt further in detail in this
dissertation.

The second case is active FTC where information obtained from fault diagnosis
is considered in controller redesign [33]. Application in EHSS are found in [17],
[12] and [5]. Different actions can be taken after a fault is diagnosed: the nominal
controller is augmented by a compensation controller in [17], the backstepping
design is modified in [12] in order to include an additional adaptation term
and adaptation law to compensate for the fault and a bumpless switch to a
predetermined PID controller is realised in [5]. The faults which have been
considered in the cited papers were internal leakage, fault in servo valve, in
supply pressure, fault due to contamination and pressure sensor offset, detected
by residual generation from parity equation and fuzzy-logic in [5], backstepping
update laws in [12] and robust observer and adaptive robust state reconstruction
in [17]. The nonlinearity in orifice flow and in nonsymmetric hydraulic cylinder
were considered but not the nonlinearity in friction which in the present case is
dominant.

Because of its adaptivity, it was shown in this chapter that nonlinear backstep-
ping control can tolerate small faults in the uncertain parameters. However,
in the case of the loss of one of the pressure sensor, backstepping control as
designed previously is no longer operational. In this section active FTC with
fault detection and identification (FDI) is designed, were the possible fault con-
sidered are due to leakage flow in the cylinder or valve, increase of friction in the



150 Adaptive Nonlinear Control Design

cylinder and fault in one of the pressure sensor. In this last case the controller
is reconfigured and only the position measurement is used in order to track a
position reference yref . The structure of the active FTC is shown in fig.4.34
where r1, r2 are two residuals generated from the position and load pressure
measurements, m1 and m2 respectively and the input signal u. The signals d1
and d2 are boolean and are one if the threshold for the test on r1, r2 respectively
is reached. The signals fg1, fg2 and fg3 are three groups of distinct faults.



4.4 Active Fault-Tolerant Control 151

F
ig

u
re

4.
3
4
:

A
ct

iv
e

fa
u

lt
-t

o
le

ra
n
t

co
n
tr

o
l

st
ru

ct
u

re
w

it
h

co
n
tr

o
l

re
co

n
fi

g
u

ra
ti

o
n

fo
r

a
n

E
H

S
S

.



152 Adaptive Nonlinear Control Design

4.4.1 Fault Detection and Isolation

The two residuals r1 and r2 are generated using eqs. (3.17) and (3.18). The
statistical hypothesis test developed in the previous chapter when the EHSS is
in steady-state is no longer valid in the general case with varying input and new
tests need hence to be designed. In this section, for the demonstration of FTC
design with varying inputs, the varying input type is limited to periodic signals
with frequencies higher than 1 Hz. In this special case, it can be shown from
eqs. (3.17) and (3.18) that a fault in internal leakage or friction adds a periodic
signal of zero mean to the residuals. Thus, the test used in this section consists
of a running RMS value of the residuals with moving window length equal to
the maximum period of the input signal followed by a threshold based test (a
relay). The outputs of the test are the signals d1 and d2 as shown in fig. 4.34.
Experimental results of the signals r1, r2, and of the signals d1, d2 before the
relay are shown later in section 4.4.4.

The way the constraints (eqs. (3.1)-(3.6)) and measurements (eqs. (3.7) and
(3.8)) enter into the two parity relations (residuals r1 and r2) is as follows:

(
r1
r2

)
←

(m1 m2 c1 c2 c3 c4 c5 c6

1 1 1 0 1 0 0 0
1 1 0 1 0 1 1 1

)
(4.109)

Since two residuals are available, three groups of fault can be isolated. The
first group, fg1, with signature r1 6= 0, r2 = 0 includes faults in the orifice flow
equation c1 or the mass balance equation c3. Possible fault in this group are
leakage flow in the cylinder, change of the hydraulic fluid properties due to
contamination of change in temperature. The second group, fg2, with signature
r1 = 0, r2 6= 0 includes the force balance equation c2 and the constraints relative
to the friction model c4, c5 and c6. Possible faults are due to the friction in the
cylinder or a fault related to the load. The last group, fg3, with signature
r1 6= 0, r2 6= 0 includes the measurements m1 and m2 where possible faults are
due to sensors. The supervision logic block in fig. 4.34 can be designed as shown
in fig. 4.35 using AND and NOT gates.

4.4.2 Controller Design

For the first two groups of faults the structure of the controller does not need
to be changed, thus passive fault-tolerant control can be realised by designing
robust and adaptive controllers. The controller designed in section 4.2 can
hence recover from a fault related to leakage in the cylinder, hydraulic fluid
contamination, friction or load. However, since the adaptation law might be too
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Figure 4.35: Supervision logic for three fault group diagnosis.

slow for the parameters to converge to the values when a fault is present, active
fault-tolerant control is realised by changing the values of the backstepping
controller parameters once a fault in leakage or friction is diagnosed. In the
case of a faulty pressure measurement, since the backstepping controller needs
the pressure feedback in order to be operational, any fault in one of the two
pressure sensors would lead the system to a break-down.

4.4.3 Controller Reconfiguration

In order to avoid the system to stop, the structure of the controller needs to be
changed, if one of the pressure sensor fails and only the position measurement
is available. Since high performance is no longer a priority in this case, one
of the linear controllers designed in section 4.1 can be used until the sensor is
fixed or replaced. A seamless transition between the two controllers needs to
be designed. If a H∞ controller tis chosen to replace the nonlinear controller,
the transition can be realised using progressive fault accommodation or anti-
windup mechanism as in [6] where the controller states are correctly initialised.
The structure of such a reconfiguration is shown in fig. 4.34. Experimental
results are presented in the next subsection with fault diagnosis of leakage,
friction, and pressure sensor loss, together with controller reconfiguration from
nonlinear backstepping control to proportional control.

4.4.4 Experiments

An experiment is run on the test bed presented before, without load. The
goal of the experiment is to demonstrate the ability of the EHSS to perform
position tracking when faults in leakage, friction and pressure sensor occur by
using active FTC as shown in fig. 4.34. The reference position is a sine wave of
frequency 5 rad/s and amplitude 1 cm. A fault in internal leakage is introduced
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after 13.8 s until time is 20 s by opening a manual valve between the cylinder
chambers. The calibrated leakage flow through this opening at 80 bar is 2 l/min.
At time t = 25.8s, a force of approximately 10N is applied against the mass in
only positive direction, until time t = 30.7s. Finally the pressure sensor in
cylinder chamber A is disconnected during time interval [40.3s − 44.0s]. The
measurements and input values are shown in fig. 4.36.
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Figure 4.36: Position and load pressure measurements, input signals for position
tracking of a 5 rad/s sine wave with successive faults in leakage, friction and
pressure sensor during time interval [13.8s−20.0s], [25.8s−30.7s], and [40.3s−
44.0s] respectively.

The measurements in fig. 4.36 show that the controlled system with active fault-
tolerant control is able to follow the reference with high accuracy even with
presence of one of the three faults considered. Moreover, the faults are not
easily detectable from measurements only.

Fig. 4.37 shows the generated residuals r1 and r2. It is observed that fault in
leakage increases the magnitude of residual r1, one way additional force (which
represent fault in friction) results in a small decrease in residual r2, whereas
fault in pressure sensor is clearly visible in both residuals.
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Figure 4.37: Residuals r1 and r2.

Using a running RMS value of the residual with a moving and overlapping win-
dow for residual r1 and a moving average value for residual r2, the processed
residual data are shown in fig. 4.38. The changes are shown to be detectable
using thresholds for fault detection and fault reversion. The value of these
thresholds were tuned from the experiment directly in order to obtain satisfac-
tory false alarm rate and detection time. The dependence of these thresholds
with the false alarm rate is left for future studies.

Finally the faults are diagnosed and shown in fig. 4.39 using supervision logic.
The time to detect is approximately 0.5 s for leakage related fault and 1s for
friction related fault. The time to detect pressure sensor loss is within the
range of 20 ms and the time to revert from sensor loss is approximately 60 ms.
During these detection times the controller switches seamlessly from nonlinear
backstepping control to proportional control, with a peak in input signal limited
by saturation.

Remark Since the time to detect a change in residual r2 is longer than the
time to detect a change in residual r1, false alarms occur first in leakage fault
diagnosis when the sensor fault is activated, and second in friction fault diagnosis
when the sensor fault is deactivated as shown in fig. 4.39.
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Figure 4.38: Values of the test run for residuals before decision making based
on threshold.
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sensor respectively, after supervision logic.
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4.5 Summary and Discussion

In this chapter adaptive nonlinear control for electro hydraulic servo system was
designed and implemented in a real-time environment on the test bed described
in chapter 2 which exhibits nonlinearities and model uncertainties. First a
review of classical linear control methods including proportional, lag and H∞
control was used to characterise the performances which can be achieved using
simple and ubiquitous compensators.

Second, an adaptive backstepping controller considering valve dynamics has
been developed and the performance has been compared with three different
criteria to a simple PI controller by simulation. All three criteria show that the
adaptive backstepping controller taking valve dynamics into account performs
significantly better than both the PI controller and a reduced version of the
backstepping controller without taking valve dynamics into account.

Third, the complexity of the adaptive backstepping controller has been reduced
by a factor of 50 by developing a cascade structure where the desired load pres-
sure is considered as the output of the adaptive backstepping controller. By
including a dynamic friction compensation in the new design the position track-
ing performances of the adaptive controller have further been increased com-
pared with the similar controller without the cascade structure and the dynamic
friction model. Besides, the new controller is suitable for real-time implemen-
tation and experimental results have demonstrated the increased performances
over linear controllers in term of positioning accuracy for small amplitude step
changes.

Finally, by combining the techniques of fault detection and isolation developed in
the previous chapter with those of adaptive nonlinear control developed in this
chapter, an active fault-tolerant controller has been successfully implemented
on the test bed described in chapter 2. Online fault diagnosis for faults related
either to internal leakage or to friction in the hydraulic cylinder, or to pressure
sensors has been demonstrated with active controller parameter update for the
first two cases and active controller reconfiguration in the last case where one
of the two pressure sensor fails.
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Chapter 5

Conclusions and Further
Research

5.1 Introduction

This chapter reviews the major results and contributions presented in the the-
sis and introduces several topics for further research. Motivated by the work
realised and the results achieved in the previous chapters, the topics discussed
in this chapter are: 1) the behaviour and modelling of friction and orifice flows
in electro hydraulic servo system (EHSS), 2) the prognosis of fault in EHSS, 3)
real-time implementation of adaptive nonlinear backstepping control in EHSS,
4) design of active fault-tolerant control for large EHSS. For each of these topics,
the major conclusions are drawn and then discussed leading to recommendations
for the modelling and control design of EHSS. Finally, in the last section of this
chapter, several topics for further research are suggested which raise from the
work presented in the thesis.
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5.2 Major Conclusions, Discussions and Recom-
mendations

The main contributions of the thesis are the developments of tools for designing
an active fault-tolerant controller for EHSS. Results in three different areas have
been achieved. The first main contribution is the identification of the uncertain
and nonlinear system using a high fidelity model of the EHSS. 1) A new model
for friction has been developed which explains the main static and dynamic
behaviour of the force inside the hydraulic cylinder, including film thickness
formation and the increase of Stribeck friction related to the sum of the chamber
pressures in the cylinder. 2) A new model has been developed which takes into
account the leakage flows inside the servo valve as well as openings deadbands
and asymmetries. The motivation behind this new model for the servo valve is
to obtain simulated values of the pressures close to the measured ones and to
reproduce the important variation of the sum of the chamber pressures. Using a
model with symmetric valve and actuator and making the assumption of equal
flow coming in and out of the actuator results in a constant sum of the chamber
pressures equal to the supply pressure. By contrast, experimental results show
a variation up to +50% above the supply pressure which is well represented by
the new model. All parameters have been estimated using the new models and
the experimental data registered with one position and two pressure sensors.

The second main contribution of the thesis is the development of fault diagnosis
techniques for EHSS. A fault detector was designed and implemented on a test
bed for a simple EHSS. Experimental results showed the ability of the meth-
ods to detect and isolate the following faults using only position and pressure
measurements: 1) internal leakage in hydraulic cylinders, 2) external leakages,
3) fault related to an increase of friction in either hydraulic actuators or load,
4) fault related to pressure sensors. From the measurements and the physical
constraints on the system it is possible to generate two residuals by the mean
of a structural analysis and the resulting incidence matrix of the system. The
two generated residuals, equal to zero with an additional noise in the fault free
case, take non-zero values in the presence of one of the faults enumerated pre-
viously. By the mean of averaging and simple operations (for example RMS
value for sinusoidal signals) on the residuals together with a threshold test, the
changes detected by this manner furnishes sufficient information to detect and
isolate each of the faults in the case of high fault severity (i.e. when the changes
caused by a fault in the residuals are more than two times as high as the residual
noise characteristics). The presented methods are believed to easily generalise
on more complex EHSS. However, for low severity faults, a simple threshold
test is no longer sufficient and hypothesis testing must be realised on the resid-
uals to detect changes. In the special case where the system is in steady-state,
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the residual can be approximated as white Gaussian noise in the fault free case
which enables for the design of a composite hypothesis test. Two application
examples were investigated where fault related to leakage flow inside the cylin-
der has been successfully diagnosed in both simulations and experiments. In
the general case where the input, outputs and states are varying, the residuals
can not be approximated as white Gaussian noise in the fault free case making
hypothesis testing difficult to design. Two alternative techniques have been de-
veloped in this case, using extended Kalman filter and state augmented Kalman
filter respectively in order to detect and isolate faults related to leakage even
when the internal friction state is not available. The first method considers the
leakage parameter in the EHSS as an augmented state and its estimation gives
a direct information on the presence of fault or not. The second quantises in
a first step the EHSS in several hypothesis related to the leakages parameters
and then selects in a second step the hypothesis for which the estimation of the
measured outputs is the best. Experimental results demonstrated the feasibility
of the proposed methods and low nominal leakage flow were diagnosed when
designing the fault detector based on the new model of the EHSS developed
in the second chapter of this dissertation. However, the time to process the
estimation of the state using Kalman filters makes the methods not suitable for
online fault diagnosis. The recommendations from this thesis when designing
fault detector for EHSS are 1) to implement a dual fault detector, one running
online at the same sampling rate as the measurements and using simple thresh-
old testing of the residuals for detecting high severity fault as fast as possible
with an acceptable false alarm rate and the second, running offline over recorded
data using statistical hypothesis testing and Kalman filters to prognose fault of
lower severity, and 2) to develop a high fidelity model of the EHSS first as the
model influences to a great extent on the fault detector performances.

The third main contribution of the thesis is the development of a high perfor-
mance adaptive nonlinear controller for EHSS and its implementation on the
test bed. Several assets characterise the controller: 1) Based on the nonlinear
model of the system, the controller, using backstepping design, is valid for any
operating points as long as the servo valve does not saturate. 2) Compared to
linear controllers (proportional, lag compensator, H∞) which are widely used
in the industry, the new controller performs significantly better for position
tracking of small amplitude step changes. The main reason is the presence of an
accurate friction model in the design of the controller. 3) Because of its adaptiv-
ity, uncertainties in the mass, the load, leakages and friction parameters can be
handled. 4) By its cascade structure, the complexity of the proposed controller
is significantly reduced compared to a pure backstepping controller including
valve and friction dynamics, making its real-time implementation possible with
one millisecond step time.

The last main contribution of the thesis is the development of an active fault-
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tolerant controller for EHSS and its real-time implementation on the test bed.
Combining the techniques of fault detection and isolation with the nonlinear con-
troller developed in this thesis, active fault-tolerant control has been achieved.
Online fault diagnosis for faults related either to internal leakage or to friction
in the cylinder with active parameter update for the backstepping controller
has been demonstrated as well as active controller reconfiguration in the case of
detection and isolation of fault related to pressure sensors. In this last case the
controller switches seamlessly from nonlinear to linear proportional control.

5.3 Future Research Directions

There are several remaining challenges not addressed in this dissertation when
it comes to nonlinear adaptive fault-tolerant control for electro hydraulic servo
systems. These topics for further research which are motivated by the work
realised and the results achieved in the thesis are briefly introduced below.

Servo valve behaviour. The model of the servo valve presented assesses the
importance of considering the valve dynamics as a second order system and using
an additional dither signal in order to reduce stiction of the valve spool inside
the sleeve. However, further work is needed to model the behaviour of the servo
valve with higher accuracy. Additional measurement of the spool displacement
and velocity, consideration of dynamic friction of the spool inside the sleeve and
analysis of the fluid film formation could increase the model accuracy and hence
the model based fault detection and controller performances. Furthermore it
could lead to an optimisation of the dither frequency and amplitude.

Fault prognosis. Further work is needed in order to analyse the probability
distribution function of the noise in the residuals in the general case where the
states are not constant. This statistical analysis should be considered in order
to predict the fault alarm rate for a given threshold with a desired confidence
interval. Further work is also needed to generalise the fault detector in the
case of coloured noise in measurements. Finally, in order to enable online fault
diagnosis using Kalman filters, optimisation of the algorithm would be required.

Nonlinearities consideration. The level of nonlinearities present in the
EHSS has been reduced in this dissertation by considering double rod hydraulic
cylinders and by limiting the operations within the operating range of the servo
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valve. However, additional nonlinearities occur when considering single rod hy-
draulic cylinder and saturation in the servo valve. The generalisation of the
controller in the case of these additional nonlinearities would considerably in-
crease the range of possible applications for the developed methods regarding
nonlinear and adaptive fault-tolerant control of EHSS.

Nonlinear control benchmark. The techniques presented in this thesis for
the control of a nonlinear EHSS are based on the Lyapunov stability and back-
stepping methods. A benchmark of several other nonlinear control techniques
applied to EHSS will undoubtedly provide a more compelling basis for the de-
sign of nonlinear fault-tolerant controllers best fitted for the desired application.
Another candidate using Lyapunov based methods is sliding mode control or
passivity techniques could be implemented by describing the EHSS as a port
control Hamiltonian system.

Larger EHSS The techniques developed in this thesis for a representative
EHSS could be implemented on larger EHSS in terms of complexity and number
of components, considering redundant actuators and sensors to better prognose
a fault and accomodate for it. For example in the presented test bed, flow
sensors, accelerometers and strain gauges could be added to the system as well
as a redundant actuator or servo valve. Further work is also needed for auto-
tuning of the model parameters and automatic design of active fault-tolerant
controller. Finally, a future research direction is the implementation adpative
nonlinear fault-tolerant control on industrial EHSS.
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model for control of systems with friction. IEEE Transactions on Automatic
Control, 40(3):419–425, March 1995.

[12] Liang Chen and Steven Liu. Fault diagnosis integrated fault-tolerant con-
trol for a nonlinear electro-hydraulic system. pages 1039–1044, 2010.

[13] M. Choux and G. Hovland. Adaptive backstepping control of nonlinear
hydraulic-mechanical system including valve dynamics. Modeling, Identifi-
cation and Control, 31(1):35–44, 2010.

[14] M.a.B. Cunha. Adaptive Cascade Controller Applied to a Hydraulic Ac-
tuator. 2005 International Conference on Control and Automation, pages
622–627, 2005.

[15] JC Doyle, K. Glover, PP Khargonekar, and BA Francis. State-space so-
lutions to standard H2 and H∞ control problems. IEEE Transactions on
Automatic control, 34(8):831–847, 1989.

[16] O. Egeland and J.T. Gravdahl. Modeling and simulation for automatic
control, volume 76. Marine Cybernetics, 2002.

[17] Shreekant Gayaka and Bin Yao. Fault Detection , Identification and Accom-
modation for an Electro-hydraulic System : An Adaptive Robust Approach.
(2005):13815–13820, 2008.

[18] F. Gustafsson. Adaptive filtering and change detection, volume 5. Wiley
Online Library, 2000.

[19] H. Hammouri, P. Kabore, S. Othman, and J. Biston. Failure diagnosis
and nonlinear observer. Application to a hydraulic process. Journal of the
Franklin Institute, 339(4-5):455–478, 2002.

[20] F.C. Johansen. Flow through Pipe Orifices at Low Reynolds Numbers. Pro-
ceedings of the Royal Society A: Mathematical, Physical and Engineering
Sciences, 126(801):231–245, January 1930.

[21] M. Karpenko and N. Sepehri. Fault-tolerant control of a servohydraulic
positioning system with crossport leakage. IEEE Transactions on Control
Systems Technology, 13(1):155–161, January 2005.



BIBLIOGRAPHY 167

[22] Mark Karpenko and Nariman Sepehri. Quantitative Fault Tolerant Control
Design for a Leaking Hydraulic Actuator. Journal of Dynamic Systems,
Measurement, and Control, 132(5):054505, 2010.

[23] S.M. Kay. Fundamentals of statistical signal processing: estimation theory.
Technometrics, 37(4):465, November 1993.

[24] S.M. Kay. Fundamentals of Statistical Signal Processing - Detection Theory,
volume 2. Prentice-Hall, London, 1998.

[25] D.H. Kim and T.-C. Tsao. A linearized electrohydraulic servovalve model
for valve dynamics sensitivity analysis and control system design. Journal
of Dynamic Systems, Measurement, and Control, 122(1):179–187, 2000.
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