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ABSTRACT 

Modern neural network (NN) based control schemes have surmounted many of the 

limitations found in the traditional control approaches. Nevertheless, these modern 

control techniques have only recently been introduced for use on high-specification 

Programmable Logic Controllers (PLCs) and usually at a very high cost in terms of 

the required software and hardware. This ‗intelligent‘ control in the sector of industrial 

automation, specifically on standard PLCs thus remains an area of study that is open 

to further research and development.  

The research documented in this thesis examined the effectiveness of linear 

traditional control schemes such as Proportional Integral Derivative (PID), Lead and 

Lead-Lag control, in comparison to non-linear NN based control schemes when 

applied on a strongly non-linear platform. To this end, a mechatronic-type balancing 

system, namely, the Ball-on-Wheel (BOW) system was designed, constructed and 

modelled. Thereafter various traditional and intelligent controllers were implemented 

in order to control the system. The BOW platform may be taken to represent any 

single-input, single-output (SISO) non-linear system in use in the real world. The 

system makes use of current industrial technology including a standard PLC as the 

digital computational platform, a servo drive and wireless access for remote control.  

The results gathered from the research revealed that NN based control schemes (i.e. 

Pure NN and NN-PID), although comparatively slower in response, have greater 

advantages over traditional controllers in that they are able to adapt to external 

system changes as well as system non-linearity through a process of learning. These 

controllers also reduce the guess work that is usually involved with the traditional 

control approaches where cumbersome modelling, linearization or manual tuning is 

required. Furthermore, the research showed that online-learning adaptive traditional 

controllers such as the NN-PID controller which maintains the best of both the 

intelligent and traditional controllers may be implemented easily and with minimum 

expense on standard PLCs. 
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Chapter 1.  

INTRODUCTION 

 

1.1 Control Systems Engineering 

Control Systems Engineering is a growing field of study that has gained widespread 

attention over the past century. This has mostly been due to the outstanding 

advancements in technology that have taken place over a relatively short period of 

time. The advent of the microchip in particular, has enabled research in this field to 

progress further than ever before [1]. A control system is essentially an 

interconnection of components that forms a system configuration that produces the 

desired system response [2]. Control Systems Engineering analyses the individual 

components of a system and their interactions and effects on each other from input 

to output. It also involves the development of a strategy that suitably imposes 

complete or partial control over the system. The study of control systems is by no 

means limited to the field of engineering. As the dynamics of social, economic and 

political systems increase, so too will the ability to model and control these systems 

[2].  

An automatic control system is a system that does not necessitate human 

intervention to function but operates through a compensation process that makes use 

of a controlling device, a sensing device for feedback and an actuating device in 

order to produce the desired output. Figure 1.1 depicts the fundamental building 

blocks of a typical feedback control system.   

Controller
System to be 

controlled 

Feedback 
sensor

Feedback 
sensor

Desired Output 
(Setpoint)

Feedback Loop

Actual OutputError

 

Figure 1.1: Feedback control system 

All automatic systems, including those found in nature (for example biological 

systems), incorporate some kind of control system.  
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Today, automatic control systems are literally found everywhere; from common 

household systems such as the coffee machine in the kitchen to the elaborate 

climate and lighting systems found in most modern living rooms. They are also found 

in more complex systems such as aircraft, guided missiles, rockets, industrial robots, 

motor vehicles and many industrial processes [2, 3]. In the competitive world of 

manufacturing, advanced methods of control are mandatory. Without the aid of 

automatic control systems, it would be virtually impossible to meet the high demands 

of production whilst maintaining quality through precision manufacturing. 

1.2 Traditional vs. Intelligent control systems 

Most processes cannot be controlled by simple feedback systems. Such processes 

must be well understood before they can be controlled. Firstly, a mathematical 

function that adequately describes the process in question must be determined. 

Thereafter, a suitable control algorithm may be designed, simulated and 

implemented to control the process as desired. Many standard control algorithms 

and techniques have been devised, studied and tested in order to solve a variety of 

control problems. The Proportional-Integral-Derivative (PID) controller is commonly 

used because of its simplicity and excellent ability on linear systems [4]. Other 

popular control algorithms that have been successfully implemented for the control of 

linear systems include: Lead, Lag, Lead-Lag, Proportional-Derivative (PD), 

Proportional-Integral (PI) and Linear Quadratic Regulators (LQR). These controllers 

are often referred to as ‗traditional‘ controllers because of their linear problem-solving 

approach. 

In recent years, ―intelligent‖ – neural network (NN) based controllers and/ or adaptive 

controllers have been used extensively in solving the more complex industrial control 

problems. The complexity found in such systems comes primarily from their non-

linear nature. As a result, their solutions are often cumbersome and difficult to 

implement in the control environment. It may be worth noting at this stage that most 

industrial processes (and all chemical processes) are in fact non-linear [5]. If a 

traditional control approach is to be used, non-linear systems are treated as linear 

systems (through a process of linearization) within a limited operational range close 

to their equilibrium point/s. If pushed outside the ‗linear‘ region of operation, stability 

may be lost. Traditional controllers also fall short when the specialized skills and 
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tools required for accurate system modelling and controller design are lacking. 

Furthermore, because traditional controllers are unable to adapt to changes in their 

immediate environment, they often have to be re-tuned to compensate for the 

parameter variation that may naturally occur in a system. Failure to accurately re-

tune these controllers could manifest in reduced plant efficiency, damage to 

equipment or worst of all, complete process and system failure. 

Unlike the traditional control approaches, integrated intelligent control with its parallel 

(non-linear) computational ability has the benefit of being able to solve any non-

linear problem through learning and can therefore adapt to an ever changing 

environment. This makes it desirable for use in the control of dynamic, non-linear 

systems [6]. 

1.3 Programmable Logic Controller’s 

Programmable Logic Controller‘s (PLCs) are the most widely used computer 

platform in the sphere of industrial automation. They are used to automate a wide 

range of processes, including many processes found in chemical plants, oil refineries 

and power stations just to name a few. Because of their wide range of application, 

PLCs are manufactured in different performance grades. Generally, the more 

capable a PLC is in terms of memory size, processing power and communication 

ability, the more costly it will be. Traditional control algorithms have successfully 

been implemented on PLCs in order to control dynamic processes. More recently, 

intelligent NN or fuzzy logic based control has been introduced to solve complex 

manufacturing and process control problems but still remains an expensive and 

unchartered area that is open to further research and development. 

1.4 Aim of the research 

The aim of this research is to compare the performance of linear traditional control 

schemes such as the conventional PID controller to intelligent non-linear NN based 

control schemes on a strongly non-linear mechatronic-type platform whilst subjected 

to various physical system parameter variations. The control schemes will be 

implemented on a standard, medium specification PLC with the option of wireless 

control and monitoring from a remote PC. 
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1.5 Objectives  

The following objectives must be met in order to attain the goal of this research:  

 Develop a non-linear platform upon which the research can be carried 

out. This system will be mechatronic in nature, having both electrical 

and mechanical aspects. It will be adjustable to allow for induced 

parameter variation and it will represent any similar non-linear system 

found in industry.  

 Determine the mathematical model and hence the transfer-function of 

the designed non-linear platform.  

 Linearize the non-linear system about its equilibrium point/s.  

 Design and implement at least one traditional controller (e.g. PID) to 

control the non-linear system based on the linearized plant model.  

 Design and implement at least one intelligent, NN based controller to 

control the non-linear system through a training process.  

 Monitor, analyse and update control algorithms remotely over a 

wireless connection.  

 Compare the performance of the traditional controller/s with that of the 

intelligent controller/s by varying plant parameters.  

1.6 Hypothesis 

The implementation of an intelligent, NN based controller on a non-linear system will 

both simplify (if not eliminate completely) the modelling and design processes found 

with traditional controllers and will also allow the system to adapt to parametric 

changes in the plant. The overall performance and operational range of the system 

will thus be increased. Such control can be achieved wirelessly using standard 

industrial control platforms such as the PC and PLC. 

1.7 Delimitations 

This research will be limited to the following:  

 The development of a suitable non-linear platform upon which the 

research can be carried out.  
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 The design and implementation of at least one traditional controller on 

the designed platform.  

 The design and implementation of at least one intelligent controller on 

the designed platform.  

 A performance comparison between the above mentioned controllers.  

 The incorporation of wireless access to the system for remote 

monitoring and control of the designed platform. Existing wireless 

technology will be used as a means of implementing the wireless 

control.  

 The project is limited to a single PC and PLC only with all the 

necessary hardware/ software components. 

1.8 Significance of the research 

 The research platform may be used as a Control Systems teaching aid 

to demonstrate how intelligent algorithms can be used as an alternative 

means of solving complex control problems.  

 The control concepts covered in this research will be applicable to any 

PLC controlled linear or non-linear processing system.  

 The research highlights an intelligent NN based solution that may 

reduce process implementation costs as well as maintenance costs 

when used in a real-world application. The need for expensive 

equipment to accurately determine the physical plant parameters 

required for system modelling would be eliminated. Also, the need for 

specialized skills to compute plant models or re-tune existing 

controllers would be minimized.  

 The integration of wireless control and monitoring would reduce costs 

further when used in a real-world application as much less physical 

wiring would be necessary. Fault finding and troubleshooting would be 

made easier. Wireless network infrastructure would also allow for 

greater flexibility and plant scalability. 
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 The research, where applied, could result in a significant increase in 

process efficiency, operability and accuracy due to the ability of the 

intelligent controllers to learn and adapt to changing environments. The 

trial and error approach found with traditional controllers would be 

eliminated. 

1.9 Structure of the Thesis 

The dissertation maintains the following structure:  

Chapter 1: This chapter introduces Control Systems Engineering and its applicability 

in the world today. The scope of the research, the objectives, the hypothesis and the 

significance of the study are also covered in this section. 

Chapter 2: This chapter reviews aspects of control theory that are relevant to the 

study including system modelling, linearization and controller design techniques. 

Existing studies pertaining to the control of non-linear systems using traditional and 

modern control approaches is also looked at. The study goes further to investigate 

the implementation of these controllers on PLCs with the option of remote control.  

Chapter 3: In this chapter, the research platform (the Ball-on-Wheel (BOW) balancing 

system) is modelled and linearized. Traditional and intelligent controllers are then 

designed and simulated on the model in Matlab/ Simulink.   

Chapter 4: This chapter looks at the design aspects of the BOW system from a 

mechanical, electrical and software point of view. It details the hardware components 

of the system in terms of their functionality, limitations and interaction. The chapter 

discusses the experimental setup and strategy in significant detail.   

Chapter 5: In this chapter, the designed traditional and intelligent controllers are 

implemented and then analysed and compared in terms of system stability after the 

introduction of a controlled disturbance. Their ability to meet the design specifications 

even after plant parameters have been altered is also evaluated. 

Chapter 6: In this chapter the research is concluded by examining the hypothesis in 

light of the obtained results. Recommendations to improve and hence expand the 

research are also made.  
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Chapter 2.  

LITERATURE REVIEW 

 
Owing to decades of research, there is a tremendous amount of literature available 

pertaining to traditional and intelligent control systems. However, this literature review 

focuses only on those aspects of automatic control that are relevant to the study. 

Apart from establishing fundamental theoretical control concepts and methodologies 

such as system modelling, system analysis and controller design, numerous works 

are categorically cited that explore various modern (intelligent) control techniques, 

particularly in their ability to overcome non-linear dynamical problems. 

2.1 Introduction to control systems 

Closed-loop control systems are also commonly referred to as feedback systems [3]. 

In feedback systems, the variable being controlled is measured by a sensor. The 

measured information is fed back to the controller to influence the controlled variable. 

One of the simplest examples of feedback control is the household furnace which is 

controlled by a thermostat. Figure 2.1 depicts this temperature control system in the 

form of a block diagram [7]. 

The room temperature can be influenced by external factors, e.g. a window or door 

being opened. In control systems this external influence is referred to as a 

disturbance. The aim of any controller is to reject external disturbances and bring the 

systems output back to the desired set-point as soon as possible. 

ThermostatThermostat Room 
Temperature

Room 
Temperature

Desired Temperature 
(Setpoint)

Temperature Feedback 

Error
FurnaceFurnace

Disturbance

 

Figure 2.1: Room temperature control system 

Feedback control can be extended beyond this basic system to incorporate multiple 

feedback loops, controlling devices and actuators.  
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There are two main types of feedback control systems, namely: negative feedback 

and positive feedback systems. In positive feedback systems, the set-point and 

output values are added. In negative feedback control the set-point and output values 

are subtracted. Negative feedback systems have been proven to be more stable than 

positive feedback systems [8]. 

The main purpose of feedback control is to compare the set-point to the actual 

output. The difference is referred to as the system error. It is then the job of the 

controller (i.e. the thermostat in Figure 2.1) to adjust the output in such a way that the 

error is minimized as far as possible. In real systems it is often impossible to 

eliminate the error completely. However, below a certain threshold defined by the 

control application, the error can be considered small enough to be ignored [3]. 

Consider the block diagram of an automobile cruise control system as shown in 

Figure 2.2: 

Engine
Auto 
body

Speed sensor

Desired Speed 
(Set point)

Feedback Loop

Error

Sensor

Throttle
Controller

Actuator

External Disturbance

 

Figure 2.2: Block diagram of automobile cruise control 

The combination of the process and actuator is referred to as the plant (highlighted 

by the broken square in Figure 2.2). The component that computes the desired 

control signal is the controller. Key external disturbances in the automobile cruise 

control application would include wind resistance, road surface texture, and road 

incline. 
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2.2 Dynamic system modelling  

The purpose of deriving a system model is to obtain a mathematical description of 

the system being observed [7]. The determined model then assists in simulating the 

systems response to a set of pre-defined inputs. System modelling seeks to 

understand the interaction of system components from input to output. The process 

of system modelling is also sometimes referred to as system identification. 

The fundamental step in building a mathematical model for a particular system is to 

determine its dynamic equations. These equations, once defined, can be expressed 

in the state variable form to enhance the ability to analyse the system. In many real-

world cases the modelling of complex processes is difficult and expensive and often 

requires specialized skills. Once a model has been formulated, advanced 

engineering tools such as Matlab and Simulink are available for further analysis, 

simulation and design. Testing a system under varying conditions may prove to be 

very difficult in the real world due to the cost and difficulty of implementation. 

However, in the simulation environment, there is no limit to the extent of testing that 

is possible. In essence, a system can be simulated and tested even before it is built. 

No mathematical model will ever be an exact representation of a real system due to 

the lack of precise knowledge and the need to make assumptions but will usually 

suffice for the study of a specific systems response within a wide operating range. 

The essential equations required in system modelling are the continuity equations of 

mass, momentum and energy as well as other basic physical rules [3]. 

Physical systems can be purely electrical or purely mechanical systems, however, 

most are found to be of an electro-mechanical nature.  

2.2.1 Mechanical Systems 

Motion can either be rotary, translational or a combination of both. The translational 

motion of a mechanical system is characterized by a set of energetically interacting 

components. The interaction between these components depends on the applied 

forces and their reactions [9]. 
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Figure 2.3: Properties of rotational motion 

Referring to Figure 2.3, rotational motion about a fixed axis is governed by a set of 

torques and angular velocities. Torque is essentially defined as the moment of a 

force about a point [8] and is proportional to the angular acceleration. The 

relationship is made clear by Eq. 2.1. 

 ( )   
 ( )

 
 (2.1) 

Where   is the angular acceleration,   is the applied torque and   is the mass 

moment of inertia of the rotating body. The angular acceleration can be integrated to 

find the angular velocity which in turn can be integrated to find the angular 

displacement. The mass moment of inertia determines an object‘s resistance to 

acceleration. 

In translational motion, Newton‘s law of motion (Eq. 2.2) forms the basis for obtaining 

a mathematical model for any mechanical system. 

     (2.2) 

Where ―F‖ is the applied force (N), ―m‖ is the mass (Kg) on which the force is applied 

and ―a‖ is the resultant acceleration (m/s2) on the mass [7]. 

Application of this law usually involves defining coordinates to account for the body‘s 

motion. For this reason, a ―free-body‖ diagram assists in visualizing the system in its 

entirety. 



11 

Physical systems generally vary in the complexity of their dynamics and depending 

on the nature of the complexity, usually require very specific treatment. Fortunately, 

countless years of research into control theory have produced standard methods of 

dealing with most types of control problems. 

Example 1: Linear Spring-Damper system  

Consider a simple, mass, spring and damper system, seated upon a pair of 

frictionless wheels that has been fixed to a wall via a spring and damper, with a force 

applied in the direction of the displacement, ‗x‘. 

Mass-Spring-Damper System: 

Mass (M)

B

K

x

F

 

Figure 2.4: Mass, spring and damper system 

Free-body diagram of mass, spring and damper system: 

Mass (M)

B.x

K.x

M.x

x

.

..

F

 

Figure 2.5: Free-body diagram of Mass, spring and damper system 

From the free-body diagram, the system equations can be deduced by equating the 

acting forces as follows: 

    ̈    ̇     (2.3) 
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Rearranging in terms of the highest order term (acceleration) yields: 

 ̈  
 

 
 

 

 
 ̇  

 

 
  (2.4) 

This may be expressed as: 

 ̈       ̇    
     

    (2.5) 

   
 

 
 (2.6) 

Where the natural, un-damped frequency of the system is given by: 

    √
 

 
 (2.7) 

And the damping coefficient:   

   
 

    
 

  

 
√

 

  
 (2.8) 

The actual form of the response will depend on the input force F. If F is 0, then Eq. 

2.5 describes the behaviour of the system if released from a position ‗x‘ away from its 

natural equilibrium condition. 

Taking the Laplace transform of Eq. 2.5 we get: 

(            
 )    

   ( ) (2.9) 

This yields the input-output transfer function: 

 ( )

  ( )
  

  
 

            
 
 (2.10) 

If M = 1kg and K = 1 N/m, then the time response to a step input would be as follows: 
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Figure 2.6: Step response of Mass, spring and damper system 

It can be seen from Figure 2.6 that the system response generally follows the input 

step command (shown in red) but takes a relatively long time to rise and then settle 

at the commanded position. To improve or alter this natural response, a control 

system would be needed. 

2.2.2 Electrical Systems 

As with mechanical systems, fundamental principles and laws are used to build 

mathematical models of electrical systems from input (power source) to output (load). 

There are a wide range of simple electronic components used in electrical circuits 

including resistors, capacitors and inductors. These are also called passive 

components. More complex components, called active components, include op-amps 

and transistors. Active components as opposed to passive components are capable 

of changing their behaviour [8].  

2.2.3 Electromechanical Systems 

Many systems in use today have a combination of mechanical and electrical 

components. As such, energy is converted from mechanical to electrical energy or 

vice versa depending on the nature of the system. The simple DC motor is a good 

example of a common system in which electrical energy is converted into mechanical 

energy in the form of rotation. Consider the DC motor shown in Figure 2.7 [2, 7, 8]: 
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DC M

R L

B  

  
  

 

Figure 2.7: Free-body diagram for DC motor 

 The motor torque is given by:  

        (2.11) 

Where    is the armature constant and   is the armature current. The back emf, is 

given by: 

     ̇ (2.12) 

Where    is the motor constant and  ̇ is the angular velocity of the rotor.  The final 

system equations can be determined from Newton‘s law combined with Kirchhoff‘s 

law as follows: 

  ̈    ̇      (2.13) 

 
  

  
        ̇ (2.14) 

In the Laplace domain, these system equations can be expressed in terms of s, 

yielding the following open-loop input to output transfer function as a relation 

between input voltage and rotor speed: 

 ̇

 
 

 

(    )(    )     (2.15) 

There are various standard techniques used for analysing electro-mechanical 

systems and designing appropriate controllers for them. The section that follows 

addresses some of these. 
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2.3 Dynamic system analysis and design 

As already expressed above, the first step in analysing an electro-mechanical system 

is to generate its time domain differential equations that represent the dynamic 

behaviour of the physical system. These equations are derived from the physical 

laws governing the system behaviour. The second step is to determine and 

designate the inputs and outputs of the system and then formulate the transfer 

function characterizing its input to output behaviour. By studying the transfer function, 

the dynamic properties of the system can be determined. One way of retrieving 

useful information from a systems transfer function is simply to examine the positions 

of its pole-zero locations. Another way is to examine the time-domain properties of a 

system by determining the response of the system to typical excitation signals such 

as impulses, steps, ramps and sinusoids. There are various methods employed for 

system analysis and design. The choice of method ultimately depends on whether 

the system is linear or non-linear.  

2.3.1 Linear vs. Non-Linear systems 

Strictly speaking, all systems or processes possess some degree of non-linearity. A 

non-linear system is a system in which the output is not directly proportional to the 

input. Depending on the degree of non-linearity, such systems are usually 

unpredictable in their response and pose serious challenges to control engineers. 

Non-linearity can easily be seen from a system‘s dynamic equations; particularly if 

trigonometric or high order terms exist [10]. However, such systems can be 

approximated by linear models within a distinct operating range. In an angular-type 

system for example, if   is small then         and       . Lyapunov showed in 

his study that if the linear approximation of a system is stable near an equilibrium 

point, then the truly non-linear system will be stable in the neighbourhood of the 

equilibrium point [7]. This process of linear approximation is known as linearization. 

Various linearization techniques exist, namely: Jacobian Linearization, Carleman 

Linearization, Lie Series, iteration technique and feedback linearization [10, 11]. 

For systems that have non-linear characteristics, most ‗traditional‘ control techniques 

will only work on an equivalent linear approximation of the non-linear system and 

only within a small operating range about the equilibrium point/s [8, 12].  
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Depending on the complexity of the plant, linearization techniques can be 

mathematically challenging. The existence of a unique solution is also never 

guaranteed and in many cases, numerical approximations for such systems are not 

always sufficient. A more intelligent approach to non-linear systems is therefore 

required [7, 13]. 

Once a non-linear system has been modelled and linearized, Matlab or Simulink may 

be used to simulate the system‘s response to various types of input, e.g. a step, 

ramp or parabolic input, and then also design an appropriate controller [13]. Only 

after this step has been taken can a suitable control algorithm be implemented on the 

actual process in order to control the system as desired. For the purpose of analysis 

and design, a particular system may be studied in the time or frequency domains. 

Each of these is discussed in the following sections. 

 Numerous existing studies investigate the control of non-linear systems. Notably, 

Deng [14] investigates the feasibility of applying advanced control strategies to a 

mixing tank process. In this work a non-linear mixing tank process is modelled and 

linearized about its equilibrium point before an appropriate controller is designed and 

implemented. 

2.3.2 Time response  

Most control systems are designed to be stable (i.e. all the poles of the transfer 

function have negative real parts), so that if specific forcing inputs are used the 

response either settles to some steady state value or repeats itself after a certain 

time.  If a range of values of time t are used, say from t = 0 to t =  , then a plot of the 

time response is obtained. The resulting plot is useful in the design process and 

gives a clear picture of how the system responds with reference to performance 

criteria [1, 15]. Forcing inputs or excitation signals include - but are not limited to - the 

following: 
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I. Step Input 

Mathematically, the step input can be described as: 

 ( )    {
         
          

 (2.16) 

Where ‗A‘ is the magnitude of the step input. The Laplace transform of the step input 

is    . It therefore adds a pole to the systems transfer function at the origin of the s-

plane.  Figure 2.8 depicts the step input graphically.  

U(t)

Time (s)

t(s)

A

 

Figure 2.8: A step input of magnitude A 

II. Ramp Input: 

Mathematically, the ramp input can be defined as:  

 ( )    {
         
           

 (2.17) 

Its Laplace transform is given as     , and results in a double pole at the origin of the 

s-plane. Figure 2.9 depicts a ramp input graphically. 
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U(t)

t(s)

Kt1

t1
0

 

Figure 2.9: Ramp input 

III. Pulse input  

The pulse input is a rectangular input signal formed by two successive steps of equal 

magnitude but opposite sign. Pulse inputs are particularly useful when dealing with a 

functional system. 

U(t)

t(s)0 T

A

 

Figure 2.10: Pulse Input signal 

IV. Steady state sinusoidal input 

The sinusoidal input is probably the most relevant of the forcing inputs. It is applied 

after all transient effects have disappeared. This input is useful when studying the 

frequency response of a system. A sine wave, given mathematically in Eq. 2.3, is 

injected into the system, where A is the amplitude and   the angular frequency: 

 ( )         (2.18) 

The Laplace transform of this function is: 
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 ( )  
  

       (2.19) 

This adds two imaginary poles to the s-plane, one at      and the other at      .  

V. Random Input 

In real, functional systems, all variables are continually changing. Random inputs are 

therefore useful in analysing a systems dynamics. 

2.3.2.1 Time-domain specifications 

In order to design a control system, certain time domain requirements may be 

stipulated. With reference to Figure 2.11, these are [7]: 

1) Rise time (tr): time taken to reach new set-point 

2) Settling time (ts): Time taken for the system transients to decay sufficiently 

3) Overshoot (Mp): The maximum amount the system overshoots its set-point, 

expressed as a percentage 

4) Peak time (tp): Time taken to reach maximum overshoot point   

 

 

Figure 2.11: Time-Domain Specifications [7] 

2.3.3 Frequency response 

A linear system‘s response to a sinusoidal input is called the system‘s frequency 

response. A system‘s frequency response reveals information about its stability. The 

Bode diagram shown in Figure 2.12 is used to represent a system‘s frequency 

response and typically shows how the magnitude and phase of the system output are 
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affected as the input frequency is varied [7]. The frequency response is discussed 

further in Chapter 2.4.2. 

 

Figure 2.12: Bode plot showing gain and phase margins 

 

2.3.3.1 Frequency-Domain specifications 
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Increasing frequency

DC Gain relates to steady 
state performance in the 

time domain

Resonant peak relates to 
system overshoot

Area of high frequency 
attenuation

 

Figure 2.13: Frequency domain specifications 

Frequency domain specifications are used to describe a system‘s performance when 

a system is to be designed or analysed in the frequency domain.  
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They include: 

 Maximum Magnitude ratio: This parameter is also referred to as the resonant 

peak (Mp). It gives an indication of a system‘s relative stability. A large Mp 

corresponds to a large peak overshoot in the step response. An optimum 

value of Mp would be between 1.1 and 1.5 for most design problems. 

 Resonant Frequency: This is the frequency at which the system‘s gain or 

magnitude ratio is largest. It indicates a systems speed of response. 

 Bandwidth: This is defined as the frequency at which the system gain drops to 

0.707 (  √ ) of its zero frequency level. This value corresponds to a 3 dB fall 

on the decibel scale. A large bandwidth corresponds to a faster rise time. A 

large bandwidth will pass higher frequency signals to the output. Low 

bandwidth systems only allow low frequency signals to pass through the 

system and are usually slow and sluggish. The bandwidth also indicates the 

noise filtering characteristics of a system. 

 Cut-off rate (or roll-off rate): This is the rate of decrease in the system 

magnitude outside the system‘s bandwidth (i.e. after the system gain has 

fallen by 3 dB from its zero frequency level). A high cut-off rate would indicate 

a system with good signal-to-noise ratio. 

 Gain Margin: The gain margin gives the amount by which the closed-loop gain 

(magnitude) may be increased before the system becomes unstable (see 

Figure 2.12). The gain margin must be positive for a stable system (5-10 dB‘s 

is a good gain margin for a system to have). 

 Phase Margin: The phase margin indicates how much additional phase lag at 

the gain crossover frequency can be withstood before a system becomes 

unstable (see Figure 2.12). For stability, the phase margin must be greater 

than zero. Designers generally try to keep the phase margin above 45 

degrees. 

When designing a controller, it is important to take the following into consideration: 

 A smaller resonant peak and larger phase margin indicate smaller overshoot 

and hence a more stable system 

 A larger gain crossover frequency indicates a faster system response 
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Design Steps in Frequency domain can be listed as follows:  

1) Analyse time response behaviour to determine system  deficiencies 

2) Plot system‘s open-loop frequency response (Matlab) 

3) Add Controller to change shape of frequency plot 

It must be kept in mind during the design phase that magnitude and phase plots are 

interdependent and hence affect one another. 

2.3.4 Design concepts for Linear Systems (LS) 

As discussed in section 2.3.1, almost all real systems exhibit some degree of non-

linearity. Non-linear systems can be quite complex not only to model but also to 

analyse and control using standard principles and techniques. It is therefore common 

practice for such systems to be linearized into equivalent linear systems. This 

literature study does not detail the different linearization techniques. However, the 

Jacobian linearization method is used in Chapter 3 to linearize the BOW system. The 

design concepts discussed in the following sub-sections are ideally used for linear, 

time-invariant systems. 

2.3.4.1 Design concepts in the s-plane 

A Laplace-transformed system equation (as shown in Eq. 2.20) is normally presented 

in the form of a rational polynomial, ‗s‘. 

 ( )  
 ( )

 ( )
 (2.20) 

If  ( )   , the resulting equation is called the system‘s characteristic equation as it 

can be said to characterize a system‘s dynamics. The roots of the characteristic 

equation are called the system poles. Poles are the values of ‗s‘ that make  ( ) 

infinite. The roots of the numerator,  ( ), are known as the zeros of system and are 

the values of ‗s‘ that make  ( ) zero. The poles and zeros of  ( ) could be complex 

values of ‗s‘ that have real and imaginary parts. Any complex root will have the form 

shown in Eq. 2.21 and can be represented in an Argand diagram or as it‘s otherwise 

called, an s-plane plot [1]. 

        (2.21) 
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2.3.4.2 The Role of poles and zeros 

The time response of a linear system depends on its pole-zero locations. Pole 

positions indicate the stability and speed of a system‘s response. If all the poles have 

negative real parts, then the system is said to be stable since it produces an 

exponential time response which decays to zero. Figure 2.14 below depicts the 

stable and unstable regions in the s-plane and the effect of pole positions on the 

speed of the system‘s response. The further to the left a pole is on the real axis, the 

faster the system‘s response will decay to zero.  If a pole is positive and lies on the 

positive real axis, the system becomes unstable since such a pole gives rise to a 

term which has a positive exponential in time – i.e. the response of the system grows 

exponentially. 

σ (Real)

Unstable Region 
(Positive real axis)

jω (imaginary)

Stable Region 
(Negative real axis)

Respose 
faster

Response 
slower

Respose 
faster

Response 
slower

time time

System Respose 
decays exponentially

System Respose 
grows exponentially

time time

 

Figure 2.14: Effect of pole positions in the S-plane 

The zeros of a system adjust the performance of the system. The closer a zero is to a 

pole, the smaller the influence that that particular pole will have on the system‘s 

response. Pole-zero cancellation occurs if a pole and a zero coincide. Such a 

cancellation does not mean that the pole is lost. Rather, it simply means that at the 

chosen output, the dynamic term associated with a particular pole cannot be 

observed [1]. 
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2.3.4.3 System Stability 

Stability can be defined as a system‘s response to an impulse. There are four main 

definitions of stability, namely: asymptotic stability, marginal stability, conditional 

stability and instability. Table 2-1 summarizes these definitions and also shows how 

pole locations influence stability. If all the poles of a system are contained in the left 

half of the s-plane, then it is asymptotically stable. If all the poles are in the right hand 

part of the s-plane, then the system is unstable. Poles on the imaginary axis are on 

the boundary between stability and instability. Such systems are called marginally 

stable systems [3]. 
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Table 2-1: Effects of pole positions in S-plane on system response 

 Pole Positions in S-plane Impulse response Comment 

1 
σ (Real)

jω (imaginary)

 

time
 

Asymptotically 
stable 
 

2 σ (Real)

jω (imaginary)

 

time
 

Marginally 
stable 
 

3 
σ (Real)

jω (imaginary)

2 poles 
at (0,0)

 

time
 

Unstable 
 

4 
σ (Real)

jω (imaginary)

 

time
 

Unstable 
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5 
σ (Real)

jω (imaginary)

 

time

Y(t)

 

Asymptotically 
stable 
 

6 
σ (Real)

jω (imaginary)

 

time

Y(t)

 

Marginally 
stable 
 

7 σ (Real)

jω (imaginary)

2 poles

2 poles

 

time

Y(t)

 

Unstable 
 

8 σ (Real)

jω (imaginary)

 

time

Y(t)

 

Unstable 
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2.3.4.4 Routh-Herwitz stability criterion 

The Routh stability criterion provides a quick and easy method of establishing a 

system‘s stability. This method of stability analysis does not require the locations of a 

system‘s poles to be determined. This makes it particularly useful when dealing with 

high order polynomials. The Routh stability criterion may also be used to establish 

the limiting values for the system gain beyond which the system would become 

unstable. The Zeigler-Nichols PID tuning method discussed in section 2.5.1.1 makes 

use of the Routh-Herwitz criterion to find the value of the proportional control gain, 

Kc. 

Guidelines for using the Routh-Herwitz criterion 

Consider a system‘s characteristic equation: 

                            (2.22) 
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If the sign changes at least once, then it indicates that the 
system has roots in the right-hand s-plane, resulting in an 

unstable sytem. 
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 (2.23) 
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 (2.24) 

Example: Consider the following characteristic equation, 

                 (2.25) 

s4

s3

s2

s1

s0

1 3 8

2 10 0

-2 8 0

18 0

8

We see that there are 2 sign changes, this tells us that there 
are 2 roots in the right-hand s-plane. The system is 

therefore unstable. 
 

2.4 Controller design techniques  

Over the years, various control techniques have been utilized in order to stabilize 

naturally unstable systems. Traditional control techniques have been used for many 

decades and are ideally suited to linear-type systems. New advanced techniques 

such as NN control have now surfaced and are showing promising results for their 

ability to control non-linear processes. The aim of any control algorithm is to alter the 

location of a system‘s poles and zeros in such a way that the system becomes 

stable. This could also involve adding new poles and zeros in strategic locations in 

the s-plane to either enhance or inhibit the effects of existing poles and zeros. 

Various controller design techniques have been developed to aid the process of 

controller design. Sultan and Mirza [16] for instance use some of these methods to 

analyse and design suitable controllers for a non-linear inverted pendulum system. 

Their work is used as a guideline for the controller design stage of this research. A 

few of the common traditional as well as the more advanced methods of control in 

use today are briefly discussed in the following sections.  
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2.4.1 Root-locus Controller Design 

This control system design technique is used to determine the roots of the closed-

loop characteristic equation when the open-loop gain constant, K, is increased from 

zero to infinity. The closed-loop poles are plotted on the s-plane as K is varied from 

zero to infinity. A suitable value for K is then selected to produce the necessary 

transient response as required by performance specification. The loci always 

commence at open-loop poles and terminate at open-loop zeros when they exist [17].  

The disadvantage of using this method is that only one variable can be varied at a 

time and additional methods must be used to find additional parameters. 

An understanding of the general rules of root loci construction are important when 

designing a controller (using root-locus method) as sometimes it becomes necessary 

to force the root-locus to bend towards a desired region in order to meet design 

specifications [3]: 

 Starting point of the root loci (K = 0): The root loci start at the poles of 

G(s)H(s). They are considered to start at the points at which the gain K is 

zero.  

 End point of the root loci (K   ): The root loci end at zeros of G(s)H(s). 

 Root-loci on the real axis: As a direct result of the angle condition, the root loci 

may be found on a given section of the real axis only if the total number of 

poles and zeros of G(s)H(s) on the real axis to the right of a section is odd. 

 The number of branches of the root loci: The number of branches of the root 

loci is equal to the number of poles (or zeros) of the open-loop transfer 

function. If the finite poles and zeros are equal in number then the whole locus 

is generally possible on a drawing. Where the number of poles (P) exceed the 

number of zeros (Z) or the number of zeros exceeds the number of poles, the 

branches terminate at infinity. There are then P minus Z or Z minus P 

branches which tend asymptotically to the straight line sections of the loci. 

 Symmetry of the root-locus: The root-loci are symmetrical with respect to the 

real axis, since any of the complex roots always appear in complex conjugate 

pairs. 
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 Asymptotes of root-loci: For large values of the roots, P minus Z branches of 

the root-loci are asymptotic to straight lines with angles to the real axis. The 

asymptotes do not necessarily pass through the origin but because of 

symmetry they do not intersect on the real axis. 

 Intersection of the loci with the imaginary axis: The intersection of the loci with 

the imaginary axis marks the stage at which the real parts of the roots change 

from negative to positive, resulting in an unstable system. 

 Break-away points on the real axis: The points in the s-plane where multiple 

roots of the characteristic equation are found are called the ‗breakaway points‘ 

of the root-locus diagram. At such a point two or more roots loci branches 

branch away or meet. Where branches between two poles meet on the real 

axis the loci then branch away. Where branches between two zeros meet on 

the real axis, the loci move into the real axis. 

2.4.1.1 The effect of adding open-loop poles and zeros  

The effect of the addition of a real or complex conjugate pole to the left-hand side of 

the s-plane is to increase the closed-loop stability of the system. This is shown by the 

bending of the root-loci towards the imaginary axis (i.e. more to the left of the s-

plane). The effect of adding a zero into the left-hand s-plane is to increase the 

stability of the system. This remains true for the addition of real zeros or conjugate 

pairs. Moving a pole closer to the origin in a stable system slows down the response 

of the system [3]. 

2.4.2 Frequency Domain Controller Design 

Frequency domain analysis is a study of the steady state system output in response 

to constant amplitude yet variable frequency sinusoidal input. Steady state errors, in 

terms of amplitude and phase, relate directly to the dynamics of a system as 

expressed in a transfer function. 

  



31 

Consider a sinusoidal input of amplitude A1 being fed into a system G(s): 

G(s)
A1sinωt A2sin(ωt-ɸ) 

Input Output

 

Figure 2.15: Plant with phase and amplitude difference between input and output 

As shown in Figure 2.15, the output signal amplitude, given by A2 may be affected 

positively or negatively depending on the plant dynamics. The phase relationship is 

given by ɸ and can be positive or negative again depending on the nature of the plant 

G(s). The amplitude ratio A2/ A1 is given by: 

  

  
  | | (2.26) 

Where | | is the modulus or gain of the system [17]. 
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Figure 2.16: Plot of input vs. output of plant G(s) [17] 

Figure 2.16 shows graphically how the amplitude and phase differ between input and 

output of G(s). The frequency of the output is the same as the input. The phase angle 

and the gain are dependent on the frequency of the input signal. As the frequency of 

the input is varied, it produces a variation in the gain and phase angle. Using the 

relationship between frequency, gain and phase, a frequency response plot may be 

drawn in order to analyse a given system.  
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The frequency response has the following advantages: 

 It provides a rich source of information to the designer about the plant 

 Deductions about a system‘s stability can be made quite easily 

 It settles ambiguities found in other analytical methods such as the root-locus 

 It shows the effects of individual pole locations (not always possible with the 

root-locus method) 

 It can easily be related to the time response and hence allows the designer to 

understand how each pole or zero affects the time response 

The Bode plot, as discussed briefly in section 2.3.3 comprises a graph of magnitude 

 (  ) against the frequency   and a graph of the phase angle ɸ as a function of the 

frequency. The magnitude is plotted on a log scale expressed in decibels. The phase 

angle on the other hand is plotted on a linear scale [3]. In both cases, the frequency 

is plotted on a logarithmic x-axis scale. 

| (  )|          | (  )| (2.27) 

The Bode plot usually starts with a flat region equal to the DC magnitude or DC gain 

of the system. The system gain (K) thus has a direct effect on the DC gain of the 

system as shown in Figure 2.17. The DC gain relates to the steady state 

performance of a system in the time domain. The system gain does not have an 

effect on the system‘s phase. 

20log(|A|)
dB

Frequency (Log scale)
 

Figure 2.17: DC gain (effect of K only) 
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For the addition of every pole, the slope of the line decreases by 20dB/ decade at 

that pole‘s frequency as highlighted in Figure 2.18. Two poles will thus cause the 

slope to decrease at a rate of 40dB/ decade. 

20log(|A|)
dB

Frequency (Log scale)

1 Pole 

20dB

x10

 

Figure 2.18: Effect of adding a pole 

For every zero, the slope of the line increases by 20dB/ decade at that zero‘s 

frequency as indicated in Figure 2.19. For 2 zeros, the slope will increase at a rate of 

40dB/ decade. 
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Figure 2.19: Effect of adding a zero 

A zero at the origin causes a -90 degree shift in phase between the system input and 

output as shown in Figure 2.20. 
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Figure 2.20: Effect of adding a pole on the phase angle 

A pole at the origin causes a +90 degree shift in phase between the system input and 

output as shown in Figure 2.21. 
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Figure 2.21: Effect of adding a zero on the phase angle 

2.4.3 State space representation of dynamical systems 

The classical design techniques discussed above such as the root-locus, time 

domain and bode plot method are generally only applicable to [17]: 

a) Single input, single output systems (SISO) 

b) Systems that are linear or that can be linearized and are time invariant (i.e. 

have parameters that do not vary with time) 

The state space method is useful in dealing with: 

a) Multiple input, multiple output systems (MIMO) 

b) Non-linear and time invariant systems 

c) Alternative controller approaches  
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The state of a system may be defined as a set of state variables which at some initial 

time    together with the input variables completely determines the behaviour of the 

system for time     . The state variables are the smallest number of states that are 

required to describe the dynamic nature of the system. These variables do not all 

have to be measurable. 

 ̇        (2.28) 

        (2.29) 

Where y is the system output equation and where x is an n dimensional state vector: 
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 (2.30) 

And u is the m dimensional input vector:  
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 (2.31) 

A is the n x n system matrix: 
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 (2.32) 

B is the n x m control matrix:   

[
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 (2.33) 
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2.4.4 Observability and controllability 

A system is controllable if a control vector  ( ) can be found which will enable us to 

force the system from an arbitrary initial state  ( ) to some arbitrary finite state  (  ) 

in a finite time   . To determine if a system is controllable, the controllability matrix 

must be examined. It is defined by: 

   [                ] (2.34) 

The system is controllable only if this matrix (Eq. 2.34) has rank equal to the number 

of states present in the system. In the same way, it is important for control engineers 

to ensure that a system of state variables can be determined by a lesser number of 

outputs, i.e. can the state variables be measured by the measurements of the output 

that are possible. A system is therefore completely observable if the output,  , over a 

finite time, contains the information which completely defines the state   [3].  To 

determine if a system is observable, the observability matrix may be examined. It is 

defined by: 

   

[
 
 
 
 
 

 
  
   

 
 

     ]
 
 
 
 
 

 (2.35) 

The system is observable if and only if this matrix has rank equal to the number of 

states present in the system. Mathematical tools such as Matlab may easily be used 

to evaluate the rank of the controllability and observability matrices of a given system 

[18]. Determining whether or not a system is controllable and observable is important 

before time is wasted attempting to design a controller. 

2.5 Traditional control techniques 

Many linear control algorithms and techniques have been devised, studied and 

tested.  The most common of these is the PID controller [19]. Other variants of this 

controller exist such as PI, PD and PI-PD controllers. Similarly, compensators such 

as the Lead, Lag and Lead-Lag compensators are alternative control approaches.  
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Methods utilizing full state feedback control such as the Linear Quadratic Regulator 

(LQR) are slowly becoming more established as the tools utilized in generating 

accurate system models become cheaper and more accessible. 

2.5.1 PID Controller 

As already discussed, the most widely used type of controller in industry today is the 

PID controller. According to Vlachogiannis and Roy [20], up to 95% of all controlled 

processes in industry utilize PID controllers. The PID controller is a robust control 

algorithm that can be tuned by trial and error methods [21]. This inherent simplicity 

makes it a favourable choice in environments where the specialized skills required in 

modelling and design of control systems is lacking. However, in more complex 

applications, these trial and error methods of tuning PID controllers is impractical, 

time consuming and sometimes dangerous. In order to design the most suitable PID 

controller for a particular system, simulation is arbitrary and requires the formulation 

of an accurate system model. Figure 2.22 shows the basic structure of a closed-loop 

PID control system [22]. 

 

Figure 2.22: Basic closed-loop system with PID controller 

        ( )     ∫  
 

 
       

  ( )

  
 (2.36) 

Equation 2.36 shows the standard PID algorithm in the parallel form. The 

proportional term makes changes to the output in proportion to the error value. The 

integral term affects the output in proportion to both the magnitude and duration of 

the error. Increasing the integral time makes the output respond slower to an error. 

The derivative term affects the output in proportion to the rate of change of the error. 

The methods discussed in section 2.4 above may be used to design PID controllers 

including the: time response method, root-locus method, frequency response method 
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and State Space (SS) method [13].  Depending on the complexity of the system 

being modelled; the process of modelling can be both time consuming and costly, 

requiring special equipment to measure system parameters accurately. Furthermore, 

for systems that have non-linear characteristics, the PID controller will only work on 

an equivalent linear approximation of the non-linear system and only within a small 

operating range about the equilibrium point/s [5, 23].  

In his work, Yurkevich [24], expounds on these points and particularizes the 

limitations of the traditional PID controller especially in the presence of plant 

uncertainty or non-linearity. He expresses the need for a controller that is able to 

tackle the problem of non-linearity and thus investigates a novel, time-based method 

for designing a PID controller for a non-linear system. Various other works including 

Tan et al. [21] propose self-tuning PID controllers that are well suited for the control 

of non-linear systems. 

The transfer function of the PID controller in the ideal or standard form, which is 

actually the more common form in use in industry, is given as: 

  ( )    (               ) (2.37) 

Where, 

  = Proportional gain 

   = Derivative action time 

    = Integral action time 

Sometimes it is necessary to convert the integral gain    and derivative gain    into 

the equivalent integral time and derivative time respectively as shown in Eq. 2.38-

2.40. 

      (2.38) 

   
  

   
  (2.39) 

           (2.40) 
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PID control, where all three controller elements are used, is not always necessary. 

Depending on the nature of the system needing control, sometimes P action, PD 

action or PI action alone will suffice. 

If    = 0 and     =  , a P controller will result.  

If    = 0 and     = Finite, a PI controller will result.  

 

2.5.1.1 Zeigler-Nichols rules for controller tuning 

In cases where the necessary tools for controller design and tuning are not 

accessible, PID controllers may be manually tuned using standard procedures. One 

of the simplest and therefore most common of these procedures is the Zeigler-

Nichols method for controller tuning. 

Consider the closed-loop system shown in Figure 2.23 below: 

K G(s)
R(s)

Controller Plant

Y(s)

 

Figure 2.23: Closed-loop system with Proportional (P) control 

Assume that this system has the property, that under purely proportional control it is 

asymptotically stable in the range 0 ≤ K ≤ Kc and goes unstable for K > Kc. For such a 

system, the following practical procedure is followed: 

 Turn up the gain K, until continuous oscillations are observed in the system. 

At this gain, Kc, the closed-loop system is marginally stable, on the boundary 

between stable and unstable behaviour. 

 Note the value of Kc and the period of oscillations, T. 

 For P control:          

 For PI control:          and          

 For PID control:        ,         and           
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It must be noted that the determined Zeigler-Nichols‘ gains often only form a starting 

point for controller tuning. In most cases, manual fine-tuning will still be required. 

If the plant model happens to be available, the Routh-Herwitz criterion (discussed in 

section 2.3.4.4) may be used to find the value of Kc and the corresponding period of 

oscillation T. 

Procedure:  

1) Find the systems closed-loop characteristic equation under pure proportional 

control. 

2) Using the Routh-Herwitz Criterion, find the value of Kc that produces an all 

zero row. 

3) Use the divisor polynomial to find the period of oscillation T and then apply the 

Zeigler-Nichols tuning method. 

Example: 

Consider the following closed-loop characteristic equation with only proportional 

control, K. 

 ( )              (   )    (2.41) 

The resulting Routh array is as follows: 

s3

s2

s1

1 3

6 6(1+k)

11- (1+k)

0

Row

1

2

 

For row 2 to be zero, K must be set to 10. Therefore Kc = 10. The divisor polynomial 

is obtained from row 1 and is: 

        (2.42) 

   √   (2.43) 
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Since     , it follows that  

    √   (2.44) 

     √   (2.45) 

  
  

 
        (2.46) 

Therefore according to the Zeigler-Nichols‘ tuning method the PID gains are as 

follows: K = 6, Ti  = 0.947 and Td = 0.237. 

Although this tuning method is useful in finding controller gains, this method provides 

no indication of what controller modifications would be needed if certain performance 

specifications were stipulated. Other design techniques such as the root-locus or 

frequency domain method would be required to meet given performance 

specifications. 

2.5.2 Lead compensator 

The lead compensator, as the name suggests, adds phase lead to a system as 

depicted in Figure 2.25. It improves the phase margin and damping and also speeds 

up the system response. The transfer function of this compensator consists of a 

single zero and pole. In order for this structure to behave as a lead compensator, the 

zero must be located before the pole on the Bode plot, i.e.: 

The transfer function for the lead compensator is given as: 

 ( )     (
   

   
)            (2.49) 

This can be rearranged to give: 

 ( )      (
 

 
) (

 

 
   

 

 
   

) (2.50) 

Another arrangement of this controller is given as: 

      (
    

      
) (2.51) 
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This can be rewritten as: 

       
 

 
(
     

     
) (2.52) 

Where the zero is at -1/T and the pole is at -1/ T. If Kp is unity then if   is small (say 

0.05 to 0.1), the resulting compensation is that of a lead network [3]. Consider a lead 

compensator with a pole at 100 rad/ sec and a zero at 10 rad/ sec as shown in the 

frequency response plot in Figure 2.24. 
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Figure 2.24: Magnitude vs. frequency plot of a lead compensator 
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Figure 2.25: Phase vs. frequency plot for lead compensator 

From Figure 2.24 it can be seen that the zero causes the magnitude to rise, whereas 

the pole causes it to fall. The lead controller achieves similar results to a PD 

controller. 
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2.5.3 Lag compensator 

The Lag compensator introduces phase lag or negative phase to a system as shown 

in Figure 2.27. This improves the disturbance rejection (due to increased high 

frequency attenuation) but slows down the system‘s response. The gain margin is not 

greatly affected with this strategy. In this compensator the pole is located before the 

zero, i.e.: 

 ( )     (
   

   
)            (2.53) 

An alternative arrangement of this compensator is given as: 

      (
    

      
)      (2.54) 

This can be rewritten as: 

       
 

 
(
     

     
) (2.55) 

If   is large (say 10 to 20) then the resulting compensation is that of a lag network. T 

must be chosen to be at least 10 times larger than the largest time constant of the 

system [3]. Consider a lead compensator with a pole at 10 rad/ sec and a zero at 100 

rad/ sec. A plot of this compensator‘s frequency response is given in Figure 2.26  and 

Figure 2.27. 

Zero @ 100 rad/sec

Pole @ 10 rad/sec

10 rad/sec 100 rad/sec

M
ag

n
it

u
d

e
 (

d
B

)

Frequency (rad/ sec)

 

Figure 2.26: Magnitude vs. frequency plot for lag compensator 
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Figure 2.27: Phase vs. frequency plot for lag compensator 

 

2.5.4 Lead-Lag compensator 

A Lead-Lag compensator effectively combines the lead and lag compensators 

discussed above to produce a compensator which at low frequencies acts as lag 

network and at high frequencies acts as  a lead network [3]. The use of lead-lag 

compensators makes it possible to meet many system specifications without 

incurring the penalties of excessive bandwidth or an over sluggish response [1]. 

    (
     

       
) (

     

        
)             (2.56) 

Szczudlak and Fasheh [25] in their research implemented a digitized form of the 

Lead and Lead-Lag compensator on a microcontroller to control an inverted 

pendulum system. One major point that stands out in their study is that their 

theoretical model of the system was able to predict the rise and settling times of the 

system quite accurately. However, this was not true regarding the system overshoot. 

They attributed the differences between the real world implementation and simulation 

primarily to the assumptions they made in determining system parameters. In fact 

these estimates became restrictive factors when implementing their controllers in real 

time. They also noted that the microcontroller they used took too long to update the 

compensator values, thus limiting the degree of viable control. 
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Saha et al. [26] in their research paper outline the design process of a lead-lag 

controller using the frequency domain approach to control a motor with a cascaded 

phase shifter in each segment of a multi segment snake robot. They successfully met 

all their design requirements with this controller and were able to achieve the desired 

snake-like motion. 

2.5.5 LQR Controller state feedback design 

The Linear Quadratic Regulator (LQR) provides an optimal control law for a linear 

system with a quadratic performance index [17]. The LQR is a robust controller that 

guarantees a phase margin greater than 60 degrees. 

A system can be expressed in state variable form as: 

 ̇                          (2.57) 

 ( )      ( )     

With the assumption that all the states are measurable, we can find a state-variable 

control law that gives the desired closed-loop properties. The closed-loop system 

using this control law becomes: 

 ̇  (    )           (2.58) 

To design a state-variable feedback controller that is optimal, we may define the 

performance index (PI) as: 

   
 

 
∫ (         )  

  

  
 (2.59) 

Where:        

And the feedback gain matrix K is given by: 

        ( ) (2.60) 

P is found by solving the continuous time Riccati differential equation. 

   ( )   ( )   ( )       ( )       ( ) (2.61) 
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The LQR computations are relatively complex but can be simplified by making use of 

the LQR tool in Matlab. 

Balaševičius et al. [27] in their research discuss the implementation of state feedback 

control in the form of an LQR controller on a PLC to control a chemical reaction 

vessel.  The reaction vessel model is that of a second order system. It is noted that in 

this type of system, not all state variables can be measured or controlled; in fact only 

the control input and the output of the system can be measured. To solve this 

problem, they first obtain a system model and then reconstruct the non-measured 

state variables from the measured control input and output of the system. LQR 

control is implemented on the modelled system firstly in Matlab and then finally it is 

effected on an actual PLC. It is observed that this type of control does not perform so 

well in an actual implementation because of the PLCs limited execution speed. 

For real-world implementation on a digital controller, some of the major 

disadvantages of optimal control strategies such as LQR are that: 

1) Certain states that need to be observed may not be directly observable. State 

observers may have to be designed in order to observe various states. 

2) A good model of the system is needed. If the model is incomplete, perhaps 

due to un-modelled dynamics, it may be difficult to get a controller that meets 

expectations. 

3) Non-linear models must be linearized or else the system may become 

unstable. 

2.6 Advanced control techniques 

Artificial Neural Networks (ANNs) are based on the operation of biological neurons in 

the brain. They are composed of interconnected neurons that act as processing units 

interconnected between single or multiple inputs and outputs. Each connection 

between neurons has an adjustable weighting factor that determines the strength of 

the connection. This interconnected and adaptive structure gives NNs a non-linear 

and parallel problem-solving ability that is not found in conventional processing 

structures.  
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In the control environment, NNs have thus received widespread attention, especially 

for their ability to learn non-linear characteristics through experimental data, without 

prior knowledge of the plant [22]. Research has proven that NNs can estimate every 

non-linear function with at least one hidden layer. NNs are therefore extensively used 

in simulation and control of non-linear processes [10, 28, 29]. The cumbersome 

process of system modelling found with conventional controllers is thus eliminated 

provided that suitable operational data can be obtained from the plant for the purpose 

of training the network [30]. Hagan and Demuth [31] in their publication show that 

NNs have been successfully applied in the identification and control of dynamical 

systems. They expound further on the universal approximation capabilities of the 

multi-layer perceptron that makes it a popular choice for modelling non-linear 

systems and for implementing general purpose non-linear controllers. Their research 

suggests a number of non-linear controller configurations. 

According to Han et al. [12], Feed-forward Multilayer Neural Networks (MNNs) are 

the most prevalent NN architectures for identification and control applications. A 

widely used training method for feed-forward MNNs is Back Propagation (BP). The 

Levenberg-Marquardt algorithm is very efficient for training small to medium sized 

networks and it also uses BP [12].  The disadvantage of BP learning is the long and 

unpredictable training process with the rate of convergence being seriously affected 

by the initial weights. 

Unlike traditional controllers, intelligent NN controllers are able to adapt to parameter 

changes in the plant. Thus the need for regular retuning is eliminated [13]. It has also 

been shown that sensor noise or other mild disturbances have little effect on NNs [4]. 

Special care, however,  must be taken when training MNNs to ensure that they do 

not over fit the training data and then fail to generalize well in new situations [31]. 

Since NNs can have several inputs and outputs they may also be used for multiple 

input and multiple output systems (MIMO) [4].  The drawbacks of using a NN as a 

controller are that: 

 The control system is not operational or performs poorly during the training 

process 

 The training can take a long time 

 Unpredictable disturbances cannot be eliminated  
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 Training data may be hard to attain and the training process does not always 

guarantee the best results 

2.6.1 Standard NN Controllers for dynamical systems 

Many standard intelligent NN based control techniques have been devised over the 

years. The sections that follow investigate some of the more prominent techniques 

used in the control environment today [32, 33]. 

2.6.1.1 NN Model Reference Control 

In the work of Rahmat et al. [22], an intelligent controller is applied to a non-linear 

and unstable system namely the ―Ball on Beam‖ system. Specifically, a NN Model 

Reference Control (MRC) scheme is applied to control the plant. This scheme makes 

use of Levenberg-Marquardt BP for the training process in which a NN is trained to 

follow a reference model. The results from the research show that this intelligent 

scheme, although slower, produces similar results to a PID controller implemented on 

the same plant.  

Jain and Nigam [34] in their research paper discuss how the limitations found with 

conventional feedback controllers due to variations in process dynamics may be 

overcome using Model Reference Adaptive Control (MRAC). Their results are based 

on simulations carried out in Matlab and Simulink.  

Straussberger et al. [35] in simulation and in an actual implementation use MRAC to 

adaptively control a 2-wheel self-balancing laboratory plant called the ―Mono Chair‖ 

that experiences parameter variation as it navigates over diverse terrain. 

2.6.1.2 NN Predictive controller 

With the aid of NNs, it is possible to predict the future behaviour of a plant based on 

historical plant data.  In the first step of operation, a NN is trained to represent the 

forward dynamics of the plant. The prediction error between the system output and 

the NN output is used as the training signal for the NN. The NN plant model uses 

previous inputs and previous plant outputs to predict future values of the plant output 

[36]. 
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Figure 2.28: NN-Predictive Controller [31] 

The NN Predictive controller predicts the plant response over a specified time 

horizon. The optimization block in Figure 2.28 determines the values of u’ that 

minimize cost function J according to (Eq. 2.62) below. The optimal control signal u is 

then fed into the plant to establish control [32, 33]. 

   ∑ (  (   )    (   ))   
    

  ∑ (  (     )    (     ))   
           (2.62) 

Where: N1, N2 and Nu define the horizons over which the tracking error and control 

increments are evaluated, u’ is the tentative control signal, yr is the desired response 

and ym is the network model response,   determines the contribution that the sum of 

the squares of the control increments has on the performance index [36].  

NN based predictive controllers have been used extensively to solve non-linear 

dynamical problems, particularly those experiencing time delays. Trajanoski and 

Wach [37], for instance, use a NN predictive controller in a closed-loop insulin 

delivery system. The proposed control strategy is based on offline system 

identification and is carried out in simulation only. The system to be controlled is 

noted to be non-linear in nature with many unknowns. According to their simulation 

results, stable control is achievable even in the presence of large noise levels or for 

unknown or variable time delays. Jin-quan and Lewis [38] discuss a new recurrent 

NN predictive feedback control structure for a class of non-linear dynamic time-

delayed systems. The proposed control structure consists of a linearized subsystem 

local to the controlled plant and a remote predictive controller located at a master 

command station. In the local linearized subsystem, a recurrent NN with an online 

weight tuning algorithm is employed to approximate the dynamics of the time-delay-

free non-linear plant. The result is an adaptive NN compensation scheme for non-

linear systems with time delays.      
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2.6.2 NN PID Controllers  

Traditional control strategies have proven to be quite robust as long as they remain 

within their operational range. NNs have the ability to learn and adapt to non-linear 

plant variation. By combining aspects of traditional and intelligent control strategies, 

superior controllers are born that maintain the best of both worlds. Hagan and 

Demuth [31] on this note, discuss an adaptive PID controller based on the Error 

Recurrent (ER) NN. Because of its fast tracking capabilities, it is possible to design a 

real time controller based on NNs. They propose a NN-PID controller that has the 

robust features of traditional controllers as well as the adaptive nature of NNs. In the 

proposed architecture, the hidden layer neurons simply work as PID controller terms 

as shown in Figure 2.29. Adaptive control is performed through an online learning 

process. Results from their research showed that the NN-PID controller is robust but 

is generally slower than the standard PID controller. 
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Figure 2.29: PID-NN architecture [13] 

Cho and Kim [4] in their research examine the precise control of an AC servo motor 

using a NN-PID controller. In their research an online-type NN-PID controller using 

past data as well as current inputs and outputs in order to control the AC servo motor 

is implemented. This type of controller has proven to be a robust controller especially 

in dealing with load disturbances and/ or sensor noise. Their findings show that the 

proposed controller (see Figure 2.30) can tune the conventional PID controller using 

an indirect NN which can be controlled by only inputs and outputs even in a Jacobian 

of unknowns. The indirect NNs is composed of an emulator supervising control object 

and the NN controlling object. They conclude that the NN-PID controller is superior to 

most other control strategies. 
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Figure 2.30: NN-PID control system architecture 

Lee and Park [39] discuss the drawbacks of using only a NN as a controller. They 

conclude from their experiments that: 

 The control system is mostly non-operational during the training process, 

 Unpredictable disturbances cannot be eliminated 

Hsu et al. [40] highlight how a conventional multi-loop PID controller is combined in 

parallel with a multi-layer feed forward NN [39]. Such a system has the following 

advantages over one in which only a NN is used: 

 The controlled plant remains fully operational and flexible even when the NN 

is inoperable. 

 The traditional PID controller is robust and guarantees a zero offset at steady 

state whereas even well trained NNs are unable to guarantee a zero offset at 

steady state. 

Lee and Park [39] make use of the error back-propagation algorithm to train their NN. 

They illustrate how the connection weights are adjusted mathematically in the 

steepest decent manner. Abood et al. [41] in a similar work suggest an offline, 3 layer 

Neuro-PID controller with 4 input neurons, 5 hidden layer neurons and 3 output layer 

neurons that form the PID controller gains. The resultant PID gains are then fed into 

a standard PID controller and used to control a dynamic power system. In 

comparison with the traditional PID controller, their results show the Neuro-PID 

controller‘s performance to be superior particularly, in instances where the load 

changed in the power system. Despite their preference for fuzzy-PID controllers, 
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another study by Yongquan et al. [42] shows how an NN-PID controller may be used 

to stabilize linear or non-linear plants alike. 

2.6.3 Model Predictive Control (MPC)  

MPC is an advanced, optimization based control strategy applicable to a wide range 

of industrial applications such as chemical plants and internal combustion engines. It 

is truly a model based control strategy that falls into the class of receding horizon 

control algorithms [43]. There are several restrictions on applying new control 

methods in industrial applications for example: (i) new methods are usually not 

available in a ‗ready-to-use‘ industrial format, (ii) the hardware requirements are 

relatively high due to the complexity of implementation and computational demands; 

(iii) the complexity of implementation and maintenance makes the methods 

unattractive to non-specialized engineers. However, there are a number of instances 

where ―new‖ control methods have been successfully implemented on standard 

industrial computer platforms such as the PLC. Valencia-Palomo and Rossiter [44] 

highlight one such instance in their study. They demonstrate how a MPC can be 

coded into a PLC using a standard industrial programming language to make MPC 

an accessible alternative for low level control loops. Most MPC applications include 

plants having multiple inputs and outputs. 

2.7 Programmable Logic Controllers  

Early electrical control was based on relays. Modern control systems still include 

relays, but these are rarely used for logic. Most modern controllers use a computer to 

achieve control. The dominating industrial computer platform is the PLC. PLCs offer 

numerous advantages [45]: 

 Cost-effective solution for controlling complex systems 

 Computational abilities allow more sophisticated control  

 Troubleshooting aids make programming easier and reduce downtime 

 Reliable components make these likely to operate for years before reaching 

failure 
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2.7.1 Selecting a PLC 

After the planning phase of a process, the necessary automation equipment can be 

easily selected. This decision is usually based upon the following requirements [45]: 

 Number of logical inputs and outputs required 

 Memory requirement (1Kb and up) depending on the size of the user program 

 Number of special I/O modules (high speed modules, communication 

modules etc.) 

 Scan time: High speed processes will require shorter scan times 

 Communication to remote stations or to other devices 

 Programming language to be used 

2.7.2 Communication with PLCs 

Many control systems use networks to communicate with other controllers and 

computers. Typical applications include [45]: 

 Data acquisition tasks 

 Remote monitoring and control applications 

A wide variety of networks are commercially available, and each has particular 

strengths and weaknesses. Certain field networks such as Actuator Sensor Interface 

(ASI), Devicenet, Interbus, Profibus and Industrial Ethernet have become industrial 

standards. Industrial Ethernet has become by far the most widely used networking 

medium in industry because of its open protocol. Profibus is another popular choice 

of network in industry and may utilize RS-485, Ethernet and fibre optics. 

2.7.3 Advanced Control using PLCs 

Most control algorithms such as PID, LQR, NN etc. are, in modern times, 

implemented on digital platforms. In digital systems (discussed in detail in section 

2.8), sampling is arbitrary. When a digital computer is used to implement controllers, 

the ideal sequence of operation is as follows: 
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 Wait for clock interrupt 

 Read analogue input  

 Compute control signal 

 Set analogue output 

 Update controller variables 

A cyclic interrupt is thus required to maintain a fixed sampling rate and thus allow the 

control algorithms to function correctly. It is imperative that the processing delays are 

determined and added up for each step given above. Failure to do so may result in 

severe ‗lagging‘. This information is also useful when it comes to choosing the 

specific hardware that will work for a particular application. PLCs are often used to 

implement control sequences in open-loop or closed-loop control. The most common 

industrial programming languages include [44]: 

 Ladder Diagram: graphical language that uses a standard set of symbols to 

represent relay logic. The basic elements are coils and contacts that are 

connected by links. Ladder programming is highly visual and easy to 

understand and diagnose. 

 Function Block Diagram (FBD): is a graphical language that corresponds to 

digital circuits including OR gates, AND gates and so on. 

 Structured Text Language (STL): is a general purpose, high level 

programming language similar to PASCAL or C. STL is particularly useful for 

complex arithmetic calculations but also allows the use of conditional 

statements such as IF, THEN, ELSE, WHILE and CASE structures. 

According to Abdi et al. [46], NNs have not been used extensively on PLCs. PLCs 

are predominantly used in industrial applications for interlocking and supervisory 

control; most of which is based on simple logic or mathematical operations. Abdi et 

al. [46] further propose and implement a three layer perceptron NN in a Function 

Block (FB) on a Siemens S7-300 PLC. The network has a manual and automatic 

mode; in the manual mode, the network parameters such as the weights are selected 

by the user. In automatic mode, network parameters are calculated automatically by 

the back propagation training method. The network is completely trained within about 

10 minutes after which the PLC is placed into run mode. Historical input and output 

data is stored in the memory of the PLC and used for training purposes. The 
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designed NN controller is based on target data obtained from an ordinary PID 

controller. Similarly, El Monsef and Areed [47] implemented a NN on a PLC to control 

the oil level in a tank. Topalova [48] goes further in his study and discusses the 

implementation of a Modular multi-Applicable NN (MANN) classification structure for 

industrial implementation on PLCs. He makes use of an S7-317 PLC from Siemens 

to implement his strategy. The resulting algorithms are ideally used for visual 

recognition tasks but are not limited to these. In the first step of implementation 

training data is acquired. Next, input variables are selected based on their level of 

influence. In the final stage, the NN is optimized by reducing the input parameter set 

without losing important information. He also makes use of a PC running 

NeuroSystems (Siemens 2006) software developed for defining NN topology and 

parameters. The network is thus trained offline and then downloaded to the PLC in 

the form of FBs. The system is then tested with 20 exemplars for 4 different classes. 

The obtained accuracy is found to be between 87-95 %. He concludes that the 

MLPNN structure yields good results concerning the recognition accuracy. The 

reduced number of inputs is a good precondition for also minimizing the number of 

neurons in the hidden layer. In this way the total number of weights is also reduced 

which affects the computational resources when implementing the trained MLP 

structure in the PLC for real time work.  

2.7.4 Connectivity of PLC to Matlab/ Simulink 

Although SCADA (Supervisory Control and Data Acquisition) systems do exist to 

allow users to access PLC data areas for purposes of monitoring, trending and 

control, these software packages are either very expensive or limited in terms of 

experimental scope. It would be a great advantage, if PLC data could be accessed 

and assessed in a software environment that is more suited to intensive 

mathematical computation and data manipulation such as Matlab or Simulink. Persin 

et al. [49] discuss some of these exact limitations with existing SCADA systems and 

suggest the use of OPC (OLE (Object Linking and Embedding) for Process Control) 

server and client concepts as a possible cost effective solution to create a real time 

connection between Matlab/ Simulink and the PLC as shown in Figure 2.31. 

 



56 

OPCServer Client

PLC
Matlab/ 
Simulink

 

Figure 2.31: Matlab and PLC Connection using OPC 

In the same work by Persin et al. [49], the data refresh rate is determined to be 

between 60 ms to 700 ms over a Multi-Point Interface (MPI) connection depending 

on the amount of data being processed at that time. With this capability, it is 

suggested that advanced control strategies that are not directly implementable on a 

PLC be executed directly in the Matlab/ Simulink environment. Process variables in 

the PLC can then be altered via the established OPC connection [50]. 

2.7.5 SCADA and remote control 

SCADA systems are used for monitoring and control of various industrial processes. 

Such systems are also finding their way into other notable areas such as buildings, 

homes, ships and even more recently in experimental laboratories. SCADA systems 

have made tremendous progress over recent years in terms of functionality, 

scalability, performance and openness. SCADA can be divided into two categories: 

the ‗client layer‘ which caters for the Human Machine Interface (HMI) and the ‗data 

server layer‘ which handles most of the process data control activities. The data 

servers communicate with devices in the field though process controllers such as 

PLCs over fieldbuses or networks. A network that is commonly used is Ethernet 

which utilizes the globally adopted TCP/ IP protocol [51]. SCADA software can be 

deployed on most normal PC‘s or on HMIs. Remote, wirelessly controlled SCADA 

systems are becoming more popular in setups that require distributed operation and 

interfacing such as in mobile robots and rotating equipment where physical cabling 

would be a hindrance to normal operation.  

There are a number of publications in which wireless SCADA systems are utilized. 

Bai et al. [52] for instance, implement a Wireless Sensor Network (WSN) on a wind 
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power plant which has the merits of distributed information processing, remote 

monitoring and control. A wireless SCADA system is then used to pool together and 

display all information from the WSN. Bayindir and Cetinceviz [53] in their study 

propose and develop a laboratory based, wirelessly controlled pumping station that 

provides a convenient solution for process plants where cabling is not possible. The 

pumping station makes use of a rugged wireless pressure transmitter and water 

pump that are designed to withstand harsh environments. These in turn are linked up 

to a PLC and SCADA system over a Wireless LAN connection. Their research 

concludes that unlike wired systems, their wirelessly controlled systems allow for 

enhanced mobility, scalability and flexibility. 

The implementation of wireless technology could potentially lower installation and 

maintenance costs. Limitations of wireless technology include, for instance, security 

issues, reliability, coverage area and fault tolerance. For this reason, it is strongly 

advised to use wireless products that are specifically designed for the area in which 

they will be used. The pump station makes use of an ET200s distributed I/O module 

connected to a SCALANCE W744-1 PRO client module that wirelessly links to a 

SCALANCE W788-1 PRO wireless access point. A Siemens S7-300 PLC with a 

CP343-1 Lean Communications Processor (CP) is then connected to this wireless 

network through the access point for remote control capability. Notably, Siemens 

provides a complete industrial solution for this application.  

2.8 Implementation of controllers on to Digital platforms 

Control algorithms are usually implemented in machine code (binary commands) or 

higher level languages such as assembler, basic or C/ C++. Most other 

programmable devices use variations of these higher level languages. PLCs for 

instance use SCL (Structured Control Language) which is a language based on C 

that easily allows the use of mathematical functions, comparison functions, loops and 

control structures. The advantages of using microprocessors for control are: 

 Programs may be easily modified  

 Advanced control laws can be implemented on such systems 

The major disadvantage of using a microprocessor is that: 
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 They work in discrete time only  

 Additional hardware may be required for analogue to digital conversion (ADC) 

 The sampling rate must be suited to the application 

The z-transform is the discrete time counter-part of the Laplace transform. Like the 

Laplace transform, the z-transform is essential when it comes to implementation of 

Laplace domain algorithms on to digital, sampled systems. Standard procedures 

exist for conversion between the ‗s‘ domain and the ‗z‘ domain. To save the effort of 

having to make numerous calculations, these conversions are handled relatively 

easily in mathematical programs such as Matlab. 

A digital control system may be represented by the block diagram shown in Figure 

2.32 [17, 54]. 
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Figure 2.32: Digital Control System 

It is possible to map from the s-plane to the z-plane using the relationship: 

      (2.63) 

And 

        (2.64) 

Therefore,  

   (    )          (2.65) 

Where  

  
  

  
 (2.66) 
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Now, in order to prepare the continuous controller arrangements discussed thus far 

for implementation onto digital systems, let the differentiation of an error signal be 

represented as: 

 ( )   
  

  
 (2.67) 

In a discrete system, this differentiation can be approximated to:  

 (  )  
 (  )  (   ) 

 
 (2.68) 

Considering the general continuous PID controller discussed in the above sections, 

the transfer function may be given as [7, 17]:  
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 (2.69) 

This can be simplified by using Tustin‘s rule which gives a better approximation to 

integration: 
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Yielding:  
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Where: 

   
  

 
 (2.72) 
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In order to implement this digital controller on to a digital system the difference 

equation must be obtained by dividing Eq. 2.71 throughout by the highest power of z, 

giving: 
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Many industrial processes use PLCs as already outlined in section 2.7. Most PLCs 

come with pre-programmed control blocks that can be found in their program 

libraries. These are usually easier to implement than self-coded controllers. For 

example, Van Dessel [55], describes how a PID control block from the function library 

is simply imported and used in a Phoenix Contact PLC to control the level in a tank. 
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2.9 Summary 

In the first part of this chapter, standard control principles and methods are reviewed. 

These include: principles for modelling of mechanical, electrical and electro-

mechanical systems; methods for system analysis and controller design techniques. 

Following this, the most dominant traditional control techniques in use in industry 

today are examined including PID, Lead, Lead-Lag and LQR. The Chapter goes on 

to explore modern control approaches that include pure NN control, adaptive PID 

control and MPC. Finally, light is shed on PLCs and their applicability in the 

manufacturing and process industries as well as the possibility of real time 

interconnection of PLCs to scientific software tools such as Matlab/ Simulink for the 

purpose of research. 

From the literature review, it is clear that traditional control strategies presently 

overshadow modern control strategies, especially where implementation on PLCs is 

concerned. A major reason for this is because traditional controllers require much 

less processing power and are generally easier to implement and tune than modern 

controllers. Furthermore, modern control strategies often require historical plant data 

and additional sensory information which in the real world may be too difficult or 

costly to obtain. On the other hand, modern, NN based control is a growing field of 

study that is slowly becoming established in areas where traditional strategies fall 

short. This is especially true when dealing with systems that are non-linear in nature 

or are otherwise too complex to model. The benefit of combining traditional and 

modern NN based control strategies is also highlighted. This is particularly seen in 

the case of the NN-PID controller where the PID gains of a traditional PID controller 

are determined by an artificial NN. These ‗combined‘ control strategies are often 

simpler to implement than the pure NN strategies.  
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Chapter 3.  

MATHEMATICAL TREATMENT AND SIMULATION OF THE BALL-

ON-WHEEL (BOW) SYSTEM 

 

3.1 Modelling of the BOW system 

In this chapter, the BOW system is mathematically modelled. Its non-linear system 

equations are presented and then converted into the state space form to allow for 

linearization. Thereafter, the BOW system is analysed using Matlab to investigate the 

position of its poles and zeros in the s-plane and to observe its frequency domain 

characteristics. Various methods for deriving the dynamic equations of a system 

have been formulated over the last century. One method commonly adopted in 

analysing complex systems with multiple degrees of freedom is the Lagrangian 

dynamics technique. This technique is based on the concept of generalized 

coordinates and generalized forces.  

The Lagrangian, L, is defined as the difference between the kinetic and potential 

energies of all of the particles of the system expressed in generalized coordinates as 

shown in Eq. 3.1. 

        (3.1) 

Lagrange‘s equation for a system with both conservative and non-conservative 

forces is given as: 

    
 

  
(

  

  ̇ 
)   

  

   
 (3.2) 

Where    is the generalized coordinate associated with the force   . In the case of 

rotary joints, the generalized forces become torques,  , and the generalized 

coordinates become angular displacements,   [56, 57]. 
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Consider the free-body diagram of the BOW system as shown in Figure 3.1: 
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Figure 3.1: Free-body diagram of the BOW System 

A spherical ball of mass,   , rolls through a small angle θ1 on the periphery of the 

wheel under the assumption that the ball rolls without slipping. From Eq. 3.2, it 

follows that, 

   *  
  

+ (3.3) 

Where   is the generalized coordinates of the system;    is the angle between the y-

axis and the centre of the ball and    is the angle of rotation of the wheel (see Figure 

3.1 above). 

    [ 
 
] (3.4) 

Where   is the torque exerted on the wheel. 
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The mechanical energy of this system is comprised of both potential and kinetic 

energy of the rolling ball. As the ball rolls down the incline of the wheel, its initial 

gravitational potential energy is being converted into the two types of kinetic energy; 

translational and rotational. The ball rolls depending on the distribution of its mass. 

The moment of inertia is given by the distribution of mass in the ball away from the 

axis of rotation. A ball with a lot of mass concentrated at the centre is easier to roll 

than one with less. The larger the moment of inertia is, the smaller the translational 

velocity that the ball will experience [58]. 

The principle that can unite a rolling object‘s rotational and translational kinetic 

energies is called the parallel axis theorem (see Figure 3.2), given by: 
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   (3.6) 

       
 

 
(       )   (3.7) 

       
 

 
      

 

 
      (3.8) 
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Hence:         
 

 
      

 

 
    (3.11) 

Where, 

   Balls moment of inertia from any point  . 

    Balls moment of inertia about the centre of mass 

  Perpendicular distance from p to the centre of mass 
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Figure 3.2: Parallel axis theorem 

Considering again the BOW system as depicted in Figure 3.1, the kinetic energy, due 

to motion, possessed by the ball as it rolls on the periphery of the wheel is given as 

[11]: 

                        (3.12) 

Where,           Total kinetic energy of the ball,           kinetic energy due to 

translational motion of the ball and          kinetic energy due to rotation of the ball 

and: 
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Where,   is the mass of the ball and   is its velocity and: 
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The moment of inertia of the ball is given by: 

    
 

 
    

  (3.15) 
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Then according to the Lagrangian equation: 

      (3.17)  
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Where   is the kinetic energy of the system and    is the potential energy of the 

system. The kinetic energy possessed by the wheel due to rotation is given by: 
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 (3.18) 

Where the wheels moment of inertia is given by: 

    
 

 
    

  (3.19) 

Therefore the total kinetic energy possessed by the system is given by: 
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 (3.20) 

Now, since      (the rolling angle of the ball) is not measurable, it must be expressed 

in terms of     and   , giving: 

    
 

 
  (     )

  ̇ 
 
 

 

 
  (   ̇     ̇     ̇ )

    
 

 
    

  ̇ 
 
 (3.21) 

The potential energy possessed by the system is given by 
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Therefore, according to Eq. 3.17, 
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And according to Eq. 3.2, the non-linear system dynamic equations are then given 

as: 
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These two equations (Eq. 3.24 & Eq. 3.25) are only true as long as the centripetal 

force is large enough to maintain circular motion of the ball on the wheel. The system 

must be defined and modelled in the state space form if the Jacobian method of 

linearization is to be used; hence the state variables are declared as follows: 
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(3.26) 

        

 
(3.27) 

Where: 

A = system matrix 

B = input Matrix 

C = output Matrix 

D = feed-forward matrix 
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The linearized A and B system matrices (now called Jacobian matrices) are given as 

follows: 
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 (3.28) 

Application of Eq. 3.28 yields Eq. 3.29. To simplify the presentation of these 

matrices, the notations N, M, R and P are used. These are defined in Eq. 3.36 

through to Eq. 3.44. 
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Application of (3.30) yields (3.31): 
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Now, in order to linearize the system, make          Since cos(0) = 

1, the system matrices are given as follows: 

(3.31) 

    

[
 
 
 
 
 
 
 
 
 
               

 
 

                 
 
 

                  
 
 

               ]
 
 
 
 
 
 
 
 
 

 

 

(3.32) 

    

[
 
 
 
 
 
 
 
 
 
     
 
 

    
 
 

      
 
 

    ]
 
 
 
 
 
 
 
 
 

 (3.33) 

   [              ] (3.34) 

 

     (3.35) 



70 

Where: 
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3.2 Simulation of the BOW system 

Based on the system model determined above, the BOW system is then simulated in 

Matlab using the initial system parameters given in Table 3-1. The implemented 

Matlab code can be found in Appendix B. 

Table 3-1: Initial System Parameters 

Parameter Value Comment 

   2.5 Kg Mass of wheel 

   0.195 m Radius of wheel 

   0.1 Kg Mass of ball (hard rubber ball) 

   0.025 m Radius of ball 

  9.81 m/s2 Acceleration due to gravity 

 

From the simulations, an examination of the controllability and observability matrices 

(discussed in section 2.4.4) reveals that the BOW system is fully controllable but only 

partially observable. In the case of the controllability matrix, the rank, as computed in 

Matlab by the following command: ‗rank (ctrb(sys_ss))‘ is equal to the number of 

states present in the system, i.e. four. However, in the case of the observability 

matrix, the rank, as computed by ‗rank(obsv(sys_ss))‘ in Matlab, is equal to two. This 

vital information reveals that a standard feedback controller (such as PID) may be 

designed and implemented in order to adequately control the BOW plant. However, 

in the case of full state feedback (such as LQR), for which all the states must be 

observable, special care must be taken because control cannot be achieved using 

this method without the addition of state observers. It is apparent from the rank of the 

observability matrix that only the system‘s input and output are directly observable. 

The state space system model given in section 3.1 above is converted from the 

state-space format into the transfer function form for ease of use. This conversion is 

done in Matlab using the ‗state space‘ to ‗transfer function‘ command (ss2tf). The 

‗mineral‘ command is then used to eliminate poles and zeros that have no effect on 

the response of the system thus reducing the overall complexity of the system. 
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The resulting transfer function for the BOW system is given as: 

 ( )   (                ) (                   ) (3.45) 

A step command to the input of the system yields an infinitely increasing response as 

the ball rolls off the surface of the wheel (see Figure 3.3.) away from the zero degree 

equilibrium point. 

 

Figure 3.3: Step response of BOW System 

The BOW plant is therefore shown to be a naturally unstable system. Control effort is 

necessary if the system is to be stabilized about the system‘s equilibrium point. 

 

Figure 3.4: Root-locus plot for BOW System  
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A closer examination of the system dynamics reveals a pole in the right hand s-plane 

of the root-locus plot (see Figure 3.4). Consequently, this pole yields an unstable 

system. 

 

Figure 3.5: Open-loop Bode plot for BOW System 

The Bode plots for the uncompensated open-loop BOW system (shown in Figure 3.5) 

reveal a very small gain margin of 0.892 dB and an infinite phase margin due to the 

phase never crossing -180 degrees. This again exposes the BOW system to be a 

naturally unstable system. 

Now that the nature of the system is known, the following sections proceed to look 

into the design of appropriate modes of control that will stabilize the BOW system. 

  



74 

3.3 Controller design requirements 

Design requirements for the control of the BOW System are as follows:  

30o- 30o

0o

25% 
overshoot

 

Figure 3.6:  Controller design requirements 

Referring to Figure 3.6, the equilibrium point of the system is located at the top centre 

of the wheel (zero degrees) and is therefore the system set-point. An over-damped 

system is undesirable especially for systems that use tooth belt couplings; hence an 

overshoot of about 25% (7.5 degrees to either side of the equilibrium point) is 

acceptable for the BOW system. The rise time must be kept within 500 ms and the 

settling time also within 500 ms. For feedback control, it may be considered that the 

laser distance sensor has a unity gain. A steady state error of less than +/- 5 degrees 

is acceptable. 
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3.4 Controller design and simulation  

In order to stabilize the BOW system about its equilibrium point, various control 

strategies are designed and simulated on the linearized model of the plant before 

actual implementation. The following traditional (linear) control algorithms are 

considered in this section: a PD and PID controller, a Lead and Lead-Lag 

compensator and a Linear Quadratic Regulator (LQR). 

As highlighted in the literature review, the most common of the traditional controllers 

is the PID controller for its simplicity. (Eq. 3.46) shows the PID algorithm in the 

parallel form. 

        ( )     ∫  
 

 
       

  ( )

  
 (3.46) 

The transfer function of the PID controller in the ideal or standard form is given by 

(3.47): 

  ( )    (               ) (3.47) 

PID control, where all three controller elements are used is not always necessary. 

Depending on the nature of the system needing control, sometimes P action, PD 

action or PI action will suffice, i.e., not all controller elements need to be used. In the 

case of the BOW system, a P or PI controller are unable to stabilize the system. 

In regard to intelligent control, a NN-Predictive controller and a NN-PID controller are 

simulated in Matlab/ Simulink. 
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3.4.1 PD controller design:  

Using the SISO design tool in Matlab, a PD controller is designed for the BOW 

system based on the linearized system model.  

 

Figure 3.7: Root-locus and Bode plot for BOW System with PD controller 

A PD controller is created by placing a real zero at -10 on the real axis of the root-

locus plot or at 10 rad/ s on the Bode diagram as shown in Figure 3.7. The resulting 

PD compensator has a gain margin of -27 dB and a phase margin of 82.1 degrees 

and can be represented as: 

 ( )         
(      )

 
 (3.48) 

The resulting closed-loop step response (see Figure 3.8) shows that the system is 

stable and will operate well within the required specifications. However, in keeping 

with the research goals, the PD controller, because of its similarity to the PID and 

Lead compensators (discussed in section 3.4.2 and 3.4.3 respectively) is deemed 

unnecessary for actual implementation on the PLC in real time. See Appendix B for 

the Matlab code.  
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Figure 3.8: Step response of BOW System with PD compensator applied 

3.4.2 PID Controller design 

Referring to Figure 3.9, a real zero is placed at -5.66 and -0.9 on the real axis of the 

root-locus. On the Bode diagram a real zero is placed at 5.66 and 0.9 rad/ s. An 

integrator is placed at the origin of the s-plane. The resulting PID controller takes the 

following form: 

 ( )      
(       )(      )

 
 

                   

 
  

           

 
 (3.49) 

Equation 3.49 encapsulates the following PID gains: Kp = 134.4, Ki = 112 and Kd 

=22.176. For even better performance, a first order derivative filter may be added to 

the basic PID controller, yielding the following transfer function: 

 ( )          
(       )(      )

 (         )
 (3.50) 

The derivative filter ensures that the noise created in the system by the derivative 

gain is significantly reduced. It also generally improves the performance of the 

controller. The compensated system (even without the filter) is entirely stable and 

has a gain margin of -40.5 dB and a phase margin of 89.4 degrees. 
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Figure 3.9: Root-locus and Bode plots for compensated BOW System (without 

filter) 

 

Figure 3.10: Step response simulation with PID controller (without filter) 

Figure 3.10 shows the closed-loop step response produced as a result of using the 

PID controller to control the plant. According to the simulation, the system is able to 

reach the set-point within 6 ms with no overshoot at all. In reality this would not be 

possible on the actual BOW system because of mechanical and computational 

limitations that the model is unable to cater for. 

The PID controller shown in Eq. 3.49 is then digitized using Tustin‘s bilinear 

transformation and implemented in real time on the PLC (see Matlab code in 

Appendix B and PLC code in Appendix C).  
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The designed PID controller was also tested in the Simulink environment. This 

proved useful for testing its disturbance rejection capability with the inclusion of a 

saturation limit (of approximately +/- 3 NM of torque based on actual hardware 

parameters) on the output of the controller to account for the fact that the actual 

BOW system is only capable of finite (limited) controller action. Figure 3.11 shows the 

Simulink model that was used to carry out the simulation. It incorporates a specially 

constructed disturbance signal injected on the plant output as can be seen in Figure 

3.12. 

 

Figure 3.11: Simulink model of PID Controller with disturbance injection 

 

Figure 3.12: Disturbance rejection capability of PID controller 

The PID controller, as seen in Figure 3.12, succeeds in rapidly rejecting all external 

disturbances injected into the system with minimal negative influence on the plant 

stability.  
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3.4.3  Lead compensator design 

 

Figure 3.13: Root-Locus and Bode plot for Lead compensator 

To create a Lead compensator, a real zero is placed at -1 and a real pole at -810 in 

the s-plane and at 1 and 810 rad/ sec respectively on the frequency plot as shown in 

Figure 3.13. The compensator introduces positive phase to the system, effectually 

making the system more responsive with a gain margin of -39.5 dB and a phase 

margin of 71.2 degrees. The lead compensator is similar to the PD controller in that 

they both essentially form a low pass filter. However, the lead controller produces a 

much faster response.  

 

Figure 3.14: Step response for Lead compensator  
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The Lead compensator transfer function is given as: 

 ( )      
(        )

(         )
 (3.51) 

The result of using this controller is a stable system as shown by the step response 

in Figure 3.14. Like the previous controller, the Lead compensator is able to 

withstand and reject external disturbances without losing stability as highlighted in 

Figure 3.16. Figure 3.15 shows the Simulink model that was used to test the 

compensator‘s disturbance rejection capability.  

The Lead compensator is digitized using Tustin‘s bilinear transformation and 

implemented in real time on the PLC (see Matlab code in Appendix B and PLC code 

in Appendix C). 

 

Figure 3.15: Closed-loop Simulink model with Lead compensator  

 

Figure 3.16: Disturbance rejection capability of Lead compensator  
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3.4.4 Lead-lag compensator design 

The Lead-Lag compensator transfer function is given as: 

 ( )        
(       )(         )

(          )(         )
 (3.52) 

When the Lead-lag compensator is implemented to control the BOW plant, it can be 

seen from Figure 3.17 that at low frequencies the closed-loop system exhibits ‗phase 

lead‘ owing to a real zero placed at -6.4 and a real pole at –2544.7 in the s-plane (i.e. 

6.4 and 2544.7 rad/ sec respectively on Bode plot). The system then exhibits a phase 

lag at higher frequencies because of a real zero placed at –7.27e5 and a real pole at 

-5.06e3 in the s-plane (i.e. 7.27e5 and 5.06e3 rad/ sec respectively on Bode plot). 

Lower frequencies are amplified, while higher frequencies are attenuated. 

Furthermore, the compensator produces a gain and phase margin of 30.9 dB and 81 

degrees respectively. 

 

Figure 3.17: Root-Locus and Bode plot for Lead-Lag compensator 

A step response (see Figure 3.18) reveals a stable system similar to that produced 

by the PID controller. The Lead-lag controller is able to reject all external 

disturbances subjected to the plant with little effect on the stability. This is clearly 

seen in Figure 3.20. Figure 3.19 shows the Simulink model that was used to test the 

capability of the compensator with the influence of an external disturbance. 
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Figure 3.18: Step response for Lead-Lag compensator 

 

Figure 3.19: Simulink model of Lead-Lag compensator with disturbance injection 

 

Figure 3.20: Disturbance rejection capability of Lead-Lag compensator  
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The Lead-Lag compensator is digitized using Tustin‘s bilinear transformation and 

implemented in real time on the PLC (see Matlab code in Appendix B and PLC code 

in Appendix C). 

3.4.5 LQR – Linear Quadratic Regulator design 

Assuming that all state variables are measurable, the vector of state-feedback control 

gains (K) must be found in order to control the BOW system. The first step in 

designing this controller is to determine that the system is in fact controllable. 

Satisfaction of this property means the state of the system can be driven anywhere in 

a finite time. Since the controllability matrix is a 4x4 matrix (determined in section 3.2) 

the rank of the matrix must be 4 meaning that the system is controllable and the LQR 

method may be used to stabilize the BOW plant. The Matlab command ‗ctrb‘ is used 

on the system model of the BOW plant to generate the controllability matrix while the 

command ‗rank‘ is used to test the rank of the system. The resulting controllability 

matrix is given as: 

  [

         
               

         
                            

   

        
 

      
 

] (3.53) 

The Matlab function ‗lqr‘ allows the parameters, R and Q to be chosen which will 

balance the relative importance of the control effort (u) and deviation from 0 (error) 

respectively in the cost function. The simplest case is to assume that R = 1 and Q = 

C‘C. 

The response after the LQR controller is implemented on the BOW system is 

depicted in Figure 3.21. By altering variables in the Q matrix, the response can be 

improved even further. The resulting system transfer function is given as: 

      
                           

                                      (3.55) 
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Figure 3.21: Step response of LQR controller 

The complete Matlab code for the above LQR computations can be found in 

Appendix B. Because of hardware and software limitations, the state feedback LQR 

controller could not be implemented in real-time as initially hoped. 

3.4.6  NN-Predictive controller design 

 

Figure 3.22: NN-Predictive controller applied to BOW System in Simulink 

Figure 3.22 shows the Simulink model incorporating a NN-predictive controller to 

stabilize the BOW plant. The predictive controller could not be implemented in real-

time due to software and hardware constraints. The controller, when executed in 

real-time was not able to alter the drive torque within an acceptable time period in 

order to control the BOW plant over an OPC network connection. However, 

simulation results were obtained for the predictive controller when executed on the 

model of the BOW system. Detailed simulation results are given in the results 

section.  
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3.4.7  NN-PID controller design 

An NN-PID controller was designed and simulated in Matlab before actual 

implementation onto the PLC in SCL (see Appendix B for Matlab code and Appendix 

C for actual implemented code). The structure of the implemented NN-PID controller 

with all its connective weights is shown in Figure 3.23. 

The controller is an ‗online‘ controller, meaning that it does not require historical data 

for purposes of training. 

System
Setpoint 

Input Layer

Hidden Layer

Output Layer

U1_1 x1_1

u1_2 x1_2
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 feedback

  

Figure 3.23: NN-PID structure 

The hidden to output layer weights w1_o, w2_o and w3_o essentially form the PID 

controller gains Kp, Kd and Ki respectively. The network uses Back Propagation (BP) 

and utilizes the gradient descent learning algorithm to update its weights and thus 

minimize the system error. The sigmoid activation function is utilized in the BP 

computations. The reader is referred to [59] for a detailed derivation and layout of the 

BP algorithm. 
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For simplicity only the input to output properties of each neuron of the network shown 

in Figure 3.23 are given below (Eq.3.56 to Eq. 3.65): 

Input Layer neurons: 

                        (3.56) 

                        (3.57) 

P-action neuron transfer function:  

                  (3.58) 

   ( )   {

     ( )    

   ( )       ( )   
    ( )    

 (3.59) 

I-action neuron transfer function: 

                  (3.60) 

   ( )   {   (   )  

     ( )    

   ( )       ( )   

    ( )     

 (3.61) 

D-action neuron transfer function: 

                  (3.62) 

   ( )   {

     ( )    

   ( )     (   )       ( )   

    ( )    

 (3.63) 

Output layer neuron: 

                        

 (3.64) 

      (3.65)  
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The designed NN-PID controller is executed on the model of the BOW system in 

simulation in order to control it. The simulation results, when the system is subjected 

to a step input are given in Figure 3.24, Figure 3.25, Figure 3.26 and Figure 3.27 

respectively. 

In comparison to the traditional controllers examined above, the NN-PID controller is 

significantly slower in its response especially while the network is undergoing 

training. It is observed that training occurs relatively quickly (within 1.5 - 2 s) and is 

able to produce an accurate result with an error of less than 0.01. However, this 

remains largely dependent on the selected learning rate and initial weights. Similar 

results can be expected in an actual implementation with the exception of a longer 

training period owing to system uncertainties and delays. 

 

Figure 3.24: BOW response & controller action in response to step input 
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Figure 3.25: Simulation of system error during training 

 

Figure 3.26: Simulation of root-mean-square training error 

The PID gains are automatically tuned during the training period and stabilize when 

the system error is sufficiently small (see Figure 3.27). The controller is thus able to 

continually adjust itself in order to maintain the system set-point even when an 

external disturbance is introduced or when system parameters are altered. If the 

stability of the BOW plant is lost perhaps due to the NN over training itself or failing to 

locate the point of minimum error, the training need only be re-initialized. 
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Figure 3.27: Training of PID gains in simulation 
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3.5 Summary 

In this chapter, a mathematical model of the BOW platform is proposed using the 

Lagrangian energies approach. The non-linear system is then linearized about the 

system‘s zero degree equilibrium point. Various traditional control strategies including 

PD, PID, Lead, Lead-Lag LQR controllers are then designed and simulated based on 

the determined model. Standard design procedures are used including the root-

locus, frequency domain and time domain methods as outlined in the literature 

review section. The designed controllers are then digitized using Tustin‘s bilinear 

transformation. Thereafter, the digitized controllers are implemented on the PLC in 

Structured Code Language (SCL) and called within in a cyclic interrupt set to a period 

of 1 ms. The process of implementation is detailed further in the following section. 

Two NN control strategies are also designed and simulated including a NN-Predictive 

controller and a NN-PID controller. 

Because of hardware limitations, in particular a very poor update rate between 

Matlab and the PLC over an OPC connection, the NN-Predictive controller and the 

LQR could not be implemented in real-time as originally intended. 
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Chapter 4.  

EXPERIMENTAL SETUP OF THE BALL-ON-WHEEL (BOW) 

SYSTEM 

 

4.1 Introduction to the BOW System  

The BOW system is a mechatronic-type control system that was selected for its 

strong non-linearity (shown in the system equations in section 3.1) and inherent 

instability [56]. It may therefore represent any existing non-linear and unstable SISO 

system found in industry. The aim of the control system is to balance various balls of 

different size, weight and surface texture on the top-centre of the wheel by controlling 

the torque applied to the wheel. The apparatus consists of two aluminium wheel 

coupled to a servo motor via a tooth belt (see Figure 4.1 and Figure 4.2). The servo 

motor is controlled by a Siemens servo drive which acts as a Profibus slave to an S7-

300 PLC. A laser distance sensor is used for actual feedback of the ball position. The 

wheel angle and applied torque are calculated by the drive and retrieved cyclically by 

the PLC over the existing network. 

4.2 Mechanical design 

Mechanical drawings of the BOW system are presented in Appendix A. The frame of 

the system was constructed using locally available aluminium extrusion. The 

aluminium wheel was laser cut to specification. Excess material was removed from 

the wheel, without affecting its structural integrity, to reduce its overall weight and 

hence also reduce the magnitude of the torque required by the motor to change the 

direction of rotation or the speed. A CAD assembly drawing as well as an image of 

the actual construction of the BOW system can be seen in Figure 4.1 and Figure 4.2 

respectively. 
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Figure 4.1: CAD drawing of BOW System 

 

Figure 4.2: BOW System 
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Referring to the coupling between the servo motor and the wheel (Figure 4.2), the 

system is geared in the ratio 1:4.42 via a tooth belt in order to improve the general 

response of the wheel as the ball rolls along its periphery. The gearing also increases 

the torque produced by the motor by a factor of 4.42. This essentially serves to 

reduce the load on the motor especially when changing rotational direction at high 

speed. 

The groove in which the ball rests is adjustable and may be set to 3 defined 

distances using specially designed spacers (30mm, 35mm and 40mm) to 

accommodate balls of different sizes. The wheel periphery is also lined with rubber to 

improve surface contact and thus improve the system response. More images of the 

completed system can be found in Appendix D.  

4.3 System overview 

The block diagram shown in Figure 4.3 depicts the BOW system with all its 

components and their respective interconnections. A more detailed overview can be 

seen in Figure 4.20 (section 4.3.5). 

Siemens S7-300 PLC

Traditional Control 

Advanced Control 

Control 
Pendant 

Siemens Servo 
Drive

Servo 
Motor

Wheel 

PC running
OPC Server, 

 Matlab/ 
Simulink 

Wireless 
connection

Profibus 
Network

Tooth Belt 
coupled

3-phase VAC

24 VDC

 

Figure 4.3: BOW System overview 

The sections that follow discuss the role of each part of the BOW system and the 

reasons behind their selection. 
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4.3.1 Drive and motor 

Before the actual drive and motor selection process begins, a consideration of the 

drive system in its entirety is needed. The following factors were considered during 

the selection process of the servo motor and drive system used in the BOW system 

[60, 61]: 

1) Is the motion linear or rotary? What drive system is to be used (spindle, 

toothed belt, etc.)? 

2) What variables are to be controlled (current, speed, position)? With what 

accuracy is control required? Is an open-loop control system sufficient? How 

is the controlled variable measured? Where do commands come from? 

3) Is there sufficient power available to drive the load under all operating 

conditions and to compensate for the expected losses in the drive train? 

4) What are the maximum voltage and current available? 

5) What is the cost involved? 

4.3.1.1 Siemens servo drive and servo motor 

The Masterdrive Motion Control (MC) from Siemens was chosen as the main motor 

control unit for the BOW system. It is an AC-AC frequency converter designed for 

industrial servo drive applications. It is ideally used in applications where [60, 61]: 

 a very high level-dynamic response is required 

 angular synchronism between drives is necessary  

It thus satisfies the most stringent demands paced on servo technology. The drive is 

also Profibus enabled for cyclical user data exchange via a communication board. It 

can therefore be connected into a Profibus network as a slave to some master 

system such as a PLC. The drive also offers a flexible (freely assignable) 

configuration of cyclic messages of up to 16 words [60]. 

The drive is powered on a 3 phase power supply (400-480 VAC) and outputs a 

controlled voltage in the same range. It also comes with the following features:  

 An R232 port for communication with a PC (for parameter changes and data 

capture) 
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 An Encoder port 

 PROFIBUS RS485 port for communication with a master system such as a 

PLC 

 Analogue I/O (X101) 

 Emergency input 

Figure 4.4 gives a description of the ports and terminals included on the drive: 

 

Figure 4.4: Master Drive MC unit [60, 61] 

In the BOW system, the drive is controlled by the Siemens S7-300 PLC via the 

Profibus communication board (CB) that is standard with the drive (x103). A data 

telegram that contains a control word, a set-point channel, a status word and a 

feedback channel is exchanged cyclically between the PLC and drive. The data is 

divided into two areas: 

 The process data area (PZD) which contains the control words and set-points 

or status information and actual values. 
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 The parameter area (PKW) for reading/ writing of parameters, e.g. reading out 

of faults, min max limits etc. 

Each bit in the control word has a specific function, e.g. start, run, stop etc. The 

reader may refer to [61] for a complete breakdown of the control word. The drive 

speed, torque or position are controlled via the set-point channel depending on which 

control action is selected [61]. Figure 4.5 below shows how the data telegram is 

selected in the drive software tool (Drivemonitor). Using freely assignable function 

blocks in the drive, it is possible to link specific functions to the process data area or 

parameter channel. 

 

Figure 4.5: Selecting data telegram in drive software tool 

Basic test functionality is possible directly from the PC using Drivemonitor (PC drive 

software). Data exchange in this case is via RS232. PLC control is disabled when PC 

control is active and vice versa. Figure 4.6 shows the basic drive control panel in 

Drivemonitor. 
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Figure 4.6: Drive test panel in Drive Monitor 

Various controls and/ or set-points may be changed using the above panel, however 

functionality is limited. In the BOW system, the drive is connected as a Profibus slave 

and receives control commands and set-points directly from the PLC which acts as 

the master system in the configuration. The drive may be configured and operated in 

any one of the following control modes: 

 Speed control 

 Torque or current control 

 Position control mode 

Only one mode may be active at a time. For ideal operation, the BOW system is 

operated in Torque control mode. This satisfies the requirements of the system 

model as discussed in the previous section, where the designed controller must 

manipulate the torque being fed to the wheel. 

 

Figure 4.7: Masterdrive on Profibus network  
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Figure 4.7 depicts a typical industrial Profibus network architecture including multiple 

drives for multiple axis control and servo synchronization. Similar setups can be 

found in in CNC milling applications. 

Servo motors allow for precise control of angular position. They are used in many 

applications where high speed as well as precision is a requirement. One such area 

of application is industrial robotics. To achieve this sort of precision, the motor is 

usually coupled with an encoder to provide position feedback in a closed-loop 

system. There is huge variety of servo motors available on the market. 

The Siemens 1FK7042-5A71-1TGO servo motor was selected and used in the BOW 

system. It is a synchronous AC motor. Table 4-1 shows the key motor specifications. 

Table 4-1: Table of motor specifications 

Maximum 

Rated 
  =3 Nm   =2.2 A            9000 rpm 

Nominal   =2.6 Nm   =1.95 A       3000 rpm 

 

As previously mentioned, a tooth belt drive-train is used as the means of coupling 

between the wheel and servo motor. This type of drive-train was chosen because it 

works well to prevent undesirable slippage. This is a common problem with most 

other types of drive-train. The tooth belt also allows a certain degree of flexibility in 

the system, effectively reducing the system‘s rigidity. This is ideal for the BOW 

system because of the high torques involved especially when the direction of rotation 

is rapidly changed. The motor and drive can be seen in Figure 4.8. 
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Figure 4.8: Drive (Masterdrive MC) and motor 

The servo motor, in speed control mode, is controlled via a speed controller algorithm 

within the drive. In most situations, the controller gains are tuned automatically, 

however, Figure 4.9 shows how the controller gains can be fine-tuned, in the drive 

software by the user, to obtain the best performance. 

 

Figure 4.9: Speed controller in servo drive 

In torque control mode, the drive is able to measure (as a means of feedback) the 

current being drawn by the motor.  
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The drive is thus able to directly control the torque by controlling the current being 

supplied to the motor. 

In position control mode, the drive measures the angular position of the shaft via an 

inbuilt shaft encoder on the rear of the motor. This feedback value is then used in the 

position control loop to move the motor to the desired set-point. 

Control Word

Status Word

 

Figure 4.10: Parameter selection in Drivemonitor 

Drive parameters may be monitored or altered directly from Drivemonitor as shown 

surrounded by the red rectangle in Figure 4.10. For maximum flexibility and control, 

specific drive parameters may be linked to the control words (see upper right side of 

Figure 4.10), status words (see lower right side of Figure 4.10), or set-point channels 

for direct manipulation in the PLC. 

4.3.2 OPC Server and client  

In order to capture experimental data for analysis and comparison and also execute 

controllers directly from Matlab/ Simulink the S7-300 PLC is linked wirelessly using 

Siemens wireless technology to a laptop running Matlab/ Simulink (see the 

architecture described in Figure 4.3 above). OPC Server software running on this 

computer then give Matlab/ Simulink (i.e. the client) exclusive access to all PLC I/ O‘s 

and memory areas within a 1 – 1000 ms time frame depending on the amount of data 



102 

acquisition and processing required. This feature provides the flexibility needed to 

design, implement and execute complex controllers directly from the Matlab/ Simulink 

environment. Thoroughly tested algorithms may also later be generated and 

implemented directly on to the PLC for real time execution. The major benefit of 

running the controllers directly from the Matlab/ Simulink environment is that 

relatively complex operations in the Laplace (s) domain can be performed with ease 

and system data can easily be captured and stored for further analysis [50].  

Simatic Net OPC Server software from Siemens is installed and used on a PC. The 

server is set up in the hardware configuration as shown in Figure 4.11 below. 

OPC Server 
connected to 

Ethernet subnet

OPC Server 
activation settings

 

Figure 4.11: OPC Server setup in Step 7 software 

Thereafter the server is activated using another tool called the station configuration 

editor shown in Figure 4.12. 
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Index 2 contains the 
communication parameters 
while Index 3 contains the 
OPC server configuration. 

If the status is active, then 
the OPC Server is configured 
correctly and is connected to 

the required network 

 

Figure 4.12: OPC Server settings 

Using another software tool called OPC Scout, the active server is selected and all 

memory areas and I/O areas of the PLC become available over the configured 

connection, i.e. S7 Connection as shown in the Figure 4.13 below. 

 

Figure 4.13: OPC Scout variable selection 

Many different variable groups may be created using OPC scout. Selected variables 

are added to the created group by highlighting them and shifting them into the group 

area. Once the variables have been moved into the created group, they may be 
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monitored or updated in real time. Any OPC client (including Matlab and Simulink) 

can now access these variables. The refresh rate of OPC Server depends on the 

specifications of the system that is being accessed. Since, in this case, it is an S7-

300 PLC, the minimum possible sampling rate is 1 ms. 

 

Figure 4.14: Monitoring of PLC variables in OPC server 

In Simulink, an OPC toolbox is provided. Using this toolbox, an OPC Client is set up 

to access the variables that were configured in the OPC Server. As previously 

discussed, Matlab or Simulink may then be used as the control platform to remotely 

execute complex algorithms on the BOW system. 

Figure 4.15 shows how the OPC Client toolbox is utilized to read and write 

information directly to and from the PLC via Simatic net OPC Server. Figure 4.16 

shows a screen shot of a customized actuation signal that was created using the 

Signal Builder function in Simulink for experimental actuation of the servo motor. The 

feedback signal from the distance sensor is read-in into Matlab/ Simulink in a similar 

manner using the ‗OPC Read‘ block. The captured data can then easily be plotted on 

a graph that can be used for analytical purposes. 
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Figure 4.15: OPC read and write operations in Simulink 

 

Figure 4.16: Custom signal created in the Signal Builder tool 
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4.3.3 Siemens S7-300 PLC 

4.3.3.1  Area of application of S7-300 PLC 

The S7-300 PLC is used almost anywhere where the manufacturing process can be 

automated. This includes the automobile industry, plastic processing, the packaging 

industry, chemical plants and also the food and beverage industry just to name a few. 

The S7-300 is an all-purpose automation system used for applications which require 

robust control. 

The S7-300 PLC has a modular design, meaning that the user may add on modules 

at any time as they are required. Modules include [62]:  

 CPU‘s for various performance ranges  

 Signal Modules (Digital Input, Digital output and analogue modules) 

 Function Modules (FM) 

 Communication processors (CP)  

 Power supplies (PS) 

 Interface modules 
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4.3.3.2 Important specifications of the S7-315-DP-PN PLC 

Table 4-2: Important CPU specifications [62] 

CPU 315-2PN/DP 

Programming package Step 7, from version 5.1 

Memory 

Integrated work memory 128 KB 

Load Memory Plugged in MMC (max. 8 MB) 

Processing Times 

Bit operations Min. 0.1 μs 

Word instructions Min. 0.2  μs 

Fixed point arithmetic Min. 0.2  μs 

Floating-point maths min. 6  μs 

Timers / Counters 

S7 counters 256 

Counting range 0-999 

S7 timers 256 

Timing range 10 ms to 9990s 

Data Area size 

Flag bits (Markers) 2048 bytes 

Clock frequency bits 8 

Data blocks 1023 (DB 1 to DB 1023) 

Local data Max 1024 bytes per task 

Programming blocks 

Total  1024 (FC‘s and FBs); Also depends on MMC 

Nesting depth per priority class  8  

Address areas (I/O‘s) 

Total I/O address area Max 2048 bytes  

Distributed I/O  Max. 2000 

Digital channels Max. 16384 

Analogue channels Max 1024 

Signalling Functions 

Number of stations that can log in for signalling functions  16 

S7 Communications 

Profinet interface  Open communication via Profinet and Simaticnet OPC server.  

 S7 Communication for data exchange between PLCs  

 Programming, commissioning and diagnostics with Step 7 

Connection to HMI and SCADA 

DP interface (Profibus)  

 Constant cycle time yes 

 Activate/ deactivate DP slaves yes 

 Transmission rates 12 MBaud 

 No. DP slaves per station 124 

Voltages and currents 

Power supply  24 VDC 

 Permitted range 20.4 V to 28.8V 

Current consumption (No-load operation) Normally 60 mA 

Power Consumption  2.5 W  
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Table 4-2 above shows relevant specifications of the S7-315-DP-PN PLC that was 

used as the computational platform in the BOW system [62].  

 

1) Memory card slot (MMC) 

2) Status and error displays 

3) MMC ejector 

4) Mode selector switch 

5) Interface 1 (x1 MPI – Multipoint Interface) 

6) Interface 2 (x2 DP peripheral)  

7) Power supply 

 

 

 

 

Figure 4.17: Siemens S7-300 CPU 

Figure 4.17 depicts the external features of the S7-315 2PN/DP CPU.  

4.3.3.3 Interrupts 

Most control algorithms are time based and therefore require a fixed sampling rate. In 

the S7-300 PLC, this is achieved using the cyclic interrupt. Specifically, Organization 

Block 35 (OB35) is used to generate the cyclic interrupt. The interrupt may be set up 

to occur periodically between 1 ms - 60000 ms (1 minute). For the BOW system, the 

cyclic time is set to the smallest available time of 1 ms to allow for rapid execution 

and update of the implemented control algorithms [62].  

4.3.4 Control pendant 

A control pendant (shown in Figure 4.18) is wired to the digital I/O card of the PLC. 

Among other functions, the E-stop is used to provide emergency response in the 

case of a fault or hazard. Other functions include: start (green push-button), stop (red 

push-button) and selection of controller modes (PID, Lead, Lead-Lag, NNPID etc.) 

using the toggle switches.  
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Figure 4.18: Control Box for BOW system 

4.3.5 Wireless connectivity 

Wireless (remote) connectivity to the BOW system (i.e. to the PLC) is obtained from 

the control PC using a Siemens Scalance Wi-Fi router shown in Figure 4.19 below. 

The PLC is given a unique IP address of 192.168.0.1 and subnet a mask of 

255.255.255.0. The router and the laptop are also given their own IP addresses 

within the same subnet. The entire system architecture can be seen in Figure 4.20. 

 

Figure 4.19: Scalance wireless switch (2 port) 
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Figure 4.20: Complete system overview 

4.3.6 Feedback sensing 

The balls angular position (see Figure 4.20 above), is captured using a Sick DT20 

laser distance sensor that has a 150 mm measuring range. This distance is read in 

as voltage on a high specification analogue PLC module that has analogue to digital 

conversion times in the micro-second range.  
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The read-in voltage is then calibrated into an angle in degrees. This way, the angle of 

the ball with respect to the top centre of the wheel is always known in real time and 

can be used for feedback purposes in the control loop. 

4.4 Controller implementation 

The controllers designed in section 3.4 which include a PID controller, a Lead and 

Lead-lag compensator and an NN-PID controller are implemented in their digitized 

form onto the PLC in SCL. Each controller is created in the form of an FB and called 

on demand in the cyclic interrupt 0B35. The algorithm to be used is selected by the 

user from the control pendant. Programming interlocks prevent multiple controllers 

from being called at the same time. See Appendix C for the implemented PLC code. 

4.5 Parameter variation for experimental work  

The following system parameters are varied by changing the type of ball that is used 

in the experiment: 

1) Ball radius: the ball radius affects the spherical size of the ball and hence it‘s 

contact area with the wheel. Generally, the smaller the ball, the greater the 

surface contact will be with the wheel periphery. The greater the surface 

contact, the greater the frictional force between the ball and wheel will be. 

The radius of the ball also affects the ability of the feedback sensor to 

accurately determine the position of the ball as it rolls on the wheel. 

Unpredictable non-linear uncertainties are thus created. 

2) Surface Texture: balls with smoother surfaces possess lower frictional 

coefficients when in contact with other surfaces than balls with rougher or 

more rubbery surfaces. The surface texture also affects the laser distance 

sensor‘s ability to accurately read the ball‘s position on the wheel. Smoother 

surfaces are more reflective while rough or uneven surfaces are less 

reflective. 

3) Bounce: rubber balls with a hollow interior exhibit more ‗bounce‘ than rubber 

balls with a solid interior and plastic balls in general. 

4) Ball weight distribution and mass-moment of inertia: the more mass a ball has 

concentrated at its centre, the easier it is for it to get rolling. Conversely, balls 

that have their mass distributed away from their core (i.e. hollow balls) are 
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generally more difficult to get rolling. Heavier balls are more difficult to slow 

down if rolling too quickly. Lighter balls with less mass concentrated at the 

centre are generally easier to control but tend to be over-responsive, reacting 

even to slight wheel movements. 

Table 4-3 in section 4.6 describes the features and specifications of each ball used in 

the experiment. 

4.6 Experimental strategy  

The BOW system is a non-linear dynamical system that is naturally unstable. For this 

reason, a controller is required in order to maintain stability and thus prevent the ball 

from rolling off the wheel surface. The system‘s equilibrium point is found at 0 

degrees (i.e. the top centre of the wheel). The implemented controllers try to restore 

the system to this point whenever a disturbance is introduced. In the following 

sections, the response of the BOW system while traditional control strategies are 

implemented is compared to its response while NN control is implemented. To clearly 

observe the system‘s response, 2 pulses which act as disturbance inputs are injected 

into the system at 2 second intervals.  

Each implemented controller, with the exception of the NN-PID controller is tuned to 

balance a specific ball (Ball E is picked because it is an average specification ball 

that is well suited to the BOW system - see Table 4-3). As the balls are altered, plant 

parameters such as the ball weight, radius and moment of inertia are also changed. 

According to the system model, this changes the plant dynamics and has a direct 

influence on the extent of control possible. Unpredictable non-linear disturbances are 

also introduced (such as feedback sensor distortion or noise, surface contact friction, 

uneven contact surfaces that disrupt the motion of rolling balls and ball bounce etc.). 

These uncertainties could not be accounted for by the system model because of 

there being no way to measure them. The balls listed in Table 4-3 increase in radius 

and mass from Ball A to F. Ball G also increases in radius but has a mass of only 

52.3g.  
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Table 4-3: Ball specifications 

 Ball Radius Mass Description 

A 

 

20.75 mm 7.2 g 

 Light weight, uneven texture, hollow ball 

 Little or no bounce 
 

B 

 

20.25 mm 3.6 g 
 Small, very light ball with hardly any 

bounce 

 Multi-colour surface to create sensory 
disturbance 
 

C 

 

21.15mm 23 g 
 Soft rubber squash ball; fits well in wheel 

groove, hence more surface contact with 
wheel 
 

D 

 

25.5 mm 99.5 g 

 Smooth billiard ball painted blue 

 Hardly any ‗bounce‘ 

E 

 

24.65 mm 100 g  Medium sized, hard rubber ball 

 Reflects laser beam well 

 Exhibits little bounce 
 
 

F 

 

27.2 mm 181 g 

 Uneven surface, solid core ball 

 Odd shape affects rolling ability and 
sensory ability 

G 

 

30 mm 52.3 g 
 Medium Size Rubber ball exhibiting 

tremendous ‗bounce‘ 

 Dual colour – light and dark to create a 
sensory disturbance 
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Mechanical limits exist on the BOW system at +/- 30 degrees from the top centre of 

the wheel. The ball may sometimes roll on top of the limit, giving the false impression 

that the ball is rolling beyond 30 degrees. For this reason (let the reader take note), 

should the ball go beyond +/- 30 degrees, it may be considered that stability has 

been lost.  
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4.7 Summary 

In this chapter the BOW research platform is introduced in its entirety. Its mechanical 

and electrical construction is reviewed in light of the research goals. The function 

and interplay of all system components including the PLC, the processing software, 

the wireless access and control, the drive and the mechanical structure are 

discussed. The chapter details the methods used to create deliberate parameter 

variation in order to test and compare the implemented controllers. It also highlights 

the experimental approach followed. The BOW system‘s non-linear nature makes it 

ideal for investigating the shortfalls found with traditional control algorithms and 

exposes the need for more modern or intelligent methods of control. 
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Chapter 5.  

RESULTS AND DISCUSSIONS 

5.1 Introduction 

In this chapter the response of the BOW system is reviewed as various control 

algorithms are implemented in real-time. Balls of different weight, radius and surface 

texture are used to test the implemented controller‘s capability as system parameters 

are deliberately varied as discussed in sections 4.5 and 4.6. 

One of the main goals of this research is to compare the ability of traditional and 

modern control techniques in controlling a non-linear plant when implemented on a 

standard PLC. In this regard, the following digitized control algorithms were 

implemented: 

1) PID controller (traditional controller) 

2) Lead compensator (traditional controller) 

3) Lead-Lag compensator (traditional controller) 

4) NN-PID controller (modern/ intelligent controller)  

The implemented PLC code can be found in Appendix C. 

Other aspects of the research include wireless (remote) visualization and control of 

the BOW plant as well as wireless logging of plant data in Matlab and Simulink for 

purposes of further analysis. 
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5.2 Traditional vs. Intelligent control on the BOW System 

The investigation interrogates the ability of each implemented controller to maintain 

system stability and remain within the control system design specifications (as laid 

out in section 3.3) even while plant parameters are varied or while the plant is 

subjected to unpredictable non-linear disturbances. The performance of the 

traditional controllers is compared to that of the intelligent controller in the time-

domain (specifically looking at the system settling time and the steady state error). 

The results obtained in the following sections were obtained in Matlab in real-time 

over a wireless connection.  

5.2.1 Training the NN-PID controller 

In order to optimally control the BOW system, the online NN controller must undergo 

a short training period each time plant parameters are changed or a non-linear 

disturbance is introduced (i.e. a different ball is used). For simplicity, only two 

randomly selected sets of training plots (for Ball A and Ball D) are showcased in the 

results section. The remaining controller training plots may be found in Appendix E. 

 

Figure 5.1: RMS training error for Ball A 
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The NN updates its connective weights according to the back propagation (steepest 

descent) learning algorithm. The training process occurs online, meaning that during 

the training process the plant may temporarily display erratic or unstable behavior. 

The goal of the training algorithm is to update the networks connective weights such 

that the system‘s Root-Mean-Square (RMS) error is reduced to an acceptable 

minimum value that is specified by the user. Figure 5.1 shows graphically how the 

RMS error is gradually reduced for Ball A over a 6 second period. During the training 

process, the plant was manually disturbed a few times to enhance the training and 

thus make the controller more robust. Figure 5.2 to Figure 5.4 show how the NNs 

hidden-to-output layer weights, which are essentially taken to be PID gains, are 

updated for Ball A during training. 

 

Figure 5.2: Training of Kp for Ball A 
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Figure 5.3: Training of Ki for Ball A 

 

Figure 5.4: Training of Kd for Ball A 

Depending on the NNs initial weights as well as the chosen learning rate. The 

system‘s training time may vary. For Ball A, training took about 5 seconds. Figure 5.5 

to Figure 5.8 show how the NN learns to balance Ball D. Training for Ball D took 

about 8 seconds. For all balls used, the final gains occur when the RMS error has 

reached its minimum possible value. At this point the training is discontinued.  
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 Figure 5.5: RMS training error for Ball D 

 

Figure 5.6: Training of Kp for Ball D 
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Figure 5.7: Training of Ki for Ball D 

 

 

 Figure 5.8: Training of Kd for Ball D 
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5.2.2 PID vs. NN-PID control 

In this section the BOW system‘s response curves produced by the PID controller are 

superimposed on the response curves produced by the NN-PID controller. The 

response curves were produced as the system was subjected to a variety of balls as 

shown in Table 4-3. Each controller was tested separately, yet under exactly the 

same conditions. In the case of the NN-PID controller, the trials were carried out only 

once the NN-PID controller had been trained for each ball. The same pulse 

disturbance was applied to every ball at 2 second intervals. Figure 5.9 through to 

Figure 5.15 depict the obtained results. Based on these results, the controllers are 

then compared in detail with each other in sections 5.26, 5.27 and 5.28. 

 

Figure 5.9: PID controller vs. NN-PID, Ball A 
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Figure 5.10: PID controller vs. NN-PID, Ball B 

 

Figure 5.11: PID controller vs. NN-PID, Ball C 
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Figure 5.12: PID controller vs. NN-PID, Ball D 

 

 

Figure 5.13: PID controller vs. NN-PID, Ball E 
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Figure 5.14: PID controller vs. NN-PID, Ball F 

 

 

Figure 5.15: PID controller vs. NN-PID, Ball G 
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5.2.3 Lead compensator vs NN-PID control 

In this section the system response curves produced by the Lead compensator are 

superimposed on the response curves produced by the NN-PID. The response 

curves were generated as the system was subjected to a variety of balls as shown in 

Table 4-3. These curves are shown in Figure 5.16 through to Figure 5.22. Based on 

these results, the controllers are then compared in detail with each other in sections 

5.26, 5.27 and 5.28. 

 

Figure 5.16: Lead compensator vs. NN-PID, Ball A 
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 Figure 5.17: Lead compensator vs. NN-PID, Ball B 

 

Figure 5.18: Lead compensator vs. NN-PID, Ball C 
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Figure 5.19: Lead compensator vs. NN-PID, Ball D 

 

 Figure 5.20: Lead compensator vs. NN-PID, Ball E 
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Figure 5.21: Lead compensator vs. NN-PID, Ball F 

 

Figure 5.22: Lead compensator vs. NN-PID, Ball G 
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5.2.4 Lead-Lag compensator vs. NN-PID control 

In this section the system response curves produced by the Lead-lag compensator 

are superimposed on the response curves produced by the NN-PID controller as the 

system was subjected to the balls shown in Table 4-3. These curves are shown in 

Figure 5.23 through to Figure 5.29. The results are then examined in detail in 

sections 5.26, 5.27 and 5.28. 

 

Figure 5.23: Lead-Lag compensator vs. NN-PID, Ball A 
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Figure 5.24: Lead-Lag compensator vs. NN-PID, Ball B 

 

Figure 5.25: Lead-Lag compensator vs. NN-PID, Ball C 
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Figure 5.26: Lead-Lag compensator vs. NN-PID, Ball D 

 

 

 Figure 5.27: Lead-Lag compensator vs. NN-PID, Ball E 
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 Figure 5.28: Lead-Lag compensator vs. NN-PID, Ball F 

 

 

Figure 5.29: Lead-Lag compensator vs. NN-PID, Ball G 
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5.2.5 Analysis of system stability  

From Figure 5.9 through to Figure 5.29, it can be seen that only the NN-PID 

controller was able to produce a stable response for each ball that was used in the 

experiment. This is shown clearly in Table 5-1. The score column in Table 5-1 shows 

the number of balls out of 7 that each controller was able to balance and is an 

indication of controller robustness. 

 Table 5-1: Controller stability  

  STABLE OR UNSTABLE Score 
(out of 

7) 
CONTROLLER A B C D E F G 

PID √ √ √ √ √ √ X 6 

LEAD √ √ X √ √ X √ 5 

LEAD-LAG √ √ √ √ √ √ X 6 

NN-PID √ √ √ √ √ √ √ 7 

         √ Stable 
     

 X Unstable 
     

  

The question of whether or not the system (with each controller implemented 

separately) meets its initial design requirements in terms of the steady state error 

(less than +/- 5 degrees) and the settling time (500 ms or less) as detailed in section 

3.3 is addressed in Table 5-2. The score column in this table again reflects the 

robustness of each controller. 

 Table 5-2: Controller performace verification 

 
Does system meet design requirements for steady state 

error and settling time? 
Score 
(out 
of 7)   BALL  

CONTROLLER A B C D E F G 

PID no yes yes yes yes yes no 5 

LEAD yes no no no yes no yes 3 

LEAD-LAG no yes no yes no yes no 3 

NN-PID yes yes yes no yes no yes 5 
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The PID and NN-PID controllers show outstanding performance in their ability to 

remain within the design criteria while the balls are changed. Both controllers only fail 

to meet the system requirements with 2 of the 7 balls. The Lead and Lead-Lag 

compensators fail to meet the system requirements with 4 balls each. 

5.2.6 Analysis of steady state error (Ess)  

 

Figure 5.30: Comparison of BOW steady state error (Ess) 

Based on the plots given above (from Figure 5.9 to Figure 5.29) the average steady 

state error is calculated for each controller and presented in Figure 5.30 to give a 

clear perspective of controller performance. Where no result is shown for a particular 

ball (i.e. no bar exists), it shows that the system was unstable. It can be seen that the 

NN-PID controller was the only controller able to produce a steady state error of less 

than +/- 5 degrees for each ball used in the experiment. This was because the 

traditional controllers produced an unstable result for at least one ball. 
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Figure 5.31: Average steady state error (Ess) for each controller 

By comparing the average steady state error produced by each controller for each 

ball used in the experiment (as shown in Figure 5.31), it can be seen that the PID 

controller as well as the NN-PID controller produce an average steady state error that 

is almost identical (-0.463 and -0.475 degrees respectively). The Lead and Lead-Lag 

compensators produce a much higher average steady state error of -1.897 and 2.18 

degrees respectively. 
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5.2.7 Settling time (Ts) comparison 

 

Figure 5.32: Comparison of BOW settling times (Ts) 

The average controller settling times vary for each controller as the balls are changed 

as shown in Figure 5.32. Where no result is shown for a particular ball (i.e. no bar 

exists), it shows that the system was unstable in that particular instance. 

 

Figure 5.33: Comparison of average settling times  

From Figure 5.33, it can be seen that the NN-PID controller has the highest average 

settling time. This however falls within the 500 ms settling time design constraint laid 
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out in section 3.3. The traditional PID controller has the lowest average settling time 

of all implemented controllers. 

The traditional controllers examined in this thesis were designed in Matlab/ Simulink 

before actual implementation on the PLC. On this note, the calculated controller 

gains did not yield ideal performance results on the actual system. In fact, in some 

instances, an unstable system was produced. This was not unexpected as aspects of 

the system model were based on assumptions. For example, the model assumes 

that the ball never slips but rolls along the surface of the wheel. The model also fails 

to take into consideration other influencing variables such as ball-bounce, ball 

contact friction and other irregularities. As such, the traditional controllers had to be 

optimally tuned using manual rule-of-thumb techniques. This process was often 

unyielding, time consuming and uncertain. The NN-PID controller, once implemented 

on the BOW system was able to tune itself without significant user interference. Only 

the initial weights, learning rate and gradient decent momentum factor had to be pre-

selected. However, favourable results were achieved when the simulation factors 

were used in the actual implementation. Exact coding parameters used in each of the 

developed controllers can be found in the PLC code attached in Appendix C.  

5.3 NN-Predictive controller simulation results  

The NN-Predictive controller uses a NN model of the BOW plant to predict future 

plant performance. The controller calculates the control input that will optimize plant 

performance over a specified future time horizon. The NN is trained using plant input 

and output data obtained from the determined plant model that has Ball A‘s 

parameters of mass and radius incorporated. Once the NN model is trained, the ball 

parameters in the plant model are changed according to Table 4-3. The predictive 

controller then adjusts itself to control the plant despite the changes in plant 

parameters. 
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 Figure 5.34: Generating training data for the NN 

Figure 5.34 shows how plant data is generated based on the system model. Random 

inputs are injected into the plant and the plant output is recorded. Using this data, the 

NN is trained to behave exactly like the plant. Training occurs over 500 epochs using 

the Levenberg-Marquardt back-propagation algorithm. The NN itself is designed with 

9 neurons in the hidden layer. This number of hidden layer neurons produced the 

most favourable results. From Figure 5.35 and Figure 5.36, it can be seen that the 

NN is able to mimic the BOW plant very closely with a very small error in the range of 

10-5. 
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Figure 5.35: NN-Predictive controller training results 

 

Figure 5.36: NN performance 

The error gradient at the end of the training period is 1.64e-05, which for this 

application is satisfactory. 

Figure 5.37 shows the system‘s responses (superimposed) with the NN controller 

applied as the ball is changed. The controller is able to adjust itself to accommodate 

and therefore balance all the balls used. 
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 Figure 5.37: Simulation of NN-Predictive controller response 

From Figure 5.37, it can also be seen that the predictive controller does not fare so 

well in rejecting disturbances quickly and also produces a significantly large 

undershoot. It is also relatively slow in response with an average settling time of 

about 550 ms. However, the NN controller handles changes in plant parameters very 

well with no signs of instability as the balls are changed. If necessary, the controller 

can always be re-trained to improve performance. 

Although the mathematical plant model may differ from the actual plant in that it does 

not take into account frictional forces due to ball surface texture, ball-to-wheel contact 

area and the balls ability to bounce, results from Figure 5.37 show that in a real world 

application, the NN-Predictive controller can be used to stabilize non-linear plants 

without necessarily requiring the plant model. All that is needed is historical plant 

data that may be collected manually from the plant. 

As mentioned in section 3.4.6, it was not possible to execute the NN-Predictive 

controller on the actual plant in real-time because of poor refresh rates between 

Simulink and the actual PLC via OPC. Although the controller was indeed able to 

respond to disturbances in the plant (i.e. the ball being moved from its equilibrium 

point), it was unable to carry this out quickly enough to stabilize the system. Because 

of further hardware and software limitations with the existing setup, it was not 

possible to code the NN-Predictive controller directly on to the PLC. 
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5.4 Remote Visualization and data capture 

Wireless access to the BOW plant was successfully achieved for the purpose of 

monitoring, variable alteration and data analysis. This was realized firstly in the 

Matlab/ Simulink environment via OPC Server as disclosed in sections 4.3.2 and 

4.3.5. The intention of this particular connection was to analyse plant data directly 

within a scientific/ mathematical environment and also to execute complex control 

algorithms to control the plant in real time. Although the latter intention is in fact a 

possibility (as shown in section 2.7.4), it was not possible for BOW system in 

particular which demanded a much higher refresh rate to maintain stability than the 

OPC Server and Client configuration could provide. In the second instance, over an 

independent wireless connection, controller gains and system variables were 

successfully monitored and/ or altered in real time using a SCADA solution from 

Siemens called WinCC Flexible Runtime Advanced running on a remote PC. Sample 

screen shots of the developed SCADA solution are shown in Figure 5.38, Figure 5.39 

and Figure 5.40. The SCADA solution (see Figure 5.40 in particular) was designed 

with the intention that it would be used as a teaching aid in Control Systems courses. 

 

Figure 5.38: SCADA solution – Home Screen 
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Figure 5.39: SCADA solution PID controller setup 

 

Figure 5.40: SCADA solution – user instructions 

  



144 

5.5 Summary 

In this chapter, three traditional control algorithms were implemented on the BOW 

system in their digitized form. These included a PID controller, a Lead compensator 

and a Lead-Lag compensator. An online NN based PID controller was also 

implemented as a modern control approach. Using a variety of balls of varying weight 

and radii (as listed in Table 4-3) to deliberately alter the BOW plant parameters, each 

controller was tested in terms of its ability to continually maintain stability while 

remaining within the design specifications. The results from the traditional controllers 

were then compared in detail to the results from the NN-PID controller. Astoundingly, 

only the NN-PID controller had a 100% success rate in stabilizing the system every 

time parameters were changed. The traditional PID controller was also shown to be 

quite a robust controller with a stabilizing success rate of 86%. A review of whether 

or not the controllers met the design requirements in each experiment revealed that 

the traditional PID and NN-PID controllers succeeded in meeting the design 

requirements with a 71% success rate while the remaining traditional controllers had 

a much poorer performance with only a 43% success rate. The NN-PID controller 

maintains all the robust features of the traditional PID controller but comes with the 

added benefit of ‗learning‘ that allows it to continually adapt to its environment. 

The possibility of wireless remote control of the BOW system was also investigated. 

The results showed that for control algorithm execution from a remote location, a 

much higher refresh rate is required, particularly for the highly responsive BOW 

system. However, as far as data access, system monitoring and variable 

manipulation were concerned, the wireless connection worked perfectly.  
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Chapter 6.  

CONCLUSION AND RECOMMENDATIONS 

6.1 Conclusion 

The main aim of this research was to implement and then compare the performance 

of traditional control strategies with modern NN based control strategies on a strongly 

non-linear system. The control strategies were to be implemented on a standard, 

medium specification industrial PLC with the option of wireless monitoring and control 

from a remote PC. 

In order to carry out a meaningful investigation with the goal of finding a viable 

industrial solution, a non-linear mechatronic BOW balancing system was designed 

and constructed using typical industrial equipment including a Siemens S7-300 PLC 

as its computational platform. The designed system was then mathematically 

modelled and linearized. In procession, various traditional control strategies including 

a PID, Lead and Lead-Lag controller were designed, simulated and then 

implemented in real-time. A NN-Predictive controller and a NN-PID controller were 

also designed and simulated on the determined plant model, however only the NN-

PID controller was implemented in real-time.  

Using a variety of balls of varying material, weight, size and surface texture (as listed 

in Table 4-3) to deliberately alter the BOW plant parameters and also create non-

linear disturbances, each implemented controller‘s performance was evaluated in 

terms of its ability to withstand the imposed variations and still function within the 

design criteria. The results from the traditional controllers were then compared in 

detail to the results from the NN-PID controller. 

The results gathered from this research have shown that although the implemented 

traditional controllers were able to remain functional within a certain limited range of 

parameter variation, they eventually failed when pushed outside the linear region for 

which they were initially tuned. The results from this research indicate that NN based 

control schemes may be utilized to overcome many of the limitations found with 

traditional controllers since they are able to control non-linear processes that 

experience broad parametric variation over time and can also overcome process 
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uncertainties. This is possible without the involvement of cumbersome mathematical 

modelling, linearization or controller design. Although the computational overhead 

required for the execution of certain NN architectures (such as the NN-Predictive 

controller) is higher than what standard PLCs can offer, simpler, less demanding NN 

structures do exist. Even with a limited number of neurons, NN‘s are still able to 

solve non-linear problems with remarkable accuracy. This was seen first-hand with 

the online-learning NN-PID controller that was investigated in this research. This 

controller was able to adequately control the BOW system in real-time (and without 

any prior knowledge of the plant) on every account of parameter variation subjected 

to it. In this way, it was shown to be superior to its conventional counterparts. It 

maintained all the robust features of the standard PID controller but had the benefit 

of being able to continually adapt itself to a changing environment through a process 

of learning.  

Apart from showing that NN control may be applied easily on standard PLCs, the 

research also showed that all PLC data areas could be accessed for purposes of 

analysis or even manipulated over a wireless connection sustained by OPC Server. 

Complex control algorithms could, in essence, be implemented to control dynamical 

systems from a remote location provided that the controller‘s sampling rate was high 

enough to match the dynamic systems response. However, this was not the case 

with the BOW system which proved to be too over-responsive for the described OPC 

connection.  

6.2 Recommendations  

The following recommendations can be made in order to broaden the angle of 

research brought forward in this thesis: 

 A sensor that measures ball radius could be attached to the system and used 

as an additional input to a NN controller. This would improve the 

generalization ability of the network and effectively improve the control 

performance. 

 A much faster interface between the control computer and the PLC would 

solve the problem of poor refresh rates and allow multiple other modern 

control strategies to be executed on the BOW system directly from Matlab/ 
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Simulink in real time. A directly wired network connection (e.g. Profibus or 

LAN), as opposed to wireless access could be used as a means of speeding 

up data exchange.  

 For less responsive processes, for example temperature control or fluid level 

control, the current OPC server connection speed would suffice. The research 

could thus be applied or taken further on such processes. 

 The BOW system is an entertaining system to work with and could therefore 

be used as an educational aid in Control systems classes in order to 

demonstrate various principles of traditional and modern control. 
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APPENDIX A:  MECHANICAL DESIGN 

Ball on Wheel balancing system overview 
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Assembled view of Ball on Wheel balancing system 
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Left ball limit  

 

Right ball limit 
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Aluminium extrusion cross-sectional view 

 

 

Bearing holder (Top) 
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Bearing holder (Bottom) 

 

Distance sensor holder 
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Extrusion angle/ corner fastener 

 

Distance sensor position adjuster 
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Motor fastening bracket 

 

Servo motor dimensions  
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Ball radius sensor holder 

 

Wheel assembly 
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Wheel Assembly continued 
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APPENDIX B: MATLAB/ SIMULINK CODE 

 

%% BALL ON WHEEL (BOW) MATLAB SIMULATION CODE 

 
%% NAME: BALL ON WHEEL SYSTEM MODEL AND CONTROLLER SIMULATION 

%% AUTHOR: JM FERNANDES 

%% DATE: FEB 2013 

 

%% PARAMETERS FOR BALL ON WHEEL SYSTEM 
 

 

%% DEFINITION OF CONSTANTS 
g = 9.81;        %Gravitational acceleration  
%% WHEEL PARAMETERS 
Rw = 0.195;       % Radius of wheel 
Mw = 2.5;       % Mass of wheel 
Iw = (0.5*Mw)*((Rw)^2); % Moment of inertia of 

wheel 
%% BALL PARAMETERS 
Mb = 0.1;       % Mass of Ball 
Rb = 0.02465;      % Radius of the ball 
Ib = (2/5)*(Mb)*((Rb)^2);    % Moment of Inertia of ball 
%% DEFINITION OF FUNDAMENTAL SYSTEM EQUATIONS 
E = (Iw + ((2/5)*(Mb)*((Rw)^2)));  
F = ((2/5)*(Mb)*((Rw)^2))+((2/5)*(Mb*Rb*Rw)); 
G = (7*((Rw)^2) + (14*Rw*Rb) + (7*((Rb)^2)));  
H = (2*((Rw)^2)+(2*Rb)); 
I =  5*g*(Rw+Rb); 
R = ((H)/ ((G*E)-(H*F)));  
N = ((E*I)/((G*E)-(H*F))); 
P = ((G)/((G*E)-(H*F))); 
M = ((F*I)/((G*E)-(H*F)));  
%% SYSTEM MATRICES (STATE SPACE) 
Ja =  [0 1 0 1; N 0 0 0; 0 0 0 1; M 0 0 0]; % Jacobian linearized 

system matrix 

Jb =  [0; R; 0; P];     % Linearized input matrix 
Cy = [1 0 0 0]; % Output vector (to control 

wheel angle theta 1) 
Dy = 0;       % Disturbance 
sys_ss = ss(Ja,Jb,Cy,Dy); % State space model of Ball 

on Wheel system  
%% SYSTEM PLOT  
figure(1);step (sys_ss,'b');    % Step response of system 
xlabel('Time(s)');ylabel('Amplitude'); 
title('Setpoint and Actual output'); 
rank (ctrb(sys_ss)); % Investigate system 

controllability matrix 

rank (obsv(sys_ss)) % Investigate system 

observability matrix 
[num den] = ss2tf(Ja, Jb, Cy, Dy, 1); % Converts state space to 

transfer function 
sys_tf = tf(num,den); % Convert to transfer 

function 
sys_tf_2 = minreal(sys_tf); % Eradicate unnecessary 

poles/zeros that have no 

effect 
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figure(2);rlocus(sys_tf_2, 'r'); % Plot the root locus of 

uncompensated system 
xlabel('S-plane');ylabel('im'); 
title('Root Locus Plot'); 
figure(3);bodeplot(sys_tf_2,'g'); % Plot Bode diagram 

(frequency domain) 
xlabel('Freq(rad/sec))');ylabel('dBs'); 
title('Bode plot'); 
margin(sys_tf_2) % Determine phase and gain 

margin of uncompensated 

system 

 

%% CONTROLLER IMPLEMENTATION SELECTION 
% Default = 0. Set sel between 0-5 to select controller type: PD=0, 

PID=1,LEAD = 2, LEAD_LAG =  3, LQR = 4, NN-PID = 5 

 

sel = 0; %Controller 

selector 

 
%% TRADITIONAL CONTROLLER IMPLEMENTATION 

%% 1. PD CONTROLLER  
if sel == 0 
num_pd = [2.4946 24.946];      % PD numerator 

den_pd = [1]; % PD 

denominator 
sys_pd = tf(num_pd, den_pd); % Transfer 

function of PD  
mul_num = sys_pd*sys_tf_2; % Multiply PD 

controller with 

BOW system  
[num_com,den_com] = tfdata(mul_num, 'v'); % Extract 

numerator and 

denominator 
[num_cl den_cl] = cloop(num_com,den_com); % Close the 

loop  
sys_pd_cl = tf(num_cl,den_cl); % Transfer 

function of 

closed loop 

system 

figure(4);step(sys_pd_cl,'b'); % Step response 

of system with 

PD controller 
xlabel('Time(s)');ylabel('Amplitude'); 
title('Setpoint and Actual output with PD controller'); 
C_PD_Z = c2d(sys_pd,0.001,'tustin'); %% Sampling 

time is 1 ms, 

and Tustin’s 

bilinear 

transformation 

is used 

%% PID CONTROLLER  
elseif sel == 1 
Kp = 134.4; % Proportional 

gain 
Kd = 22.176;        % Derivative 

gain 
Ki = 112;         % Integral Gain 
pid_num = [Kd Kp Ki];       % PID Numerator 
pid_den = [1 0];        % PID 

Denominator 
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pid_num_tf = tf(pid_num,pid_den); % Transfer 

function of PID 

controller 
mul_num_pid = pid_num_tf*sys_tf_2; % Combining PID 

controller with 

the BOW system 
[pid_num_com,pid_den_com] = tfdata(mul_num_pid, 'v'); % Extract 

numerator and 

denominator 

from  
[pid_num_cl pid_den_cl] = cloop(pid_num_com,pid_den_com); % Close the 

loop  
sys_pid_cl = tf(pid_num_cl,pid_den_cl);   % 

Transfer 

function of 

closed loop 

system 
figure(4);step(sys_pid_cl); % Closed loop 

step response 

with PID 

controller 
xlabel('Time(s)');ylabel('Amplitude'); 
title('Setpoint and Actual output with PID controller'); 
C_PID_Z = c2d(pid_num_tf,0.0001,'tustin'); %% Sampling 

time is 1 ms, 

and Tustin’s 

bilinear 

transformation 

is used 

 

%% LEAD CONTROLLER  
elseif sel == 2                                                   
lead_num = [5.04 112];       % Lead 

Numerator 
lead_den = [0.0012 1]; % Lead 

Denominator 
lead_num_tf = tf(lead_num,lead_den); % Transfer 

function of 

Lead controller 
mul_lead = lead_num_tf*sys_tf_2; % Combining 

Lead controller 

with the BOW 

system 
[lead_num_com,lead_den_com] = tfdata(mul_lead, 'v'); % Extract 

numerator and 

denominator  
[lead_num_cl lead_den_cl] = cloop(lead_num_com,lead_den_com); % Close 

the loop  
sys_lead_cl = tf(lead_num_cl,lead_den_cl); % Transfer 

function of 

closed loop 

system 
figure(4);step(sys_lead_cl);   
xlabel('Time(s)');ylabel('Amplitude'); 
title('Setpoint and Actual output with LEAD compensator'); 
C_LEAD_Z = c2d(lead_num_tf,0.001,'tustin') %% Sampling 

time is 1 ms, 

and Tustin’s 

bilinear 

transformation 

is used 
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%%LEAD_LAG COMPENSATOR 
elseif sel == 3 
leadlag_num = [1.0994e-5 7.8528 49.08];    % Numerator 
leadlag_den = [7.8e-8 5.9e-4 1];     % Denominator 
leadlag_num_tf = tf(leadlag_num,leadlag_den); % Transfer 

function of 

controller 
mul_leadlag = leadlag_num_tf*sys_tf_2; % Combining 

controller with 

the BOW system 
[leadlag_num_com,leadlag_den_com] = tfdata(mul_leadlag, 'v'); % Extract 

numerator 

and 

denominat

or  
[leadlag_num_cl leadlag_den_cl] = cloop(leadlag_num_com,leadlag_den_com);

           % Close 

the loop  
sys_leadlag_cl = tf(leadlag_num_cl,leadlag_den_cl) % Transfer 

function of 

closed loop 

system 
figure(4);step(sys_leadlag_cl);      
xlabel('Time(s)');ylabel('Amplitude'); 
title('Setpoint and Actual output with LEAD LAG compensator');    
C_LEADLAG_Z = c2d(leadlag_num_tf,0.001,'tustin')   % Digitize 

 

%% LQR (LINEAR QUADRATIC REGULATOR) 
elseif sel == 4 
Q = [0 1 0 1;0 0 0 0 ; 0 1 0 1; 0 0 0 0];    % Q matrix: 

Cy'*Cy  
R = 1; 

K = lqr(Ja,Jb,Q,R); % Find feedback 

control matrix 

K using 'lqr' 
Ac = [(Ja-(Jb*(K)))]; % Compensated A 

matrix 
Bc = [Jb]; % Compensated B 

matrix 
Cc = [Cy];         % Compensated C 

matrix 
Dc = [Dy];         % Compensated D 

matrix 
sys_lqr = ss(Ac,Bc,Cc,Dc);      % Compensated 

system in state space                                                  % 

Step response of compensated system 
[num den] = ss2tf(Ac,Bc,Cc,Dc);     % Converting to 

tf  
sys_lqr_tf = tf(num,den);      % Converting to 

tf                                     
lqr_d = c2d(sys_lqr_tf,0.0001,'tustin')    % Digitize 
figure(4);step(sys_lqr_tf); 
xlabel('Time(s)');ylabel('Amplitude'); 
title('Setpoint and Actual output with LQR'); 
 

%%INTELLIGENT NN BASED CONTROL   
%% NN-PID (Neural Network PID controller) 

elseif sel == 5  

  
ts=0.001;  
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n= 0.9;  
alfa=0.000000001; 
beta = 0.6; 

  
% Parameter Initialization 
u_1=0.0;u_2=0.0;u_3=0.0;  
y_1=0;y_2=0;y_3=0;  

  
%Digital system numerator and denominator 
dsys=c2d(sys_tf_2,ts,'z');  
[nn_num,nn_den]=tfdata(dsys,'v');  

  
%Parameter initialization 
w1_1 = 1; 
w2_1 = -1; 
w1_2 = 1; 
w1_3 = 1; 
w2_2 = -1; 
w2_3 = -1;  
u1_1 = 0; 
u1_2 = 0; 
u2_1 = 0; 
x1_1 = 0; 
x1_2 = 0; 
x2_1 = 0; 
uo = 0; 
wo_1 = 0.1; 
wo_2 =0.1; 
wo_3 = 0.1; 
xo = 0; 
xo_1 = 0; 
yout=0; 
y_1 = 0; 
error = 0; 
u2_2prev = 0; 
u2_3prev = 0; 
error_prev=0; 
h=0; 
ts=0.001;  
dwo_1_prev = 0; 
dwo_2_prev = 0; 
dwo_3_prev = 0; 
b=0; 

  
S=1; % Signal type  
v=1; % 1= include disturbances, 0 = step command  

  
for k=1:1:12000       %Repetitions  
time(k)=k*ts;  

  
%%Setpoint generator  
if S==1  

   
   if k == 2000 && v == 1 
   rin(k)= 1;%0.8; % Step Input  
   b(k)=0.5; 
   elseif k == 3000 && v == 1 
   rin(k)= 1;%0.8; % Step Input  
   b(k)=0.4; 
   elseif k == 4000 && v == 1 
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   rin(k)= 1;%0.5; % Step Input 
    b(k)=0.3*0.0001*k; 
   elseif k == 5500 && v == 1 
   rin(k)=1;%1.5;%(0.001*k)/2; % Step Input 
   %den(3)=1.01; 
   b(k)=-0.2; 
   elseif k == 7500 && v == 1 
   rin(k)= 1;%0.5; % Step Input 
   b(k)=-0.3*0.0001*k; 
   elseif k == 9000 && v == 1 
   rin(k)= 1;%0.5; % Step Input 
   b(k)=-0.1; 
   else  
   rin(k)= 1;%0.5; % Step Input 
   b(k)=0; 
   end 
   end    

      
%Ball on wheel model in time domain 
%Non-linear model in Time Domain  

% System output: 
yout(k)=(-nn_den(2)*y_1-nn_den(3)*y_2)+(nn_num(1)*u_1+nn_num(2)*u_2)  
error(k)=rin(k)-yout(k);       % System Error 

  

%% Network configuration  
%%Input neurons 
u1_1(k) = rin(k); 
x1_1(k) = u1_1(k); 

  
u1_2(k) = yout(k)+b(k); 
x1_2(k) = u1_2(k);  

%% Hidden layer neurons 
%P-Neuron 
u2_1(k) = x1_1(k)*w1_1 + x1_2(k)*w2_1; 
x2_1(k) = u2_1(k); 

  
%I-Neuron 
u2_2(k) = x1_1(k)*w1_2 + x1_2(k)*w2_2; 
x2_2(k) = u2_2prev + u2_2(k); 

  
%D-Neuron 
u2_3(k) = x1_1(k)*w1_3 + x1_2(k)*w2_3; 
x2_3(k) = (u2_3(k) - u2_3prev); 
%% 

%%Output layer neurons 
%Output neuron  
uo(k) = x2_1(k)*wo_1 + x2_2(k)*wo_2 + x2_3(k)*wo_3; 
xo(k) = uo(k); 

  

%Mean-square error 
E(k) = 0.5*((yout(k)-rin(k))^2); 
%% 

%%Weight Update  
%Hidden to Output layer 
dk(k) = (yout(k)- rin(k))*yout(k)*(1-yout(k))*0.5; 
dwo_1(k) = -n*dk(k)*x2_1(k)+ beta*dwo_1_prev; 
wo_1 = wo_1 + dwo_1(k); 
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dwo_2(k) = -n*dk(k)*x2_2(k)+ beta*dwo_2_prev; 
wo_2 = wo_2 + dwo_2(k); 

  

  
dwo_3(k) = -n*dk(k)*x2_3(k)+ beta*dwo_3_prev; 
wo_3 = wo_3 + dwo_3(k); 

  

  

%Input to Hidden layer weight updates 
dw1_1(k) = n*x1_1(k)*x2_1(k)*(1 - x2_1(k))*(dk(k)*wo_1 + dk(k)*wo_2 + 

dk(k)*wo_3); 
w1_1 = w1_1 + alfa*dw1_1(k); 

  
dw1_2(k) = n*x1_1(k)*x2_2(k)*(1 - x2_2(k))*(dk(k)*wo_1 + dk(k)*wo_2 + 

dk(k)*wo_3); 
w1_2 = w1_2 + alfa*dw1_2(k); 

  
dw1_3(k) = n*x1_1(k)*x2_3(k)*(1 - x2_3(k))*(dk(k)*wo_1 + dk(k)*wo_2 + 

dk(k)*wo_3); 
w1_3 = w1_3 + alfa*dw1_3(k); 

  
dw2_1(k) = n*x2_1(k)*x2_1(k)*(1 - x2_1(k))*(dk(k)*wo_1 + dk(k)*wo_2 + 

dk(k)*wo_3); 
w2_1 = w2_1 + alfa*dw2_1(k); 

  
dw2_2(k) = n*x2_1(k)*x2_2(k)*(1 - x2_2(k))*(dk(k)*wo_1 + dk(k)*wo_2 + 

dk(k)*wo_3); 
w2_2 = w2_2 + alfa*dw2_2(k); 

  
dw2_3(k) = n*x2_1(k)*x2_3(k)*(1 - x2_3(k))*(dk(k)*wo_1 + dk(k)*wo_2 + 

dk(k)*wo_3); 
w2_3 = w2_3 + alfa*dw2_3(k); 

  
kp(k) = wo_1; %Equating Kp 
ki(k) = wo_2; %Equating Ki 
kd(k) = wo_3; %Equating Kd 

  

% Variable updates/ previous values updates 
y_1 = yout(k); 
xo_1 = xo(k); 
u2_2prev = u2_2(k); 
u2_3prev = u2_3(k); 
error_prev = error(k); 
w1_1_1(k) = w1_1; 

  
dwo_1_prev = dwo_1(k); 
dwo_2_prev =dwo_2(k); 
dwo_3_prev =dwo_3(k); 

  
u_3=u_2;u_2=u_1;u_1=xo(k);  
y_3=y_2;y_2=y_1;y_1=yout(k);  
end 

%%NN-PID PLOTS  

  
figure(4);  
plot(time,rin,'r',time,yout,'b');    %, time, xo, 'g');  
xlabel('time(s)');ylabel('rin,yout'); 
title('Setpoint and actual output'); 
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figure(5);  
plot(time,error,'r');  
xlabel('time(s)');ylabel('error');  
title('System error'); 

  
figure(6);  
plot(time,E,'g');  
xlabel('time(s)');ylabel('E');  
title('Mean-Square error'); 

  
figure(7);  
subplot(311);  
plot(time,kp,'r');  
xlabel('time(s)');ylabel('kp');  
subplot(312);  

  
plot(time,ki,'g');  
xlabel('time(s)');ylabel('ki');  
subplot(313);  

  
plot(time,kd,'b');  
xlabel('time(s)');ylabel('kd');     

     
end     
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APPENDIX C: PLC CODE 

 

Hardware configuration 

 

 

BOW System network setup 
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Lead compensator code implemented in SCL 
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Lead-Lag compensator code implemented in SCL 
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NN-PID controller code implemented in SCL 
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PID controller code implemented in SCL 
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BOW system basic control function block 
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Disturbance Generator 
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Cyclic Interrupt (OB35) – calling control algorithms  
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APPENDIX D:  IMAGES OF BOW SYSTEM 

 

Various views of Ball on Wheel plant 
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APPENDIX E:  NN-PID TRAINING PLOTS  

Ball B training plots 
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Ball C training plots 
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Ball E training plots 
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Ball F training plots 
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Ball G training plots 
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