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ABSTRACT

Saturation arithmetic is often used in finite precision digital compensa
tors to circumvent instability due to radix overflow. The saturation limits in 
the digital structure lead to nonlinear behavior during large state transients.

It is shown that if all recursive loops in a compensator are interrupted 
by at least one saturation limit, then there exists a bounded external scaling 
rule which assures against overflow at all nodes in the structure.

Design methods are proposed based on the generalized second method of 
Lyapunov, which take the internal saturation limits into account to imple
ment a robust dual-mode suboptimal control for bounded input plants. The 
saturating digital compensator provides linear regulation for small distur
bances, and near-time-optimal control for large disturbances or changes in 
the operating point.

Computer aided design tools are developed to facilitate the analysis and 
design of this class of digital compensators.
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1. BACKGROUND AND MOTIVATION

Finite word length restrictions in digital controllers implemented in 
fixed precision arithmetic lead to several nominally disparate problems. In 
two’s complement arithmetic, if the result of a particular arithmetic 
operation is beyond the useable numeric range, radix overflow occurs. It is 
well known that arithmetic overflow can substantially alter the dynamic 
behavior of a digital compensator, and the feedback control system in which 
it is employed. The possibility of overflow induced limit cycles for the two’s 
complement overflow “wrap-around" characteristic is well documented 
[Moroney83, AuslanderSl], Figure 1.1(a) shows the transfer characteristic of 
two’s complement overflow. The problem of instability due to two’s 
complement wrap-around has been studied in depth in the digital signal 
processing area, and techniques for avoiding overflow are important 
considerations in the digital filter design process [Jackson69, EbertSfl, 
Willson72, Claasen75]. External and/or interstage gain scaling is typically 
applied, given known bounds on the input amplitude (established by the 
A/D converter scaling) and frequency range.

The use of saturation arithmetic has been proven to assure the 
nonexistence of overflow limit cycles in certain second order filter structures 
that are otherwise linearly stable. As a result, saturation arithmetic is 
commonly used both in signal processing and control. Hard saturation is 
classified as a nonanalytic nonlinearity, and is generally dealt with in 
stability problems using describing functions, or more generally using the 
phase plane [Ogata70].

The transfer characteristic of hard saturation is shown graphically in 
Figure 1.1(b). Its describing function is:

In this work, “digital" is used synonymously witli “sampled data", “discrete time", and 
“pulsed" control, unless the amplitude quantization implied by digital is explicitly 
stated. There are apparently many terminologies used in this area. Historical 
references on terminology are found in [Jiiryi83] and [Tsypkin57].
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where
E = the input sinusoid amplitude
Es = the upper and lower saturation limit magnitude

The distortion caused by the saturation characteristic is substantially less 
than that introduced by two’s complement wrap-around.

For hardware implemented digital filters, saturation arithmetic is often 
included as a hardware feature in the adders, subtractors and multipliers. 
In software (programmed) computer or microprocessor based 
implementations, hard saturation is implemented via a sequence of limit 
checking instructions following each arithmetic operation for which overflow 
is possible. The assembly language equivalent of:

if x > xmax then x 
if x < xmin then x

YAmax

■^min

is typically encountered for upper and lower bound clamping to implement 
hard saturation for the variable x.

An important distinction exists between signal processing applications 
and control applications with regard to the acceptability of encountering a 
saturation limit, either internally, or at the input or output. In most signal 
processing applications a primary design emphasis is placed 6n assuring that 
all variables remain within numeric limits, avoiding overflow regardless of 
the overflow characteristic, since in either case, signal distortion is 
introduced which can only be harmful to the linear filter action.

The situation is somewhat different in control applications. A large 
step function applied at the reference input of a servo control system will 
often drive a cascade compensator into saturation for the majority of the 
period of the transient response. For digitally implemented compensators, 
the ramifications of saturation are dependent upon the filter structure as 
well as subtleties in the software implementation, e.g., the order in which 
the additions and subtractions are performed at each summing node. 
Although it is often recognized that numeric saturation occurs during large 
state transitions, the optimistic, expectation is that eventually the control 
will revert from saturation, yielding an acceptable nonlinear transient 
response. Often, this is not the case. Consider, for example, the well known
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wind-up phenomena exhibited by PID compensators (both digital and 
analog) when control variable limits are encountered. Unexpected and 
possibly dangerous overshoot can occur [DeBarr62]. In general, the presence 
of the nonlinearity invalidates the linear design hypothesis. Digital or 
analog computer simulation is often the only useful design tool for examining 
and compensating for these effects.

If the dynamic range of all variables in a digital compensator are made 
sufficiently large to accommodate the extremal limits of the variables, a 
considerable reduction in resolution may be required for a fixed word length. 
Quantization errors might become prohibitively large, and the magnitude of 
low amplitude quantization limit cycles (often tolerated as unavoidable in 
round-off arithmetic systems), could become deleterious to the system steady 
state behavior. The alternative is the use of a large word size or floating 
point arithmetic, with a concomitant increase in system cost and complexity, 
or reduction in processing speed.

However, saturation is not necessarily a bad mode of operation during a 
large state transient. The time optimal solution implied by Pontryagins 
Maximum Principle applied, for example, to a force driven dynamic system, 
is "bang-bang" (or relay) control, in which the control variable is always 
either at an upper or lower saturation limit [Hsu68l. Several methods for 
suboptimal discontinuous control are also in use, based on the well known 
methods of relay control [Tsypkin80] and variable structure control 
[Utkin78].

Time-optimal controls, and discontinuous controls in general, are 
problematic because of the chattering action, especially at equilibrium 
[Takahashi75]. This is particularly true for plants containing transport lags, 
deadband, or higher order modes ignored in the compensation design. 
Studies by many authors have suggested discontinuous and dual- or multi- 
mode suboptimal (or quasi-optima 1) controls as alternatives to time-optimal 
control for plants with constrained inputs. Dual-mode controls are 
characterized by the use of two control laws: an optimal control law for use 
outside of some locality of the target set, and a lower performance, usually 
linear control law inside this locality. Handoff from the optimal to the low 
performance controller occurs as the state trajectory crosses some boundary 
in the state space.

Full state feedback (or a state observer) is generally preferred for the 
implementation of optimal control strategies [Kwakernaak72a], and for the
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identification of boundary crossing events in quasi-optimal controls. In 
many practical situations, tbe full plant state is inaccessible, and accurate 
state estimation is problematic.

It is proposed that a nominally linear controller with internal saturation 
limits might mechanize a quasi-optimal dual-mode control law, with 
significant advantages in reduced complexity and execution speed relative to 
generic optimal and suboptimal controls. Fundamental to this methodology 
is the merging of the control law design process with the implementation of 
the control, rather than treating these as separate tasks. This approach 
facilitates optimum utilization of the available hardware.

From a broad perspective, this work deals with the large signal 
behavior of nominally linear digital filters implemented in finite precision 
arithmetic and used as compensators in feedback control systems. Emphasis 
is on the general servo-mechanism problem, in which a non-zero reference 
input signal is present. Two separate problems are actually being addressed: 
the design of overflow-free digital filter structures for feedback control 
applications, and the design of suboptimal controllers for bounded input 
plants. A contribution of this Work is the recognition that a solution to the 
former problem may also be a solution to the latter, and the proposal of 
combined design methods based on simple modifications of linear filter 
algorithms.
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:2. PROBLEM DEFINITION

Setting: . •
— Bounded input continuous-time plant.
— Servo-control (tracking) problem; non-zero reference input; cascade 

compensator.
— Digital compensator implemented with finite precision arithmetic.
Problem:
— Finite precision compensator is prone to radix overflow, especially in

conjunction with a bounded input plant during step transitions of the 
operating point. Consequences: large signal limit cycles, control
inaccuracy, closed loop system instability.

— Linear compensator usable only for small disturbance regulation about 
a fixed operating point. Given large operating point transitions for a 
bounded input plant, the linear control law is inappropriate. Typical
results: overshoot and large signal instability"

Objective:
— Design a compensator which is immune to radix overflow problems, 

retaining linear regulation capability, but also providing a near time- 
optimal transient response for large step changes in the operating point.

Solution:
— Modify standard linear direct-form digital filter structures by addition 

of one or more limiting nonlinearities at specific nodes.
— Develop guidelines for placement of the nonlinearity, and scaling rules 

to assure the nonexistence of overflow at all nodes of the modified filter 
Structure.

— Develop systematic design methods for this class of controls to optimize 
both the large signal transient response and the small signal regulation 
characteristics.



3. IMPLEMENTATION ISSUES IN DIGITAL FILTER DESIGN

3.1. Review of Design Methods for Linear Digital Compensators
Although the analysis presented here may be generalized as applicable 

to compensators located anywhere in the signal path of a closed loop 
feedback control system, we focus the specific discussion on the cascade 
compensator in a unity feedback single input, single output configuration. 
Since the plant is assumed to always be a continuous time system, the 
analysis is restricted to the class of discrete-time systems resulting from 
consideration of a continuous-time system at discrete instants of time only, a 
distinction emphasized by Kwakernaak and Sivan [Kwakernaak72b]. The 
general system under study is shovm in Figure 3,1.1.

Many techniques are in common use for design for the appropriate 
compensation for a given plant and performance specifications. In general, 
they may be segregated into two broad classes: continuous time equivalent 
and discrete time design.

In continuous time equivalent design, the compensator is designed in the 
Laplace domain using conventional analog design tools such as root locus, 
Bode plots, and Nyquist (Polar) magnitude-phase plots. Since most plants 
have a low-pass filter characteristic, it is usually acceptable to ignore 
aliasing effects by selection of the sampling period some factor less than the 
fastest time constant of the plant/compensator combination. Recommended 
factors range from 4 to 200 [Franklin8l]. Multirate sampling has also been 
proposed [Araki86] but will not be considered here.

In almost all continuous designs, the effect of the holding device is 
ignored because of the irrational e 4 term in the numerator of its Laplace 
transfer function. The hold introduces a nonlinear low-pass filter 
characteristic into the forward loop, and can be legitimately ignored only 
when the low pass characteristic of the combined plant and compensator

rolls off well within the Nyquist limit of
2 '
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The continuous time designed compensation Gc(s) is converted to a 
discrete time realization Gc(z) using either a substitutional method such as 
forward difference (forward Euler), backward difference (backward Euler), 
Tustin’s Rule (also known as the bilinear z-transform or the trapezoid law), 
Simpson’s Rule, or by direct pole-zero mapping from Gc(s) to Gc(z), or finally 
by the impulse invariance method (also known as the standard z-transform 
method), usually requiring the partial fraction expansion (or modal 
decomposition) of Gc(s) [Phillips84a].

Gc(z) is generally referred to as the pulse transfer function 
corresponding to Gc(s), although, to be precise, this name refers specifically 
to Gc(z)’s synthesized using the impulse invariance method, since it implies 
correspondence between the impulse response of Gc(s) and the sample 
sequence response of Gc(z) [Katz81a]. In this work, the more general 
definition is assumed.

Alternatively, the design of the compensator may be performed entirely 
in the z-transform domain. This requires that a- discrete time representation 
of the plant be generated. This is usually done by inclusion of the zero 
order hold in the plant transfer function [Phillips84a], known in signal 
processing as the Step Invariance Method [Stanley84(2)]. Higher and 
fractional order holds are not considered in practice, since all conventional 
D/A converters implement a zero order hold characteristic. [Andrisani86a].

Classical designs performed in the z domain cannot directly use an 
asymptotic (Bode) frequency domain analysis, since Gc(z) is not a
rational function of frequency oj. This difficulty is remedied by use of the w

, which is actually the inverse bilinear-z (or(or w#) transform w = ~
z-fl

Tustin) transformation. Frequency prewarping at the important feature
2 cJTpoint is required according to jy = — tan ——. Using the w-transform and

frequency warping, the frequency domain design tools such as Bode plots for 
determination of phase and gain margins may be retained.

Another z-domain technique, the "Direct Design" method of Ragazzini 
[RagazziniSS], also requires a discrete-time version of the plant transfer 
function.

In design situations where a numerically trackable performance index
can be identified, which is to be maximized or minimized by the controller,



an elegant but more complex approach is often provided by; modern control 
theory. For regulation problems, a specific example is the LQG (Linear 
Quadratic Gaussian) compensation, which has received a great deal of 
attention recently due to its elegant formulation* robustness properties, and 
straightforward extension to the case of multiple inputs and outputs. An 
LQG design can be performed in discrete time, so that the dynamics of the 
sampler may be included in the plant description. Moroney [Moroney83] 
used the LQG compensator exclusively as a basis for demonstration of 
certain issues in discrete design. ?

For the deterministic problem, the design procedure is summarized as 
follows:^

Consider a plant governed by the continuous time state equations:

x(t) = Ax(t) + Bu(t) (3.1.1)

y(t) = Cx(t) , (3.1.2)

x€lRn u G y€lRp A is n x n, B is n x m, and C is p x n.
The design objective is to minimize some continuous 

objective function Jc:
time scaler

Jc == / JxT(t)Qx(t) 4 uT(t)Ru(t)| dt (3.1.3)

Q is n x n, positive semidefinitej
R is m x m, positive definite.

Discretizing equations (3.1.1) - (3.1.3) for sample period T produces, 
[Kwakernaak72]

x(k+l) =*= Ax(k) + Bu(k) (3.1.4)

y(k) = Cx(k) (3.1.5)

Jd = Y, [xT(k)Qx(k) 4 2xT(k)Mu(k) + uT(k)Ru(k) ] (3.1.6)
k=0

A , .

where the cross product matrix M is necessary to establish a correspondence 
between Jd and Jc,
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The discrete time parameters are defined by:
; ■ t . ■

A(r) = eAr B(t) = / A(r)Bdr (3.1.7)
' .■ o

A = A(T) B = B(T)

C = C

Q = T / ATWQA(r)d7
1 0

1 T V
R = R +-i-/ BT(r)QB(r)dr

1 o;

M ■“ ^ I AT(r)QB(r)dr .

The solution to the discrete time LQG problem [Sage68, PhiHips84b] 
involves, first, the calculation of an optimal feedback gain matrix G based 
on the assumption of full state accessibility, and then construction of a 
current observer to synthesize a state estimate.

The observer (a Kalman filter) is:
x(k+l) = Ax(k) + K jy(k+l) — CAx(k)j + Bu(k) (3.1.8)

where K is the n x p matrix solution to the Kalman filter problem.
The control law is:

u(k+l) = - Gx(k+1) (3.1.9)
where G is the m x n matrix solution to the optimal regulator problem.

A problem arises in implementing a compensator based upon (3.1.8) and
(3.1.9), since u(k+i) is computed using y(k+l). Only in the case of nearly 
zero computation time is this legitimate. Kwakernaak and Sivan suggested 
the idea of sample skewing as a solution to this problem. This results in a 
modified output equation replacing (3.1.5), as described in [Kwakernaak72b].

Whether (3.1.5) is modified or retained (assuming zero computation 
time), the procedure is completed with the formulation of a compensator 
transfer function (for m=l, p=l) which combines the observer (3,1.8) and 
control law (3.1.9).
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Gc(z) — — Gjz — A + KC + BG]^1 K (3.1.10)

which is the strictly proper rational polynomial:
zn 1 + an_2zn 2 + • ‘ • + ajZ + ag 
zn + bn-|Sn 1 -i * • ‘ + bjZ + bp

(3.1.11)

Note that Gc(z) is of order equal to the plant. Thus, the solution to the 
LQG problem with a state observer is simply a cascade or feedback 
compensator which implements the transfer function (3.1,11). The quadratic 
optimization process simply yields a set of replacement poles for the forward 
loop transfer function, with tbe original plant poles being cancelled by the 
numerator of Gc(z).

With this observation, we assume no loss of generality (when dealing 
with single input /single output plants) in casting the analysis in terms of the 
configuration of Figure 3.1.1.

The mechanization of (3.1.11) or any classically designed compensator 
involves the same structural issues. These will be discussed in the following 
section.

A summary of both continuous time and discrete time design methods 
appears in Table 3.1.1.

Although it is usually the case that design in the z-domain is preferable 
to continuous equivalent design because of the treatment of the hold device, 
continuous domain design is still often used in many modern high-technology 
applications [Andrisani86b]. This follows common practice in digital signal 
processing, where the nonlinear low-pass effect of the Z OH is usually dealt 
with only if necessary following an impulse invariance or bilinear z-transform 
continuous design [Stevens85l.
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Figure 3.1.1 Single Input, Single Output Servo Control System
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Table 3.1.1 Summary of Discrete-Time Design Methods

Numerical Integration or Substitutional Methods:
Forward Difference (Forward Rectangular, Forward Euler)

y(t-T) - W -

Z~t
T

. z—1
' S =——

Tz
Tustin’s Rule (Bilinear z-transform, Trapezoid Rule, Inverse 
transform)

y(t-f) • ^ -T,|t"T)

. 2 z—1 
S ” T . z+1

Simpson’s Rule (Third order polynomial approximation integration) 
y(t) + 4y(t-T) + y(t-2T) (y(t) - y(t-2T) j

^ 3 z2-l
S T ..** + 4z +1

Pole-Zero Mapping (Matched z-transform method)
Laplace poles SjeS|T 
Laplace zeros —* e,,lT 
Laplace zeros at infinity —► z+1
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Table 3.1.1 (Continued)

Impulse Invariance (Standard z-transform method)

£ t=KT Z xT
G(s) — g(t) — g(kT) —. G(z) —*■ H(z)

Discrete Time Design Methods

Step Invariance (Zero Order Hold Equivalence)

H(z) = Z GIs)

for discrete equivalent plant transfer function. Then perform design in z 
or w domain using frequency domain techniques.

* State Variable Method (Zero Order Hold Assumed)
(k+l)T

x((k+l)T) = ^(kT) + / e-A((k+1)T~r) Bu(r)dr
t=kT

= 6A1x(kT) + A-l Bu(kT)

* Direct Method of Franklin and Ragazini
A set of design rules involving direct manipulation of the closed loop 
(compensated) pulse transfer function, as described in [Franklin8l].

Modern Control Methods

* LQG (Linear Quadratic Gaussian) Steady-State Design.
Given a discrete time state model for the plant, yields a compensator 
of the same order as the plant which minimizes a given performance 
index. Based on optimum pole placement, and construction of a state 
estimator, as described in detail in subsection 3.1.
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3.2. Equivalence of Discrete-Time Analysis Methods
In the following, it will be shown that the commonly used method of 

direct conversion of a set of continuous time state equations to an equivalent 
set of discrete time state equations, based upon A<j = e c , is exactly

equivalent to the step invariance method, H(z) = z

discrete state equation method is derived as follows: 
Continuous Time system:

x(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t) 
General Solution, Single Input:

~sT
H(s) The

x(t) = e_ „A(t—tq)

For t — t0 = T

:(t0) + j Bu(r)dr
to

(k+l)T
x((k+l)T) = eATx(kT) + / eA((k+1)T_r) BuC^dr

: t=kT .

u(t) = u(kT) for kT <t < (k+l)T

x((k+l)T) = eAT x(kT) + eA(k+1)T / e“Ardr£u(kT)
kT .

Note that : eAr = Y) ,
i=0 i!

/ e-Ardr = Ir — + ^7— — ... = ^A-1[e~Ar — 1]
J 2! 3! 1 J

x((k+l)T) = eATx(kT) - eA(k+1)TA_1[e_Ar - I]fe+1)T Bu(kT) 

x((k+l)T) = eAT x(kT) - A~1eA*k+1)T[e“A<k+1)T - e-AkTjBu(kT) 
« eATx(kT)+ A-1!**? - I]B u(kT)
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z((k+l)T) = Ax(kT) + Bu(kT) 

y(kT) = Cx(kT) + Du(kT) . 

Form a pulse transfer function from these:

zx(z) = Ax(z) + Bu(z) 

y(z) = Cx(z) + Du(z)

H(z) = G[zl - eAT]~1A~1[eAT - I]B + D (3.2.1)

The Step Invariance Method (also known as the ZOH Theorem):

H(z) = Z
-sT

H(s) z—1 H(s) (3.2.2)

To prove the equivalence of the two methods, show that (3.2.1) = (3.2.2), i.e.,

Z /^r, ATi-Ia-I^ATHa.
s = — (C [zl—eA 1 ] ~1 A-1 [e- —I]B + D) z—1

Assume that A is nondefective. (If defective, perturb it slightly.) 
Then 3 a nonsingular matrix M such that A = MAM-1

where
\ 0 

0 \

eAT = MeATM_1

eAT — I = M[eAT — I]M 1 and [zl — eAT] = M[zl—eAT]M 1 

[zl—eAT] ~1A^1 (eAT—I] = M[zl—eAT]~1M-1A~1M[eAT—I]M_1

= M|diag[z—eXiT]-1 diag[Xi]-1 diag[eXiT—1] |m-1



17

= M

/ r i
diag eXiT—1

Xi(z-eXiT)
■ j

M-i

Similarly

Hfs) = C]sI—Al~1B+D 
s s-

Isl—A] _ Mld-Al-'M-1 M (diagls-M-1 [m'1

M diag
s(s-Xi)

M

(3.2.1) = (3.2.2)

CM

\ \

diag eX'T-l
Xi(z-eXiT)

j

M-1B + D

?= Z C M diag
i*-k)

M-1B + —

Since ----- Z
s

/

s—l Z
z z—1 = 1 , it is sufficient to show that

r-1
\{T .e — 1 z

Xj(z—eXiT) z—1 S(s~\) i = 1,..., n
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LHS

RHS

/ XiT 1 \(e —l)z
Xj(z—eX|T)(z—1) X;X:

—z 
z—1 +

z—e XiT

z~l 1 1 , 1
\ s s—Xj

1 _ \ 1
s(s—Xj) s s—Xj Xj

1
s + 1

s—Xj

□



3.3. Linear Digital Filter Structures
The problem of the mechanization of a given pulse transfer function is 

a multifaceted one involving selection of the digital equipment, sample rate, 
and binary word length, programming of an appropriate algorithm, internal 
signal scaling^ and arithmetic subtleties of the processing hardware and 
software [KatzSlb].

Since the focus of this work is microprocessor implementations of digital 
controllers, the discussion will be cast in terms of software or firmware 
mechanizations, as opposed to purely hardware realizations often used in 
high performance digital signal processing. In this context, the concept of a 
digital structure is synonymous with a computer algorithm.

Due to simultaneous but independent developments in the control and 
signal processing , fields, nomenclature for digital filter/compensator 
structures is not yet standardized. In this discussion, the nomenclature 
adopted by Phillips and Nagle [Phillips84b] in the control area will be used, 
with occasional reference to nomenclature from digital filters.

An unlimited number of structures are conceivable for the 
implementation of a given discrete time transfer function Gc(z) or state 
description (A,b,c). Listed here are second order examples of the common 
direct-form (or direct) realizations, in which the coefficients of the rational 
polynomial Gc(z) appear directly as multiplier Coefficients. Filters of order 
higher than two are. most often constructed Its cascades of second Order 
sections, comprised of the above structures.

Many other structures have been suggested, including the recently 
popular state variable or normal-form structures suggested by Mills and 
others [Mills78].

It must be mentioned at this point that the simulation diagrams shown 
above for each basic direct structure are actually incomplete descriptions, 
since they fail to unambiguously indicate operational precedence, which: is 
the order in which numeric operations are performed. They also fail to 
indicate the actual arrangements of the N-l pair-wise additions necessary to 
implement an N-input summer in the structure.

The importance of these factors in the specification of a digital 
structure, and alternative notational systems will be discussed later.



Figure 3.3.1 1-D or Canonical DF-II

Figure 3.3.2 2-D or Canonical DF-I
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Figure 3.3.3 3-D or Noncanonical DF-II

Figure 3.3.4 4-D or Noncanonical DF-I
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u
Gc(z) = a2 + A

z+p +
Z+p

Bi = — Re[p]

g2 = —Im[p] 

g3 = 2 Im[A]

g4 = 2 Re [A]

Figure 3.3.5 1-X Structure

—► u(k)
X

Gc(z) = a2 H—7— +
*+P z+p

gi = — Re[p] 

g2 = -Im[p]

g3 = 2lm[A] 

g4 = 2 Re [A]

Figure 3.3.6 2-X Structure



Figure 3.3.7 Parallel (Decoupled) Structure

Gc(s)

Gc(z)

KjT M +
A

IQs 4- Kp 4-
Kj

■< i r

Kp + Kd
T + z2

2IQ
Kp+ T z + IQ

T

Figure 3.3.8 ]PID Structure



Biz"1 +

Figure 3.3.9 Ladder Structure



3.4. Signal Magnitudes in Digital Filters: 
and Signal Frequency

Effect of Sample . Rate

The sample rate cus Or sample period T--^ has a direct effect on the
■.■■■.. \.. ;;;

translation of poles and zeros in the s-plane into their counterparts in the z-
plane. This can be easily seen from the mapping z — esT, or the pole/zero 
transformations p„ = eFs , zz == e 8 used in the matched z-transform 
method for synthesis of G(z) from a given G(s). As T becomes small, the 
poles in the z plane cluster around the point z==l. Since the proximity of 
pole locations to the unit circle ts an indicator of the relative stability of a 
discrete time system, stability is apparently degraded. This trend manifests 
itself in digital filters as increasing internal node gains relative to the input 
signal. A price is also paid in terms of the resolution of the coefficients, 
which translates to quantization errors in pole and zero locations.

The pole/zero quantization problem has been studied by a number of 
investigators [Avenhaus72], [Rader67]. Special structures have been 
suggested which allow greater concentration of poles in particular regions of 
the interior of the unit circle, thus favoring the implementation of particular 
types of filters for particular transfer functions.

For direct structures (structures whose multiplier coefficients are taken 
directly from the coefficients in G(z)), the e|fect of T oh the coefficient 
resolution can be seen by examination Of the translation from the coefficients 
of a given G(s) into the equivalent coefficient!:pf G(z) generated by several 
possible synthesis methods.

Table 3.4.1 summarizes the coefficient translation from G(s) to G(z) for 
a general second order filter, using the six most common substitutional 
(mapping) methods. The derivations of each of these results appear in the 
Appendix. Also shown in Table 3.4.1 are the asymptotic values of each 
coefficient as T—► 0. While this is not a realizable situation, it provides an 
indication of the trend as ws becomes much larger than the pole magnitudes 
of the desired G(s).

The information in Table 3.4.1 also illustrates the effect of sample rate 
on internal signal magnitudes for a given filter structure as a function of 
frequency. This is a particularly important issue in compensator design, due 
to the common practice of oversampling by large factors, typically ranging 
from 4 to 200 times the closed loop system bandwidth. Therefore, the 
"pole-packing" problem and related pole quantization and internal gain
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Table 3.4.1 Realizations of H(z) from H(s)

- a a|S + a0
Realizations of H(z) —■ k• —----;— from ll(s)

z'-tb|Xlb()

to be 1)

^ aoS'^l ais+a0

B- + b1s+b0
(where coefficient of leading non-sero numerator term assumed

Method k a.i *1
Forward

■IlifTercn-.ee General K In -(2a..-a',T)

lirn aa, T—*0 K a2 -2a2

Backward

Difference General

w

^a.,+a,T+a0T2
■

2a2-a,T
l+bjT+byT2 a2+aiT+a0T2

lim as T-+0 K • 1 -2 if ao»l, else —1 if a^ 0, else 0

Bilinear

Z-tr ansform

Standard ,

Z-Transfonn

(Impulse Invariance)

General

(2)

K4a0+2a,T+aoT2 1 8a2-2a„T2

4+2blT+b0T2 4a2+2aiT+a0T3

lim as T—>0 ! ; K if ao*!,; 0 otherwise 1 -2 if ao=«l and a09* 0, 0 otherwise

General

, ‘(I)

;'.‘K(»i-bi»s). - 1
^ 2(a,-b,a2h‘ ,V7

-e 2 cosh( ~ T)— ^/— s»nh( g T)

lim as T—"0 K(»,-b,a,) 1 -1
Matched

Z-Transfonn General

(1)

*0
r ~6T
1+e 2 (l-2cosh-^-V^)) 1 -2e ‘ cosh(--^-r)

2.
K

bo l + -L^—(l-2cosh(y Vq))

lim as. T—*0 Ktanb.Kbna,)"1 1 -2

Step Invariance

(ZOII:equivalent) .

General

. (1)

,K'' a2

“bjT r ,—i '• , , . „ ao t,VwTaI-b1a2-e " (aj-b^o+2 cosh(
L b0 2

, 2a0—2b0a2—aibj+aob2 . 1( VwT,

~l V“ 81Uh( 2 ]J

lim as T—>0 K a2 -2r
b0

Note: w bj" 4b(J (l) Case shown is for w>0. For w<0 substitute cos(.') for cosh(-) and -w for w.

q---qi4an (Case shown is for q>0. For q<0 substitute cos(*) for cosh(*) and —q for q.)
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Table 3.4.1 (Continued)

a() b, - : b0

a_>—a[T + aoT" -2+b,T l-b,T+b0T2 ;;

a-j -2 . ■ 1

a._». -(2+b,T)
. ' j

a4* a i T+a oT “ l+b.T+boT3 l+b,T+b0T2

1 if a._>=I, else 0 -2 1

4a-j—2aiT+anT“ 8-2b0T2 4-2biT+b0T2

4ao+2a,T+a0T3 ~ 4+2biT+b0T2 4+2b1T+b0T2

if *•_>=-, else -1 if ai*»l, else 1 -2 ‘ . ■ - :.t"' ■ ,

0
~2e 2 cosh(-~-T)

btT
■••e 2

0 -2 •V i

e*11
2

-2e 2 cosh(—^-T) e-blT
2 -

1 -2 1

~ ~— 7~ + (a, —b, ao)cosh (—T)
J b(j it

2a,,-2b,1ao-a,bi + a.2bf . V^w ^J
-( v- )-h( 2 T)| z±lZ w

—2e 2 cosh(—;~T)
. bjT

• 6 2 '

30 l— +a!-b]a2 ~2 1

(2) a_> assumed to be 1
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issues become more important in the design of compensators than in the 
general filter design problem, where oversampling by as small a factor as 2.5 
times the input signal bandwidth is common practice.

Of particular interest in this analysis is the issue of internal signal 
magnitudes, because these determine the wordlength "overhead" necessary to 
avoid arithmetic overflow.

Consider the second order recursive loop of Figure 3.4.1.

If e(kT) is a sinusoidal signal of unit magnitude and frequency w, sampled at 
rate ws>2cO, the magnitude of v(kT) can be found by evaluating the transfer 
function along the unit circle using the mapping z =

z=eiulT=e
ja»TT|v(«) | = |F(z)

= I F(w,H.1>o(hM>iH)) I

Figure 3.4.5} shows a plot of j y(o>) j as a function of normalized
cofrequency —, for b0 and bj determined using the bilinear z transform

co.
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method for several different sample periods T — -—. b0 and bj were
ws

1 1'
designed to implement a simple low pass filter F(s) == —r——-, for which

s2-Fs+l
b0 = bj=l, for a natural frequency wn = l and damping factor £ = 0.5. A 
linear frequency scale is used in the plot in order to show the response as 
co—*.0 (DC). Unlike most filters used for signal processing in which the DC 
response is unimportant, the zero frequency response of a compensator in a 
servo control loop is very important. This limits the utility of log-frequency 
(Bode) plots for characterization of the compensator alone.

Figure 3.4.2 indicates that the interna! signal magnitude at v increases 
rapidly as the frequency decreases, to a DC value dependent upon ior 
Clearly the DC condition becomes the limiting case when designing 
input/output scalings to avoid overflow at this node. For T small compared 
with the filter pole magnitudes (and thus b0 and bj), b0 and bj approach 
their asymptotic values of 1 and —2 respectively. v(cu=0) becomes very 
large, such that no realistic scaling rule could prevent overflow at this point 
without an unacceptable loss of resolution.

The most important conclusion that may be drawn from the above 
observations is that, given the wide dynamic range of the input signal and 
its non-zero DC component both at steady state and during state 
transitions, it is often impossible to implement input/output scalings to 
assure the linear operation of a compensator, without an unacceptable 
reduction in resolution (increase in noise). Some structures are worse than 
others in this respect, but this problem is common to all digital 
implementations of IIFF (Infinite Impulse Response) filters to some degree. 
Since overflow is therefore inevitable, some overflow characteristic other 
than radix overflow is often substituted to assure against extreme output 
error and possibly large-signal internal limit cycles. The saturation 
characteristic is most commonly used.

The contributions of A. Willsky [Willsky78] in this area are cited. A 
recent summary paper by H. Hanselmann [Hanselmann87] provides an 
overview of issues in digital controller design, and reflects the increasing 
recognition of digital mechanization problems in control engineering.
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Figure 3.4,2 Linear Plot of Internal Gain at Adder Output



3.5. Signal Quantization '
In any finite precision realization, both the signal variables and 

multiplier (or scaler) coefficients are quantized. In two’s complement 
arithmetic, 2n discrete* quanta are used to represent a given continuous 
number* where n is the number of available bits. - A (nearly) symmetric 
range about zero of —2n_1 to 2-1—;1 quanta spans the usable range of the 
variable. 'X.j

The quantization process introduces a new strata of complications in 
the implementation. These include: coefficient quantization (resulting in 
pole/zero location restrictions), zero-input round-off limit cycles (small signal 
oscillations), and the equivalent multiple-input noise contribution of the 
quantization process. These topics have been exhaustively investigated in 
the context of steady state signal processing by a number of researchers. 
However, the applicability of these results to the design of digital 
compensators is limited, and reports in the control literature sparse.

The contributions of the few investigators in this field were adequately 
summarized by Mqroney [Moroney83], Briefly, an analysis of roundoff noise 
in certain sampled-data systems has been performed by Knowles and 
Edwards [Knowles65], and Curry [Curry67]. Quantizer limit cycles have 
been studied by Bertram [Bertram58], Slaughter [SIaughter64], Johnson 
[JohnsonfiS], and Lack and Johnson [Lack66], with the objective of 
formulating bounds on the maximum limit cycle amplitude. Coefficient 
quantization was studied in the context of the discrete-time Kalman filter 
and Linear Quadratic : Gaussian (LQG) regulator by Sripad [Sripad78]. 
Discrete time implementations of LQG controllers have also been studied in 
some detail by Farrar [Farrar77] and Moroney [Moroney83j. Areas of cross- 
applicability between digital filtering and digital control have summarized 
by Willsky [Willsky78]. |

There exist a great many parallels between quantization results from 
signal processing and those applicable to control design, particularly 
between filters and regulators, and with regard to linear issues. 
Unfortunately, these apply only to a very limited subset of the general 
control problem [Moroney83].

If infinite range and precision were available for both the signal 
variables and coefficients, and the structure contained no nonlinear 
operations, all structures which implement a specified pulse transfer function 
Gc(z) would yield identical performance and results. In situations where this
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property is absolutely required, floating point arithmetic is often used, which 
comes closer to the "truly linear" implementation, at least as far as the 
internal arithmetic of the compensator is concerned. However, a 
considerable penalty is paid in processing speed and storage: 32 bit floating 
point operations performed in software typically require at least an order of 
magnitude longer processing time and twice the memory of 16 bit integer 
arithmetic.

Alternative arithmetic systems such as a log base two system [Lang84] 
have been suggested that provide increased precision for small perturbations 
about zero and decreased precision for large signals and transients. This has 
a positive impact on quantization-related problems for structures that 
always operate with a zero DC signal component. This is commonly the 
case for signal processing filters, and for control regulation to zero, but is 
unusable for servocontrollers since the assumption of a zero mean signal 
value at all nodes is violated.

Roundoff arithmetic generates less quantization noise than truncation 
arithmetic. It is therefore preferred for multipliers in signal processing 
[Stevens86]. The requirements are somewhat different in control problems. 
Injected zero-mean noise in the structure is of less consequence, and often 
not justified in terms of the software overhead for implementation. 
Therefore, truncating multipliers and adders are most common in digital 
compensators [Katz82b]. Truncation arithmetic is not prone to quantizer 
limit cycles (as roundoff arithmetic is) in an open loop digital filter. 
However, a compensator in a closed loop with a conditionally stable or 
unstable plant is constantly in a limit cycle at the operating point, in order 
to null the divergence of the plant output from the control reference.

In this study, the quantization issue will be considered only to the 
extent that a compromise always exists between the range and resolution of 
a machine representation of a variable. Thus, for a finite number of bits, 
infinite precision would shrink the variable range to zero. As a general 
objective, we will always seek the minimum necessary range for a variable 
that assures the correct execution of the control algorithm. This maximizes 
the available precision, or equivalently minimizes quantization noise at that 
node. The quantization issue itself will not be treated. In all analyses, 
machine variables will be treated as continuous (unquantized), with the 
above minimum-range goal in mind.



3.6. Overflow, Its Effects and Remedies
Large-signal range limitation effects are ah important concern in digital 

filter design, particularly for implementations in two’s complement 
arithmetic, which is the most common situation. As discussed previously, 
the wrap-around effect of two’s complement overflow following a binary 
addition or multiplication has radical consequences for the filter behavior. 
Self-sustaining large-signal limit cycles (oscillations) are the most feared of 
these consequences, beyond the problem of a totally incorrect output.

The most common approach to this problem is the judicious application 
of gam scaling to the filter structure. This involves the multiplication of a 
signal at the filter input, and between cascaded stages, by a constant, 
usually less than one. A final inverse multiplication is performed at the 
filter output to reverse the net gain loss. The objective of the scaling 
procedure is to assure that, for all "expected input signals, the signal 
amplitudes at all nodes in the filter structure remain within the range 
allowed by the given number of bits representing the information path.

The issue of optimum scaling of digital filter structures has been studied 
by several authors. The fundamental work by Jackson [Jsckson69] is most 
often cited. Jackson determined approximate guidelines for allocation of 
scale factors in a cascade structure,; based upon thd relative 'peakedness" of 
the individual second order cascade stages. He also addressed the problem 
of optimum pole/zero pairing in the structure to minimize the norm of 
the scalers, and thus minimize the total quantization noise injected in the 
signal path.

It has been observed by Phillips and Nagle [Phillips84b] that Jackson’s 
scaling procedure effectively equalizes the DC gain of each second order 
section in the cascade path. It can be concluded then, that this method is 
not applicable to the design of Type 1 or higher digital compensators in 
which the presence of at least one free integrator in the structure yields 
infinite gain at DC. Phillips and Nagle [Phillips84c] provide an adequate 
review of scaling methodologies for digital filters. They recommend the 
method of unit step scaling for filters used as compensators. Once again, 
this method is unusable for Type 1 or higher type compensators for the 
reason stated above. As discussed in section 3.4, no finite scaling is possible 
for a conditionally stable (i.e., integrating) compensator.

This limitation of filter scaling methods when applied to compensators 
has been addressed by Shenberg [Shenberg80]. He recommends a parallel
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implementation of a digital PID structure, to permit independent scaling of 
the PD and I paths of the PID compensator. He also prescribed certain 
"rules-of-thumb" for selection of the required number of bits of resolution for 
the A/D and D/A converters of a digital controller. His results were 
generated in the context of a digital flight control (regulation) problem. 
Shenburg recommends

NF = ^AfD + 4

ND/a = na/d — 2

where
Np = number of information bits for internal variables 
NA/j) = resolution in bits of A/D converter 
ND/a =. resolution in bits of D/A converter.

In addition to concerns about overflow limit cycles at the zero input 
condition, the related problem of recovery from overflow for the non-zero 
input condition has also been studied. This topic is also referred to as the 
stability of the forced response. Claasen, Mecklenbrauker and Peek 
[Claasen75], have studied this problem for second order digital filters, and 
derived a classification method for imbedded nonlinearities that will assure 
recovery from overflow. They report that for a filter which implements a 
nonlinear overflow characteristic 0(x,k) which exhibits no zero input 
overflow limit cycles for (time varying) 0(x,k) satisfying

^ 0(x,k)— IB; < *-• ■ J <1
v' x

x?^0 and rh} > O V k , 

then the forced response will be stable V k if
1 + mj — m5x < 0(x,k) < 1 for x > 1

—1 — mjx > 0(x,k) > — 1 for x < — 1

This result requires that the nonlinear characteristic fall within the 
shaded area of Figure 3.6.1.

Ebert, Mazo and Taylor [Ebert69] have studied the radix overflow 
problem from two points of view for second order 1-D filter structures. If
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Figure 3.6.1 Allowed Nonlinear Overflow Graph for Assurance of Large 
Signal Stability. From Claasen, Mecklenbrauker and Peek 
[Claasen75]

(-1,2)

Figure 3.6.2 Regions of No Overflow. From Ebert, Mazo and Taylor, 
[Ebert69]
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the denominator coefficients —b0 and —bj of a filter G(z) are plotted as an 
abscissa and ordinate in a plane as shown in Figure 3.6.2, a necessary and 
sufficient condition for the absence of self-sustaining overflow oscillations is 
that the (—b0,— bj) point lie within the shaded region. This corresponds to

| b0 ! + | bj | < 1

Unfortunately, this condition is not always met in digital filters, and rarely 
met in compensators, since in the limit as T—>0 (very rapid sampling),

—b0 ► —1 

■■ -br— 2 ,
regardless of the s—mapping used. This corresponds to points lying in the 
upper left corner of the larger triangle in the (—b0,—bj) plane, which 
encloses all linearly (unlimited range) pairs (—b0,-~bj).

Ebert, Mazo and Taylor also derived the necessary overflow 
characteristic for stability, based upon a single overflow point in a recursive 
loop of the type just described:

. I VL + vN. | > 2

where vL denotes the true linear output and v^ represents the output 
modified by the overflow nonlinearity: These results duplicate those of
Claasen et.al., and Figure 3.6.1 again shows the allowed nonlinear graphs 
dictated by the above equation. Hard saturation falls within the allowed 
class. Radix overflow does not. Furthermore, saturation is superior to all 
other overflow nonlinearities in that it generates the minimum amount of 
signal distortion. This can be appreciated heuristically by observing that no 
fold-down in the nonlinear graph occurs. Although saturation clearly 
modifies the effective gain for large signals, it does not contribute phase 
shift. Therefore, frequency response (Bode) plots of systems containing 
saturation bounds exhibit gain reduction as a function of the signal 
amplitude, but no modification of the phase characteristic [Canfield65].

Willson [Willson72] studied the behavior of the recursive section of a 
second order 1-D structure implemented with saturation following the three 
input summing node at the filter input, as shown in Figure 3.6.3. His 
objective in this work was to identify conditions on the coefficients a and b 
that would assure recovery from an overflow limit cycle. The results of his 
analysis are depicted in Figure 3.6.4.
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DELAY DELAY

Figure 3.6.3 Recursive Section of 1-D Second Order Filter Structure, 
Analyzed by A.N. Wilson.

Figure 3.6.4 Coefficient Pairs (a,b) Which Assure Stability of the Forced 
Response. From [Wilson72].
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Values of (a,b) which represent a linearly stable filter lie within the 
bounds of the triangle with vertices {(0,1), (2,-1), (-2,-1)}. Values of (a,b) 
which assure stability of the forced response for "reasonable" inputs, regard
less of initial conditions, lie within the open shaded area of Figure 3.6.4. By 
"reasonable" inputs it is meant that given the periodic input u(k+l), 
ll»(k)IL < 1 V k > K, where K is some nonnegative integer. This set 
{(a,b)} satisfies for some real number a the inequalities

1 -oV > 0 ■

[1—b2 — (1—cr)a2]2 — a2[oH-(2—cr)b]2 > 0

Vl^oV + V[l-b2 ^ (l—<r)a2]2 — a2[cr-l-(2—o)b]2 > | b2 - (l-<x)a2 | .

For filter structures representable in state variable form, Mills, Mullis 
and Roberts [Mills78] have contributed the following sufficient condition for 
the nonexistence of overflow oscillations based on the second method of 
Lyapunov: For the state variable filter structure

x(k-HL) = Ax(k) -f 6u(k) ,

if 3 diagonal matrix D with positive elements, such that

D — A DA is positive definitive ,

then overflow oscillations are impossible. Applied to a linearly stable second 
order structure,

A € 1R2X2 , I MA) | <1 
3 D > 0 such that D—AtDA >0 
'iff ^12^21 — 0
or a12a2i < 0 and | an — a22 | + detA < 1 .

Generally, for any stable A, an overflow-free state variable structure A* 
can be found by application of the symmetric structural (similarity) 
transformation

■'A* =T_1AT V T—Tt- ' V

T is found from
■ rpfjiT ___ jp —1

where the positive definite symmetric matrix P is found from
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P = ATPA +1 

P_1 = I - (T-1A'
These results* and several other important contributions [Sandberg72] 

[Jackson69], [Ebert69], [Claasen75] provide a indication of the specificity of 
solutions to the problem. Results which address the nonlinear aspects of the 
niachine implementation are usually structure and order specific. Mitra has 
observed that neither the zero input or forced response stability results from 
second order 1-D structures are valid for third order IT) structures 
[Mitra78].

Sandberg [Sandberg79] has generalized the earlier zero-input stability 
results from 1-D second order structures to 1-D structures of arbitrary order, 
containing a single saturation nonlinearity following the n-Hi input adder at 
the filter input, where n is the order of the filter. Since the 1-D. structure is 
a controller canonical form, it is sufficient to characterize the n*^ order 
mapping u(k) : w(k), ignoring quantization errors, by the scaler difference 
equation

w(k) = sat
' '
E bm w(k

m=l\

n
m) + E am u(k-m) ,;k > 0

where sat(") is the unit saturation function

sat(x)
x | x j < 1 

sgn(x) | x | > 1

Sandberg treats the zero input case only,
u(k) = 0 k > — n

and assumes that the infinite range/precision counterpart of the filter is 
linearly stable, i.e.,

D(z) = l - £ bmz“ffl 5^0 V j z | >1 
■ m=l

(no poles outside the unit circle | z | = 1).
Let A(z) denote a general function of the form

A(z)=f - g
in=l .

in which Xk are (possibly complex) nuinbers such that
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oo
V I -k I • 1

• m=l

The result of Theorem 2 of [Sandberg79] is applicable to the non-quantized 
case we are considering: If the Xk can be chosen such that

Re[A(z)D(z)-1] > 0 for | z | = 1

then we are assured that the state variables in the 1-D structure 
asymptotically converge to 0 as t—*00, i.e.,

x(k) —►' 0 as k —► oo .

Sandberg also treats the simple feedback system,

u(k)=. E cmu(k-m) + . £ dmw(k-rn)
m=l . xn=l

w(k) = sat(u(k)) , k>0

in which cm G lR, dm G IR and

1 “ £ (cm+dm)z_m^ 0 '.for I '* I > 1 •
■ m=l

Let T(z) denote the rational polynomial,
( n n

TW = i-r.E cm^m 1 ~ E (Cm+dm)z_m
m=l m=lv /

Then for A(z), Xj previously defined, if Xj can be chosen to satisfy

Re[A(z)T(z)] >0 for |z | = 1 , 
then the asymptotic convergence property

u(k) , w(k) —*• 0 as k oo 
holds. ' . '

This final result is apparently the closest available for the 
mechanization of compensators in feedback loops, although its applicability 
is very limited. It may be interpreted as the case of a 1-D compensator used 
for zero-input regulation of a bounded input plant consisting only of a 
constant (unity).

Some comments are appropriate regarding the aforementioned results. 
Although the implementation of an alternative overflow nonlinearity such as
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saturation can assure against overflow limit cycles in a second order 
structure, the signal will still undergo significant distortion whenever the 
saturation limits are encountered. For digital filters, this results in harmonic 
distortion of the output signal, which is generally unacceptable and does not 
occur in normal operation. When digital filters are used as compensators for 
bounded input plants, saturation can and will occur in normal operatibn.

Also it is rioted that the conclusions of the authors do not extend 
beyond a particular class of structures, and are not generally applicable to 
higher order filters. Note, in particular, that since a compensator is always 
imbedded in a control loop along with a plant of order (usually) greater than 
or equal to it, the overflow results from filter theory are riot directly 
applicable in the control environment.

3.7. Soriie Distinctions Between Digital Filters arid Digital 
Compensators ;

As a field of investigation, implementation issues in digital filter design 
for signal processing are at a more advanced level of maturity relative to 
digital compensators for control, and a much larger body of results is 
available. Both historic and technical factors may bontribute to this 
discrepancy.

Only with the advent of the minicomputer in the late 1960’s, and more 
importantly the microprocessor in the mid i97Q’s, has digital control of 
dynamic systems become commonplace. Optimum architectures for real- 
time control processors are fundamentally different than those for 
computational machines [Lang84], an issue that only recently (since 1980) 
has had an impact on commercially available processing hardware.

As a case in pointy "it may be noted that digital flight control systems 
are still the exception rather than the rule, both in commercial and military 
aircraft, although the situation is changing rapidly [Andrisani86a].

Aside from historic issues, a number of fundamental technical obstacles 
niay be cited for the disparity of implementation results between the signal 
processing and Control literature. From the most general perspective, the 
very broad scope of control problems must be considered. Input and output 
signal specifications are more difficult to define due to the time-domain 
based task that the controller perforins. The tasks performed by controllers
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extend well beyond the frequency-domain constraints of filters.
Nevertheless, it is worthwhile to identify points of tangency and 

dichotomy between these related applications, and utilize relevant results 
whenever possible.

In most digital filtering applications, the input signal characteristics 
may be fully described by magnitude and phase specifications as a function 
of frequency. The underlying small-signal assumption is usually 
inadmissable in control applications, where the time response of a closed 
loop system containing the compensator is the primary concern. Precise 
correlations between transient response specifications and frequency domain 
specifications are typically restricted to systems of total order no greater 
than two, and apply only to the unbounded linear case. The introduction of 
nonlinear and large signal considerations further limits the utility of 
frequency domain specifications and design methods.

Filters are most commonly single input, single output (SISO) structures, 
and implementation related results for multiple input and/or multiple 
output (MIMO) filters are rare [Morohey83|. By contrast, the well developed 
field of modern control theory and state variable control techniques often 
require the mechanization of MIMO structures.

The great majority of signal processing applications are linear, that is, 
the operation may be modelled by a transfer function or transfer matrix. In 
most practical Control applications, a fully linear control law is the
exception. Control limits are almost always encountered, and nonlinear and 
discontinuous control laws must be implemented. Machine related issUes are 
complex enough in the context of the well defined linear filter mechanization 
problem. The added complexity of nonlinear and/or discontinuous
input/output mappings often precludes the use of analysis and design
methods developed for filters.

It is unlikely that a filter would be designed for a signal processing 
application with a free integrator in its transfer function, since this would 
imply infinite gain at uj=0, making the filter unstable for all inputs with DC 
components not exactly equal to zero. Yet PI and PE) controllers, 
commonly encountered in servocontrol systems, do exactly this. The
presence of one or more poles at zero in the compensator transfer function is 
required in tracking problems to null the steady state error, achieving a 
Type 1 or higher system.
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Digital filters are rarely required to deal with nonzero DC components 
in steady state signals. This powerfully simplifying assumption is also 
applicable to control regulators, where a zero reference input is assumed. 
This is not true in servocontrollers, a more general class of control systems, 
in which the reference input is a nonzero time function, usually containing a 
nonzero DC component in steady state.

Consider the cascade compensation scheme of Figure 3.7.1 for a 
servomechanism. In the servocontrol of a Type 6 plant, regardless of the 
compensator type, a nonzero steady state value of the control variable is 
required at any new set point, or during the steady state tracking of a tinie- 
Varying reference input.

For Type 0 compensators, a nonzero steady state value of the control 
error is also present. The importance of* this in the digital implementation 
of the compensator is that the steady state values of internal variables in 
the compensator will also (usually) be nonzero. In the case of a Step 
reference input, the steady state (t—+oo) values of internal variables wilt 
depend primarily on the DC path gain from the input to each node. If 
overflow or saturation occurs at any node, the linear path from the input to 
other nodes may be broken, so the concept of path gain is lost. The Value of 
an internal variable becomes a nonlinear function of the input and other 
(not necessarily state) nodes in the structure.

The step response of the servocontrol loop of Figure 3.7.1 is shown in 
Figure 3.7.2, both for the case of infinite adder range and a saturation 
limited adder, with range normalized to ±1. Whereas the compensator 
performs linearly for small disturbances, it "loeks-up" during step transitions 
of the operating point.

Some structures are more prone to the problem of high internal DC 
gains than others. The 1-D structure of Figure 3.7.1, one of the most 
commonly used canonical structures in signal processing applications, is 
clearly very prone to this problem, making it an unacceptable choice for 
servocontrol applications.

This example illustrates one of several distinctions between philosophies 
in filter design vs compensator design. Different considerations apply in 
selection of the digital structure. Relatively speaking, the saturation 
behavior of a structure is more imjpbriaht in the control problem, since this 
is likely to be a normal mode of dpefiaiion. Conversely, quantization issues 
are probably of greater importance in signal processing, where noise
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Figure 3.7.1 1-D Second Order Compensator in Unity-Gain Feedback Servo 
Control Loop.

minimization is a greater factor in structure selection than in compensator 
design.

One forgiving aspect of the servocontrol application is that unlike the 
situation in signal processing, encountering internal saturation in the filter is 
not necessarily objectionable. In fact, it will be shown that with certain 
additional considerations applied in the realization of the filter, it is possible 
to use these saturation bounds beneficially, e.g., to provide a system 
transient response significantly improved over a purely linear control law. 
Intuitively, it is suggested that the assurance of globally linear operation of 
the filter is wasteful of the available wordlength (and therefore resolution), 
since the actual control input to the plant (u) is itself limited to within finite 
bounds that are exceeded in all but small transitions and perturbations 
about the current operating point. The continued linear operation of the 
compensator while the control variable is in saturation is unjustifiable.
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4. SATURATION ARITHMETIC

4.1.
A brief description of the saturation nonlinearity and some of its 

properties is necessary for support of the subsequent analysis.
Define the symmetric saturation function (a scaler operator) by:

sata(x) =
ex , x > a 
x , |x |<a 

—a , ; x < — a
(4.1.1)

Some useful properties of the saturation function are the following:

i) Saturation Blocks in Series

y = sat^(sata(x))
sata(x) , oi</3 
sat^(x) , a>(3

In general, for n saturation blocks in series, 
satai Jsata2|sataJ...satan(x))|j ^fata.(x) , ^ = nnn{oO (4.1.2)
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ii) Saturation Blocks in Parallel

y = ■

Assume a</?

2x , |x|<a </?

sgn(x)a+x , Q < |x \ </S

x)( a+fl) •, a </? < |x I

In general, for n saturation blocks in parallel,

satQ..(x)

mx, |x

> lx l> max{Qfj} i

(4.1.3)



8 == min
• i€(l,...n]

Oix

n K:j=l

sataii jKnsatan t [Kn_1sata^2[......(K1x)J ] = .fl Kjsat^x)

In particular (n=l), sata(Kx) = K(sat0yK(x))

iv) Other Properties

sattt[sata(x1) + sata(x2)]
sat-(x1+x2) , x1x2>d 

sata(x1)+sata(x2) , XiX2<0
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One particularly difficult aspect of analyzing systems containing the 
saturation nonlinearity is that it is impossible to construct an inverse 
transformation, since sat0(x) is single valued for jx j>a.

For some types of analysis, such as stability, an approximation to the 
hard saturation characteristic may be used which possesses continuous 
derivatives and remains monotonic. One such approximation is given by the 
function

sat0(x) ~ -T- (x+a)tan 1(k(x+a))—(x—a)tan ^(^(x—a))| (4.1.6)

where arg(tan(*)) is restricted to its principle value, ](•) |< tt
2 '

sata(x) is a monotonic function of x, that approaches the actual hard 
saturation characteristic with increasing values of the parameter k.

lim sat0 (x) = sat0 (x)
k—*0O

sat(x) possesses continuous first and higher derivatives, unlike sat(x).

d "♦ / % 1— sata(x) = — 
,-dx. 7T

k(x+a)
l+k2(x+a)2

.M? «) + t»n. '(k(x+a)) - tan ’(k(x-q))
l+k“(x-Q')^

(4.1.7)

whereas

— Sat„(x) = j
1 , jx|<a 
0 , |x |>a 

sgn(x)*oo, |x j =Q:
(4.1.8)

satQ. and sata, and their first derivatives are plotted in Figures 4.1.1a and b.

Because of the continuity of the approximation -j- sat(x), it is possibledx
to construct approximate nonlinear transformations for systems containing 
saturation limits, which are parametric with the operating point yet globally 
valid (assuming other nonlinearities in the system do not cause problems).

Consider a general single input nonlinear system of the form

x-/tx,u) . (4.1.9)
We are interested in the construction of a perturbation (linearized) model of



SAT(x)

a) sata and sat,

Figure 4.1.1 sata and sata
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the system at the general operating point xa ut.
The linearization process depends on the existence of the Jacobian 

■ Va-/. (x.,u) and gradient Vu/(x,u), the elements of which consist of the
d dpartials —— fj(x,u), and fj(x,u) respectively. The linearized system

OXj ; OU

model* parametric with an operating point x(, uf, is then

jcl
dt (Ax) V2/(x,u) Ax +

J X„ut
^u/ (z>u) Au (4.1.10)

The continuity of the derivative of satQ,(*) satisfies the conditions for the
Q

existence of Vz/ and Vu/, since the partial derivatives ——■ fj(x,u) and
OXj

——fj(x,u) exist.

One particular benefit of the use of this approximation is the extension 
of stability assessment techniques based upon the first method of Lyapunov 
to systems containing (possibly multiple) hard saturation limits. That is, if 
the parameterized linear model (4.1.2) for the system (4.1.1) satisfies the 
Routh-Hurwitz or similar stability requirement at an operating point x(,ut, 
we are assured the Stability of, at least, the approximate system, (containing 
sat(*)), even though some or all saturation-limited nodes in the system are in 
a saturated state.

This approximation may also permit the .extension of gradient-based 
nonlinear transformation techniques to internally saturating systems, which 
would other-wise fail the requirement '

/ e c°°
for the use of these methods. Among these techniques are the methods of 
Bauman and Rugh [Bauman84], Hunt, Su and Meyer [Hunt83], Reboulet and 
Champetier [Reboulet84], and Korobov [Kuntsevich77].

4.2. Mechanization of Compensators Employing Saturation 
Arithmetic ■

Whereas radix wraparound is the natural outcome of overflow following 
two’s complement binary addition, saturation must be physically added to 
the structure, either by hardware or software methods.



In hardware realizations, the saturation characteristic is usually 
incorporated as a feature of the adder, multiplier or A/D converter circuitry.

Software realizations consist of bounds checking and jcOrrectmg code 
usually implemented as a subroutine call. A flow diagram for such a 
subroutine is shown in Figure 4.2.1. The overflow (V) bit in the processor’s 
status register (or condition code) is checked to determine if overflow has 
occurred. The overflow bit is set by the CPU following a two’s complement 
addition, whenever the addition of two operands of the same sign (indicated 
by the most significant bit of the operand word) yields a result of the 
opposite sign to that of the operands.

The overflow condition is detected in hardware by the CPU via the 
Boolean equation:

V = (SieSjXReSO = .S.iS*R + SjS^R

where: ^
V = the overflow bit in the status register (or control code) ;

= the sign bit (MSB) of the first addend 
S2 = the sign bit (MSB) of the second addend 
R = the sign bit (MSB) of the result 
0 is the Boolean EXCLUSIVE-OR operation

For ripple adders, detection of overflow is Actually performed by simply 
exclusive-OR’ing the carry-out bit with the Piny-in bit to the final ripple 
stage.

If overflow is detected, the sense of the overflow (positive or negative) 
must be determined by the saturation subroutine. This is usually done by 
observing the sign bit of the result, or the carry-out bit:

R = 0 or C = 1 ■"+ negative saturation 
R == 1 or C = 0 ^ positive saturation

In microprocessor mechanizations of digital compensators using fixed 
point arithmetic, it is fairly standard practice to perform a software check 
for overflow following each arithmetic operation. If overflow is detected, the 
appropriate maximum or minimum range value of the variable is substituted 
for the overflowed result. This is effectively the implementation of a 
symmetric hard saturation characteristic following each addition,

Published examples of microprocessor-based control code in which
saturation arithmetic is implemented by this software method are available



Arithmetic Operation 
(Add or Mult)
nn

Call sat

sat

NoIs V ' 
bit set? „ Return

Is
sign bit Replace Result 

with Neg Max Return

Replace Result 
with Pos Max Return

Figure 4.2.1 Flow Diagram for Saturation Subroutine
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in references [Katz82] and [Auslander80]. The ramifications of actually 
encountering the saturation limits at one or more points in the example filter 
code are not discussed in either of these references. It is assumed that the 
effects are to be preferred in comparison with the unchecked natural 
characteristic, radix wrap-around due to two’s complement overflow. The 
imbedded saturation characteristics are typically encountered either during 
large, rapid changes in the reference input, or during recovery from large, 
abrupt disturbances.

In addition to the use of saturation as an alternative to radix overflow, 
saturation bounds may be Imposed on certain internal variables in the filter 
to implement certain desirable nonlinear behavior.

An accurate simulation diagram for the compensator is One containing a 
saturation block following each addition or multiplication, and at any input 
or output nodes. Consider, for example, the simulation diagram of Figure
4.2.2, which shows the true model of a second order 1-D compensator 
structure employing saturation arithmetic. It is important to note that, in 
the general structure, saturation is not restricted to act only upon the state 
variables.

If a constant wordlength is used for all information paths, it is 
convenient to normalize all variable ranges to il. This case will be implied 
when the subscript is not included with sat(x).

With the saturation nonlinearities included, the state equations 
corresponding tO Figure 4.2.2 are:

*i(k+l) - x2(k)

X2(k+l) =» sat jsat |sat(—biX2(k))-f sat(—b^

+ |sat(r(k)) + sa^K^^A/D'y)

y * KD/A*j£^-|-'8at |sat(—aoXj(k)) 4- sat [sat(a1x2(k))+sat(a2x2(k-|-l))]J



sensor
+ H-

Figure 4.2.2 1-D Filter Structure Implemented with Saturation Arithmetic, 
Showing Internal Saturation Bounds

Ql ■ Cn
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For saturating arithmetic structures in general, a state model of the
form

X1 v

xn fsat(?,ll>a12’*"^,ln>x2t"'5Xh)

must be used, where fsat is the "nested" saturation function
fsat(') = sat [

Saturation functions nested up to n—1 levels deep may be encountered, 
depending Oh the structure.

Fortunately, it can be shown with the aid of properties (i) through (iv) 
of the saturation function (discussed earlier), that many of the saturation 
blocks are redundant. In fact, it will be shown later how by appropriate 
scaling of any filter structure, the required number of saturation blocks that 
must be considered may be reduced to one for each recursive loop in the 
structure.'

For second order systems, the phase plane and its discrete time 
corrollaries are often used for analysis when a single saturation nonlinearity 
is involved, and it acts upon one or a linear combination'of the phase plane 
coordinates. In such a case, the behavior of the system may be, described by 
dividing the phase plane into three regions, corresponding to areas of linear 
operation, and positive and negative saturation.

|sat|sat(a liXi) + (sata^Xj)) +;: +sat |sat( • • • (sat a)

Because of both the second order restriction, and the requirement that 
the saturation bounds act only upon the phase variables, the phase plane is 
usually of limited utility in the analysis of compensated second or higher 
order plants, since the dynamics of the compensator increase the total 
system order beyond two, and the saturation limits act upon internal non
state nodes in the compensator structure.

A summary observation can be made. Since the consequences of two’s 
complement overflow are so objectionable as to require saturation arithmetic 
at least at some nodes in the compensator structure, the saturation behavior 
of the compensator must be anticipated and the compensator designed with 
with consideration given to the system behavior during large transitions of 
the operating point. This requires a fundamentally different approach to the 
design of of nominally linear compensators that addresses both the linear 
and nonlinear modes of operation.
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Analysis and design tools will be presented which facilitate this task. It 
is shown that internal saturation bounds can be used to significant 
advantage in servo control situations, in addition to their primary purposes 
of alleviating the overflow problem.



5. NOTATION FOR DIGITAL STRUCTURES

5.1. Definition of a Digital Filter Structure
In the context of this discussion, a digital structure will refer to a 

particular arrangement of basic mathematical operations, describable in the 
form of a network, which implement a particular pulse transfer function or 
control law. For .a. single input / single output cascade compensator in a 
unity gain feedback servo control loop, the Input to the compensator is the 
control error e(kT), and the output Is the control input to the plant u(kT). 
Therefore, a structure represents a specific discrete-time mapping of input 
sequences e(kT) to output sequences u(kT), subject to given initial 
conditions.

Basic mathematical operations include but are not limited to the 
.■following:.

i) binary addition: two inputs, one output

ii) multiplication by a constant: one input, one fixed Coefficient, one
-output

iii) delay: previous ' state memory for sample period T; one input, one 
output

iv) overflow and limit handling:
- radix (two’s complement) wraparound
- hard saturation (clamp on overflow)
- zero-on-overflow

For computer-based implementations of the compensator (from 
microprocessors through mainframes), the structure is actually a description 
of an algorithm. It must unambiguously specify an outcome u(kT) for all k 
given knowledge of e(jT), j =k,kTT-lr..,k—n, where n is the order of the 
compensator, and knowledge of the initial state at t = (k—n)T.
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The unambiguous mathematical specification of a digital filter 
structure, which reflects both the type and precedence (ordering) of 
operations in the network or algorithm, has been a matter of some 
discussion in the signal processing literature. As Moroney [Moroney83] and 
others point out, neither signal flow graphs, simulation diagrams, or a state 
equation description are adequate in resolving the precedence of the 
operations, or identifying all node values, features which are of critical 
importance when the nonlinear effects (quantization and overflow) of a 
particular machine implementation must be analyzed.

For an implementation with infinite precision and range available in all 
number representations, all structures which implement a particular pulse 
transfer function G(z) would be equivalent, at least from an input/output 
point of view. However, this situation is unrealizable by actual hardware. 
The problem is particularly acute for algorithms implemented in fixed point 
arithmetic, (also referred to as finite precision or integer arithmetic), 
although floating point (or real) arithmetic based algorithms are not immune 
from these problems. Note that an inevitable precision and range limit 
always exists at the finite precision A/D converter at the input, and the 
D/A converter at the output.

Fixed point arithmetic is generally preferred in filter mechanizations 
due to its decreased processing time, typically at least an order of magnitude 
faster than software-implemented floating point arithmetic, and at least 
twice as fast as hardware assisted (coprocessor supported) floating point on 
the same CPU. This speed advantage allows faster sampling rates for the 
hardware available.

We review here notational methods suggested by investigators in both 
digital signal processing and control, which address the problem of 
unambiguous structure specification.

5.2. Method of Croehiere and Oppenheim
Crochiere and Oppenheim [Crochiere75] proposed a method which 

accounts for all node values in a structure of N0 nodes. The starting point 
is a signal flow graph for a particular transfer function.



.■Define:'''
Uj(k) — signal value at node i at time increment k. 
y;(k) — external input to node i at time increment kv 

Fgjj — coefficient branch between nodes i and j.
Fdjj = delay branch between nodes i and j (unity gain assumed w.l.g.).

Only one (each) branch Fcjj and F^y can exist between each node pair i 
and j. Redrawn to conform to these rules, the collection of nodes and 
branches constitute an elementary network.

Uj(k) therefore depends linearly on uq(k—1) and up(k), p,q # j. 

ui(k) ~ E Fcijui(k) + E Fdijui(k-1) + y;(k)
j=i. ' ; : j=i

or
N0 No

ui(z) = EFcijUi(z) + E FdijUi(z)z 
j=l j=l

~1

Define the z-domain vector

u z = Ui(z) € 1RNo

and form the corresponding coefficient and delay matrices Fc and Fd 
respectively, such that,

«(*) = FcTu(z) + Fju(z)z_1 + y(z)

The transfer matrix of the system considering all nodes as outputs and, in 
general, multiple inputs of the vector

GlRm

is defined by

u(z) = ft(z)_1 y(z) ,
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where

h(z) = |i — rc — r^-'r1.

The operational precedence is made unambiguous by the enforcement of 
a specific node ordering rule:
1) Assign to node class 1 all nodes which are entered only by system inputs 

and delay branches. Number these nodes sequentially beginning with 1. 
Node ordering within the class is irrelevant.

2) Remove from the network all class 1 nodes, and the corresponding input 
and delay branches entering them.

3) Repeat steps (l) and (2) recursively for node classes 2,3,... until all 
nodes have been accounted for. Continue the node numbering order 
sequentially as each class is assigned.
Since the node numbering within each class is nonunique, this method 

will not generate unique matrices Fc and Fd. But this is of no consequence 
to the method since all such matrix pairs corresponding to a given 
elementary network unique specify that network.

The success of this constructive procedure requires that the structure be 
computable, that is, no closed paths exist which are not interrupted by at 
least one delay branch. For a computable structure, Ft will be an upper 
triangular matrix with all zero diagonal elements. It may be observed also 
that if the structure possesses a finite impulse response (FIR), Fd will be of 
the same form as Fc.

Moroney [Moroney83] points out that a deficiency of this method 
appears when structural transformations are applied, which take the form of 
linear similarity transformations applied to H(z). The number of delay 
branches and the operational precedence of the transformed structure are, in 
general, unpredictable. It may be noted, however, that suCh a deficiency 
will exist for any structural notation in which nonlinearities are implied but 
not explicitly stated.

S.3. Method of Chan
A state space related notation was proposed by Chan [Chan78] which 

alleviates this problem at the cost of decreased generality which might limit 
certain types of analysis, s Chan’s procedure accounts for the precedence of 
the arithmetic operations by decomposition of the structure into individual 
transformation matrices, one for each precedence level.
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Starting with a signal flow graph which is lineaHy equivalent to the 
actual algorithmic implementation of a network, we define the state 
variables Vj(k), i = l,...,n, as the outputs of the delay elements (branches) in 
the graph, and y(k) as the single filter input and u(k) as the single output. 
Define the vectors

yi(k-Hl) 'vi(k);
v2(k+l) V2(k)

u(k) = ••

VN0(^+1)

and y(k) = ,

vN0(k)
. u(k) . L y(k) j

u(k), y(k) G KNo+1

N0 = number of nodes in the structure, not including the input and output 
nodes.

The progress of the network algorithm is then unambiguously defined 
by the representation,

“W - %
where ’fy, i == l,,..,q, represent arithmetic and quantization operations in the 
structure, each of the q matrices corresponding to a precedence level. Each 
multiplier coefficient in the structure appeals in only one of the 
Intermediate nodes in the structure may be accounted for by the 
intermediate node vectors

ri(k) = % rj.^k) 

r0(k) = y(k)

rq(k) = u(k)

The ordering of the ihatriceis *1^, i == l;...,q, correspond to the 
precedence of the algorithmic Operations, with lower values of i performed 
prior to higher values of i.

The Wj are determined from the flow graph by the following process.
1) Modify the flow graph by addition of extra nodes and unity gain 

coefficient branches so thatr



i) the input node has no branch entering it.
ii) the output branch has no branch exiting,it.
iii) all nodes entered by delay branches have no other input branches
iv) all nodes exited by delay branches have no other exit branches
v) every directed path from an input or state node to an output or 

next-state node that does not contain a delay branch contains the 
same minimal nuriiber q branches.

2) Assign nodes to each precedence class r-- i = l,...,q+l, according to the
'■ '■ rule:.' :

i) r^, contains all state nodes and the input. rx E lRn+1

ii) rj consists of all nodes coupled to nodes in the set ri—1 via 
coefficient branches.

3) Within the sets rx and rq+i, the nodes must be numbered such that 
input or output nodes respectively are numbered last. Other nodes are 
numbered arbitrarily.

As with Crochiere’s method, this method does not yield a unique 
representation of a given flow graph, but all representations for a given 
graph uniquely specify the same graph.

5.4. Limitation of Methods when Applied to Structures Employing 
Saturation Arithmetic

It may be observed that step 1 of Chan’s method constitutes the 
addition of whatever information is necessary to fully specify an algorithm 
for implementation of a given flow graph. This step is clearly nonunique. 
The restrictions enforced in step 1 dictate, to some degree, a particular 
mechanization of a given flow graph. Therefore, arbitrary structures cannot, 
in general, be described by Chan’s method. In particular, all summations 
must be treated as composite, multiple-input, single node operations. 
Intermediate nodes in the chain of pair-wise binary additions cannot be 
accounted for. This is not a significant limitation when the natural two’s 
complement overflow characteristic is allowed at each binary addition, since 
the result is independent of the order of the additions, even for a 
combination of operands which causes multiple overflows. Furthermore, the 
"self-correcting" capability of two’s complement arithmetic assures a correct 
result of the chain addition of m operands if the true result actually lies in



However, this is n6t the case if saturation arithmetic is implemented. 
The ordering of the pair-wise addition operations directly influences the 
result if any of the additions in the chain yield an out-of-range result. In

ate nodes cannot be ignored, and the precedence of 
must be unambiguously specified in the network

the usable numeric rangje, even if intermediate overflows have occurred.

this case, the intenhedi 
the addition operations 
description.

Similar arguments 
since one multiplicand

apply to multiplication (gain) Operations, although 
is a constant, it is much easier to assure against

overflow simply by appropriate scaling, and overflow is not usually a
concern.

The following example illustrates the importance of this consideration, 
and the inability of Chan’s and similar methods to unambiguously specify 
structures in which saturation (or any other non-radix) arithmetic is used.

Example
A simple second order transversal filter structure is shown in Figure 

5.4.1a, and its corresponding linear signal flow graph in Figure 5.4.1b.
Working from the flow graph, Chan’s method (step 1) admits the 

modified graph of Figure 5.4.1c, bnt does not admit the graph ©f Figure 
5.4.Id, which actually represents the algorithm that implements the filter. 
The limitations, in this case, lie in conditions (iv) and (v) of step 1,

For the legally modified graph of Figure 5.4.1c, the node sets and 
intermediate transformation matrix are:

ri =
xi(k)
x2(k)
,y(k)

y(k)

vr(k) x1(k+l)
r2 = v2(k) = x2(k+l)

u(k) u(k)
«(k)

0 0 1

i 6 o
al a2 a0
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In this case, Chan’s method implies a single level of precedence (q=l) in 
the filter structure. However, the actual implementation implied by Figure 
5.4.1a and d requires two precedence levels due to the pair-wise nature of 
machine addition. To best illustrate the possible ramifications for a 
structure implemented with saturation arithmetic, consider the alternative 
mechanization of the same FIR filter as shown in Figure 5.4.le.

When the overflow characteristic V(*) of the adders must be taken into 
account, the structures (a) and (e) are not equivalent, and the idealized 
structure represented by the graph (c) containing a multiple input summing 
node is not specific as to which structure (a) or (e) actually implements it. 
The final comparisons of Figure 5.4.If and g elucidate this fact, by 
comparing the true nonlinear models of the addition operations in (a) and 
(e). Note that if V is the saturation characteristic, the outcome of the chain 
additions of Figure 5.4.If and g respectively could yield different results if 
either of the pair-wise additions generates an out of range result.

Consider, for example, the operands aoy(k) = 0.8, a^k—1) = 0.8, 
a2y(k—2) = —0.8 in a range of J*|<1. The outcome of the chain addition (f) 
would be 0.2 while the outcome of the addition (g) would be 0.8.

a)

■K >———k y——► u

Figure 5.4.1 Second Order Transversal Filter



d)

u(k)

u(k) = V ja2y(k-2) + V(aiy(k-1) + a^k)))

g)

a0y(k) y(k-l)

a2y(k-2)

u(k) = V |aoy{k) + V(aiy(k-1) + a2y(k-2))j

Figure 5.4.1 (continued)



6. USING SATURATION TO PREVENT OVERFLOW

6.1. Multiple Input Summing Nodes in Saturating Digital Filter 
Structures: An Algorithm for Assuring Correct Results

In this section a niethod is proposed for correcting the aforementioned 
problem of incorrect results when multiple input summing nodes are 
implemented in structures using saturation arithmetic (as is common in 
digital compensators). This method requires a minimum of additional 
processing steps in implementing the chain additions of the summing node. 
The supplementary operations are performed in software, but could also be 
implemented in the hardware of the ALU (Arithmetic Logic Unit). 
Reference is made to the work of Eckhardt and Winkelnkemper, who first 
recognized this problem in second order sections, and suggested a solution 
based on carrying an extra control bit through three-input summations 
[Eckhardt73].

Structures implemented using this method would satisfy the restrictions 
of Chan’s notation, since chain additions could be treated as true multiple 
input summing nodes followed by a single saturation block. Since this 
restriction is also fundamental to many of the prior results on both the 
zero-input and forced response stability of digital filters, the use of this 
method in both filters and compensators is well justified.

As previously mentioned, a distinct feature of radix (two’s complement) 
arithmetic is its "self-correcting" property for such chain additions. 
Specifically, if the true result of the addition of N+l numbers can 
legitimately fit into the word length, then the final result of the N binary 
additions will be correct, even if overflow occurs in intermediate additions. 
This property is often relied upon in the implementation of multi-input 
summiug nodes in digital filters. The filter may be input-output scaled in 
such a way as to prevent the possibility of overflow of the net result only, 
ignoring intermediate overflow.

The self-correcting property of radix arithmetic is lost when saturation
is implemented following each addition. Therefore, a net result that
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actually would have been "in-range" is lost, and an incorrect value, based 
primarily on the order of the saturated additions, is substituted. The final 
result may be described by nested saturation functions, e.g., for a chain of 
three additions (four input summing node):

where

y = sat (sat (sat(x1+X2)+X3)+X4)

Xj — each addition operand
y = sum

and

sat(x)
^max * ^max

< X < X.
X < X,mm

Note especially that a chain of saturating adders could produce a net result 
of opposite sign to the true sense of the overflow. Also, the saturation of 
just the final addition in a chain can yield an equally erroneous result.

The Problem Defined:
(1) The self-correcting property of radix arithmetic assures a correct result 

of the summation of N+l operands if and only if the true sum is in 
range. The result will be in error if this condition does not hold. But 
since the true sum is not available for comparison, the validity of the 
result is unknown. We seek an algorithmic test to determine the 
validity of the radix summation of an arbitrary sequence of numbers.

(2) If the result of a chain of additions is found (by the above algorithm) to 
be invalid, we seek a test to determine if the true result would have 
been greater than the upper limit, or less than the most negative limit. 
This allows the substitution of the appropriate saturation bound for the 
result.

Theorem
Consider the summation of N+l operands, as in Figure 6.1.1

Ri = sign bit bf the result of the i’th addition
V: = overflow bit of i’th addition
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i=l i=2 i~N
x y

Figure 6.1.1 Chain Addition of N+l Operands

Then

E Vi(R|-RJ
N

Proof

Let Vi+^ViRi and Vf^ViRi

Positive overflow V*=l
Negative overflow "■* Vj~= 1 

No overflow V* — Vj~==0

The range of the radix arithmetic system is —2n_1 to 2n_1—1, where 
n = number of bits in the binary word.

If positive overflow occurs at addition i, then the true result y* = y;+2n. 
Similarly, if negative overflow occurs at addition i, the true result 
Yi = yi~2n. (yj is the incorrect two’s complement result.)

For a chain of N consecutive additions, the true result y* is:
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y E y* = E (yi+2n(Vi+-v-))
i=l i=l

y + 2“ S (Vi+-Vf) = y + 2” £ (R,-R,)
i=l i=l

Therefore, if

E ^(Ri-Ri) =
>0 y* >y+2n >2n_1—1 

0 y* = y
< 0 y‘ <y-2n <-2n_1

Implementation in Code
Practically, this algorithm is implemented by testing the V bit and R 

(the sign bit of the result) following each successive addition. If the V bit is 
set, a counter is then incremented if R = 1, and decremented if R = 0.

Following the final addition in the chain, the counter is tested. If it is 
zero, the final sum is correct. If it is positive, the most positive possible 
number 2n_1—1 is substituted for the result. If the counter is negative, the 
most negative number—2n_1 is substituted.

The counter can be thought of as temporarily extending the precision of 
the running total during the chain of additions at reduced throughput cost 
compared with extending the word length. Actually increasing the precision 
of the additions would require, first, the sign extension of the operands 
through the high order words, and then addition with carry-in of the high 
order words with each addition in the chain. By comparison, the suggested 
method requires only a single register which is incremented or decremented if 
overflow occurred. It is amenable to simple implementation in hardware, 
and might be a useful feature in the architecture of a control or signal 
processing oriented microprocessor.

Significance
The use of this method of summing several variables in a digital filter or 

compensator structure preserves the self-correcting property of two’s 
Complement arithmetic, and implements a saturation characteristic which 
acts only upon the true result of the summation. This permits the 
implementation of a true multiple input summing node followed by



saturation, regardless of the overflow of some or all of the intermediate 
additions.

8.2. A Systematic Method for Expressing All Node Values as a 
Function of the Input Sequence, for FIR Filters

We define here a notational system utilizing certain features of both the 
Crochiere-Oppenheim and Chan methods, which will prove valuable in the 
determination of bounded scaling rules for filters containing internal 
saturation nonlinearities. This notation will be used for representing all 
node values (including intermediate addition nodes) of a nonrecUrsive 
structure as a function of the input sequence.
l) Assign all nodes in the structure to one of two sets:

Set 1 (Sj) - State variables Xj(k), i = l,...,n, defined as the outputs of 
the delay elements, and the input u(k). This set contains the state 
vector x(k) E lRn and the scaler input u(k) E IR.

Set 2 (S2) - All other nodes vj(k), j = l,...,q, and the output y(k). This 
set is expressed as a single q+1 vector,

Vi(k)
v2(k)

vik)

vq(k)
Ly(k).

2) The state equations of the filter are defined using elements of St only. 
In matrix notation,

x(k+l) = As(k) + 6 u(k)

AeKnXn , b E Ka
For any FIR filter, A will be idempotent, that is,

An = 0

3) Express all elements of S2 as a fupction of elements of Sj, in matrix 
notation.
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v(k) z(k) + ^u(k)

^ e iR.(q+1)Xn <f> e ir^1)

(6.2.1)

U (k) =

u(k)
u(k-l)

u(k—n)

€ 1Rn+1

Due the idempotency of A, z(k) may be expressed as the finite 
summation,

x(k) = XI Am u(k—m)
m=l

E Am^6 kJ
m=l

u(k) = 'Pu(k) (6.2.2)

where

=

K,n+1

£TRn+1

K: =
1 i=m+l 

0 ij^n+1

and
i) 6 lR(n+1)x(i+1)

Combine (6.2.1) and (6.2.2) to yield



(k) — ^ ^u (k) + <£u(k) 

= ['P if) + 4> (TT]u(k) 

(k) f 'Tftt (k), i G IR(q

where

Example

l) Sjt

x(k)
xi(k)
x2(k)
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u(k) = u(k)

2)

3)

4)

S2:

v(k) =

x^k+l)
x2(k+l)

vi(k)
v*(k)
YsOO
v4(k)
y(k)

0 0

a-j 0

t(k)

x2(k)

i(k+l) = A i(k) + h u(k)

+ ar u(k)

vi(k) 0 0 a0

v2(k) aj 0 xi(k) a0

vs(k) = . ai 0 x2(k) + 0

v4(k) 0 a2
0

y(k). al a2
a0

u(k)

v(kj = ^ x(k) + $ u(k) 

x (k)
1 = 6u(k—1) + A6u(k—l) + A6u(k—2)

ao
a0

u(k—1) + 0 0

8*2 0

aQ
a0

u(k-2)

a0

ao
[0 1 0] + o

[0 0 1]
u(k)

u(k_1)
u(k—2)

*(kj =
0 a0 0

0 aQ a0aj u(k) — $u( k)



7 = ^ if) + <p a

7 ~

0 0 

ax 0

aj 0 

0. &2 
aj z.2

a0

"
*Q

0 ao 0
a0

0 3.q a0a1
+ 0

■0;
■a0

0

aoai

0
0

0U . B.qE|

0 &Q&2 3.q3.}&2
a0 a0(a1+a2) ag^ja^

[1 0 0)

v(k) = -ru(k)

Using the previously defined notation, we can prove a simple concept 
which is fundamental to later developments.

Theorem - Bounded Scaling of FIR Filters
For v(k), u(k), 7, S1? S2 defined in the previous section, all node values 

Vj(k) and the output y(k) may be expressed as linear combinations of u(k-j), 
j==0,...,n by the relationship,

v(k) = 7ti(k)
Let the input to the filter by scaled by the non-negative coefficient Ks. 
Then,

t> (k) == Ks 7 u(k)
For positive real numbers v*, u* such that

|u(k) | <■ u* V k

3 non-negative real bounded Kg, where
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0 < Ks <
Ihlloou

- < oo.

such that

and

lvi(k) |< v*, i = l,...,q

I y(k) |< v* V k .

Ik(k) || oo <V

Proof
V-k and i = l,...,n

iv,(k)L 
l.v(k)|: I

(»(k) l< #*—► ll“(k) llcc < u"

where j| • 11denotes the vector norm and its induced matrix norm.

!k(k) lioo = 'IlKs 1 «(kj lloo

<KS ihlloc llU(k) j | 00

= Ksu* jhlloo < v*

Kc <

Since

s" u‘lhlL

, > 0 if any element of ry is nonzero (any nontrivial network), 

0 < Ks < oo .

0.4. Bounded External Scaling for Structures in Which all 
Recursion Loops are Interrupted by at Least One Saturation 
Nonlinearity

In this section it will be shown for an arbitrary filter structure, that if 
each recursive path in the structure is interrupted by at least one saturation 
limit, it is always possible to find an external scaling rule which guarantees 
that all nodes in the filter will remain within overflow limits. An absolute 
bound on the external scale factor Ks will be determined. The results of the 
previous theorem on bounded scaling of FIR filters will be employed with 
property (iii) of the symmetric saturation function.



Consider the| simple recursion loop of Figure 6-4.1 containing a SISO 
subnetwork possessing a finite impulse response. Outputs from the loop may 
be taken at any (or all) of y-t i = 1,2,3.

For an arbitrary FIR subnetwork, by the Theorem of section 6.3, it is 
always possible to find a finite scaling Kg that will assure that all internal 
nodes and the output remain within specified bounds, v . Let us consider 
the normalized case v = 1, and all nodes in Figure 6.4.1 range limited to +1.

Without effecting the linear transfer function, the loop may be modified 
as in Figure 6.4.2.

By block diagram manipulation Of the linear structural elements, and 
the use of Property (iii) of the symmetric saturation function, the network 
can be rearranged into the form of Figure 6.4.3.

This scaling rule, and the corresponding saturation function assiire 
that, for |x(k) | <1 V k, all nodes in the network are magnitude bounded by 
1, thus preventing overflow and its related problems.

Considered itself as a SISO subnetwork with the Output taken at any 
yj i = l,2,3, a finite scaling is known to exist for any bounded input* 
admitting the simplified description of Figure 6.4.4.

This constructive method clearly applies to any single loop containing 
only FIR subnetworks and at least one saturation block. One other common 
topology and its scaled equivalent appear in Figure 6.4.5a and 6.4.5b.

An arbitrary filter structure can always be decomposed (or transformed) 
into a collection of recursive and nonrecursive subnetworks. If each 
recursive subnetwork is interrupted by at least one saturation bound, a 
finite scaling exists which assures that all nodes in the subnetwork remain 
bounded. For multiple saturation blocks in the same loop, saturation 
properties (i) and (ii) may prove useful in reducing the structure to a 
minimal form. With all subnetworks thus scaled and known tobe internally 
bounded, a composite scaling rule can be found for the overall network, that 
assures that all internal nodes remain bounded for any bounded input.



Example - l-D (DF-II, CCF) Structure
a o z ^-j-a i z-f-an

G(i) - -----------1
.-z +b1z+bQ- -

Without altering node signal values, the structure may be decomposed as 
shown in Figure 6.4.7. This is obviously the equivalent 3-D structure. The 
recursive and nonrecursive subnetworks are identified by inspection as shown 
in Figure 6.4.8.

The scale factor Kj is sufficient to assure that the internal nodes and 
the output of the first FIR subnet work remain magnitude bounded by 1. 
Similarly, K2 scales the second FIR subnetwork. The overall scaled network 
[is shown in Figure 6.4.9.

The utility of this observation is the assurance that a single saturation 
limit within each recursion loop of a filter can assure the nonexistence of 
internal overflow. However, nothing is implied regarding the nonlinear 
behavior of the filter when the internal saturation bound(s) is (are) 
encountered. This is the topic of the subsequent sections of this work. It 
will be shown that, by appropriate selection of both the structure and its 
coefficients, desirable nonlinear (discontinuous in first and higher derivatives) 
control laws may be implemented when such structures are used as cascade 
compensators in servo control systems. In this sense, the imbedded 
saturation nonlinearities perform two services: assurance against internal 
overflow, and improved, control for bounded input plants. These benefits are 
provided with only a trivial increase in algorithm processing: a single
saturation bounds check.



FIR
Subnetwork

Figure 6.4.1 Simple Recursion Loop

FIR
Subnetwork

Figure 6.4.2 Scaled FIR Subnetwork
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FIR
Subnetwork

yt

Figure 6.4.3 Rearranged Scaled Network

Figure 6.4.4 Recursive Network with Imbedded Saturation Nonlinearity



FIR
Subnetwork

a) Unsealed

FIR
Subnetwork

b) Scaled

Figure 6.4.5 Recursion Loop
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u

G(Z)
a2Z +a1Z + a0 

Z + b j Z + b Q

Figure 6.4.6 1-D Structure with Imbedded Saturation Nonlinearity

FIR Subnetwork 1 FIR Subnetwork 2

Figure 6.4.7 Decomposed 1-D Structure
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Figure 6.4.8 Isolated Recursive and Nonrecursive Subnetworks

FIR
Subnetwork

FIR
Subnetwork

Figure 6.4.9 Overall External Scaling to Assure the Nonexistence of
Overflow at all Nodes iii the 1-D Structure



7. QUASI-OPTIMAL CONTROL METHOD'S

Fuller [Fuller67], Boltyanskii [BoltyanskiiTl], and others Mave pointed 
out certain difficulties in practical implementation of time optimal controls. 
One significant problem lies in the fact that the exact switching function for 
realization of the time optimal control for even simple linear plants is 
usually tOo complicated to be synthesized readily.

According to Boltyanskii, the optimal control syhthesis problem (for 
linear plants) may be reduced to the problem of finding an initial adjoint 
state from which the time optimal control is derived using the maximum 
principle. For all r on the interval t0 < r < tf, the control vector u (r) must 
satisfy

^(r)Ba(r) = niax (7.1)
uEh

where 'F(t) satisfies the adjoint equation

$(t) = - aJ^(t) (7:2)

An exact solution for is not known, and approximate methods are usually 
employed, such as the method of Neustadt [Neustadt60] or the iterative 
solution of Eaton [Eaton62]. The essence of approximate methods lies in the
selection of an initial guess for ^0, and then iteratively improving by
some process until the corresponding trajectory x satisfying (7.1), (7.2) and 
the system equation

x — Ax + Bu (7.3)

passes through the target equilibrium point.
Alternatively, the optimal control may be determined in "synthesis 

form" u =u(x) as a function of the state. The construction of the synthesis 
function v{x) proceeds by moving bafckwards in time along trajectories 
satisfying the maximum principle Which emanate from the origin (or more 
generally, the target set). For systems Of general order, a sufficiently dense
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map of all optimal trajectories must be constructed and stored by the 
controller to define the control at each point in X. If the plant order is 
greater than two, then the problem of finding the synthesis function v(x) 
becomes, as a rule, extremely cumbersome computationally, and practically 
unrealizable due to the immense amount of information that must be stored 
in the controller [Boltyanskii7l]. ,

This observation explains the ubiquity of the simple double integrator 
plant in most research publications and textbooks when a particular optimal 
control method is demonstrated. This is a special, unique case in which the 
exact switching curve (a simple parabola) is easily calculated in closed form 
by separation of variables, and an exact metric for elapsed time along any 
trajectory may be written explicitly (see §9.1). Optimal control results 
developed using this special plant are not generally applicable to other 
plants, although they are sometimes useful in determining suboptimal 
controls (see §7.3).

Reviewed here are some methods for realization of quasi-optimal 
controls for bounded input plants, based upon discontinuous state- 
determined control laws. The discontinuous control approach to the 
realization of robust "near-optimal", "quasi-optimal" or "proximate optimal" 
control has apparently been advanced independently in several different 
areas of the literature. We generally consider the class of systems with state 
representations discontinuous in the right hand side due to the application 
of a switched, state determined control law of the form

UiCx) Ul,maxSgn^1(x)

um(*)

where o-(x) = Q, i=l,...>m represent switching manifolds in the state space 
x E X. Controls within this class have been studied in several categories, 
including relay control [Tsypkin80, Ryan82], bang-bang coutrol [LaSalle54, 
Bellman56, Pontryagin62], variable structure control [Utkin76], high gain 
control [Marinp85], and boundary-layer control [Corless81].

Summary reviews of early work in this area are given by Ryan [Ryan82] 
and Fuller [Fuller62,67]. As reported by these authors, the roots of this class 
of control methods may be traced to the pioneering works of Leaute



[Leaute1885,1891], Houkowsky [Houkowsky1896], Synge' [Synge33], Hazen 
[Hazen34], MacColl [MacColl45], Weiss [Weiss46j, Kochenburger 
[Kochenburger50], MacDonald [MacDonaldSO], Hopkin ; [Hppkin51], Uttley 
and Hammond [Uttley52], Neiswander and MacNeal [Neiswander53], 
Flugge-Lotz [Flugge-Lotz53], Bogner and Kazda [Bogner54], and Coales and 
Noton [Gbales56]. Boltyanskii [Boltyanskii? 1] describes the fundamental 
proofs apd mathematical framework related to the selection and optimality 
of a given switching manifold.

Methods within this class typically exhibit improved robustness 
characteristics relative to continuous controls. They differ primarily in the 
class of switching surfaces admitted and required restrictions on the plant 
ihodel. All are predicated on the availability or reliable observation of the 

.full-state. ■
Selected methods from this class of controls will be reviewed, which are 

most closely related to the saturating digital control problem.

7.1. Polynomial Approximation of the Optimal Switching Surface
J. J. deRooy [deRooy70] described a quasi-time optimal control method 

applicable to single input, single output (SISO) linear plants. The method is 
based upon 7 the substitution of a- polynomially approximated switching 
manifold for the true time optimal switching manifold. The class of plants 
considered is given by

x = Ax + 6u |7.1.i)

y == [Q • • • 0 l]x

x e iRn’ y e ir, u e ir 

- a6iRnXn, b e
A is restricted to having all real eigenvalues. The set of admissible controls 
0 is given by

fi= {u: |u |<umax} (7.1.2)

The target set is the subset Xd defined by x = 0 and 
y = x<i = [0 * • • 0 l]xdj which is a line ha- the state space. To accommodate 
the one dimensional target Set Xd, the n dimensional state space is extended 
to the n+1 dimensional {Xj xd} space where xd = [0 • ■ ; 6 l]xd. The {x, xd}



space contains the n+1 dimensional null-controllable subspace X, over which 
the plant is controllable for uE Cl.

The objective of deRpoy’s method is to transport the state from any 
initial location x0 to the desired location xd E Xd, in minimum or nearly 
minimum time. The true minimum time trajectory is characterized by 
u = +utoaX+/ t G [t0,tf], where u undergoes n-1 changes in polarity along the 
path [Pontryagin62]. Switching occurs upon impact of the trajectory with 
n-1 manifolds Lk, k—0,...,n-2 in the state space.

Let L0 be the "final" manifold, that is, the set of all points in X from 
which the state may be driven to Xj under the influence of u = +umax, 
without switching polarity. L0 is then a two dimensional manifold 
containing X^ which is smooth except at Xd, where it is merely continuous.

Let Lk be the k+2 dimensional manifold in x' from which the state may 
be transported to Xd under the influence of |u|= umax in at most k 
switchings. Lk is smooth except at its intersection with L^ where it is 
merely continuous.

The "outermost" manifold Ln _2 is an n-dimensional hypersurface which
bisects the n+1 dimensional extended state space X. Ln_2 is called the ' . •. * ■ 
optimal switching surface. The optimal control u is given by

= Umax sgtt(Ln_2(x) - xn) (7.1.3)

where x E lR^ is the: augmented state vector x =-;[x1,x2, . . . ,xn,xd].
For all but a trivial selection of low order linear plants (such as the 

double integrator) analytic expressions for Ln_2 are difficult to obtain, and 
numeric computation by reverse integration is required. >F rom an 
implementation point of view, the nonlinear function must be stored as an 
interpolated map in computer memory, with resolution limited by the 
number of stored n+1 dimensional points. Storage requirements increase 
exponentially with n.

deRopy addiresses this problem vby suggesting the use of a polynomial 
function of the elements of x to approximate Ln_2. Some special features of 
Ln_2 are exploited to yield an appropriate polynomial form:
i) Ln_2(x) is symmetric about the origin
ii) Ln_2 is continuous and smooth, except of the intersection with Ln_3, 

where it is merely continuous



Therefore, a polynomial expansion in terms of the components of x, in 
which the even terms have the sign sgn(Ln_3—is Used. The method of 
least squares minimization is used to fit an pth order polynomial to Ln_2, 
based on knowledge of m samples of Ln_2(a:). deRooy’s method concerns 
only the implementation of the near-time optimal control. It is assumed, 
apriori,that an actual manifold Ln_2 is. fully known for a given plant and 
Xd, obtained by reverse time numeric integration.

Let q be an rmvector containing m values of the, function xn == Lj^fx). 
Let c be a p-vector containing the coefficients of the polynomial 
approximation Ln_2(x). B G IR™xp is a matrix containing in the jth row p 
■values of powers and tross products of components of the m sampled values 
of the vectot x. e is the m-vector of difference errors,

e — q — Be .

We minimize the quadratic form with respect to the components of c :
" ' J = eTWe,

where W is an mXm (positive definite) weighting matrix

^ ^ " J = (g—Be)TW(g—Be) (7.1.4)

4-necessary condition for the existence of the minimum is

y’:■ 88 /o:vv''v

J = 0 .

This relationship yields p simultaneous equations which possesses a solution 
c for m >p.

The control law is implemented by first processing the full state 
feedback x to yield a vector 5 G 1RP which consists of the terms of the 
polynomial expansion, powers and crossproduct terms from a:. The

.X f - ■ rr*approximate switching surface is given by xn = Ln_2(x) — c S .
The quasi-optimal control law is therefore:

u* = UmaxSgnCc^-^n) (7-1.5)

For a third order Type 1 plant with all real eigenvalues, deRooy 
demonstrated that the deviation in y after the theoretically optimum 
response time had elapsed was less than 1% of the step height, for p== 2 or 
higher. He recommends the use of m = 4n sample points of Ln_2 in the 
synthesis of Ln_2 by the least squares fitting method.
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It may be noted that for p=l, the approximate switching surface Ln_2 is 
a hyperplane in IFtn+1, which falls within the class of linear relay controls 
discussed in the next section.

7.2. Linear Relay Control
In A, T. Fuller’s paper "Linear Control of Non-linear Systems" 

[Fuller67], a compelling case is made for suboptimal control provided by the 
use of a simple linear feedback driving a relay element, as opposed to a true 
time optimal control. Fuller considers the class of control laws given by

u = — a*sgn(A:Ta;)

where the fully plant state x is assumed fully accessible and switching is 
assumed instantaneous.

In formulating his analysis and resulting arguments, Fuller [Fuller67] 
cites the inadequacy of the traditional measure Of time optimality, the total 
transit time (or setting time) until equilibrium has been achieved, as a valid 
metric for evaluation of suboptimal controllers. This is because a linear 
switching surface exhibits infinite settling time, at least theoretically. In 
fact, this criticism ihay be extended to most purely linear controls as well, 
since, for any constant operating point, equilibrium is asymptotically 
approached; but hot actually achieved in finite time.

To rectify this inadequacy, Fuller recommends the use of integral- 
square-errOr as a performance metric of time optimality.

.... • ■ , ' ' ■ ■ OO ' '• ' ' ’

J — / e2(t)dt (7.2.1)

where e(t) == x(t)^-y(t) ,
x(t) — plant output 
y(t) == command input

The system under consideration is a unity feedback arrangement, and Fuller 
assumes y(t) == 0:, reducing the problem to that of regulation to the origin.

Since the exact optimal Control which’minimizes J in (7.2.1) is known 
only in simple Cases, Fuller restricts his study to plants consisting only of 
one, tw;o, or three integrators. Fuller shows that the discontinuous control

u = — a*sgn(k1x1 4-k2x2) (7.2.2)

which minimizes (7.2.1) for n=2 is orie for which the trajectory initially



crosses (possibly several times) the switching line

xx -f kx2 =0

where

(7.2.3)

m kj=l

and then is inducted ii|to a sliding mode along this surface. For step inputs, 
in which the initial state is restricted to lie on the line (xj,0), the optimal 
value of k relative to (7.2.1) is

k* ~ 0.46096 a14 I*?!''
The integral-squure-errpr (ISE) for this switching line is

j = 0.76435a% [xf j 6/2

(7.2.4)

(7.2.5)

By comparison, the switching curve for the true time optimal control is 
given by

(7;2.6)Xj + 0.44462 a x2 |x2 |— 0 . 

The ISE for the optimal control is found to be
J =0.76402 aI/2 jxf (7.2.7)

Comparing (7.2.5) with (7.2,7) reveals that relative to the ISE 
performance index (7.2.1), the linear control is only about 0.043% worse 
than the true optimal control.

Note that k is dependent upon xf, which is infeasible from an 
implementation point of view. Suppose k is held fixed, and consider a range 
of initial points lying on a segment of the xj- axis of length 2c and centered 
about the origin. For

k* =0.407428021 a^% (7.2.8)

the expected value of the ISE for any xxc lying On this segment is

J = 0.220079 a% c^/2 (7.2.9)

which is Only 0.82% worse than t|ie expected ISE for the true optimal 
control (7.2.6), (7.2.7) Over the same range of initial conditions.

The stability of general second order linear plants (at least 
conditionally stable) under relay control has been studied by Tsypkin



[Tsypkin55], Anosov [Anosov59], and Boltyanskii and Pontryagin 
[Boltyanskii56]. For this simple plant, a set of necessary and sufficient 
conditions for the asymptotic stability of the origin is

kj > 0 , k2 > 0 . (7.2.10)

In later work [Fuller69], Fuller showed that for a triple (or more) 
integrator plant (n >3), the linear relay feedback can not always assure 
stability, i.e., initial states exist which cannot be driven to the origin under 
this control law, so that the system is unstable in the large.

Fuller’s analysis was later extended by Ryan [Ryan76] to the broader 
class of linear plants of up to fourth order, restricted to having real non
positive eigenvalues. For a fourth order plant with 
Xj = X2 >=? X3 = X4 = — 1, he reported percentage increases in settling times 
ranging from 7.095% to 15.556%, depending on initial conditions.

Fuller concludes that for some relay control systems, the loss in 
performance due to replacement of the nonlinear optimal switching surface 
by a linear one is trivially small. In his words:

"It is not unexpected that linear controllers give roughly optimal 
performance. In many situations the ordinary linearization procedures (e.g. 
describing function methods) turn out to be approximately valid for the 
analysis of non-linear control systems. If an optimal non-linear controller 
can be replaced by a linear controller for the purposes of such analysis, then 
the linear controller itself will (usually) yield nearly optimal performance. 
This argument might suggest that the liner controller would yield a 
performance index within say 10% or 20% of the optimum. However, the 
present paper indicates that the actual loss due to a linear controller is 
much less."

This affirmation may be considered a partial justification for the design 
method set forth in this study. The dual-zone control made possible by the 
saturating linear digital compensator reduces to Fuller’s linear relay control 
in the limit as K—►oo, where K is the net path gain through the 
nonrecursive Section of the filter.
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7.3. Quasi-optimal Nonlinear Feedback
Based upon largely intuitive arguments, Persson [Persson63] proposed a 

general feedback structure for realization of a time-suboptimal relay control, 
which (if property designed) can assure invariance of the system response 
with respect to the magnitude of the initial conditions. Fuller [Fuller71] 
later rigorously established the invariance properties of this feedback 
structure applied to multiple integrator plants of the form

*1 0 1 0 o xi 0

e

0 o 1 0 ■’ d
•• ■

1
■ 4-.:

0 0 i
• +

0

Xn 0 ••• 0 0 xn l/a

. a > 0 , ju(t) I < 1 ■ ./. (7.3.1)

The method was further refined by Ryan [Ryan82], whose analysis is 
summarized here.

A switching function 3 : IRn—dR of the following form is used:

: 5(x) = £ fi(xj) (7.3.2)
" ' ■' i=l ' : ;

where each fj is a function only of xj. It may be observed that this
represents a slightly restricted case of deRooy :i method (section 7.1) in that
all cross-product terms in the polynomial approximation to tn_2 are zero.

Persson suggested functions f; of the form

^(x-) - k; |axj |H/(n+1^sgn(xi) (7.3.3)

kj > 0 , i = 1,2,...,n ■■■ 

where H is some integer satisfying
1 < H < n".: :'v

The control law is

u = —sgn(E(i)) (7.3.4)

This control law satisfies the required invariance properties for the 
system (7.3.1). The invariance property is succinctly stated in the following:
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Driven by the discontinuous control law (7.3.4), if

[*i(t), x2(t), . . . ,xu(t)]T , 0 < t < tf (7.3.5)

is a trajectory of the system (7.3.1), then
; /c—ux1(/ct), K_^n71^X2(/ct),...,K~1xn(/ct)]T j 0 < t </c_1tf (7.3.6)

is also a trajectory of (7.3.1) for all K > 0, provided that the switching 
function (7.3.2) satisfies

H(x) = 8((x|)) =J3{k) S ((gi(xi))) ' (7.3.7)

for all x and Some/?(/c) > 0, where
gi(xj) = /c"(n+1~1)xi , i = l,2,...,n . (7.3.8)

It can be observed that a linear switching function,

Si(xi) = kixi
fails this criteria, since no /?;(«) can be found such that

E■.■kixj-= /3{k)E kj/c-^+^^xj . (7.3.9)
i=l i=l

However, for the control law (7.3.2, 3, 4), (7.3.7) becomes:

■. E k; laXi p/^-^ sgnXi
■ ' i=l

= 0(k) E kj |a K-(n+1-*)Xi JH/(^+1-i) sgn(/c-(tt+1-1)xi) (7.3.10)
i=l

which is satisfied by
/3(k) = k~e > 0 (7.3.11)

To simplify the controller, H may be chosen so as to make one of the 
functions (7.3.3) (say i=l) linear. For a double integrator plant (n=2), 
setting H=2 yields

£(x) = k^Xj + k2ax^ jax2 | (7.3.12)

which takes the form of the true time optimal switching function if

" '.ki=--', k2 = ^- . (7.3.13)
a 2a



The relative optimality of this control may be .evaluated using the 
following heuristic ipethod, which facilitates selection of the parameters 
P, k;, i=l,...n. Since | negative feedback is assumed, kj are restricted to 
positive values. Furthermore, since the relative scaling of the switching 
function does not effect u, which depends only on sgn (5(x)), we may assume 
without loss of generality that ki==l. For each integer H, 1 < H K n, we 
define a function of the femaining parameters

L(k2, ks> • • • , kn) = ^ ^■i(k2,-.-,kn) (7.3.14)
, V : 7 ■ "■ , i=l ; ; ■■ ; ' ■■■'

where Aj are the fractional increases in settling time from the initial states

x^o) = [o,... ,0, c, o,...,o]T 7.(7.3.15):

c — some positive constant in the ith position,

relative to the true time optimal control. In general, digital simulation must 
be used to determine the A:.

L is minimized over all feasible, H and k; values via iterative sunulatioii. 
For a triple integrator plant, Ryan [Ryan82] reports that L is minimized by

H>2 , / kj = 1 ki = 1.41 , ko — 0.85 .

These results are in close agreement with those of Fuller [Fuller71] obtained 
using a different heuristic approach. For thpse parameter values, Ryan 
reports that the suboptimal response times aje typically within 23% of the 
true time optimal values.

Ryan [Ryan76,76a,82] has studied mechanisms for the possible extension 
of suboptimal feedback relay control results obtained for pure integrator 
plants to the broader class of stable linear plants with all-real eigenvalues. 
The method works exactly only in the special case of real eigenvalues 
occurring in simple ratio, that is

(7.3.16)
Xj = (n+1—i)X, i = l,2,...,n,
X <0 (real) ;

However, Ryan shows it to be approximately applicable to the more general 
case, as will be demonstrated. >

It is assumed that the linear pla,nt state equations are given in phase 
variable (controller canonical) form* ^he first step of the method is to 
convert the state representation into serially decomposed form:
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▼i-= XjVj + yi+1 i = l,2,...,n—1

vn = Xnvn + — a

or
a >0 , |u | < 1

v — Cv + 6u

\v 1 0 ... 0 

o \2 :

o o Xn_x 1

o o ... o xn

(7.3.17)

(7.3.18)

If (x, A) is the original phase variable system, a linear transformation 
P such that

v = P x (7.3.19)
C = PAP-1

facilitates the conversion, where

p = [pul
/

PiJ
1 H
0 i < j <n

Pi,i n (-xt)
k=l

Pi;j = —Xi_1pi_1 j + pi-ij-i 1 < j < i (7.3.20)



For example, 
for n==3,

P =
0

l 1

XjX^
-X,

0

0

1

(7.3.21)

Now consider the special case in which the eigenvalues X; occur in the 
simple ratio (7.3.16), but the switching function 5(v) is determined as though: 
the plant consisted purely of a chain of integrators in series. If, for some
initial state xu, the suboptimal control applied to the integrator plant, 
yielded a fractional increase in response time

Ac — (tf — tf )/tf (7.3.22)
over the time optimal control (tf* is the true minimum time), then if this 
same control is applied to the system (7.3.18) starting from the same initial 
state v° = x°, a fractional increase in response time of

ln(l—Xtf) — ln(l—Xt^)
; . ", Ax = .

lb(l-Xtf)
is realized. Equivalently

ln(l—X(l+Aotf*) — ln(l—Xt^)

(7.3,23):,

Av =
ln(l—Xtf)

(7.3.24)

~ ———T" A0 for A0 small and —Xtf* >>>0 . (7.3.25)
ln(—Xtf) " ■■■

This indicates that the fractional increase in response time relative to 
the time optimal control is less for the plant with real eigenvalues in simple 
ratio than for the pure integrator plant. For initial states near the origin 
(tf small), (7.3.25) indicates that the response time approaches that of the

' , . 3|c - ' .

integrator plant. For remote initial states (tf large), Ax—► () implying that 
the control approaches true time-optimality.

We can exploit this observation by the claim that if a feedback control 
u = —sgn(S(x)) is suboptimal and possesses the previously discussed 
invariance properties for a multiple integrator plant, then the same feedback 
modified by the linear transformation
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u = —sgn(5(P(x))) (7.3.26)

will yield as good or better performance for a plant with eigenvalues in 
simple; ratio.

Ryan [Ryan75,76a,78] extends this method to the more general case of 
linear plants with real non-positive eigenvalues via some heuristic 
arguments, and verifies the conclusions with computer simulations. A 
pseudo-transformation matrix P(x) is substituted for P(x). P(x) is based 
upon a set of eigenvalues which are in simple ratio as in (7.3.16). The sum 
of this set of eigenvalues is equal to the sum of the eigenvalues of the actual 
plant A matrix.

lambdahati = (n—1—i)lambdahat (7.3.27)

where .: .
trace A trace Alambdahat = (7.3.28)

i=l
-i) -n(n+!)

The control law (7.3.26) with P(a:) substituted for P(x) is then applied, 
just a,s though the plant actually did have its eigenvalues in simple ratio.

u - —sgn(5(P(x))) V (7.3.29)

It is noted that only trace (A) is required in the synthesis of this control 
law; actual knowledge of the individual eigenvalues of A is not necessary.

Ryan, in the four cited references, demonstrates the validity of this 
control method for a wide range of pilants up to fifth order. For example, 
consider the second order plant [Ryan82]:

0 1 0

X — :ai a2
X + l/a u M< 1 (7.3.30)

For a double integrator (a}=a2=0) second order plant, the switching 
function is well known: ^ /

E(x) = Xj + ^-ax2 |x2 | (7.3.31)

As derived pireviously (7.3.12,13), we adopt this as the "suboptimal" 
switching/function. "



The pseudo transformation matrix-for the plant, for Xj<X2<0 (both 
real), is given by

P = (7,3.32)

The control law is 

u = — sgn [E(P(a:))]

= — sgn x,+—a ~ ^(\+^2)xi4-x2
£

- “(\+^2)xl+x2 (7.3.3|)

Five cases are considered: 
i) Xi = X2 = 0

In this case, the plant is a double integrator, and the control (7,3.33) 
correctly reduces to (7.3.31), the time optimal control.

■»)

X, = 2

The eigenvalues are in simple ratio. Therefore P(a:) = P(x), and the

\ .

iii) — = OO ■;%.
. ■ *2 X ■ ■-■X-/'.l,. .;

This represents ah integrator-plUs-lag pldnh For specificity, assume 
Xj = 0, X2 = — 1 (a^O, |a2==—1) and a=l. I

The switching function is

5(x) = xj + y -Xi + x2 -Xi + x2 (7.3.34)

This may be compared With the time Optimal switching line 

5*(x) = xi + x2 - sgn(x2)ln(l- |x2 |) , 

which will be derived in section 9.
The corresponding switching curves are depicted in the phase plane of 

Figure 7.3.1, along with! a sample trhfhlidfjr. The subOptimal curve F is seen 
to be somewhat more conservative thlh the optimal curve F. For this case, 
Ryan reports a fractional increase ihf fdsponse time A of less than 0.082% 
for all initial states lying on the Xi axis.



SUBOPT lf*\At-

Figure 7.3.1 Suboptimal Switching Curves, Integrator-Lag Plant

Figure 7.3.2 Suboptimal Switching Curves, Confluent Eigenvalue Plant
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x, T ';V:/v
iv) t— = 1 (confluenteigenvalues) 1

X2 ■■•'•■•■ .'/V . ;; \ :.Y:; -jv'
For specificity, assume^ Xj == X2 = —d (a! = —1, a2= —2), and a==l.

(7.3.36)1_
( \

4 - , 4
2

~Xi+X2
■ •' V ' ■ j

“Xj + x2

For comparison, the time optimal switching curve is defined shy 
|*(x) - sgn(x1+x2)(l+jx1+x2 Ij l^l+jx^xg !) - x2 (7.3.37)

The subdptimal and optimal switching curves are compared in Figure
7.3.2. Note that in this case, the suboptirrial curve lies past the optimal 
curve; This means that pH trajectories will overshoot slightly, arid Spiral
into the origin along a multi-switch path. Ryan reports (via simulation) a 
fractional increase in responses time of less than 2.4% for all initial states
lying on the x^axis.

V Xj
v) 1 < — < OOA2 i

For eigenvalue ratios intermediate to,the situatipns in cases (iii) and 
(iv), Ryan argues intuitively that the switching curve and corresponding 
fractional increase in response times will lie somewhere between those of the 
two previous cases, at least when considering initial states lying on the Xi 
axis. Therefore, the fractional increase in resppnse time is expected to be 
bounded by the worst case (iy) for all second order plants with real non- 
positive eigenvalues.

The simplicity of the controls (7.3.34), (7.3.36) relative to the respective 
optimal controls (7.3.35), (7.3.37) is noteworthy considering the very minor 
reduction in time optimality yielded by these controls. In particular, the 
computer generation of the natural log functions required for (7.3.35) and
(7,3.37) is process time-intensive, and to be avoided if possible.

It is noted that in Ryan’s analysis and simulation results, the origin is 
deemed to have been achieved when

IM«.) IU ■ llx(o) ||2
for e = 1016. This is ap alternative solutipn to the dilemma cited by Fuller 
in the previous section, regarding the inadequacy of the total settling time 
as a metric of time optimality. In subsequent analysis in this work, a similar 
metric will be adopted*
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7.4. Variable Structure Control
The more recent methods of variable structure control (VSC) are closely 

allied to the fields of bang-bang or relay control, and considerable overlap is 
apparent in the literature. Variable structure methods, as described by 
Utkin [Utkin77] focus on the attraction of trajectories emanating from 
arbitrary initial states to a collection of switching surfaces, one 
corresponding to each input. Upon intersection with a surface, the state is 
entrained into a sliding (or gliding or chattering) mode for all time 
remaining;, until the equilibrium point is attained. In this respect, VSC seeks 
to control entirely within the "final approach" portion of the more general 
discontinuous controller, which admits both switching and sliding modes. 
While in a sliding mode, the system order may be considered reduced by 
assumption of a singularly perturbed system [Vidyasagar78j.

Variable structure methods expand upon the confines of relay control in 
admitting control laws that are not necessarily piece-wise extremal, that is, 
control laws in which an arbitrary control structure changes either its 
parameter values or topology based upon the current state location.

According to Tsypkin [TsypkinSS], and Puller [Fuller67], what may 
possibly be the earliest specific discussion of sliding mode control was 
published in 1934 by Nikolski [Nikolski34]. Andronov and Bautin 
[Andronov44] studied the sliding mode control of a third order system. 
According to Fuller [Fuller67], the standardization of the term "sliding" over 
the synonyms "gliding", "chattering", or "after-endpoint motion" appears to 
have been established by Weissenburg [Weissenburg66]. The use of a linear 
switching line was suggested as early as 1896 by Houkowsky 
[Houkowsky1896], and developed simultaneously by investigators in both 
Germany [Bilharz41,42] and the United States [MacColl45, Weiss46] during 
and immediately following WWII.

An important enhancement evident in Utkin’s presentation [Utkin77,78], 
is the establishment of necessary and sufficient conditions for a sliding mode 
via the second method of Lyapunov. This approach will be used repeatedly 
in the sequel to establish the domain of attraction of an analogous linear 
region, for saturating digital compensators.

An adaptive control strategy based upon VSC techniques has been 
proposed by Zinober [Zinober75,77,79,80], and reviewed and refined by Ryan 
[Ryan82].



Like other discontinuous control methods in which switching action 
occurs along a manifold in the state space, VSC methods are (at least 
theoretically) predicated Upon the assumption of full current state 
accessibility and instantaneous switching. When these assumptions are 
unjustifiable, the practicalities of a given system may significantly alter the 
expected system behavior. In keeping with standard practice in the VSG 
literature, these assumptions are admitted in the analysis to follow. In later 
sections in which sample rate considerations are studied, the ramifications of 
finite switching times will be demonstrated.
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Excellent reviews of variable structure contrpl methods are available 
from DeCarlo, Zak and Matthews [DeCarlo87], and Matthews [Matthews85].

The basic mechanics of the VSC approach are reviewed here. In 
general, VSC systems are characterised by a discontinuous control law of 

..the form

u(t,x)
Uj(t,ar)

um(’t,x)
€Kn (7.4.1)

where Uj(x) are discontinuous, nonlinear function of the state x.

uj+(t,x) for Oj(x) > 0 X
Ui(t,x) = ' (7.4.2)

uj (t,x) for oj[x) < 0

where o-(x) .= 0, i = l,...,m, represent switching manifolds of dimension n-1

m kb. ■'->.■ .'.'.-rv".'"
Define

°ix) € IRm . (7.4.3)

The variable structure control design problem is typically subdivided 
into two parts: the design of the sliding surfaces d(x) such that the system 
exhibits desirable characteristics once entrained in a sliding mode; and the 
construction of an appropriate feeabicK iufficient to drive all trajectories 
within some domain of attraction to thi sliding surfaces.

The method of variable structifi llntrol is applicable to the generally 
nonlinear nonautonamous system (7,4;!), which is linear in the control
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x(t) = /(t,x) + B(t,x)u(t) (7.4.4)

x(t) G lRn / (t,x) G lRn

B(t,x) G JRnXm u G Bm
subject to the discontinuous control law (7.4.1,2). / (t,x) and B(t,x) are
assumed at least twice differentiable with respect to x.

A necessary and sufficient condition for the existence of a sliding mode 
on the manifold <7j(x) = 0 is that the discontinuous control law (7.4.1,2) 
directs the velocity vector x(t) toward the manifold from both sides, that is, 
within some neighborhood jo\(x) |< e. The largest region for which this 
condition holds is called the domain o f attraction for the manifold o-(x) = 0. 
The general goal of YSG is to assure this attractiveness condition for all 
switching manifolds o-(x) = 0, i — l,...,m, in a sufficiently large subset of the 
state space to accommodate all foreseeable initial conditions *(°)> 
disturbances, and uncertainties in the plant model. Rigorous discussions on 
the existence of sliding modes are available from several authors 
[Utkin77,78,84], [White84], [Filippov64|.

The establishment of the attractiveness condition as stated above is 
facilitated by a generalization of the second method of Lyapunov. 
Specifically, we seek a generalized Lyapunov function V(t,x,a), positive
definite in some subset of the state space, for which -^-V(t,x,<r) is negative

: ‘ dt
definite within some e-neighborhood of the manifold o(x) ==? 0. The region in 
which V < 0 is the domain of attraction of the switching manifold o{x) — 0.

A concise formal statement of the existence condition based upon the 
second method of Lyapunov is given in [DeCarlo87] and [Utkin78].

A suitable Lyapunov function for all single input plants is

for which the Lyapunov derivative is given by
d y _ j d<r
dt dt

The attractiveness condition

(7.4.5)

(7.4.6)



is used both to establish acceptable feedback control laws (7.4.2), and to 
assess the useful operational region for the system under VSC.

For switching manifolds established by linear feedback structures, 
o[x) = 0 becomes an n—1 dimensional hyperplane in IRn, and a systematic 
design approach is available. An adequate visualization of the system 
behavior is only possible for systems of at most third, arid preferably second 
order. Therefore, to illustrate the feedback design method, let us consider a 
simple single-input second order linear plant, restricting our focus to a 
switching hyperplane of the form

o(x) = sTx . (7.4.8)

The plant, which bright represent a DC motor driven positioning servo 
mechanism, is modeled by

xi ='x2

x2 = — a^ — a2x2 + bu (7.4.9)

Let the switching surface be defined by
T(T=S1X1 +S2X2 = 5 X

and without loss of generality let s2 = 1.
<7 = SjXj + x2 = i’1'! (7.4.10)

A switching line is therefore established along <7=0:

x2 = — SjXj (7.4.11)

Full state accessibility is assumed. The discontinuous control law is 
chosen to be

where

u =. [kx(x) k2(x)] = k^x
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ki
al xjO- > 0 

Pi Xjcr < 0

k9 =.
a2 x2<r > 0 

Pi x2<t < 0

Define the Lyapunov function

2

Attraction to the switching line requires that

V .= ab < 0

d , x \ d , T\ , t •<7 = --- (s X) = ----(s )x + s Ledtv ’ dtv ;

— st[Ai + bu]

= sT[Ai + bk^x]

= st[A + bk*]x

(7.4.12)

(7.4.13)

crcr < 0 -=* ctsT[A + bk?]x < 0

a[si 1]
0 1 

—a1+bk1(z) —a2+bk2(x)
< 0

cr[(—ai+bk^Xj. + (sx— a2+bk2)x2] < 0 (7.4.14)

Assuming b, a1; a2 > 0, the inequality (7.4.14) is satisfied globally if we 
choose
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K

k2

a-j < axl > 0b ■■

A > < 0

.3,2“”~S| '.
a2 < -—-> > 0

b
■ ■ ■ 8Lo"?”“St

(7.4.15),

Subject to this control, specific regions of operation can be defined in 
the phase plane, as shown in Figure 7.4.1.

Oxice the state has been entrained in a. sliding mode along o{x) — 0 due 
to this control action, a well defined geometric relationship exists between 
the system state variables. Since o{x) is a linear function in this case, a 
linear relationship is established for all remaining t:

o[x) — SjXj + x2 = 0 (7.4.16)

The effective order of the system is therefore reduced. For a general m 
input linearplant,

x = Ax + B u (7.4.17)

m

In a sliding mode,

u G IR

<r;T=: Sx = 0

and <7 = Si = 0

Si = S[Ax + Bueq] = 0 (7.4.18)

where ueq designates the equivalent continuous control which would assure 
the maintenance of the trajectory Sx = 0. Solving (7.4.22) explicitly for «eq,

Here, the nonsingularity of the sqnare matrix SB is assumed.
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Figure 7.4.1 Control Regions in the Phase Plane

The equivalent system subject to <7=0 is given by

^eq"h Bligq
' = [A — B[SB]-ISA]xeq

^eq = [I —'B[SB]“1S]A xeq (7.4.20)

(7.4-i24) is referred to as the reduced order equivalent system. The matrix 
[I — B[SB]-1S]A will generally be of rank n-m. For the present example, 
simple computation will show that
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B[SB]-1S]A = 0

0

1

-s,

xeq
0 1 

0 —Sj xeq

or x2 = ~slx2

and iXj=-—x2 . :G :: (7.4.21)

The system is reduced to order n=l when entrained in a sliding mode along 
<7 = 0.

For the general nth order multiple input linear system subject to a 
linear VSC control law, o(x) assumes the form:

ai <7n an °ln- X1

a[x) = = °21 a22 ... ^2n x2

.^ml ^m2 ^inn xn

= Sx , S G IRmXn (7.4.22)

A sliding mode is assured if

V = a<7 = oS[Ax + Bu] < 0 . (7.4.23)

Subject to the discontinuous control law u = ip(x)x, ijj{x): IRn—>IRm,

<7S[A + B^]x < 0 . (7.4.24)

To more easily determine the elements of the matrix switching function 
ip(x), a similarity transform applied to the control u is useful in decoupling 
the design problem. Let

u = Q.JSBu (7.4.25)

u = [SB]-1Qu* . (7.4.26)

Then the attractiveness condition (7.4.23) can be expressed as
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<rS[Ax + B[SB]_1Qu*] < 0

. ojSAx + Q«*] < 0 (7.4.27)

The control paths are decoupled by selecting Q to be a diagonal matrix. 
For convenience, choose Q = I. Then the inequality (7.4.27) is assured if all 
elements of the following vector inequalities are satisfied:

u < — SAx , a > 0

. u* > - SAx , a< O'-. (7.4.28)

This is easily generalized to apply to the nonlinear system (7.4.4) by
substitution of f (t,x) for Ax in (7.4.28).

$ *
With u = 0 (x)x designed to satisfy (7.4.28), the actual control u is 

given by
u = [S B]_1Q 0*x . ' (7.4,29)

It may be noted that there is considerable redundancy in the selection 
of S, which defines m switching hyperplanes. In general, only n elements of 
the mn-element matrix S need be independently specified. For example, for 
n=3, m=2, the two switching planes in IR3 might be specified without loss of 
generality by

Sx
Sn 1 0

S2i s22 1

X1

x2

x3

0 (7.4.30)

sn, s2i, s22 are selected so as to yield the desired behavior from the reduced
order (n—m==l) system,

. xi —snxi (7.4.31)
where —sxi equates directly to the single eigenvalue of the equivalent system 
(while in the final sliding mode).

The actual design process is iterative, since the chosen values of the 
elements of S dictate the required control law for satisfaction of the 
attractiveness requirements (7.4.24) or (7.4.27). The mn switched gains of 
the control matrix 0 (x) must be chosen to individually satisfy the m double 
inequalities of (7.4.28). The final discontinuous control is then given by
(7.4.29). 0- 0



These methods are directly extensible to the control of nonlinear 
nonautonomous plants of the form (7.4.4). A comprehensive treatment of 
VSC methods applied to this more general class of plants is proyided by 
DeCarlo, Zak and Matthews |DeCarlo87].

7.5 Boijiidary Layer Control
Lying in an area of overlap between variable structure control, relay 

control, and multiple-mode control is the area described as ''boundary layer 
control". This class of controls is known to be more tolerant of finite 
switching times (sample rate) than the corresponding variable structure or 
relay control. It is of particular value in situations where known 
deterministic bounds exist on plant uncertainties, in which case it assures 
uniform ultimate boundedness of the terminal solution within some closed 
bounded set S C fftn.

We consider the system class given by (7.4.4) With the addition , of the 
uncertain term e (x,t) translatable to the input path:

x = f (x,t) ,,-p B(x,t)u(t) -f B(x,t)e (x,t) (7.5.1)
The disturbance is assumed only to be fi/Uclidean norm bounded,

lle (x,t)|! < p(x,t) :: (7.5.2)

In general, we seek a control for the uncertain system (7.5.1) which 
assure botb the uniform boundedness of all solutions x(•) =?= [t0,cxD)—-»-IRn, and 
the uniform ultimate boundedness of the terrnipal solution.

Formally stated, a solution x(*) = [t0,oo)—»IRn to (7.5.1) is uniformly 
bounded on the interval [t0,t1] if for each x0 = x(t0) id-a positive constant 
d(x0) such that ||x(t)[j< d(x0) V t E [to,^].

The solution is said to be uniformly ultimately bounded if -d some set 
S CE' containing the origin (or other target set) such that x(t) E S V
tx < t < oo, where tr = t1(S,x0).

The min-max controller proposed by Gutman and PalmOr [Gutman82];, 
and the continuous control approach of Corless and Leitman [Corless81] are 
applicable to this control problem. Only the Corless/Leitman approach will 
be treated here, because of its similarity to the class of controls proposed in 
this study.

We begin with the assumption tfenl the nominal or certain part of the
system (7.5.1) (the system with e^P), has been already stabilized to the
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origin by the action of some control u(x,t). A Lyapunov function V(x,t) is 
assumed to be known for the nominal system. Uniform asymptotic stability 
to the origin is assured if there exist monotone increasing scaler functions 
■7i(0, 72(r)> ^s(r) such that

7i-(0) — 0 A = 1,2,3

lim ^(r) = oo 1=1,2 (radial unboundedness)
T—*OC

^i( 11 ^ U) < V(a: ,t) < 1 j |) (7.5.3)

v(x,t) < - 73(IMI) (7.5.4)

This Lyapunov function is employed in the synthesis of an additional 
control component p(x,t) which assures the uniform boundedness and 
ultimate boundedness of the system (7.5.1) with nonzero uncertainties.

Practically, this implies a two-component control law,

u==u+p (7.5.5)

The primary stabilizing control u may be synthesized by a number of 
methods. An interesting approach is the application of the equivalent 
control for a sliding mode on the manifold

a[x,t) — B'r(x,t)VxV(x,t) = 0 (7.5.6)

u eq
da
dx

da da 
dt + dx 1 (7.5.7)

where da 
'• dx

B is assumed nonsingular. This approach was proposed by

Decarlo, Zak, and Matthews [DeCarlo87]. In this case, a simple choice for 
the Lyapunov function is

(7.5.8)

However^ any control which assures the uniform asymptotic stability of 
the origin for the nominal system, and the corresponding Lyapunov function, 
are admissible.



Corless and Leitman’s method addresses only the synthesis of the 
auxiliary control component p (x ,t). In the presense of uncertainties, the 
system does not attain a trajectory exactly on the manifold cr(x,t) = 0, but 
rather reverts to some locality of the manifold. The purpose of p (z,t) is to 
assure that the trajectory remains within the neighborhood of the manifold,

/ x G Sj = {x:||<7(x,t)|| < e , V e > 0} : (7.5.9)

for all remaining time. Sj is referred to as the boundary layer about the 
manifold cr(x) = 0.

With V(x,t) known and restricted according to (7.5.3) and (7.5.4), we 
seek a control u(x,t) such that

V(r,t) 3- + jVxTVii ; V

= ^ + VXTV[/ +B(u+e)] <0 (7.5.10)

The negative definiteness of V is assured by selection of

(V^V) B(u+e) < 0 (7.5.11)

for all x, t, and admissible controls and uncertainties. Relying upon the 
norm bounded constraint on e, Gorless and Leitman suggest the following 
class of controls for the component p:

p(x,t)

M(x,t)
llM(x,t)|| Kx^) ||/r(z,t)!i>e

P ».;1l;^(*»t)||<e.
(7.5.12)

where ||p||<p(x,t)

and yu(x,t) 4 BT(x,t)VxV(x,t)p(x,t) (7.5.13)

The particular case of

P =__ p(x,t) (7.5.14)

cited by Corless and Leitman is of particular interest because of its 
implementation for a single input plaot. For p constant and B(x,t) and 
V(x,t) invariant with respect to t, thf control (7.5.5), (7.5.8) becomes
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P(*) =

btvxv

|BTVxVj

BtVxV

, |BtVxV|> e

, |BTVXV|< e

(7.5.15)

which is simply a full state feedback that is saturation limited |p(x)|< p, as 
depicted in Figure 7.5.1. Figure 7.5.1 shows the dual-mode nature of the 
control structure, with the control of DeCarlo et. al. applied for 
stabilization of the nominal system.

This observation provides a somewhat more intuitive bridge between 
the method of boundary layer control, and the more general class of dual 
and multiple mode controls. In the single input situation, the boundary 
layer control of an autonomous plant is realizable as simply a saturating
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7.6. Multiple-Mode Controls
Most closely related to the class of controls addressed in this study are 

the general class of multiple-mode controls (also known as dual-mode, 
multi-zone, dual-action, and permutations thereof). The general idea, of this 
control method is the use of separate control laws in different regimes of 
system operation. Usually these modes of operation can be uniquely 
assigned to subsets of some appropriate state space for the plant. For the 
non-zero input servo control problem, the control error phase space is the 
coordinate system of choice.

In most cases, the time optimality of the closed loop system subject to a 
step change in the operating point is a primary concern. Therefore, the 
"large disturbance" control mode is a saturated or bang/bang mode Of 
operation. In the vicinity of the target set, a more docile, often linear 
control is employed. Possible intermediate or transition control modes ihay 
also be implemented.

Proposals for multiple mode control strategies are numerous and widely 
varied. Since approximately 1950 (but possibly much earlier), isolated 
contributions have appeared in a wide variety of control, instrumentation, 
signal processing and other technical literature. Many proposed methods are 
intimately linked to the hardware of a particular application. Both 
discrete-time and continuous-time embodiments have been studied. Major 
contributions of a reasonably general nature in this area include the works 
of [MacDonald52j, [Mathews52], [Halversqh54], [Rauch56], [Weed57], 
[Thaler62], [Trieu70], [Szabados72], [Eads73], [Grider73], [Ferguson74], 
[Shima74], [Johnson74], [Hanmandlu86], and [Workman87],

Methods which are applicable to specific plants have been proposed by 
[Ham75] (temperature control); [Hogue68], [Anders77], [McDonald77], 
[Ohmae80], [Prasad83], [Brown84], [Harada84], [Hahn85] (motor control); 
[Henry72], [Hintz8l] (antenna tracking); and [Auslander8l], [Zewari84] 
(robotics).

We will review here a sampling of some of these methods^ which most 
closely pertain to the control law made possible by an internally saturating 
digital compensator.

In 1957, a dual mode control law for a double-integrator servo motor 
position control system was described by Weed and Weimer [Weed57]. The 
control law was actually defined by three distinct control regions in the 
control error phase plane. The plant input (torque) follows the saturating
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control law,

T = Tm sat W e + e |e 1+ W sat
/ 'I

ae
2Tm w ^ (7.6.1)

where T = torque
Tm == maximum torque 
W = half-width of quasi-linear region 
J = inertial load
a = coefficient of linear error rate damping 
e = control error.

Figure 7.6.1 shows the three control regions, due to the two saturation 
functions in (7.6.1), in the (e,e) phase plane.

Weed and Weimer discuss intuitive methods for selection of the 
parameters W and a, which determine the width and slope of the linear 
region, and present experimental data demonstrating the practical 
superiority of the method over the true time optimal (relay) control. The 
control was mechanized Using an analog computer.

The basic theme of their approach has been duplicated in many later 
independent studies; for example, the recent work of Workman, Kosut and 
Franklin [Workman87] on "adaptive proximate" time-optimal servo 
mechanisms, discussed later in this section.

Trieu and Pierre [Trieu70] presented both continuous-time and sampled 
data versions of a multi-mode near-time-optimal controller for second order 
double integrator or integrator-lag plants. They specifically address the 
limitations of a finite sample period by suggesting a linear region width 
which is a function of the sample period. Their control law provides three 
well defined regions of operation in the control error phase plane. In its 
discrete-time embodiment,

uk ~ rp + G(ek,ek) (7.6.2)
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REGION I
REGION 3

REGION I
v REGION 3

\ Region 2REGION I

SWITCHING CURVE

Figure 7.6.1

where

signal region)

(in small signal region)

The small signal region is defined by



(7.6.4)
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ek +
2ek
T <e

ek = sampled value of control error
ek — sampled value of control error rate
umax = control bound, ju | < umax 
T — sample period
€ = parameter for definition of small signal (linear) region

The control regions in the error phase plane are shown in Figure 7.6.2.
The authors rely on the assumption of full state accessibility, which 

limits the applicability of an Otherwise very practical control method that 
does not ignore the nonideality of a finite sample period. They provide some 
intuitive extensions to higher order linear plants with all real eigenvalues, 
but point out the difficulty of dealing with such cases analytically.

The near-time-optimal control of third order linear plants with all-real 
eigenvalues was dealt with by Ferguson and Stephens [Ferguson74]. They 
proposed a dual-mode control law which directs all trajectories to the target 
set (a norm bounded compact set containing the origin) in an approximately 
time optimal sense. Two regions in the state space (assumed phase
variables) are defined. An inner region defined simply by

| Xi!< /? , /? = some positive constant (7.6.5)

and an outer region
; jxij>/? . V, ■ (7-6-6)

In the inner control region (7.6.5), the control law is given by
u = satj(o) (7.6.7)

CT = k^x [kik2k3]
*1
x2 (7.6.8)

/'■' lX31
In the outer region (7.6.6), the control law is the true time optimal 
(bang/baug) control law for the plant, which consists of one or two switches 
in the oxtremal output, ii = f 1.

Ferguson and Stephens discuss in some detail the problems associated 
with numerically coihputing the optimal control for the outer region such
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e

linear
region small

signal
region

saturated region

switch
curve

Figure 7.6.2 Phase Plane Characteristics pf Sampled-data Multi-mode 
Controller, from [TrieuTO]. ... v'."'

that the minimum time performance index is optimized. They envision the 
mechanization of the control for this region via a ROM (ready-only-memory) 
stored map, which can accommodate only a finite number of initial states. 
The inner control region is implemented via a simple linear feedback 
structure, with full state accessibility assumed.

They present simulation data in which this dual-mode control method is 
compared with a true time-optimal control and a linear saturating 
proportional control, with the dual-mode control exhibiting response times 
intermediate between these cases, as expected.

The regions of control in the phase plane are shown in Figure 7.6.3.



Figure 7.6.3 Control Regions for Dual-mode Control of Ferguson and 
Stephans Applied to Third Order Plant, from [Ferguson74].

As a final point of reference, we consider the "adaptive proximate" time 
optimal control method of Workman, Kosut and Franklin [Workman87]. 
This method, applicable only to a double integrator plant, employs the 
control law (assuming zero reference input):

u - sat{k2(f(ye) — y)} (7.6.9)

where y = plant output
ye == —y — control error 
k2 = control gain 
u = control input
f(*): IR—►1R, is a scaler function meeting certain continuity and 
mOnotonicity requirements, see [Workman87j.

Workman et. ah suggest the following candidate for f(*):
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f(ye) = '
|yj< jfV

' (7,s.io)

sgn(ye)[(2&«Syei>1/2 — T~^] » ■

In the phase plane, the control regions might appear as shown in figure 
7;6.4. The similarity to the previous control methods is readily apparent.

Workman et. al. suggest a design method for the linear control region 
based upon classical design methods.

For this simple plant, a closed-form metric for elapsed time en-transit 
between points in the phase space can be written: •

' ■ ■ ■■■■■ . - b - i; ■ \ : -
= / T7T dy (7.6.11). y(y) ^ . ..

where ■
y=y(y) = (My.I)‘/2sgn(y.)

is the trajectory driven by the maximal control. Using this metric, the 
authors present calculated data showing the degradation in response time as 
a function of the parameter a, compared with ^ irue time-optimal control.

The major significance of this work appears to be in the proposal of an 
adaptive strategy whereby the parameters of the control law (7.6,9) and
(7.6.10) are varied continuously with estimates of the plant parameter a. A 
parametric model for the plant is given by

y = a sat(u) , (7.6.12)
where the parameter a is known to be an element of the set

a £ A [amjn, amax] . (7.6.13)

Defining a as the estimate of a, the filtered equation error is defined as
e =i - a$ v". (7.6.14)
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Figure 7*6,4 ' Control Regions in the Plant Phase Plane, for 
Optimal Control of Workman et. al.

■where ' v
2 
y

’ <f>k

s == the Laplace transform variable 
tt = the filter time constant.

A least mean squares identification scheme is employed: 

where g — learning rate constant (positive).

Proximate

(7.6.15)

(7.6.16)

(7.6.17)



The adaptive control law is then given by
u = sat^^ye,^) - y)} (7.6.18)

where

(2paSye 1_
k2

P = arg^fA minja-pj (7.6.19)

This control law is referred to as the Adaptive Proximate Time-Optimal 
System (APTOS). Simulation results hre presented demonstrating the 
proper convergence characteristics of the adaptive control, and showing 
nearly time-optimal behavior in comparison with a true time optimal 
control.
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8. SATURATION LIMITED STRUCTURES

8.1. Analysis Ik Discrete Time vs. Contimsous Times Special 
Considerations for this Class of Controllers

As is normally the case in the design of discrete-time controls for 
continuous time plants/ we have the option of performing the design either 
in continuous time using the Laplaee or Fourier transforms, or in discrete 
time, using the z or w transforms. Both classes of methods were reviewed in 
section 3.1, and summarized in Table 3.1.1. Each class of methods possesses 
both advantages and drawbacks. For continuous time treatments, the 
compensator is designed in continuous time as Gc(s), and some mapping 
from s to z is employed to yield a discrete equivalent. The effect of sampling 
is either ignored or treated as a source of Variability or nonlinearity in the 
otherwise linear mapping. An appropriate sample rate is selected based 
upon both Nyquist considerations and practical restrictions. The advantage 
of this approach is that the great body of linear continuous time intuition 
and analysis tools based upon the frequency domain are retained. The plant 
is accurately modelled, but the discrete time process, including the sample 
and hold effects, is not.

The alternative is design in discrete time. The effect of sampling is 
lumped into the plant model, and a hold-equivalent discrete time model for 
the plant is generated using the transformation (for the zero-order-hold)

V 7.

for SISO plants with inputs, or the equivalent discrete-time conversion 
method for state equations, based upon the mapping

This method, which was described in section 3.2, yields an accurate 
model for the plant, valid at the sampling points only. The compensator is
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designed in discrete time, using the z or w transformations.
The discrete time characterization of the compensator is accurate, since 

it requires no approximate mappings from z to s. However, information is 
lost in this process, specifically, the continuous time behavior of the plant 
between sample points.

It is for this reason that digital filters are usually designed in 
continuous time, and then mapped to an equivalent discrete-time realization. 
Both continuous and discrete-time methods are commonly used in control 
system design, but control system specifications still are invariably stated in 
continuous time; i.e., bandwidth, phase and gain margin, and poles/zeros in 
the s-domain.

For the class of compensators we are analyzing here, the decision to use 
either a discrete or continuous time design approach is further complicated 
by the dual linear/nonlinear nature of the problem. We require a 
reasonably accurate dynamic model for the system when constrained within 
the linear region. However, the linear region itself is designed by geometric 
constructions in the phase space of the plant. The basic successive 
derivative relationship of the phase variables must be retained for this 
approach to carry any intuitive information. The bottom line of the 
dilemma is that if a continuous time design method is used, we are forced to 
consider the "quality" of the differentiation process as implemented by an 
FIR filter, whereas if a discrete-time method is used, we must use a 
discrete-time approximation to the phase space for definition of the linear 
region and verification of its attractiveness.

In the analysis to follow, both approaches will be discussed. Because of 
its greater intuitive link to standard nonlinear analysis techniques, the 
continuous time treatment will be presented first in detail, followed by a 
more concise treatment of the parallel discrete time method.

8.2. Modification of Linear Digital Compensator Structures To 
Achieve Improved Large Signal Behavior and Overflow-Free 

/......Operation
With the addition of one or more nonlinearities to selected locations in 

a linear digital compensator structure, it is possible to simultaneously 
eliminate the problem of internal overflow, and achieve improved transient 
response characteristics for the closed loop system containing a bounded 
input plant.



There are several ways in which a nonlinearity may be imbedded ih an 
otherwise linear filter structure, in order to achieve the desired large signal 
behavior. We assume here that the nonlinearity is hard saturation. 
Actually, other nonlinearities conforming to Clausen, MecklenbraUker and 
Peek’s requirements [Claasen75] as shown in Figure3.6.1 are admissible.

Internal scaling in the compensator also plays an important role, since 
as shown previously, it determines which limits in the signal path are 
actually encountered. It is primarily in the transition from saturated to 
linear operation that the type of limiting nonlinearity plays a significant
role."

We consider structures conforming generally to the model of Figure
8.2.1. It is useful to identify certain more specific subclassificatiOns, which 
are based on derivatives of standard direct-form digital filter structures. 
These will be designated by a group number, from zero through three, and 
will be seen to encompass the standard direct form linear realizations. 
These are shown in Figures 8.2.2 through 8.2.5.

Asterisks (*) in each diagram represent possible locations for insertion 
of a limiting nonlinearity. At least 6ne such nonlinearity must appear in each 
structure. The structures are specified recursively; that is, any block in a 
structure may contain any other complete structure. Nesting of structures 
in this manner is unlimited, and accommodates a broad range of network 
possibilities. In their simplest forms* the blocks of the Group 1 and 2 
structures contain Group 0 structures, or simple FIR filters. The blocks of 
Group 3 structures usually contain Group 1 or 2 structures.

It is finally noted that all structures effectively terminate in a 
saturation nonlinearity, since their output is assumed to be the input to a 
bounded input plant or output device.

The presence of the > nonlinearity in the otherwise linear structure 
creates distinct regimes of operation, depending on the value of the signal at 
the input to the nonlinear block. The placement of the nonlinearity and 
scalings in the filter are selected to facilitate the decoupling of the design 
problem into linear and nonlinear subproblems, corresponding to linear and 
nonlinear passage of the signal through the nonlinearity.

In general, the modified compensator may be analyzed in two parts, the 
nonrecursive section corresponding to the zero dynamics of Gc(z), and the 
recursive section corresponding to the pole dynamics.



*

* *

* - Possible Locations for Saturation Limiting

Figure 8.2.1
Filter Structure



Straight - through connection

Tapped Delay Line

Successive Differentiator

Figure 8.2.2 Group 0 - J?|B Filter Structures
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Group 1 - Leading Recursive Structures

SpecialCasgs
i) 1 -D, D2 or Controller Canonical Form Direct Linear Structure

Note: That this structure conforms to this classification can be 
seen by first transforming it into a 4-D structure.

ii) 4-D Noncanonical Direct Linear Structure

Figure 8.2.3 1 - Leading Recursive Structures
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Group 2 - Trailing Recursive Structures

ii) 3-D Noncanonical Direct Linear Structure

Figure 8.2.4 Group 2 - ^railing Recursive Structures
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Group 3 Decoupled/Parallel Structures

Special Cases

i) PID Structure

Figure 8.2.5 Decoupled /parallel Structures
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The nonrecursive section is analyzed as a finite impulse response (FIR) 
filter. It is primarily responsible for establishing the regions of linear vs, 
saturated operation, which may be viewed as geometric constructions in the 
state space. Alternatively, an nth order nohrecursive section may be treated 
as an observer pf the full state of an nth order plant in delay coordinates, 
subject to a group delay of up to n sample periods.

The contribution of the recursive section to the control u is limited by 
the imbedded saturation nonlinearity. This restricts its participation in the 
cbhtroMaw to within the linear region defined by the nonrecursive section. 
AS show previously, the limiting effect of the nonlinearity along with 
appropriate internal scalings also prevents the occurrence of arithmetic radix 
overflow, which would otherwise occur in the recursive loop,

The unifying topological feature of all configurations represented in 
Figures 8.2.1 through 8.2.5 is that all recursive signal paths are interrupted 
by a nOnlinearity which limits the signal magnitude: in the loop. This is 
responsible for the non-overflow behavior Of the; structures. All network 
branches between the input, the internal nonlinearities, and the output may 
ultimately be parsed into FIR subsections, for which we are assured the 
existence of bounded scaling rules.

An uncountable number of arrangements of the FIR branches and 
nonlinear blocks is possible. Our attention here has been directed toward 
Configurations which also can facilitate a desirable multiple-zone (or 
multiple-modej control for bounded input SISO plants* We interpret 
'‘desirable" as follows:

A multiple-mode control is designed such that during large step 
transitions of the operating point, the plant is driven at the limit of the 
control for some initial duration. This is referred to as saturated operation. 
Viewed in an appropriate state space, the state trajectory converges under 
the influence of the saturated control to some locality of its new equilibrium 
point, inside which the system is in linear operation.

The compensator is designed to ensure that all trajectories 
corresponding to saturated operation and piece-wise constant or at least 
derivative-bounded reference inputs, be attracted to the linear region.

We require that, following convergence to the linear region, the state be 
entrained within the linear region. Within the linear region, the pole 
dynamics of the compensator are active, and therefore contribute to the 
local behavior of the state near the equilibrium point. The system order is
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increased by the influence of the compensator pole terms, within the linearly 
constrained neighborhood of the equilibrium point. All conventional linear 
techniques are applicable in the design of the regulation characteristics 
about the operating point.

The classifications of Figure 8.2.2 through 8.2.5 are based upon the 
modification of commonly used linear filter structures, specifically, the direct 
form structures. These classifications are by no means completely general.

8.3. Decomposition of the Filter Structure
Fundamental to this design method is the synthesis of the digital 

compensator based upon the decomposition of its transfer function into two

Nc(z) may be realized directly as a tapped delay line or transversal 
filter. Its output consists of a linear combination of the current input and m 
previous input values.

u(z) = Nc(z)e(z) = £ aiZ^e(z) 
i=0

The translation of a given Laplace domain transfer function

Gc(s) K(‘>
D=W

to an equivalent Gc(z) is facilitated by one of the several previously 
discussed mappings from the s to z domain. The decomposition

treats the compensator as a differentiating filter followed by an all-pole 
(low-pass) filter.
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The correspondence

illustrates that the nonrecursive section of the digital compensator may be 
analyzed as an order differentiating filter) where m is the numerator 
degree of Gc(s).

If the design process is carried out entirely in discrete time, the filter 
action of Nc(z) is simply the exact extraction of m successive delay variables 
e(kT), e((k-l)T), ... e((k-m)T) from the input. However, in preparation for 
treatment of the problem in continuous time, it is appropriate to briefly 
investigate the differentiating action of Nc(z), and the validity of its 
approximation of a true differentiating filter Nc(s).

It is well known [Kreyszig83] that numerical differentiation is 
problematic. In particular, broadband noise in the signal path is amplified 
as a linear,function of frequency. This is obvious when the gain of a simple 
differentiator is written,

|G(s=rioi) j= IjmS-|m| ,

or for higher derivatives G(s) = s1, the gain function 
• |G(s=jw)| = jcJj .

Many discrete time approximations are possible. The general subject of 
numeric methods in integration and differentiation is expansive, and nO 
effort is made here to treat the subject in goperal terms. Comprehensive 
treatments are available in [DeCarl685], [Kreyzsig83] and [Nielsen56]. 
Relevant to the current discussion is the issue of the appropriate order of 
the approximation for this particular application.

The Lagrange Interpolation Formula may be applied to the construction 
of polynomial approximations to the derivative of a time function f(t). 
[PeCarlo85]. For uniform sample intervals of duration T, an mth degree 
Lagrange polynomial of the form

p(kT) = £ £je(jT) (8.3,1)
j**k—m

f (t-(k-m)T)...(t-(i-l)T)(t-(j+l)T)...(t-kT)
1 (JT-(k-m)T)...(jT-(i-})T)OT-(j+l)T)...(jT-kT)

is used as an approximation to the value of e(kT). Differentiation of (8.3.1) 
yields an approximation to the derivative of e, evaluated at t==kT.
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e(kT) = j- p(kT) = S dk_je((k—j)T)
. dt . js=0 ■

It is important to note that the numeric approximation requires m delay 
units (total time mT) to develop an estimate of the derivative of e(t). A 
delay of imT is required for development of the itl1 derivative. Thus, for 
realization of an 1th order differentiating filter, imT delays are required.

It is generally desirable to minimize the delay in the approximation 
process, since each unit of delay T contributes the additional phase lag

ran

arg(e ■ ) to the control loop. This perspective favors the use of a minimum 
order approximation method for the mapping of Nc(s) —► Nc(z). For m=l, 
the Lagrange interpolating polynomial is

PW = e«k-l)T) + t~(k~1)T e(kT)

Differentiating with respect to t,

p(kT)- ^TWtk-tm

e(kT)

The equivalent mapping

s ~

is seen to be the backward difference (or backward Euler) approximation to

By recursive application of this mapping, generation of the 
approximation to the ith derivative e^ requires Nc(z) to be of order i.

Using this mapping, a tapped delay line with tap multipliers kj 
containing n delays may be used to approximate n derivatives of an input 
time function.
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yk = aoXk + ajXj,.! + a2xk_2+...+anxk_n 
y(t) = aox + aji + a2x+.„.-}-aDxW

ao = E H

»1=-T E0-i)h

»2 = T! s (i-2)t Si
i-2

aD = (-Trsn ;

In general a; is the solution to

s Siii-sxr1 = § a^Tr1
i==0 -V i=0

The quality of this approximation to successive differentiation will be 
discussed later. It is only necessary in the analysis to assume'....that an 
appropriate sample period T is used such5 that the differentiation is 
reasonably accurate for the bandwidth limited time function x(t), and that 
noise amplification via the differentiation process is acceptable.

Used as a cascade compensator, the filter acts upon the control error 
e(t) of the closed loop system.

e(t) = r(tj - y(t) 
r(t) = reference input 
y(t) — plant output

The honrecUrsiye section with n delay stages approximately generates 
thb first n derivatives of e(t). Call the continuous equivalent of the output 
of the nonrecursive section Uj(t)...
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»lW“-E»iefl> (8-3-2)
i==0

-emW-A

i=0
For n equal to the order of the plant being controlled, Uj(t) approximates a 
linear combination of the phase variables of the plant, and n derivatives of 
the reference input. The relationship u^t) = a, where a is any constant, 
defines a hyperplane in the control error phase space. We assume, for the 
moment, that the control u(t) is determined exclusively by the nonrecursive 
section of the compensator:

/.

umax %(t)> umax
“it*) KM I < umaX

~umax U1(t) < -umax
(8.3.3)

where umax is the magnitude limit on u(t). This relationship establishes a 
region containing the origin bounded by a pair of hyperplanes in the error 
phase space,

S ) lfcumax 
i=0

Inside this region, u(t) is a linear function of the control error. Error 
trajectories outside of this zone are characterized by u = ±umax, u^ =0, 
i = l,...n—1. -

The actual output of the compensator consists of both this component 
and a component contributed by the pole dynamics of the recursive section. 
Call the recursive contribution u2(t).

The output ur of the nonrecursive section is dominant; the contribution 
of the recursive (pole) section u2 is limited by the internal nonlinearity. 
Therefore, the control u is governed solely by the plant state for state 
locations outside of the linear region. Once inside the linear region, the pole 
dynamics of the compensator actively Contribute to the control law, yielding 
an effective increase in the system order during fully linear operation.

Because of the pole section of the compensator, the transition from 
saturated to unsaturated operation cannot, in general, be exactly defined in 
the state (phase) space. Therefore, the linear zone boundaries are actually



only approximately defined. The actual transition rule depends on the filter 
structure.

For the PIE) structure of Group 3, the following control law applies:

U.“

umax

max

Uj+U2-

ur+u2 > umax
|u1-Ml2[< ymax H?.:. %: (8.3.4)

- %+% <^«max
~ umax U1 ~^^max

This corresponding boundaries in the control error phase space are 
depicted in Figure 8.3.1.

The pole term contributions may be treated as a source of ambiguity in 
the boundaries of the linear region. The bounding hyperplane for upper 
saturation may actually lie anywhere from the u1=0 median hyperplane to 
Uj^u^x, depending on the state of the pole section of the filter as the 
linear zone is approached by a trajectory corresponding to u=uma3C.

It is expedient to consider the linear region boundaries to be defined by 
relationship (8.3.3) in the nonlinear analysis, and later treat the variability 
caused by the pole term contribution as a deviation in these locations. This 
permits the decoupling of the problem into separate nonlinear and linear 
design sUbjproblems.

Any particular network configuration conforming to the model of Figure
8.2.1 may be characterized by a unique multiple-zone control behavior, when 
viewed in the control error phase space. Let Us examine some particular 
cases from structure groups zero through three.

Group 6
Because of the absence of recursion in the filter structure, the linear 

zone boundaries are absolutely defined. For the first order FIR compensator, 
the linear region is defined in the phase plane as a strip through the origin, 
as shown in Figure 8.3.2.
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Figure 8.3.1 Control Regimes in the Error Phase Space - Second Order
Plant
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Group 1
From Group 1 we examine the phase plane characteristics of a first 

order ID structure with a saturation nonlinearity in the recursion loop, just 
before the input adder, as shown in Figure 8.3.3.
Several distinct zones of control behavior are identified. The location and 
dimensions of these zones are functions of the compensator coefficients, 
internal scalings and output (control input) limits. These are identified in 
Figure 8.3.3.

Group 2
From Group 2, we examine the first order 3-D structure of Figure 8.3.4, 

with a saturation block in the upper branch of the recursion loop. 
Depending on the value of b0, the well defined boundaries of the Group 0 
example take on a degree of variability. A central "core" of guaranteed 
linear operation remains for any |b0|< 1, as shown in Figure 8.3.4.

GroupS
Finally, we examine the phase plane characteristics of the Group 3 

second order PID structure, as shown in Figure 8.3.5. This can be treated as 
a special case of the Group 2 example, in which Jb0j = 1. Outside of 
specific boundary lines, the operation is guaranteed saturated. Inside these 
boundaries, operation could be either saturated or linear, depending on the 
sum of the contributions of the recursive and nonrecursive sections of the 
compensator.

8.4. Choice of the Internal Nonlinearity for PID Structures
The PID structure within the Group 3 class may contain a second 

nonlinearity V, at the input to the recursive (integrator) section since this 
path runs in parallel with a direct path from u2(k) to the output. See Figure
8.4.1. A saturation limit is assumed in the integrator loop. But the choice 
of the second nonlinearity V is not restricted to saturation.

Three possible nonlinearities are considered:
1) Saturation ; (Figure 8.4.2a)
2) Zero-on-overflow (Figure 8.4.2b)
3) Natural Radix Overflow (Figure 8.4.2c)
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Figure 8.3.5 Group 3 (PID) Compensator, Phase Plane Characteristics
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Figure 8.4.1 Group 3 PID Structure with Second Internal Limiting 
Nonlinearity



All nonlinearities provide the requisite limiting (clamping) action. The 
distinction between them is applicable only during state transitions into or 
out of the linear region.*
l) Saturation (including the case of no nonlinearity, which is equivalent to 

unbounded saturation).

Immediately following a large step change in ; r, 
Ui(k) = k1e(k)+k2e(k—l) »1. The input to the recursive section, presented 
to V is large. V clampsithis signal at some limiting value. Regardless of the 
limit, within a finite number of sample periods, the integrator output u2 is 
saturated, u(k)==l, k>k0, k0T = time of saturation. Assume umax, and all 
signal paths are range* limited to ;£1. As the error decays during the 
transient motion of the! plant, Uj(k) decreases. Since u = Uj -f u2, u does 
not fall below ; the saturation limit umav until 
ui(k) = kjc (k)+k2e (k-1) < umax-u2(k).

For Kj small so that the integration time constant is large, it is possible 
to assume that u2 remains relatively unchanged while uf decays from 1 to 0.

Therefore, u does not fall below umax until Uj~0. Breakout from upper

kTe == 0, where e (kT) ~

feedback vector. (This

e(kX) A .

A

h

e(kT) , k = /V i
[k2l

= equivalent phase variable

approximation will be defined rigorously in a later 
section). The desaturation behavior is illustrated in Figure 8.4.3.
2) Zero-on-overflow

In this case, the signal at the output of V becomes zero whenever Uj, 
the input to V, exceeds the limiting values ±Vmax. For the PID structure, 
zero presented to the input of the integrator section has the effect of freezing 
u2 at whatever its value was at the moment |uj|> Vmr

For a large step input r(t > 0) = R, r(t < 0) '= 0, ux exceeds this limit 
instantaneously, so that u2(k >0) = 0 until |u1(k)| < Vmax- The resulting 
desaturation behavior is also shown in Figure 8.4;3, and is seen to be close to 
the ideal case assumed by (8.3.3).

■ ' i ' , ; ' _

3) The natural wrap-around characteristic of radix overflow also satisfies 
the fundamental limiting requirement for V.
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b) Zero-on-overflow
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Figure 8,4.2 Imbedded Second Nonlinearities V for a PIP Structure
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During a large step transient, ux(k) may span a wide range of values, 
exceeding ±Vmax, the radix overflow limits by several factors of Vmax. 
Therefore, the input to the integrator may roughly approximate a sawtooth 
periodic waveform as ux decays during the transient. For a relatively long 
integrator time constant, this "sawtooth" signal tends to be smoothed to its 
DC content, zero. There is an element of unpredictability in the exact value 
of the integrator output u2 at the moment uj+u2 < umax, but its mean value 
will be nearly zero. The resulting desaturation behavior is shown in Figure
8.4.3. The net effect is a range of possible desaturation points, dependent 
upon the step height R as well as the filter parameters.

It may be observed that a radix overflow nonlinearity with arbitrary 
limits Vmax can be practically implemented simply by appropriate linear 
scalings before and following V in the structure. No specific nonlinear 
operation (algorithm) is required in fixed point binary arithmetic.

8.5. Design For Desired Saturation Behavior: Nonrecursive Section 
Analysis in Continuous Time

We focus on the nonrecursive sections of any of the previously described 
saturating linear compensators. The nonrecursive section is responsible for 
the definition of the linear region? and the assurance of its ability to attract 
and retain state trajectories at any constant on bounded operating point. In 
particular, we consider the behavior of the closed loop system when the 
control input (the output of the compensator) is saturated, u = ± umax. 
The goal is to design the nonrecursive section of the filter to establish 
boundaries for the linear region which satisfy attractiveness requirements in 
the entirety of the operational region in the error phase space. This linear 
region is specified to allow a reasonable linear control law within its bounds, 
and to facilitate nearly minimum time state transitions between operating 
points.-

In this analysis we establish constraints on the coefficients of the 
nonrecursive section such that the resulting linear zone attracts all error 
trajectories to it, and? at least until the next change in operating point, 
retains the trajectories entirely within it. We then establish the limits of the 
subset S0 of the error phase space in which all trajectories must lie, given 
bounding constraints on the reference input r. We require that the 
attractive linear region completely bisect this subset, so that all possible 
step response trajectories will impact and be retained within this linear
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zone. The analysis is presented first in continuous time and then in 
discrete-time;

Given a linear single input, single output (SISO) plant with state model:

x = Ax + 6u

xeiRn, A€TRnXn, b G JRnXD, u eH, juj< umax

y = cTx , c € lRnX1, y € 1R (8.5.1)

It is convenient, but not actually necessary, to restrict our interest to plants 
with strictly proper transfer functions, so that no d term appears in the 
state equations; that is, no direct paths exist from u to y. This is a 
reasonable assumption for most actual plants, which inevitably involve some 
form of lag from input to output. We further assume (A,b) to be a 
controllable pair and (c,A) to be an observable pair. For plants failing the 
observability criteria, it is sometimes permissible to work with only the fully 
observable subspace of the plant, and assume that the state equations are 
transformed to represent only this subspace. This is possible if the modes 
which are unobservable through y are of no concern to the overall system 
performance.

In a servo control closed loop configuration, we consider a state 
description based on the control error e = r - y.

T «T» .e = r — c x — — c x + r
e = r — cTx = r — cT[Ax + 6u]

= — ctAx — ct6u + f 

e = — c^A[Ax + 5u] — c^iu -f r 

= — ctA2x — ctA6u — cTftu + r

e^ = — cTAnx — hiu(n ^ -f r^, (n>l) (8.5.2)

where hj = {cTAI 1b1 i=l,2,...} are the Markov parameters for the plant.
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T

Mj =

150

u =

u
u

u^-1)

G JRlXn

r —

rW

e iRlx(n+1)

€

e
e

>-i)

G IRlXn

c
ctA
ctA2

ctA^‘

observability matrix for 
G ]Rnxn plant (nonsingular due to

assumption of (c,A) observable)

0

hj 0

h2 h^ 0

h3 h2 hi 0

0

lower triangular 
G JRnxn Toeplitz Matrix

of Markov Parameters

hi-l un—2 ua—3 hi 0
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h

1
0 1 

0 0

0

0 £ IR®x(i»+1)'

0 0 10

e = ~ Tx — Mj« + 71r-' 

e = — Tx — Mjtt ■■+ 7jr

— TAT-1[e + Mjti — 7jr J — T6.u — Mjti + 7jr

Observe that

[jti = Mj

0 1 0 

0 0 1
1 0 

0 1

0 0

u = MjJu

where J is a Toeplitz Matrix of rank n-1 and

hr
0 1 0 

0 0 1

6

0

i 6 

o i
l2r

u = [1 0 ... 0] u = iJu 

TAT~le - [Tbi* + MjJ - TAT^M^ 

H- [72 — TAT_17i]r .

(8.5.3)
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Define:

Lower companion matrix with
Ag = TAT-1 £ IFtnXn bottom row consisting of negatives (8.5.4)

of coefficients of |si—A|.
Be = T6* * + MjJ - AeM1 (8.5.5)

1-12;+ Kh (8.5.6)

Then

e = A^e — Beu + 'yr

A,,Be and 7 are matrices with special structures:

A*

o 1 0 ... 0

0 0 1 0

0 1

'Po —Pi ••• Pn—l

(8.5.7)

where p; are the negatives of the coefficients of the characteristic polynomial 
p(s), of the plant. Equivalently, they are the denominator coefficients of the 
plant transfer function Gc(s).

Be
0

Pi fit * fin

(8.5.8)

n-j
fix hn+l-j + E bi+j-lV

i-=l

Equivalently, ^ are the numerator coefficients of Gc(s). If (A,6,c) is given in 
controller canonical form (CCF), $ are the components of the output vector

7 = £ IRnX(n+1)

PO Pi ' * ‘ Pn-1 1

The bottom row of 7 are seen to be the n+1 coefficients of p(s), including
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the coefficient of the highest order term, which is always 1.
In general, r(t) and n of its derivatives, as well as u(t) and n-1 of its 

derivatives, appear in the closed loop system state equations. Thus, for a 
single input plant, control and disturbance vectors of dimension n and n+1 

respectively must be accommodated in the model, giving the problem a 
multiple (m==n) input framework. We are now in a position to address the 
nonlinear aspect of the problem, that is, the definition and attractiveness of 
the region of unsaturated operation S2. This region will henceforth be 
referred to as the linear control region, zone or strip.

As justified previously, we consider S2 to be the subset bounded by two 
hyperplanes

S2 - (e: lwj<umw} , W - k1* . (8.5.9)

We now consider the domain of attraction of this linear control region, with 
|u|< umaX and r subject to several possible bounding restrictions.

We define a generalized Lyapunov function

y = 1 w8 - j(kTe f (8.5.10)

as a metric of absolute distance from any point in the space to the median 
hyperplane of the linear region w=0.

A sufficient condition for the attractiveness of the median hyperplane is 
the negative definiteness of the Lyapunov time ^privative

. V — ww = wk c .
■*= wfcT[A^c — Beu +7r]<0 . (8.5.11)

Outside of the linear strip u = uc — sgn(w)umax, u^l = Oj i=l,...,n—1, 
.Therefore,,

V = wfcT[A*e - 6euc + 7r] < 0 (8.5.12)

where

(8.5.13)
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We separate the relationship (8.5.11) into a right attractiveness 
requirement for w > umax, and a left attractiveness requirement for
w — umax"
Right Attractiveness:

+ (8.5.14)
Left Attractiveness:

■ '*T[A,e + 6e umax + ir] > 0 (8.5.15)

Several kinds of bounds on the input r and its derivatives may be 
treated:

i) Component-wise bounds
|r(i)l< rj , i=0,...,n (8.5.16)

i(a)) In particular, we are interested in the special case
jr! < R, rW=0, i=0,...,n (8.5.17)

at all but a finite number of points. This corresponds to 
consideration of constant operating points only, with step transitions 
between them.

ii) norm bounds

ik Ui = £ |r<iM< R (8.5.18)
i=0

iii) L2 norm bounds

IIHI2 = [W2+(f)!+-.-+('(n))2]!4<R (8.5.19)

iv) Lto norm bounds
Sir Hoc = max | jr^j j < R , i=0,...,n (8.5.20)

(i(a)) may be considered the most liberal of the bounding scenarios since 
it permits step transitions between otherwise constant operating points, 
allowing unbounded derivatives r^, i=l,...,n at a finite number of isolated 

points. ■
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With r bounded by restriction (i(a)), the limiting case attractiveness 
conditions are

kTA^e < kTbe umax — j*T7jR 

*TA*e > -krb6 umax -j- [fc^jR
(8.5.21)
(8.5.22)

where

1=1
1 0
0 •
• 6
6 Po

(8.5.23)

p0 = constant coefficient of the characteristic equationp(s)~ jsI—Aj.
(8.5.21) and (8.5.22) may be combined to yield a composite extremal 

attractiveness condition, valid for all |w-| = \kTe | > umax and
R G [— Rmax> Rmax] >

jfcTA^e |< AT6eumax ~ |kT7R| • (8-5.24)

Observing that p0>0 by assumption of A at least conditionally stable, and 
kn>0 for closed loop system stability, the most restrictive bounds admitted 
by (8.5.24) are given by

Ifc^e J< fcT[66umax ~-/Rmix] (8.5.25)

Due to special forms of 6e and 7, the right hand side of (8.5.25) may also be 
written '

kn(aQ*W " boRmax) > (8.5.26)
where a0 and b0 are the constant terms of the numerator and denominator 
of Gp(s), respectively.

The requirement (8.5.25) may be applied in several ways, depending on 
the system control requirements. For a given phase variable feedback vector 
k and control bound umax, (8.5.25) yields an upper bound on the symmetric 
range of admissible constant operating points |R|<Rmax. Conversely, if 
umax an<l Rmax are specified, (8.5.25) restricts the choice of vectors k, which 
correspond to orientations of the linear control region in c space.

In general, utilization of (8.5.25) as a design equation requires 
knowledge of the operational subset e G S0, inside which all possible states 
lie. S0 may be known from practical cqnsjiderations and constraints on the 
plant. We may also consider assumed topologies for the boundary of S0, and
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derive corresponding bounds on k, umax or Rmax given known subsets S0. 
For example, if S0 is known to be some L2 norm bounded set

s„ = {<: iMke},
the Cauchy-Schwarz inequality may be applied to (8.5.26) to yield 

\kTA^e \< ||fcTAj|£ < kD(a0umax - b0Rmax)

or

ll*TAjj< ~(a0umax - boRmax) (8.5.27)

Similar results are generated for L1 and norm bounded, and 
component-wise bounded operational subsets S0.

For r restricted by conditions (i) - (iv), similar conditions may be 
derived for definition of the domain of attraction Sj corresponding to a 
particular linear region S2.

For component-wise bounds of the form (i), the worst case 
attractiveness condition is

|kTAee j < ktta0umax - |fcT7rmax| , (8.5.27)

where

rmax

rmax
rmax

1 m o "v

Here we have relied on the fact that all components of p(s) are non-negative, 
i.e., p; > 0, i=0,...n-l, for a plant which is at least conditionally stable. 
This assures that all components of 'f are non-negative. We further assume 
that at least kn is positive or zero, so that all components of the vector JfeT'y 
are greater than or equal to zero.

For dorm bounded r of cases (ii) - (iv), the attractiveness condition 
becomes, '

| k?A^e | < kna0umax - J | fcTqf j j jR 

i ^ l,2,oo = type of norm .
(8.5.28)



8.6. Nonrecursive Section Analysis in Discrete Time
The problem will now be treated in discrete time. This approach avoids 

the correspondence issue between the FIR filter Nc(z) and an equivalent 
differentiating filter Nc(s). However, it requires the use pf a hold-equivalent 
discrete time, model for the plant, and a discrete time approximation to the 
phase space, which will be derived in this section.

We begin with a zero-order-hold (ZOH) equivalent discrete time model 
for a SISO plant, of the form.

x(k+l)= Ax(k) + feu(k) (8.6.1)

y(k) = cTx(k)

X € u € K, y € IR

A € JRnXn, 6 e IR1Xn, cT 6 lR1Xn

The program DIGCGN, as described in the appendix, facilitates the 
discretization of any SISO linear plant, given Gp(s) and sample period T.

We convert the closed loop system containing this plant into control 
error delay coordinates.

e(k) = r(k) - y(k) =- -cTx(k) + r(k) 

e(k+l) — — cTx(k+l) -k r(k-fl)

= — cTAx(k) — cT6u(k) + r(k+l)

e(k+n) — — cTABx(k) — £) h^k+n—i) + r(k-l-n)
i«l

where hj=cTAi-14!, i = l,2,...n are the discrete time Markov parameters. 
Define:

e(k) =
e(k).

e(k+l) 

e(k+n—1)
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tt(k)
u00

u(k+n—1)
r(k)

m

r(k+n)

T
c

c
c'i*-1

observability matrix for (A,c)

(8.6.2)

(8.6.3)

M

o 0 ... 0

hi 0

h2 hx 0 •

K-i ... hi 0

7i
1 0 0i-0--. •

i o 6 
o ... o i o

(8.6.4)

(8.6.5)

e (k) = — Tx(k) — Mu(k) + '/^(k)

e(k+1) = - TAT-1e(k) + Mu(k) - 7jr(k) 

- T6u(k) — Mti(k+1) + 72r(k)

where

Observing that

0 10 0 

0 0 1 1 

1 0 

0 ... ..v 0 1

Mu (k+1) = MJu(k)

(8.6.6)

(8.6.7)

(8.6.8)

(8.6.9)
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J

0

0

10 0 

1 : 
1

0 1 

0 0

n x n Toeplitz 
matrix of rank n-1 ’

c (k+1) ==? TAT-1e (k)
~ [T6*J + MJ - TAT^lM]u(k) ; 

+ hfe — TAT“171]r(k)

(8.5.10)

(8.6.11)

e (k+1) = AgC (k) — Beu(k) + ‘’yr(k)

Ag = TAT-*

0 1 0

0 0 1 0

6 i*.
Po ... ... Pn—1

(8.6.12)

(8.6.13)

negatives of coefficients of the cl^||acteristic' equation p(z), or 
equivalently, the denominator coeipcients of Gp(z).

Be = T6*7 + MJ - TAT_IM 

0

&..A
(8.6.14)

Pi = hn+i_j H- Pi+j~i^i ~ ai> i=0,...n 
i<-l

— numerator coefficients of Gp(z), or components of cT if 
(A,h,c) is given in CCF.
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7 = [72 - TAT =

The closed loop system (8.6.12) is in terms of delay coordinates of the 
control error. The logical extension of the phase plane from the continuous 
time problem would be the delay plane for the discrete time problem. It is 
possible to formulate the linear zone boundaries and attractiveness condition 
in delay variables, by direct analogy with the continuous time analysis. 
However, this choice of coordinates provides little geometric information 
regarding the system dynamics, since
1) differences between successive values e(k), e(k+l),... are small, and
2) only weak intuitive links exist between the state location and the

physical behavior of the continuous time plant.

This problem was originally addressed by Aseltine [Aseltine60,63] with 
the proposal of an incremental phase plane based upon the first forward 
difference e(k+l) — e(k), plotted against e(k), for analysis of second order 
nonlinear sampled data systems.

The concept of an incremental phase plane may be extended to an n- 
dimensional incremental phase space, based upon the variable e(k) and its 
n-1 forward differences, from the mapping

A‘—► (z—1)1 i=l,...,n—1

where A1 is the ith difference operator. Both forward and backward 
difference phase spaces may be derived, as well as spaces based upon higher 
order approximations to differentiation, such as the Bilinear z transform, 
Simpson’s rule or higher order Lagrange interpolation formula based 
mappings.

One further refinement completes the intuitive link to the continuous 
time phase space: the ith difference is normalized via division by T1, for 
sample period T.

With this construction, the numeric approximations to successive 
derivatives of e(t) are built into the characterization of the phase space 
itself. A phase space of this type will be referred to as a normalized 
incremental phase space.

0

Po Pl...Pn—1 1
G jR,nX(n+1) (8.6.15)
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e(k)

A^eik)

(8.6.16)

where A is a normalized difference operator. In particular consider: 

Forward difference: Ae(k) —

Backward difference: Ae(k) =

For normalized forward difference incremental phase coordinates, a linear 
transformation is constructed as follows:

e(k)

1 0

T T
1 2 1

rp2 »p2 rp2

-1

T

' n—1

o

o

i
rpn— 1

e(k)
e(k+l)

e(k+n—l)

(8.6.17)

which may be represented by the similarity transformations:

e(k) == t-p1 A-1 e (k) ,

where

Tt

1

T
rp2

0

0

Tn—1

diagonal matrix with successive 
powers of T on the diagonal. (8.6.18)



162

A = [Ay] , Ay

i-i
j-i i>j

0 j >i
(8.6.19)

V /

lower triangular matrix of binomal coefficients

_ p(p-1)(p-2) (p-q+1)

Note that det A = 1

The inverse transformation is therefore: 

e (k) = A Tx e(k) (8.6.20)

Theorem . . .
A has the property that, for the orthogonal transformation Jn, 

A"1 = J„ A Jr

where
n

Ja =

o
-i

0 (-1),n—1

orthogonal (unitary) matrix

~ [^ij] > Jij —
nr1, h

o , Mj
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and

n = odd 

n = even

A and A 1 are orthogonally equivalent.

Proof
a —i adj(A) . [(“l)l+j minor(Aij)]T
A IA| " ' 1

= [H)i+J AjilT = [(-l)i+J Ay3

— A Jn

o
The linear transformation represented by the orthogonal matrix Jn can be 
conceptualized as a simple rotation in the coordinate frame.

The transformation

e(k) = Tf1 A-1 e(k)

= TT-1JaAJBe(k)

= J* [Tfi'A] JBe(k) '(8.6.21)

may be conceptualized as a differencing, scaling and rotation in the e
coordinate frame.

For normalized backward difference incremental phase coordinates, the 
linear transformation is constructed as follows:



e(k) -

' e(k)

A e(k)

I
■ >-* «_

__

0

0

.0

0

1

<j>2

0

”t

_2_

~T

' ' >j>n—1

1

J_
T
1

rp2

pn—1

e(k)
e(k+l)

e(k+n—1)

= Tf1 A-1 e (k) (8.6.22)

and
c (k) = A Tx e(k)

A.-W V Aij “

A-^ J. A ln

(“l)n-j
\

n—1 

n-j

0

where Jn is the orthogonal Hankel matrix,

*^n Pn.ij! » ^n,ij

, i+j < n+1

i j > n+1

1 1+j = n+1 

0 i+j ^ n+1

Note that

(8.6.23)

(8.6.24)

(8.6.25)

(8.6.26)

.J* A-AJ,
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The key advantage of working in normalised incremental phase 
coordinates is the approximate mapping ■; o

A‘e(k) ^ A- e(t) V (8.6.27)

This is particularly valuable in the design of the linear control region, 
and the determination of its domain of attraction.

Translated to normalized incremental phase coordinates, the system
(8.6.12) becomes

c(k+l) = e (k) Be u(k) + r(k) (8.6.28)

where ' ;
iA,;WTf1A'rA,ATx!'-\ -(8.6.29)

Be =Tf1 A^Be (8.6.36);V

\='T^1 AT1 7 ■ • (8.6.31)

and A is used interchangeably with A, to emphasize that the chosen 
coordinate frame (forward or backward difference) is arbitrary.
Define the normalized incremental phase feedback vector

. kT =* kT ATt

The linear region is approximately defined by (ignoring the compensator
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\kT i\ <umwc
We choose a generalized Lyapunov function based on a metric of absolute 
distance from the median hyperplane of the linear control region,

V(k) = |w(k)| , w(k)4£Te(k)

V(k)= sgn |w(k) |w(k)

Attractiveness of the linear control region S2 requires that, for some 
subset of S2, the Lyapunov difference,

either A V(k) = Y(k+l) — V(k) (8.6.32)
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or A V(k) = V(k) — V(k—1) (8.6.33)

must be negative definite. We adopt the forward difference convention 
(8.6.32) in the following analysis, with the understanding that with minor 
changes, the backward difference could be used equivalently.

AV(k) = 1 w(k-hl) j — |w(k)|= (8.6.33)

sgn (w(k+l)) w(k+l) — sgn (w(k)) w(k)

~ sgn (w(k))[w(k+l) — w(k)] (8.6.34)

The approximation (8.6.34) is valid for attractiveness considerations, since 
for |w(k)|> umax,

sgn (w(k)) = (sgn w(k+l)) . (8.6.35)

A V(k) = sgn (w(k))[fcT e (k+l) — e (k)|

= sgn (w(k)) P [(A^ - I) e(k) - Be u(k) + r(k)](8.6.36)

For | w(k) | > umax the control law may be assumed to be

u = sgn (w(k)) umax . (8.6.37)

It is necessary to assume that the state has been outside of the linear strip 
for at least n-1 sample periods, so that

(8.6.38)

This is a reasonable assumption, since intuitively, if this condition did not 
hold, and the attractiveness condition (yet to be stated) failed as a result, 
then the state would remain outside the linear strip for a sufficient number 
of sample periods for condition (8.6.38) to hold.

For constant operating points, r(k) = R except within n-1 sample 
periods after a step change in r(t). We, therefore, may assume

(8.6.39)r(k) = R

- umax sgn (w(k))
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Define:

(Ae - I)e (k)- umaxsgn(w(k))Be

<PMP{ A*-!)

1 ■, i
1

4R7
1

. .•
i 1

■ L -

(8.6.40)

au4fcTBe > 0

(8.6.41)

(8.6.42)

% A P r > o (8.6.43)

Then

A y(lc) = sgn (w) [<rT e(k) - au sgn (w) umax 4 aR R] (8.6.44)

Attractiveness requires that A V(k) < 0 for both w > umax and w < —umax. 
For w > umax, define the right attractiveness condition:

<rT e(k) — du umax 4 aft R < 0 (8.6.45)

For yf <.—nm^x, the left attractiveness condition:

aT e (k) 4 au umax + aR R > 0 (8.6.46)

Combine these conditions:
i j<jT c (k) 4 ccR Rj < au umax (8.6.47)

Two-sided attractiveness is assured V R 6 [—Rmax, Rmax] if>
\<P e (k) 4 a& Rj< jcrT £(k)j 4 jaR R |< au umax (8.6.48)

\crT e (k) |< au umax - 1<*r |Rmax (8.6.49)

Since o;u, dR > 0, the combined worst-case attractiveness condition can be 
stated as:

\<7 C hmax — Q:R Rmax • (8.6.50)

(8.6.50) (defines an open region S* in the n-dimensional normalized 
incremental phase space, bounded fey two hyperplanes perpendicular to the 
vector P. As with the continuous time attractiveness condition, depending



on what is specified, this condition can be interpreted several ways. For
A

example, given umax, a proposed k and a known operational region defined 
by some bounds on e(k), this condition establishes bounds on the range of 
operating points R for which the control will behave in the desired manner, 
i.e., attraction to and trapping within the linear strip. The use of this 
relationship depends on knowledge of some bounds on the operational region 
S0. Ideally, we required accurate knowledge of the convex hull of S0. Any 
set Sj such that S0 C Si will establish the required condition. However, it 
should be noted that an overly conservative (larger) choice of Sj leads to 
inefficient use of the available control energy, and decreased time optimality 
of the step response.

S0 may be expressed in several forms, such as hard bounds on the 
normalized incremental phase vector |e(k)|, or the delay vector e(k). More 
typically, norm bounds on c (k) or c (k) are most easily estimated. For 
L1? L2 or Lqq norm bounds,

|je(k) ||< .£ (8.6.51)
we may employ the Cauchy-Sehwarz inequality to establish a bound on the 
domain of a attraction Sj:
|<TT c(k) |< SkT !! !|e(k) || = ||<t ||e < (8.6.52)

For known £ and given umax, a restriction is established on Rmax:

0 < («n umax - Ik lie) (8.6.53)

Equivalently, for known umax and Rmax, a restriction onk results. Since 
|kT ll> ^r and Q:n all depend on k, (8.6.53) must be solved implicitly for k. 
In general, (8.6.53) yields n nonlinear inequalities in n unknowns, which may 
or may not have a solution for k. The simplest computational approach is 
to test potential k candidates for satisfaction of inequality (8.6.53).

It is interesting to note that, for the forward difference normalized 
incremental phase space,

aR

1 n—1
-V kn E aj 
T11'1 i=0

—- kn 
1 n 1 -

n-1
E b;i«=0

= G.(*=l) (8.6.54)
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Gp(l) = steady state gain of the plant

where,

Gp(«). = 7-
NpW
t>p{z)

n-^1

S a{ z‘
i=Q

:'n.—1.
E b: Z* 

i=0

Combining (8.6.53) and (8.6.54) yields the simplified attraction condition,

0 < R, < Umax “ a, (8.6.55)
R

As in the continuous time analysis, an attractiveness condition for the linear 
region may also be formulated for the case of component-wise and norm 
bounds on the reference input phase vector r(t). Since these bounds apply 
to the continuous time phase vector, we employ an incremental phase 
approximation to r(t), and consider the bounds applied to this 
approximation.
Define

(8.6.56)

Note that since r(k) 6 lRn+1,
Tx+ € jR(n+1)x(E+l)

A+ 6 lR(n+1Wn+1) .

Consider both component-wise and norm bounds on the normalized 
incremental phase vector f(k), which approximates the input phase vector 
r(<0-

f(k) = Tfi A"1 r(k) -

Kk)

An r(k)
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i) Component-wise bounds:

| A1 r(k)| < A1 r(k) , i=0,...,n

The constant operating point case may be considered a special case of this, 
with

r(k) — R

and A1 r(k) = 0, i = l,...,n

ii) L j - norm bounds

l|r(k) |!x = Z) |A* r(k)|<R (8.6.57)
1=0

(8.6.58)

(8.6.59)

1
AV(k)=sgn(w)£T (Ae-I)e (k)-umaxsgn(w)Be

i
+ 1rA+TT+f (k)

iii) L2 - norm bounds

£ (AVr(k))2
i=0

< Rl|r(k) l|2 =

iv) Loo - norm bounds
llf(k) lloo = max (jA,r(k)|] < R i=0,...,n

From (8.6.36-38) with (8.6.56)

(8.6.60)
The combined attractiveness condition, equivalent to (8.6.47) is,

W e(k) + £* */A+ Tx+ f(k) | < e*u umax (8.6.61)

| oTe(k) | < auumai - |fcTTf|A"17A+TT+f(k)| (8.6.62) 

The matrix tt+4+1^+Tt+. has the form



m

V n—1 -
1+ U Pi

i=0
...1

(8;6.©3)

A sufficient condition for all bottoin row eoniponents positive is thei (at least) 
conditional stability of the plant. With the assumption that k£>0, then 
(8.6.62) may be rewritten

]'<?€(k)|< On umax - &TTt|A+17A+Tx+f (k)
,&x.

(8.6.64)

where

m max

I'Ml
|Ar(k)|

max
max

l-VrOOl.

(8.6.65)

For the norm bounds of cases (ii) - (iv), applying the Cauchy-Schwafz 
inequality to (8.6.62),

|^e(k)|< an um„ - ||T.f+A+'7A+Tx+|lil|f(k) ||i( (8.6.66)

i"=*= 1,2,00 = norm

8.7. Reduction of Order for Special Cases: Method of
Approximately Equivalent Control

In some special cakes, the dual-mode control law mechanized by an 
internally saturating digital compensator takes on special properties which 
may simplify the analysis or design. One such case occurs when the linear

rp
control region S2 bounded by the hyperplanes fee = iumax is relatively
narrow compared with the norm dimensions of S0.

The width w of S2 is the distance $lqng the unit vector 

the bounding hyperplanes:

k*

iw between



172 ■

(8.7.1)

This situation is normally the result of a high path gain, that is, 
—► oo in the nonrecursive section of the digital filter. In such cases, 

the saturating digital compensator behaves as a linear relay or high gain 
controller which implements a switching hyperplane. The pole terms (if any) 
of the compensator effectively contribute nothing to the control law.

If the two-sided attractiveness of some subset D S2 is assured so that 
all trajectories are ultimately bounded within this subset, the motion within 
this subset takes on properties characteristic of a sliding motion on the 
hyperplane k e — 0. Among these properties are the reduction of the 
effective order of the closed loop system by one dimension (for the single 
input, single hyperplane case). In cases where the above assumptions are 
valid, the system may be treated approximately as a singularly perturbed 
system (Vidyasagar78) with respect to the constraint of the hyperplane 
k^e =0.

Let us recall briefly results from the method of equivalent control for 
variable structure control systems, as previously discussed in section 7.4. 
The plant is assumed to be linear with multiple (m) inputs as stated in 
(7.4.19). When the state is entrained in a sliding mode on o(x) = Sx = 0, 
an equivalent continuous full state feedback control can be identified, as in 
(7.4.23), repeated here:

ue<}=- [SB]_1SAx

The equivalent system subject to <7=* 0 is given by (7.4.24),
[I - BlSBj-'SlAx^ ;

where the matrix [I — B[SB]_1S]A has rank n-m. The derivation of the 
equivalent control is predicated upon the nonsingularity of the matrix SB. 
A necessary (but not sufficient) condition for the nonsingularity of SB is 
that rank [SB] = col rank[B] = row rank[S], which simply implies that all m 
inputs of the plant are assigned switching manifolds of the form (7.4.3).

Now let us consider the situation in which the state is known to be 
constrained to within some thin boundary layer of a hyperplane or 
intersection of m hyperplanes, under the influence of an appropriate 
feedback control law. The model is

2 u.
w =

II*1
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x(t) = Ax(t) 4-Bu (8.7.1)

\s?x |< fj , i=l,...,m V t<tj (8«7?2)

where ti is the time of initial entrainment within the confines of the subset 
H = {x : [ s^x •!<€},. i#l,...jm} for some positive constants er 
Define-' •

S 6 JRmXm

£ = ' € JRxn

For x 6 II, the state velocity vector x satisfies
Si =':^ '

where the vector S may be considered a, metric for deviation of the 
trajectory from the manifold Sx = 0. Then

S[Ax 4- Bu] ,— 6 (8.7.4)

Solving for u , and assuming SB nonsingular,

u==ueq,+.«* (8.7.5)

where ueq =-[SBj-^Ax 

««f= [SB]-15
The system model may be written

| i = Ax + B[«eq + Ujs]

= Ax + d (8.7.6)

where

A = [I — B[SB]_1S]A

;d=B{SB]^

Generally A has rank n-m, and represents the reduced order equivalent
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system for U( = 0. d may be thought of as an additive disturbance vector 
to the equivalent system.

The system may be considered approximately modeled by the reduced 
order system if ||d || is known to be small. An upper bound on ||dj| is 
established if some norm bound on 8 is known.

IMII-IIbisb)-1* ||
IMII< t|B[SB]-l||||«||. (8.7.7)

Also, for small ||c|J,

lim Sx — 0
IMM

and the problem reduces to the previous reduced order equivalent system, 
with S — 0.

The approximation accounts for the "slow" motions of the system, 
parallel to the manifold Sz = 0 and ignores motion components orthogonal 
to it. In actuality, there is no intrinsic guarantee that for ||e|| ^ 0, ||5|| is 
small or even bounded. However, since a fully linear control law is 
applicable inside IT, This simplification is often valid even for dual-mode 
controls failing the "narrow" linear region assumption. It further provides 
an intuitive link to many of the previously discussed discontinuous control 
methods, particularly with regard to optimal design of the boundaries of II.

Now consider the present single-input system, in error phase 
coordinates.

e = A^e — Beti +<yr (8.7.8)
rp

In this case, m=l, S = k , and e = uma2. Introduce the pseudo-input 
variable v such that

v = 0*11 (8.7.9)

Beu = by , b

At any constant operating point; then

9

6
i

i = A^e — fev-f ^R . (8.7.10)
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For the constant input u = ±umax)

bv = 6eumax .. (8-7.11)

Consider the state constrained to lie with the region Sj Q S2, where

S2 = {6 : |^?c | <
and ; Sj = {e ; Ifc^AgC j< 6v ~ 7R} ^: :

as defined previously.
From (8.7.5)

" fcT[A*e - by +nR] "i 6 . (8,7.12)

Solving for V,

v “ veq d-^ (8.7.13)

where ■

veq =?-T~ :-t AT"/R]
■ •a ■

8

The system may be written

e = A^c - fe(veq +v^)+^R (8.7,14)

1 = AgC -|- H- d

Where

; A, = [I - J-W=T]A,
. Kn

1 = [T“^T]7
■ - ■& . . ..

■ ■ d = T-b8

A« has rank n-1. d may be considered a disturbance vector. For Ikll 
small, corresponding to j|kT|| large, the approximately equivalent system is
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6 = A^e + 7R .

Since ||6||=1, then ||rf 1|= (8.7.15)
kn

When the approximation is valid, the state is assumed constrained to 
the hyperplane

kje + k2e +...+ k^e^-2) + kne^n_1^ = 0

so that the characteristic equation of the reduced order equivalent system is 
given by

+ k2s +...+ kn_isn''1 +' knsn_1 = 0 . (8.7.16)

Appealing to the Routh-Hurwits criteria, a sufficient condition for the 
asymptotic stability of the reduced order system is

■A ' ’
kj>0, i=l,...,n .

In all further analysis, we generally assume this to be the case.

8.8. Attainability of Operating Points
For a single input servo control problem with nonzero constant 

reference input r==R, the set of equilibrium points to which the state can be 
driven from an initial state e0 by the action of an admissible control u € U, 
with t=tf unbounded, is given by

Ea = (ei =0 and |u |<um?lx} (8.8.1)

EA will be referred to as the attainable set for

u GU = {u : Ju |< umax) . (8.8.2)

Of particular interest is the subset EL C EA corresponding to 
equilibrium points e (tf) attainable under the action of the fully linear control 
law at equilibrium,

u(tf) — limGp(s)e(tf) (8.8.3)• V-*-0 V ■
where |u(tf) ]< umax.

Because of the phase variable relationship of elements of the state 
vector e (t), all equilibrium points corresponding to constant reference inputs 
r=R lie on the e axis in the phase space. In other words, all components of
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e (tf) except the first component e(tf) are zero:
.0) = 0 , i = l,...,n—1 (8.8.4)

This is obvious from the condition

c(tf) =0 (8.8.5)

which defines ah equilibrium point for a constant input r=R. Such 
equilibrium points are also referred to as constant operating points.

The requirement Ej.=Ea is of great practical importance in servo 
control systems. This assures that the steady state error e(tf) is not 
increased over its linear value due to the control limits j u J < umax. 
Equivalently, this requires that the system is operating fully linearly 
(assuming a linear plant) at any equilibrium point.

For the standard unity feedback servo control loop employing a forward 
path compensator, the transfer function from the input to the control is

u(s) Gp(s)
r(s) " l+Gc(s)Gp(s)

(8.8.6)

where Gp(s) is the plant transfer function and Gc(s) is the compensator 
transfer function. For a step input from zero initial conditions, f(t) = R*l(t) 
or r(s) = R/s, the final value theorem yields

Gp(s)
uft=oo) = lim ■

1 ; s^o l+Gc(s)Gp(s)

Subject to the control bounds (8.8.2),
Gp(s)

R (8.8.7)

For 0 <— » ■*'*' I — -“maxi

R lim ■
s~*o l+Gc(s)Gp(s) 

GJs)
R lim  ----—-———

8—*■0 l+Gc(s)Gp(s)

um„ - Gp(s)

— umai

< Umax

R,
>

max

lim _
s-+o 1.4“Gg(s)Gp(s)

(8.8.8)

The equivalent condition in discrete time is
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u„
R

>
max

Ihn '
*-►1 H-Gc(z)Gp(z) (8.8.9)

Conditions (8,8.8) or (8,8.9) impose a condition on the set of admissible 
reference inputs,

r 6 % ~ {r : |r j< Rmax} . (8.8.10)
For given control bounds (8.8.2) r(t) is restricted, via (8.8.8) for instance, to

^mav
(8.8.11)r < Rmax <

lim Gp(s)
s-+o l+Gc(s)Gp(s)

The subset EL may therefore be written

EL = {e : c = 0 , Jr j<Rmax , r^ = 0, i = l,...,n}

where Rmax is restricted by (8.8,11).
The requirement E^ = El will be generally assumed in the design 

procedures for this class of controls. In view of this, (8.8.11) may be 
considered functional restriction on Rmax and umax, in addition to the 
attractiveness restrictions of sections 8.5 and 8.6,

At equilibrium, the points of intersection of the actual boundaries of the 
linear control region S2 and the e axis are given, for the discrete time model,
by , ' i , ,v

u„
I linear limit HmGp(s) (8,8.12)

s—>0

For e 6El,

Gp(s)

|e(oo) | <
lim - - / v Rs—o l+Gc(s)Gp(s) max

lim Gp(s) (8.8.13)
S-+-0

Substituting Rmax from (8,8.11),

< umax

Gp(s)
s-fO ...

(8.8.14)
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le(°°) ! < |e I linear limit (8.8*15)

Therefore, an alternative interpretation of the condition = EA is that all 
attainable equilibrium points e (oo) 6 EA lie within the linear control region 
S2,

. EACS2 V.-"■■■ '■ {8.8,16)



0. DESIGN CONSIDERATIONS

In this section we consider several subproblems encountered is the 
design process, using saturating linear compensators in the configuration of 
Figure 3.1.1. These subproblems are common to all compensator 
configurations admissible according to Figure 8.2.1, although each group 
classification (Group 0 through Group 3), the structure chosen Within each 
group, and the system order are Ml characterized by substantial distinctions 
in any particular design. In this sense, it is difficult to be perfectly general 
in the treatment of the design procedure. In this section an appropriate 
level of generality was sought which addresses the fundamental issues in the 
design of digital compensators containing selected internal saturation 
bounds, which conform to the guidelines of Figures 8.2.2 through 8.2.5.

We are generally concerned with two aspects of the dual-mode control 
realizable with this class of controllers applied to bounded input plants. We 
seek appropriate values for the multiplier coefficients and saturation 
tbound(s) in a given structure such that:
1) Near-time-optimal control is achieved for step transitions in . the 

operating point, over the range of admissible operating points, and
2) acceptable linear regulation is achieved within a locality of the target 

set.

The essential characteristic of this class of controllers lies in their 
capacity to achieve both design objectives using a nominally linear filter 
structure using fixed point machine arithmetic. Such structures are the 
simplest and fastest executing available for dynamic control, and their small 
signal characteristics are well understood in the context of linear system 
theory. It is for this reason that only those subproblems arising from the 
inclusion of numeric saturation within the structure will be treated in detail.

Subsections 9.1 through 9.3 deal with issues related to the time- 
optimality of the dual-mode control and limitations associated with the 
control bounds and range of operating points for a given plant, respectively.
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Subsection 9.4 addresses, in general terms, the linear regulation 
characteristics of the control once the state has converged to a locality of its 
current operating point, this locality being defined by the unsaturated 
operation of the compensator and its corresponding subset (the linear 
operational region) in the phase space.

9.1. Near-Time-Optimal Specification of the Dual-Mode Control 
Boundaries in the Phase Space

Fundamental to the implementation of the dual-mode control made 
possible by the saturating digital structure, is the design of the boundaries 
in the phase space which distinguish the fully linear vs saturated modes of 
control. Since near-time optimality of the transient response is assumed to 
be a requirement, we address here a design procedure such that this goal is 
serviced.

As was amply demonstrated in the description of quasi-optimal control 
methods in section 7, the implementation of a time optimal control for all 
except a limited class of second order linear plants is exceptionally difficult 
in practice. Furthermore, the many problems associated with time optimal 
discontinuous controls have compelled many investigators to suggest 
alternative control strategies which provide a transient response that is 
nearly time optimal, but much easier to implement.

For linear single input plants of order n possessing all real eigenvalues, 
the time optimal control is characterized by an extremal control value which 
undergoes at most n-1 instantaneous switches in polarity during an optimal 
trajectory to an equilibrium point from an arbitrary initial state. This is a 
well known result in optimal control, and excellent proofs have been 
presented by Pontryagin et. al., [Pontryagin62] and Ryan [Ryan82,Ch4]. In 
the case Of second order linear plants, the real restriction on the eigenvalues 
may be overcome, and analytic optimal controls formulated for plants with 
complex and possibly even unstable eigenvalues, although the synthesis 
method differs in each case. Fuller [Fuller7l] and Ryan [Ryan76,82] have 
studied a number of second order plants, distinguished by whether the 
eigenvalues are both real, real and zero, both zero, real in simple ratio, 
complex (underdamped), or at least one positive.

The goal of the discontinuous quasi-optimal control methods described 
in sections 7.1 - 7.3 may be succinctly stated as the placement of some 
substitute switching manifold for the true time optimal switching manifold.
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Variable structure methods, described m section 7.4, expand the scope of 
discontinuous controls, but restrict the class of admissible switching 
manifolds to those capable of inducing a sliding motion for all attractable 
trajectories. The boundary-layer and multiple-mode; control methods 
described in sections 7.5 and 7.6 depart from the restrictions and 
mathematical elegance of the discontinuous (relay and sliding mode) 
controls, by allowing for multiple regions of control with continuity of the 
control variable across boundary manifolds in the state space.

The dual-mode control realizable by an internally saturating linear 
compensator falls into this final class of controls. In fact, this class of 
compensators merely provides a simple and algorithmically efficient 
mechanization of a linear boundary dual-mode control The linear 
operational region S2, defined in previous sections; is the subset in the state 
space in which the control is linearly determined, that is, the compensator 
behaves as a purely linear dynamic system. For trajectories emanating from 
initial conditions outside of this region, the control variable is saturated at 
either its positive or negative extremal value. This class of controllers does 
not provide the capability for realization of multiple switching manifolds, as 
required in general for time optimal control of plants or order greater than 
two. The structural limitations of working only with ’otherwise linear" filter 
structures permits only a single linear region, bounded by two hyperplanes, 
which must contain the origin and the entirety of the target set. It is for 
this reason that we can only talk in specifics regarding the time-optimal 
placement of these bounding hyperplanes in the context of plants of order 
two, or plants which exhibit dominant pole-pair behavior.

The arguments of Fuller discussed in section 7.2 [Fuller67] are relevant 
here in support of the greater generality of this class of controls than might 
be expected. It is further noted that most motion servo-control problems 
may be effectively dealt with as second order systems using the dominant 
pole approximation. Also, as discussed in sections 7.2 and 7.3 and 8.7, 
special cases exist in which second order quasi-optimality results may be 
directly extended to higher order plants.

We therefore limit much of the discussion to the context of servo 
control of second order linear plants. In this case, the linear region may be 
represented geometrically as a strip in the state space. Nonlinear extensions 
will be discussed in section 14.
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The nonrecursive or "zero” terms of the compensator, in conjunction 
with a given structure and saturation limits, are responsible for the 
definition of the linear region in the state space.. As previously justified, the 
state coordinates of choice in a servo control system are control error phase 
coordinates, so we focus on the definition of the linear strip in the control 
error phase plane. We seek to determine the values of the nonrecursive 
section parameters so that a linear strip is created and oriented such that 
both (1) the attractiveness conditions described in sections 8.5 and 8.6 hold, 
and (2) the control remains in saturation as long as possible during the 
transient response.

Condition (2) favors the time-optimality of the response, while condition 
(1) assures against excessive overshoot and facilitates an adequately damped 
settling response at each new equilibrium point, since the state is "trapped" 
within the linear region and governed by an independently selectable linear 
control law.

In specifying the linear strip to achieve these objectives, we borrow 
considerably from the quasi-optimal relay control results of deRooy (section 
7.1), Fuller (section 7.2), and Persson (section 7.3). The results of Grishin 
[Grishin80] and Guin [Guin84] on time optimal placement of switching lines 
for variable structure control, are also applicable.

Optimality relative to a quadratic performance index for sliding mode 
controls has been studied for the special case of a double integrator plant by 
Letov [Letov61], Fuller [Fuller60], Ryan [Ryan82] and Guin [Guin84]. Dual
mode controls have been suggested for this same plant by Weed et al., 
[Weed57] and Workman et al., [Workman87] as discussed in section 7.6. 
Their results may be considered relevant to the present problem, 
particularly in the case of a very narrow linear strip, which may be treated 
approximately as a switching manifold. This reduces the dual-mode design 
problem to the corresponding relay or variable structure control problem, as 
previously discussed (section 8.7).

Driven by a constant input, the phase plane trajectories of this plant 
form a family of parabolas, parametric with the initial conditions and the 
sign of the input, as shown in Figure 9.1.1.

xi
2bu + xio

*20

2bu (9.1.1)



U S U.
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where Xi = x2 

x2 = bu 
U=±Um!

The time-optimal switching surface lies on the null solutions, the 
trajectories passing through the origin. This yields the time-optimal relay 
control law,

Umax > X1 > - Sgn(x2)
x2

2bu.
u =

“Ur Xj < - sgn(x2)
2bumax

The value of x2 at tj, the time of impact of the maximally driven trajectory 
with the switching line S = {x : Xj+gx2 = 0} is given by the solution of

xf(tj) -f 2gbux2(t!) -f 2buC =0

or

x2(tj) = - Ng+VN2q2—2NC

where

N = bu

C - x,(0) -
x|(0)
2bu

(9.1.2)

Guin considered the quadratic, infinite horizon performance index
oo

j = J (qiXi2 + q2x| + rue2)dt (9.1.3)
t,

where ue is the equivalent control during sliding motion,

ue = - ~r x2gb
(9.1.4)

Only the sliding portion of the trajectory was considered in the calculation 
of the performance index.



lie

J =

b¥(g2qi+q2)+r
2gb2

b%2(g2qi+q2)+r

(x2(^l))2 > x0 £

2 (X2(^l))^ > ^0 ^ ^2

(9.1.5)

2gb

= {x : u = uffiax, t < tr} 

n2 = (x:u^- umax, t < tj

Necessary conditions for optimality are determined by solution of
dJ

l.l.f

. dg
which yields the optimality condition 

3q1g2b2+q2g2b2-r

= 0 (9.1.7)

+

2b2g2

b2qig2-fb2q2g2+r
b2g

[-Ng - a V A 

£—Ng a Va]

(9.1.8)

-N-a N¥
Va

- 0

a —
1 Xq €

1—1 x E

A = N2g2 - 2NC

(9.18) must be solved implicitly for g via numeric methods. Note that on the 
switching line

x2 = — — Xj (9.1.9)
g

where g is the negative inverse of the slope of the line.
It is important to observe that this result pertains only to motion! on 

the sliding surface, and does not yield a direct metric for the suboptimality 
of the VSC control compared with an optimal control.

We now extend these results to a sbmewhat broader class of plants, 
with specific focus on time optimality.

We consider the class of linear plants with characteristic equations of
the form
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p(s) = s(s+c) = 0 . (9.1.10)

*1

X2
—

0 1

0 —c
Xl
x2

+ 0
kp

J

y = xx

We are interested in minimizing the cost function
tf

J = Jdt = tf
o

(9.1.11)

(9.1.12)

We derive the time optimal control by application of Pontryagin’s 
Maximum Principle. Form the Hamiltonian

H = 1 + [pj p2]
0 1 

0 -c
Xl
x2

(9.1.13)

= 1 + PiX2 + P2(- cx2+kpu)

■where pj and p2 are auxiliary state variables. Minimizing the 
yields the control law,

u = - Umax * P2kp > 0

U = umax > P2kp < 0min H —$*
11

Hamiltonian

(9.1.15)

or u == - (sgn p2)umax

The plant dynamics for a constant input are
y + cy — Kpu = const . 

Integrating, to reduce to a first order system

y.+ cy = Kput + kj .

The complete solution, for arbitrary initial conditions, is given by:
-a i \ K„u , ki Knu y = k„ e c(‘-« + -Ht-t0)

(9.1.16)

(9.1.17)

(9.1.18)
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y - -c k„ (9.1.19)

Solving for t,

— In
c

c k0 _lln yroJe
Kpu .

-y
C V ■

=— in 
• c kDu .

1 -m
- c k

(9.1.20)

Substituting this result into (9.1.18) and simplifying yields

= _ X +
K„u

In

knu
c

knU
- y(t)

C
(9.1.21)

Jk0 and kt are determined from the initial conditions y0 ~ y(0) and y0 = y(0). 
Solving for k0 and kx in terms of y0 and y0 yields

y°“y XV u 1y - y0 + ■ + Kn -- Inp c*

K, u
p ~ To v c

zr uKp — - y
(9.1.22)

We are interested in the step response of the system, observed in the (e,e) 
phase plane.

e = R — y 
e = - y t >0

and

e0 — R — y0 = R — lim

e0 = - Yq = - lim s

Kp
s(s+c) R -R

K„
R = 0

(9.1.23)

(9.1.24)s—*■00 s(s+c)
Therefore, all constant input trajectories resulting from step inputs are 
governed by
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R — “ + Kp ~ In 
c p c2

1 + Kpu (9.1.25)

The switching curve is established by the two stable null solution 
trajectories with R = 0, and u = (sgn e) umax:

e / .v Kp e = - — + (sgn e) — umax In 1 +
Rp umax

!e !

= o(e,e)

(9.1.26)

The control law is therefore given by:

u = '
u,max , e > o(e,e) 

~umax , e o(e,e)

A time optimal control phase plane portrait is shown in Figure 9.1.2 
showing the switching curve and representative step response trajectories.

We consider the intersection of the time optimal trajectory with the 
hyperplane kxe + k2e =0

kior e = (9.1.28)

which defines the center of the linear strip. Substituting (9.1.28) in (9.1.25) 
yields an equation for the intersection point e(t1):

e(ti) =
R + Kp—In 1 Kpu

ki
lk2 J e(ti)

MM

k £ )

(9.1.29)

(9.1.29) must be solved implicitly for e(t2) using an appropriate numeric 
method or graphical solution. The value of e^) at this point is, from
(9.1.28),
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Figure 9.1.2. Optimal Control Portrait, Second Order Integrator-Lag Plant
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ki
k2

R + Kp-^ln
1 Kpu

ki e(ti)

(-T&I
(9.1.30)

As in the case of the discontinuous control, we assume that provided 
attractiveness conditions hold, the trajectory remains trapped on the line
(9.1.28) for all t > tlv As mentioned previously, the approximation is valid 
only in the case of a narrow linear strip. Failing this assumption, the true 
linear behavior of the system, which is possibly of higher order now due to 
the participation of the pole dynamics of the compensator, must be 
considered.

The relationship (9.1.20), translated to error coordinates, provides a 
measure of the elapsed time from the initial state to this point.

ti c
0

+ e

For step inputs,

ko *>7

*1

c (9.1.31)

where e^j) is found from (9.1.29).
For t > tj, the sliding mode approximation gives a simple closed-form 

expression for the trajectory, specifically equation (9.1.28). When such a 
relationship is available, the elapsed time in moving from point a to point b 
is given by

At=/—— de . (9.1.32)
a e(e)

The elapsed time from impact with the "switching” line at t2- and the
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achievement of some e-neighborhood of the equilibrium point (origin in this 
case) at t2, can be found easily

■V -k2 --
^2-*! = jf “ TT-dP:

, e(td kie ■ ;
(9.1.33)

For e(tj) > 0,

k2
At = —In e

ki
®(t.i)

“If [in(e(ti)) - ln(e)] . (9.1.34)

Notice that :l

lim At = oo f_*o
as expected for a linear, system singularly perturbed jto exhibit first order 
behavior. This result exhibits the difficulty in the measurement of elapsed 
time during sliding motion along finite slope switching line, when close to an 
equilibrium point. This need not be of any practical concern here (especially 
since we are only assuming a sliding mode of convenience of analysis). The 
remedy is to assume e /0, but small, thus making the target not the origin 
itself, but some finite interval on the e axis,

e G {e : j e | < e} .
Combining (9.1.31) with (9.1.34) yields the value of the cost function, the 
total elapsed time for the transient response,

Jd = t2 = In

where, for positive-going step inputs R > 0, u = umax, and

*>7

11 Ki
KP~- ~ e0u)

~ [ln(e(tj)) - ln(e) j (9.1.35)
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e(tx) -

R + Kp-^-ln
Kpu e(ti)

1_ _ 
c kj

(9.1.36)

and e(ti) = - -jpeftj) > 0 .
Ki

We now compare this result with that obtained for an ideal time 
optimal control.

In this case, the time optimal trajectory (9.1.25) proceeds until 
intersection with the switching curve (9.1,26), at t — tx. This point of 
intersection, assuming a positive going step input R > 0, is the solution to

R+K,
umax

p c2

* / \ / \ ■
In 1 1 c !(t \ + In 1 C n (i \1+K ii ^

lvpumax
1 K ii

*vp umax
= 0 . (9.1.37)

Again, an implicit solution for e(tj) is required.
Elapsed time t1? to this point can be found, as before, from

ti = — In F c

Kp~ + e(tj)
(9.1.38)

Elapsed time t2—tx from the switching point until the e-neighborhood of the 
origin is achieved is found from

to ti — In

Kpu
+ e(ti)

Kpu
+ e(t2)

(9.1.39)

e(t2) must be determined as a function of e. On the switching line,

e Kpe = “ ~ + -f-'Wln
c c

At the boundary of the e-interval,

1 + ce
KpUjpax (9.1.40)
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e(t2) , K
+ umav In2 **max l‘H-

ce
c c 

implicit solution is required for
e(t2) = f(e) .

KpUmax
(9.1.41)

The cost function for the time optimal control is therefore

Kpu
s

KpU
•

1- eft,!
In C ■ ■ + In cIB

Kp- + e(iCk
h)

>

Kpu
c f- e(t2)

>

(9.1.42)

where ^(tj) is found from (9.1.37) and e(t2) is found from (9.1.41).
Since J0 represents the minimum time solution for a step change 

R = r(0+) — r(0~) in the reference input, J0 < Jd.
A metric for the suboptimality of the nearly discontinuous saturating 

linear control can be expressed as,

0 < J*.< 1 (9.1.43)

where Jd is found from (9.1.35) and JD is found from (9.1.42).
Let eld = e(tj) represent the solution of (9.1.36) for the quasi-optima 1 

control, and el o = e(t|) represent the solution of (9.1.37) for the true optimal 
control. | ®i,0 | can be considered an upper magnitude bound on j eld |, for 
any admissible switching line k2e -f k2e = 0. Therefore a maximum 
practical bound on the slope k1/k2 of the switching line is given, using
(9.1.25), by •

• ■: i ■. el,0

with equality representing the minimum time switching line slope for the 
approximate sliding mode control.

The following simple theorem generalizes the previous results, 
independent of the plant; We are concerned here with the projection of the 
phase trajectory of an ntl1 order plant on the two dimensional phase plane.

>rk2
(9.1.44)
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Theorem
Sufficient conditions for relative time-optimality of phase plane 

trajectories. Consider two trajectories rjx and rj2 in the control error phase 
plane, as depicted in Figure 9.1.3, from a common initial state c (tj) to some 
e-neighborhood of a common equilibrium point defined by |e | < e. Define 
the transition times along r/j and r?2 as Tx and T2 respectively. Along j/j and 
t/2, from e —ej to e = e, e does not change sign, and

|ej> |ej • (9.1.45)

For any and t]2 satisfying the above conditions, Tj > T2.

Proof
Along either trajectory in the (e,e) plane,

*(*<) . «(*<) .
f de — / de

e(ti) e(e) e(ti) —
dt

~— tf — ti — T
■ t, ' :

Since t2 > tj and t3 > tj,

Tj = j t2 — ti | , T2 = 113 — tj |

T, = / -r1— d e 
m e„.(e) /

f ■ 1
1

V2 ®«/2(e)

e»7i(e)

de

de > /
V2

(9.1.46)

e„2(e)
de

= T, (9.1.47)

T!>T2



Figure 9.1.3. Phase Plane Trajectories

Comments
1) The above theorem provides a sufficient condition for the relative time 

optimality of trajectories in the phase plane. In general the converse is 
not true, that is, Tj > Tj is not a necessary condition for 
l®i?2(e) 1j?2 > l®»;i(e) !»/, V e E [ei,e]." Consider for example the trajectories 
of Figure 9.1.4.

2) The above theorem provides a sufficient condition for the relative time 
optimality of dual-mode controls of the type we are considering. As 
illustrated in Figure 9.1.5, if m2 > m^ then j e(e) | e(e) |^,
e E [ejje], and Tj > T2. Therefore, time Optimality of the dual mode

' y kx ■ ■ -..v,
control is favored by increasing values of the slope -— = —m of the

k2 ... ;

linear strip.
In designing the saturating digital compensator for a minimum time

kx
transient response to arbitrary initial conditions, we maximize the ratio —

k2

subject to the constraint of the attractiveness of the linear stripy derived in
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Figure 9.1,4 Example of an Exception to the Converse of the Theorem

slope — —m^
Figure 9.1.5 Two Linear Strips in the Control Error Phase Plane



section 8.5. If the analysis is performed in discrete time using normalized 
incremental phase coordinates as developed in section 8.5, the equivalent

a '.

.a . ■ kx
vector k is substituted directly for k. Then the ratio *r~ m is maximized
■- v ■'■7/;.^;. - >2

subject to the attractiveness constraint of (8.5.50). For illustrative ptirposes, 
let us consider the a second order linear discrete time plant model.

Ae = 0 3L.
-bo—hj — A (9.1.48)

Ag - I = T-J1 A-1 AgATt — I

0 T :

- T-’ll+bo+bj) —(2+b,)

kT(K~l) = - ^-(l+bo+b.) , k.T-ta+b.Jkj

(9.1.49)

(9.1.50)

The attractiveness condition in normalized incremental phase 
coordinates is given by (from section 8.5),

- ^r(l+bo+b,Hk) + (bjT—(2+b])ic2)Ae( < l-*uumax - «ERmax

(9.1.51)

We require that this condition hold along the hyperplanes (lines in the 
second order case) which bound the linear region:

kie(k) + k2Ae(k) - ± umax

Ae(k)==?~ [i Umax “ ^ie(k)] ^)1-52)

Substituting (9.1.52) in (9.1.51),
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>
k2 ' . , • kf ki

— —(l+bo+bi) + ki(2+bi) — 7“T
1 k2

■ j

e(k) ±
■

c T "2 ~ b* k2
l J

umax

< (Np(l)umax ^p(l)^max) (9.1.53)

We can normalized k to its n1* component, in this case letting k2 = 1.

“ ^•(1+bo+bi) + kj(2+bi) — kfT

<

(k) ± [kjT - 2 - bx ]umax 

7(Np(l)umax-Dp(l)Rmaxj . (9.1.54)

With this normalization, maximum steepness of the linear strip in the 
error phase plane may be interpreted as maximizing kj subject to the 
constraint (9.1.54).

Using the triangle inequality, (9.1.54) becomes

— ~(l+b0+bi) + k1(2+b1) — fefT <

Dp(l)
umax “ rp ^max (9.1.55)

Define e — j e(k) | in (9.1.55). e is the maximum magnitude of e along the 
intersection of the bounds of the linear strip and the bounds on its region of 
attraction. For all trajectories entering the linear region with values of e$ f
less than e at the point of entry, (9.1.55) assures that the trajectory will 
remain trapped within the linear region for all time thereafter (at least until 
the next change in the reference input).

Nr(l) -1 £,t - 2 - b, I

Once e is known, (9.1.55) may be used in its equality form to define the
A

maximum value of k^

max(kj) subject to ■j. ■(1+bb+bi) + ki(2+bi) ~ kj2T *e
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Np(l)
T

| £,t - 2 -b, | ^•riri'a'w
Dp(l) Rmax (9.1.56)

In practice, the attractiveness constraint (9.1.54) establishes an upper bound 
on the slope m more severe than (9.1.44). This follows intuitiyely from the 
fact that the optimal control switching manifold represents the "last-ditch" 
moment when control action can still direct the state to the origin without 
overshoot. A bounded linear control law, of course, can provide no greater 
control effect than the effect of the optimal control along the switching 
curve.

This observation is illustrated in Figure 9.1.6, which overlays the ideal 
time optimal switching curve over a linear region satisfying the 
attractiveness condition. Four step responses are illustrated, corresponding 
to increasing values of R.

The time domain responses are also shown in Figure 9.1.7.

9.2 Optimisation with Respect to & Quadratic Cost Function
Here we consider the design of the linear control region boundaries for 

optimization of a quadratic cost function. We initially assume a "narrow" 
linear region, which may be approximately treated, for optimization 
purposes, as a switching manifold. The analysis is based on the ideas of 
Sirisena [Sirisena68j, Wonham and Johnson >[Wonham@4], and others as 
presented by Ryan [Ryan82].

We assume an all-pole single input plant with transfer function

Gp(s) =
&0

sa+ba_isn 1+...+biS-fb0

A phase variable state representation in control error coordinates is given 
with (Ag,6e) a controllable pair, and constant reference input r — R.

0 1 0

0 0 1

0 0-0
~^1

0

0



ck
.d

t (
Er

 r 
or

 )

201

dt -10 ns uc/clamped umax K-36 a-g b=12 c=l d16 oo

12.00

8 000

4 000 H

0 000 -

-4 000

3 0 00 H

a *• — a.

16 0 0
-16 00. -12 00 -4 000 . 0.000 4.000 3.000 12.00
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Pha-e Plane Plot of Control E r r or

Figure 9.1.6 Optimal Switching Curve Comparison with Linear Switching Curve
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dt=10ns uc/clamped umax-lc K=36 a~2 b=12 c=l d=0
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8 000 -

6 000 - / m

4 000

0 0 00
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Time <bec)
Second Order Plant uith First Order Digital Controller

Figure 9.1.7
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6e =
0

6 and ^ =
o
6

a0 b°
(9.2.1)

We consider the switching hyperplane defined by

kTe ~ 0 (9.2.2)

and a quadratic cost function of the form

Jm(u) — eTMe dt (9.2.3)

where tf is free (infinite horizon problem). Wonham and Johnson 
[Wonham64] have shown that there is no loss in generality in assuming the 
positive definite matrix M to be diagonal, since if M is not diagonal, then 
the cross product terms can be removed by integration by parts. This 
produces a diagonalized cost integrand plus a constant quadratic term 
dependent only upon the initial state eT(0)Ne(0), which does not influence 
the optimization of the function.

Lemma. -
If the elements fa of the matrix M = diag(/^1,/Lt2,...,Afn) of the quadratic 

cost function (9.2.3) satisfy the relationship

P(a) = .£,/ij a2M) > o VaGIR , (9.2.4)
j=i

then there exists a quadratic cost function

J(u) = /o f(fcTc)2 dt , tf free (9.2.5)

equivalent to the cost function (9.2.3) in that the control u* which minimizes 
one also minimizes the other. The diagonal elements of M are related to the 
elements of A; by the following:

fa = ki

fa = ki2 + 2 S kjk2i-j 1 - 2, 3, ..., n—1
j”1 ,

JV“kn (9.2.6)

where k2i_j = 0 for 2i—j > n.



Prbof1 (see [Ryan82] or [Sirisenafifi])
Using integration by parts,

J(u) = f(kTe)2dt == f cTMcdt + e T(0)Ne (0) (0.2.7)

for M defined by (0.2.4). N depends only onf k, so that eT(0)Nc(0) is a 
constant that plays no part in the minimization c# J(u).

(0.2.4) implies, at least, that ^ > 0 (consider lim P(a)).
a—►O .

Let p be the index of the highest nonzero diagonal element of M.
1 < p < n, and p=n in the case of full state feedback and nonsingular M. 
Then (0.2.4) further implies that //p > 0. By assumption (0.2.4), there exists : 
a polynomial

p(/J) = P(i3) = >; /ijO f1'-1)
j=1 . V ..

-.Et-irw11'1’
j=i

= ^ + ... + (9.2.8)

such that
JW-VlWlhftf' (9.2.9)

where

pi(^) = E kj^_1 = ki'+ k2^ + ... + kp^-1 (0,2.10)
: ■ j-i -

and kj (hot necessarily real) satisfy (0.2.6). Pj(^) possesses p-1 roots,
denoted /?j, j=l,..., p—1. Therefore P(/?) possesses 2(p-l) roots, 
±/^j> P~l« Factoring P(/3) yields the equivalent form,

..'#(« = (-ir1 kp2 n tf? - (9.2.11)
j=i

which may also be written

1 Throughout the proof, i is the base of the imaginary numbers.
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p-i
P(a) = P(ia) = kp* nW + ff) ■

j'=*l
By assumption (9.2.4),

which implies

P(a) > 0 V a E JR ,

(9.2.12)

Re(/?j)^0 , j=l, 2, p-1 ? (9.2.13)
Then to every root /?j of P(/3) = 0 there corresponds a nonzero root — /?j, and 
without loss of generality we may assume

Re(^j) <0 j=l, p-1 . (9.2.14)
(9.2.10) does not restrict the coefficients kj to be nonimaginary. It can be 
shown by contradiction, however, that all kj must be real.

Suppose that at least one kj has a nonzero imaginary component. This 
implies, (see 9.2.10) the existence of at least one complex root /5j of 
Pi(/?) = 0. If this is the case, then the complex conjugate /3j cannot be a 
root of Pj(/?) = 0, i.e., P^/^) ^0. However, complex roots of
P(/7) — Pi(/^)Pi(—/^) (with all /ij real) must occur in conjugate pairs, so that 
the complex root must be purely imaginary. This contradicts (9.2.13) and 
(9.2.14). Conclude, then, that all kj are real.

Referring to the theorem statement, we may, without loss of generality, 
assume kj to be the positive square roots admissible by (9.2.6), for (J.} > 0, 
j = 1, ..., p. In view of (9.2.14), this implies

^ > 0 , j == 1, ..., p

kj — 0 , j = p+1, ..., n . (9.2.15)

In conclusion, we have shown that given a diagonal matrix M satisfying 
the restriction (9.2.4), a real vector &T — (kx k2 ... kn)T with all positive 
elements satisfying (9.2.6) can be found such that the cost functions (9.2.3) 
and (9.2.5) are equivalent. Thus a sufficient condition for the existence and 
equivalence of the cost function (9.2.5) has been proven. Given M complying 
with the above restrictions, at least one corresponding vector k can always 
be found. Note that the converse is obvious from (9.2.6). Therefore 
necessary and sufficient conditions for the equivalence of JM(u) and J(u) have 
been established.
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M =

Example (IR2)

M 1 0 

0 M2

The equivalent vector k, found from (9.2.0), is

Vth 
Vfh

> Mi 0 , M2 — ®

k =

jm(u) = IQ l eTMe dt + J&'(m^2 + //242)dt

J(u) + £ (Vfh e + V^2 ®)2 dt

Zero-Cost Trajectories for Equivalent System
Consider the motion of the system in the phase plane when restricted to 

lie on the manifold k e — 0, tj < t < tf, under the action of some admissible 
control u=u*. Such motion corresponds to J(u*) = 0 V t > tj, for the cost 
function (6.2.5). If all elements of k are nonzero (and therefore all diagonal 
elements of M nonzero), then p=n. We consider the more general case of 
1 < p < n. In the general case, we differentiate the restraint equation n-p 
times, which yields n-p+1 equations which must be satisfied for t > tj. 
(r=R is assumed constant.) Consider the first derivative:

-7- kre = kTe = kT(A*e + 6e u + 7R) = 0 (9.2.16)
dt

Since kj = 0, i = p+1, ..., n, and noting that all except the nth component of 
b e and 7 are 0, the n-p derivatives do not involve either u or R. (9.2.16) is 
simplified as

-7- kTe = kT A^e =0 (9.2.17)dt
and the higher derivatives may be written,

&Te = &TAle =0 

dt*
i-

i = 0, n-p (9.2.18)

The system of equations (9.2.18) define n-p+1 hyperplanes in the phase
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space. The intersection of these hyperplanes defines a p-1 dimensional linear 
subspace ] J upon which all zero-cost trajectories must lie. Specifically,

Ji = {e: A:TA^e =0 , i = 0, n—p} (9.2.19)

The control u=u* which restricts e £ JJ, t > tj, can be found by taking the 
(n—p+l)th derivative,

dD“P+1 ■(*T0-4(*T Aen"V)
dtn_P+1 dt

= kTA?-Pi

= kTA?-»(A^e - 6eu + 7R)

= k^A^ p+1e — fcT(6eu — <yR) = 0 

which also must hold for e £ J~[. (9.2.20) may be solved for u — u*:

+u* =
fcTA^“p+1e fcT■ ■ • JLSL r

klbt kb.

The equivalent system for e £ JJ is then given by 

e = A^e — 6e u*-f'yR

. te*:TA<r''I _ -1--- -H-— AgC + TI —
kTbe 7r

(9.2.20)

(9.2.21)

+ tR • (9.2.22)

The system (9.2.22) is of reduced order p-1, corresponding to the rank of the 
equivalent system matrix A*. Observing the phase variable relationship of 
the state vector e , the ’ reduced order equivalent system may be 
characterized in JJ by

tTe =k1e + k2e + ... + kpe(p"1!=0

for which a characteristic equation may be written by inspection,
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kpsp 1 -+• kp.js1’ 2>K.. + k2s + k^ == 0 . (9,2.23)
The asymptotic stability of the reduced order equivalent system (9.2.22) 
requires the nonnegativity of the real parts of all roots s of (9.2.23). The 
restriction

kj>0 , i=*l, . . . ,n

ensures at least the conditional stability of the equivalent system, since this 
is a sufficient condition for Re(sj) < 0, i = 1, p. Furthermore, the 
restriction (9.2.4) on the nonzero elements of the matrix M ensures that 
all roots of (9.2.23) are not purely imaginary, as indicated by (9.2.13) in the 
preceding proof. The equivalent system therefore contains no undamped 
oscillatory modes. Combining these, it may be concluded that the 
equivalent system (9.2.22) is therefore asymptotically Stable.

Suppose c1—c(tj) is an initial point of a trajectory in JJ. Since the 
equivalent system in is known to be asymptotically stable, we can write 
the equivalent control u = u* given by (9.2.21) as

fcTAj‘~p+1exp(Atst)e1 iXy,U*(t) = .T, ' +^F7LR . (9.2.24)
kLb. kLb.

An interesting special case is that of a Type I plant, defined by b0 = 0 in the 
system model (9.2.1). In this case

kTl _ _
; *T6e a° '

and the equivalent control is independent of the reference input. (The single 
equilibrium point is the origin e = Cl.)

kTA?~p+1
u*(t) = ——Z7~-----exp(Aet)c1 (9.2.25)

klbe

We may define a subset Hs C 17 which u* is an admissible control 
satisfying

U(t) |<nmM .
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ns ? .€ IP
kTAen_p+1C OTir-i-i ( A n < umax » t > tj»Tt exp(Agt)e

k V
y J

(9.2.26)

J|s is a convex set bounded by the hyperplanes

&TAen-P+1e = ± krA?~ne umax . (9.2.27)

The convexity of J|s is easily verified. Consider two points cA, eB £ J|s 
. From (9.2.26), any point cc — aeA + (l— a)eB £ JJS must satisfy, for
0 < c* < 1,

JkTAj‘_p+1
~ ,T,—~ exp(A€t)[acA + (l-a)eB]

< a
kPA?-**1

klb.
exp(Aet)eJ

kTA^-p+1

klb.
exp(Aet)c B

< <* umax + (l-a)umax = umax

*C £ ris •

Note that any control which entrains the state in a sliding mode on the 
manifold e £ |J will implement a zero-cost control in |JS equivalent to the 
application of the linear control u* of (9.2.21). Such a control is realized 
when the "thin" linear control region assumption described in section 8.7 is 
met.

However, of greater interest is the case when such a restriction is not 
met, and a finite width linear control region must be considered.

The quadratic optimal control u*, applicable in J|s, is a linear one 
within the set of admissible controls

u* £ U = {u: |u(t) | < umax} . (9.2.28)

The subsets JJS and JJ are fully contained within the set |Jd,
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IXId = (e* u(t) e u , t > tx} . (9.2.29)

A control exhibiting nearly quadratic optimal behavior would be one which 
delivers the state to s<jme neighborhood of the manifold JJ withinjjs, 
then implements the equivalent control u = u* given by (9.2,21) inside this 
neighborhood. Such a control is clearly a dual-mode control. A control law
of this kind is implementable by saturating linear digital controllers within 
the present class of interest. A design method based upon this approach is 
described in §9.4.

fl.3 Design Methods Based on Estimation of the Operational Region
For a general single-input plant of arbitrary order, the linear region S2 

possesses two-sided attractiveness properties only; within some subset Sx of 
the phase space. The efficacy of the dual-mode control requires knowledge 
of the subset S0 containing all expected phase trajectories. That is,

e (k) € S0 V | r | < Rmax, | u | < umax

and u G U, where U is the set of admissible (dual-mode) controls. S0 is 
referred to as the operational region of the closed loop system. The linear 
region boundaries are designed such that

(So n S2) CS, . (9.3.1)

The operational region S0 may be known from practical considerations of the 
physical plant. For most servo controF systems, it is common to have 
knowledge of the limits of e(t), based upon known limits on y(t) and r(t). 
However, limiting values of e(t) and higher derivatives e^(t), expressed 
either component-wise or as norm bounds on the vector e (t), are usually not 
known without recourse to simulation or experimental measurements. We 
therefore consider methods for estimating S0, to assure that all expected 
trajectories are attracted to and trapped within S2.

Method 1: Explicit Solution Based Upon Assumed Extremal 
Trajectories

An expedient desijgn approach is to determine points lying on the 
boundary of S0 which lie within S2. Exhibiting the convexity of the set Sx, 
we establish condition (9.3.1) by requiring only that these particular 
boundary points of S0 f) S2 be contaihea within the domhin of attraction Sx. 
We require, by conditions (8.5.5) or (8.6.20), that Sx be sufficiently large to
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assure that some extremal trajectories driven by the saturated control 
u —±umax and lying on the boundary of S0, converge to the linear control 
region boundary within St.

For |uj= |uc| = umax and r=R= constant, the continuous time system, 
from section 8.5,

e = A^e — Beii + 7r

= A^e — 6euc + 7R (9.3.2)

possesses a solution, for given initial conditions, of the form

e = (0+) — e (00)] + c (00) . (9.3.3)

We consider an extremal trajectory resulting from a "worst case" step 
change in the reference input from r — — Rmax to r = Rmax. The system is 
assumed initially at equilibrium at r = — Rmax, and further that this 
equilibrium point lie within the attainable target set of the bounded input 
control. The control u is saturated at u=umax for the duration of the 
trajectory. In this case,

£ (00) = Ag (^eumax max) (9.3.4)

e(0+) = *nRmax + (Ae-1&e + m) u(°~) - mumax (9.3.5)

where
u{0~)~kT[Ae-bekT]~1'iRm„ (9.3.6)

1

0

6
m — Mjt'j .

For the equivalent discrete time model, from section 8.6,
c(fc+l) = A^c(k) — Be«(k) + 7r(k) (9.3.7)

when driven by constant u = umax and r = Rmax, possesses a solution 
(for k0=0),



c (k) == A*e (0) +
k .
E AT1

■
~Be

i
Umax + T

T
^max

,j“i i i
. (9.3.8)

The worst case step response from r = — Rmax to r = Rmax is applied at 
e (k) = e (—n), Y?hich yields the initial conditions,

c(0) - A^c (—n) + £ Aj+n_1(-Beu(~n-j) + 7r(-n-j)) (9-3.9)
j=l—n —

e(-n) = - [I - A, + bekT}-ll^

«(-n-j)

u(t*)

u(-n)

r( U J) Rmax

u(—n) = &Te (—n)

= - fcT[I - A, + 6efcTp17RmM

where,

We assume that the solutions (9.3.3) or (9.3.8) lie on the boundary of S0 

in the appropriate continuous or discrete time spaces.
The left attractiveness condition (8.5.15) or (8.6.46) is of primary 

concern in positive-going step responses, since this assures against 
"overshoot" out of the linear control region. In this case, the continuous
time condition is
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hT(t) > — fcT6eumax - Rb (9.3.10a)

and the discrete-time equivalent in normalized incremental phase 
coordinates is

■Rm« (9.3.10b)
1 1

£T(Ae-I)e (k) > -fcTBe 0

6

Arp
umax “ k *1

0

6

where &T = fcTATT

e(k) = Tf1Ac(k)

At the left hyperplane boundary of S0,

^Te(t) — —un 

or £Te(k) = — u,.
Amax

Amax

(9.3.11a)

(9.3.11b)

Let e be the point of intersection of the extremal trajectory with the 
left hyperplane boundary, e* is found by solution (9.3.3) such that (9.3.11a) 
holds, or (9.3.8) such that (9.3.11b) holds. At this point,

umax ~ [eA*t[e(0+) ~ c(°°)l + e(oo)] (9.3.12a)

or

Umax = kT A«ke(0) +
k 1 Y

EAT1 -B« 0
umax ^

0 ^max
,i=i 6. .6.

(9.3.12b)

A numerical solution is necessary for the minimum values t = t* or k = k* 
such that (9.3.12a) or (9.3.12b) respectively, holds. Back substitution then 
provides the value of c *(t*) or e*(k*) for use in the attractiveness condition 
(9.3.10a) or (9.3.10b). f!

This method for estimation of S0 assumes that for some point e*(t) 
satisfying (9.3.12a) and (9.3.10a) or (9.3.12b) and (9.3.10b), e * € is a 
sufficient condition for satisfaction of (9.3.1). This is illustrated in Figure
9.3.1 for a second order plant.

Due to the symmetry of the solution for positive going step responses 
and negative going step responses, we need only consider one case to



estimate the boundary of S0 and the intersection point e *.
It is worth commenting that, in practice, this method is cumbersome, 

and that an iterative design approach using computer simulation may be 
more expedient in arriving at an optimum design. Among computational 
approaches, however, this method facilitates the least conservative and 
therefore most optimal design for the boundaries of the linear control region. 
An example of this design approach will be given in section 12.

We now consider more conservative methods for estimation of S0 which 
are easier to implement, but yield less time-optimal controls.
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e

worst case 
trajectory

Figure 9.3.1 Estimation of S0 by Assumption of a Worst Case Trajectory
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Method 2: Assumption of a Norm-bounded Operational Region
In sections 8.5 and 8.6, the use of assumed horm bounds on S0 were 

introduced. The design process is considerably simplified if the convex hull 
of S0 is known to be contained within some Lv L2 or norm bounded set
s0.

S0ci0 = {e: ||e |j; < (fl.3.13)

i = 1, 2, oo == norm type

The continuous time attractiveness condition (8,5.5) ^may then be used to 
yield a conservative domain of attraction satisfying

■ S0 C Sj (9.3.14)
which clearly satisfies the control requirement (9.2,1). Employing the 
Cauchy-Schwarz inequality,

| kTAee | < || i f < fcT[6ieumax - 7Rmax]

or ||.*TAj| j < — A:T[6eumax - ax J (9.3.15)

The design problem then becomes a- matter of identifying a combination of 
k, umax and Rmax such that (9.3.15) is satisfied. In general f is dependent 
upon umax and Rmax, so the process remains an iterative one. As discussed 
in section 9.1, k is usually chosen with time optimality in mind, which 
requires a minimum of conservativeness in the choice of f.

For the discrete-time model in normalized incremental phase 
coordinates, the attractiveness condition (8.6.20) may be expressed as

|kT(Ae-I)g(k)|< || fc^Ae-I)!! if <kT

or

Pt(a,-i)||,<

A 1
♦

i
• umax ^ ^max
i i

A
1

umax ^
l

Be
i i

^max (9.3.16)

The bounds of the domain of attraction are seen geometrically as 
hyperplanes perpendicular to the unit vector [| I)||i-1A;T(Ae—I), and
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separated by a minimum distance of 211 fcT(Ae—I)|j For the Euclidean 
norm, S0 is then a ball of radius less than || fcT(Ae—1)|| 2- The 
attractiveness of the linear control region is assured since

(SoH^CSoCSoCSi (9.3.17)

This is illustrated in Figure 9.3.2.
As before, (8.2.16) is used as a constraint on fcT, umax and Rmax. 

Typically umax and Rmax are given, so that either (9.3.15) or (9.3.16) are used 
to qualify candidate vectors k or k respectively, k or k then specify the 
coefficient values in the nonrecursive section (zero terms) of the saturating 
digital compensator.

Lacking better information on the boundaries of S0, it has been 
observed during computer simulations of several systems that a reasonable 
preliminary choice for £ is a value such that the resulting norm bounded set 
contains all anticipated initial conditions e (0). Thus, if the most remote 
initial condition corresponds to a step change in the operating point from 
r = — Rmax to r = Rmax, a reasonable choice for £ is 2Rmax.

However, it must be noted that if such a case defines the worst case 
trajectory (as in Method 1), the composite two-sided attractiveness 
conditions (9.3.15) or (9.3.16) are inappropriate and far too conservative. 
Rather, for a positive-going extremal step response, the left attractiveness 
conditions (8.5.15) or (8.6.46) should be employed, and for a negative-going 
step, the right attractiveness conditions (8.5.14) or (8.5.45) should be 
employed. This is due to the assumption in the worst-case situation, that 
umax and Rmax are of the Same sign, which leads to the most restrictive 
bounds on the domain of attraction of the linear control region S2. For an 
extremal step response from equilibrium, umax and Rmax assume opposite 
signs at the critical boundary of S2<

For a positive-going step transition, the left attractiveness condition in 
continuous time yields

+ fcTfeeumax + fcT7RmaX > 0 (9.3.18)

and the right attractiveness condition yields
k^A^e - fcT6eumax - kT7Rmax < 0 . (9.3.19)



, Figure 9.3.2 Euclidean Norm Bounded S0, for Second Order Plant



219

Both (9.3.18) and (9.3.19) lead to

l^TA«e I < fcT6eumax + fc^Rmax • (9.3.20)

For S0 defined by lie II < f,

j^A^c | < II^Aellf < fcT6eumax + AjT7Rmax

or

<T<
k h eUmax ~4~ k 7-^max 

lllfcTA,ll
(9.3.21)

(9.3.21) is a considerably less conservative restriction which is applicable 
when the design criterium is the system step response.

Similarly, for the discrete-time model in normalized incremental phase 
coordinates, the less conservative attractiveness condition for S0 defined by 
\\e I! < f is

^uumax ^R^max
M\

(9.3.22)

where <x, au, and are defined by (8.6.41), (8.6.42) and (8.6.43) respectively.
(9.3.22) may be simplified using (8.6.54) to yield

K (Np(z=l)umax + Dp(z=l)Rmax j

?< llcrllT11-1 ~ '

Method 3: A Conservative Design Approach for Second Order 
Plants

We consider now a straightforward conservative design approach 
applicable to single input second order linear and certain nonlinear plants. 
We assume, in the linear case, that all poles and zeros of the plant lie in the 
closed left half s-plane. By this restriction, it is assured that, following a 
step change in the reference input r(t) = R l(t) (where l(t) is the unit step 
function), the control error magnitude |e(t)| for t > 0+ never exceeds its 
initial value at t = 0+, that is, e(Q+). Nonlinear plants which satisfy this 
assumption are also admissible, although the subsequent linear design 
procedure is not directly applicable.

With the closed loop system initially at equilibrium, a step change in 
the reference input of magnitude AR will drive the control error at t = 0+ to 
a value which is magnitude bounded,
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| e(0+)| < AR .
This observation is clear from a practical point of view, and can be shown 
rigorously from (9.3.6b) and (9.3.6c). Let us take the worst case, 
AR — 2Rmax. Without loss of generality, we assume the original plant state 
equations to be in controller canonical form,

*1

i2
0 1 

—b0—bj
*1

x2
L i

+
0 u

,7 = !ao ai]
A

or

Gp(s) —
EjS +

s2 + bj_s 4* bo

From (9.3,6b), for AR = 2Rmax,

e(0+) = [10j

/ r -I r i > " 1

■^max “b ©

i
"bi

0 ' 
a0

+ 0
cTb u(0 ) -

eT6Umax

< . V » jj

R™ - t- »(«')

and from (9.3.6c),

—boki

0 1 

—b0—b!
0

a0

-l
|k, k2] R,

bo + a0k1
Rmax •

Therefore,

e(0+) = Rmax +
a0 bnko*i

bo T'&jj&i
Rmax
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1 +
a0k!

b0 + a0ki Rmax — 2Rmax

since a0 and b0 are nonnegative by the original minimum phase assumption, 
and kj > 0 for any stabilizing control (negative feedback).

With knowledge of the maximum step height magnitude |AR | max that 
the system will be subjected to, and relying on the stated assumption, we 
are assured that

I e'Wl < I e(0+)| < IARL, < 2R„„ .

For given values of umax and Rmax, the conservative design approach 
involves selection of the vector k such that e = 2Rmax is solution of both the 
left hyperplane equation

kTe = —umax (9.3.23)

and the left attractiveness condition
fcT[A^e + 6eumax + 7Rmax] > 0 , (9-3.24)

where the inequality is taken as an equality at the boundary of the domain 
of attraction. Alternatively, due, to the symmetry of the problem, we could 
have employed e = —2Rmax as a solution of both the right hyperplane 
equation

&Te = umax (9.3.25)

and the right attractiveness condition,

— 6eumax ~ 7Rmaxl < 0 * (9.3.26)

Using the former scenario for a second order plant, we arrive at the 
system of two equations,

ki
k2

-bi e + a0umax - boRmax = 0 (9.3.27)

2k1Rmax + k2e = 0 (9.3.28)

Equating through e at the point of intersection yields the following equation 
relating kj and k2,
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R.
ao umax

k| 4- b1k2 — 2-
R„
u kf + kj - 0 (9.3.29)

max

If either kj or k2 is specified, (9.3.29) yields a quadratic solution for the 
unspecified element.

It is noted that the width w of the linear control region is given by the 
distance along the vector k between the boundary lines,

2Umax (9.3.30)w =
l\k lb

If a linear control region of some specific width w is desired, (9.3.29) and
(9.3.30) may be solved as a system of two nonlinear equations in two 
unknowns, to yield a unique vector [k4 k2]T. The result is

an bfi
Rmax

U„
2umax

W ■k? + bi
2umax

W
■k?

1/2 Rmax
u,max

and

k, =
2u.max

W
k?

1/2

k2 + kj = 0.

(9.3.31)

(9.3.32)

The conservativeness of this design method is illustrated in Figure 9.3.3.

The point eT = 2R
umax+2k!R]max

max ’ , labeled (l) in the figure, lies

on the left (u — -um„) boundary of linear control region. This yields a less 
steep, and therefore less time-optimal placement of the linear region. This 
may be compared with the point labeled (2), which is the exact intersection 
of the saturated trajectory emanating from c (0+), the left linear control

m
region boundary k e, and the boundary of the domain of attraction given 
by (913.24), found using the previously discussed nonconservative design 
method.

It can be seen from inspection of Figure 9.3.3 that the dual-mode 
control requirement (S0 fl S2) C Sj is satisfied by this choice of k.

A parallel development of this design approach exists for the discrete 
time model. The point e(k) = 2Rmax is used as the solution of both the left
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Arp

hyperplane equation kA £ = —umax and the left attractiveness condition 
(8.6.46). The details are nearly identical to those for the continuous time 
model presented here.

The primary utility of this conservative design method is that, for 
second order plants conforming to the stated assumptions, we are 
guaranteed an initial value for the vector k which meets the dual-mode 
control requirements. Using this as a starting point in the design, a near
time-optimal dual-mode control is then found by iteratively increasing the

kj
ratio — until the attractiveness condition is violated, as described in 

k2

section 9.1.



Use of e = 2R requires that the 
point labelled (1) lie on the left 
(u =—umax) boundary of the 
linear strip.

Figure 9.3.3 Comparison of Conservative and Nonconservative Design of the
Linear Control Region
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0.4 Linear Design
In this section we focus on the characteristics of the dual-mode control 

when the system state lies within the linear control region S2, which 
generally contains the origin and the entirety of the target set corresponding 
to a given range of constant reference inputs r E [—Rmax, Umax]* Inside this 
region, all internal variables in the compensator are unsaturated, so that the 
structure may be treated as completely linear. (Recall that numeric 
quantization effects are not considered in this analysis.)

If the nonlinear aspects of the design have been carried out correctly, 
we are assured that all trajectories resulting from step changes in the 
reference input r will be attracted to and retained in the subset Sx H S2 for 
all remaining time. It is usually desirable to implement a linear control law 
inside this region with sufficient damping to direct the state to its 
equilibrium point briskly, but with a minimum of overshoot. The resulting 
dual mode control is therefore one which provides maximal control power for 
states lying outside the linear region, and a well-damped linear control law 
applied inside. This combination generally yields the most desirable near
time optimal step response for the system.

We therefore seek to design the linear transfer function of the 
compensator to achieve, at a minimum, asymptotic stability, and preferably 
a well damped closed-loop system possessing all real roots, or a damping 
factor £ > 0.7 in dominant pole-pair situations.

It is readily apparent that the small-signal linear design problem is 
simply a standard linear design problem in which some degrees of freedom 
have been spoken for by the nonlinear design specifications. From this 
perspective, the entire wealth of linear design methods and analysis tools is 
applicable. As discussed previously, both continuous-time arid discrete-time 
approaches may be used ■, with relevant arguments for either method 
depending upon the application.

No attempt will be made here to cover all possible linear design 
approaches. Rather, certain novel approaches which dovetail well with the 
nonlinear design problem formulation will be presented. Supporting design 
examples using computer simulation will follow in section 12.



Structural Dependence
Due to the nonlinear nature of the compensator structure containing 

one or more saturation limits, the topography of the structure directly 
effects the control law. This situation actually is no different in any "linear" 
digital compensator, if viewed from a large signal point of'view,, since. a|l 
mechanizations in finite precision arithmetic are subject to bounded variable 
ranges. The difference, in this design method, is that rather than ignoring 
(or attempting to avoi4) these nonlinearities, they are used to advantage in 
the synthesis of a dual-mode control law appropriate for bounded input 
plants.

The design of the linear control region, discussed in previous sections, 
leads to the specification of some of the multiplier coefficients in a given 
compensator structure. Usually, these are located in the nonrecursive 
section of an otherwise-linear structure. It will be shown, however, that 
special structures not normally used for linear control laws exist, which leave 
some additional degree of design freedom in their nonrecursive sections. 
Consider, for example, the structure of Figure 9.4.1, containing two 
transversal filter sections.

U

Figure 9.4.1 A Group 0 Dual-Mode Compensator Not Based Upon an
Otherwise-linear Structure



227

This structure actually falls within the Group 0 class defined in section 8.2, 
but is not an "otherwise" linear" structure. From a strictly linear point of 
view, the two parallel FIR filters at the input are redundant. However, 
when the saturation block separating the two filter outputs is considered, its 
capacity for implementing an interesting class of dual-mode controls is 
recognized. An example using this type of compensator is given in section 
12. :

Restricting the discussion to otherwise-linear structures conforming to 
the group designations of section 8.2, it can be generally stated that the 
nonrecursive components of the structure are assigned by the nonlinear 
design procedure (design of the linear control region saturation boundaries), 
leaving the recursive terms (if any) of the compensator free for modification 
of the resulting linear, small signal control law. A tradeoff inevitably exists 
in specification of the nonrecursive pole terms of the compensator, since 
these effect both the nonlinear and linear behavior of the compensator. The 
additional degrees of freedom available from the pole terms, which effect 
only the linear operation of the compensator, may or may not be of value in 
achieving a particular combination of nonlinear (saturated) and linear 
behavior.

Due to the infinite number of possible structures, it is difficult to treat 
this subject in general terms. Such is the nature of control engineering 
design at an implementation level. Several specific design approaches using 
basic structural configurations will be discussed in the following subsections, 
and their performance demonstrated via computer simulation in section 10.

Zero Cancellation / Full Pole Placement: Continuous-Time Design
Consider the continuous time system modeled in control error 

coordinates, with a constant reference input r=R, as derived in section 8.5.

e = A^e — Bett + 7R (9.4.1)

Introduce the pseudo-input variable v such that

e = A*e — 6V + 7R (9.4.2)

where
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b =

v = pTu = [a0 ...a^i]
u
u (9.4.3)

aj = numerator coefficients of Gp(s)

7-
0

1

0

b0

= 7
9

(9.4.4)

b0 — constant coefficient of denominator of Gp(s) .

Define the control v in terms of the phase vector e, and optionally including 
a path from the reference input,

v = gTe + hr(t) . (9.4.5)

The closed loop system becomes
e = [Ag — &gT]e + [7 — 6h]R . (9.4.6)

with the choice of h=b0, 7—6h = 0, yielding
e = Age (9.4.7)

where

Ag =Ag-6ST =

0

0

1

0

0 0 

—b0—gi —bj—g2 hn—iSn

(9.4.8)

By appropriate choice of the vector g , the poles of Ag may be placed with 
complete flexibility. Note, however, that g is also responsible for the 
nonlinear characteristics of the compensator. The linear control region 
boundaries are defined by



229

gTe + hr = ±umax

The vector gT is equivalent to the generic phase feedback vector kT used in 
previous sections pertaining to the nonlinear design aspects of the problem.

The feedforward gain h is optional. It cancels the steady state position 
error by passing part of the reference input r. This translates all 
equilibrium points in the target set to the origin of the phase space. 
Feedforward techniques such as this are known to have poor robustness 
properties with respect to plant parameter variations, although there are 
well-established precedents for their use [Phillips84]. Any deviation in the 
steady state gain of the plant will upset the open loop compensation that 
contracts the entire target set to the origin.

The dual role of the Vector g creates restrictions or tradeoffs in the pole 
assignability.

The control is implemented as a forward loop compensator:

v = £ asuW = Y, gj+ieW +hr (9.4.9)
i=Q i=0

n-1

E u(s) =
n—1

E ei+is‘ e(s) + hr(s) (9.4.10)
(i=° J i=0

'■■n—.1' ■ ' ' ■.

u(s) = “T~e(s) + 7T-r(s) (9.4.11)
E ais‘ E V
1=0 i=0

The characteristic equation of the resulting closed loop system is

p(s) = sn+(bn_1-Hgn)sn'"1-l-...+(b0-|-g1) = 0 (9.4.12)

Note that selection of the coefficients gj such that for some 1 < p < n,

Sic’iiEp ®
and

Sp+ivjSn = P ■■ (9.4.13)
yields an effective reduction of order:
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p(s) ~ SpsP 1+..*+gi = o
This situation corresponds to the entrainment of the state in a sliding mode 
on the hyperplane ;

[gl g2—gp 0 = 0 .

In the case of an all-pole plant,

&x — 0 , . i—1, . . . , n—1

so that

' v ~ a0u . - ■

The compensator transfer function reduces to

u(s) = — 
a0

n—i‘ ’; .
S gi+is*
i*0

e(s) + ™r(s) 
ao

(9.4.14)

which is a differentiating filter devoid of pole times. As discussed in previous 
sections, a straightforward mechanization of this type of compensator is via 
a simple transversal filter of the form

u(k) — a0e(k) + a1e(k—l)+...+an_1e(k—n-fl) + ~^-r(k) (9.4.15)
. I

which falls within the Group 0 structural class. The coefficient of this 
purely nonrecursive structure account for both the linear regulation behavior 
and the definition of the saturation boundaries of the linear control region.

This remarkably simple, overflow-free compensator structure is 
applicable to a wide range of plants characterizable in phase variable form 
with the output equal to the first phase variable (y=xx). This includes 
unstable plants as demonstrated in section 12 and nonlinear plants in 
section 14. In such cases, the action of the compensator is the approximate 
extraction and gain weighting of the full plant state vector.
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Discrete-Time Design
The parallel ■ discrete-time design method directly yields a digital 

implementation. The corresponding discrete-time model in control error 
delay coordinates is1

e (k+1) = A^e (k) — b y(k) + 7R (9.4.16)

y(k) = Fu = [a0 • • * an_j]
u(lc)

u(k+l)

u(k+n—1)

0

6
n—1

l+Sbi
i*=0

The control law is given by

v(k) = gTe (k) + hr(k) . (9.4.17)
n-i

The choice of h=l+]T) hj yields the closed loop system 
i—0 .

■e (k+1) = A^e (k) (9.4.18)
where

A - (A. - bgT)

0 1 0

0 0

0 0 1

~b0—gi —bi~g2 ... ~bn_!—gn

The control is implemented as a forward loop compensator:

(9.4.19)

1 Note that and 'y refer now to the discrete time model as derived in section 8.6.



v(z) =
n-l /
£ aizl u(z) *

< . \ n—1

E fi+a*1
i=0^ / [i=0. J

e(z)+hzn *r(z) (9.4.20)

u(z) =

n—1 . '

i-o , x , , V
T''*(*) + ^IiV rWb-1 

i-0
E-M1
i-0

u(z) — —-\ j n—I
E ai?

[=0

i—n+l

n-l :
E gi+iz
i=0

i—n+1 e(z)+h'r(z) (9.4.21)

An appropriate structure is is shown in Figure 9.4.2. The structure conforms 
to the Group 1 classification, and is obviously a 3-D linear filter structure 
with a single imbedded saturation bound in the recursive loop. The 
discrete-time equivalent plant transfer function Gp(z), derived using the step 
invariance method, for a continuous-time plant of order n always has 
numerator degree n—T regardless of the numerator degree ©f Gp(s). 
Therefore, the compensator transfer function (9.4.21) is generally of equal 
degree in the numerator and denominator, both equal to n — 1. The 
structure of Figure 9.4.2 contains n — 1 delay elements in either the 
nonrecursive or recursive sections.

The vector g and gain h are responsible for the linear control region 
boundaries for the dual mode control:

an-i(9Te + hr) = ± umax (9.4.22)

The equivalent manifolds in the more intuitive normalized incremental phase 
space can be found using the similarity transformation defined in section 8.6.

£t*=cTATx (9.4.23)

Or equivalently, since A and Tt are nonsingular,

9T = —Tx1A“1gT
an—1

= — Tf(0.4.24)
an-l .

where the orthogonal transformation matrix Jn is defined in section 8.6. The
transformation (9.4.24) is useful in translating a continuous-time phase plane
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6-33-:

8-i 1 -a0anl 1
/

Figure 9.4.2 Digital Controller Structure for Zero Cancellation / Full Pole 
Placement Design Method



specification of the 
specification for the coi

boundaries of S2 into an equivalent pole term 
mpensator. zWe rely here on the approximation

9 ~k (9.4.25)
where fc, in this case, is the continuous-time phase feedback vector which 
specifies the bounding hyperplanes of S2.

As mentioned previously, tradeoffs exist in the choice of the vector g 
due to its dual role in iboth the linear and nonlinear aspects of the control 
■design.'' . . : j ...

' '! ■ ■ ' ' '

For second order systems or systems exhibiting dominant pole pair
Characteristics, design specifications are often given in terms of a natural 
frequency 0Jn and damping factor £ for a complex pole pair. and f are
defined in terms of the 
pole placement process

japlace domain poles. To facilitate the discrete time 
it is useful to define con and £ in terms of the a %- 

domain complex pole pair. The derivation is straightforward:
Let ps and ps represent a sta,ble complex pole pair in the s-plane, and pg 

and pz represent the corresponding complex pole pair in the E-plane via the
mapping

|pj =

z=esT Let pg — a+jP — | p2 | e^ where 8 — tan

“ ^ln(P*) = ^Tln(l Pz M*) 

= 1 Pz I +

-iA
a

and

oj«

c =

I ps I ~ y |jln l*v! )2 + 02]

-Re(ps) -InjpJ

%

To;*

(94.26)

(9.4.27)

Finally, in direct analogy of the continuous time 
consider the special case! of

we may
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and

gp+l>~,gn = 0

which facilitates an effective reduction of order

(9.4.28)

p(z) = TT1JnAJn[g1 0]
1

z (9.4.29)

This corresponds to the entrainment of the state in a sliding mode in the 
normalized incremental phase space, along the hyperplane

[§i §2 .* * * Sp 0 * * *. 0]e = 0 . (9.4.30)
The methods of approximately equivalent control, described in section 8.7, 
are applicable in such situations, and pole terms of the compensator become 
ineffectual in the control law.

Linear Equivalent Control and Quadratic Optimization
We now apply the developments of section 8.7 on approximately 

equivalent control, and section 9.2 on quadratic optimum control, to the 
design of the linear regulation characteristics of the compensator. The basic 
idea is to implement a dual-mode control which supplies maximal control 
power to drive all trajectories to the linear control region S2 defined 
approximately by | fcTe j < umax, and which then applies a linear control 
law inside S0 that assures kxt =0. The latter requirement involves 
application of a linear equivalent control as derived in section 8.7, which 
forces the trajectory to track parallel to the hyperplane fcTe = 0. This 
assures a response which is optimal with respect to the quadratic 
performance index

J(u) j k^e dt , tf free

for which the existence of a nonunique equivalent quadratic performance 
index ■

1 . r-’ tf ' ' ..
Jm(u) = / e TMe dt , tf free

> .f; o • V; ■..■■■■■■
is assured by the theorem of section 9.2.
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For the continuous-time system (9.4.1,2,3),s we consider the motion 
subject to the restriction k?e = 0, not necessary on the hyperplane JfcTe — 0.

fcTc = A:T[Age — 6y 4-7R] — 0 (9.4.31)

The linear control which generates this solution is

v ==
kTA^e '

k rh kTb
R

= -—-k^A^e + boR . (9M.32)

The control is implemented as a compensator,

v = 0?ua;u^ — ~~&TAee + b0r . (9.4.33)
i—0. .

Let the vector /T — . (9.4.44)

Then a transfer function can be written
a-1 v .
SM3' b

m(s)='~-i e(s) + ~rM (9.4.45)
E»is' °
i-0

where the final value theorem has been used to simplify the denominator of 
the r(s) term, since r=R = constant at all except a finite number of 
discontinuities (step changes in the operating point).

The transfer function (9.4.45) is only active after the state has been 
entrained in the linear control region $2. The saturating control law

«”fcTe=±umax (9.4.46)

is applicable outside of S2. The composite dual-mode control combines 
(9.4.45) and (9.4.46). Express the components of / as

■ li = kj -h

Then (9.4.45) can be written
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u(s) = ■ } ■v / n_l
E^1

i=0
A discrete-time implementation of (8.4.47) via a Group 1 class structure is 
suggested in Figure 9.4.3, in which the discrete time coefficients k^, m^ and 
a-i are found using some substitutional mapping from s to z in (9.4.47).

As before, the design may also be carried out using the discrete-time 
plant model (9.4.16) with equivalent results.

An example of this design method for a second order all-pole plant 
appears in section 12.

n—I n—1
E ki+is‘ + E mi+is’

=0 i=0
e(s) + b0r(s) (9.4.47)

General Compensator Synthesis
It may be observed that the previously discussed linear design methods 

yield controls for which either the compensator has not pole dynamics, or 
the pole dynamics cancel the zero dynamics of the plant. This is a 
consequence of the state space design approach, in which an appropriate 
linear compensation is determined to approximately implement a full state 
feedback control law. It is well known that pole-zero cancellation is dubious 
if inexact, and possibly risky if the canceled pole or zero is unstable. If the 
latter is not the case, such cancellation is convenient since then the 
compensation does not increase the order of the system beyond that of the 
plant. This is often a useful approximation even if the cancellation is 
slightly inexact.

In general, the denominator of Gc(s) or Gc(z) does not cancel the 
numerator of Gp(s) or Gp(z) respectively. The compensator dynamics 
increase the order of the closed loop system beyond the order of the plant 
alone. •' ' ’

A transform domain description of the problem might be summarized as 
follows:

V'"'' Np(z) Nc(z)
Given a plant Gp(z) = • ' ( ^ and compensator Gc(z) =

PpW
and the closed loop system described by

Nc(z)NpW

DpM

H(z) = (9.4.48)Dc(*PpW + NC(.)NPW 

The nonlinear half of the design problem effects only Nc(z). Both Nc(z) and
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Dc(z) participate in the linear design. With the polynomial Nc(z) 
constrained by its role in the nonlinear design, the linear (regulation) 
characteristics of the compensator are designed in the transform domain 
using any method of classical linear control synthesis. The continuous time 
design approach is exactly analogous.

An alternative formulation of the problem is an extended state space 
model 'which includes both the plant and compensator dynamics. 
Reasonably assuming the SISO compensator to be fully controllable and 
observable, a controller canonical form state description is always possible:

u (k+l) = Gu(k) + HjC (k) + H2e (k+l) (9.4.49)

For example, a second order (nc=2) compensator may be described by

u(k+l)
u(k+2)

0 1 f(k) x +il g2 u(k+l)

0 1
Si 62

u(k)
u(k+l) +

= Gu(k) + Hje (k) + H2e (k+l) (9.4.50)

A second order (hp=2) plant model in error delay coordinates is given by 

c (k+l) = A^e (k) - Beu(k) + 7r(k)

0 1 

—b0 —bx
e(k)

e(k+l)
0 0

8*0

u(k)
u(k+l) + 0 0 0

l>o bi 1

r(k)
rk+i
r(k+2)

Define the composite system state vector

: ,(k>=[uft
The overall system state equations may be written,

(9.4.52)

x(k+l) = A, -Be
H1+H2A€ G—H2Be x(k) + 1

H2T r(k)
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or
x(k+l) ?= #a:(k) -(- fr(k) 

Consider the difference vector,

g(k) = s(k+l) — x(k)
i (*-T)*(k) +"£r(k)

(9.4.53)

g(k+l) - g(k) = (^-I)(x(k+l)-a:(k)) + £(r(k+l)--r(k))

g(k+l)= #g(k) + |Ar(k)
For a constant reference input, Ar(k)=0, so we may consider the 
homogeneous system

' g(k+l) = ^g(k), (9.4.55)
Assuming nc < np, ^ is a 2nx2n matrix of rank equal to the sum of the 
orders of the plant and compensator, not withstanding possible pole-zero 
cancellations.

The closed loop system eigenvalues are the roots of

p(z) = det(zl—¥) = det zl—Ag ■ ; Be
H1-H2Ae zl—G+H2Be (9.4.56)

Employing appropriate identities for the determinant, (9.4,56) can be 
written as
p(z) = det(zl—Ag)det [zI-G+H2Be + (H1+H2Ae)(zI-Ae)_1Be] , (9.4.57)

a form which makes explicit the modifying effect of the compensation on the 
plant characteristic equation det(zl—Ag)=0. ;

The compensator matrices G, Hj and H2 facilitate programming the 
eigenvalues of (9.4.57). For the np==nc=2 example,

¥

0 1 0 0
b0 bj a0 —aj
0 0 0 1

hi-h3b0 h2—hgbj gi h3a0 g2~h3a.
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and

p(z) = z4 + (hsai”«*+bi)»3

+ (h3a0-g1-b1g2+a1h2 + b0)z2 

+ (a0h2+a1h2 bjg^ b0g2)z

+ aohj—b0gj

The matrices and H2 may be expressed in terms of the vector k, 
which defines the region of linear control in the normalized incremental 
phase plane:

Hi &£TTT+Jn+1A+Jn+1 (9.4.58)

h2 &£tTt+Jn+1A+Jn+1 (9.4.59)

where

b

0

(9.4.60)

and k, Tt|, Jn+1, A+ are defined in section 8.6 via equations (8.6.18) 
through (8.6.56). Using (9.4.58-60), (9.4.57) can be rewritten,

/; . -
p(z) = det(zX—A^det >I-G + MTTfiJn+1A+Jn+1

O
■

s \

+ 6fcTTT|Jn+1A+Jn+1 !n + 6t A* (Zi-A,r'b«
<

(9.4.61)

This form makes explicit the dependence of p(z) on k. It is unnecessarily 
cumbersome for hand calculation, but is amenable to direct implementation 
by a computer algorithm.
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PID Compensator Synthesis
Proportional-integral-derivative compensators are often applied in servo 

control problems to facilitate a Type one closed loop system. However, the 
well knoWn integrator wind-up problem associated with controllers which 
contain a free integrator normally results in an unacceptable transient 
response for bounded input plants.

A special design approach is applicable to PID controllers mechanized 
via internally saturating Group 3 digital structures. It is assumed that the 
plant is of second order, or exhibits dominant pole-pair dynamics.

Consider the compensator structure of Figure 9.4.4a, decomposed 
according to its equivalent continuous time functional blocks in Figure 
9.4.4b. The structure can be treated as a proportional-derivative (PD) filter
cascaded with a proportional-integral (PI) filter.

The equivalent Laplace domain transfer function describing the linear 
behavior of the compensator may be written by inspection:

(l+-y)(kI+k2s) 

k2s2+(ki-|-Kjk2)s + K;ki... ......--1..... s 2)-------— (9.4.62)
S

where

kT = &TTf 1JnAJD

and Kj = TKj . (9.4.64)

It has been established that if the vector k satisfies one of the forms of 
the attractiveness condition (section 8.6), then the state is eventually 
entrained within the linear control region S0, defined by the coefficients of 
the PD block. The signal at the point labeled w in Figure 7.4.4 is a measure 
of the norm distance of the state from the hyperplane k e =0. The action 
of the PI section of the compensator is effectively to null the signal at w to 
zero. Thus, the integral action serves to regulate the state to this 
hyperplane. Drawn to the hyperplane (a line in this case) and eventually 
tracking it, the system may exhibit certain singular perturbation properties 
(see sections 8.7 and 9.2). The origin is approached asymptotically, and the 
corresponding quadratic performance index J^(u) or J(u) is minimized.

(9.4.63)

Gc(s) =
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Employed as a forward loop compensator with a second order strictly 
proper linear plant,

a^s-bag
Gp(s) —

s2+b1s+b0

the closed loop characteristic equation is

p(s) = (l+a^ajs3' + (Q!1a1-+-a2a04-bi)s2 + (o^-k^ag+b0)s + a0a0 — 0 (9.4.65)

where ckq

ai 
a2

A A

Generally, kj and k2 are chosen to specify a linear control region with a 
sufficiently large domain of attraction. This leaves Kj to establish stable 
roots of the linear characteristic equation (9.4.65); which will assure the 
asymptotic stability of the origin. A root locus plot parametric with Kj is a 
useful tool for this design procedure. Often, a dominant pole pair emerges, 
and if complex, the linear behavior may be characterized by such second 
order metrics as the natural frequency 6Jn and damping factor £.

An example of the PID design procedure is given in section 12. A PID 
structure of this kind is also shown to yield an effective servo-control for a 
nonlinear plant in section 14.

= kiki
’.A A A

- kj + kjk2A
= k2



a) Digital PID Structure

Figure 9.4*4 One Configuration of a Digital PID Compensator
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10. ROBUSTNESS AND PRACTICAL LIMITATIONS

10.1. Measurement Noise and Numeric Approximations for 
Differentiation

Consider the effect of corruption of the measurement of y by an 
additive source of zero-mean noise with bounded characteristics, as depicted 
in Figure 10.1.1.

r

Figure 10.1.1 Model for Measurement Noise Analysis

Let y==y + ?7 (10.1.1)

y ^ noise-corrupted measurement of y 

f) ^ noise signal

The magnitude ot rj and its n derivatives are assumed to be bounded, 
either by component-wise constraints of the form,
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b(l) l< vtlx i = °»-.n
or normed constraints of the form,

lklli<V

where 7] is positive constant.

(10.1.2)

(10.1.3)

V

V
h

(n-l)
;w

6IRn+1

V
and i = 1, 2, oo designates the appropriate norm.

It is convenient to treat the noise source as summed with the reference 
input r. Define the vector

r V
r V

n —

r(n-i) 0 
, I s—•

rfn) yW

= r - 7? (10.1.4)

Then the continuous time control error model for the closed loop system 
is modified:

e — Aee — Beu + 7 f (10.1.5)

We first consider the effect of this noise on the domain of attraction of 
the linear control region. The right attractiveness condition for r = R, 
! R |< Rmax, |u |= umax, is modified:

*T[Aeel <'*1

1 1 1

Be 0 Umax < kT Be 0 Umax Tf 9 R + iv

.6. .0. .6.

(10.1.6)

Similarly, the left attractiveness condition is modified:
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1 i
kT[Aee ] > A:t -Be 0

umax T
0 R + iv

6 6

(10.1.7)

For |R J<Rmax, and bounds of the form (10.12) on f], a combined worst-case 
two-sided attractiveness condition may be written

j kTAee | < kT Be umax "T R ~ C, (10.1.8)

where, Cy = &T77|e

*1 max

^max
7?max

Y) (n '/max
'/max

(10.1.9)

For norm bound constraints of the form (10.1.3), the Cauchy-Schwarz 
inequality may be applied to yield an upper bound,

C„ < pT-r II n (10.1.10)

for some constant Tf.
In either case, the term Ctj > 0 decreases the domain of attraction as 

given by (10.1.8).
We may also investigate the effect of measurement noise on the linear 

control region boundaries. With a noise term added to the control error 
measurement,

e = r — y — r\

and
e = r _i y - v ,

where now, rj £ IRn.
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This introduces a degree of ambiguity in the boundaries of the linear 
control region S2 which can be seen by inspection of the bounding 
hyperplane equation for the linear region; In the presence of poise,

e — r — y — rj = e — rj (10.1.11)

so that the linear control region boundaries are modified

k^e ==:}£*& - kTn = ± umax _

k^e == d-umax + kP^rj . ' l (10.1.12)

Inner and outer bounds on the boundaries (10.1.12) can be established 
using restrictions (10.1.2) or (10.1.3) on rj. For the component-wise bounds

kTe = ± umax i /jTpmax . (10.1.13):

(assuming kj> 0). Similarly for the norm bounds (10.1.3),

kTe = ± umax + \\kT\\fj . (10.1,14)

It niay be noted in either (10.1.13) or (10.1.14), that since it is entirely 
possible that &Tpmax > umax, or ',||fcT \\fj > umax, in the presense of noise, 
the linear region may be only nebulously defined as a region ultimately 
contained within the convex hull

S3 = {e : \kTe J< umax -f &T*7mai} f (10.1.15)

for component-wise bounds (10.1.2), or
S3 = (e: \kTe |< umax + jj*T \\r)} (10.1.16)

for norm bounds (10.1.3).
These results have a direct practical interpretation. In the ideal case 

modeled by (10.1.5), the vector e, consisting of e and n-1 of its derivatives, is 
extracted by a differentiating filter. With e — e — rj, noise amplification in 
the measurement of c takes place, due to the differentiation action of the 
filter. This has the effect of introducing ambiguity into the definition of the 
linear control region, and reducing its domain of attraction. As a practical 
design consideration, some noise margin C); may be allowed when the 
modified attractiveness condition (10.1.8) is applied to validate a particular 
choice of k, which specifies the numerator coefficients of the compensator 
Gc(s) (or Gc(z)).
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The approximate differentiating action of the nonrecursive section of 
the compensator is far from ideal. Unlike true differentiation in continuous 
time, unbounded impulses are not generated when e(t) contains 
discontinuities of the first kind (and higher kinds as well). Consider the 
backward difference approximation of a differentiator. Suppose e(kT) is a 
sampled representation of an input signal containing a step discontinuity of 
height 6 occurring at kT <t0 < (k+l)T, and q(t) is the numeric 
approximation of the ith time derivative of e(t). Assuming zero initial 
conditions,

q(z) = z—1 

zT
>(z) = 1-iz 5(z)

q(t) » j e(kT)—e((k—l)T) j =

(k-l)T < t < kT

0 , otherwise

whereas the actual i4*1 derivative is
q(t) = e |f(t - t0) f »

where £(*) is the unit impulse function.
An alternative interpretation is to consider the approximate 

differentiation as ideal differentiation followed by a low pass filter. The 
zero-order sample and hold, fundamental to the discretization process, does 
indeed exhibit a nonlinear low-pass filter characteristic.

The magnitude and phase characteristics of the zero-order-hold are
shown in Figures 10.1.2 and 10.1.3, normalized to the sample frequency

27TH = Tp Provided that the bandwidth of the additive noise r) is limited to
7Twithin the Nyquist bounds to < —, either intrinsically or by a sensor

prefilter, the low pass characteristic of the discrete-time implementation may 
actually be beneficial from the point of view of noise rejection. This is 
illustrated in Figures 10.1.4 through 10.1.7, which are logarithmic plots of 
the amplitude and phase characteristics of backward difference and bilinear
z-transform approximations of a simple differentiator, —(•) s, relative to
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an actual differentiator. Considerable phase lag occurs for frequencies
: 7rapproaching the Nyquist limit A— = —. It is interesting to compare the

2 T?
relative magnitude plots for each realization. A backward difference 
realization degrades continuously in magttHude, asymptotically approaching 
— co dB at the sample frequency ojs. The relative magnitude for the

v ,,-:A ■■ '
bilinear-z realization becomes unbounded at w= —, prior to asymptotically

2
degrading to — oo dB at ui = cus.

Plots for backward difference and bilinear-z realizations of the second 
order differentiating filter s2 -f- s + 1 are shown in Figures 10.1.8 through 
10.1.11.

Note that all plots represent the total filter behavior, including the 
effect of sample reconstruction via a zero-order hold. Four cases appear on 
each plot corresponding to different sample frequencies ojs — .1, 1, 10, and 
100. The filter coefficients were static. All frequency scalings are 
normalized to the corresponding sample frequency >S-

The plots of Figures 10.1.2 through 10.1.11 were generated by the 
FORTRAN program RW. A source code listing is included in the appendix. 
RW calculates the following metric for the performance of a discrete-time 
realization of a Laplace-domain-specified transfer function:

Rw{cu,T)

where f(z) is the mapping from the z to s domains chosen for a particular 
filter realization; e.g.,

For a backward difference realization,
1-z-1

For a bilinear-z or cuplane realization,
. 1 z—1s =—----- .

T z+1

l_e~j«T
---------- is the frequency domain characteristic of a zero-order hold.
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Rw( w,T) is a complex index of the magnitude and phase characteristics 
of
an arbitrary discrete-time filter, relative to the corresponding ideal filter 
behavior.

Figures 10.1.4 through 10.1.11 demonstrate the (probably trivial) 
conclusion that, between the two substitutional (or mapped) discretization 
methods studied here, the backward difference method is superior for 
realization of differentiating filters due to the gradual roll-off of |R w(^T) I as 
the Nyquist frequency ooj2 is approached. This is compared with the 
bilinear-z realizations, for which the gain becomes unbounded at this limit. 
The former approach is obviously superior from a noise attenuation point of 
view.

As a counterpoint, Figures 10.1.12 through 10.1.15 illustrate Rw(w,T) for 
backward difference and bilinear-z implementations respectively, of the
single pole low pass filter characteristic Gc(s) = ^ . For sample rates

within an order of magnitude of the pole frequency of this filter, 
(ojs < 10x(0.l)), the bilinear realization is clearly more faithful to the ideal 
characteristic, exhibiting less magnitude and phase distortion for u> < cus/2. 
This difference is nullified in the cases for ojs > 1, where in fact, the 
backward difference method might be judged superior due to the absence of

' ■ H 7T
the deleterious asymptotic magnitude and phase behavior at lo = —- = —.
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Figure 10.1.5 Phase Distortion, Backward Difference Implementation of a
Differentiator
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Differentiator
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Figure 10.1.11 Phase Distortion, Bilinear-Z Implementation of a Second
Order Differentiating Filter
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Single Pole Filter



Ma
gn

it
ud

e 
di

st
or

ti
on

 C
dB

> 
CX
TO

264

Bilinear 2 Implementation of ,l/(s+.l)

Normalized Fr eq. loq<«/us>
parametric uith us

Figure 10.1.14 Magnitude Distortion, Bilinear-Z Implementation of a Single
Pole Filter
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10.2. Plant Parameter Variations and Disturbances
We consider the effect of disturbances translatable to the plant input, 

and plant parameter variations (model uncertainties) on the performance of 
the saturating linear control. The model being analyzed is shown in Figure 
10.2.1. ' '■■■■•

g(t)

Figure 10.2.1. Closed Loop Disturbance Model

The plant state equations are modified;
x — A x + h(x,i) + 6(u + fi) (10.2.1)

Ty = c x

Assumptions:
i) h(x,t) satisfies the matching condition: 3 g(x,t) such that

h(x,t) = b g(x,t) (10.2.2)
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ii) For

'9{x>t) =
g
g

(n-l)

(10.2.3)

g(x,t) is constrained by either component-wise bounds of the form
rO) <gW^ Bmax i = 0,...,n—1

or norm bounds of the form

Jiff llj < r,
where j = 1, 2, oo designates the norm type, 

in) For

(10.2.4)

(10.2.5)

P(t) A

/*'

U
(n-l)

< „(0^ rmax

u(t) is constrained by either component-wise bounds of the form

i = 0,...,n—1

or norm bounds of the form

Hm IIj < u ,
j =1, 2, oo designates the norm type.

Subject to the matching condition (i),
. i = A x -\- b (u + //(t) + g(x,t))

(10.2.6)

(10.2.7)

Ty = c x
The closed loop system in control 
section 8.5),

e = Ae e - Be(u(e ) + /i(t) + g{e ,t)) + 7 r

' where .

ff (e ,t) = g (e (&),t) , r = Tx. V.

(10.2.8)

error phase coordinates becomes (see

(10.2.9)

(10.2.10)

We may now investigate the effects of /i(t) and /i(x,t) oh the domain of 
attraction of the linear region, and therefore the allowable combinations of
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k, umax, and Rmax for the uncertain system (10.2.9). 
For the linear region defined by

l^yj^umax

. w = & e
and the saturated control, valid for |w] > umax, is

u = sgn(w) umax , : ?

(10.2.11)

(10.2.12)

we choose, as before, the generalised Lyapunov function V = w2 and
■ ; 2

require that the Lyapunov derivative V — ww be negative for |w;J. > umax.
The right attractiveness condition, corresponding to w>umax, and 

r = R, r^ = 0, i=l,...,n, is

(10.2.13)

Similarly, the left attractiveness condition, corresponding to w < umax is

1 1

[Ae e ] < Be
0

umax + Be(M + S) + 7
0 R

6 i ■ 6

1 1

/cT [Ae e ] > "Be 9 umax Be + 9 ) + 7 9 R
6 6

R

(10.2.14)

The combined two-sided attractiveness condition, accommodating all 
<Rmax, can be expressed as

C (10.2.15)

where

1 1

kT [Ag e ] <fcT Be 0
umax — 7

0 R
6 6

-

C/( < max kT Be (A* + <})
p,s

(10.2.16)

For the component-wise bounds (10.2.4) and (10.2.6) on g and /i 
respectively,



<v< 11

IA Ahnax1 1/^1 Smax 1

IA Vmaxi
+

1 Aj Smax 1
.

IA Mmax 1
'

IA et-x1’!
- • >

(10.2.17)

where we have used the fact that the matrix Be has non-zero components 
only in the bottom row, which contains the vector /3T, with $ defined in 
section 8.5.

For the norm bounds (10.2.5) and (10.2.7) on g and ju respectively, the 
Cauchy-Schwarz inequality may be applied to yield an upper bound

C/( < li'fcT Be II (U +T) . (10.2.18)

In either case, it is seen that the disturbance and uncertainty factor C/( 
serves to reduce the domain of attraction for any given linear region 
established by k and umax. The inclusion of C/( in the modified 
attractiveness condition (10.2.15), therefore reduces the set of k e IRn which 
establish fully attractive linear regions.

Recally that as a design equation, the attractiveness condition is used to 
qualify candidate phase feedback vectors k (which define the numerator 
coefficients of Gc(z)), for given specifications Rmai, umax, and limits (10.2.4)- 
(10.2.7:)., ; ■■■ ■; - ■

As before, its usefulness depends on knowledge of the operational subset 
SQ of the e space in which the state is restricted.

For the norm bounded compact subset
S0 - (e : Me ll< e) (10.2.20)

we can apply the Cauchy-Schwarz inequality to (10.2.15) to yield

(10.2.21)

In practice, (10.2.20) is often an excessively conservative condition, which 
leads to a slower transient response than necessary to satisfy the basic 
attractiveness condition (10.2.15). Lacking exact knowledge of SD at the

kT Aa < k1 R
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outset of a design, (10.2.20) yields a conservative starting point, from which 
the design may be later optimized iteratively.

10.3. Sample Rate Considerations for Discontinuous and Multiple 
Mode Controllers

A procedure is proposed for determining an upper bound on the sample 
rate T, for multiple-mode controls of the type proposed herein, and also for 
the class of discontinuous controls in general. The analysis is restricted to 
SISO linear plants, although direct extension to at least weakly nonlinear 
and MIMO plants seems plausible.
Define:

*(k) = T^e(k,=
rp

distance to hyperplane k e = 0 
(Euclidean norm assumed) . (10.3.1)

change in w(k) in a
S = |w(k+l) - w(k)|= siig|e samp|e' iod. (10-3-2)

The goal is to determine an upper bound on T such that, subject to a 
constant bounded control (u |< umax and reference input [r |< Rmax, when 
the state is inside or near the linear control region S2 nominally established 
by kTe (k) < umax, 8 is upper bounded by some positive constant <5max.

For a dual-mode control such as that implemented by a saturating 
digital compensator, <5max represents a maximum possible depth of 
penetration into S2 in a single sample period. This depth represents a 
measure of ambiguity in the absolute location of the hyperplane boundaries 
of S2, as a consequence of the discrete time implementation.

For discontinuous controls, including relay and variable structure 
controls, <Smax represents a bound the state deviation from the switching 
surface attributable to the fast motions of the sliding mode on the surface.

Combining (10.3.1) and (10.3.2) gives

SI*1 IS kT(e (k+1) — e (k)) , (10.3.3)

where the control error delay vector c (k) satisfies

e (k+l) = AgC (k) — Beu(k) + 7r(k) (10.3.4)

as detailed in section 8.6.
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r
Subject to a constant bounded input ju |< umax and reference input 

R, |R |<Rmax,

e (k+1) = Aee (k) - beu + iR (10.3.5)

where,

and

0 0

be - 6 = 6
n—1

ai
NP(z=l)

01

Q 9

= ■ 6 = 6
n-l

1+S>>i
Dp(z=l)

i=0

(10.3.6)

(10.3.7)

GP(z)

n-1
£aiz!
i=0

n—1 

i=0

NpW
DP(Z) (10.3.8)

Employing the final value theorem in the z-domain and s-domain 
respectively,

Gp(z—1) — GP(s—0) — Gss =

n-l
£aii=0Np(Z-I) = ___________

"'•iZ 11 ' i • \;\
i=0

(10.3.9)

Note that
NP(z=l) = Gss DP(z=l) (10.3.10)

.and'

Dp(z) = II(z - Aj) (10.3.11)

where A: is the ith eigenvalue of the discrete time system, and
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A; — €
X|T (10.3.12)

for Xj the 5th eigenvalue of the equivalent continuous time system. Then

Dp(z) = U {z - eXiT);i =f= 1 ■ (10.3.13)

and

np(z-i) - g„ n (i - £XiT)
1 = 1

(10.3.14)

From (10.3.3) and (10.3.5),
1

8 <

8 =

II* ||

II*
A:t[(Ae-I)e(k)-&eu + 7Rj

| fcTAee (k)|+ \kTe (k)|+ J/cT6e ju \kTl^i\ (10.3.15)

Since the two-sided attractiveness condition (section 8.6) is assumed 
satisfied in a sufficiently large, domain of attraction, we are assured that

!^TAee(k) |< |^T6e|umas - l^^lRmax (10.3.16)

Combining (10.3.15) and (10.3.16) and observing that u < umax and
^ — ^max>

8<
11*11

l*T6. K,„ - |kT7 K„ + |fcT« (k)| + |fcT6,|um„ + |kT6c |R'max

8 <
I!/.- II

2|&T&e Umax + \kTe (k)| (10.3.17)

We are interested in trajectories near the median hyperplane of the 
linear control region, k?e (k) = 0. In this locality, (10.3.17) reduces to

2u,........... . . '
(10.3.18)8< Amax

IS* II
Employing (10.3.6) and (10.3.14), (10.3.18) may be written

2u„
8 <

ilk ii
G„ k„ n (1 - eXiT)

i=l
(10.3.18)
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Referring to Section 8.6, recall that
kT = ltTTf 1A~1

[kik2...kn] = [k1k2...kn]

so that

1
-1
T
1

tl1n—1
in—1

0 0

— 0 T
-1 1

rp2

0

0

-<n—1

k„ = in—1

We make the following observations: Let | X|max denote the 
eigenvalue magnitude over the spectrum of the plant:

i^Lax = max {| Xj}, i=l,...,n 1
For Xj real and nonpositive

|i-r'XU| > j3.—eX;T| , i=l,..„,n .

For complex pairs Xj and Xi;

| (l-eXiT)(l-eXiT)j= jl-eXiTj2 < jl — e_,X|nnxTj2 

We make the assumption that T satisfies

NmaxT > !l-e"|X-|T| ,

<r—bniax|T
or T > 1—e

IX t
Using (10.3.21), (10.3.23) and (10.3.24) in (10.3.19),

X s< 2GssUmax ^ _ e-|X|maxTjn j£ j < 2<3Ssumax
P Hr -1 xii

(10.3.20)

(10.3.21) 

maximum

(10.3.22)

(10.3.23)

(10.3.24)

(10.3.25)

ax Tn | kn I
life ||Tn—1
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<

To assure <5 <5,

2Gssumax I ^'ltnax IL |T
II* li

it is sufficient that— - max?
2Gssumaxl Ximax: IknlT

x P IS
Combined with the assumption (10,3.23)

— Lax

(10.3.26)

(10.3.27)

1-6“IMmaxT
IXL

< T <
Lax II* II

2G§sumax

An appropriate maximum choice of <5n for a dual-mode control is

(10.3.28)

_1_
n

2uinax

"PT (10.3.29)

The reasoning here is that
2ur
II* II

is the nominal separation of the bounding

hyperplanes of S2. We note that a delay of n —1 sample periods is required 
by the nonrecursive filter to fully extract the (delay variable) state vector. 
To assure that the boundary crossing event at Are = umax is recognized

*T*
before the state crosses the opposite boundary at Are =~umax? a minimum 
travel time across the linear region of n sample periods is recommended. 
Conversely, if it can be assured that the state can migrate no more than 1 /n 
of the width across S2, we are assured that within the n — 1 sample periods it 
takes the controller to recognize the boundary crossing event, the state will 
still be within S2, nominally bounded by |A;Te |< uEAmax*

For this choice of <Smax, (10.3.28) becomes

1—6 |X|,
< T < (10.3.30)

I X | max nGssl X| max ILL

In conclusion, if T satisfies (10.3.30), then at least in S2, the maximum state 
transition orthogonal to the boundaries of S2 in a single sample period is 
within l/n times the separation of the boundaries A;Te =±umax.
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Example

n = 2, I XI max ” 2> Crss = 2, k =[8,4], kn = k2 = 4

T <
(2)(2)|2 |214 |

= .015625 (10.3.31)

1_ —2( 015625)
Verify that ----- ;----- :----  = .015383 < .015625 .

1-2 |
Therefore, condition (10.3.30) is satisfied for any T < .015625.

This result may be compared with a more conventional metric based 
upon the Nyquist sampling theorem:

H = ~ > 2lX|max = 4

T < j = 1.5708 (10.3.32)

Comparison of (10.3.31) with (10.3.32) shows the special requirement 
(10.3.30) for this class of controls to be far more stringent than linear 
considerations alone would indicate.

An alternative way in which (10.3.27) can be applied is the selection of 
an appropriate width w for the linear control region, given a particular 
sample period T. Equating (10.3.27) with (10.3.29) and solving for |kn|,

|£J<
nG»|X|"T

(10.3.33)

Observing that the ratio P
an indication of the norm | 
region width

j- is constant with respect to kn, |kn | provides 

&jj and therefore the nominal linear control

w =
2u„

(10.3.34)

From stability considerations described earlier, kn (actually, all components 
of h) is/are positive, so that the magnitude |kn| in (10.3.26) through 
(10.3.30) may be replaced simply by kn.

Historical reference is made to the observation of K. Izawa [Izawa63] on 
the effective location of the switching line for a sampled data relay control.
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11. COMPUTER AIDED ANALYSIS AND DESIGN TOOLS

During the course of work on this topic, several computer programs 
were written as required in support of particular analysis and design tasks. 
These are mentioned in various sections, and source code listings are 
included in the appendix. All of the larger programs were written in 
standard FORTRAN 77 and the UNIX control language CSH, with calls to 
IMSL (International Mathematics Standard Library) math subroutines and 
local ECN (Engineering Computer Network) utility functions.

Two FORTRAN/CSH programs were developed to a level of robustness 
and user-friendliness suitable for general public usage. These are the 
general purpose digital control system simulator CONSIM, and the digital 
control design aid program DIGCON. Both include interactive help 
availability, and a maximum of compatibility with other related programs 
and standard conventions. An overview of these programs is provided here, 
primarily from a user interface point of view. Complete source lists and 
sample outputs are provided in the appendix.

All computer simulation results in this report were generated using 
CONSIM, and whenever appropriate, DIGCON was employed as an analysis 
and design aid for the design examples of section 12.

11.1. CONSIM - A General Purpose Digital Control System 
Simulator

Early in this work, the need was recognized for a robust control system 
simulation program capable literally emulating a digital compensator 
coupled to a continuous time plant in a closed loop configuration. Current 
commercial control simulation languages (at least those available at Purdue 
University) lack this capability.

An excellent digital filter analysis program DINAP was written at 
Purdue by S. E. Belter and S. C. Bass [Belter74], which implements the 
required level of emulation of a single input/single output digital filter
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structure. Unfortunately, DINAP does not permit the coupling of the filter 
to any other dynamic system, as required for control system analysis.

Several excellent control system simulation languages are available 
commercially, e.g., CSMP from the IBM Corporation and LSAP from the 
University of California at Berkeley. However, these do not provide the 
needed digital filter emulation and analysis capability of DINAP.

To address this need, and provide a vehicle for analysis and verification 
of the digital controls developed in the course of this study, a FORTRAN 
and CSH-based general purpose digital control system simulation 
program/language was written that implements both digital filter emulation 
capabilities (like those of DINAP) and continuous time dynamic system 
simulation capabilities. The program CONSIM (Control Simulator), was 
originally written to address the specific needs of this analysis, but has been 
enhanced through several versions over a period of three years to a level of 
generality suitable for general public usage.

Input information is provided to CONSIM in the form of a text file 
containing a series of statements which direct the action of the simulation 
and specify unambiguously the system to be analyzed. This interface 
philosophy is similar to the CSMP language, and the electronic circuit 
analysis program SPICE (Simulation Program with Integrated Circuit 
Emphasis), from the University of California at Berkeley.

Statements which specify the digital compensator structure are exactly 
the same as those used for input to DINAP. This facilitates direct transport 
of filter analysis files between DINAP and CONSIM.

Arbitrary linear and nonlinear digital filter networks are constructed by 
interconnection of nodes (registers) with functional branches (numeric 
operations). The structural specification method follows philosophically from 
the structural specification, method of Crochiere and Oppenheim 
[Crochiere75] described in section 5.2, and is specifically compatible with the 
notational system proposed in section 6.2 for analysis of saturation limited 
structures.

Branch operations consist of the usual addition, multiply, and delay 
operations of DINAP. However, this set of operations is expanded to include 
three kinds of limiting nonlinearities (saturation, radix overflow and zero- 
on-overflow), a conditional switch operation, and arbitrary selection of the 
possibly multiple input and output nodes for interconnection with the 
continuous time dynamic system.
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Numeric quantization effects are not simulated, as these have little or 
no relevance in the transient response problems for which the simulation was 
intended to be applied.

The continuous-time dynamic system simulation mechanism of CONSIM 
uses the IMSL subroutine DVERK, a robust numeric differential equation 
solver employing a fifth or sixth order Runge-Kutta method. CONSIM 
internally provides linear plant models of up to fifth order, specified by the 
coefficients of the corresponding transfer function. Higher order linear and 
arbitrary nonlinear models may be specified also, but this requires 
recompiling the main program module in which the controller is specified.

CONSIM provides tabular output of up to six nodes in the system, and 
both time response and phase plane portraits of selectable nodes. The ECN 
plotting routine QPLOT is used internally to provide a standard graphics 
output format, which may be printed on a graphics printer or displayed 
directly on a graphics terminal.

Single and double precision versions of CONSIM were written, to permit 
a tradeoff of execution speed vs. numeric accuracy.

A reasonably complete description of the input file format and complete 
capabilities of CONSIM is provided by the program’s help file, reproduced 
below.
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CONSIM Digital Control System Emulator/Simulator

Description:

CONSIM is a general purpose simulator for control systems containing a 
digital compensator in the forward loop.
Syntax:

consim{2} inputfile
where: "consim" runs in single precision and "consim2" runs in

double precision
"inputfile” is a file containing the input information for 
the simulation run, as described below

Required Files:

consim or consim2
consim.prg or consim2.prg (unless recompiling) 
consim.f consim2.f (only if recompiling) 
consim.help rplot.
plotgfl,2,3} (for Tektronix or Sun workstation plots) 
priritg{l,2,3) (for hardcopy plots)
Capabilities:

-Provides an exact emulation of a digital filter network in conjunction 
with a continuous-time (linear or nonlinear) plant.

_ Continuous-time simulation using fifth/sixth order Runga-Kutta numeric 
method for solution of differential equations at user selectable 
iteration intervals.

- Digital filter network description is compatible with the program
DINAP, so that input files for DINAP can be used directly for specification of the digital compensator network.

- Sample rate of the controller is idependent of the iteration 
rate of the simulation. The parameter for setting this is "dtc".

- Provides transient response analysis and a phase plane plot 
for user specified output variables.

- Output data available in tabular and plotted forms. Plots 
generated using QPLOT for output to Printronix or Versatec printer,
HP pen or inkjet plotter, Tektronix graphics terminal or Sun workstation. 
Plots are automatically labeled with critical information on the 
system configuration being simulated, and an optional title.

- Input information for each simulation run is specified in an input file, 
which contains the digital network description, the continuous-time 
plant description, bounds on the control variable, the sample rate and 
iteration rate, input function specifications, initial conditions, 
control information for the simulation, and specifications for
the plotted and tabular outputs.



Description of the input file:

mo

The input file contains all information needed by the program 
to execute a simulation run.

The following is a list of all possible variables that may be 
specified to the simulation. They may be specified in any order, anywhere 
in the file, one variable per line. (The program 'greps1 the information 
from the file.) Default values are built-in for all variables. If a 
variable is not set in the input file, it is assumed to be equal to its 
default value. The default values of each variable are given.
Variable Default Range/Type Description

Simulation Control Specifications: 
recompile n y or n

dt .005 'numeric

dtc .005 numeric

tmax 8.0 numeric

Plant Description:
plant linear linear,

nonlinear

pltord 

ap{0 - m)

0 numeric

0 numeric

apfO - n-1} 0 numeric

kp 1 numeric

y - to recompile source code 
n - don't recompile
the iteration rate of the simulation, 
dt establishes the resolution of the 
output plots.
The accuracy of the Runga-Kutta method 
is independent of this specification.
the sample period of the digital compen
sator, or output sampling period of 
the continuous-time compensator. •
ending time in seconds for the 
simulation. The starting time is 
assumed to be t=0.

linear - plant is linear SISO described 
by coefficients of its transfer function 
nonlinedi: - plant is nonlinear, describ
ed by state equations in the source 
program code. It is necessary to speci
fy recompile»y if this option is chosen 
and the plant state equations are modi
fied. This classification includes 
linear plants which are specified by 
state equations rather than a transfer 
function.
the order n of the linear plant, if 
plant=linear is specified.
apO through ap{m} are the numerator 
coefficients of the linear plant trans
fer function, where m is the degree of 
the numerator.
bpO through bp{n-1} are the denominator 
coefficients of the linear plant trans
fer function, where n is the degree of 
the denominator. The leading bp{n] 
coefficient is assumed to be 1, and 
heed not be specified.
the gain factor of the plant transfer 
function.
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xp[l - n) 0 numeric

umax 9999 numeric

umin -9999 numeric

Input Function Specifications:
input none step,ramp 

impulse,none

to 1 sec time in 
seconds

rO 0 numeric

stepht 0 numeric

rmpslp 0 numeric

impht 0 numeric

Compensator Specifications:
comp emu prop ,1,2,

ext,emu

ac{0 - m} 0 numeric

bc{0 - n-1} 0 numeric

kc 1 numeric

initial conditions for the phase 
variable representation of the linear 
plant model.
the hard saturation maximum bound on the 
control input to the plant
the hard saturation minimum bound on the 
control input to the plant

specifies the type of reference input 
function presented to the closed-loop 
system for t>tO
time of application of the specified 
input function
value of the reference input for time 
prior to to
if input=step, height of the step 
input applied at t=tO
if input=ramp, slope in units of the 
input normalized to time in seconds, 
of the input ramp input function applied 
at t=tO.
if input=impulse, height of the impulse 
function, applied for a single iteration 
of duration dt (see below).

prop - proportional-only compensator 
with gain kc
1 - 1st order linear continuous-time 
compensator
2 - 2nd order linear continuous-time 
compensator
ext - externally specified compensator 
state equation description must be 
in file named ext.comp ; no limitations on compensator (linear/nonlinear, any 
order), but must recompile when compen
sator is modified.
emu - digital compensator with network 
description specified in this input 
file, with DINAP-compatible branch 
descriptors. (see Digital Compensator 
Specification below)
if comp* 1 or 2, acO - ac{m} are the 
numerator coefficients of the compen
sator Laplace transfer function, where 
m is the degree of the numerator.
if comp= 1 or 2, bcO - bc[m} are the 
denominator coefficients of the compen
sator Laplace transfer function, where 
n is the degree of the numerator.
if comp* prop, 1 or 2, kc is the gain 
factor of the compensator.



xp{l - n} 0 •. numeric if comp= 1, 2, or ext, xpl - xp{n} are
the initial conditions of the phase 
/variables of the continuous-time 
compensator.

Output Plotting Specifications:
transplot y y or n $ - plot a transient response plot for 

time 0 to tmax.
n - don't plot transient response.

phaseplot y y or n y - plot a phase plane portrait of the 
control error e. • , . 
n - don't plot phase plane.

inputplot y y or n y - plot a phase plane portrait of the 
control input u. 
n - don't plot phase plane.

title blank char string The title to be shown at the top 
of all plots and tabular listings

ymax 8 numeric axis range for the transient response 
and control error phase plane plots.

inmax 8 numeric axis range for the control input 
phase plane plot.

overplot n y or n y - superimpose new plots over previous 
plots, using previous axes and scalings 
n - generate new plots, erase old ones,

Tabular Output Specifications:
datafile * filename filename is the optional name of the

output file into which the tabular 
output listing will be placed.
* If no datafile is specified, the 
output will go directly to the terminal.

out{l - 6} no output node # Up to six (numbered 1 to 6) nodes of
of the digital compensator may be traced 
in a sample-by-sample listing in the 
file specified by "datafile". Node # 
is the value of the node of the digital 
compensator, used if comp=emu is 
specified.

Digital Compensator Specification:

Notes:
If comp=emu, this network description is used to Specify the digital 

compensator, -frie-branch descriptors are identical to those used for the 
digital filter analysis program DINAP. For further information, refer to the DINAP users manual.

The compensator (in this version) funis With essentially infinite precision, 
so that information line quantization effects are not simulated.

The network description begins with a line containing the string 
"START COMP", and ends with a blank line. The next line following 
the START COMP line must be a title or comment line, which may be 
left blank, but must be included.
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All lines following this are branch descriptors. Each descriptor occupies 
a single line, and must conform to the DINAP field specifications, as 
repeated below.

Several enhancements to the DINAP branch inventory have 
been added, as noted in the descriptions below, permitting multiple 
inputs (say r and y) to the compensator, arbitrary specification of 
the input and output nodes, and nonlinear processing blocks (saturation, 
radix overflow, and zero-on-overflow).
A conditional switch block is also implemented, which permits information 
passage between two nodes conditioned on the signal value at another node.
A comment line may appear anywhere if a star is placed in column 1,

and the comment begins in column 34. A blank line is interpretted as the 
end of the network description.
field1: 
field2: 
field3: 
field4: 
field5: 
field6:

column 1 
columns 3,4 
columns 6,7 
columns 9,10 
columns 12-32 
columns 34-80

the branch type designator, as in A for adder, etc. 
first node connection
second node connection (except R,Y,E,U) 
third node connection (adders only) 
branch value (where appropriate) 
comment field

fieldl field2 fields field4 field5 description

R node. # sampled connection to the reference 
input of the system. (input)

Y node # sampled connection to the output y 
of the plant, (input)

E node # sampled connection to the control 
error of the system, r - y. (input)

U node # ZOH output to the control input 
of the plant. (output)

A input! input2 output adder, output « inputl + input2
M input output value multiplier, output - input * value
D input output delay element. Upon each execution of 

the compensator network, information is 
transfered from the input node to the output node. The previous value of 
the output node is destroyed.

S input output value saturation block, with symmetric hard 
saturation bounds at +/- value.

V input output value radix (2' s complement) overflow block 
with symmetric overflow bounds at 
+/- value

Z input output value zero-on-overflow block. When the 
absolute value of the input exceeds 
value, the output is set to zero. 
Otherwise, the output is equal to the 
input.

G input output condit value gate or conditional switch. When the
node absolute value of the conditional node

is less than value, the output is set 
equal to the input. Otherwise, the 
value of the output node is unchanged.



Comment - a comment line. Comment 
... must not occupy fields 2-5.

Author: C. A. MacCarley, Purdue University School of Electrical Engineering 
Major Prof: D. G. Meyer 
Last Updated: July, 1987
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11.2. DIGCON - A Digital Control System Design Aid
The design of a digital controller in discrete time involves a number of 

routine, computation-intensive tasks, that might best be performed with the 
aid of a computer. For the class of controls proposed in this study, applied 
to bounded input plants, several metrics must be calculated requiring 
numeric solutions.

The computer-aided-design program DIGCON was written with the goal 
of reducing as much of the design task as possible to a simple matter of 
supplying the necessary data: to an interactive computer program.

DIGCON is written in standard FORTRAN 77 using subroutine calls to 
several IMSL functions and ECN utilities. It performs the following tasks 
required in the digital control design:
1) Conversion of a user-specified Laplace domain plant transfer function to 

an equivalent discrete-time z-domain transfer function, using the step 
invariance (or zero-order-hold-equivalent) method. Plants of up to 
ninth order can be handled.

2) Calculation of the domain of attraction, given the plant and limits on 
the control variable and reference input. The linear control region S2 is

A

specified from user input of the vector k, as described in section 8.6.
3) The program also reports the nominal width of the region S2, that is, 

the separation between the bounding hyperplanes. For the given vector 
k, the program generates the coefficients of the nonrecursive section of 
the digital compensator, using either the forward or backward difference 
similarity transformation to normalized incremental phase coordinates.

4) DIGCON aids in the selection of an appropriate sample rate for the 
bounded input control problem, by calculation of the metric <5max 
described in section 10.3, given a user supplied estimate of the radius of 
the norm-bounded operational region SG for the system. <5max may then 
be compared to the reported width of S2 to gauge the "roughness" of the 
control in terms of the maximum state transition in a single sample 
period.

The design process is inevitably iterative, requiring several passes to 
achieve a nearly optimum controller. The real-time-answer capability 
provided by DIGCON considerably expedites the process, facilitating a more 
optimal design with decreased chance of numeric error.
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Program Details
The discrete-time conversion of a given continuous-time plant model is 

implemented in the a subroutine STINVAR by an algorithm which performs 
the following operations:
i) The eigenvalues and eigenvectors of the augmented state transition

matrix corresponding to ^ are calculated. The n+1 :x n+1 matrix A
s

is generated in lower companion form from the denominator coefficients. 
The IMSL routine EIGRF is then used to generate complex vectors of 
n+1 eigenvalues and n+1 eigenvectors. Distinct, non-zero eigenvalues 
are assumed at this point, a deficiency which is corrected later.
The corresponding . eigenvalues 7^ of the discrete time model are then 

calculated by
li = exp (XjT)

ii) A partial fraction expansion of ^ is then performed.
s

JM
S ais'
i=0 Rn

S .
s n(a - \)

i=l

+ E
R;

where the residues Rj are calculated from

i-l s “ Xi

Ri =

E ai(xj)!

i=0

n(\ - \)
i=l
Mj

iii) The discrete-time characteristic equation is found in polynomial form by 
the routine POLY which performs the expansion from factored form by 
an iterative sequence of barrel shifts, multiplications and additions. A 
one dimensional array [bj] of at least n+1 elements is constructed, with 
the elements indexed zero through n corresponding to increasing powers 
of z. The array is initialized such that the zeroth element is set equal 
to the first eigenvalue 71? the first element is set to one, and all other 
elements are set to zero.
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The array is then recalculated n-1 times, for each remaining eigenvalue 
7j, using the recursion relationship

bi = Ijh + bi+i> i = 0,...,n » J = 2,...,n .
The algorithm can be demonstrated by considering the following example, 
for a polynomial of degree three in z:

z3 z2 z1 z°
1 —7i initialize

1 -7i 0 shift
-72 7i72 multiply by —y2

1 -(7i+72) 7i72 add
1 ~(7i+72) 7i72 0 shift
1 -73 73(7i+72) -7i7273 multiply by —y3
1 -(7i+72+73) 7i72-73(7i+72) —7i7273 final coef values

The final values of the array elements ' are the coefficients
characteristic polynomial

p(z) = £ biZ1 . 
i=0

Equivalently, b, are the denominator coefficients of H(z).
iv) Finally, the numerator coefficients a; of H(z) are found using the n+1 

residues of the partial fraction expansion and a matrix of n+1 column 
vectors ,/j consisting of coefficients of n+1 nth degree polynomials

n
pj(z) = n(z - 70 •

i=0

The POLY routine is called n+1 times to perform these calculations. 
The vector of numerator coefficient is then found by applying the

Hfel
s

transformation matrix to the vector of residues R; of
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a0 R0
a.i ] %=

-1
an

This method follows from the observation

H(z)

ERifK*-!):
i=Q j=Q

n(z-7i)
i=l

where 70 = 1.

The partial fraction expansion algorithm and residue calculation of step 
(ii) assumes distinct, non-zero eigenvalues of H(s). The non-zero restriction
occurs only because of the added pole at zero of , which means that ans
eigenvalue at zero of H(s) would be a repeated eigenvalue of —

To generalize this method to the case of repeated and/or zero 
eigenvalues would require the capability of generating m derivatives (where 
m is the multiplicity of the root) for each repeated or zero eigenvalue of 
H(S). The generation of a full algebraic expression for each derivative via a 
computer algorithm is extremely difficult, since symbolic processing is 
required to generate the algebraic representation of the mth derivative of an 
nth order rational polynomial in z. Rather than attempt to generalise the 
method by handling these special cases explicitly, the program uses a 
numeric method based on perturbation of the characteristic equation about 
the repeated root.

A repeated root situation is identified in the factorization of step (i).
The characteristic equation p(s) =0 for is perturbed by a positive

s
factor e, added to the constant term of p(s). A positively perturbed transfer 
function H+(z) is then found. The characteristic equation is then perturbed 
by the factor —e, and a negatively perturbed transfer function H~(z) is 
found. A scaler metric of the difference between H+(z) and H~~(z) is:
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|ai+-af|+|bi+-bi-|
i=0

where aj+ and bj+ are the numerator and denominator coefficients of H+(z), 
and similarly for aj~ and bj_. .

The process is repeated with a reduced value of the perturbation factor 
e. The metric A is recalculated each iteration. The iteration process halts 
when A no longer decreases with decreasing e. This indicates that machine 
precision limits have been encountered and an accuracy limit has been 
reached. The final coefficients of H(z) are found by overaging the final ( 
prior to A increasing) coefficient values

ai+ T ai

b^+bj-
2

Several internal tests for convergence to a common solution and 
numeric accuracy are built-in, which report corresponding error messages.

When an iterative solution is required, an estimated bound on the 
numeric accuracy of the final coefficient values is reported, based on the 
formula

accuracy (in significant digits) = L "'l°Sio(Al)J ,

where A] is the final value of the accuracy metric A.
The program runs in double precision floating point FORTRAN 77, 

using the double precision IMSL library. Generally, this assures at least 
eight significant digits of resolution for the coefficients of H(z) for an exact 
solution, and typically seven for an iterative solution. The iterative method 
has been found to be quite robust; although some higher degree transfer 
functions can only be discretized to a limited degree (3 or 4 significant 
digits) of accuracy, particularly for very small values of T. However, no 
summary statement can be made for all possible, plants, especially 
considering the crudeness of the perturbation method.

Once the discrete time model parameters have been determined by the 
discrete time conversion of the plant, several design formulas related to the 
saturating digital implementation of the dual-mode control are calculated. 
Several IMSL matrix manipulation subroutines are used.
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The similarity transformation from delay coordinates in normalized 
incremental phase coordinates, described in section 8.6, is calculated along 
with its inverse for the user specified phase plane type (backward or forward 
difference) and sample period:

0

T

rp2

T_
T

izD!:
rpn~l n—1

or

Tf‘J.AJ. =

T

J_

T
2

rp2

-»n—1

T

1
H: ;
T
1

rp2

nr1rpn—1

The user-supplied vector k which, in conjunction with the control 
variable limit umax, specifies the hyperplane boundaries of S2 is used to 
calculate the numerator (nonrecursive section) coefficients of the 
compensator. ,

fcT — fcTT<f1 Jn A-1 Jn (forward difference)

or
kT = £tTt 1 JnA 1 Jn (backward difference) .

A closed-loop system model is constructed in normalized incremental 
phase coordinates e(k):

| &Te (k) j < auumax - aRRmax

where <r, au and are defined in section 8.6. A norm bound on the domain 
of attraction is calculated,



291

range =
OL 11wuumax (* i > 1 ~R-^max

\cr\

as well as the vector <r orthogonal to the hyperplanes which bound the 
domain of attraction.

The nominal width of the linear control region S2 is calculated from
2uin,v

width
11*11 '

dw = <5>max (described previously) is found based on a user-supplied estimate 
of the norm bound e on the region of operation of the system in the phase 
space:

k„
rpE

dw = P
||f (A, - I)||e + (N(>=l)um« + D(z=l)Km„]

where

H(*)“
N(z)
D(z)

Comparison of dw with width provides an indication of the adequateness of 
a particular choice of T. A good rule-of-thumb is to choose T sufficiently 
small that

widthdw n
Reiteration to achieve this objective or redo other parts of the analysis is 
made simple by a choice of actions available to the user at the end of each 
design pass.

A more detailed description of the user interface is provided by the 
interactive help file, reproduced below. A sample of a design session is 
provided in the appendix, as well as the complete source code file listings.



**************** DIGCON : A Digital Control System Design Aid ***************
Syntax: DIGCON 
Description

This program performs several analysis and: design functions related 
to the design of digital compensators for bounded input linear plants,,
Discretization of the Continuous-time Plant Model

The program converts the Laplace transfer function of the plant H(s) 
to an equivalent Z transfer function H(z) using the ZOH or step-invariance 
method:

H(z) = ((z-D/z) * Z{ H(s)/s }
The program is capable of handling an arbitrary H(s) of up to ninth 

order, including cases of repeated eigenvalues or eigenvalues at zero.
For systems containing distinct non^zero eigenvalues, the solution is exact 
and the computed coefficients of H(z) are accurate to at least eight decimal 
places. In the case of repeated eigenvalues or eigenvalues at zero, an 
iterative solution is used based on perturbing the characteristic equation 
about the singularity. Convergence to a valid solution is tested, and a 
bound on the accuracy of the computed coefficients is reported.

In the event of numeric problems, inadequate precision, or failure 
to converge to a solution, a message is displayed indicating that the 
results are unreliable.
Determination of Region of Two-sided Attraction to a Linear Control Region

The program prompts the user for the components of an n-vector 
describing the bounding hyperplanes of the linear control region in the error 
phase space. It reports the equivalent numerator coefficients of the digital 
compensator transfer function that this linear region corresponds to.
It then determines the bounds on the domain of two-sided attraction to 
this linear region, and reports these as a norm distance and a vector 
orthogonal to the hyperplanes that bound this region. The width of the 
linear region is also computed and reported.

A conservative requirement on the region of attraction is that 
the norm distance defining the domain of attraction be less than the 
epsilon distance defining the operational region.
Determination of Variability in the Hyperplanes Defining the 
Linear Region, due to Finite Sampling Rate.

A figure dw is calculated which corresponds to the maximum 
distance orthogonal to the linear region in the error phase space that 
the state can move during a single sample period. This provides a conservative absolute bound on the variability in the bounding 
hyperplanes attributable to finite sampling time considerations.
This is critical to the practical to the implementation of any 
variable structure or bounded input control system in which the control 
action is determined by the location of the state.

A conservative requirement for dw in the case of digital 
realizations of multiple-zone controls is dw < ~width/2.
This requirement constrains the sample period T. In practice, several 
iterations may be required to determine the longest sample period allowable 
that meets this requirement. In general, this constraint on T is much more 
severe than the usual linear considerations based upon the Nyquist bound.

This metric is particularly useful in the design of switching-type 
controls, in which discontinuous control action occurs when some construc
tion in the state space is crossed by the state trajectory.

Program Usage
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The user is prompted for the coefficients of H(s) and the sample 
period T. H(s) is assumed to be in normalized form, that is, the leading 
non-zero coefficients of both the numerator and denominator polynomials 
are taken to be unity, and the program does not prompt for these values. 
Non-unity gain factors should be entered as the appropriate value of G, the 
gain of H(s).

m m~l m-2
s + a s + a s + ... + a ,s + a

m-1 m-2 10
H (s) = G --- --------- ------—--------- ---

n n~l n-2
s+b s + b s + .. . + b s + b

n-1 n-2 10
m = degree of numerator
n = degree of denominator = order of plant

Optionally, the following information may be supplied:
The user is prompted for information related to the design 

of the compensator for the bounded input plant. This includes:
umax - the symmetric bounds on the control input of the plant
Rmax - the symmetric bounds on the reference input

epsilon - the expected operational range of the system, defined as 
a norm bound in the control error phase space 

khat - the vector of coefficients defining the linear region 
in the control error phase space

If only a discrete-time equivalent model of the plant is desired, 
the prompts may be ignored by just entering carriage returns.

When H(s) is fully specified, the program begins computing the 
coefficients of the equivalent discrete-time transfer function, H(z).
The program then continues with the control design computations.
The results of the analysis are then displayed, preceded by a listing 
of all specified information.

The user is then given the option to save the results in a file 
of their choice.

Finally, the user is given the option to repeat the analysis 
with any new single parameter, or a completely new plant and control.

Each subsequent set of results may be stored in a different 
file of the user's choice, or overwritten onto the same file.
Required Files

digcon.acc and digcon.help must be stored in the same directory as the main program.
If recompiled, digcon.f must be linked with dt2sub.f and matlib.f 
and the double precision imsl library using -imsldp , vis:
ill digcon.f ;dt2sub.f matlib.f -1imsldp -o digcon

Author
Carl MacCarley, Purdue University School of Electrical Engineering, 
West Lafayette, IN 47907
Contact: Prof. David G. Meyer, School of Electrical Engineering. 

Last Updated
July, 1987
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**** Output of Program DIGCON ****
Specified Coefficients of Plant H(s) 
Denominator Coefficients: 

bO = 0.
bl = 1.0000000
b2 = 0.2000000
b3 = 1.0000000

Numerator Coefficients:
aO = . 1.0000000 
al = 1.0000000 
a2 = , 1.0000000

Gain of H(s):
G = 1;0000000

Sample Period:
T = 0.0200(300

are...

Repeated or Zero Eigenvalue. Iterative Solution.
Coefficients of ZOH-Equivalent H{z) are... 
Denominator Coefficients:

bO = -0.9960080
bl = 2.9916167
b2 = -2.9956088
b3 = 1.0000000

Numerator Coefficients:
aO = 0.9801986
al = -1.9798026
a2 = 1.0000000

Gain of H(z):
G = 0.0201597819

Bound on Control Input:
umax = 2.0000000

Bound on Reference Input:
Rmax = 1.0000000

Norm Bound on Operational Region:
epsilon « 1.0000000

Hyperplane Parameters:
khatl = 10.0000000
khat2 = 5.0000000khat3 - l.OOOboOO

Type, of Incremental Phase Plane: Backward Difference 
Numerator Coefficients of Compensator: 

aO - 2500.00000
al = -5250.00000
a2 = 2760.00000

Norm Bound on Region of Attraction:
range = 0.1965080Vector orthogonal to attraction bounds: 

sigmal = 0.0001645
sigma2 = 0.1779624sigma3 - 0.0995928

Width of Linear Strip:
width = 0.3563483

Maximum state movement orthogonal to hyperplane 
defined by khat in a single sample period: 

aw = 0.0217115
Results reliable to approximately 7 decimals.
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12. DESIGN EXAMPLES

This section demonstrates the proposed analysis and design techniques, 
applied to typical linear SISO plants. Performance is verified in each case 
by computer simulation using CONSIM. Some alternative control methods 
are also demonstrated and compared.

The collection of all the design examples involving linear plants in a 
common section is intended to provide a better opportunity to view the 
complete design process, including both nonlinear and linear design 
considerations, and the many tradeoffs and interrelationships. This 
approach is consistant with the originally stated goals of the study: to
provide a complete, practical design methodology for linear digital 
compensators applied to bounded input plants.

As is typical in engineering design, many paths may be taken through 
the design process to achieve the desired goal. Two decisions must be made 
at the onset of the problem:
1) Continuous-time or discrete-time design

Is a continuous-time or discrete-time model to be used in the design 
process?

2) Linear or nonlinear design precidence
Which is more important in the given application: linear regulation
characteristics about an operating point, or time optimality of 
transitions between operating points?

Figure 12.1 provides a flow-chart for the design process, showing both 
continuous time and discrete-time methods. Nonlinear design precidence is 
assumed, that is, near time optimality of the transient response is the 
primary consideration, possibly dictating some compromise in the small- 
signal regulation characteristics of the closed loop system.

Sections 12.1 through 12.3 review and demonstrate most of the proposed 
design techniques using several digital compensator structures. A second 
order underdamped (damping factor =0.1) all-pole plant is employed as a
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common vehicle for comparison of the different design methods. This type of 
model is typical in motion control problems, as might be encountered in 
robotics applications. The plant state description is given by

X1
x2

0 1 
-1 -.2

xi
x2

+ 0
1 u

y [1 0] xi
x2

(12.1.1)

and its transfer function given by

G(s) = ]dsl. = —-1-....
p7 u(s) s240.2s+1 

The control input u is magnitude bounded,

M < umax = 2.0 .

(12.1.2)

(12.1.3)

The servo control is configured as a forward-loop compensated, unity 
gain feedback control loop. The range of reference inputs r is magnitude 
bounded,

M<RmaS = 10 . (12.1.4)

The phase plane trajectory and time response of the uncompensated plant 
are shown in Figures 12.1 and 12.2 respectively. The input for this test was 
a step of magnitude R=0.75, and the compensator simply a proportional 
gain of ten.

We are concerned with the simultaneous goals of time-optimality of the 
transient response between piece-wise constant operating points, and linear 
regulation at each constant operating point.

A discrete time design approach is used, with a sample period T=0.02 
seconds. The ZOH-equivalent discrete-time plant transfer function is:

Gp(z)
axz+ao 

z24-b1z4-b0

(,00019946)z-K.00Q19973)
z2—(1.9956088)z+(0.9960080)

(12.1.5)
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Transformed to control error delay coordinates, the closed-loop system model
is ■' " ■

e(k—1) = Age (k) — Be«(k) -f 7r(k)

.where.: ■

A,= 0 0
—b0 —b2

;■ Be 0 0 
H 1 =: 0 0 ® 

'0bn bj 1 (12.1,0):

A "preliminary check of the attainability ©? the target set 
y € [-KmwoRmax] is made. Since"

Rmax <'..|Gp(l-l) fuma2

l<|ll2=2,

the combination Gp(z), Rmjv, and umair are acceptable for the servo control
problem.

The similarity transformation to normalized incremental phase 
coordinates is now determined. The forward difference phase space is used.

A 1
1

1 0
0 T

Jn
1 0
0 -1

For a sufficiently small sample period, the approximation

e(t) ~ e(kT) = Tf1 4“-«(kT) (12.1.7)

is acceptable during design of the dual-mode control boundaries, where
T^A"1 = Tf^AJ*

1 0
*“■ __1_ 1_

. T T

1 0 
-50 50 (12.1.8)
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^ ^________ Uneofflpensatgd Plant, u bounded u K: SO .0 T. 02 ex.6
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PltMinear a0=l.0 al=0 a2=0 bO=l.0 bl=0,£ b2=0 umax=l.0

Figure 12.1 Uncompensated System, Proportional Gain of Ten, Phase 
Plane Portrait
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Figure 12.2 Uncompensated System, Proportional Gain of Ten, Time 
Response
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12.1. Comparison of Methods for Design of the Linear Control 
Region Boundaries

We now face the task of choosing the vector k such that the linear 
control region possesses the required attraction properties in a sufficiently 
large domain (the domain of attraction 82). Three methods were described 
in section 9.3. These will each be applied, and the resulting hyperplanes in 
the phase space compared with regard to the optimality of the 
corresponding control. ■ . .

The approximate correspondence between the normalized incremental 
phase space and the true continuous-time phase space permits us to work 
equivalently in continuous or discrete time. (This is the primary motivation 
for transformation of the system to normalized incremental phase 
coordinates.) Therefore, the analysis will be performed using a continuous 
time model.

Method 1
We first consider the method of explicit solution for the boundary of S0 

based on an extremal trajectory (equations (9.3.4) through (9.3.12)).
The solution of the system for a worst case step change in r from 

equilibrium at t—— Rmax to r=Rmai is given by (9.3.5), repeated here:
e ^ fA^[e (9+) " e (00)] + e (°°) (12.1.9)

where

e (00) = A* ^eUflutt “ TRmax)

0 0
ao 1

0 0
bo 1

0 1 
-1-0.2
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e(oo) = —0.2—1
1 0 2 - 0 1 = -1

P

c (0) ^ + (A^ lbe+m)n{0 )

u(P_) — k* jA^-6efcT j 7 Ej,

m u

(12.1.10)

max

^max .

m = for; an all-pole plant.

(12.1,12)

(12.1.13)

u(0 ) generally depends on . This dependency may be removed by

assuming the limiting case u(0 ) ~ 0. In this case (12.1,16) simplifies to
• jp ■
1 T? — i
0 ^max 0.

, « . ' «

c(0) *nHjaax

Inserting (12.1.15) and (12.1.19) in (12.1.14) gives the general solution 

e(t) r= exp

(12.1.14)

0 1
''

. t •" '
2 j 1

-1 -0.2
>

o] ■ 0

- S' 1 0 s 2
M

0 € . 0 -[oj (12.1.15)

where S is the Vandermonde matrix

.S 11 
Xi Xj (12.1,16)

and Xj, Xj = -0.1±j(0.9950).
Let the phase feedback vector k be written in normalized form,

&T — [kj k2] = k2[m 1] (12.1.17)

where

m h.
k2 ‘

As discussed in section 9.1, time optimality of the transient response favors 
increasing values of m, which corresponds to the negative of the slope of the 
linear control strip in phase plane.
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We can also define the nominal width of the strip in terms of k2 and m,
2u

w = max 2umax

II* II. k2Vm2+l
(12.1.18)

so that k may be expressed directly in terms of the slope and width of the 
strip: .

2ur
kT = Amax

wVm2+l
[m 1] (12.1.19)

For a trial choice of k (or m and w), we seek the point e = e(t ) lying 
on the intersection of the extremal trajectory and the left (kTe = — umax) 
boundary of the strip, t is found as the solution to

- Umax = kT(e (0*) - e (oo)) + c (oo)] . (12.1.20)
* * 

e is then found by back substitution of t :
e* = [1 0];[^(e(0+) - e(oo)) + e(oo)] (12.1.21)

The left attractiveness condition (8.5.15) is applicable at this boundary. 
For the second order plant, (8.5.15) may be written

— b0e + (m—b^e + a0u + b()R > 0 (12.1.22)

Evaluated on the left boundary,
u

e = — max — me

(12.1.22) becomes

or equivalently

ur

!e|<
a0u+b0r—(m—bj) -

|m2—bjin+bo |

le | <
a0u+b|r—(m—bx)— A/m2+l 

jm2—bjm-bboJ

(12.1.23)

(12.1.24)

Comparing (12,1.21) and (12.1.24), and evoking the symmetry of the 
problem, a sufficient condition for the attractiveness of the linear control 
strip is '
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i a0u+b0r—(m—h,) — Vm2+1
■ * L- 2e < ■ , - -  ---- ---—■

| |m?—bjin+b0 j
where e* is the solution of (12.1.20) and (12.1.21).

(12.1.25)

For the present exa

wW+1

or equivalently
umax +

mple, (12.1.26) may be written

+' m = [m 1] exp

m — [m 1] exp •

0 1 

-1 -.2

-.2

(12.1.26)

(12.L27)-

The linear control strip defined by k2±=4, m=2 is to be tested.
A numeric solution is used for (12.1.27). The FORTRAN program 

expAT, written by R.A. DeCarlo et. al. is helpful for calculation of the 
matrix exponential, although it is limited to handling only matrices with 
distinct eigenvalues. A few iterations are required to approximately solve
for t*=0.806 seconds, and e*=0.416.

. . i . .■ . . -
Under the assumed, conditions of the extremal test case, uIftax = 2 and

r =R,n>T.^gl, (12.1.25) becomes 

2+l-(l|.8)j
e < - 4.60

e* < 0.4565 

which is satisfied for this choice of k.

(12.1.28)

The transformation (12.1.8) provides a mapping from the continuous
time phase vector k tb a vector of coefficients of the nonrecursive filter

! m

which implements the | feedback control law. Let g1==[gi g2] be the 
coefficient vector. Then,

gT = 1 = [kr k2] 1 0 

-50 50 = [kj - 50k2, 50k2] (12.1.29)

Figure (12.1.1) is a phase plane portrait showing the extremal trajectory and 
the linear strip (labeled "Method l") defined by k2=4 and m=2.



304

Method 2
We now compared the previous results, which were computationally 

difficult to obtain, with the simpler but less certain method based upon 
assumed knowledge of a norm bound on the operational region S0.

The same extremal scenario is employed: a positive-going full-range 
step input from r=— Rmax to r=Rm„, for which u=umaT and the left 
attractiveness condition (9,5.15) is the dominant consideration,

kTKe + kT&eumax + *T7Rm« > 0 (12.1.30)
S0 is assumed norm bounded,

||e H2<e = 2RmM (12.1.31)
For a second order plant, (12.1.30) and (12.1.31) are combined with (12.1.17) 
to give

-b0, m-bi]T || < (a0umai+boRmax)

At the limit of the inequality, a maximum value of m is
%

1 Um.v

m = bx +
2

1_ Umax ,, , 2

4 aoR +bo
/ ^max

— b°
*

For the present example,

(12.1.32)

(12.1.33)

m = .2 4- y(2+l)2 -1* 4

= 1.3180 (12.1.34)

For k2=4, (12.1.18) gives w=0.6044. The corresponding linear control strip is 
shown in figure 12.1.1, labelled "Method 2".

Method 3
Finally, we determine the vector k using the conservative design 

approach for second order plants. This method requires that k satisfy both

= - Umax. .
'and
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From (9*3.20) we solve

a0 b0”
max

with k2= For the present example, tps yields the quadratic equation

kf - kj — 8.8 = 0 (12.LJ

The width of the strip is

[AgC ”b & eumax ^max] ®

lax k | + pkjg — 2 ax. kf + -ki = 0 (12,1.35)
max

with roots kx =3.5083, —2.5083, The positive root is taken as the solution, 
and m is found from

m ii
k 2

3.5083
4.0 0.8771

2u,
w max

II* Hi

(12.1.37)

(12.1.38)

The strip is shown in Figure 12.1.1 labeled"Method 3”.
Comparison: of the three methods illustrated in Figure 12.1.1 verifies 

that Method 1 yields the most liberal bound on the slope m, whereas Method 
3 yields the most conservative. Since the time-optimality is favored by 
maximizing m, Method 1 facilitates the most optimal dual-mode control. 
This is demonstrated :in Figure 12.1.2, which shows the time responses 
Corresponding to the three methods of Figure 12.1.1.

It is important to point out that Figures 12.1.1 and 12.1.2 illustrate the 
action of an incomplete compensator with no pole dynamics. The control is 
akin to only the weighted feedback of an approximation to the full state, 
limited by the control hounds. The design process is completed in section
12.2.3 with the objective of improving the linear behavior of the system, 
after the state has been! attracted to and retained in the linear control strip. 
This is the referred to as the linear design process, for which several 
methods are proposed.

Before concluding this subsection* it is appropriate to demonstrate the 
validity of the attractiveness conditions (8.5.14,15 and 25) or (8.6.45,46 and 
50) for continuous-time and discrete-time models, respectively.

Let us consider the Response of the pjant to initial conditions only, with 
r=0. The right attractiveness condition (8.5.14) reduces to
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fcTA*e - 6eumax < 0 (12.1.39)

and the left attractiveness condition (8.5.15) reduces to

fcTA*e + feeumax > 0 (12.1,40)

Combining these,
\kTA^e \ < kTbeumiX (12.1.41)

For a second order plant, (12.1.41) becomes
| —k2b0e + (kj—k2b!)e | •< k2a0umax (12.1.42)

For the present example, with kT=[8, 4], (12.1.42) yields a 
Sj € K2 bounded by the lines

convex set

e = (0.556)(e+2) (12.1.43)

and e = (0.556)(e—2) . (12.1.44)

We can demonstrate the validity of these bounds on the attractive 
subset of S2 (the linear strip) by observing the phase plane portraits for a 
range of initial conditions, as shown in Figure 12.1.3. The boundaries 
(12.1.43) and (12.1.44) are superimposed on the phase plane, along with the 
boundaries of S2. The trajectories are marked with boxes to indicate the 
point at which the control desaturates from umax. Similarly, the points at 
which the control either enters or exists saturation at —umax are marked 
with triangles. The attraction requirement is violated if a trajectory which 
has entered S2, ever leaves S2. Any trajectory marked with both a box (or 
boxes) and a triangle (or triangles) fails the attraction requirement.

Inspection of Figure 12.1.3 verifies that only the trajectories from initial 
conditions at e(0)=0.5, 0.75 and 1.0 satisfy the attractiveness requirement. 
The trajectories from e(0) =1.25 and 1.50 break out of the linear strip at 
points outside of Sx, since these points fail the attractiveness requirement.

The importance of the attractiveness requirement is demonstrated in 
Figure 12.1.4, showing the time responses corresponding to Figure 12.1.3. 
The responses from initial conditions at e(0)—0.50, 0.75 and 1.0 exhibit 
consistent bounded (minimal) overshoot, whereas responses from e(0)=1.25 
and 1.50 exhibit unpredictable overshoot, and possibly unbounded behavior 
in the case of an unstable plant.
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Tesv Case /for Domain of Attraction kl 8 k2 4 T .02
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Time Responses Corresponding to Three Linear Control 
Strips of Figure 12.1.1
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5 d -0

u -0

Figure 12.1.4 Demonstration of Domain of Attraction, R—0, Five Initial 
Conditions, Time Responses



12.2. Sample Rate Considerations
In Figures 12.1.1 and 12.1.2, the exact points of desaturation are 

marked by squares. Contrary to the prediction of the idealized model, 
desaturation does not occur exactly on the on the &Te =umax lines in Figure
12.1.1, but somewhat past the lines. This illustrates the effect of sampling 
on the system performance as discussed in section 10.3. The boundary 
crossing event is recognized after a delay of up to (n—l)T=0.02 seconds.

The criteria of section 10.3 is now applied to to check the compatibility 
of the given sample period with the selected linear control strip. Examine 
the case of k=[8, 4], resulting from the application of Method 1. In this 
case,

I max 1.0

kn = k2 = 4

= 1.0

So that (10.3.30) evaluates to 

V T <
“;>!• (l | l [2’4

which is satisfied by the given T=0.02 
assumptions are satisfied since

0.1250 , (12.2.1)

. Furthermore, the required

i—g-U 1(0-02)
0.02 >----- j—i—- ■■= 0.0198- l (12.2.2)

The bounding relationship (10.3.27) evaluates to
? 2*1* |l |2*4f0.02) __ 

8.9443max _ 0358

The boundary region indicated by this value of <5max is illustrated in Figure
12.2.1, which isolates just the Method 1 case of Figure 12.1.1. This region 
represents the degree of ambiguity in the location of the desaturation 
boundaries which may be attributed to the discrete-time implementation of 
the control. Inspection of Figure 12.2.1 shows a close correlation between 
the exact point of desaturation and the boundary corresponding to

*Te(t) = umw - £max \\k || (12.2.4)

as predicted by (10.3.35).
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Test. Case for Domain of Attraction kl=8 k2=H T:.02
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Figure 12.2.1 Illustration of Sampling Effects on Implementation of the 
Dual-mode Control



12.3. Linear Control Design Methods
During the transient response, once the control is out of saturation, the 

control reverts to linear operation. "Viewed in the phase space, the 
trajectory enters the region of linear control. The attractiveness conditions 
assure that it remains in this region (that is, the control never again 
saturates) for all time thereafter. In this control mode, the digital structure 
which implements the controller may be regarded as truly linear for analysis 
and design purposes.

In this Section, the various methods discussed in subsection 9.4 for 
design of the linear control will be demonstrated. As a Starting point, it is 
assumed that the boundaries of the linear control region have already been 
established using one of the methods of the previous Subsection. It is 
important to note that this ordering in the design process is not imperative. 
In situations where the linear regulation characteristics (small disturbance 
rejection) of the control are the highest priority, the linear design process 
may precede the nonlinear design, accepting whatever desaturation 
boundarys and resulting large signal behavior dictated by the zeros of the 
linear compensator.

We continue the design process from the previous subsection, using the 
same second order plant and one of the vectors k. Let ns take the most 
time-optimal result generated by Method 1,

fcT = [8 4] . (12.3.1)

In Figures 12.1.1 and 12.1.2, the trajectories labeled "Method l" demonstrate 
the action of the control implemented without pole (denominator) terms or a 
feedforward path from r. In this case the compensator contains no recursion 
loop, exhibits a finite impulse response, and a finite position error coefficient. 
In Figures 12.3.1 and 12.3.2, system responses with this control, given four 
step inputs from equilibrium at the origin with magnitudes varying from 
R=0.25 to R=Rmax=1.0, are demonstrated. It may be observed that the 
linear control exhibits an underdamped behavior. The equivalent continuous 
time closed-loop transfer function (valid for small T only) is,

H(s)
k2s+k1

s2+(b1+k2)s+b0+k1

(12.3.2)
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For k1=8, k2=4 and the plant model (12.1.2),
4s+8

s2+4.2s+9
with complex poles at —2.10 ±2.1424, u^=3.0 and damping factor f=0.70.

In most cases, the compensator will also contain at least one recursion 
loop, and therefore exhibit pole dynamics. The four linear design methods of 
section 9.4 will now be demonstrated and compared. The discrete time
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Figure 12.3.2 Compensator Without Poles, Time Response
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For a second order plant, the compensator transfer function (9.4.21) 
becomes;:

ui -

ajZ-^aQ 

1

a0 1 1+—z 1
al

+

?2 . Si _j . v , h , * ~^+—z / te(z) + —r(z) 
ar ar ai

(12.3.4)

The corresponding mechanization is shown in Figure 12.3.3.

Figure 12.3.3 Mechanization of H(z)

g may be chosen to place the poles of the closed-loop system, as indicated 
by (9*4.19). Alternatively, a correspondence between and the coefficient 
vector g is established via the transformation

gT = an_1fcTT<f1A-1 . (12.3.5)



For the given plant, kT given in (12.1.29), and the forward difference 
transformation A,

(gi» 62! = [—0.0384, , (12.3.6)
/ \

h 1 n-l
and —- = —1+Ebi

an—1 an-l i=0V . /
= —(1 - 1.9956088-K).9960080)

ai
= 2.00 (12.3.7)

The characteristic equation (in z) for the closed loop compensated system is 
found using Ag of equation (9.4.19):

p(z) = |zl - Aj

= z1 + (bj+ga) + b0+gl (12.3.8)

For g given in (12.2.6), the compensated plant has z-domain poles at

Pi(2(z) = 0.9778±j0.0388 .

Using relationships (9.4.26) and (9.4.27), it is seen that the system exhibits a 
natural frequency wn=2.2613 add damping factor £=0.4783.

The response of the closed-loop system employing this compensator is 
shown in the phase plane portrait of Figure 12.3.4 and the time for a range 
of step inputs from R=0.25 to R=0.75. As expected for this damping factor, 
the system exhibits considerable overshoot: a response that is probably 
unacceptable.

Consider now J:T=[16, 8], which is expected to yield a linear control 
region having the same slope, but half the width as previously. In this case
(12.3.5) gives

gT = [-0.0768, 0.080] , (12.3.9)

and the compensated system poles are

Pi,2(z) “ 0-9578 ± j0.0427 (12.3.10)

04 = 3.0638

^ = 0.6883

The phase plant portrait and time respoiise plot corresponding to this set of

318
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compensator coefficients are shown in Figures 12.3.6* The effect of the larger 
values of both £ and <vn are evident, with ah acceptably small amount of 
overshoot.

Increasing values of ||gr || can be expected to continue the trend toward 
increased damping, although at some point, the corresponding linear control 
region will not possess the required attractiveness properties fundamental to 
this class of dual-mode controls. In the limiting case of II? I! —►cxd, the

(123.11)fCefk) = 0
since from (12.1.18) and (12.3.5)

I ,. _ 2umax

*•00 (IffII—too ||fcT||

I .. ^maxan—1
ii?ii—oo ||pattj|
i .. ■ . \

2umaxax.-l
> -j lim

llfl ll—oo IIpI!I|att||

= o (13.3.12)

Such a situation is shown in the plots of Figures 12.3.8 and 12.3.9. The 
methods of approximately equivalent control, discussed in section 8.7 are 
applicable in this case, as the system exhibits an effective reduction of order 
when the solution is constrained to lie on the hyperplane (12.3.11). Note 
that this is not a sliding mode, but a, linear trajectory lying on an

i. For
(12.3.13)T _ [-0.500, 0.

0 1 

-hq — gi -b-g2

• 0 . :

-0.49601 147661 (12.3.14)

are

2 ^- 0.95768, 0.51793
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m1 = 1
K = • 1

0.95768

m2 = 1
^2

= 1
0.51793 (12.3.15)

Translated to normalized incremental phase coordinates (backward 
difference transformation),

mj = T-p1A 1ml
y

T

am1
0.95768

-2.11600

m2 0.51793 
-24.1035 *

(12.3.17)

(12.3.17)

These eigenvectors are superimposed on the phase plane portrait of Figure 
12.3.8 to clearly indicate that the linear trajectory tracks the eigenvector ml 
corresponding to the dominant eigenvalue Xj =0.95768.
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Linear.-Equivalent Control and Quadratic Optimization
We now illustrate the practical application of the linear equivalent 

control method described in subsection 9.4, based on the arguments of 
subsections 8.7 and 9.2.

For the linear control region S2 defined by a particular k, a linear 
control law is synthesized which forces the state to satisfy

kTe =0 (12.3.18)

once the state has been entrained in S2 defined by

|fcTe l< Umax • (12.3,19)

Solutions satisfying (12.3,18) are known to lie on level sets with respect to 
the quadratic cost function

tf
J(u) = JkTe dt , tf free (12.3.20)

or equivalently
tf

JM(u) == J e TMe dt , tf free 
o

(12.3.21)

for some diagonal matrix M whose components are nonunique functions of 
the vector k restricted by (9.2.6).

The control law (9.4.32) which enforces (l2.3.18) for arbitrary initial 
conditions is implemented as the compensator with transfer function (9.4.47). 
For second order plants, (9.4.47) becomes

u(s) - ~— | (k2s+k!) + (m^+mj)
ajS+ao I L

where

e(s) + b0r(s) (12.3.22)

mi = lj — kj , i=l,2 (12.3.23)

and'"

lT (12.3.24)
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For the present example with fcT=[l6, 8],

lT = f [16, 8] 0 1 

-1 -.2 = H, 1-8]

and

(12.3.25)

u(s) = [(8s+16) + (-6.2s—17)]e(s) + r(s) . (12.3.26)

The corresponding digital controller consists of two transversal filters in 
parallel, as shown in Figure 12.3.10. The discrete-time coefficients are found 
with the aid of the backward difference similarity transformation

gT = fcTTf‘A-1 (12.3.27)

and pT = mTTf1A-1 . (12.3.28)

For the present example,

[gl, g2] = [416, -400]

[Pi, P2] = [-327, 310]
h = 1.0 . (12.3.29)

Figure 12.3.11 illustrates the response of the closed-loop system using 
the Controller of Figure 12.3.10 with coefficients (12.3.29). As expected, once 
the state is entrained in the linear control region S2 by action of the 
saturated control, the trajectory follows a path parallel to the boundaries of 
S2. Note that this control results in unpredictable steady-state position 
error, generally increasing with decreasing step height; hardly a desirable 
situation for a servo control system. This is illustrated clearly in Figure
12.3.12 which shows the corresponding time responses.

However, the utility of the type of control lies in high path gain 
situations, as illustrated in Figures 12.3.13 and 12.3.14. In this case,

fcT = [128, 64] (12.3.30)

mT - [-129, -62.2] (12.3.31)

which yields the same coefficients lj, and therefore the same linear transfer 
function. The width of the linear strip is very small:



Figure 12.3.10 Nonrecursive Quadratic Optimal Dual-mode Control Structure

(12.3.32)

The condition (12.3.18) assures that, even for this very narrow strip, the
trajectory lies on a path parallel to and lying somewhere between the 
boundaries

kTe = ±umax . (12.3.33)

The resulting phase plane behavior emulates a switching line along fcTe =0 

due to the application of the equivalent control for this state constraint. 
The control is superior to discontinuous (relay and variable structure) 
controls when sample rate limitations and the possibility of unmodelled 
plant dynamics must be considered, such that the chattering control action 
cannot faithfully generate a sliding mode on kTe=0. The simplicity of the 
structure of Figure 12.3.10, and the concomitant fast execution time for the 
control algorithm are also noteworthy.
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Three Step Inputs
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General Compensator Synthesis
We consider a general second order compensator implemented by a 

Group 1, 3-D structure. Coupled with a second order plant, the closed loop 
system is fourth order, with the composite state equations given by 9.4.53.

For a second order compensator, the boundaries of the linear control 
region are parallel planes in IR3,

kTe =±umax, fcT€lR3 (12.3.34)

For the present example, let

kT = [24 12 1.2] (12.3.35)

The matrices Hj and H2 of the compensator state equations (9.4.50) are

found using (9.4.58) and (9.4.59), where £T ~ fcT.

0 0 0 0
hi ^2 2424 -5400

0 o 0 0
0 ^3 0 3000 (12.3.36)

The remaining task, then, is to find two nonzero coefficients gj and g2 of the 
matrix G, which represents the pole dynamics of the compensator.

The state transition matrix for the closed-loop system is given by 
(9.4.57), with numeric values

* =
0 1 0 0 

—0.9960 1.9956 -.0002 -.0002 
0 0 0 1 

-564.0 586.8 gj-0.6 g2-0.6
(12.3.37)

The characteristic equation is

p(z) = z4 + (-1.3956-g2)z3+ (0.5160^ + 1.9956g2)z2

+ (^.le+i^oseg^.goeog^z + o^s-o.ooeogi (12.3.38)

There are two degrees of freedom in the placement of the roots of 
(12.2.38). One design approach is to attempt to isolate a dominant pole pair 
with acceptable characteristics. (12.3.38) is iteratively factored for trial 
values of gj and g2.
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A pole is nominally placed at the origin of the z plane by letting
0.4848 - O^SSOgj =0

or gj = 0.4867, which cancels the constant term ih (12.3.38). For 
g2 = 0.0756, a clearly dominant double pole emerges:

Pi — 0, j>2 = —0.3592

p3 = P4 = 0.91152 , (12.3.39)

which is characterized by a damping factor £ = 1.0 and natural frequency
= 4.4306.

A two dimensional projection of the phase behavior of this forth order 
system is shown in Figure 13.3.15. The dominant second-order behavior of 
the system is evident in the trajectories for tbe three step responses of 
magnitudes R=0.25, 0.50 and 0.75. The corresponding time responses are 
shown in Figure 12.3.16.

The configuration of Figure 12.3.14 is not unique. Although certain 
distinctions exist in each situation, the general design approach is applicable 
to any structure conforming to the guidelines of section 8.2, as defined by 
Figures 8.2.2 through 8.2.5.
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PID Compensator Synthesis
The design method for PID (Proportional-Integral-Derivative) 

controllers, presented in subsection 9.4, is demonstrated here. The 
compensator structure is shown in Figure 9.4.4a.

To best illustrate the role of the integral term in the compensator, 
consider the phase plane portrait of Figure 12.3.16, for which = [12, 12] 
and Kj.= 0, 0.5 and 0.1. All trajectories represent step transitions from r=0 
to r=0.75. For 1^=0* the system shows a steady state error e(oo)=0.0577. 
For both cases of kjT^O, the characteristic overshoot (in terms of w=£Te) of a 
PI control is evident. However, the trajectories converge asymptotically to 
the line w=0 and track this line to the origin, nulling the steady state error. 
In general, the closed-loop transfer function for the discrete-time model is
^ j _________ /c3aiz3~l~(AC3ao~l~/c3ai)z2~l'(ACiai~l'K2ao)z~l~/ciao _____ _____

Z4-f(bi—l+AC3ai)z3+(b0—bi-f/C3ao+K2al)z2+(—bO+/ciai+«2ao)z+/claO

(12.3.40)
where

*2 = (l+K-iH -a2 

Ks ~ (l+K;)^ 

aT = [al a2] =

Kj = T K; (12.3.41)

Let = [24, 12]. Then using the forward difference similarity 
transformation,

aT = [-576, 600] .

The characteristic equation is

p(z) = z4 + (-2.87561 + 0.l230Ki)z3 + (2.87642 + 0.0048 Kj)z2 

-}-(—1.11601 — 0.11520Kj)z + 0.11520



The asymptotic stability of the closed-loop system may be evaluated 
Using the Jury Test. The Jury array for these parameters is

z° z1 z3 z4

c0 ,cr. c3 1
1 C3 ;? c2 C1 c0
d0 di d2 d3
d3 d2 di do
e0 ei e2

where

c0 = 0.11520

Cj =-1.11601 — 0.11520Ki 

c2 = 2.87642 -I- 0.0048Ki 

c3 =-2.87561 + 0.120K;

d0 = c^ - c3 = 2.74705 — 0'13327Ki 

d2 = coc2 - c2 = -2.54506 - 0.00425K; 

d3 = c0c3 - cj = 0.78474 + 0.12902^

e0 = d| - d| = 0.35776 - 0.20249K; - .01665K2

ei = Mi ~ d3d2 = -0.71330 + 0.46320^ + .00055K2

e2 = d0d2 - d3dx = 0.35549 - 0.24565^ + O.Ol7l9Ki2 

Asymptotic stability is assured if,
1) Cq "t" Ci + C2 + c3 + 1 = 0.00960Kj 0 •

2) C0 - cj + c2 - c3 + 1 = 7.98324 > 0

3) |cq | = 0.11520 < 1

4) |d0 | = 0.9867 > 10.78474 + O.l2!902K:i |
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5) |e0 I = 10.34776 + 0.20249Kj - 0.01665K;2 |
> |0.35549 - 0.24565Ki + 0.01719KJ2 |

Combining these inequalities yields the composite restriction on Kj,
0 < Ks < 1.5653 .

Figure 12.3.18 shows the phase plane portrait for Kj=0.040. Three step 
responses are illustrated, with magnitudes R=0.25, 0.50 and 0.75. The 
corresponding time responses are shoWn in Figure 12.3.19.

As discussed subsection 8.7, the PID structure of Figure 9.4.4a may be 
modified to include a second limiting nonlinearity, as shown in Figure 8.4.1, 
which serves to decrease the initial overshoot past the w=0 line in the 
phase plane. The comparative effect of the second nonlinearity on the phase 
plane trajectory for the system of Figure 12.3.17, is demonstrated in Figure 
12.3.20. Clearly, the internal limit (natural radix overflow in this case) is 
beneficial to the tracking performance in the phase plane. The median line 
w = 0 of the linear control region is superimposed on the phase plane of 
Figure 12.3.18 to demonstrate the initial overshoot and then convergence to 
this line, due to the integral term contribution.

Figure 12.3.21 duplicates the phase plane portrait of Figure 12.3.18 with 
the compensator modified by the addition of a zero-on-overflow nonlinearity 
at the input to the integrator section. The improved tracking of the w=0 
line is evident by direct comparison of Figure 12.3.21 with Figure 12.3.18. 
However, it is noted that improved tracking of the w=0 line does not 
necessarily favor a more time optimal response. Reflecting on the theorem 
of section 9.1 regarding relative time-optimality of phase plane trajectories 
(note Figure 9.1.3), it is seen that the structure without the second 
nonlinearity, demonstrated in Figure 12.2.18, yields the superior step 
response.

(12.3.43)

(12.3.44)
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Figure 12.3.17 Phase Plane Portrait, PID Control, Three Values of 
Integrator Time Constant
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Figure 12.3.18 PID Control, Kj = 0.040, Phase Plane Portrait, Three Step 
Inputs
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12.4. Comparison with Nonsaturating Linear Compensators
As an aside, it is interesting to compare the action of an internally 

saturating compensator with a purely linear control of the same 
configuration. For example, consider the action of the PID compensator of 
section 12.3, modified by the removal of all internal saturation bounds. The 
compensator is implemented in floating point arithmetic, effectively allowing 
unlimited range for all internal variables (structure nodes). From a small 
signal regulation (linear) point of view, the unbounded and saturation 
limited compensators are identical.

Figures 12.4.1 and 12.4.2 duplicate exactly the step response 
experiments of Figures 12.3.18 and 12.3.10. The well-known integrator 
wind-up phenomenon is evident for the unbounded compensator, with 
considerable overshoot shown in all trajectories.

Similar, consider the zero cancellation / full pole placement 
compensator of section 12.3. With the internal saturation limit removed, the 
compensator is internally unstable as demonstrated in the phase plane 
portrait of Figure 12.4.3. For a step input of magnitude R = 0.5, the system 
enters a small signal limit cycle about the initial state at t = Q+. A response 
to the initial condition e(0) = [0.75, 0]T is superimposed on the plot, showing 
the compensator in an internal limit cycle while the plant trajectory follows 
an uncontrolled (compare with Figure 12.1) path to the origin.

These examples demonstrate the often unpredictable behavior of servo 
control systems containing a linear compensator and a bounded input plant.
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12.5. Effects of Measurement Noise and Parameter Variations
Using the same second order plant as subsections 12.1 through 12.4, the 

effects of measurement noise and plant disturbances on the behavior of a 
servo control system containing a saturating linear control are now 
demonstrated.

Consider the simple controller containing no pole terms, with step 
response data shown in Figures 12.3.1. The configuration is modified by the 
addition of a bounded noise signal to the measurement of the plant output
y*

According to equation (10.1.13), in the presence of additive 
measurement noise, the linear control region is ultimately bounded by

— umax "t" kr T) '/max

where for n = 2,

*?max
Vmax.

%nax

Let rj(t) be a sinusoidal disturbance, well within the Nyquist sampling limits 
for T = 0.02, ;

r?(t) = 0.5 cos |l0 7rt |

Then

^max

*T Vm.x = [8 4)

0.5
0.5

0.5
0.5 = 6.0 (12.5.1)

Similarly, the worst-case bounds on the domain of attraction of the 
linear region are reduced according to (10.1.8) and (10.1.9):

As e = I—4e + 7.2e I < 4 - C,
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Cv = 4 [1 .2 1]
5
5
5

4.4 (12.5.2)

These ultimate bounds on the linear control region (12.5.1) and the domain 
of attraction of the linear control region (12.5.2) prove to be far too
conservative in this case, as demonstrated in the phase plane portrait of 
Figure 12.5.1. The cluster of squares on each trajectory indicate the 
somewhat indefinite desaturation points. Figure 12.5.1 is directly 
comparable with Figure 12.3.1.

Now consider the addition of noise at the control input u of the plant, 
as discussed in subsection 10.2. Using the same experimental configuration, 
we may examine the reduction to the worst-case limits on the domain of 
attraction, as given by (10.2,15) and (10.2.16). Let

g(t) = 0.5 cos (lOTTt), u(t) = 0

9 max
0.5 
0.5 *

Then (10.2.15) becomes

—4e +7.2e < 4 — ,

and from (10.2.17),

CM < 4(0.5) = 2

The corresponding phase plane portrait for four step responses is shown 
in Figure 12.5.2. Except for the noticeable effect of the disturbance input on 
the trajectories, the desaturation boundaries are seen to remain very close to 
the undisturbeded case of Figure 12.3.1.

As another example, Figures 12.5.3 and 12.5.4 show the effect of the 
injection of a zero-mean, uniformly distributed, bounded random noise signal

J *i(t) | < 0.5

at the output measurement and plant input respectively, for the general 
second order compensator design of section 12.3. The plant is unchanged.

The desirable robustness properties of the control are again evident, by 
comparison with the noise-free case of Figure 12.3.15.
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12.6. Second Order Plant with Zeros
We consider here the control of a second order bounded input plant 

identical to that treated in subsections 12.1 through 12.5, modified by the 
addition of a zero to its transfer function:

G„(s) 0.58 + 1 
S2 "f 0.2s -H 1

The ZOH-equivalent pulse transfer function is
G U) - (0.010179)z- — 0.009780

pW z2 - (1.9956088)z + 0.9960080

The zero cancellation / full pole placement design method is applied, for a 
linear control region defined by the phase feedback vector

*«’[2, 1]T •

The nonrecursive compensator coefficients are calculated using the backward 
difference normalized incremental phase transformation, yielding

g — [—0.5090, 0.5293]T ,

implemented by multipliers with values

Si
ai

50 .

The recursive loop multiplier coefficient is

=0.9607835 .
: ai ■■

The feedforward multiplier coefficient is
10“4h = 4xJ—= 0.039297 .
ai

The closed loop pulse transfer function exhibits real poles at

p, = 0.9579, 0.5084

yielding overdamped small signal regulation.
Figures 12.6.1 and 12.6.2 illustrate the system behavior given four step 

inputs of magnitude R = 0.25, 0.50, 0.75 and 1.0. Because of the zero term 
of the plant, all initial states at t = 0+ satisfy
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e(Q+) = r — Urna,* Urn s G!p(s) = a^a, = 1 .
■ s—*oo.' ■

Inspection of Figure 12.6.1 demonstrates that the desired control action 
is taking placej that is, all trajectories are directed to a neighborhood of the 
median line k is — 0, wherein the control reverts to linear for all later time 
as the State converges to the origin. Note in particular the step response for 
R = 0.25. The state converges to the linehr Strip from an initial state 
e (b+j == [0.25 1.0]T lying bn the "opposite" side of the linear control strip.

In general, the presence of minimum phase zeros in the Laplace transfer 
function of the plant facilitate a more rapid transient response for a given 
controller configuration. Although the zero terms have no effect on the state 
trajectbry when driven by a constant saturated control input, the initial 
statea (at t = 0+) usually lie closer (in terms of norm distance) to the linear 
control strip in the phase space, So that the "time in saturation" is reduced.
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Plant=linear aO =2.0 al = 1.0 a2=0 b0=1.0 bl =0 .2 u*ax=£.0

Figure 12.6.1 Phase Plane Portrait, Plant with Zeros
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Figure 12.6.2 Time Response, Plant with Zeros
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12.7. Unstable Second Order Plant
The application of an internally saturating linear control to an unstable 

second order plant will now be demonstrated. Consider the plant with 
Laplace transfer function

G»0O

which has right half-plane poles at

1
1.4142s + 1

ps = 0.7071 ± j0.7071 .

The control input is bounded by |u | < 2.
Applying the zero cancellation / full pole placement method to the 

continuous-time model, the closed loop system matrix is

K =
o 1

1-kj 1.4142

Selection of k = [8 8]T assigns the eigenvalues of the closed-loop 
unsaturated system at

ps =-1.9353, -4.6505

which will yield well-damped small-disturbance regulation characteristics.
Using the backward difference transformation, the resulting digital 

compensator satisfies the nonrecursive relationship (for T = 0.02),

u(z) = (408 — 400z-1)e(z) + r(z) .

Figure 12.7.1 shows the phase plane portrait for three step inputs of 
magnitude R = 0.25, 0.50 and 0.75. The desired large and small signal 
characteristics are clearly obtained for these transitions of the operating 
point.

Consider, however, the extreme cases of Figure 12.7.2. For R > 1.0, the 
attractiveness condition is violated, and the resulting trajectory overshoots 
the linear control region. This can be confirmed analytically by considering 
the left attractiveness boundary prescribed by equation (12.1.22). For the 
given plant and slope m = 1, (12.1.22) becomes

- e + 2.4142e + 2 + R > 6 .
The boundaries corresponding to each value of R are superimposed on the 
phase plane of Figure 12.7.2. The trajectories for R = 0.5 and R = 1.0



intersect the linear strip within their corresponding domains of attraction. 
The trajectory for R = 1.4 intersects the strip outside of its domain of 
attraction, with the expected overshoot as a result. The trajectory for 
R = 2.0 exceeds not only the attraction boundary fOr the linear strip, but 
also the stable region of the saturated control, and is apparently divergent.
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Plant-linear a0=1.0 ai=0 a2=0 b0=10 bl*=-l.414214 u»ax=E.0

Figure 12.7.1 Phase Plane Portrait, Unstable Plant with Dual-mode Control
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12.8. Third Order Linear Plant' . . ■ 4 . .
In attempting to demonstrate the phase space behavior of plants or 

order greater than two, we encounter the inevitable graphic limitations of 
dimensionality. A third order system requires a three dimensional 
representation to depict the linear control region, a subset in IR3 nominally

rp
bounded by the hyperplanes k e = i umax.

Lacking an adequate two dimensional means for representing a three 
dimensional space, it is necessary there to view only the projection of the IR3 
phase space on the IR2 phase plane. Among other compromises, this 
prevents an accurate geometric depiction of the linear control region 
boundaries.

In some special cases, such as a. plant which exhibits a dominant pole 
pair, this graphical limitation may be tolerated with a minimum of 
information lost. Such a case will be considered as an example of control of 
a third order linear plant with bounded control input. Consider the plant 
with Laplace transfer function

Gp(s) =
(s + 5) (s2+0.2s + l) 

subject to saturation bounds on the control input,

| u | < 2.

(12.8.1)

The ZOH-equivalent pulse transfer function for T = 0.02 is found with the 
aid of DIGCON to be

GPM «
(6.5 x 10~6)(z2 + 3.89798 z +0.94933)
z3 - 2.90045 z2 + 2.80171 z -0.901225

(12.8.2)

Working in forward difference normalized incremental phase 
coordinates, a bound on the domain of attraction of the linear control region 
is deternlined. From (8.6.41), We define

oa[,= kT(A^ -I) = [-0.94750 k3, 0.02 kj-0.040850 k3, 0.02 k2-0.099554 k3] .

Then from (9.3.23), we require that for the operational region S0 assumed to 
be norm bounded by He II <

i<
«max + Dp(z=l)Rmaxj 

Hall T2
(12.8.4)
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Consider the linear control region defined by

F = [40, 20, 4] . (12.8.5)
Substituting (12.8.5) and ( 
yields

12.8.3) in (12.8.4) with umax = 2 and ;^max •“ I

£< 1,534661 (12.8.6)
which is an adequate radial bound on S0 for step transitions of magnitude
less than or equal to Rmax.

The linear small signal behavior of the system is designed using the zero 
cancellation / full pole placement method of subsection 9.4. It is convenient 
here to work with the approximately equivalent continuous time model.

For kj ~ gj, i = l,...»n in (9.4.12), the characteristic equation of the 
closed-loop system is given by

p(s) - s3 + (5.2 + k3) s2 + (2.0 + k2) s -f 5.0 + kt. (12.8.7)

For kj given by (12.8.5), the poles of the closed-loop linear system are placed 
at

Pi,2 ^—1.1151 ± j 2.2832 
p3 = —6.9698

which is a dominant pole-pair situation, with natural frequency wn — 2.5409 
and damping factor £ = 0.4389.

Employing the inverse transformation from normalized incremental 
phase coordinates, the compensator is implemented as a simple nonrecursive 
filter satisfying

u(k) = sat2 j^2500 e(k) - 4750 e(k-l) + 2260 e(k-2)|. (12.8.8)

The responses of the compensated system to three step inputs of 
magnitudes R =0.25, 0.50 and 0.75 are shown in Figures 12.8.1 and 12.8.2. 
Again, it must be remarked that Figure 12.8.1 shows only the projection of 
the third order response on a two-dimensional phase plane. Because of the 
dominant pole behavior during both saturated and linear operation, the 
projection takes on the characteristics of a nearly second order system. 
However, the slight curvature of the desaturation locus reflects the three- 
dimensional geometry of the linear control region boundary.
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3th Order plant, 2nd order cofhp, no poles.. ex. 11
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Plant=linear a0=5.0 al=0 a2=0 bO=5.0 bl=S.O umax=2.0

Figure 12.8.1 Third Order Plant with Dual-mode Control, Phase Plane Portrait
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12.9 Plant Containing a Slew Rate Limitation
Slew rate limiting creates special problems in servo control systems. All 

actuators are subject to power limitations, and often these limitations 
manifest themselves as slew rate limits. Some common examples are:
1) An actuator linkage driven by a constant clock rate stepping motor.
2) A hydraulic actuator with limited hydraulic fluid pressure or flow rate.
3) A DC motor with limitations on available current.

A slew rate limitation may be rigorously defined as an upper and lower 
bound on the first derivative of a system variable. A large signal model for 
a slew rate limitation consists of a relay nonlinearity in a feedback loop with 
an integrator having a time constant K1; as depicted in the block diagram of 
Figure 12.9.1.

In a steady state frequency domain analysis or describing function 
treatment, a slew limitation might be approximated as an amplitude 
dependent transport lag, with the transfer function

F(s) = exp sKjX(t) j

where X(t) is the steady state input signal amplitude. For small signal 
amplitudes, the effect of the slew limitation can be ignored, so that it drops 
out of the linear analysis. However, its effect on the large signal behavior of 
a system cannot be ignored since it may have a profound influence on the 
transient response and stability of the closed loop system. The negative 
phase it contributes with increasing signal amplitude can cause a system 
with a healthy phase and gain margin for small signal amplitudes to become 
unstable for large signal amplitudes.

A particular example in which this type of nonlinearity is encountered 
is an electronically controlled diesel engine, in which the fuel delivery (the 
control variable) is actuated by a stepper motor driven at a constant clock 
rate, the same as the sample rate of the controller. With sufficiently small 
step quantization, the slew rate limit model of Figure 12.9.1 is an accurate 
description of the actuation mechanism, A complete model of the prominent 
dynamics of the system is shown in Figure 12.9.2. The task is to design a 
digital control law for microprocesser implementation, which facilitates 
stable, well-damped speed governing as well as a nearly time-optimal 
transient response for all feasible step changes in the throttle setting (the 
reference input).

368
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The linear dynamics of the plant may be described in terms of the 
control error e by

= - y V{12.9,1)
where Ti is the engine inertial loss torque, Tx is the external load torque, 
and J is the combined engine/drivetrain polar moment of inertias The 
pnimum and maximum limits on the fuel delivery u are umjll and umax 
respectively.

When the actuator is slewing at its maximum rate,
u = ±Kr \ \

u = K!t+u(0) , (12.9.2)

(12.9.1) and (12.9.2) permit the solution for a general trajectory in the phase 
plane representing the actuator slewing up at the maximum rate:
» -((Ti+TJ* - 2{T,+TI)K0u(0) + KoV(0)) + e(0) - ,

which can be rewritten

e - q(0) ± 2KoK, *

where

+ ’—fr downward slew

(12.9.3)

— upward slew

and q(0) = constant dependent upon the initial position of the actuator .

(12.9.3) represents a family of right and left opening parabolas in the 
phase plane. The null solution q(0)=0 defines the time optimal switching 
curve for the system, as shown in Figure 12.9.3. Maximum limits on e are 
determined by the maximum fuel delivery and the maximum external load or 
motoring torque (negative load). These limits are identified by horizontal 
dashed lines in Figure 12.9.3.

In addition to yielding the time optimal switching curve, (12.9.3) also
diidentifies the maximum possible slope —” of any trajectory, as a result of
de

the slew rate limit. Implicitly differentiating (12.9.3) and taking absolute 
values to accommodate both positive and negative slew limits yields
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de
de

K0KX
max j|c |

(12.9.4)

An actual diesel test engine located at United Technologies Diesel 
Systems in Springfield, Massachusetts was the basis for this experiment, 
although the results presented here were generated by CONSIM based on 
the simplified engine/actuator model. The plant is a John Deere 6466A 
diesel engine, rated at 675 lb-ft. torque @ 1400 RPM, which produces a 
maximum output of 180 BHP (Brake Horsepower). The maximum rated 
speed is 2400 RPM. An experimental microprocessor controlled American 
Bosch Model 100 Class fuel injection pump is used. The fuel rack actuator 
is driven by a stepper motor with a resolution of 120 discrete fuel steps from 
umin =0 umax = 120 mm/injection. The parameter values are:

T; = 80 lb-ft.

Tx = 0 lb—ft. (free engine) 

lb—ft—sec0.32

Kn = 5.3

rev/min 

lb-ft
' _;3mm

Kj = 200.0 fuel steps/second slew rate

r = 5.0 ms. sample rate

A simple nonrecursive saturating linear control, based on a backward 
mapping, is used:

u'(k) = K m + - e(k) - —e(k)

u(k)
umax > u (^) ^ umax

u'(k) > 0<u'(k)<umax
0 , u-(k) < 0

(12.9.5)

Initially we consider the case of K large, such that the linear control region 
is sufficiently narrow to be approximated by a switching line.



A; .conservative bound on the slope m is established by (12.9.4) 
evaluated at the Extreme boundary of the operational region. For the given 
plant parameters,

^Outnax~Tijmax = 1737.5 sec.

and from (12.9.4),

!ml< de_
de

<
KoKj

max J I® jniax ^Oumax Ti
= 1.906

(12.9.6)

(12.9.7)'

As shown by the switching line "A" in Figure 12.9.3, with m conforming 
to the constraint (12.9.7) in the control law (12.9.5), the actuator is never 
driven at a rate that encounters it’s slew limit. Therefore, the system is 
effectively linearized over its entire useful range of operation. The system 
behavior for m=1.9 is shown in the phase plane plot of Figure 12.9.4, which 
represents the step responses of the unloaded governed engine from idle at 
600 RPM to 1200, 1800 and 2400 RPM.

A less conservative, more time-optimal design approach is to place the 
switching line so that it passes through the point of intersection of the null 
solution (12,9.3) and the extreme boundary of the operational region, as 
depicted by the line"B" in Figure 12.9.3. Evaluating (12.9.3) at the limit
(12.9.6) yields a maximum value of m which will assure a non-overshoot 
transient response for all feasible step inputs.

M Ae
Ae

liU, _ 2KpK, 
J(|eL„)8 Koumwi“T, 

2K0K,

(12.9.8)

Independent of the system parameters, the nonconservative slope (12.9.8) is 
twice the conservative slope (12.9.7).

The responses of the governed engine to three step changes in the 
throttle setting are shown in Figure 12.9.5, using the control law (12.9.5) 
with m=3.8 and K large (K==l). By the relative optimality theorem of 
subsection 9.1, the phase plane portrait of Figure 12.9.5 represents a more 
time-optimal family of trajectories that those of Figure 12.9.4 for m=1.9. 
The corresponding time responses are shown in Figure 12.9.6. Saturation 
markers on the curves demonstrate the high-gain switching action of the 
control.
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Consider now a finite-width linear control region implemented by the 
choice of K=0.2 with m==3.8 in the control law (12.9.5). The system 
responses comparable to thoses of Figures 12.9.5 and 6 are shown in Figures 
12.9.7 and 8. The linear control region boundaries are superimposed on the 
phase plane of Figure 12.9.7. By comparison of the time responses of Figure 
12.9.6 and 12.9.8, it may be concluded that a negligible loss in time 
optimality is incurred by using the latter (dual-mode) control. However, the 
smooth linear regulation characteristics of the dual-mode control are 
distinctly superior from the point of view of actuator wear, compared with 
the constantly chattering switch-mode control. As reliability is directly 
related to the wear rate of the components, the dual-mode control law is to 
be preferred in this and similar high-risk, low-maintenance control 
applications.



Figure 12.9.1 Model of Slew Rate Limitation
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Actuator Engine
Controller,_______ I____ . ,__________ i__/ \ / ■

e(s)

(RPM)Limit
DCs) —

Figure 12.9.2 Diesel Engine Control System with Slew Hate Limited Fuel 
Actuator
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Figure 12.9.3 Implementation of Time-Optimal Control for Engine with
Slew Rate Limited Actuator
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Diesel Engine u SIeu Limited Actuator, 1=005. diesel.l
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Figure 12.9.4 Phase Plane Portrait, Conservative Switching Line (m= 1.9)
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Figure 12.0.5 Phase Plane Portrait, Nonconservative Switching Line
(m==3.8)
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Figure 12.9.6 Time Response, Nonconservative Switching Line (m=3.8)
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Figure 12.9.7 Phase Plane Portrait, Dual-mode Control, (K=0.2, m=3.8)
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Figure 12.9.8 Time Responses, Dual-mode Control, (K—0.2, m=3.8)
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12.10 Comparison with Discontinuous Controls
In previous examples, a sample period has been used which is 

sufficiently small to yield an approximate equivalence between the action of 
the discrete-time compensator and its continuous time Counterpart. This 
assumption allows us to focus on the salient properties of the dual-mode 
control, avoiding possible confusion caused by finite sample rate effects. 
However, this assumption is neither realistic or necessary in practical 
applications of this class of ^controls. Indeed, a significant advantage of 
dual-mode and boundary layer controls is a superior tolerance of slow 
sample rates compared with discontinuous subop timal controls, such as relay 
and variable structure controls; This will be illustrated with an example.

We again consider the bounded input linear plant (12.1.2). The special 
sample rate selection criteria (10.3.30) is applied to determine an upper limit 
on T for this plant for a proposed linear control region established by 
£T = [16, 8].. :'

1 I ^ ImaxT -
' V"----—---—” < T <

1^ (max 2GSS | ^|^ax 8.0

1 - e-T < T < 0.0625

Let T — 0.10, which slightly violates this criteria, accentuating the 
ramifications of a finite sample rate. It Is important to point Out that the 
Nyquist sampling criteria for this plant merely requires that

T < 7r
Imax 3.1416 .

A simple nonrecursive saturating linear control is designed for T = 0.10 
and £T = [16, 8]:

u(k) — sat2 ^96 e(k) — 80 e(k—1)J .

The response of the closed-loop system to a step input of magnitude 
R = 0.75 is illustrated in Figures 12.10.1 and 12.10.2. As evident from the 
phase plane portrait of Figure 12.10.1, the control action follows the design 
objectives, reverting from saturation to linear operation near the nominal 
continuous-time boundary ke= umax, and following a linear path to 
equilibrium. The time response pf Figure of 12.10.2 shows imperceptible 
ripple due to the sampling action.



382

The system behavior when subjected to a discontinuous control law for 
the switching line k e = 0 is compared in Figures 12.10.3 and 12.10.4. The 
theoretical sliding motion on the switching line is only roughly 
approximated, and the time response shows considerable ripple during both 
the transient period and at steady state.

As an supplementary example, consider the addition of zeros to the 
plant transfer function:

GpM - 0.1s + 1 
s2 -f- 0.2s 1

Integral action is added to the controller to'facilitate Type 1 regulation, 
following the PID design procedure of equations (12.3.40) through (12.3.44) 
with T = 0.1, = [16, 8] and Kj = 1.

The response of the closed loop system to a step input of magnitude 
R = 0.75 is illustrated in Figures 12.10.5 and 12.10.6 Although some finite 
sample rate effects are evident in the phase plane portrait, the control is 
faithful to its continuous-time equivalent, and the time response plot is 
smooth and ripple-free.

The action of the comparable switching controller is illustrated in 
Figures 12.10.7 and 12.10.8 The sliding mode on ArTe = 0 is achieved only in 
the crudest sense, and the pronounced ripple at steady state is probably 
unacceptable.
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Figure 12.10.1 Phase Plane Portrait, Nonrecursive Dual-mode Control
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Figure 12.10.2 Time Response, Nonrecursive Dual-mode Control
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Figure 12.10.3 Phase Plane Portrait, Sliding Mode Control



O
ut

pu
t of 

Pl
an

t

386

Tifne <Sec>
Piant=linear aO = l .0 al=0.0 a2=D bO=l .0 bl=0.2 uiiax=2.0

Figure 12.10.4 Time Response, Sliding Mode Control
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Figure 12.10.5 Phase Plane Portrait, Plant with Zeros, PID Dual-mode
Control
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Figure 12,10.6 Time Response, Plant with Zeros, PED Dual-mode Control
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Figure 12.10.7 Phase Plane Portrait, Plant with Zeros, Sliding Mode 
Control
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Figure 12.10.8 Time Response, Plant with Zeros, Sliding Mode Control



13. EXTENSION TO MULTIPLE INPUT / MULTIPLE 
OUTPUT PLANTS

We Consider the single-target servo-control problem involving a plant 
with multiple inputs and/or multiple outputs. The model is depicted in
Figure 13.1

Figure 13.1 Multiple Input / Multiple Output Servo Control Model

The plant is described by the state equations,
x = Ax -I- Bu (13.1)

y — Cx

where x £ lRn, u € JRm, y £ Hp

A € JRnXn, B £ TRnXm, C £ EtpXn.

The control error is defined by
e = r — cfiy — r — cFCx . (13.2)

The itl1 derivative (or (i—l)*11 phase variable) may be written as
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= — o^CA'x — ]T] h}u*) + 
j=i

where

hjT == <rrCAj_1B , i = 1

We define the extended input phase vector

U =

u
u

up)

u^-1)

where

uW =

uf>
uf)

u ■(i)m

(13.3)

(13.4)

(13.5)

(13.6)

The closed loop system in control error phase coordinates is written

e — A^e — BeC/ + 7r (13.7)

where e and r are defined in section 8.5, and

A* = TAT-1 (13.8)

: (? C
T = <^9^ (13.9)

<TTCAn-1J

Be = TBQ + MxJ - A^Mj (13.10)

Q = [Im0...0] elRmXnm (13.11)
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M, =

0
hi

0
o

hn-l AL> ... hi 0

EEnXmn (13.12)

J =

0 /m 0 
0 0 Im

0
0

0 0 0 
0 0 0

1 = 12- Kir as defined in section 8.5.

•“•m

0

E EmnXmn (13.13)

Be has the special property,

Be =
0

ftT ft v ..ftT

n-j
ft *= ^n+i-j + E Pi+j-i^i 

i=l

(13.14)

(13.15)

where pj are the polynomial coefficients of the characteristic equation 
jsl - A | =0.

We assume (c^C, A) to be an observable pair, and (A,B) to satisfy the 
normality condition (A,Btj) controllable, i=l,..,,m where is a unit vector 
with all elements zero except the ith element, which is unity;

Define the nominal control law

u —

sat^fc^e) 
sat2(fc2Te) (13.16)
satm(fcme)

The nominal linear control region S2 is the set bounded by the hyperplanes

k^e — i^jjinax » | = l,...,m . (13.17)
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Let

K =
*iT

kT

Define a generalized Lyapunov function for S2 as
,r 1 tV = — «;*«;

2

where w —
w,

wr
= Kc

The attractiveness of the region S2 is assured by 
definiteness of the Lyapunov derivative.

V = wTw =«»Ke

= u^KfA^e — Beu + "yr] < 0 .

For states lying outside of S2, u is a vector of constant inputs,

sgn(wi)ulmax
u = uc —

sgn(wm)umimax

Therefore, for states lying outside S2, and r=R=constant, 
(13.20) can be written using (13.21),

V = u;TK[Aee — B^ti + 7R]

where

Be1 —

7-

ftT

0

■ •

0
Po

G KnXn

€ JR"

(13.18)

(13.19) 

the negative

(13.20)

(13.21) 

|R |< Rmax,

(13.22)

(13.23)

(13.24)
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The negativity of (13.22) is assured if each component
WjljT [AgC — Bg« + 7R] < 0

Over the set of admissible constant reference inputs JR | < Rmax. A total of 
m2m conditions must be considered, corresponding to the sign of each 
component of w in distinct subsets of the phase space.

Consider the ea.se n=3, m=2. (13.22) can be written

[wi w2] ^11
k2l

42
c22

^13
k23 A^e -

0 0
;o/ 0 ■
Pn fin

sgJi(w,ju1(
sgn(w2)u2

max 
ma x

*

+
0
0 R

- , Po
L J

<o

(13.26)
Treated individually, the two components are 
a) w^A^e - k13(/?ilsgn(w1)u1 ,max + /?i2sgn(w2)u2 „max PoR)] <0

and
(13.27)

b) w2[l2TAec - k23(/?11sgn(w1)ul mas + ^i2sgn(w2)u2>max - PoR)] < P >

■ (13.28)
The linear control region S0 possesses the desired attraction properties if all 
the following inequalities are satisfied, for all |R j<Rmax:

tuj > 0, ta2 > 0

a) ky A^e < k13{/?nulmax + /?12u2max - PqR) 

h) fc?A*e < k23(^11u1 ,max + /?12u2 ,max PoR)

Wi < 0, w2 < 0
a) k?Kc > k13(-^nul max - /?i2u2>max - PoR)

b) ki A^e > k23(-/?nulmax — ^i2u2>max - PoR)
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wl > 0, w2 < 0

a) kfA^e < k13(/?nulimax - P12u2mM - PoR)

b) kfA^e > k23(/911ul max - /?12u2max - PoR)

Wj < 0, tw2 > 0
a) AeC > ki3(—/?nUl max + /?i2u2,max — Po^)

b) kfAs < k23(-^11u1>max + /?12u2imax - PoR) (13.29)

Assuming that all components of K and /?T are non-negative, the last 
four inequalities are redundant if the first four are satisfied. The set of 
inequalities (13.29) represent a constraining relationship between K, umax 
and Umax for a given plant, such that the desired dual-mode control 
properties are realized for the multiple input/multiple output plant.

A simple digital structure suitable for implementation of the control is 
shown in Figure 13.2. The discrete-time compensator coefficients may be 
determined directly from the inverse mapping between delay and normalized 
incremental phase coordinates, by admitting the approximation

fc; (continuous time) (normalized incremental phase)

Letting represent the vector of discrete-time compensator coefficients,

W1 = Jn A? J„ Tf1*!, 1=1,2
where Jn,A and Tt are defined in section 8.6.



Figure 13.2 Simple Control Structure for Third Order, Two-Input Plant 
(No compensator poles)



14. APPLICATION TO CONTROL OF NONLINEAR PLANTS

14.1. Modification of the Attractiveness Condition
The extension of the control design method discussed in the previous 

sections to bounded input nonlinear plants requires the transformation of 
the plant model into control error phase coordinates, so that the linear 
region defined by the controller parameters and the control bound umax may 
be identified and its domain of attraction determined.

We seek a nonlinear diffeomorphic transformation to a, Frobenius (phase 
variable) form that is valid within the entirety of S0, which will permit the 
evaluation of the domain of attraction of S2, the subset of unsaturated 
operation defined in the control error phase space.

A summary of nonlinear transformations within this class, and the 
background material, is provided by Zak and MacCarley [Zak86j.

The direct transformation method of Korobov as presented in 
[Kuntseyich??] and summarized in [Zak86] is particularly appropriate to the 
task at hand. It is limited to systems descried by the following class of 
nonlinear equations:

xi = A(*i>x2> •••> xi> xi+i)» i = 1, ..., n—1
(14.1.1)

xn fa(xl> x2> •••»
Thie input u appears only in the nth equation, and the i+ltl1 state variable 
present in equation j must not appear in equation j-1. This restriction 
prevents the introduction of u into any except the nth component of the 
transformation. The transformation is constructed recursively,
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x = T(x)

*i
x2)

fl(Xi, x2) 

d(n-2) 1

fl(Xl, X2)

(14.1.2)

where successive derivatives of fx(xx, x2) are evaluated using fj, i = 2, ..., n 
from the original system..,:./.

The transformed system is given by

_d_
dt

0 10\ 
0 0 10

0 • • •

• 0 
• 0

0 1 
0 0

1
1 0

*1 •
• + •

Xn 0
1

y(T-‘(i, u)) (14.1.3)

where x = T *(x) is the inverse transformation. The success of this method 
depends upon the existence of a unique inverse transformation T-1(x).

This transformation can be seen to map the system (14.1.1) into phase 
coordinates, as would be required for evaluation of the attractiveness 
condition in the control error phase space. That this transformation 
preserves the linear characteristics of the plant at any operating point u€, xa 
is proven in the following development.

Theorem
A nonlinear transformation

x = T(x), i 6E1, i GIR1,

T(x): lRn -► JR\ T(x) G C*_1,
which is invertible at the point u = ut G U, x = xe G X, preserves the 
eigenvalues of the systems when linearized about the operating points, 
x — f (x, u) and x = f (x, u) at (xf, ue) and (xf, u£) respectively.
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Proof'

: v x *= f{x,u)
At the equilibrium point u == ut, x = x(,

x =

hi ;ut) = o 

x - T(x), x = T_1(x

t T<*> dT . dT .. v 

-/(x, u)
int (x(, uf):

M.
dx

d_
dx

dT 
dx *

_d_
dx

d_ ■Wi
dxj

dx d_ 3T, ’
dx 1dx dx dx

_d_
dx

["■ ,| dx
dx.

d_
dx

r
------------------̂

E-?

l.__
;__

________i

dT~l{x)
dx

d_
dx

dT 
dx 1

dT"1
dx

Using the identity

_d_
dx

dT,
~dx

_ .t + aj_
dx2 dx dx ’

dr, ST,
■

d% a® -

OT. , d dT-
ax f ■ 'V.."-

dx /ax 1

(14.1.8)

(14.1.10)
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_d_

dx
ffr
dx

f

,T OT..
- dx2

dTx df
dx ' dx

• +
■drT dj_

j dx2 dx dx

(14.1.11)

But at any operating point f(x(, u() = 0

_d_

dx

dT

dx
f

dT-1 = dT_ df dT~V
dx dx dx dx

By the inverse function theorem [Kaplan80], at any operating point
-l

dT

dx

dT
dx

, <9f _ <9T df 

dx dx dx

dT

dx

-l

(14.1.12)

(14.1.13)

(14.1.14)

aT .Since —- is a linear transformation, the eigenvalues of the two linearized
dx

systems

x —
dx

A ' dfand x — ~— x
dx

(14.1.15)

are invariant.
□

We now consider an extension of Korobov’s method, applicable to the 
general class of systems of the form

fi(x, u)
i = f {x, u) = :

u)

y = q (x,u)

x € 1R" , uGE .

/ G Kn is analytic in the neighborhood of the origin, with / (0)—0.
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The transformation proceeds recursively:

*i;** T^x)= y = g(x,^u)

*?==*i =y = u),

c . • Y . . 'r '

*n = Vy^ - -^pr s{x, u)

where successive derivatives of g(x, u) are evaluated: using fj(x, u), i == 2,...,n, 
from the original system. In the transformed coordinates, the system is

x — /(x, u» u, .w, n^^) (14.1.17)

■ T “Xr . ;
since y^1-1^ = xv i = 1, ..., n, the system (14.1.17) is in phase coordinates of 
the output, and is readily converted to control error coordinates by 
substitution of x, = r^1-1^ — e—Vin (14.1.17). In control error coordinates,

e -- /(*, u)|g_r_e +r (14,1.18)

where

e
e = f .

e(n—1) ‘ -

u

.uM
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010 0
0 0 1 • 0
• • • ' ♦ •

• • • 0 1
0 • • 0 0

0 0

6 7n(c> r) + 6
l l

rW(l4.1.19)

This may be compared with the structure of the previously analyzed linear 
system,

0 1 o • 0
0 0 1- 0

0 0v • •• w
• •• • •

0 1-0
0 0 • • 0 ---

---
 1

•tv
*

• • • • o
. . • 0 1

t — • «• • • ■
0 ... 0

u +

• • 10

♦
' •

r(A-l)
—bn-i —bi —b0 Pi ... A» 0 • • o 1 r(n)

(14.1.20)

For the transformed nonlinear system (14.1.19), the attractiveness 
condition is checked by direct analogy with the linear case. The generalized 
Lyapunov function is applied:

V —— w2y w = , V = ww
2

Attractiveness requires V < 0,

w kl e =w k1 /(e , u, r) +
0•

■f„Y•
0
1

rw <0 (14.1.21)

For the control law u == sgn(w) umax, applicable outside of the "linear" 
(actually, unsaturated) region S2, and r = R, r^ = 0, i = l,...,n, the right- 
attractiveness condition (for w > umax) is f

kT f{e, umax, R) < 0 (14.1.22)

and the left-attractiveness condition (for W < UmaT) is

0 /(e, -u^, R) >0 (14.1,23)

The combined ultimate attractiveness condition, for |R| < Rmax, may be 
expressed by the inequality:
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eT k kT(e, sgn(/cT e ) umax, R) .< 0

^ R G [“"Rmai* ^max] 
domain of attraction is given by

e : eTfc fcTf(e, sgn(&T t )umax, R) < 0 V |li| < R.

(14.1.24)

S, = max .1.

As in the linear case, we require that (S0 Q S2) C Si for proper 
implementation of the dual-mode control.

The application of this transformation and the resulting attractiveness 
condition (14.1.24) is now demonstrated by an example incorporating a 
nonlinear plant with a saturating linear compensator.

Design of the regulation characteristics of the controller for unsaturated 
u will be addressed in the context of this example.

14.2. Design Example - Nonlinear Plant
We consider the problem of closed-loop speed control of a DC motor 

with a nonlinear magnetization curve, which reflects saturation of the 
magnetic material of the armature when driven by high currents. The 
motor is loaded by a constant inertial mass and viscous friction. The 
application being modeled corresponds approximately to a 10 horsepower 
traction motor powering a small electric vehicle. The motor is voltage 
controlled using a sequential battery contactor, with sufficiently fine 
resolution to provide nearly continuous speed control. The maximum series 
Voltage available from the vehicle batteries is 100 volts. The electrical 
model for the armature circuit of the motor is [Chapman85], [Sinha74]:
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The kinematic model is:

Radial Velocity

Gearbox
Load Torque T"

Torque X

Polar Moment 
of Inertia

ViscousDC Motor 
(nonlinear) Friction

Due to the effect of magnetic saturation in the armature, the 
torque/current relationship is nonlinear, approximated by an inverse tangent 
function:

2 r,
T =

max tan i:('yi)
7T

r Torque (N-m)

Initial Slope

Armature
Current



4pe

The system differential equations are

dt
R .— iL

du;
dt

2 r.max
7T J

tan *(7 i) ri
J

(14.2.1)

The model parameters are:
oj = radians /sec, r = torque in N-m, umax= VaJ

V-s
100 volts

R = 1 n, L .= 0.5 H, Kb = 0.5
N—m—s2

rad
rmax — 314 2 N-m, J = 1 rad

TNJ------rri—-q

fv == 2 -------—, f(/ = 0 N-m, 7 = 0.1 (unitless);
■ rad ■

We wish to control the motor over its rated speed range of i 1000 RPM 
or ;fl04.7 radians/sec. Note that all speed and torque measurements are 
taken after the gearbox, at the vehicle wheels. The gearbox itself is treated 
as frictionless, and its polar moment of inertia lumped into that of the load.

These values represent the extreme scenario of an uploaded vehicle 
accelerating in low gear on level ground. This may be considered the most 
critical control scenario, since the system is Jppst damped, and the control 
action must be most rapid.

For convenience, define the positive constants:
R Kb 1Kx =. ~ = 2 K2 = ~~ = 1 Kr=j- = 2

2 rmax fv
K4 f= ■ ■ = 200 K5 = 7 = 0.1 K6 = —= 2 K7=0

7T J J

Let xx = i, x2 = oj, u = Va, y == oj. - ■ : ■:

xj = — Kx xx — K? x2 + K3 u 
x2 =K4 tan_1(K5 ^) - Jt6 x2 - K7
y =x2 (14.2.2)
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Form the nonlinear transformation:

T(x)

The inverse transformation:

T-1^)

xi = y = x2

x2 = X! = x2 = K4 tan-1(K5 x4) - K6 x2 - K7

x2 = X1

x, = ----tan
1 Kr

x2 + Kg Xj + K7
Ka

The transformed system:

X1 = x2

~ K4K5(-Kix1-K2x2 + K3u) ^ )
x2= ----------- 2 2-------------- K6 IK4tan (K5xJ-K6x2-K7 I

l+rVgXj

Using T ^(x), the system in the transformed coordinates is:

x, = x,

(14.2.3)

(14.2.4)

(14.2.5)

-Kj K4 tan x2 +K6x1 +K7
Ki ■ K2 K4 K5 Xj + K3 K4 Ks u

x, = ■
1 4-tan2 it + Kt*! +K7

kT

-K6x2 = f2(i, u)

y=xi
since Xj = y = r — e 

x2 = y = r - e ,

(14.2.6)



m

— K^K^tan
r — e + Ke(r—e) + K7

KoK4K5(r-e) + K3K4K5u. K, .. J

l.-H tan2
f-e + iQr-e) + K7

K, V . J
— K^r —e), . (14.2.7)

At constant ' .operating points, r — R, f = r' = 0
~ ; - Ki K4 tafi(-7) - K2 K4K5(R - e) ,+ K3 K4 K5 u
f2(e, u, R) = —-----—------- 7,7 - J. ; ----- - .

1 + tan (7)

— e + K6(R — e) + K7

1 = K(

The system in e phase coordinates is

e — - f2(e, u, R)

The attractiveness condition w k1 e < 0 leads to:

w kx e - k2 f2(e, u , R) j < 0

VR6 __r> d■^max* ^max

The control, valid for |w| > umax, is

u = sgn(w) umax .

The boundaries of the domain of attraction are given by 

(l + tan-w) . K
k,
IT* ■KoK4K6 ' k2k6

e + „ „ tan 7 - — sgn(w) umax + R - eKo = 0

+ K6e 

(14.2.8)

(14.2.9)

(14.2,10)

(14.2.11)

We are interested in 
strip, \k? e | < umax. The points of iiteisection are found by solution of the 
nonlinear system of equations
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kj e + k2 e = sgn(w) uE

k.i K« 1 — tan2 7

K2 k4 k5

K ke + * tan 7 - sgn(w) umax+R—e =0.
iV2 As' ■*'■2

7 =
—e + K6(R — e) + K7

K. (14.2.12)

For each case, w — umax and w = “"Umax respectively, we solve for 
(e, e) using a value of R £ [—Rmax, Rmax] such that | |e 11 is minimum. This 
identifies the most restrictive bound on the domain of attraction over all 
admissible operating points.

A linear region is established by choice of kr = 10, k2 = 2, which has a

slope — =k2
attraction using (14.2.10-12).

A system of nonlinear equations of the form (14.2.12) generally requires 
a numeric solution. A FORTRAN program was written to solve the 
attractiveness bounds for general nth order nonlinear plants. The program 
"BND" and its plotting shell program "BPLOT" are listed in the appendix. 
The program uses the IMSL subroutine ZSPOW to iteratively converge to a 
local solution of a nonlinear system of n equations in n unknowns, starting 
from an initial guess.

Another program "CHKPT" was written to verify whether an arbitrarily 
chosen point in the phase space lies with the domain of attraction of the 
unsaturated region. Caution must be observed in interpreting the answer 
given by this program, (and the attractiveness condition (14.2.10) in 
general), since it is entirely possible to pick points that do not represent 
realistic regimes of operation for the nonlinear system. For the present 
example, only points for which

-e + K6(R - e) + K7

are realistic, since, in the original system coordinates

< -|, (14.2.13)

5, and width
m\

19.6. We check the domain of
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Xj == i (current in amps) = — tan(7) , and jij < oo .
■ K5 ■ ■ .■ ^7':

The program CHKPT also appears in the appendix.
Using the program BND, worst case bounds on the attractive part of 

the linear region were found to be:

for u = — u„ R = — Rmax?

e = 53 e = - 317 (14.2.14)

for u = umax, R = Rmax,

e «= — 53 e = 317 (14.2.15)

This is a reasonably large region of attraction, considering the ra,nge of 
initial conditions (at t = 0+) for r = + Rmax = + 100* The maximal norm 
bounded set fully contained between these points is given by 
Si = {e: j | e || < 321.4}. Unlike the linear situation, we cannot draw any 
definite conclusions regarding the question of S2 D S0 C Sr without the aid 
of simulation, although this is a conservative starting point for an iterative 
design.

Once inside the region of unsaturated operation, the linear control law

u = kxe + k2 e

is applicable. The system (14.2.9) becomes
'e. "

Kx K4 tan 7+K2 K4 K5(R - e) - K3 K4 Kc^ e + k2 e) - K6d)
1 +tan2 7

K6e

1
-e + K6(R - e) + K7

K4
(14.2.16)

We how may address the second half of the design problem, the 
unsaturated characteristics of the system after the state has been attracted 
to and trapped in the linear strif). We consider first the problem of 
regulation and small disturbance rejection, by linearizing the system about 
the operating point, which is parametric with R.



We then treat the unsaturated system in somewhat more general terms
rp

by linearizing about the hyperplane of definition for the linear strip fee = 0. 
The resulting linearized system is parametric with respect to location on the 
hyperplane, in addition to its dependence on the operating point R.

The equilibrium point corresponding to a particular constant input
R can be found from

i=f (O o

e, =0

Kx tan
' K6 (R-e,) + K, '
I. K4 1 + k2k5r

k5 (k2 + k3 kj 1

Inserting the parameter values for the example and solving for e(,

e, - 6.25 « e|max ~ 2Rmax = 200 ,

therefore, no significant degradation in the validity of the linearization 
process occurs if e( Is taken to be 0.

We linearize the system (14.2.16) about the origin (e(, e() == (0,0), for 
any constant operating point r = R.

Form the Jacobian matrix J(e ) = Vf(e) e = e

■Ml dit
0 i

de de

3f2 di2 a?2 d~h

de de de dk

(14.2.17)
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$2
de

K, K4 sec2 7 ” - K2 K4 K5 - K3 K4 K5 kx■ de-- . ; - -
1 + tan* *t2

(kx K4 tan 7 + K2 K4 K5 (R - e) - K3 K4 K5 (kx e^ + k2 e)j

|l + tan2 7 j
/

• 2 tan (-7) sec2 -7
d-7
de

where d/7

de
Ke
K4 '

For e = e(,

=

de
2K,K5K6K, K6 + / R

tan 7, sin T ,

Ki K6 + K2 K4 K5 + K3 K4K5 ki cos2 7, (14.2.18)

&2

<9e

Kx K4 sec2 7-^T - K3 K4 K5 k2 

de ______
1 + tan2 7

Kx K4 tan 7+K2 K4 K5 (R - e) - K3 K4 Ks (kx e + k2 k)

(l +tan27)
2 tan 7 sec2 7

.’de K6

where ±1
de

1
k4

For e = e(,

%
<9e

Ki +
2 Ko K5 

2 5 R
tan 7t

. 2sir 7( Kx ’+ K3 K4 K5 kjj cos2 7f — K6

(14.2.19)
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Substituting in the parameter values,

(14.2.20)

df2
~de~ = — 424 cos2 R

100
+ 4 + 0.4

tan R
100

TR sin R
100

dh
<9e

- — 82 cos2 R
100

+ 2 + 0.2

tan
R

R
100

sin" R
100

-2 (14.2.21)

We may compare the eigenvalues of the linearized system at the two 
extreme operating points R = 0 and R = Rmax = 0.
At R - 0

p(s) == s2 + 84 s + 424

0 1
J = -424 -84

Pi = - 5.394 
p2 — — 78.606

The system is over damped.
At R = 100

0 1
J = -102.8 -15.4

p(s) = s2 + 15.4 s + 102.8 *=> pj, p2 - —7.700 + j 6.596 
The system is underdamped, but stable.

0Ja = 10.14

^ = 0.759

We now examine the system linearized to the hyperplane of definition
rp

for the linear region, k e = 0,
The system with the linear control law (14.2.16) is linearized with 

respect to the trajectory, parameterized by a,
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e = a

■ . = _ ki. a
k2 , '

The Jacobian matrix for the parameterized linear system has th 
components:
d^_
de

dh_
de

= 0,
de

= 1

dh
de

= Kj K6 sin2 7( - (Kj K6 + K2 K4 K5 + K3K4 K5 kA cos2

+ 2 K2 Ks K6 (R — a) sin 7( cos 7(

d(2 df2

de ~ ~ de ,

= Kj sin2 7, - |kx + K3K4K5k2 j cos2 7, + 2 K2 K5 (R — a) sin

7, =

ki
K„ a + Kg R -f- K7

k4

For kj = 10, k2 = 2, and R = 0,

df,
de

df2
de

= 4 sin27t — 424 cos2% — (.4)osin7( cos7(

= 2 sin27f — 82 cos27( — (.2)osin7(cos7€ — 2

% =
3-----a

200

e following

(14.2.22)

i( cos 7f — Ke

(14.2.23)

(14.2.24)
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The characteristic polynomial for the closed loop linearized system is

p(s) - s2 +
Oh
de

( 3 +
&2
de

= 0 (14.2.25)

When the control first breaks out of saturation during a large step 
transition, a is large. For example, when ex = 50,

It — 0.75

dh
de

235.11

df2
—f = -49.958 
de
Pj = —5.260, p2 = —44.698 

The system is well damped, with effectively a single pole response.
Now, when the state converges to the locality of the equilibrium point 

(the origin, since R = 0), a = 0. As shown previously for the system 
linearized at (0,0),

% =0

dh=_
de

424.0

dtt
de

84.0

px = —5.394 , p2 = —78.606

The single pole dominance increases, while the system damping is only 
slightly reduced. The dependency of p(s) on a underlies the slight difference 
in the linear characteristics of the system when the trajectory first enters 
the linear strip (|a| > 0), compared with its characteristics after

convergence to the equilibrium point (a ~ 0). This will be demonstrated in 
the simulation examples for the linear saturated compensator.

In certain situations it may be desirable to minimize the variation in 
the linearized system as a function of the operating point R, or the location 
in the linear region as delineated by a. Taking partials of (14.2.25) with
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respect to the parameter of interest, and equating the coefficients of each 
power of s to 0, yields n equations in n unknowns (the n components of the 
vector A:).

For example, we might optimize A: to yield invariance of the eigenvalues 
of the linear system with respect to the operating point R, at equilibrium

Conditions (<* ~ 0).
: . (p(s,RiO))V0 ^

d i $2
dR ( de i 0 (14.2.26)

A
dR

(14.2.27)

For the present example, the solution to the above system favors 
kj, k2 —► oo, which is equivalent to the variable structure or relay control. 
In general, the solution for the optimum k will depend upon a also, or on R 
for minimization of the variation in (14.2.25) with respect to d.

Simulation results, using CONSIM, are shown in Figures 14.2.1 through 
14.2.15, comparing several control configuration!.

Figure 14.2.1 shows the open-loop response of the motor to an up/down 
pulse at maximum voltage. The nonlinear behavior is clearly evident from 
the different settling characteristics at the zero and high operating points. 
The open loop plant exhibits overdamped behavior at high speed, and 
underdamped behavior at low speeds.

In Figure 14.2.2, analog proportional-only control with gain kj = 10 is 
applied. The system remains underdamped at both operating points.

In Figure 14.2.3, the digital saturating linear control is used with the 
previously chosen coefficients kj = 10, k2 = 2. The sample period is 
T = .01 seconds. The steady state gain remains 10. Transitions between 
operating points are nearly time optimal, while regulation at both operating 
points is well damped. The phase plan# portrait for this pulse response is 
shown in Figure 14.2.4. Overlaid on the portrait are lines indicating the 
linear strip. The entirety of the linear strip contained within the portrait 
borders is within the previously calculated domain of attraction. As
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designed, the trajectory is attracted to, then trapped within the linear strip, 
providing the desired combination of time optimality and set point 
regulation characteristics.

However, this speed control is not isochronous (Type 1), which is a 
desirable (possibly required) feature for a servomechanism of this kind. To 
achieve this, we add pole dynamics to the compensator. The saturating 
linear PHD configuration (Group 3 structure) is used with kj = 10, k2 = 2 
(as before) and an integrator gain Kj = 0.2 (sec-1). The pulse response, 
shown in Figure 14.2.5, shows zero steady state error at the high set point, 
while the transient response remains virtually undegraded. The 
corresponding phase plane portrait for this case is shown in Figure 14.2.6. 
The origin is now the common equilibrium point for all constant reference 
inputs.

Now consider the worst-case scenario of a step change of magnitude 
2Rmax, from R=—Rmax bo R=Rmax- Figure 14.2.7 illustrates the time 
response using the same compensator. The step response remains nearly 
time optimal, with highly damped, zero error regulation at the extreme set 
point.

The corresponding phase plane portrait is shown in Figure 14.2.8. 
Overlaid on this portrait are the boundaries of the domain of attraction for 
the linear strip, as given by (14.2.11). These were computed and plotted 
with the aid of the FORTRAN programs "NLFUN" and "NLFUN2" which 
solve nonlinear systems such as (14.2.12) parametric with the distance w 
from the strip. The worst-case right and left attractiveness bounds are 
shown. It is noted that the trajectory of the worst case step response is 
fully contained within the domain of attraction. The preliminary choice of 
kv = 10, k2 = 2 was actually somewhat conservative. A slightly steeper 

k, .

attractiveness requirement (S0 PI S2) C Sj.
It is worthwhile to compare these results with those obtained for the 

(discontinuous) relay or variable structure control law realized by high gain 
feedback,

u = lim satUmM (c^kj e + k2 e
a —► 00 L max

which contracts the linear strip into a switching line.

—) linear strip could have been selected without violating the
k2



For general k, the system linearized about the origin is given by
<9fV

----= — (24 + iOkj) cos2 R
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100

sm R
100

df2
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= — ^2 + 40k2 j cos2 - R
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R

tan jt
10

sm
100

-2 .

v', '{14.2,28).
For kj, k2 large, the characteristic equation reduces to, for any R,

lim p(s) = k2 s + kj X = — -— == 5.
a —► oo k«

In a true sliding mode, the system order is reduced, and the eigenvalues of 
the linearized system are invariant with respect to the operating point. 
However, the limitations of a finite sample rate make this idealization 
unattainable. Figure 14.2.9 shows the phase plane portrait for a high-gain 
sliding mode control with switching line defined by k, — 5 and k, = 1. 
Marking of the switching points has been suppressed on these plots in the 
interest of clarity. Note that even at the very rapid sample rate used (T = 
0.02), the "small motions" of the system dUnot be ignored. The time 
response, shown in Figure 14.2.10, exhibits the expected underdamped 
behavior of a reduced order system but remains in a low-amplitude Nyquist 
limit cycle at any operating point.

Figures 14.2.11 and 14.2.12 show the comparible phase plane portrait 
and time response using the saturating PID controller (with Kj—0.35). The 
behavior of the system remains faithful to its continuous time 
approximation.
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15. SUMMARY '.AND'^ AJEIEAS fOR FURTHER INVESTIGATION

15.1. Summary
This report has presented a new approach to the design of digital 

controllers tvhich simultaneously addresses the problem of internal overflow 
and the implementation of a quasi-optimal control law for bounded input 
plants. The primary context has been the servo control of single-input 
single-output linear plants; although extensions to multiple-input and 
multiple-ohtput plants and nonliner plants have also been discussed.

The methodology of this work is based on the inseparable relationship 
of the control law with its computer implementation. This approach is 
divergent from the majority of linear and nonlinear design methods, which 
address only the controlTaw and relegate the implemohtatioii to a separate 
unrelated problem. In actual engineering practice, this dichotomy is often 
unacceptable; the limitations of the available hardware are usually an 
important consideration in the design process.

Section 1 establishes the general setting of the problem and the 
objectives of the work. Some perspective on the cross-disciplinary nature of 
the problem is provided, emphasizing the need to draw from literature in 
digital signal processing, computer architecture, and specific engineering 
applications, as well as the control literature.

A specific problem definition is presented in section 2 in the form of an 
Outline.

A broad spectrum of issues related to the implementation of digital 
filters and compensators is presented in section 3. A review of traditional 
design methods for linear digital compensators is presented in subsection 3.1. 
A proof of the equivalence of frequency domain methods and state space 
based time domain methods for modeling a plant with the effect of sampling 
and a zero-order-hold device is presented in subsection 3.2. Classifications of 
direct form digital filter structures suitable for application as compensators 
are discussed in subsection 3.3. Subsection 3.4 provides the background for 
the internal overflow problem in compensators or filters implemented in fixed
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point arithmetic, by showing the effect of the sample rate and controller 
bandwidth on the magnitude of the signal at internal nodes. A cursory 
treatment of the effects of digital quantization on the performance of the 
control is presented in subsection 3.5. Since the large signal behavior of the 
control system is the primary concern of this work, quantization effects are 
not of particular relevance and not discussed further.

Subsection 3.6 provides a detailed description of the problem of radix 
overflow in fixed point arithmetic compensators, and summarizes methods 
for overcoming this problem from the digital filter literature. The section 
concludes with a categorical treatment of the distinctions between digital 
filters and digital compensators. Areas of commonality as well as areas of 
antithesis are identified. It is shown that the majority of implementation 
results for digital filters are not applicable to the servo control problem.

Numeric saturation is the topic of section 4. Some basic axioms of 
symmetric saturation arithmetic are stated in subsection 4.1. Hardware and 
software methods for implementation of saturation in digital structures are 
described in subsection 4.2. The limitations of a state equation description 
of a system containing arbitrary saturation nonlinearities is discussed. 
Similarly, the usual phase plane is shown to be a limited vehicle for analysis 
of saturating systems except in a few special cages.

Section 5 presents a rigorous definition of digital structures for real-time 
signal processing, and summarizes notational methods suitable for analysis 
of the true structure, including nonlinear effects. Subsections 5.1 through 5.3 
review methods proposed in the digital filter literature most relevant to the 
description of digital compensator structures. These methods reduce or 
eliminate the ambiguity of signal flow diagrams or simulation (block) 
diagrams, with regard to the precedence of numeric operations in the actual 
algorithm which implements the transfer function. Subsection 5.4 
demonstrates the deficiency of the aforementioned methods for dealing with 
saturation limits in digital structures, and a composite notational scheme 
suitable to the problem is suggested.

Section 6 progressively develops the important result that judicious 
placement of a minimum number of saturation limits in a digital filter 
structure can effectively prevent overflow at all nodes in the structure. The 
development begins with the proposal of a novel, very efficient algorithm for 
implementation of true multiple input summing nodes in structures 
employing saturation arithmetic. This method overcomes the problem of
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incorrect summation results due to saturation of intermediate results of 
pair-wise additions.

In subsection 6.2, a method is proposed for expressing all node values as 
a function of the input sequence, for the special case of FIR filters. Based 
on this method, it is then shown in subsection 6.3 that an external finite 
scaling rule can always be found which assures the conformity of signal 
levels at all nodes in an FIR filter to within arbitrary limits. Finally, in 
section 6.4, this result is used to show that since an arbitrary FIR filter can 
always be decomposed into branches consisting of FIR filter modules, the 
placement of a single saturation bound in each loop of the decomposed 
structure can assure the conformity of all signal levels in the structure to 
within arbitrary limits. Bounds on the required scale factors are determined, 
and an example of the decomposition and scaling procedure is given.

A review of relevant methods for quasi-optimal control is presented in 
section 7. The methods of DeRooy, Fuller, and Persson reported in 
subsections 7.1, 7.2 and 7.3 respectively are fundamentally based on the 
substitution of some suboptimal switching manifold for the actual time- 
optimal switching manifold in the state space. Improved invariance 
properties and greater ease of implementation are the primary motivational 
factors. Variable structure control methods, described in subsection 7.4, 
emphasize the final sliding-motion regime of the general class of 
discontinuous controls. The popularity of variable structure controls is 
based upon their improved robustness properties and the elegance of the 
sliding mode, which permits an effective reduction of the system order. The 
practical problems of chattering, common to this and all discontinuous 
control methods are shown to be a limitation.

Boundary layer controls, embodied by the method of Corless and 
Leitman, are shown to be an attractive alternative to discontinuous control 
methods, since they substitute continuous control action for switching within 
some bounded neighborhood of the switching manifold. Controls within this 
class are known to assure the uniform ultimate boundedness of solutions for 
initial conditions lying in some bounded region containing the target set.

With these well-defined methods in place, the most general class of 
multiple-mode controls is presented. A review of some particular multiple
mode methods is presented, spanning 1950 to the present. Results in this 
control class are widely scattered in a number of diverse areas of the 
literature. The collection and comparison of results provides a thread of
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unity to this somewhat ambiguous class of controls, and establishes the 
foundations for the dual-mode control methods made possible by internally 
saturating digital structures.

Section 8 introduces design methods specifically for internally saturating 
digital compensators, which render a near-time-optimal control law for 
bounded input plants. As discussed in subsection 8.1, discrete-time and 
continuous time design and analysis methods are used interchangeably in 
much of the sequel. Special considerations for this class of controls are 
identified which must be observed to permit this equivalency.

An effort is made in section 8.2 to classify saturating digital 
compensator structures into specific groups with common topologies and 
control properties.

A fundamental notion in the synthesis of quasi-optimal controls is the 
decomposition of the structure into recursive and nonrecursive sections. 
Generally, the nonrecursive section alone is responsible for the transition 
boundaries in the phase space of the dual-mode control. Both the 
nonrecursive and recursive sections contribute to the linear control law 
applicable within a locality of the operating point. Ramifications of this 
decomposition are the topic of subsection 8.3. The isolated design of the 
nonrecursive section necessitated at least a minimal discussion of numeric 
methods for realization of differentiating filters. The characteristic phase 
space behavior of each of the structure groups classified in subsection 8.2 is 
also described.

A special design consideration for Group 3 class PID structures is 
discussed in subsection 8.4. This involves the insertion of an additional 
limiting nonlinearity at the input to the integrator section of the structure. 
Three choices of limiting nonlinearities are discussed: hard saturation, zero- 
on-overflow, and natural radix overflow. The final choice, radix overflow, is 
noteworthy because its implementation requires no additional operations in 
the control algorithm.

The fundamental analysis/design tools for this class of controls are 
developed in subsection 8.5 and 8.6, for continuous-time and discrete-time 
models respectively. The notion of two-sided attractiveness of a linear 
control region in the control error phase space is essential to the near-time- 
optimal behavior of the control system. An absolute bound on the 
attractive subset of the linear control region is established using a 
generalized Lyapunov function.
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The special case of a very "thin" linear control region is discussed in 
subsection 8,7. The property of reduced effective system order, previously 
discussed in the context of variable structure control, is applicable for the 
nearly singularly perturbed system. A method is suggested for design of the 
linear control law based on application of the equivalent control with respect 
to the median hyperplane of the linear control region.

The section concludes with a discussion of restrictions on the control 
saturation limits and the a variety of; acceptable constant reference inputs 
such that the corresponding operating points are attainable within the linear 
mode of the control. :

Specific design methods for this class of controllers are presented in 
section 9. The results of previous investigators in quasi-optimal control are 
applied to the problem of near-time-optimal specification of the linear 
control region boundaries. Calculable metrics for time optimality are 
presented for the special cases of a double integrator and integrator-lag 
plant. Sufficient conditions for relative time optimality of phase plane 
trajectories are proven. The boundary design problem generally reduces to a 
trade-off between time optimality of the system step response, and the 
domain of two-sided attraction of the linear control region.

Optimal design with respect to a quadratic performance index is 
discussed in subsection 9.2, based on the arguments of Ryan and others from 
section 7. The correspondence between a particular orientation of the linear 
control region and a nonunique quadratic cost function is proven.

Subsection 9.3 presents three systematic approaches to the design of the 
linear control region such that the desired attraction properties are retained 
for all admissible step transitions. These methods are ordered according to 
noficonservativeness of the resulting dual-mode control law, which 
unfortunately also corresponds to increasing computational difficulty.

The design of the linear control mode is the subject of subsection 9.4. 
Four design methods are proposed, with analyses present both in continuous 
time and discrete time. All methods are directed toward the realization of 
stable, adequately damped system behavior for state locations near the 
operating point.

In section 10, the robustness properties and practical limitations of this 
class of controls are considered. The boundaries and domain of attraction of 
the linear control region are rederived including the effect of measurement 
noise and the limitations of the numeric approximation to differentiation,
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performed by the nonrecursive section of the controller. Computer results 
are presented comparing the magnitude and phase characteristics of 
discrete-time mechanizations of differentiating filters with true continuous
time realizations. The bandwidth limitations of the digital filters are shown 
to be a potential asset in this application, due to the resulting noise 
attenuation.

The effects of magnitude limited noise and plant parameter 
disturbances translatable to the control input are also considered.

A metric is proposed in subsection 10.3 for selection of the sample rate 
for this class of controls, and more generally, all discontinuous and variable 
structure controls. The basis is the maximum acceptable norm distance, 
orthogonal to the desaturation boundaries in the control error phase space, 
that the state can translate in a single sample period. An upper bound on 
the sample period is established as a function of the width of the linear 
control region.

In the course of this work, it was necessary to develop several computer 
aided design and analysis tools. Two of these are described in section 11. 
CONSIM is a general purpose control system simulator with the capability 
of emulating an arbitrary digital compensator structure, including all 
internal nonlinear effects, and coupling the compensator in a closed feedback 
loop With an arbitrary continuous-time plant. DIGCON is a design aid for 
digital controls in general, and specifically for this class of controls. Among 
its features are the discretization of an arbitrary continuous-time transfer 
function using the zero-order-hold equivalence method, and the testing of the 
sample period for satisfaction of the sampling requirement proposed in 
subsection 10.3.

All design examples for linear plants are brought together for direct 
comparison in section 12. It was felt that this approach best facilitated a 
clear understanding and the relative merits and limitations of each design 
approach. First, the design methods discussed in section 9 are illustrated, 
applied to a common second order underdamped plant. Then, specific 
applications to higher order, unstable, and special plants are demonstrated. 
CONSIM is used to generate the simulation results for all test cases.

Section 13 extends the applicability of this class of controls to multiple- 
input, multiple output (MEMO) linear plants. The formulations of the 
control error phase and delay models, originally presented in sections 8.5 and 
8.6 respectively, are extended to the MIMO problem by replacement of the



state, input, and reference vectors by extended versions, reflecting the 
increased dimensionality of the problem. It is shown that, for a plant with 
m inputs, the twp-sided attractiveness requirement for each of m intersecting 
linear control regions generates m2m; inequality constraints which must be 
satisfied hy the control parameters. .7>

The report concludes with the extehsion of this class of controls to 
single-input, single-output nonlinear plants. A nonlinear transformation 
method is proposed which transforms nonlinear models x = / (i,u), for 
which / is at least n times differentiable, into a phase variable -form 

' appropriate . .-to the control error model which is prerequisite to the 
construction of the attractiveness test. A generalized Lyapunov function is 
again employed to check the domain of attraction of the unsaturated control 
region. A design. 'example involving the application and comparison of 
several controls to a nonlinear motor speed control problem is presented, 
with simulation results, generated using CGNSlM.

15.2. Synopsis of Original Content
The fundamental contribution of this work is the proposal of a design 

method for nominally linear digital controllers implemented in finite 
precision arithmetic which simultaneously solves two otherwise unrelated 
problems: radix Overflow, with the concomitant problem of overflow limit 
cycles, and effective quasi-optimal control of bounded input plants. Within 
the general context of this problem, several specific results of some novelty 
are pr
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■ The. collection- of implementatiomrelated results from several diverse 
areas of the literature provides a possibly new perspective on the problem of 
digital control mechanization. The study of the distinctions and 
commonalities between digital filters and digital compensators, specifically in 
relation to the servo control problem, is an original undertaking.

The proof of the equivalence of the zero-order-hold method and the 
state equation based discretization method in subsection 3.2 is probably not 
novel, but it neither appears nor is clearly stated in currently available 
digital control texts.

The specific demonstration of the relationship between the sample rate, 
controller bandwidth and signal magnitudes at internal nodes in the 
controller provides a possibly new perspective on a well-known, but difficult 
to quantify problem.
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The properties of symmetric saturation arithmetic were proposed 
originally, although their novelty is doubtful.

The simple proofs of bounded scaling rules for FIR filters, and HR filters 
in which all recursion loops are broken by at least ,one saturation limit, are 
believed to be original contributions.

The proposal of a two-sided attractiveness condition based on a 
generalized Lyapunov function as a fundamental design requirement for a 
dual-mode saturating control is a direct extension of variable structure and 
boundary layer control methods. But its application to this more general 
class of controls, and specifically its relationship to the problem of overflow- 
free digital compensators, is an original contribution.

The normalized incremental phase spaces (forward and backward 
difference) are novel extensions of the basic concept proposed by Aseltine in 
1961. .

The use of a second internal nonlinearity in PID structures to improve 
the transient response is believed to be novel.

The three methods proposed in section 9.3 for design of the 
desaturation boundaries in the phase space are original, although they are 
based on well known basic concepts in linear control.

The zero cancellation / full pole placement design method of section-9.4 
for this class of controls is original. The design method based on two 
parallel transversal filters, which when summed yield the equivalent control 
law for the median hyperplane, is original, although the concept of 
equivalent control itself is well established in the literature. The design of 
the internally saturating PID controller with the objective of PI regulation 
to a PD line in the phase plane is original, although probably anticipated in 
several earlier works.

The special criteria for selection of an appropriate sample period for 
this class of controls as well as discontinuous controls in general is an 
original contribution.

The previously Stated special capabilities of the simulation program 
CONSIM may be considered an original and useful tool for general digital 
controller analysis. Although the discretization methods used in DIGCON 
are well known, We are unaware of any program that provides this design 
service, especially in an interactive environrhent.



The MIMO extensions to this class of controls are original, but again, 
based on standard linear design methods.

The extension of Korobov’s nonlinear transformation method to yield a 
suitable transformation to a control error phase variable model for a general 
class of nonlinear plants is an original contribution. The proof of eigenvalue 
invariance at constant operating points for this transformation is original, 
with due credit given to the valuable suggestions of Prof, John Ghiasson of 
Purdue University.

15.3, Areas for Future Work
The general problem of multiple arbitrary saturation bounds m a 

system is indeed complex, and probably intractable. As such, it remains an 
important open area of investigation.

The analysis and design methods presented were restricted to nominally 
linear control structures, that is, structures containing only additions, 
multiplications by constants, delay (memory) elements, and a restricted class 
of limiting nonlinearities. Thp extension of these methods to nonlinear 
controllers is a potentially fruitful area of further study. The present 
analysis was restricted to time-invariant plants. Extensions of the mejthods 
to time-varying apd adaptive control structures are possible future 
directions. Similarly, application to the design of state observers/estimators 
is an open problem. !

The two-sided attractiveness requirement for this class of controls is 
actually quite arbitrary. It may be replaced by a less conservative 
requirement which still ensures against excessive overshoot, while permitting 
a morp time-optimal transient response. |

Better criteria for sample rate selection are needed for all discrete-time 
control problems, especially for nonlinear and/or time-varying systems, 
where the notions of s/stem bandwidth and rise time are often ambiguously 
defined.

The entire field pf implemenfaf}011 issues specific to digital controllers is 
largely untouched, with presently available results almost entirely borrowed 
from digital signal processing an4',i|sually\ inapplicable to servo control 
problems. More generally, the development of design methods which 
integrate the" limitations of the control hardware with the synthesis of the 
control law are heeded, particularly in view of recent advances in computer 
architecture. !
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Al. CONSIM Program Listing and Sample System Description File
kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk k k k k k k k k k k k k k k k k k k k k ick k k k k k k k k k k k

- CONSIM v5.2
* Control System Simulator by C. MacCarley
* Information on using this simulation is contained in the file
* "consim.hints" contained in this same directory.
kkkkkkkkkkkkkkkkkkkkkk ** * * * it it k kk kkkkkkkkkk kk k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k

c Notes and Modifications: '
c . filename:" consim. f
c last modified: 6/13/87
c 5th order Runga/Kutta calculation for derivative calculation
c max plant order? 5 (lin) and nonlinear
c true digital emulation of compensator
c compensator model dinap compatible
kkkkkkkkkkkkkkkkkkkkkkkit itkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk.kkk kkkkkkkkkkk kk k

c To run this program and generate plots, run the shell file:
c |consim parameterfile
c where "parameterfile" contains the desired simulation parameters
kkkkkkkkkkkkkk.kkkkkkkkkitkkkkkk kkkkkkkkkkkkkkkkkkkkkk kkkkkkkkkk kkkkkkkkkkkkkk

program CONSIM ;
c FORTRAN Parameters for plant and compensator order

integer np,nc 
parameter (np=10,nc=10)■ . I

c Declarations
c .* Plant:

real xp(hp),dxpdt(np),u,ul,y,tend 
real kp,ap(0:10),bp(0:10),umax,umin 
integer pltord I 

c * Compensator: ; *■
real xc(nc),dxcdt(nc),uc,ucl,uca,ducdt,ec,eel 
real kc,ac(0:10),be(0:10),ucmax,ucmin 
character com(lOO)
integer parml(lOO) /parm2(100) , parm3(100-) 
real v( 100),val(100) 

c * System:
real e,el,dedt,yl,dydt,r,rl,t,tc,tw
real dtc,dtw,dt,tmax,tol,ymax
real inmin,inmax
real stepht,rmpslp,imphtreal comvec (2 4) ’, w (np, 9)
real to,rO ■ ‘ i
integer nw,ind,ier
integer outl,out2,out3,out4,out5,out6 

c * Character Strings:
character input*10 
character comp*10,plant*10 
character minflg,maxflg 

c * Externals and. Common Blocks:
external pltfcn,
common /pltcom/i u,y,ap,bp,kp,dydt,plant ! ■

* Zap old files if they're still around 
call system( 'date > fort.20' J.’
call system('rm fort. * ’ )
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* Open output files
open(1,file*'fort.1',status*'new') 
open(2,file*'fort.2', status*'new1) 
open(3,file*'fort.3',status*'new') 
open(4,file*'fort.4status*'new') 
open(7,file*1 fort.7',status*’new’) 
open(8,file*'fort.8',status*'new') 
open(11,file*'fort.11 *,status*'new') 
open(12,file*1 fort.12',status*'new') 
open(13,file*'fort.13',status*'new') 
open(14,file*'fort.14',status*'new') 
open(16,file*'fort.16',status*'new') 
open(17,file*'fort.17',status*'new' ) 
open(18,file*'fort.18',status*'new') 
open(19,file*'fort.19',status*'new')

c * Initializations
c time in seconds:

t=0.0
c Plant state variables:

do 10 i*l,np
xp(i)=0.0
dxpdt(i)=0.0

10 continue
y*Q.Q 
u=0.0

c Compensator state variables:
do 14 i=l,nc

xc(i)=0.
dxcdt(i)=0.

14 continuedo 12 i=i,100
v(i)=0. 
com(i)*' ' 
parml(i)=0 
parm2(i)=0 
parm3(i)=0 
val(i)=0,

12 continue
c default time interval

dt=0.005
c controller timer:

tc=t
c Input Specifications

r0=0.0 
t0=1.0

c last values:
el=°.0 
ecl=0.0 
r=0.0 
ucl=0.0 
dedt=0.0 
dydt=0.0 
ymax=0.0

c saturation flags:
minflg*'n' 
maxflg='n'

c Runga-Kutta Initializations:
nw=np 
tol*.001 
ind=l 
ier=?0

c Read simulation parameters passed from Shell File
call numparm( lydt)
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call numparm( 2, dtc) 
call numparm(3,tmax) 
call numparm(6,ymax) 
call numparm(7,inmax) 
inmin=-inmax 
call numparm(9,r0) 
call numparm{10,t0) 
call getarg(11,input) 
call numparm(12,stepht) 
call numparm(13,rmpslp) 
call nUmparm(14,impht) 
call iparm(15,outl) 
call iparm(16/Out2) 
call iparm(17,out3) 
call iparm(18,out4) 
call iparm(19,but5) 
call iparm(20,out6) 
call getargC21,comp) 
call numparm(22,kc) do 22 i=0,10 ; '

j=i+31 
k=i+51
call numparm(j,ac(i)) 
call numparm(k,be(i))

22 continue
do 24 i=l,10

j=i+70
call numparm(j,xc(i)) •

24 continue
call numparm(8l,ucmax) 
call numparm(82,ucmin) 
call getarg(91,plant) 
call numparm(92,kp) 
call iparm(93,pltord) 
do.26 i=0,10

j=i+101
k=i+121
call numparm(j,ap(i)) 
call numparm(k,bp(i))

26 continue
do 28 i=X,10

j=i+140
call numparm(j,xp(i))

28 continue
call numparm(151,umax) 
call numparm(152,umin) 

c read(plant,1(ilO)*) pltord
c print *, "Program has read in all external parameters: \n"
c * Derived Parameters:
c write stmt timer:

tw=t-(dtw+dt/2.0)
c Write interval calculation

dtw=tmax/400.0*★*★*★★********★*********■**★**********★**★**★*★★*★★***★*★★*******★•********* 
c * Read in digital network description for compensator

call readfl(com,parml,parm2,parm3,val)
★A******************************************************-*******************
c * Write parameter values to output data file

write(6,55)
55 format(25x,’CONSIM Parameters \n')

write(6,80) dt,dtc,dtw,tmax
80 format (-'dt* ', f5.4,5x, 'dtc= ' , f5.4,4x, 'dtw»' , f5.4,4x, ’ tmax= ' , f6.2)

write(6,50) input,stepht,rmpslp,impht
format('input=',a6,x,'stepht=■,f4.2,2x,’rmpslp=',f4.2,2x,50
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&

90

60
&

70
&

75
&

c
c

130
&******
c
100

c

c

c
c
c
c
c
c
c

c

******
*

'impht=',f4.2)
write(6,90) comp,plant
format('comp=',a7,lx,'plant=' ,a7)
if (comp .eq. 'emu') then
continue
else
write(6,60) kc, ac (0), ac (1), be (0), be (1)
format('Comp: kc=', f6.1,4x,'ac0=',f6.2,3x,.'acl-1, f6.2,’\n’,
7x,'bc0=',f6.2,3x,'bcl=',f6.2) 
end if
write(6,70) kp,ap(0),ap(1),ap(2),ap{3),bp(0),bp(l),bp(2)
format('Plant: kp=1,f6.1,4x,' apO',f6.2,3x,' apl=1,f6.2,3x,'ap2=',
f6.2,3x,'ap3=',f6.2,'\n',7x,'bp0=',f6.2,3x,'bpl=',f6.2,3x,,bp2=',f6.2)
write(6,75) umax,ucmax,umin,ucmin
format (' umax= ', f7.1, ' ucmax= 'f 7.1, ' umin=',f7.1,
' ucmin= ' , f7.1, ' \n ’ )
* Write header for output table 
Write data to tabular listing 
if (out6 .ne. 0) then
write (6,130) outl,out2,out3,out4,out5,out6
else if (out5 .ne. 0) then
write (6,130) outl,out2,out3,out4,out5
else if (out4 .ne. 0) then
write (6,130) outl,out2,out3,out4
else if (out3 .ne. 0) then
write (6,130) outl,out2,out3
else if (out2 .ne. 0) then
write (6,130) outl,out2
else if (outl .ne. 0) then
write (6,130) outl
end if
format(2x,'time',6x,'node',i2,4x,'node',i2,4x,'node',i2,4x,'node',
12,4x,'node',i2,4x,'node',i2) '

********************** ******* *********************** ********************
* Start of Main Simulation Loop 
continue
Input Function
rl=r
r=r0
Step at t=t0 sec., 
if (input .eq. 'step') then

if (t .ge. t0) r=stepht 
Modified Step Input w/ .5 sec rise time

if (t .ge. 1. .and. t .It. 1.5) then 
r=2*(t-1.)*stepht 

else if (t .ge. 1.5) then 
r-stepht

end if
end if
Ramp at t=t0 sec
if (input .eq. 'ramp') then

if (t .ge. tO-dt) r - rmpslp*(t-t0)
end if
Impulse at t=t0 sec. 
if (input .eq. 'impulse') then

if ((t .ge. tO) .and. (t .It. tO+dt)) r=impht
end if

* * Beginning of Compensator ********************************* ********* 
Determine if controller should run on this iteration: 
if (t .It. tc+dtc) go to 150 
tc=tc+dtc 

. ,'ucl=uc 
yrneas-y .
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*..........  .............. .................. ..........
* Optional Noise Injection at Output Measurement
* Uniform Distribution Noise:
* ymeas=y+random(t)-0.50
* sinusoidal noise at 10 Hz:
* ymeas=y+0.5*cos(31.416*t)
* . . . . ■. ...... ...................... . . . r......... -f. . .

ec=r-ymeas
* Linear Compensator State Variable Models:
* Proportional-Only Control

if (comp .eq. ’prop’) then 
uc=kc*ec :
end if

* First Order Linear Compensator\ 
if (comp .eq. '1') then
dxcdt(1)=-bc(0j*xc(1)tecuc=kc*( ac(0)*xc(lj + ac(l)*dxcdt(l) )

. xc(1)=xc(1)+dxcdt(1)*dtc 
end if

* Second Order Linear Compensator 
if (comp .eq. 9 2') then 
dxcdt(l)=xc(2)
dxcdt(2)=-bc(0)*xc(1)-be(1)*xc(2)+ec
uc-kc*( ac(0)* xc(1)+ ac(1)* xc(2)+ac(2)* dxcdt(2) )
xc(1)=xc(1)tdxcdt(1)*dtc
xc(2)=xc(2)+dxcdt(2)*dtc
end if

* Digital Emulation
if (comp .eq. 'emu') then
call digcmp(com,parmlrParm2/parm3/val/v,r/y/ec/uc) 

. end if
* . : Externally Specified Control Law
* if (comp .eq. 'ext’) then
* include "ext.compensator"
* end if

Diesel Governor with Nonsymmetric control range
if (comp .eq. 'gov') then
uc = uc + Kc*(i+ac(1)*dtc)*ec - Kc*ecl
ecl=ec
end if
Limits on Control Variable 
call rsat(uc,ucmin,ucmax)
Optional Slew Rate Limit on Control Actuator 
if (uc . ge. uca+1) uca=uca+l 
if (uc .le. ,uca-l) uca^uca-l 
call rsat(uca,ucmin,ucmax)
No Slew Limit 
uca=uc
ul=u
u=uca

c Bounds on Actual Control Variable
call rsat(u,umin,umax)

150 continue
******** End of Compensator *************************************** *********

.................................... .................................................................. ........................
* Optional Input Noise Generator
* Uni form distribution noise
* u-u+random(t)-0.5
* sinusoidal noise
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******** Plant ************************************************************* 
c Plant Dynamics

tend=t+dt
call dverk(pltord,pltfcn,t,xp,tend,tol,ind,comvec,nw,w,ier) 

******************************************************** ** ****************** 
c Calculate d/dt(uc) for input phase plane plot

ducdt-(uc-ucl)/dtc 
ducdtp=ducdt
call rsat(ducdtp,inmin,inmax)******************************************************** * * ******************* 

c Calculate error and d/dt(error) for error phase plane plot
e=r-y

c At the moment of the step input, write an extra point pair
if (input .eq. ’step' .and. abs(r-rl) .gt. dtw) then 

write (1,250) t 
write (2,250) y 
write (3,250) e 
write (4,250) dedt

end if
dedt=(yl-y)/dt
yi-y
el=e

*****************************************************************************
c Write Statements
c Check if a write cycle should be done on this iteration:

if (t .It. tw+dtw) go to 200 
tw=tw+dtw

c Write data to plot files
write (1,250) t 
write (2,250) y 
write (3,250) e 
write (4,250) dedt 
write (7,250) uc 
write (8,250) ducdtp*********** ******* *************.'******** ***★★*★*★**★*★**** **************** * 

c Write data to tabular listing
if (out6 .ne. 0) then
write (6,300) t,v(outl),v(out2),v(out3),v(out4),v(out5),v(out6) 
else if (out5 .ne. 0) then
write (6,300) t,v(outl),v(out2),v(out3),v(out4),v(out5) 
else if (out4 .ne. 0) then
write (6,300) t,v(outl),v(out2),v(out3),v(out4)
else if (out3 .ne. 0) then
write (6,300) t,v(outl),v(out2),v(out3)
else if (out2 .ne. 0) then
write (6,300) t,v(outl),v(out2)
else if (out! .ne. 0) then
write (6,300) t,v(outl)
end if

300 format ( f 9.4 , x ,-f 9.4 , X, f 9.4 , x, f 9.4 ,x, f 9.4 ,x, f9.4 ,x, f 9.4 )
******** * * *************************************************  * * * ************
200 continue
c If uc is saturated, write the outputs to an additional file

if ( ( (ucl .It. umax .and. uc .ge. umax)
& .or. (ucl .ge. umax .and. uc .It. umax) ) ) then

write (11,250) t 
write (12,250) y 
write (13,250) e 
write (14,250) dedt 
maxflg='y'

end if
if ( ( (ucl .gt. umin .and. uc .le. umin)

& .or. (ucl .le. umin .and. uc .gt. umin) ) ) then
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write (16,250) t
write (17/250) y
write (18,250) e ;

: write (19,250) dedt ‘ .
minflg= ' y' ' .

end if - A
250 format(fl3.4)
c Check if time limit exceeded ,

if (t . le. tmax) go to 100
c End of main simulation loop*******★********■**********★***********************.************* ** ************* 
c Dumb routines to handle the case where no saturation data files created

t=tmax
y=yiriax ■ .
e=ymax
dedt=ymax
if (maxflg .eq. ’n') then 

write (11,250) t
write (12,250) y
write (13,250) e
write (14,250) dedt

end if
if (minflg .eq. 'n') then 

write (16,250) t
write (17,250) y
write (18,250) e
write (19,250) dedt

end if,*********************************************** * * ****** * * ********************* 
end

************** end of main program ************* * * * ********* * * ****************

c Subroutine to read real numerip command line parameters
subroutine numparm(i,parm) 
integer i 
character*10 arg 
real parm 
call getarg(i,arg) 
read (arg, ' (flO.O) '■) parm 
end

c Subroutine to read integer command line parameters
subroutine iparm(i,parm) ^
integer i , • , ;
character*10 arg 
integer parm 
call getarg(i,arg) 
read(arg,'(12)’) parm 
end

c Subroutine for plant state equations
subroutine pltfcn(pltord,t,xp,dxpdt) 
integer pltord
real xp(pltord),dxpdt(pltord) 
real u,y,ap(0:10),bp(0:10),kp,v 
real cl,c2,c3,c4,c5 
character*10 plant
common /pltcom/ u,y,ap,bp,kp,dydt,plant
if (plant .eq. ’linear') then

c * Plant Model 1
if (pltord .eq. 1) then 
dxpdt(1)=-bp(0)*xp(1)+u 
y=kp*(ap(1)*dxpdt(l)+ap(0)*xp(1))
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end if
c . . * Plant Model 2

if (pltord .eq. 2) then 
dxpdt(1)=xp( 2)
dxpdt(2)=-bp(0)*xp(1)-bp(1)*xp(2)+u
y=kp*(ap(0)*xp(1)+ap(1)*xp(2)+ap(2)*dxpdt(2))
end if

c Plant Model 3
if (pltord .eq. 3) then 
dxpdt(1)=xp(2) 
dxpdt(2)=xp(3)
dxpdt(3)=-bp(0)*xp(l)-bp(l)*xp(2)-bp(2)*xp(3)+u
y=kp*(ap(0)*xp(1)+ap(l)*xp(2)+ap(2)*xp(3)+ap(3)*dxpdt(3))
end if

c * Plant Model 4
if (pltord .eq. 4) then 
dxpdt(1)=xp(2) 
dxpdt(2)=xp(3) 
dxpdt(3)=xp(4)
dxpdt(4)=-bp(0) *xp(1)-bp(1)*xp(2)-bp(2)*xp(3)-bp(3)*xp(4 )+u
y=kp*(ap(0)*xp(l)+ap(1)*xp(2)+ap(2)*xp(3)+ap(3)*xp(4)+ap(4)*dxpdt(4))
end if

c .* Plant Model 5
if (pltord .eq. 5) then
dxpdt(1)=xp(2)
dxpdt(2)=xp(3)
dxpdt(3)=xp(4)
dxpdt(4)=xp(5)
dxpdt(5)=~bp(0)*xp(1)-bp(1)*xp(2)-bp(2)*xp(3)-bp(3)*xp(4)-bp(4)*xp (5) +u 
y=kp*(ap(0)*xp(1)+ap(1)*xp(2)+ap(2)*xp(3)+ap(3)*xp(4)+ap(4)*xp(5)

& -+ap( 5 ) *dxpdt ( 5))
end if
end if ,

* ...... Nonlinear Plant Models............................... ............... .
* MUST RECOMPILE TO CHANGE THE NONLINEAR PLANT MODEL 

if (plant .eq. 'nonlinear') then
* Inverted Pendulum Controlled by DC Motor 

if (pltord .eq. 3) then
cl=9.80 
c2=l.0 
c3=-l0.0 
c4=-10.Q 
c5=10.0
v=u - ( 276.89*xp(1) •+ 202.7689*xp(2) + 102.0*(cl*sin(xp(1))

& tc2*xp(3)) + (cl*cos(xp(l))tc2*c3)*xp(2) + c2*c4*xp(3) )
& / (c2*c3)
* v=0.0

dxpdt(1)=xp(2)
dxpdt(2)=cl*sin(xp(1))+c2*xp(3) 
dxpdt(3)=c3*xp(2)+c4*xp(3)+c5*v 
y=xp(l) 
end if

* Diesel Engine
if (pltord .eq. 1) then 
dxpdt(1)=(5.3*u^80.0)/0.32 
y=xp(l) 
endif
end if

*...... .End of nonlinear plant models......................... ............ h......
end



461

***************************** ******* * * ******* * ************************ 
* Digital Compensator Emulation

100

c
c

cc

c
c

cc

c
c

subroutine digcmp(corri/parml,parm2,parm3,val,v,r,y, e,u) 
integer i, parml (100 )r / parm2( 100) ,parm3(100), il, i2, i3 
character com(100),g 
real val(100),v(100),r,y,e,u,r4
i=0 
i=i+l 
q=com(i) 
il=parml(i) 
i2=parm2(i) 
i3=parm3(i) 
r4=val(i)
■if (q .eq. ,'M') then

v(i2)=r4*v(il)
if (arith .eq. 'sat') v(i2)=sat(v(i2),max) 
if (arith .eq. 'ovf') v(i2)=ovf(v(12),max) 
go to 100

end if
if (q .eq. 'A') then

v(i3)=V(il)+v(i2)
if (arith .eq. 'sat') v(i3)=sat(v(i3),max) 
if (arith .eq. 'ovf') v(i3)=ovf(v(i3),max) 
go to 100

end if
if (q .eq. 'G') then

if ( v(i3) .le. r4 .or. v(i3) .ge. —r4 ) then 
v(i2)=v(il)

end if 
go to 1Q0

end if
if (q .eq. .or. q .eq. ’c’ .or. q .eq. 'C') then

go to 100
end if
if (q .eq. 'D') then 

v(i2)=v(il) 
go to 100

end if
if (q .eq. 'R') then 

v(il)=r 
if (arith .eq. 
if (arith .eq. 
go to 100

end if
if (q .eq. 'Y') then 

v(il)=y 
if (arith .eq. 
if (arith .eq. 
go to 100

end if

’sat’) v(il)=sat(v(il),max) 
'ovf’) v(il)=ovf(v(il),max)

9sat') v(il)=sat(v(il),max) 
'ovf) v(il)=ovf(v(il),max)

if (q .eq. 'E') then 
v(il)=e
if (arith .eq. 'sat') v(il)«sat(v(il),max) 
if (arith .eq. 'ovf') v(il)=ovf(v(il),max) 
go to 100

end if
if (q .eq. 'U’) then 

U“v(il). 
go to 100

end if
if (q .eq. 'S') thenv(i2)=sat(v(il),val(ij) 

go to 100
end if
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*****
C

30
40

50

100

200

240

250

260

if (q .eq. 'V') then
v(i2)*=ovfl ('v(il) ,val(i)) 
go to 100

end if
if (q .eq. ' Z ' ) then 

v(i2)=v(il)
if (v(il) .gt. val(i) .or. v(il) .It. -val(i)) v(i2)=0.0 
go to 100

end if
Network Processing ends when blank element q=' * is encountered 
end******************************************************************* 
Routine to read in the network description for the digital comp
subroutine readfl(com,parml,parm2,parm3,val) 
character com(100),q 
character*72 dscrpt 
character*10 start
integer il,i2,i3,parml(100),parm2(100),parm3(100) 
real val(100), r4
read(5,40,end=1000) start
format(alO) *
if (start .eq. * START COMP') then 

continue
else /

go to 30
end if
read(5,5Q) dscrpt
write(6,50) dscrpt
format(a72)
i=0
i=i+l
read(5,200,end=1000) q,il,i2,i3,r4 
format(a,x,i2,x,i2,x,i2,x,f9.0) 
if (q .eq. 'M') then 

com(i)=q 
parml(i)=il 
parm2(i)=i2 
val(i)=r4
write(6,240) parml(i),parm2(i),val(i)
format(' multiplier ',i2,2x,i2,6x,flO.5)
goto 100

end if
if (q .eq. 'A') then 

com(i)=q 
parml(i)=il 
parm2(i)=i2 
parm3(i)=i3
write(6,250) parml(i),parm2(i),parm3(i) 
format(' adder ',i2,2x,i2,2x,i2)
goto 100

end if
if (q .eq. ’D’) then 

com(i)=q 
parml(i)=il 
parm2(i)=i2
write(6,260) parml(i),parm2(i)
format(’ delay ',i2,2x,i2)
goto 100

end if
if (q .eq. 'R'> then 

com(i)=q 
parml(i)=il
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write!6,270) parml(i)
270 format(' ref input !,i2)

. goto 100
end if
if (q . eq. 'Y') then 

com(i)=q 
parml(i)=il 
write(6,280) parml(i)

280 format(' plant output ’,12)
goto 100

.end if
if (q .eq. ‘E*) then 

com(i)=q 
parml(i)=il 
write(6,290) parml(i)

290 format(' control error ' ,i2)
goto 100

end ifif (q .eq. 'U‘) then 
com(i)=q 
parml(i)=il 
write{6,300) parml(i)

300 format(’ compensator output * ,i2)
goto 100

end if
if (q .eq. -S') then

com(i)=q 
parml(i)=il 
parm2(i)=i2 
val(i)=r4
write(6r 310) parml(1),parm2(i),val(i)

310 format(' saturation ',i2,2x,i2,6x,f10.3)
goto 100

end if
if (q .eq. 'V') then 

com(i)=q 
parml(i)=il 
parm2(i)=i2 
val(i)=r4
write(6,320) parml(i),parm2(i),val(i)

320 format(' overflow ',i2,2x,i2,6x,flO.3)
goto 100

end if
if (q .eq. 'Z') then 

com(i)=q 
parml(i)=il 
parm2(i)=i2 
val(i)=r4
write(6,315) parml(i),parm2(i),val(i)315 format(' zero-on-oyerflow 1,i2,2x,i2,6x,f10.3)
goto 100

end if
if (q .eq. 'G') then 

com(i)=q 
parml(i)=il 
parm2(i)=i2 
parm3(i)=i3 
val(i)=r4
write(6,340) parml(i)/parm2(i),parm3(i),val(i)

340 format(' conditional gate ',i2> 2x,i2,2x,i2,2x,f10.3)
goto 100

end if
if (q .eq. V*' .or. q .eq. ’c' .or. q .eq. 'C') then 

com(i)=q 
goto 100

end if
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Read Routine exits when unidentified element q»' ‘is encountered
print*,

1000 end
it ic it ic it it it -k ★★★★★★★★★★★★★★★★★★

c Real Saturation Subroutine
subroutine rsat(value,minval,maxval) 
real value,minval,maxval 
if (value .It. minval) value=minva}. 
if (value .gt. maxval) value=maxval 
end

c Integer Saturation Subroutine
subroutine isat(value,minval,maxval) 
integer value,minval,maxval 
if (value .It. minval) value=minval 
if (value .gt. maxval) value=maxval 
end

c Saturation Function
real function sat(value,max)
real value,max
sat=value
if (value .It. -max) sat=-max 
if (value .gt. max) sat=max 
return 
end

c Real Overflow Function
real function ovfl(value,max) 
real value,max,x,frac 
ovf1 = value
x = (abs( value)t+max)/( 2*max) 
frac = x - aint(x) 
if (value .gt. max) then

ovfl=( 2*frac - 1 )*max
end if
if (value .It. -max) then

ovfl=-( 2*frac - 1 )*max
end if 
return 
end

c Integer Overflow Function
integer function iovfl(value,max) 
integer value,max 
iovfl=value
if (value .It. -max) iovfl=value+2*max 
if (value .gt. max) iovfl=value-2*max 
return •
end
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#!/bin/csh
I Shell file for CONSIM, a cpntrol system simulation by C. MacCarlpy
# This is a special version for el.
# Local Plotting Version 10/10/87
# With quiet operation "q flag" added 11/2/87
if ($2 ! = q) then 
echo " "
echo CONSIM Control System Simulator 
echo
echo Program Status: 
echo
endif
set gpath="/a/users/maccarle/consim.dir"
# Default simulation parameters: 
set title="" 
set recompiles
set overplot=n transplot=y phaseplot=y 
set datafile=
set dt=0.010 dtc=0.010 tmax=8.0 
set ymax=16.0 inmax=10.0
set input=none stepht=l rmpslp=l impht=l t0=1.0 r0=0.0 
set outl=0 out2=0 out3=0 out4=0 Out5=0 outS^O 
set comp=l kc=l
set ac0=0 acl=0 ac2=0 ac3=0 ac4=0 ac5s
set bc0=0 bcl=0 bc2=0 bc3=0 bc4=0 be5=
set xcl=0 xc2=0 xc3=0 xc4=0 xc5=0 xc6=
set ucmax=9999 ucmin=-9999 
set plant=linear kp=l pltord=l-
set ap0=0 apl=0 ap2=0 ap3=0 ap4=0 ap5=0 ap6=0 ap7=0 ap8=0 ap9=0 aplO^O
set bp0=0 bpl=0 bp2=0 bp3=0 bp4=0 bp5=0 bp6=0 bp7=0 bp8=0 bp9=0 bpl0=0
set xpl-0 xp2=0 xp3=^0 xp4=0 xp5=0 Xp6=0 xp7=0 xp8=0 xp9=0 xpl0=0
set umax=9999 umin=-9999

0 ac6=0 ac7=0 ac8=0 ac9=0 acl0= 
0 bc6=0 bc7=0 bc8=0 bc9=0 bcl0= 
0 xc7=0 xc8=0 xc9=0 xcl0=0

# Include actual parameters if (■•$!« == "«) then
echo Error: no input parameter file specified 
goto EXIT

endif
cp $1 conparameters
set paramlist = ( recompile datafile \ 

dt dtc tmax \ 
ymax inmax rO to \
input stepht rmpslp impht outl out2 out3 out4 out5 out6\ 
comp kc \
acO acl ac2 ac3 ac4 ac5 ac6 ac7 ac8 ac9 aclO \
bcO bcl bc2 bc3 bc4 bc5 bc6 bc7 be8 be9 bclO \xcl xc2 xc3 xc4 xc5 xc6 xc7 xc8 xc9 xclO \
ucmax ucmin \ 
plant kp pltord\
apO apl ap2 ap3 ap4 ap5 ap6 ap7 ap8 ap9 aplO \
bpO bpl bp2 bp3 bp4 bp5 bp6 bp7 bp8 bp9 bplO \
xpl xp2 xp3 xp4 xp5 xp6 xp7 xp8 xp9 xplO \
umax umin )

if ($2 != q) then
echo "> reading parameters from file $1"
endif
foreach param ($paramlist)
# set v="/usr/custom/bgrep $param= conparameters" 

set v="fgrep $param= conparameters"
# echo $v

if ("$v" !- "") set $v
end



I Check validity of some parameters:
if ($plant != linear && $plant != nonlinear && $plant != external) then 

echo "error: invalid plant type"
echo "Allowable values of plant are linear, nonlinear, external" 
goto EXIT

endif
if ($pltord !- 1 && $pltord !«= 2 && $pltord != 3 && $pltord != 4 && \ 
$pltord != 5) then

echo "error: invalid plant order"
echo "Allowable values of pltord are 1, 2, 3, 4, 5" 
goto EXIT

endif
#echo "> simulation parameters successfully read" 
if ($recompile == y) then

if ($2 != q) echo "> recompiling consim.f" 
f77 consim.f -limslsp -o consim.prg

# echo "> compile completed" 
endif
if ($2 != q) echo "> executing consim.prg" 
if ($datafile !='')' then
consim.prg $dt $dtc $tmax x x $ymax $inmax x $r0 $t0 \

$input $stepht $rmpslp $impht $outl $out2 $out3 $out4 $out5 $out6 \ 
$comp $kc x x x x x x x x \
$acO $acl $ac2 $aC3 $ac4 $ac5 $ac6 $ac7 $ac8 $ac9 \
$aclO x x x x x x x xx \
$bcO $bcl $bc2 $bc3 $bc4 $bc5 $bc6 $bc7 $bc8 $bc9 \
$bclO x x x x x xx x x \
$xcl $xc2 $xc3 $xc4 $xc5 $xc6 $xc7 $xc8 $xc9 $xclO \
$ucmax $ucmin x x x x x x x x \
$plant $kp $pltord x x x x x x x \
$apO $apl $ap2 $ap3 $ap4 $ap5 $ap6 $ap7 $ap8 $ap9 \
$aplO x x x x x x x x x \
$bpO $bpl $bp2 $bp3 $bp4 $bp5 $bp6 $bp7 $bp8 $bp9 \
$bplO x x x xxx x x x \
$xpl $xp2 $xp3 $xp4 $xp5 $xp6 $xp7 $xp8 $xp9 $xplO \
$umnx $umin x x x x x x x x >$datafile <$1
if ($2 != q) echo "> numeric output in file $datafile"

' else,# If numerio output to the terminal
consim.prg $dt $dtc $tmax x x $ymax $inmax x $r0 $t0 \

$input $stepht $rmpslp $impht,$outl $out2 $out3 $out4 $out5 $out6 \ 
$comp $kc x x x x x xx x \
$acO $acl $ac2 $ac3 $ac4 $ac5 $ac6 $ac7 $ac8 $ac9 \

. $aclO x x x x x xx x x \
$bcO $bcl $bc2 $bc3 $bc4 $bc5 $bc6 $bc7 $bc8 $bc9 \
$bclO x x x x x x x x x \
$xcl $xc2 $xc3 $xc4 $xc5 $xc6 $xc7 $xc8 $xc9 $xclO \
$ucmax $ucmin x xxx xxx x \
$piant $kp $pltord x x x x x x x \
$apG $apl $ap2 $ap3 $ap4 $ap5 $ap6 $ap7 $ap8 $ap9 \
$aplQ xx x xx x x x x \
$bpO $bpl $bp2 $bp3 $bp4 $bp5 $bp6 $bp7 $bp8 $bp9 \
$bplO x x x xxx x xx \
$xpl $xp2 $xp3 $xp4 $xp5 $xp6 $xp7 $xp8 $xp9 $xplO \
$umax $umin x x x x x x x x <$1

endif ,
if ($2 != q) echo "> plotting in progress" 
rplot.l $2 
rm fort.* 
rm conparameters 
if ($2 == gl) then
echo "> standby for time response plot"
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eiplot gl
else if ($2 == g2) then s
echo "> standby for control error phase plane plot 
eiplot g2
else if ($2 == g3) then
echo "> standby for control input phase plane plot 
eiplot g:3
else if ($2 != q) then
echo "> plot files using eiplot g {1,2,3} "echo »•»
endif
EXIT:
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#!/bin/csh
# Multiple CONSIM batch processor
# Single Precision Version. Last Mod: 10/30/87
# Local qplot version
# With quiet operation "q flag" added 11/2/87
# syntax:
# conjob datafile param paramvall [paramval2 paramval3 paramval4] -p{l 2 3)
# datafile is the CONSIM input parameter file
# param is the parameter in that parameter file that is sucessively varied
# paramvalfl 2 3 4} are the sucessive values of that input parameter 
set z=0
if ($4 q || $5 == q || $6 == q || $7 == q) set z-q
if ($z ! = q) echo " "
if ($1 == '■'-)■ then
echo " No input file specified! "
goto OUT
endi f
if ($2 == '1) then
echo " No parameter specified! "
goto OUT
endi f
set param=$2
echo " Running CONSIM on file $1 for range of input parameter $2" 
echo ""
if ($3 != '') then
egrep -v "$param" $1 >templ
sed -e s/overplot=./overplot=n/ tempi >temp2

echo "$param=$3" >> temp2 
if ($z ! = q) then 
echo -n ">> " 
grep "$pafam" temp2
endif •' '
corisim.l temp2 $z
sed -e s/recompile^./recompiles/ tempi >temp2 
sed -e s/overplot=./overplot=y/ temp2 >tempi
if ($4 !=’’&& $4 != q) then 
cp tempi temp2 
echo "$param=$4" >> temp2 
if ($z != q) then 
echo -n ">> " 
grep "$param" temp2 
endif .'
consim.1 temp2 $z 
-endif"
if ($5 !=r * ' && $5 >= q) then 
cp tempi temp 2 u.
echo "$paramT$5" >> temp2 
if ($z != q) then 
echo -n ">> " .
grep "$param" temp2 
endif /.
consim/1 temp2 $z
endif ■ //■ •
if ($6 != 'f && $6 != q) then
cp tempi temp2 • ?/..
echo "$param=$6" >> temp2 
if ($z !- q) then
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echo -n ">> "
grep "$param" temp2
endif
consim.l temp2 $z 
endif
if ($z ! = q) then • , ^
echo ■'>> finished”
endif
rm tempi temp2

else ,
echo " No parameter values specified!
endif '
OUT:, 
echo ""



ft!/bin/csh
if Local qplotting version
# Shell for plotting consim data files generated on el
# Output to a tektronix 4014 terminal
# Last Mod 10/30/87
set gpath=/a/users/maccarle/consim.dir 
set lpath=/a/users/maccarle/consim.dir
# Default simulation parameters: 
set title=" "
set recompiles
set overplot=n transplot=y phaseplot-y inputplot=y
set datafile=condata
set dt=0.010 dtc=0.010 tmax-8.0
set ymax=16.0 inmax=16.0
set input=ndne stepht^l rmpslp=l impht=l
set comp=emu
set plant=linear kp=l
set ap0=0 api=0 ap2=0 ap3=0 ap4=0 ap5-=0 ap6=0 ap7=0 ap8=0 ap9*0 apl0=0
set bp0=0 bp1-0 bp2=0 bp3=0 bp4=0 bp5=0 bp6=0 bp7=0 bp8=0 bp9=0 bpl0=0
set xpl=0 xp2=0 xp3=0 xp4=0 xp5=0 xp6=0 xp7=0 xp8=0 xp9=0 xpl0=*0 
set umax-9999 umin=-9999
fr Include actual parameters
set pa rami 1st = ( overplot transplot phaseplot inputplot \ 

tmax \
ymax inmax \ 
comp \
plani pltord kp \
apO apl ap2 ap3 ap4 ap5 ap6 ap7 ap8 ap9 \
bpO bpl bp2 bp3 bp4 bp5 bp6 bp7 bp8 bp9 \
umax umin )

foreach param ($paramlist)
set v="grep $param= $gpath/conparameters"

# echo $v
i f ("$v" ! = " ”.) set $v

end
set titie= awk ' BEGIN ;{FS=?' = "} /title/ {print $2}' $gpath/conparameters" 
if ($1 !- q) echo M> Title: $title"
if ("$overplot" == y ) then
# If plotting over an existing plot file, including the old plot... 
if ("^transplot" == y) then
qplot x=$gpath/fort.;l,a \y=$gpath/fort. 2, a/ \ 

xmin=0.0 xmax=$tmax \
ymin=-$ymax ymax^$ymax \
scfac=l.0 xp=0 yp=Q \
xlen=ll.0 ylen=8.0 -P -b -a -d dash=0,01 gap=0.05 >> $gpath/gl 

qplot x=$gpath/fort.11> a \ 
y-$gpath/fort.12,a \ 
xmin=0.0 xmax=$tmax \
ymin=-$ymax ymax-$ymax \scfac=i.O xp=0 yp=0 \
syrn-1 j=-l xlen=11.0 ylen=8.0 -P -b -a >> $gpath/gl 

qplot x=$gpath/fort.l6,a \ 
y=$gpath/fort;.l7,a \ 
xmin=0.0 xmaxa=$tmax \
ymin=-$ymax ymax=$ymax ^ \
scfac=l.0 xp=0 yp=0 \ '
sym=3 j=^l !xlen=li.O ylei>=8.d -P -b -a >> $gpath/gl 

endif •



if ("$phaseplot" == y) then 
qplot x=$gpath/fort.3,a \ 

y=$gpath/fort.4,a \ 
xmin="-$ymax 3gnax=$ymax \
ymin=-$ymax ymax=$ymax \
sym=6 j=64 \
scfac=l. 0 xp=0 yp=0 xlen=11.0 ylen=8„0 \
-P -b -a -d dash=0.01 gap=0.05 >> $gpath/g2 

qplot x=$gpath/fort. 13;, a \ 
y=$gpath/fort.14,a \ 
xmin=-$ymax xmax=$ymax \
ymin=-$ymax ytnax=$ymax \
scfac=1.0 xp=0 yp-0 \
sym=l j=~l xlen=11.0 ylen=8.0 -P -b -a >> $gpath/g2 

qplot x=$gpath/fort.18,a \ . 
y=$gpath/fort.19,a \ 
xmin=-$ymax xmax=$ymax \
ymin=-$ymax ymax-$ymax \
scfac=1.0 xp=0 yp=0 \
sym=3 j=-l xlen=ll.0 ylen=8.0 xtic=l.375 ytic=l.0 -P -b -a >> $gpath/g2 

endi f
if ("$inputplot" == y) then 
qplot x=$gpath/fort.7,a \ 

y-$gpath/fort.8,a \ 
xmin=-$inmax xmax=$inmax \
ymin=-$inmax ymax=$inmax \
dig=2 sym=6 j=64 -f \
scfac=1.0 xp=0 yp=0 xlen=11.0 ylen=8.0 xtic=1.375 ytic=1.0 \
-P -b -a >> $gpath/g3 

endi f
else
# If starting a new plot (no overplotting)...
if ("$transplot" == y) then
qplot x=$gpath/fort. 1 ,a xl="Time (Sec)1' \

y=$gpath/fort.2,a yl="Output of Plant" \ 
xmin=0.0 xmax=$tmax \
ymin=-$ymax ymax=$ymax \
dig-2 scfac=1.0 xp=0 yp-0 \
xlen=ll.0 ylen=8.0 xtic=1.375 ytic=1.0 -P -d dash=0.01 gap=0.Q5 > $gpath/gl 

qplot x=$gpath/fort.11,a \ 
y=$gpath/fort.12,a \ 
xmin=0.0 xmax=$tmax \
ymin=-$ymax ymax=$ymax \
scfac=1.0 xp=0 yp=Q \
sym=l j=-l xlen=ll.0 ylen=8.0 -P -b -a >> $gpath/gl 

if ("$plant" == linear) then 
qplot x=$gpath/fort.16,a \ 

y=$gpath/fort.17,a \ 
xmin=0.0 xmax=$tmax \
ymin=-$ymax ymax^$ymax \
scfac=1.0 xp=0 yp=0 \ 
tl="$title"\bl="Plant=$plant a0*=$ap0 al=$apl a2“$ap2 b0=$bp0\ 

bl=$bpl umax=$umax"\
sym=3 j=-l xlen=ll.0 ylen=8.0 -P -b -a >> $gpath/gl

else
qplot x=$gpath/fort.16, a \ 

y=$gpath/fort.17,a \ 
xmin=0.0 xmax=$tmax \
ymin=-$ymax ymax=$ymax \
scfac=l.0 xp=0 yp=0 \ 
tl="$title"\
bl="Plant=$plant bl=$bpl b2=$bp2 b3-$bp3 b4=$bp4 b5=$bp5 b6~$bp6 b7~$bp7 \
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umax=$umax"\
sym=3 j.—1 xlen=ll.0 ylen-8.0 -P.-b -a >> $gpath/gl 

end if
endif
if ("$phaseplot" — y) then
qplot -a -x s=$gpath/axisbnd x=$gpath/abscissa,a y=$gpath/ordinate,a sym-12 \ 

scfac-1.0 xp-0 yp-0 xlen-11,0 ylen-8.0 xtic-1.375 ytic-1.0 \
-P > $gpath/g2

qplot -a -x s=$gpath/axisbnd x=$gpath/ordinate,a y=$gpath/abscissa,a sym=12 \ 
scfac-1.0 xp-0 yp-0 xlen-11.0 ylen-8.0 xtic-1.375 ytic-1.0 \
-P -b >> $gpath/g2 

qplot x=$gpath/f6rt.3,a xl="e" \
y=$gpath/fort.4,a yl="d/dt(e)" \ 
xmin—$ymax xmax=$ymax \
ymin—$ymax ymax=$ymax \
dig-2 sym-6 j=64 -f \
scfac-1.0 xp-0 yp-0 xlen-11.0 ylen-8.0 xtic-1.375 ytic-1.0 \
-P -b -d dash-0.01 gap-0.05 >> $gpath/g2 

qplot x-$gpath/fort.13,a \ 
y=$gpath/fort.14,a \ 
xmin—$ymax xmax-$ymax \
ymin—$ymax ymax=$ymax \
scfac-1.0 xp-0 yp-0 \
sym=l j —1 xlen-11.0 ylen-8.0 -P -b -a >> $gpath/g2 

if ("$plant" — linear) then 
qplot x=$gpath/fort.18,a \ 

y=$gpath/fort. 19, a \ 
xmin--$ymax xmax=$ymax \
ymin—$ymax ymax=$ymax \
scfac-1.0 xp-0 yp-0 \ 
tl="$title"\
bl="Plant=$plant aO=$apO al=$apl a2=$ap2 bO=$bpO\

bl=$bpl umax=$umax"\sym-3 j=?-i xlen-11.0 yleri-8.0 -P -b -a >> $gpath/g2 
else -
qplot x=$gpath/fort.18, a \ 

y=$gpath/fort.19,a \ 
xmin—$ymax xmax=$ymax \
ymin—$ymax ymax=$ymax \
scfac-1.0 xp-0 yp-0 \ 
tl="$title"\
bl="Plant=$plant bl=$bpl b2-$bp2 b3-$bp3 b4-$bp4 b5-$bp5 b6-$bp6 b7«$bp7 \ 

umax-$umax"\
sym=3 j — i xlen-11.0 ylen-8.0 -P -b -a >> $gpath/g2 

.endif 7 ■ V;
endif . . ■-.*
if ("$iriputplot" — y) then
qplot -a -x s=$gpath/axisbnd x-$gpath/abscissa,a ym$gpath/ordinate,a sym-12 \ scfac-liO xp=0 yp-0 xlen=ll;0 ylen-8.0 xtic-1.375 ytic-1.0 \

-P > $gpath/g3
qplot -a -x s=$gpath/axisbnd x-$gpath/ordinate,a y^$gpath/abscissa,a sym-12 \ 

scfac-1.0 xp^O yp-0 xlen-11.0 ylen-8.0 xtic-1.375 ytic-1.0 \
-P -b >> $gpath/g3 

if ("plant" -- linear) then
qplot x=$gpath/fort.7,a xl="Control Input" \

y=$gpath/fort. 8, a yl="d/dt(Control Input)" \ 
xmin—$irimax xmax=$inmax \
ymin--$inmax ymax=$inmax \
tl="$title"\
bl="Plant=$plant aO=$apO al-$apl a2-$ap2 bO-$bpO\ 

bl-$bpl umax=$umax"\
(lig -2 syrn 6 j-64 -f \
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scfac=1.0 xp=0 yp=0 xlen=11.0 ylen=8.0 xtic=l.375 ytic=1.0 \-P -b >> $gpath/g3 
e;lse
qplot x=$gpath/fort.7,a xl="Control Input" \

y=$gpath/fort.8,a yl="d/dt(Control Input)" \ 
xmin=-$inmax xmax-$inmax \
ymin=-$inmax ymax=$inmax \
tl="$title"\
bl="Plant=$plant bl=$bpl b2~$bp2 b3=$bp3 b4=$bp4 b5=$bp5 b6=$bp6 b7-$bp7 \ umax=$umax"\
dig-2 sym=6 j=64 -f \
scfac=l.0 xp=0 yp=0 xlen^ll.O ylen-8.0 xtic=l.375 ytic=l.0 \-P -b >> $gpath/g3 

endif
endif
endif
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title= PID worst case, apl:.2 Ki:0.0 nl:S kl:5.5 k2:3.325 T.-.02, pole.5
recompile=y
datafile=condata
overplot=n *
START COMP
PID Structure - file: pole.5
R 1 ref input
M 1 2 1.00000 A/D scale
S 2 3 1000.
Y 4 output feedback
M 4 5 1.00000 A/D scale
S 5 6 1000.
M 6 7 -1
A 3 7 8
M 8 10 85.875 kl/2
M 9 11 -83.125 k2/2
A 10 11 14
M 14 15 1.0* Integrator Section
S 15 16 1.0 sat nl
M 16 17 0.000 Ki
M 18 19 1.0 - pole at z=l => pure integral
A 17 19 20
S 20 21 1.0
M 15 22 2.0
A 21 22 23
S 23 24 1000.0
U 24
D 8 9
D 21 18
* Plotted Nodes: 
outl=8 
out2=14 
out3=16 
out4=21 
6ut5=23
* Initial Conditions: 
xpl=l.0
xp2=0.
* Input Specs: 
input=step 
stepht=-l.00
* Compensator Parameters: 
comp=emu
* Plant Parameters: 
plant=linear 
pltord=2
kp=l.0 
ap0=l.0 
apl=0.2 
ap2=0 
bp0=l.0 
bpl=0.2 
uroax=1.0 umin=-l.0
* Time Constants: 
dt=0.010
dtc=0.020 
tmax= 8.0
* Output Specs: 
ymax=3.0Q 
inmax=10.0
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A2. DIGCON Program Listing with Sample Design Sesskra
■k.kkkkitkitit-kkkkkic-kitit is *★***★**★ rt *•*★*★ * ★. ★ ;* ★ * it.it it it-k it k k it it * * * it * k k it it k k it it it A* * ★ ★ *■* ★

program digcon
A design and analysis program for digital control systems, 
and particularly for control of,.bounded input plants.
Double Precision Version 

* Modified 10/17/87 to be compatible with standard bpnehead fort 77
k k k it k k k k k k k k k k k k k k k k k k k;k k k k k k k k k k k k k it it k k is k k k k k k k k k it k it it-ic k k k k k k it k k k k k k k it k k k

integer Umax, ier, idgt
integer n, accur, crash, Sadflg, m, k, i v
parameter (nmax=10)
double precision khatv(nmax), ky(Umax)/ ufact, rfact 
double precision epsiln, umax, Rmax, dw, norme, normk, total 
double precision ae(nmax,nmax), aehat(nmax,nmax), c(nmax) 
double precision a(0:9), b(0:9), T, ahat(0:9), bhat(0:9), G 
double precision delt(Umax,nmax), deltin(rimax;nmax), Ghat 
double precision w(150), range, width, temp(nmax,nmax) 
character ans, code*3, phase

6000 print V |
& '("DIGCON : A program for the design of digital controllers ")'

print j
& '("for bounded input linear plants. V2.0 (double precision)")'
5 print '("\n<delete> to abort, <?> for help, <b> to begin >

read ' (al)',; ans 
print *
if (ans .eq. '?') then \ ;

call system('more digcon.help')
.. goto 5

else
if (ans . ne. 'b') goto 5 

endif j.-.-.
1 print '("Please describe the plant transfer function H(s)...")'

print ( H(s) assumed to be in normalized form )")'
print* !
print '("Enter Degree of Denominator: ",$)' 
read '(i2)’, n 
b (n) =1.0 !
if (n .gt. 9) then
print*, 'Sorry,; I can only handle up to ninth order plants...' goto 1
endif •
if (n .gt. 0) then
print*, 'Enter Denominator Coefficients:' do 20 i=0,n-l 1

print ’(" b",il," - ",$)', i
read '(flO.O)', b(i)

20 continue
endif
print *("Enter Degree of Numerator: ",$)' 
read '(12)', m 
a(m)=l.0
if (m .gt. 0) then ? /
print*, 'Enter Numerator Coefficients:' 
do 40 1=0,m-1

print ';(" a",il," ",$)', i
read '(flO.O)', a(i)

40 continue 1
endif
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print*, 'Enter Gain of H(s):’ 
print ’ (" G =",$)'read '(f10.0), G 
print *

2 print*, ’Enter Sample Period:'
print '(" T = ” , $) ’
read '(flO. 0) ', T 
print *

* Optional input information for design of a saturating linear dig comp
print*, ’The following information is optional.' 
print*,

& 'Just hit <return> after any prompt which is not applicable.'
■ print*
if (n .gt. 0) then
print*, 'Enter Hyperplane Parameters: ' 
do 23 i=l,n

print '(" khat",il," = i
read '(flO.O)', khatv(i)

23 continue
endif ; 
print *
print*,

& 'Enter f for forward diff, b for backward diff phase space:'
print '("phase type = ",$)' 
read ’(al)', phase 
print *
print*, 'Enter Norm Bound on Operational Region:' 
print ’(" epsilon > ",$)' 
read '(flO.O)', epsiln 
print .
print*, 'Enter Bound on Control Input:' 
print ' ( " umax = ",$)'
read '(flO.O)', umax 
..print *.
print*, 'Enter Absolute Bound on Reference Input:' 
print '(" Rmak =",$)'
read '(f10.0)', Rmax 
print *

* -/All required information has been entered
print*, 'Analysis in^progress...' 
print* ' . " ■_

525 call dtisub(G, Ghat,a,ahat,b,bhat,n,T,crash,code,sadflg,accur)
* , Assign coefs of Ae matrix

• do 130 i=l, h : ■
do 133 j=l,n

if (j .eq. i+1) then 
ae(i,j)=1.0

else
ae(i, j )=0. .> ;:i; --i.. •

' .-Y/-' end if '133 continue
130 continue

do 301 j=l,n
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ae(n,j)=-bhat(k) ^
* print ' ( "ae( ", il, " , " , il, " ) = •'> f 10.5) ' , n,j,ae(nM
301 continue
* read ' * . ■■
526 continue
* Transform Ae matrix into Aehat matrix
* Aehat = [deltj**-l * Ae * [delt]

*
450
389*
*

★
*

if (phase ,.eq. 'b' ) then
call delbt(delt,T,n,nmax)

else
call delmt(delt,T,n,nmax)

endif
do 389 i=l, n

do 450 j=l,n *■.
print ' ("delt (",i2,' V, 12, u ) « ■" , f7.4 )‘*, i,j, delt(i,j)
continue - , . ■

continue
read*
Calculate deltin=[delt]**-l 
idgt=0
call linv2f(delt,n,nmax,deltin,idgt,w,ier)
print*, 'linv2f ok'
read*
Transform khatv vector to kv vector 
call ntvecl (khatv, del tin, kv,n, nmax)
call matmul(ae,delt,temp,n,nmax) 
print*, 'matmul ok' 
read*
call matmul(deltin,temp,aehat,n,nmax) 
print*, 'matmul ok' 
read* .
Subtract identity matrix from aehat
do 5000 i*l,naehat(i,i)=aehat(i,i)-1.

5000 continue
do 391 i=l,n

do 451 j=l,n
* print ' ("aehat (M2, ”,",12,") - ",17.4)', i,j,aehat(i,j)
451 continue
391 continue
* . read*
* Multiply khat*(Aehat-I)

call mvecl(khatv,aehat,c,n,nmax) 
do 452 j=l,n

* print ' ("c(" ,i2," ) = M-,fl0.7)\ j, c(j)
452 continue
* read*
* Form norms

call normv(c,norme,n,nmax)
* print '("norme = ",f10.7);'( norme 

call normv(khatv,normk,n,nmaxi-
* print '("normk = ",f10.7)'i?ndrmk
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print '("umax = ",flO.;5)''y umax 
print '("Rmax » " , f 10.5) ' ,Rmax
ufact=0. 
rfact=0. 
do 224 i=0, n

ufact=ufact + Ghat*ahat(i) 
rfact=rfact + bhat(i)

224 continue
-ufact«=ufact*khatv.(n )/(T** (n-1))
rfact=rfact*khatv(n)/(T**(n-1))
total = ufact*umax +rfact*Rmax
if (normk .gt. le-9) then
range = (ufact*umax - rfact*Rmax)/norme
dw = ( norme*epsiln + total )/normk
width = 2.0 * umax/normk
else
range = le+9 
dw = le+9 
width = le+9 
endif

* Routine to store information in a file named digcon.output
open(1,file='digcon.output',status='unknown') 
write(l,'("**** Output of Program DIGCON ****\n ")') 
write(l,'(''Specified Coefficients of Plant H(s) are...'')')

v k=n •
57 if (abs(b(k)) .gt. le-6) then

write(1,'("Denominator Coefficients:")') 
do 62 i=0, k

write(l,'(" b", il," = ",fl4.7)') i, b(i)
62 continue
■.; ■ else- .

■ k=k-l■ • . ■
if (k .ge. 0) goto 57
endif
k=n

67 if (abs(a(k>) .gt. .999999) then
write(1("Numerator Coefficients:")') 
do 82 i=0, k

write(1,1(" a" ,11," «= " , f 14.7)' ) i, a(i)
82 Continue,

else . _
'k=k-l
if (k .ge. 0) goto 67 
endif - ■'
Write(l,'("Gain of H(s):")') 
write(1, ' (" G = ",fl4.7) ' ) G
write(1,'("Sample Period:")') 
write(1,' (" T = " ,-f 14.7)') T 
write(l,'(" ")')..»
if (sadfig .eq. 1) then
write(1/'("Repeated orZero Eigenvalue. Iterative Soin.\n")') ;endi-f'
write(l,'(''Coefficients of ZOH-Equivalent H(z) are...'')')

- k=h . . ■-. ‘
56 if (abs(bhat(k)) .gt. le-6) then

write(l,'("Denominator Coefficients:")')Y do 61 i=0,k Y
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write( 1,:'( " b" , il," = " , f 14.7) ' ) i , i>tiat(i)
61 continue

■ - ,, else ' ■
• k=k-l ■
if (k . ge:. 0) goto 56 
endif ■ \\
k=n ’

66 if (abs(ahat(k)) .gt. le^l) then
write( 1(" Numerator Coefficients:”)’) 
do 81 i=0,k

write(l,'(" a",il," = ",f!4.7)?) i, aha.t(i)
81 , continue

else
k=k-l' :: ■ : ■
if (k .ge. 0) goto 66 
endif -
write(1,'("Gain of H(z);")') 
write(1,’(" G = ”,fl4.10)9) Ghat 
write(1, ' ('"'•") ' )
write(1("Bound on Control Input:")') 
write (1, ' (" umax = ”, f 14.7) ' ) umax
write(1,'("Bound on Reference Input:”)1) 
write(1,'(" Rmax = ",fl4.7)') Rmax
write(1,'("Norm Bound on Operational Region:")') 
write(--Jy ' (" epsilon = " , f 14.7) ') epsiln
k=n76 if (abs(khatv(k)) .gt. le-6) then
write(1,'("Hyperplane Parameters:")9) 
do 88 i=l, k

write(1,'(" khat",il," = H,f!4.7)') i, khatv(i)
88 continue

else. 
k=k-l
if (k .ge. 1) goto 76 
endif

* write(1,'("Type of Incremental Phase Plane: ",$)')
write(1,3971)

3971 format("Type of Incremental Phase Plane: ”,$) 
if (phase .eq. 'b') then 
write(1,'("Backward Difference ")’) 
else
writefl,‘("Forward Difference ")') endif
k=n

16 if (abs(kv(k)) .gt. le-6) then
write(1,'("Numerator Coefficients of Compensator:")') 
do 84 i=l,k

j=i-lwrite(1,'(" a",il," « ",fl4.5)') j, kv(i)
84 continue

else 
k=k-l
if (k .ge. 1) goto 16 
endif
write(1,'("Norm Bound on Region of Attraction:")') 
write(!,'(" range = 7)r'j range
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k=n
17 if (abs(c(k)) . gt. le-6), then

write(1,-'("Vector orthogonal to attraction bounds:")') 
do 571 i=l,k

write(1, ' (V sigma”,il," = :",fl4.7)') i, c(i)
571 continue

■ , else,; ■
. k=k-l '
if (k .ge. 1) goto 17
endif
write(1,(’'Width of Linear Control Region:) 
write(l,'(" width = ",£14.7)') width
write(1,'("Maximum state movement orthogonal to hyperplane")’) 
write(l,'("defined by khat in a single sample period:")') 
write(1,' (" dw = ",114.7)') dw
write(i,'("")')
if (crash .eq. 0) then 
write(1,

& '("Results reliable to approximately ",il," decimals.")') accur
write(l,'(" ")')

. else-. 
write(1,

& '("Numeric Problems Encountered. Result is Unreliable.\n")')
endif .• , ‘

* Display results to terminal 
'print *
call system('more digcon.output')

* Provide option to save the results in a file 
call system(’csh digcon.acc')
close(1,status='delete')

86 continue
print •*' - •' ' ; '
print ’('V {t} to change sample period")'
print '("k {k) to change hyperplane")'
print '(" fp) to change phase plane type")'
print '(" {e} to change operational region")'
print '(" (r) to change Rmax")'
printr * ('' {uj to change umax")'print '(" {aj to change everything")'
print '(" fq) to quit")'
print '(" (?) for help")'
print '(" .{ )\b\b",$)' ;
read '(al)', ans 

• ' print * : ,
if (ans .eq. 't') then . ;
print*, 'Enter Sample Period:' 
print ’(" V T = ",$)' 
read ’(flO.O)’, T 

; goto 525 .••• ’
endif.’ ■ • *'■
if (ans .eq. 'k') then 
print*, 'Enter Hyperplane Parameters: 
do 26 1=1,n _v i

print '(" khat",il," =",$)', i
read '(£10.6)', khatv(i)

26 continue
goto 526 
endif
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if (ans .eq. 'p') then
print*/ 'Enter Incremental Phase Plane Type {f,b}: '
print '("phase type =
read '(al).phase
goto 526
endif
if (ans .eq. 'e') then
print*/ 'Enter Norm Bound on Operational Region:'
print ’(" epsilon =
read '(flO.O)', epsiln
goto 526
endif
if (ans .eq. 'u') then
print*, 'Enter Bound on Control Input:'
print ' (" umax =",$)'
read '(flO.O)', umax
goto 526
endif
if (ans .eq. 'r') then
print*, 'Enter Absolute Bound on Reference Input*.'
print '(" Rmax ="/$)'.
read '(flO.O)'/ Rmax
goto 526
endif
if (ans .eq. 'a') then
goto 1
endif.
if (ans .eq. '?') then

call system('more digcon.help') 
goto 5

endif
if (ans .ne. 'q') then
goto 86
endif
print *
end

******************************************************  ************* * * * ******
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******************** * * ********* * * ***************** * * **********************

* dt2sub subroutine
* Double Precision Version (2.0)
* Author: C. MacCarley, Purdue University. Last modified: 7/87
* Purdue University, School of EE, D. G. Meyer, Major Prof.
* This subroutine generates a step equivalent H(z) from a given H(s)
* and sample rate T. For systems of up to ninth order.
* Modified 10/17/87 to be compatible with standard bonehead fort 77
* * * * * * ********* * * * * * *************** * * * * * * *********************************

subroutine dt2sub(G,Ghat,a,ahat,b,bhat,n,T,crash,code,sadflg,
& accur<)

integer n, badflg, accur, crash, sadflg
double precision a(0:9), b(0:9), T, ahat(0:9), bhat(0:9), G 
double precision diff,maxdev,ahatpl(0:9),ahatmi(0:9),Ghat 
double precision bhatpl(0:9),bhatmi(0:9), densum 
double precision Ghatpl,Ghatmi,delbz, delb(0:9), diffl, delfac 
character code*3
crash =0 
badflg= 0 
sadflg- 0

b(n)=l.0
if (n .gt. 9) then 

crash=l 
code='n>9' 

goto 1250 
endif
call stinvar(G,Ghat,a,b,T,ahat,bhat,n,badflg)

* If multiple roots
if (badflg .eq. 1) then 
sadflg =1 
badflg =0 
delbz =0.250 
maxdev = i.000 
diffl = 100.0 
delfac =0.8750 
do 29 1=0,n

delb(i)=b(i)
29 continue
* Postive Perturbation
32 delb(0)=b(0)+delbz

call stinvar(G,Ghatpl,a,delb,T,ahatpl,bhatpl,n,badflg) if (badflg .eq. 1) then 
code='pos' 
goto 96

endif
* Negative perturbation 

delb(0)=b(0)-delbz
call stinvar(G,Ghatmi,a,delb,T/ahatmi,bhatmi,n,badflg) 
if (badflg .eq. 1) then 

code='neg' 
goto 96

' ■ endif
* Test convergence of solution 

diff=0.
do 47 i=0,n
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diff=diff+abs(bhatpl(i)-bhatmi(i))+abs(ahatpl(i)-ahatmi(i)) 
continue
if (diff .It. dif.fl) then 

do 49 i=0,n
bhat(i)“(bhatpl(i)+bhatmi(i))/2. 
ahat(i)=(ahatpl(i) tahatmi(i))/2.

continue
delbz = delfac*delbz 
diffl=diff 
goto 32

endif
continue
if (diffl .It. maxdev) then
accur=nint(-logl0(diffl))+l
if (accur .gt. 8) accur=8
if (accur .It. 0) accur=0
else
crash=l
code=’max'
endif
else

accur=8
endif
Find leading non-zero coef of numerator 
i=n
if (abs(ahat(i)) .It. le-7 .and. i .ge. 0) then 

i=i-l 
goto 1300

else
Ghat=ahat(i)

endif
if (i .It. 0 .or. abs(Ghat) .le. l.e-9) then 

Ghat=l.0 
crash=l

endif
Normalize numerator coefs to leading non-zero coef 
if(crash .ne. 1) then 
do 1400 i=0,n

ahat(i)“ahat(i)/Ghat
continue
endif
Ghat=Ghat*G 
densum=0. 
do 1987 i=0,n 
densum=densum+bhat(i)
if (ahat(i) .gt. l.e+6 .or. ahat(i) .It. -l.e+5 .or. 
bhat(i) .gt. l.e+6 .or. bhat(i) .It. -l.e+5) then 

crash =1
endif
continue
continue
return
end

subroutine stinvar(G/Ghat/a/b/T/ahat/bhat,n,badflg)
Computes the coefficients of H(z) using partial fraction expansion,



484

* residue calculation, and Z-transformation of ((z-l)/z)*Z[H(s)/s)
* Subroutine called with coefs of H(s):
* a contains numerator coefs of H(s)
* b contains denominator coefs of H(s)
* G is gain factor of H(s)
* Subroutine returns coefs of H(z):
* ahat contains numerator coefs of H(z)
* . bhat contains denominator coefs of H(z)
* Ghat is gain factor of H(z)
************************* * * ***** * * * *****************************************

*

100

300

integer n,i,j,k,maxdim,ier,badflg
double precision a(0:9), b(0:9), ahat(0:9), bhat(0:9)
double precision am(0:9,0:9), wk(10)
double precision G, Ghat, T
double complex res(0:9), jm(0:9,0:9)
double complex z(-l:9), gamma(0:9), cahat(0:9)
double complex w(0:9), zm(10,10), denom, numer
maxdim =10 
ier =0 
badflg =0

Assign coefs of A matrix 
do 100 i=0,n

do 100 j=0,n
if (j .eq. i+1) then 

am(i,j)=1.0
else

am(i,j)=0.
end if

continue
do 300 j = l> n

k“j-l
am(n, j)—b(k)
print '("am(",il,",”,11,”) = ",fl0.5)', n,j,am(n,j)

continue
Increase n for augmented A matrix 
k=n+l

* Compute eigenvalues and eigenvectors of A
call eigrf(am,k,maxdim,0>w,zm,maxdim,wk,ier)* Returns complex vector of n+1 eigenvalues w

*■ Compute gamma(i)=exp(eigenvalue(i)*T)’s
do 550 j=0,n

gamma(j)=exp(w(j)*T)
* print ' (nlaihb(|aX " ,il, ” )■ =",$)', j
* print*, w(j)
* print '("gamma(",il,") = ",$)', j
* print*, gamma(j)
550 continue
.*

*

*
*

Compute Residues 
do 500 j=0,n

numer = (0.,0.) 
denom = (1.,0.) 
do 575 i=0,n

numer=numer+a(i)*(w(j)**i)
print ’ ( ” i, j , numer: ’’yil^,!!,^,?) ',
print*, numer
if(i .ne. j) denom=denom*(w(j)-w(i)) 
print ’ (f,i,j,denom: M,il,x,ii,x,$)' ,

i/j .

i* j
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* print*, denom
575 continue

if (abs(denom) .It. le-9) then 
badflg=l 
goto 2000

endif
res(j)= numer/denom

* print '("res(",il,") - ",$)', j
* print*, res(j)
500 continue
*

*

700
★

900

800

*
★
1000
600

POLY Routine: Generates coefficients of P(z-gamma(j))
z(-l)=(0.,0.)
do 600 j=0,n

Initialize queue and flag 
do 700 i=0,n

z(i)=(O.,0.)
continue
flag-0
Ready to find j’th column vector jm(i,j) 
do 800 i=0,n

if (i .he. j) then
if (flag .eq. 0) then 

z(l)=(l,0) 
z (0)—gamma (i) 
flag=l

else
do 900 k=n,0,-l

z(k)=-z(k)*gamma(i)+z(k-l)
continue
endif

endif
continue 
do 1000 i=Q,n

jm(i,j)=z(i)
print '("i=",il," j = ",il)s, i, j 
print*, jm(i,j)

continue
continue

* Determine coefs of H(z) from the jm matiix and residues
do 1100 i-0,n

cahat(i)=(0.,0.) 
bhat(i)=0. 
do 1200 j-0, n

cahat (i )“cahat( i )-f-jm(i, j )*res( j )
1200 continue

bhat(i)=real(jm(i,0)) 
ahat(i)-real(cahat(i))1100 continue

2000 return '
end

*^***********************r*****★***★*★**★★**********************************
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************************************************************************ *
* Link file: matlib.f
* Matrix and special function subroutines for digcon and dt2sub
* Modified 10/17/87 to be compatible with standard bonehead fort 77
********* * * * ***************** ************* ******** * * * * .* * * * * *,* * * * * ** * * * * * * . 

subroutine matmul(a,b,c,n/nmax) 
integer n,i,j,k,nmax
double precision a(nmax,nmax),b(nmax,nmax),c(nmax,nmax)
do 100 i=l,n

do 200 j=l,n
c(i/j)”0. 
do 300 k=l,n

c(i,j)=c(i,jj+a(i,k)*b(k,j)
300 continue
200 continue
100 continue: 

return 
end

****************** * * ************************************************ * ** * *

subroutine mvecl(b,a,c,n,nmax) 
integer nmax,n,i,j
double precision b(nmax),a(nmax,nmax),c(nmax)
do 100 3=1,n

C(j)=0. 
do 200 1=1,n

G(j)=c(j)+a(i,j)*b(i)
200 continue. \ ■
100 continue 

.return 
end

******* * * * * * * ** ****,********** * * * * ** * * ************ * * ************* ** ********

subroutine mvecr(a,b,c,n,nmax) 
integer n ,1, j ,nmax
double precision b(nmax),a(nmax,nmax),c(nmax)
do 100 1=1,n

c(i)=0. 
do 200 j=l,n

c(i)=c(i)+a(i,j)*b(j)
200 continue
100 continue 

return 
end ■

******* * * * * * * **** a*********** ********************** ******* * ************ *,* *

subroutine normvfb,norm,n,nmax)
integer n,i,nmax
double precision b(nmax),norm
norm=G. 
do 100 i=l,n

norm=normtb(i)**2
100 continue

norm=sqrt(norm)
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return
end

***★*★*★★*★★*★★****£*£*★★★★*★★*★**:★**★*★★*★★★***★**★**£★**★**★*** ***★★★***★
* Forward Difference Transformation matrix 

subroutine delmt(delt,T,n,nmax)
integer i, j, n, nmax
double precision delt(nmax,nmax), binomi, T
do 100 i=l,n

do 200 j=l,n
if (i .ge. j) then
delt(i,j)=binomi(i-l,j-1)*T**(j-1)
else

delt(i,j)=0
endif

200 continue
100 continue

return 
end

★a*************************************************************************

* Backward difference transformation matrix 
subroutine delbt(delt,T,n,nmax)
integer i, j, n, nmax
double precision delt(nmax,nmax), binomi, T
do 100 i=l,n

do 200 j=l,n
if (j . le. n-i+1) then
delt(i,j)=binomi(n-i,j-1)*(~1*T)**(j~l)else

delt(i,j)=0
endif

200 continue
100 continue 

return 
end

******************************************ww****************************
double precision function binomi(n,m)
double precision num,den 
integer i,j,n,m
num=l.0
do 100 i=n-m+l,n 

num=num*i
100 continue

den=l,0 
do 200 j=l,m

den=den*j
200 continue

binomi=num/den
return
end

********************** ★ 'ft************')********'*'************* *****************
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#!/bin/csh
echo -n "Save output in a file? {y,n} > "
AGAIN:
set y=$<
if ($y == "y") then

echo -n "File name? > " 
set x=$<
cpdigcon.output "$x"
echo "Output saved in file $x"
echo ""

else
if ($y != "n") then

echo "Please repond {y,n} 
goto AGAIN

endi f
end if
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Script started on Tue Nov 24 00:58:40 1987 
% digcon
DIGCON: A program for the design of digital ..controllers 
for bounded input linear plants. V2.0 (double precision)
<delete> to abort, <?> for help* <b> tb begin > b
Please describe the plant transfer function H(s)...

( H(s) assumed to be in normalized form j
Enter Degree of Denominator: 3 

Enter Denominator Coefficients: 
bd = 0 
bl = 1 

• b2 = . 2
Enter Degree of Numerator: 2 

Enter Numerator Coefficients: 
aO = 1 
al = 1

Enter Gain of H(s):
G = 1

Enter Sample Period:
T = .02

The following information is optional.
Just hit <return) after any prompt which is not applicable
Enter Hyperplane Parameters: 

khatl =10
khat2 =5 :
khat3 =1

Enter f for forward dfff, b for backward diff phase space: 
phase type = b
Enter Norm Bound on Operational Region: 
epsilon = 1

Enter Bound on Control Input: 
umax = 2

Enter Absolute Bound on Reference Input:
Rmax =1

Analysis in progress...

**** Output of Pfogram DIGCON ****
Specified Coefficients of Plant H(s) are... 
Denominator Coefficients: 

bO = 0.
bl = 1.0000000
b2 = 0.2000000
b3 = 1.0000000

Numerator Coefficients:
aO = 1.0000000
al = l.OOOOOOQ
a2 = l.oodoodo

Gain of H(s):
G = 1.0000000

Sample Period:
T = 0.0200000

Repeated or Zero Eigenvalue. Iterative Solution.
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Coefficients of .ZOH-Equivalent H( z) are... 
Denominator Coefficients:

bO = -0.9960080
bl - 2.9916167
b2 = -2.9956088
b3 .« , 1.0000000 '

Numerator Coefficients:
aO = 0.9801986
al = -1.9798026
a2 = 1.0000000

Gain of H(z):
7m—MoreG-(42% )A. 0201597819 ; ■
Bound on Control Input:

Umax = 2.0000000
Bound on Reference Input:

Rmax = 1.0000000
Norm Bound on Operational Region:

epsilon = 1.0000000
Hyperplane Parameters:

khatl = 10.0000000
khat2 = 5.0000000
khat3 « 1.0000000

Type of Incremental Phase Plane: Backward Difference 
Numerator Coefficients of Compensator: 

aO = 2500.00000
al = -5250.00000
a2 = 2760.00000

Norm Bound on Region of Attraction:
range = 0.1965080

Vector orthogonal to attraction bounds: 
sigmal = 0.0001645
sigma2 = 0.1779624
sigma3 - 0.0995928

Width of Linear Strip:
width - 0.3563483

Maxiimim state movement orthogonal to hyperplane 
defined by khat in a single sample period: 

dw = 0.0217115
Results reliable to approximately 7 decimals.
7tt—More—(99%)m
Save output in a file? {yin) > y
File name? > sample.outputOutput saved in file sample.output

(t) to change sample period
fk} to change hyperplane
{p} to change phase plane type
[ej to change operational region
fr) to change Rmax
{u} to change umax
(a) to change everything
[qj to quit
[?} for help
(q)r- ■

% D
script done on Tue Nov 24 01:02:16 1987
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A3. RW Program Listing
*********************** * * * * * * * * * * * * * * * * * * ★ ,** ************** * .* * * * * * * * ★*★.** * * * * *
*

* program name: rw
•* author / date modified last : C. MacCarley, 6/28/87
*

* A program to calculate the magnitude and phase distortion
■* of a digital implementation of a filter (including the effect
* of the ZOH) compared with the continuous-time ideal version 

’ of the filter. This comparison is calculated as a complex
* ratio. For an ideal digital implementation, the magnitude
* this ratio would be 0 dB , and the phase would be zero radians.
* ,•
* command line should be: rw.prg wmin wmax wincr ws
*

* Shell File: rw
******************************************************* * * * ******************** 

program rw 
real pi
parameter (pi=3.1415926) 
real w,wmin,wmax, pts, ws,mag.n,phase,wnorm 
complex z,s,gd,gzoh,gs,rw 
character arg*10

* get parameters from command line
call get arg (1 , arg) 
read (a rg, ' (11 0.0) * ) wini n 
call getarg(2,arg) 
read (arg, ( f 10. G) ') wmax 
call getarg(3,arg) 
read (arg,’(f10.0)') pts 
call getarg(4,arg) 
read (arg,'(f10.G)') ws
wincr=(wmax/ws-wmin/ws)/pts
do 20 wnorm=wmin/ws, wmax/ws, wincr

w=ws*wnorm
z=cexp(cmplx(0.,2.*pi*w/ws))
call method(s,z,ws,pi)
call filter(gd,s)
call zoh(gzoh,z,w)
s=cmplx(0.,w)
call filter(gs,s)
rw=(ws/(2.*pi))*gd*gzoh/gs
magn=20.*logl0(cabs(rw)) 
phase=atan2(aimag(rw),real(rw))

* Output to ASCII files for plotting routine
write (1,50) wnorm 
write (2,50) magn 
write (3,50) phase

50 format(flO.5)
20 continue

stop
end
DIGITAL SYNTHESIS METHOD



subroutine method(s,zws,pi) 
real ws,pi 
complex s,z
Backward Difference Method 
s—ws*(1.~(1./z))/{2.* pi)
Bilinear z-transform 
s=ws*( z-l)/(pi* (z+l)) 
return 
end
FILTER TRANSFER FUNCTION 
subroutine filter(g,s) 
complex g,s 
none - just the ZOH
9=1simple pole at -.1 
g=.l/(s+.1)
FIR implementation of differentiating filter 
g= s* *2 + s‘+ 1 
simple differentiator 
g=s
second derivative 
g=s* * 2 
return : 
end
ZERO ORDER HOLD TRANSFER FUNCTION 
subroutine zoh(gzoh,z,w) 
real w
complex gzoh,z
gzoh=(1.-(1./z))/cmplx(0.,w)
return
end
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#!/bin/csh i
# rw - a shell file for the program rw
# • . j '

echo "rw - Digital Filter Distortion Analysis Program"
# . 1 "

set title="Simple Integrator# Bckwrd Diff Method"
set wmin=.1 ;
set wmax=10. |
set wincr=.1 •
set ws=l.0 !

# !# Optional recompile if filter or method changed in source rw.fjf f77 rw.f -o rv^.prg
rw.prg $wmin ,$wmax $wincr $ws
qplot

qplot

echo""

x=f ortj. 1 # a xl=" frequency (rad/sec)"
y=fort.2,a yl="Magnitude distortion (dB)
tl="$Wtle" 
bl="ws-$ws"
dig=2 scfac=1.0 xp=0 yp=0
xlen=ll.0 ylen=8.0 xtic=1.375 ytic=1.0
-P -d dash=Q.01 gap=0.05 > gl
x-fort.1,a xl—"frequency (rad/sec)"
y=fort.3,a yl="Phase error (radians)"
tl="$t|itle"
bl="ws=$ws"
dig=2 :scfac=1.0 xp=0 yp=0
xlen=11.6 ylen=8.0 xtic=l.375 ytic=1.0
-P -d ;dash=0.01 gap=0.05 > g2

Y \ \ \ 
\ \
Y \ \ \ \Y
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A4.

program bnd
red 1 x( 2), fnorm,wk(21),par(1),xva 1,R, u,w,umax 
integer nsig,n,itmax,ier 
character ans
common' xval,'R,u,w, umax, Rmax 
external fen
Number of significant figures of result 
nsig=4
Order of system of equations
n=2 . ’
Maximum number of iterations on each pass 
itmax-1000 

* Coefs: ’ '''
umax-100 
Rmax .100

400 print '("R - " , $ ) '
lvail* , R
print '("u = ",$)' 
read*, u
print '("e guess t ",$)’ 
read*, x(1)
print '("dedt guess = ",$)' 
read*, x( 2 ) 
print '("w = 
read*, w
print '(" e dedt ")1

U-W . : •

if (u .gt. umax) u=umax 
if (u .It. -umax) u=-umax
call zspow(fen,nsig,n >itmax,par,x,fnorm,wk,ier)
print ’(f7.0,2x,f7.Q)', x(l), x(2) 
print '("save point? (yin) > ",$)' 
read*, ans
if (ans .eq. 'y') then 
write(21,500) x(l) 
write(22,500) x(2)

500 format(f15.5)
end if '
print* goto 400 end
subroutine fcn(x,f,n,par) 
real x(n),f(n),par(1)
rea1 cl,c2,m,kl,k2,k3, k4 > k5,k6,k7,gamma, u, R,xval,umax,Rmax common xval, R, u, w,umax,Rmax

■ .kl=2. .
' k2=l.
k3=2. -/ ‘ \
k4=200. 
k5=0.1

• k6=2. -
k7=0. ■ ■■■ '

■ c 1=1.0 . '
c2 = 2.
m = cl/c2 .
The nonlinear system 
f(1)=cl*x(1)+c2*x(2)-w 
gamma = (-x(2) + k6*(R-x(l)) + k7)/(k4) 
if (abs(gamma) .ge. 1.570796327) then
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print ’("gamma out of range")’ 
endi f
f(2)= (m-k6)*(l.+(tan(gamma))**2)*x(2)/(k2*k4*k5) 
+' kl*(tan(gamma))/(k2*k5) + R - (k3/k2)*u - x(1)
return
end



496

#!./bin/csh
U BPLOT - a plotting utility for the program BND 
echo -n "New plot? <y or n> " 
set new=$<
if ($new'== 'y') then 
rep eg:consim.dir/g2 g2 
endif
echo -n "ymax. ■ *' 
set ymax=$< 
set mark=12
echo -n "symbol number? (11='*',12=‘ ,13=',' ) > "
set mark=$< 
echo ''
qplot x=fort.21,a \ 

y=fort.22,a \ 
xmin=-$ymax xmax=$ymax \
ymin=-$ymax ymax=$ymax \
sym=$mark j=-l \
scfac=1.0 xp=0 yp=0 xlen=11.0 ylen=8.0 \
-P -b -a >> g2

plotg2 .
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A5. CHKPT Program Listing

program chkpt

200

&

real cl,c2,kl,k2,k3,k4',k5,k6,k7,gamma,u,uraax,R,zone 
real x(2) 
character attr*10
kl=2. 
k2=l. 
k3=2. 
k4=200. 
k5=0.1 
k6=2 „ 
k7=0. 
umax=100.
print* -
print 1("Check if a point in the phase plane is within the domain of")’
print '("attraction of the specified linear region'
print '(" enter kl and k2 >
read*, cl, c2
print ■(" enter R > ",$)'
read*, R
print '(" enter e and de/dt >",$)' 
read*, x(l), x(2)
w=cl*x(l)+c2*x(2) 
u=w
if (u .gt. umax) u=umax 
if (u .It. -umax) u=-umax 
print '("u = ",f9.3)', u 
u=sign(l.,w)*umax
gamma = (~x(2) + k6*(R-x(1)) t k7)/(k4) 
f = k4*k5*( -(kl/k5)* tan(gamma) -k2*(R-x(l)) + k3*u ) / 
( 1. + ( tan (gamma) )**2 ) : ■.+ k6*x (2)
zone - w*( cl*x(2) - c2*f )
if (zone „le. 0.) then 

attr=' ok'
else

attr= * not ok'
endif
print '(" dV/dt = ",el5.4,3x,alO)', zone, attr 
print*
goto 200 
end
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A6. NLFUN and NLFUN2 Program Listings

program ni fun
real x(2),fnorm,wk(21),par(1),xval 
integer nsig,n,itmax,ier
common xval 
external fen
nsig= 3 
n=2
itmax=1000
ier=0
print ' (" e dedt ")'
print*
x ( 2) = 0
do 100 xval=~400,400,10 

. x(1) = xval
call zspow(fen,nsig,n,itmax,par,x,fnorm,wk,ier) 
print '(f7v0,2x,f7.0)'x(1), x(2)

100 continue
end
subroutine fcri(x,f,n,par) 
real x(n),f(n),par(1)
real m,kl,k2,k3,k4,k5,k6,k7,gamma,u,R,xval 
common xval
m=5 
kl = 2. 
k2=l. 
k3=2. 
k4=200. 
k5=0.1 
k6 = 2. 
k7-0. 
u=100.
R=-100.
f(1)=x(1)-xval
gamma = (-x(2) + k6*(R-xval) + k7)/(k4) 
f(2)= (m-k6)*<1.+(tan(gamma))**2)*x(2)/(k2*k4*k5) 

& + kl* (tan(gamnia))/(k2*k5) + R - (k3/k2)*u - xval
return
end



program nlfun2
real x( 2), fnorm, wk( 21), par( 1 );,xval 
integer nsig,n,itmax,ier 
common xval.,R,u 
external.fen
Number of significant figures of result 
nsig=3
Order of system of equations 
n=2
Maximum number of iterations on each pass 
itmax=1000
print '("R 
read *, R 
print '("u 
read*, u 
print* 
print '(" 
print*
x(l)=0
do 100 xval=400,-40Q,-10 
x(2)=xval
call zspow(fen,nsig,n,itmax,par,x,fnorm,wk,ier) 
print '(f7.0,2x,f 7.0)', x(l), x(2)
if (abs(x(l)) .le. 400 .and. abs(x(2)) .le. 400) then
write(21,300) x(l)
write(*22,300) x(2)
format(f15.5)
endi f
continue
end
subroutine fcn(x,f,h,par) 
real x(n),f(n),par(1)
real cl,c2,m,kl,k2,k3,k4,k5,k6,k7,gamma>u,R,xval,umax,Rmax
common xval,R,u
kl=2.
k2=l.
k3=2.
k4=200.
k5=0.1
k6=2.
k7=0.
umax=100.
Rmax=100. 
cl=10. 
c2=2.
w = cl*x(l) + c2*x(2) 
m = cl/c2
u = sign(1.,w)*umax 
u = umax 
R = 0.
The nonlinear system 
f(l)=x(2)-xval
gaitima = (-xval + k6*(R-x(l)) + k7)/(k4) 
if (abs(gamma) .ge. 1.570796337) then 
print '("gamma out of range")*
gamma = sign(l., 1.57079*(~xVal+k6*(R-x(1))+k7)/k4 ) 
endif
f(2)= (m-k6)*(l.t(tan(gamma))**2)*xval/(k2*k4*k5)
+ kl*(tan(gamma))/(k2*k5) + R - (k3/k2)*u - x(l)

= %.$)'•

e dedt )*

return
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q* * ********** * * ****** * * * **************************** * * *********** * * * * ****** * * * * *
C '; . • ' : ' • . -

c FIR -- A program for design of an extended FIR filter for which
c both the gain and group delay may be specified as a function of
c frequency.
c •• '
0 **** *** **** ***********************************,****************** *********** * ***
C
c Main program
c ; • ■

integer N, M 
real fs, fine
parameter (N=64,. M=64, fs=51200.0,‘finc=50.0) 
real tap(0:M-l)

c ' ■■ ‘ -
c Design filter:

call ctaps(N, M, A, D, h, tap, fs)
cc Analyze filter:

call freval(M, tap, fs, fine)
c . ' '

■ stop ■ .
• - end.

c ;• ■■ ' • _ • .. '
0 ******* * * * * * * * * * * * * ********************************************************c - ■ ■ . . . : ;
c Subroutine for determining FIR filter tap coefficients

subroutine ctaps( N, M, A, D> h, tap, fs )
parameter (pi-3.141592654) 
integer M, N, j, k, 1, 10 real freqfn, deiafn, del, fs 
real A(0:N-1), D(0:N-1), h(0:N-l), tap(0:M~l) 

c •
print *, 'N=',N,'M^’,M

c Read in specified gain and delay functions:
do 10 k=0, N-l

A(k)=freqfn(k, N)
D(k)=delafn(k, N)

10 continue
c
c Initialize tap coef values:

do 40 1=0, M-l
tap(l)=0.

40 continue
c .;
c Calculate tap coefs for each bandpass section:

do 20 k=0, N/2-1
10=nint(D(k)*fs) 
if (10 .gt, M-N) then

print *, '10 = ’, 10
print *, *Cannot implement specified delay function'

■ stop •'
end if •. 
do 30 j=0> N-l

del=pi*(2*j/N - (N-l)/N) 
if (k .eq. 0) then

; h(j)=i./N -. •'
•'else

h( j)=(2./N)*cos(k*del + pi*(Nl)/2.)
' end if

tap(10+j)=tap(10+j) + h(j)*A(k)
30 continue
20 continue
c • V' ■ •

A7. FIR. Program Listing (a design program for FIR filters)
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list tap coefs 
do 50 1=0/ M-l

write (1) 1 
write (2) tap(1)

50 continue
c

return
end

c
0* ********************* * * ************************* * * ************************ * *
C . •" '

c Subroutine for calculating the freqrency response of an M tap FIR filter
c

subroutine freval(M, tap, fs, fine) 
c

parameter (pi=3.141592654) 
integer M, 1
real tapfOiM-l), fs, fine, f, magn, phase 
complex sum ,c :
do 70 f=0.0, fs/2., fine 

sum=(0., 0. ) 
do 60 1=0, M-l

sum=sum+tap(l)*cexp(cmplx(0.,-2.*pi*f*l/fs))
60 continue

magn=20.*logl0(cabs(sum)) 
phdse=atan2(aimag(sum), real(sum)) 
write (3) f 
write (4) magn 
write (7) phase

70 continue
c

return
end

C
0*************** *********** **************************** ******* ********* ******
c
c The gain function:
c

real function freqfn(k,N) 
integer k, N 

c
if (k .eq. int(N/4)) then 

freqfn=l.
else

freqfn=0.
end if

c . •
return
end

c
0 * **************************** * * ******************** * * *********************** 
C
c The delay function
c

real function delafn(k, N) 
integer k, N

c •
if (k .le. N/2) then 

delafn=0.
end if .

c . .
return
end

c
0* ************************* ************************ * * * **********************
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#!/bin/csh
echo FIR filter design and analysis
ill. fir$7.f -o fir$7.out
fir$7.out $4 $5
rin fir$7.out fir$7.o
strip? fort.1
strip7 fort.2
strip7 fort.3
strip7 fort.4
strip7 fort.7
qplot x=fort.1,1 xl="FIR filter tap number" xmin=0.0 xmax=$2 \

y=fort.2,f yl="Tap Coefficient Value" ymin=-1.0 ymax=1.0 \ 
bl="FIR filter for A(f) and D(f)" tl="$l M=$2 N=$3" \
-z -P -b > g$7.1

qplot -a -x s=axisbnd x=abscissa,a y=ordinate,a sym=12 -P -b >> g$7.1 
qplot x=fort.3,f xl="Frequency (Hz)" xmin=$4 xmax=$5 \

y=fort. 4, f yl="Magnitude (dB)" ymin=-7.0.0 ymax=10.0 \
bl="Magnitude Response" tl="$l M=$2 N=$3" \
-P > g$7.2 '

qplot x=fort.3,f xl="Frequency (Hz)" xmin=$4 xmax=$5 \
y=fort.7,f yl="Unwrapped Phase (Radians)" ymax=0.0 \ 
bl="Phase Response" tl="$l M=$2 N=$3" \
-P > g$7.3

Ipr -P$6 -g g$7.1 g$7.2 g$7.3 
rm fort.*
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