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Abstract—This paper presents a comparison between various
control strategies for a class of mechanical actuators common in
heavy-duty industry. Typical actuator components are hydraulic
or pneumatic elements with static non-linearities, which are
commonly referred to as Hammerstein systems. Such static
non-linearities may vary in time as a function of the load
and hence classical inverse-model based control strategies may
deliver sub-optimal performance. This paper investigates the
ability of advanced model based control strategies to satisfy a
tolerance interval for position error values, overshoot and settling
time specifications. Due to the presence of static non-linearity
requiring changing direction of movement, control effort is also
evaluated in terms of zero crossing frequency (up-down or left-
right movement). Simulation and experimental data from a lab
setup suggest that sliding mode control is able to improve global
performance parameters.

Index Terms—sliding mode control, nonlinear system, static
nonlinearity, internal model control, adaptive gain

I. INTRODUCTION

A class of mechanical systems with nonlinear characteristics
are found in automotive industry. To meet future requirements
on automotive systems in terms of increased engine power,
while reducing fuel consumption and pollutant emissions, new
camless engines are required [1]. One of the most common
solutions is an independent valve actuator system able to
realize Variable Valve Actuation (VVA) operations. To this
aim, a promising solution relies on Electromechanical Valve
Actuators (EMVA) technology, where an electronic control
system commands each valve properly at every engine speed
[2]. The effectiveness of the EMVA system depends on the
performances of the control strategies necessary to guarantee
precise valve closing/opening. The control must account for
the behaviour of the system which is strongly affected by many
nonlinearities such as friction, motion constraints, delays, etc.

Another class of position controlled mechanical actuators
are encountered in agricultural machines. Of the many agricul-
tural machines available in today’s mechatronic applications,
the harvesting machines are the most difficult to automatize
due to the presence of nonlinear dynamics, time delay, un-
certainties in model parameters and interaction with the en-
vironment (i.e. crop dynamic environment) [3], [4]. A special
class of harvesting machines are those composed of tilting and
rotating mechanisms for crop harvesting and/or processing.
Main types are: i) grain harvesting (tilting the header for
distance to the ground regulation) and ii) forage harvesters

(rotating the spout for angle of crop flow to a reservoir), both
for position control applications.

Challenges for control are numerous, since these complex
mechanical systems are inter-coupled with sub-systems de-
livering pressure, flow or current and which in turn depend
on the net power available in the machine. The required
power may change in time due to environmental conditions
(slope, crop density, speed of harvesting, etc) [5]. Modelling
based on physical/mechanical/electrical principles is nearly
impossible and thus black box modelling is usually performed
via identification techniques to obtain a simplified model of
the sub-system and design control strategies.

In this paper we investigate the application of model based
control systems to position control of a mechanical system
with input-output slew rates, saturation, time delay and static
nonlinearity. The system is quite challenging for control. It
contains time delay combined with very fast dynamics in the
actuators (motor), hence it can be approximated by a delayed
integrator.

The paper is organized as follows: the next section presents
the various parts of the system to be controlled. Sections III
and IV introduce the control strategies and the corresponding
controller design parameters. Section V presents the result
in simulation and on real experimental setup. A conclusion
section summarizes the main outcome of this work.

II. A CLASS OF HAMMERSTEIN MODELS

Actuator solutions in heavy-duty industrial applications
where torque and force may be required at high speed and
in varying time conditions are usually hydraulic-based ele-
ments. The hydraulic circuit is mostly controlled by means
of proportional servo valve (PSV) which may be pressure
dependent. In order to make things easier from point of view of
dynamic compensation of nonlinear effects, one may attempt
to make this PSV pressure independent by using a pressure
compensated flow restriction valve. The flow usually feeds a
gearotor motor transforming it into rotation movement. The
modelling difficulties for control purposes are the large range
of operating points, fast system dynamics and the lack of
sensors in such subsystems.

Depending on the load and its corresponding force a safety
mechanism based on spring-damper elements prevents the
motor from overload. In the practical operating range, this
mechanism will absorb most of the influence of the inertia
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and some backlash in the gearing. As such, friction is the
main origin of torque on the engine and dynamical influences
are difficult to model.

In the literature, a number of modelling strategies for hy-
draulic systems are proposed. The most common way to model
the kind of systems discussed in this paper is using grey-
box non-linear models [6], [7], [8], based on basic hydraulic
principles described in [9] or via bondgraphs [10]. The systems
discussed in these papers are academic setups with a high
number of precise sensors (pressure sensors, spool position
sensors) required for fast and precise control, e.g. in active
suspension systems. This makes identification of the separate
subsystems and system control a lot easier compared to real-
life situations. An overview of linear and nonlinear modelling
techniques can be found in [11], [12]. Here, the comparison
between linear models, neural networks and wavelet networks
and their different approaches is being made. As the latter
two methods are computational heavy, no good results were
achieved due to the lack of sensor precision, and basic (non-
linear) models are required for the subsequently discussed
control strategies, one may consider a simplified model.

A simple representation of such mechanical systems is the
Hammerstein model structure. For this, the static nonlinearity
needs to be defined. The main non-linear behaviour of the
system is exerted in the hydraulic part. The dynamics are
rather fast, hence they can be ignored in this part of the
subsystem. Typical non-linearities which may be found in
such mechanical systems are dead zone, saturation, mechanical
limits etc. Figure 1 depicts the static characteristic present in
our system as available from experimental data. The various
colours depict the changes of the operating range, as a result
of different load conditions (e.g speed and type of product).

Fig. 1. Static characteristic of the nonlinearity present in the system; notice
that the slope may vary depending on the operating conditions, i.e. crop speed
and volume per time unit. Arbitrary units: X-axis current and Y-axis flow.

Another source of difficulty in closed loop control operation
is the presence of time-delays. The delay mainly depends on
the hydraulic system, more exactly on the spool position and
pressure build-up in the tubing in the system. Because of the
lack of precision in the angle sensor, it is very difficult to
define the transition between the delay and the beginning of
the dynamics.

Delay estimation techniques are numerous and vary from
simple signal processing cross-correlation algorithms [13] to

Fig. 2. Default closed loop control scheme for position control.

more complex time varying window estimation algorithms
[14], [15]. Delay compensators can be used but they require
complex control architectures [16]. In our situation, we as-
sumed the delay is fixed to a certain value and used it directly
in the controller design, assuming a robust controller.

If one integrates the above into a Hammerstein-model, one
obtains a static non-linear characteristic with linear dynamics,
with time delay. The universal controller module (UCM) and
the sensor represent the quantization in the system. We assume
that the angle sensor has a limited precision, i.e. introduces an
output quantization of 0.75o. As the current is sent through
the controller area network (CAN)-bus to the UCM, also an
input quantization of 10mA is present in the system.

To summarize, the dynamic part of the following blocks
after the static nonlinearity block in figure 2 can thus be
represented by the following transfer function:

α(s)

ω(s)
= exp−0.009s 1

s
(1)

from angular velocity (rad/s) to angle position (degrees).

III. LINEAR CONTROL STRATEGIES

The default controller available for testing closed loop
position control is a P controller with gain scheduling. Gain
scheduling algorithms may prove quite effective when used
with advanced control strategies [17]; however, due to the
increased numerical complexity these cannot be used in this
application. The P controller was tuned using trial an error.
The controller output is converted to a current value using the
inverted non-linear characteristic, as in figure 2.

We will assume the same configuration for the subsequent
control strategies and focus on the design of the C-block only.
Lead, PI and PID controllers are taken in consideration, due
to their simplicity and hence high implementation ability in
modular communication systems available in industry. For
tuning the controllers, we make use of the computer aided
design tool developed in our lab and under Matlab use: FRTool
[18].

The controller is implemented then in a microcontroller
board which sends equivalent positive/negative values to the
actuator. This is then evaluated in terms of zero-crossings (ZC)
as an indicator of controller effort (aggressiveness). The results
of these controllers have been reported in [19].

IV. ADVANCED MODEL BASED CONTROL STRATEGIES

A. Internal Model Control with gain adaptation

The next proposed control strategy is internal model control
(IMC). The main philosophy behind this controller is to



reverse, i.e. invert, the influence of the system on the reference
signal αset, resulting in a perfectly tailing system output. Of
course, there are certain issues with the practical implemen-
tation of the idea, mainly due to the modelling uncertainty.
Adding an adaptive mechanism could cope with this problem
[20], [21]. Further more, feedback for disturbance rejection
and filtering to cope with the non proper compensator transfer
function are added and only the invertible part is inverted.

In a first instance, the delay is neglected. Working in discrete
time without delay, the process model P is equal to the good
part Pg , thus the bad part is Pb = 1:

P (q−1) =
Ts

1− q−1
= Pg(q

−1) (2)

In order to ensure zero SS error, the following filter is used:

F (q−1) =

(
1 + a

1 + aq−1

)n
(1− f + fq−1) (3)

where a is the discrete time filter parameter, with a =
−e−Ts/λ, in which λ is the continuous time (tunable) filter
parameter. The value of n is the difference between the order
of the numerator and the denominator of Pg plus one, i.e.
n = 2 in this case. Finally, f is given by the following
equation, in which pn is the coefficient of the n-th order term
of the bad part of the numerator of P :

f =
na

1 + a
−

m∑
i=1

i · pi (4)

The filter then becomes the following transfer function:

F (q−1) =
(1 + a)((1− a) + 2aq−1)

(1 + aq−1)2
(5)

and this concludes the development of the classic IMC con-
troller. The only remaining step is the tuning of the λ parame-
ter. An optimization procedure has been used to determine the
value between [0, 1] and the solution of 0.39 s has been found
to give minimum IAE. This then allows us to give values to
the a parameter in the above equations.

Since uncertainty in the static-characteristic is significant as
this changes with operating conditions, we should introduce
this in the IMC controller under the form of an extra parameter
G in the process transfer function, hence:

P (q−1) =
G · Ts

1− q−1
= Pg(q

−1) (6)

with the same filter as in (5). The controller is given by:

C(q−1) =
Pg(q

−1)F (q−1)

1− P−1
g (q−1)F (q−1)P (q−1)

(7)

or equivalently

C(z) =

(
1 + a

a2GTs

)[
1 + a

Ts

Tsz

z − 1
− 2a

]
(8)

which is a PI controller tuned via IMC rules. We expect in
this system the gain varies between 0.5 to 1.25. This implies
that:

1 + a

a2GTs
=

1 + â

â2Ts
(9)

and the transfer function of the controller is updated with this
term. Adaptation of the gain implies adaptation of the lambda
value. Knowing the interval of variation we expect in the gain,
we can also estimate an interval for the lambda value:

λ̂ = − Ts

ln(1− 1+a
a2G )

∈ [0.18; 0.46] (10)

We propose the following simple yet effective estimation
algorithm:

λ̂k = (1−ff )λ̂k−1+g

∫
(ω̂m−ωwish)2dt−h

∫
(αset−αm)2dt

(11)
As ff is a small but positive value, λ̂ will decrease over time,
resulting in an increasing K. This will render the controller
more reactive and the closed loop system to be more oscilla-
tory, increasing the IAE. However, these oscillations will be far
more expressed in the speed ω [22]. If the integrated squared
error (ISE) of ω̂m−ωwish increases, with ωwish the controller
output, then λ̂k will increase to, rendering the system to
be slower, as K decreases. This will result in a very slow
controller, so the ISE of αset − αm will increase, decreasing
the value of λ̂k and increasing K. The main influence remains
the ISE of the speeds, that is why the implementation can be
presented as shown in figure 3.

Fig. 3. Block Scheme of the Adaptive IMC control strategy.

Of course, there are some restrictions to be added to the
system. First of all, λ̂k should remain within the known
bounds, and a maximum to the integrals should be posed,
in order to cope with the disturbances in αset. Further more,
(computational light) IIR-filters are used instead of integrals
to reduce the effect of (corrected) errors on the long term.
Next, thresholds are added in order to minimize the number
of corrective actions of the integrals, so called conditional
updating [21]. The velocity ω̂m is estimated using a Kalman
filter. The parameters in (11) are chosen to be: f = 6 · 10−5,
g = 4 · 10−6 and h = 1 · 10−6.

B. Sliding Mode Control

Since all previously described controllers were designed for
discrete time and in order to cope with the finite sampling,
a discrete time SMC controller is designed [23], [24], [25].
Considering an uncertain first order discrete time linear system
in which the following notation is introduced, i.e. ∆A = Bã,
∆B = Bb̃, d = Bd̃:

xk+1 = (A+ ∆A)xk + (B + ∆B)uk + dk
= Axk +B(uk + fk)

(12)



where fk = ãxk + b̃uk + d̃k is the generalized form of
disturbance, containing all uncertainties in the system. First,
assuming fk = 0 we have that:

ssk+1 = 0 =
∑

ek+1

=
∑
Axk +

∑
Buk −

∑
xset,k+1

ueq,k = (
∑
B)−1(

∑
xset,k+1 −

∑
Axk)

(13)

A switching law based on the following law ṡs =
−νsign(ss) − p · ss, with ν > 0, p > 0 and where −k · ss
is added for speed [23]. For the total control law we have

ssk+1 = q · ssk − νsign(ssk) =
∑
Axk +

∑
Buk

−
∑

xset,k+1

ueq,k = (
∑
B)−1(

∑
xset,k+1 −

∑
Axk + ssk+1)

(14)

Stability analysis from [23] suggests the following condi-
tions:
| ssk |≥

∑
Bfmax + ν → ss2k+1 < ss2k

| ssk |≥
∑
Bfmax + ν → ss2k+1 <

∑
Bfmax + ν

(15)

where
∑
Bfmax < ν with ∀k ∈ ℵ :| fk |< fmax. As such,

convergence is guaranteed, but for large values of fmax the
boundary layer to the sliding surface may be intolerably big,
resulting in a very chattering behaviour. In order to reduce this
and to improve overall performance a number of actions are
taken:

• a disturbance observer is introduced as:
uobs,k = −f̂k = −f̂k−1 − (

∑
B)−1·

·g(ssk − q · ssk−1 + νsign(ssk−1))
(16)

• a recursive switching function is used:

ssk =
∑

ek + φ · ssk−1 (17)

with 0 < φ < 1;
• to deal with time delay, the control vector ueq is shifted

for the number of samples of delay (estimated here to 9
samples);

• chattering is reduced using a sigmoid function

sigm(x) =
x

| x | +ψ
(18)

by lowering the dead zone bounds of the static nonlin-
earity from current to speed.

The SMC is then implemented using the following defini-
tions:

x =

[
α
ω

]
, A =

[
1 0
0 0

]
, B =

[
Ts

G
1
G

]
(19)

with Ts the sampling period (100Hz) and G = 38 the inverse
of the gain of the system, i.e. an estimation of the slope of
the calibration characteristic. The controller parameter values
are chosen to be as follows:

σ = 3;φ = 0.15; q = 1; g = 0.3;ψ = 10 (20)

The value of ν is kept as low as possible and formulated
as:

ν =
1 + Tsσ

G

m

g
+ δ (21)

where m >| fk−fk−1 |,∀k ∈ ℵ and δ an arbitrary small value
of 0.01. The controller is implemented as in figure 4, making
use of the same velocity estimator as the IMC controller.

Fig. 5. A picture of the lab setup used to test the control strategies.

TABLE I
IAE IN DEGREES AND ZC IN FREQUENCY HZ

Ideal Case Gain -50% Pole at s=-10
Current 0.86 / 2.1 1.48 / 1.1 0.91 / 1.6

IMC 0.42 / 2.4 0.49 / 1.4 0.80 / 2.0
AIMC 0.39 / 3.8 0.48 / 2.1 0.55 / 2.0
SMC 0.48 / 1.4 0.49 / 1.0 0.52 / 1.5

V. RESULTS

The control performance is evaluated on a specially de-
signed setup, for a ramp with slope 9o/s slope and input-
output slew rates as in section II. The lab device is depicted
in Figure 5. Three situations are envisaged:

• a perfectly known model (ideal situation);
• a drop in system gain of -50% and
• an extra pole added to the system at s=-10.

The changes in gain and added dynamics reflect changes in
the static characteristic and in the velocity components of the
system under various operating conditions. Typical operating
signals from application field have been used to test the
controllers: step response, ramp and tracking signals.

The closed loop performance of the model based advanced
controllers versus the default one available in the system
is given in figure 6 for the ideal case, in figures 7 for
changes in the gain and for extra dynamics in the system with
corresponding IAE and ZC values summarized in Table I.

The default controller (in figure legend denoted by ’current’)
has good response for step reference but has a significant SS
error for ramp input. This error increases with gain variations
and with additional dynamics in the loop. It also cannot cope
with the tolerance interval in the error values (± 2 degrees). On
the other hand, it is obvious that model based advanced control
techniques will deliver improved closed loop performance. Of
all these controllers, SMC provides best performance in terms
of low IAE with lowest frequency in ZC. Table II provides an
overview of all controllers and their performance in all three
cases tested.

VI. CONCLUSION

This paper evaluated advanced model based control strate-
gies for a class of mechanical actuator systems commonly



Fig. 4. Block Scheme of the SMC control strategy.

Fig. 6. Ideal situation: no modelling errors. Error tolerance between the two dashed lines. Simulation results for step and ramp setpoint; experimental data
for tracking.

TABLE II
GLOBAL ASSESSMENT OF CLOSED LOOP PERFORMANCE

Controller Error SS-II Robust ZC
default + - ± +
IMC + + - +

AIMC + + + ±
SMC + + + +

found in harvesting machines. Typically, these systems are
classified as Hammerstein-type systems, with static nonlinear
characteristics and fast dynamics. Additional dynamics as
time-delays are introduced to mimic real life situations and
closed loop performance is evaluated with slew rates on input-
output variables.

Our results with simulated and real experimental data sug-
gest that global requirements such as IAE and number of zero-
crossings in the control effort (due to static nonlinearity) are
well met by applying sliding mode control.
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