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Summary

There is a category of applications where cantilevered servomechanisms mounted on

mobile platforms have to maintain very precise position in inertial space. These systems

often referred to as stabilised or line of sight systems have to maintain precise

orientation in inertial space in presence of linear and angular external disturbances.

Stabilised systems, in general, are designed as balanced systems such that the pivot or

centre of rotation coincides with the centre of gravity of the equipment. The research

presented in this thesis investigates a general case of stabilising an out-of-balance

mechanism; a balanced mechanism is a special case of these systems. The motivation

for the research is to remove the requirement for balanced mechanisms enabling

engineers to design more effective systems, both in terms of performance and costs, for

future needs.

The ultimate aim of the research is to determine whether out-of-balance systems can be

stabilised to provide performance comparable with conventionally mounted balanced

systems. Stabilisation accuracy is sensitive to nonlinear characteristics of friction.

Friction is fairly predictable at moderate speeds but difficult to model close to zero

speed where reversals in direction occur. Although many researchers have developed

friction models for control system work there is little agreement in the literature on the

most appropriate friction model to use both when simulating systems and for use in

controller designs. The performance of the most commonly used models is compared

with experimental data and recommendations on the models are provided. While the

parameters for these models can be obtained in the laboratory using specially designed

equipment, or extracted iteratively from a closed loop system, a more direct frequency

domain technique is presented which enables the parameters to be obtained from the

motion of the mechanism, without the need for a closed loop system.

A novel iterative technique used to determine Coulomb and viscous friction levels has

been used to identify the magnitude of system out-of-balance and the nonlinear

characteristics of the amplifier. The out-of-balance signal is used to adjust the

feedforward controller which enables the stabilisation performance to be maintained
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when changes in out-of-balance occur. It is shown that the signal can also be used to

automatically adjust controller parameters to maintain desired performance,

Robust control techniques are used to design the control system. It is shown that for this

application a control system designed using a lump-parameter model, which results in

lower order controller, provides performance similar to that obtained with controllers

designed using high order models which have been developed using Finite Element

techniques. In this application the dynamic friction models developed by Dahl produced

the fastest simulation run times and showed the closest agreement with measured data in

the frequency domain.

The conclusions are that out-of-balance systems can be stabilised as effectively as

balanced systems if adequate measures are taken to minimise the effects of out-of-

balance and friction torques both of which have a marked influence on the stabilisation

performance,

Further work has been identified which involves improving the design of the cantilever

mechanism rig and refinement of the experimental techniques. It is recommended that

the perfonnance of other control techniques is also assessed. The models developed in

this research enable the motions of the tip of the cantilever structure to be predicted.

The control of the tip motions, which can cause unacceptable errors, needs to be

addressed where the accuracy at the tip is a concern.
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1.0 Introduction

1.1 Background

There is a category of applications where cantilevered servomechanisms mounted on

mobile platforms have to maintain very precise position in inertial space. These systems

often referred to as stabilised or line of sight systems have to maintain precise

orientation in inertial space in presence of linear and angular external disturbances,

Haessig[l]. Stabilised systems, in general, are designed as balanced systems such that

the pivot or centre of rotation coincides with the centre of gravity of the equipment. The

research presented in this thesis investigates a general case of stabilising an out-of-

balance mechanism; a balanced mechanism is a special case of these systems. The

motivation for the research is to remove the requirement for balanced mechanisms

enabling engineers to design more effective systems, both in terms of performance and

costs, for future needs.

Stabilised systems are encountered in many diverse applications which include airborne

radar systems, sighting and surveillance systems, platforms on board ships and weapon

systems on attack helicopters, ships and land fighting vehicles. Typical examples of

these systems are described by Moorty et al.121, Kennedy(3), Profeta et al. [4), Bouazza-

Marouf et al.IS] and Henry(6). A selection is illustrated in Figure 1-1. Perfonnance

requirements for these systems have steadily increased to reflect the improvements in

payload capability, higher maneuverability of host vehicle and overall precision

necessary to accomplish the mission objectives. Future applications such as space-based

laser systems for communications and high energy laser weapon systems will have to

meet more stringent perfonnance requirements, perhaps two or three orders of

magnitude better than current systems, Masten et al. [7].

Future requirement for higher perfonnance will result in systems where the balanced

arrangement cannot be readily accommodated. For example future weapon systems will

incorporate larger guns to defeat highly protected targets at longer ranges. Besides being

larger the guns will be mounted further forward in the vehicle to accommodate the gun

recoil within the turret space. Sighting and surveillance equipment on mobile platforms
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will use larger antenna and optical systems and robot arms on mobile platforms will

have to provide higher payload capacity and a larger working envelope.

Difficulties in accurate positioning of mechanical systems are primarily caused by the

presence of system nonlinearities such as friction and backlash, geometric nonlinearities,

joint compliances and the high-order coupled behaviour of mechanical structures. Each

of these establishes a limit on the performance; when presented together meeting the

performance specifications can be a formidable challenge, Girvin et al.[8). In many

motion control applications friction is a dominant factor which limits performance.

Failure to account for the effects of friction can lead to tracking errors, limit cycles,

undesirable stick-slip motion and unacceptable stabilisation performance, Armstrong-

Helouvry et al.(91, [101, Radcliffe et al.[11]. Control strategies that attempt to

compensate for the effects of friction without resorting to high gain feedback loops,

require a suitable friction model to predict and compensate for torque or forces due to

nonlinear characteristics of friction. Needless to say the accuracy of the friction model,

when compared with the actual friction, has a marked influence on the overall system

performance.

Future demand for increased reliability, greater operational availability and reduced

maintenance costs will require control systems which provide robust performance

against changing system parameters. There are many sources which can cause

parameters to change some of these include, Maqueira et al.[12]:

• Environmental influences such as temperature, pressure and humidity.

• Variations due to manufacturing tolerances and system assembly.

• Aging and wear.

• Distortion and nonlinear behaviour of system components.

• Varying loads and duty cycles.

In cantilevered systems actuators and feedback transducers are usually collocated close

to the hub. In systems where the tip accuracy is important this arrangement is not ideal

as it ignores the flexing and distortion of the cantilevered structure resulting in poor tip
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pointing accuracy. Bird[13], has measured these errors and shown that in mobile

weapon systems considerable loss in accuracy at the tip can occur due to the flexing of

the gun system resulting in large 'miss distances' .

1.2 Aims and objectives

The ultimate aim of the work presented in this thesis is to determine whether out-of-

balance systems can be stabilised to provide performance comparable with

conventionally mounted balanced systems. The performance of the control system

designed using simulations will be assessed using a specially designed test rig. The rig

will enable system parameters to be changed so that the robustness of the control system

can be determined. The research program focuses on the following aspects:

a) Modelling system nonlinearties: At present there is little agreement on the

most appropriate method for modelling system nonlinearities particularly

friction. The rigorous theoretical models, which require measurement of many

parameters, are too complex for control systems research while the simpler

models may not capture all the salient features of interest. A survey of these

models is required to select the most suitable model for use in the simulation of

out-of-balance systems.

b) Identifying system parameters: Nonlinearities are difficult to model accurately

requiring the measurement of many parameters, which may change with time

and operational conditions. While these parameters can be readily measured in

the laboratory using specially designed test rigs it may not be practicable to use

these techniques in systems operating in'"the field. Identification techniques are

required which will enable the determination of parameters which can be used to

tune system performance.

c) Modelling of flexible structure: Whether the system is modelled as a set of

lumped mass, spring and damping components, finite elements or assumed

modes, the essential difficulty of modelling a distributed parameter system with

a finite number of coordinates remains. Control systems designed using low
4



order or truncated models can result in performance degradation caused by

spillover effects, Joshi and Kelkar(14), Balas[15]. Large order models with

many hundreds of degrees of freedom are too complex for control systems work.

The effects of neglected higher modes will be investigated by comparing the

performance of controllers designed using finite element models with those

designed using lump-parameter techniques.

d) Design of the control system: A control system will be designed for the out-of-

balance system and its performance verified using nonlinear models. The

robustness properties of the control system will be investigated. The control

system will be implemented in hardware and its performance tested in the

laboratory. The robustness properties of the system to changes in several system

parameters will be verified.

e) Experimental verification of results: A test rig, which closely resembles a real

system, is required which can be used to verify the theoretical results predicted

by the simulations. An extensively instrumented test rig needs to incorporate

facilities which enable system parameters such as out-of-balance, inertia,

friction, and backlash to be varied so that the sensitivity of the system

performance to parameter changes can be investigated. The stabilisation

performance will be measured using a platform motion simulator. However,

platform motion simulators are designed to test stabilisation performance of

balanced systems and therefore do not simulate the linear motions. An

experimental method is required which will overcome the limitations of the

simulator and enable the performance of out-of-balance systems to be tested.

The simulator will use measured distm:bance data obtained from field trials as

input. The stabilisation performance will also be determined in the frequency

domain to complement the techniques used in the design of the controller.

1.3 Organisation of the thesis

The thesis is organised in 9 chapters. The research work commences with a literature

review, described in chapter 2, which examines control techniques applicable to the
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stabilisation of out-of-balance systems. The wide ranging review examines techniques

such as adaptive control, robust control, and intelligent control. Techniques which are

specifically designed to compensate for system nonlinearities and modelling of the

nonlinearities are given particular prominence in the survey. The results of the review

are used to provide a framework for the research and scope for the issues to be addressed

which are outlined in chapter 3. A structure of the control system to be used for the

research is proposed and the features to be incorporated in the design of the rig for

experimental work are established.

Details of the specially designed rig, referred to as the 'cantilever mechanism', for the

experimental work are provided in chapter 4. The equations used to simulate the system

are derived in chapter 5 and details of the models developed using SIMULINK® are

provided. Chapter 6 presents the design of the control system and simulation results for

a typical generic application. The theoretical predictions are compared with the

experimental results in chapter 7. The discussion is followed by conclusions and

recommendations presented in chapter 8 and 9. The last two sections cover references

and appendices.
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CHAPTER2

LITERATURE REVIEW OF MODELLING

AND

CONTROL OF STABILISATED SYSTEMS



2.0 Literature review of modelling ad control of stabilised systems

2.1 Introduction

Most of the research described in the literature considers the inertial stabilisation of

balanced systems. Using feedforward compensation described by Bigley and

Schupan[16], which they refer to as strong stabilisation, it is fairly straight forward to

design a controller for linear systems which is able to reject the effects of external

disturbances to acceptable levels. However, stabilised systems are sensitive to the

nonlinear characteristics of friction especially close to zero speed where reversals in

directions occur. In this region changes in forces occur due to effects of stiction and

Coulomb friction, and negative gradients are experienced due to the Stribek effect

In an excellent experimental study using a stabilised airborne pointing and tracking·

system Walrath(17] shows that the classical friction model, which has its origins in the

experimental work of Leonardo da Vinci(18),(191, does not adequately represent

friction. The results show that friction has dynamic characteristics which are

represented by a first order differential equation, where the time constant is inversely

proportional to acceleration. Walrath uses this model to predict friction forces which are

then incorporated in a feedforward controller to reduce errors in stabilisation.

Close examination has shown that the model is related to a dynamic model of friction

first proposed by Dahl(20),(21], the main conflict being that in Dahl's model the time

constant is inversely proportional to speed. Based on Dahl's work several other

dynamic models have been proposed and the most commonly used in control system

research are described in papers by Haessia and Friedland(22], and Canudas de Wit et

al.(23]. The classical representation is an exa.t'QPleof a static model as it maps friction

force as a nonlinear function of speed. Static friction models developed by Tustin[24]

and Kamopp(25) have been used in servo control systems research by Gilbert and

Winston[26], by Johnson and Lorenz[27} lmd several other authors. At present there is

little a,areement in the literature on the most appropriate friction model to use both when

simulating systems and for use in controller designs which use friction models to

estimate friction forces.
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Many different control techniques have been used in research studies to improve the

performance of balanced stabilised systems. These techniques can be broadly classified

under the following titles:

i. Adaptive control

ii. Robust control techniques

iii. Intelligent control

IV. Other techniques

The review examines these techniques applied to balanced systems followed by a

review of work on the control of out-of-balance systems. As background the review

first provides a very brief summary of the problems associated with the control of

systems with friction followed by a review of friction models and the determination of

the parameters for the models. Other related papers which do not fit in the above

categories are examined in section 2.4.4.

2.2 Controlling systems with friction.

Electro mechanical servo systems which do not change direction and do not operate

close to zero speed can be controlled quite satisfactorily using PlO or similar control

techniques as friction in these regions is typically a linear function of speed. However in

systems which operate close to zero speed or change direction, such as robots, position

controlled apparatus and stabilised systems, PlO control has to provide high stiffness

(proportional term) and damping (derivative term) to avoid limit cycling and tracking

errers, The use of PD and PlO controller in systems which perform positioning and

tracking tasks has been investigated by several authors. Dupont et al. [28] summarise the

work of these authors. and the different models used in the analysis. Radcliffe et al. [29],

Kubo et al.(30], and others have shown that a system with Coulomb friction and PD

control will not exhibit hunting and Kubo has also establiShed that while tracking PD

control will not show stick-slip motions.

Integral control is almost always necessary b tracking or positioning systems to reduce

the steady state errors. However, the integral ~ can introduce limit cycling in
11



systems. One method of reducing limit cycling is to include a deadband as input to the

integrator. Shen et al.(31] have shown that the deadband decreases linearly with ramp

rate and propose controlling the deadband in response to the input rate. Integral windup,

which occurs during velocity reversals, is usually overcome by resetting the integral

action at velocity reversals. Hansson et al. (32] in a novel method use :fuzzy logic to

control windup in control systems.

To overcome these difficulties a friction model, sometimes referred to as friction

observer, is used to estimate the nonlinear torque which is then scaled and summed into

the main feedback loop. With perfect match and no delays due to actuator dynamics the

estimated torque cancels the actual friction torque and the system appears to be linear.

The model based method can be used as either feedforward or feedback compensation

as illustrated in Figure 2-1. In feedback implementation the torque or force is estimated

using the information such as velocity and position from the output of the system.

Where these cannot be directly measured estimates are used. In feedforward

implementation the command or demand signals are used as inputs to the friction model.

The feedforward scheme, also referred to as open-loop compensation, has the advantage

that the input signals to the friction model are known and therefore no additional

transducers are required and it is easier to implement as it does not modify the feedback

controller. The feedback arrangement provides better estimates of torques as it uses the

actual measurements, but additional filtering may be required to maintain system

stability, Johnson and Lorenz[27], and Himmel et al. (33].

There are a number of other non-model based techniques which have been used to

control systems with friction. Typical examples are: impulse control described by Hojjat

et al.[34l and Deweerth et al.[35]; dither control by Lee and Meerkov(36) and

Godfrey(37); joint torque control by Luh et al.(3IJ. and Hashimoto et al. (39) and the use

of magnetic bearings (suspension) to reduee the nonlinear effects of friction by Bleun

and Stuart[4&). The work on magnetic suspension is of particular interest as the

experimental study shows that considerable improvement in stabilisation performance is

achieved by using magnetic suspension systems when compared to conventional bearing

mounted systems. Their work on the azimuth axis of an electro-optic system showed

the stabilised system performance is improved from ...3SdB to -60dB. The main
12



disadvantage of the system is the complexity and the additional power requirements

associated with the electro-magnetic system. Brief descriptions of the non-model based
techniques mentioned above are provided in appendix 1.

2.3 Friction models and parameter measurement

The classical friction model is the most commonly used representation of friction. The

model simply maps friction force against velocity with a discontinuity at zero velocity to

account for direction related Coulomb friction. This simple model does not capture any

dynamics associated with friction and at zero velocity it can have any value between the

Coulomb friction limits. When this model is used in simulations, or for friction

compensation, the main difficulty arises in locating the zero crossing. This difficulty is

overcome by Kamopp[2S] who introduces a small zone at zero velocity which enables

the system to 'stick'. Momentum equations are used to determine the forces in this zone

which enables the system to 'break free' when the applied force exceeds the stiction

force. Although the model is computationally very efficient the complexity of the model

increases as additional masses are added to the system. Kamopp demonstrates the

increase in complexity for a two mass system. The model also requires accurate values

of the masses or inertias, which is not the case with other friction representations. In

earlier work Tustin(241 proposed a model which accurately predicted friction forces

close to zero velocity. Experimental work has shown the model to be 90010accurate in

predicting the friction forces, Armstrong-Helouvry et al.[41],(lO). A general form of the

model is referred to as the exponential model proposed by Bo and Pavelescu[42].

The classical, Kamopp, Tustin and exponential models are classified as static models as

they do not include pre-sliding displacement whi£h occurs at the contact interface. One

of the first dynamic friction models was developed by Dahl(20),[21], based on

experimental work using ball bearings. The pre-sliding displacement caused by elastic

deformation of surface asperities is often referred to as the Dahl effect. The main

drawback of the Dahl model is that it does not include stiction or account for the

Stribeck effect. However, it is simple to use and computationally very efficient.

Heassig and Friedland(22) have developed the bristle and the reset integrator models

which provide. the desired characteristics. The bristle model is computationally very
13



inefficient and generally the reset integrator model, which is simplified development of

the bristle model, is used in control systems research. Based on the bristle model

Canudas de Witt et al.(43] proposed a model which displayed the stick-slip behaviour

during velocity reversals, the hysteresis effect and the spring-like stiction characteristics.

The model is more complex than the Dahl and the reset integrator models. The friction

models described above are the most commonly used models in control system research,

however other models have been developed by researchers such as Bo and

Pavelescu(42], Bilman and Sorine[44]. Details of the models used in this research are

provided in the chapter 5 on system simulation.

Whichever sets of equations are used to model friction, it is necessary to measure or

identify friction coefficients accurately for effective compensation and modelling of

systems. While these parameters can be determined in the laboratory using bespoke

tools and rigs, Hamoy[4S), Dahl(21], it is advantageous to be able to measure them by

more direct methods. Specialist instrumentation such as load cells and torque

transducers can be integrated into systems. In a paper by Luh et al.(46), on robot

application, a torque transducer is installed in the system to measure friction torques.

This arrangement has the disadvantage that the hardware has to be modified which

results in changes in system dynamics and additional costs are incurred.

Several researchers have developed methods fur identifying the parameters directly from

the control signals. Walrath(171, Leonard and Krishnaprasad(47], are typical examples.

Johnson and Lorenz(27] describe an experimental technique applied to a robot gripper

which is used to iteratively extract the friction characteristics from the control signal.

The advantage of the technique is that no modifications to the system hardware, such

current probes or torque transducers, are required and the technique can be used in situ.

In some applications, such safety critical systems, where adaptive control cannot be used

or in systems where parameters have to be identified in the field the use of iterative

technique is particularly attractive. Johnton and Lorenz intimate that other parameters

may also be identified using this technique; The identification of out-of-balance torque

and amplifier nonlinear gain is of particular interest in the proposed research.

14



2.4 Control techniques for balanced stabilized systems

2.4.1 Adaptive control

The adaptive control proposed by Walrath uses measurements from existing system

sensors to adjust, on-line, the time constant in the friction model. However, the control

system has two limitations; firstly it does not adapt to changes in the rolling or Coulomb

friction levels and secondly extensive experimental work is required to derive the

relationship between the time constant and acceleration. Walrath's model also does not

agree with Dahl's model as described earlier. The limitation regarding the estimate of

changes in Coulomb friction is recognized by Kennedy et al.(48] who propose a scheme

for updating the rolling friction parameter in Walrath's model. They do not provide any

results but comment that simulation results show improvements in performance when

compared to conventional rate loops and that significant improvements would be

necessary to warrant the additional complexity of their scheme. Maqueira and

Matsen(12] describe an adaptive control scheme applied to a sighting system. In their

work they use relative rate of the gimbal and the controller output signal to determine

two variables called Coulomb friction level (CFL) and spatial time constant (STC),

which is a measure of the disturbance rise time. The friction model is a first order

model whose time constant is updated using estimates of STC and CFL is the gain of the

model. Advantage is taken of the relationship between relative rate zero-crossing and

reversals in friction disturbance polarity. Filters are used to process the control signal to

remove high frequency noise and DC offsets in the control signal. Zero-crossing

detectors applied to relative rate signal are used to trigger the estimators.

Several papers describe friction compensators which are based on the input demand

signal and load motion. A very simple adapti-w- friction compensator for a spacecraft

gimbal system is described by Himmel et aI.(33) who compare the performance on an

open-loop friction compensator with a closed-loop friction compensator which adapts to

changes in friction parameters of a spacecraft gimbal system. In their scheme the

friction estimator twice differentiates the position signal and scales the result with the

moment of inertia of the load. This represets an estimate of the torque applied to the

load. When thiI torque is subtracted from the aetual commanded torque an estimate of

the friction torque is obtained. The parameters of the friction model can then be updated
IS



to new values. The results of the work show, as expected that the open-loop

compensator outperforms the closed-loop compensator when the assumed friction

torque is closed to the actual value and achieves its best performance when the assumed

value is the same as the actual value. Results of a hybrid system, which combines the

fast response of the open-loop system with insensitivity of the closed-loop system,

outperforms both approaches over the full range of operation.

A model reference adaptive compensation for an optical tracking telescope based on

Liapunov's direct method is described by Gilbert and Winston[26]. The friction levels

in the telescope change with orientation and with direction of travel. Coulomb friction

levels of the classical model are updated and used in a feedback compensator. Results

show significant improvements in performance for both constant speed operations and

sinusoidal inputs. They do not discuss the speed of adaptation but the input demand

speed is O.005degreelsecond.

Leonard and Krishnaprasad(47] carry out a study in which they compare the

performance of several adaptive friction compensation methods with a PID control

system for two bi-directional low velocity tracking systems. Although the application is

not a stabilized system it provides an interesting comparison on the performance of these

techniques. In their work they compare the performance of adaptive control systems

based on: (a) Gilbert and Winston(26], (b) Walrath[l7] and (c) Craig[49) methods with

(d) standard PID and (e) PID augmented with a dither signal. In the controller which

uses the Craig's method they use three types of static friction models; Coulomb with

viscous friction model, asymmetric characteristics in the Coulomb with viscous model

and a model with Stribek friction characteristics.

The results of their work provide the following conclusions:

i. The three adaptive controllers out perfbrm. the PID and PID with dither signal

controllers. However, the dither signal frequency was restricted to 25 Hz due to

the sampling rate of the controller which may have limited the improvements.
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11. Walrath's method was reliable and provided the best performance. However, it

should be noted that the Coulomb friction levels were not changed. The

experiments showed that the time constant in Walrath's model was inversely

proportional to speed, agreeing with Dahl's model, and not related to

acceleration,

iii. Gilbert's adaptive system was slow to adapt before it produced the best results.

IV. Craig's controller overestimated the values of Coulomb friction and the values

of viscous friction were poor and the estimated values also drifted. Using the

more complicated models did not provide significant improvements in

performance.

2.4.2 Robust control

Robust control refers to the use of fixed controllers to the control of plants with

unknown disturbance signals, uncertain dynamics and parameters which are not

precisely known. Robust control techniques enable the design of fixed controllers which

provide acceptable performance in the presence of plant and input certainty,

Paraskevopoulous[SO].

Table 2-1, from the MATLAB Robust control toolbox user's guide, summarises the

advantages and disadvantages of the three most common robust control techniques used

to control stabilised equipment. Details of these three techniques are provided in

appendix 2, which also includes references which give fuller details,

Pee et al.ISI) apply the LQGILTR technique to design a controller for a main battle tank

based on a two-inertia model of the system"l1ley compare the performance of the

controller with a conventional PI controller and conclude that LQGILTR provides

improved performance for both gun stabilisation and a step demands. The improvement

in stabilisation is about 50% md the overshoot present in the PI controller, due to step

demand, is eliminated in the LQGILTR controller.· The effect of parameter changes

such as gyroscope bandwidth (30% change), system inertia (100%) and resonant

frequency (80010) due to gearbox compliaQoe are also investigated. The LQGILTR

controller"demonstrates good robustness but the paper does not report on the robustness
17



performance of the PI controller. They do not report on the effects of changes in friction

and it is not clear whether a friction observer is used. Details of the friction model used

in the study are not provided.

Method Advantages Disadvantages

LQRlLTR • Guaranteed stability margin • High gain controller

• Systematic design procedure • Possibly many iterations

• Design focus on one point

H2 • Addresses stability and • Possibly many iterations

sensitivity

• Almost exact loop shaping

• Closed loop always stable

Boo • Addresses stability and • Requires special attention

sensitivity to plant parametric

• Exact loop shaping robustness

• Direct one step procedure

Table 2-1: Summary of the various robust control techniques Mathworks®[52/

Mattice et al. [53] use a laboratory test rig, illustrated in Figure 2-2, to compare the

perfonnance of three robust control techniques, LQGILTR, generalized singular linear

quadratic (GLSQ) and Boo. The rig simulates the azimuth axis of a gun system. and

incorporates several interesting features. It has a cantilever flexible beam which
•

represents the gun system, provision for changing the backlash, friction and drive train

compliance. In their study. they conclude that all three controllers provide the desired

performance with the Boo controller showing the best robustness properties. The

LQGILTR controller becomes unstable due to control saturation and backlash. Details
of the models used in the design process are not provided.
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Rao et al.(54), use a model of the above rig to study the performance of the controller

based on the LQGILTR technique. In the study, they encountered

convergence/numerical integration problems in a simulation of the controller with a

nonlinear plant. The controller is redesigned using a reduced order model. The full

order model is reduced using balanced truncation method. The comparisons show that

the performance of the redesigned controller is satisfactory and spillover problems are

not encountered. The main advantage of the reduced order model is simplification in

implementation. The same authors in two separate studies (55), [56) compare the results

of four model reduction techniques. They conclude that models reduced by optimal

projection, balanced truncation, Litz's modal, and Routh's methods produce similar

results with excellent low frequency match between original and reduced order models.

Changes in performance of both 'full order' and reduced order models when system

parameters are perturbed by 5% are provided. Both models show degradation in step

responses. None of the studies give any indication of the stabilisation performance.

In the above studies the models are derived from first principles based on physical laws

but in some instances it is easier to fit transfer functions to measured data. A typical

example is presented by Moorty and Marthe(57) in their design of Boo control for a

stabilized sighting system. They compare the measured data with a third order model

and seventh order model. The third order model is used for the design of the controller

and the modelling errors at high frequencies are regarded as multiplicative uncertainties.

The measured results show the controller meets the design requirements such as steady

state tracking, gain and phase margins but they do not present results of stabilization or

test the robustness properties of the controller. The same authors [58) have also applied

theLQGIL TR control technique to the stabilisation of a sighting system. They report

that the control system achieved the designed gOals and achieved stability robustness
requirements.
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2.4.3 Intelligent control
There are three basic approaches to intelligent control: Knowledge-based expert

systems, fuzzy logic, and neural networks. Fuzzy logic control (FLC) is the most

commonly used intelligent control technique for the stabilisation problem.

Li et al.[59] present a simulation study which assess the effectiveness of FLC when

applied to a gun control problem. They use the FLC as an outer loop to enhance the

performance of a robust control system. The FLC is used in conjunction with GSLQ

and Il00. Inboth these cases the new system shows considerable improvements in the

response times, i.e. the rise time. In the steady state period the authors state that the

robust control takes charge to ensure stability as the FLC control signal diminishes to

zero. The use of robust control, which is 18th order, simplifies the representation of the

FLC. The paper does not present results of the stabilisation performance but comment

that both the robust controllers had met the designed requirements with the FLC

controller. An example of system controlled entirely by FLC is provided by Moorty et

al.160],(2] who apply FLC to a naval gun system. Inthis application the gun is slaved to

a stabilised electro-optic sight system. This type of system is often referred to as a gun

director system and is commonly used for naval applications. Inmodem land system

applications it is usual to have both the gun and the sight system stabilized. In the first

paper a FLC is applied to the sight system. The second applies FLC to the slaved gun

system which receives its command signals from the stabilised sight system. Using a

nonlinear simulation the performance of the FLC controller is compared with a

controller designed using classical techniques based on a linear model of the system.

The FLC controller outperforms the classical controller by a factor of about two. Inboth

cases the actuator reaches saturation where the FLC controller is able to use nonlinear

control laws. It should be noted that in well designed systems actuator saturation is

generally avoided. Neither the FLC nor the conventional controller uses a mction

observer which may have improved the performance of the conventional controller.
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2.4.4 Other techniques

Several other techniques which do not fit in the above categories have also been

considered. Nonlinear servomechanism theory and variable structure control (VSC) are

two nonlinear control techniques which have been used on the gun-turret application.

Haung et al.(61], have applied nonlinear servomechanism theory to control a test rig

which represents the azimuth axis. In their study they consider the backlash, Coulomb

friction and saturation as the three dominant nonlinearities. The simulation studies

compare the performance of a control law based on a linear model with control laws

based on nonlinear control design. The linear control law shows satisfactory

performance on the linear model but poor response in presence of the nonlinearities.

The nonlinear control shows performance which is comparable to the linear controller

for the linear model case. The nonlinear controller is also able to achieve high precision

tracking in the presence of torque disturbances from a firing impulse. Dana et al. (62] .

have applied variable structure control to the elevation axis of an MBT system. They

show both simulation and experimental results for a conventional VSC (CVSC) which

uses a linear switching line. The results of the simulation showed good agreement with

the experimental work and the controller show good robustness to parameter changes.

The experimental results however show chatter, which drained the battery supply. The

authors also show a modified VSC (MVSC) which uses curved trajectories. The results

of the simulation study did not show the expected improvements with the modified

method. The experimental work and the simulation studies considered a static vehicle

case.

2.S Control techniques for out-of-baIaBct systems

Out-of-balance systems are very common and are.encountered in robot arms, cranes and

large gun systems. In the vertical plane the main disadvantage in these systems is the

force or torque due to gravitational acceleration, which can be quite large when

compared to the forces required for motion control. In very large guns such as mobile

howitzers, an equilibrator, a pneumatic sprinr;, is used to reduce the static out-of-balance

torque, which enables smaller servo drive components to be used resulting in lower

power requirements, smaller size envelope, and cost. While the static force due to

gravity can be reduced by springs or similar devices in stabilised systems the effect of
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out-of-balance torque disturbance due to heave acceleration can cause unacceptable

stabilisation errors. Grimble et al.[63] have developed a toolbox for the control of out-

of-balanced systems based on the Hz robust control technique. As an example they

design a control system for a large gun, using a lumped-parameter model. The out-of-

balance system is assumed to be statically balanced and a classical friction model is used

in the nonlinear models. The results show substantial improvements in performance

when feedforward control is used for heave compensation. There are two aspects of the

work. which need further investigation. The first is the effect of the higher modal

frequencies which are neglected by the lump-parameter model, and the second is the

effect of a more representative friction model. Ina statically balanced system Purdy(641,

using a controller based on classical techniques, compares the performance of an out-of-

balance system with a balanced system and concludes, from a theoretical study, that the

performance of out-of-balance systems is 11.4% worse and an increase of 15.9010 in

power is required. Both these studies are based on simulation work. They do not

address the changes in system parameters, and the results need to be confirmed by

experimental work.

2.6 Concluding remarks

In this chapter, a variety of techniques which address the stabilisation of equipment

mounted on mobile platforms are reviewed. Although many papers consider the

stabilisation of balanced systems the case of out-of-balance systems has not been fully

investigated. The papers which consider out-of-balance generally assume that both the

out-of-balance and the friction characteristics are known and do not change.

Experimental data on control of out-of-balance systems is not provided by any of the
studies. iu f"

The effect on stabilisation performance due to changes in parameters has only been

partially addressed for systems which use 'the robust control techniques. InpUblications

where experimental results are presented they are for laboratory test rigs of the azimuth

axis, such as Figure 2-2, but in general the severest disturbance in stabilised system
OCCurs in the vertical plane or pitch axis.
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Figure 2-1: Friction model used as feedback compensation (top diagram) and
feedforward compensation (bottom) (Amp+mot refers to amplifier and motor).
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Figure 2-2: Advanced Weapon Test Bed usedfor stabilisation experiments
Mattice et al.[53].

24



CHAPTER3

SCOPE AND FRAMEWORK FOR THE RESEARCH

25



3.0 Scope and framework for the research

3.1 Introduction

The ultimate aim of the research described in this thesis is to develop a control system

for out-of-balance stabilised equipment which provides performance similar to that

obtained for the balanced case. In order to demonstrate the effectiveness of the

control system the theoretical predictions, based on simulation studies, need to be

supported by experimental results obtained from a rig which closely resembles, in size

and configuration, a real system.

In developing an outline for the research programme to obtain the above objectives, it

is helpful to summarise the issues encountered in stabilisation of equipment, both

balanced and out-of-balanced, which are highlighted in the literature review.

• System nonlinearities have a marked influence on performance but there is

little agreement on the most appropriate method for modelling of friction, the

dominant nonlinearity in stabilised systems.

• Although the changes in performance due to variation in friction, inertia, and

sensor bandwidth have been addressed the effects of changes in out-of-balance

have not been investigated or the effect of changes in system gain as of result

of nonlinear amplifier characteristics.

• Parameter identification techniques are required which can be used in the field

to manually tune system performance where automatic tuning of systems is not

permissible.

• The effect of neglected modes of vibration needs to be considered to avoid

spill over effects.

3.2 Architecture of the proposed eontrol system

The architecture proposed for the control system for a single axis of a stabilised

mechanism is illustrated in Figure 3-1. The system consists of two major feedback

loops and a nonlinear compensator. The primary function of the inner loop is to

provide system stabilisation by decoupling the payload, in this case the cantilever
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mechanism, from the disturbances caused by the motion of the platform. The

decoupling is carried out by the feedback controller using inertial sensors such as rate

gyros. The stabilisation of the system is further enhanced by incorporating two

feedforward elements which use the angular (pitch) and the linear (heave) motions of

the platform as their input. In balanced systems only the feedforward for pitch

disturbances is required. In linear systems, if the disturbance can be measured

precisely and the actuator dynamics are known, feedforward controllers can nullify the

effects of the disturbance to acceptable levels. The effects of feedforward controllers

are discussed by Bigley and Schupan(16] for stabilised systems and for more generally

applications by D'Souza[65], Mcnab [66], Kavranoglu[67] and a brief analysis is

provided in appendix 3

The function of the second feedback loop is to position the system in response to the

demand input, Le. control the orientation of the mechanism. The position can be

derived directly by integrating the rate gyro signals or by using separate position

sensors. In systems that need to follow moving objects an additional tracking

compensator has to be incorporated to eliminate velocity and acceleration lags. As the

primary interest of the work described in this thesis is concerned with system

stabilisation the design of the outer loop and the tracking controller will not be

addressed. In Figure 3-1 the main components of the control to be addressed by this

research are shown in bold.

3.3 Proposed Research

3.3.1 System simulation and control system design

Modelling system nonlinearities and determining parameters

As already noted in chapter 2 gross nonlinearities, in particular friction, have a marked

influence on servo system performance. At moderate speeds the effects of friction are

fairly predictable but it is difficult to model at low speeds or in systems which under

go velocity reversals. As a result inadequate friction models are used or their effects

ignored during the system design process only to discover that in reality, friction can
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lead to steady state errors, tracking errors, limit cycles or stick-slip motions. Many

researchers such as Tustin[24), Dahl [20], (21], Kamopp(251, Canudas et al.(23),

Walrath et al.[t7] and Haessig et al.[221 have developed simplified models which are

suitable for control systems work. A study will be carried out which will compare the

performance of a selection of these friction models to establish which model is the

most appropriate for this application. It is not clear whether the accuracy of the

friction models is related to the complexity of the models or how the complexity

effects the simulation run times. The results of the models will be compared with

measured friction characteristics.

While the parameters for these models can be obtained in the laboratory using

specially designed equipment it is proposed that the research will investigate whether

the parameters can be obtained directly by observing the motions of the platform and .

the stabilised cantilever mechanism. In studies by Walrath[17], and Leonard and

Krishnaprasad(47] the parameters for their models are obtained by using a closed loop

system and a first order model for friction is assumed.

Identification of parameters

Johnson and Lorenz(27) and others have shown that Coulomb and viscous friction can

be identified using control systems signals. They also intimate that other parameters

may also be determined from these signals. In addition to the above friction

characteristics the identification of out-of-balance, and other nonlinear characteristics

of the drive system will be investigated. The method for identification of these

additional parameters will be established using the simulations and then verified using

a test rig.

Modelling the t1exible stmeture

Structural dynamicists generate and analyse models with many hundreds of dynamic

degrees of freedom (DOF). However, it is very difficult to design controllers based on

full order models and the tools used by control analysts fail when more than a dozen

or so modes are considered. Whether the sY1tem is modelled as a set of lumped mass

and springs, finite elements or assumed modes, the essential difficulty of modelling a

distributed parameter system with finite number of coordinates remains.
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The use of reduced-order models for controller design can lead to control and

observation spill over effects which can cause loss of performance or system

instability. Control spill over is an excitation of residual modes (modes not included

in reduced-order models) by the control action and observation spill over is the

contamination of sensor readings by the residual modes.

In this work a Finite Element (FE) model of the system will be developed using a

large number of elements (which have constant cross-section) to provide good

approximation of the geometry of the structure. A second set of models will be

developed using elements with non-uniform cross-sections, which enables the

geometry of structure to be approximated using fewer number of elements. The

results of the models will be compared with measured modal analysis of the system. .

Model truncation techniques will then applied to further reduce the size of the model

for control systemdesign and analysis.

In addition to the FE model a lump-parameter model will also be developed which

neglects the higher modes of the cantilever mechanism Le. flexible structure. The

model will be used in the design of a low order control system. The performance of

the control systems designed using FE and lump-parameter models will be compared
on the FEmodel of the system.

Control system design

While the development of precision hardware, such as the use of magnetic suspension,

Bluen and Stuart[40), can provide improvements in performance, the approach can

lead to high recurring costs and also has restriCf.tedareas of application. The work

described in this thesis will attempt to provide improvements in system accuracy and

performance through control techniques rather than specialised hardware designs.

The control system will be based on the work of Grimble et al.(63) and use the

toolbox developed [(8) for control of an out-of-balanced system. The choice for this

controller is based on the promising results obtained by robust control techniques

together with a readily available toolbox enabling for rapid development of
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controllers. The controller design in Grimble's work is based on a low order lump-

parameter model which does not include the effects of structural flexibility. It is

proposed that the technique is used on higher order model to compare the performance

of the two systems.

3.3.2 Experimental studies and veriftution of results

The predicted simulation results will be verified using a specially designed test rig

based on a real system. To confirm the robustness properties of the control system the

test rig, referred to as the cantilever mechanism, will incorporate facilities which

enabled system parameters to be varied as follows:

• Out-of-balance of the mechanism.

• Friction in the servo system components.

• Inertia of the system.

• Backlash in the servo drive system.

Ultimately, the stabilisation performance of the system has to be assessed in its

operating environment. However, for research work the use of mobile platforms have

several disadvantages such as repeatability of tests cannot be guaranteed as they rely

on the operator of the vehicle to perform consistently, the terrain may alter due to the

churning of the ground and the vehicle characteristics may change. In addition it is

difficult to arrange for controlled inputs such as sinusoidal and triangular signals,

without a great deal of expense. Delays due to the availability of a host vehicle, the

operator and adverse weather conditions etc. can further add to the difficulties. Ideally

research studies need to be carried out in the laboratory using a platform motion.
simulator which enables a variety of repeatable signals to be used which cannot be

achieved in field trials. Platform motion simulators are designed to test stabilistion

performance of balanced systems and therefore do not simulate the effects of heave

motions. A test method is required which wiU enable the performance of out-of-

balance systems to be investigated using a conventional platform motion simulator.
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3.4 Concluding remarks

In this chapter a framework for the research programme is established. The research

will cover theoretical aspects which will be supported by experimental data obtained

from a specially designed test rig. The architecture of the proposed control system is

presented and the requirements of the models for the theoretical investigations are

discussed. The requirements of test rig are outlined and the experimental procedures

to be used to assess the performance of the control system are addresses.
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4.0 Description of the cantnever mechanism and experimental setup

4.1 Introduction
This section provides the details of the cantilever mechanism to be stabilised and the

experimental setup used in the laboratory. Salient features of the control system

hardware and instrumentation are provided while details of the control software and

computer system are consigned to appendix 4. The operation of the platform motion

simulator (PMS) used to measure system stabilization is described and the experimental

procedures are outlined in this chapter and covered more fully in chapter 7.

4.2 Description of test rig

4.2.1 Mechanical arrangement

The cantilever mechanism illustrated in Figure 4-1 is a real system which has been

modified for this research to enable experimental work to be carried out The primary

features are as follows:

• It is a close representation of a typical system.

• The system has been modified to enable system parameters to be readily changed.

• Extensive instrumentation and data logging facilities are incorporated which enable

system performance to be measured, recorded and analysed.

• Software development environment used enables rapid modification of control

system algorithms.

The layout of the experimental setup is presented as a schematic in Figure 4-2. The.
figure shows the cantilever mechanism on its platform mounted on the PMS. The

sensors incorporated are listed and a pictorial representation of the instrumentation

together with a block diagram. of the comp ..... system is provided in the figure.

The mechanical system, Figure 4-1, to be stabilised consists of a cantilever mechanism

which is pivoted at the hub. The mechanism consists of a beam which is attached to the

hub. A support structure is incorporated in the design which increases the stiffuess of
35



the system by a factor of two and a half. The addition of the support structure increases

the system out-of-balance. An electric motor-gearbox assembly is coupled to the

cantilever mechanism through a large driving gear located at the hub. The rig design

enables parameters such as inertia, out-of-balance, backlash and friction to he changed.

The components used to change these parameters are identified in Figure 4-1 and the

method used is outlined helow. As the parameter values for the system are

commercially sensitive and classified, Table 4-1 summarises the changes in parameter

values as percentage of the values of the system in normal out-of-balance configuration.

System inertia

The method for changing inertia consists of a dumb-hell arrangement which is attached

to the main shaft. The inertia is varied by adding masses to the dumb-hell. There is

provision for adding four masses (installed as two pairs) which together with the dumb-

bell give three inertia variations. Addition of all the inertia masses also changes the

overall system mass to 136% of normal.

Out-of-balance

The system balance is changed by adding masses at the hub end of the mechanism. The

out-of-balance is increased (towards the tip) by removing masses or reduced by adding

masses. When all the masses are installed the system is balanced and with all masses

removed it is in the normal out-of-balance state. Further masses can also he added to the

front of hub (nearest to the tip) to increase the out-of-balance. In the balanced state the

system has the largest moment of inertia which is 133% of the normal out-of-balance

value and the mass increases to 196%.

System backlash .
Increesing the gap hetween the large driving gear located on the main shaft and the

motor-gearbox assembly varies the backlash in the drive system. The gap is changed by

adding spacers hetween gearbox moun~ flanges and the platform, as illustrated in

Figure 4-2. The system is calibrated so that the change in backlash is known for each
spacer.
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Friction at the pivot
The friction in the system is varied usin; a disc brake mounted on the main shaft. The

disc brake is operated by a pneumatic cylinder which is connected to the laboratory

supply via a pressure regulator. AlthoUlh, the control of the friction is not very precise

an indication of changes in control system performance can be assessed at several

friction levels. The graph of friction torque against the pressure is shown in Figure 4-3.

The graph shows peak: friction values but does not provide details of the various

components of friction. A more precise characterization of the friction can not be

obtained due to the limitations of system desiill·

4.2.2 The nonlinear amplifier characteristics
The amplifier used in the system has a nonlinear characteristic which was measured

using a current measuring transducer. The measurements were made with the motor

stalled, so that there is no back EMF generated. The characteristics of the amplifier are

illustrated in Figure 44.

Out-of-balance Inertia Backluh Friction

Mass no. % Mass % Spacer % Pressure torque

none 100% none 1000,4 None 100% Obar llOl'l'Dal

(normal) (normal) (llOl'l'Dal)

3 75% Dumb-beU 112% 2$paOOfS 200% O.25bar 'SONm

3&4 37010 2masses 125% 4 $paOOfS 300010 0.68 bar lOONm

3&4&5 0% 4masses 137% 8$paOOfS 500% 1.0bar 150Nm

(balanced)

1&2 148%

Table 4-1: Changes in system parameters .(fI JNlF(:tmtageafnormal values. (System
parameters are cOl'fR'l'te1'ciallyclassified Normal values are given as 1~). Mass
number 1 and 2 are installed at the front of till 1mb to increase out-ofbaltmce while 3, 4
and 5 installed at the back of the hub reduce out-oJ.baiance.
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4.2.3 The control system computer
The rig is controlled using a digital system based on VME bus architectute. The system

uses a MOTOROLA M68000/30 CenU'al Processing Unit (CPU). Interface cards

installed in the system enable it to be connected to the rig, provide communication Iinks

to other computer systems and input signals to control the rig. The system has 32

differential analogue input channels with 16 bit resolution and 8 analogue output

channels with 12 bits resolution. A resolver input board, which has two channels, is

used to measure the speed of the motor. Further details of the system are included in

appendix4.

4.2.4 Transducers and sensors

The two primary measurements are heave and pitch motions of the system, relative to

inertial space. These are measured using accelerometers and gyroscopes. The system

has two gyroscopes located adjacent to the pivot, as shown in Figure 4-8. One

gyroscope, located on the platform measures the disturbance into the system and the

second mounted on the mechanism, measures the motion of the cantilever mechanism to

be stabilised. The gyroscope located on the platform has two functions, .firstly it

provides a measure of the external disturbance (pitch) acting on the system and secondly

it is incorporated in the control system design as input to the feedforward controller.

Similarly an accelerometer mounted on the platform adjacent to the pivot measures the

vertical accelerations (heave) acting on the system and is used as input to the second

feedforward controller.

Position and speed transducers mounted on the cantilever mechanism pivot measure the

motions of the mechanism relative to the platform. A tachometer integrated into the

servo motor measures the speed of the motor.

4.3 The platform motion simulator

The platform motion simulator only provides pitch motions in the vertical plane

therefore the response of the system to heave disturbances can not be obtained directly.

This limitation is overcome by mounting the test rig so that .it is offset from the
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rotational axis of the simulator, as shown in Figure 4-2 and 4-8(a). The heave

acceleration and pitch accelerations are simply related by the offset measurement. This

arrangement has the limitation that pitch and heave motions cannot be controlled

independently.

Tests were carried out to ensure that the above arrangement gave a good approximation

of the heave acceleration. Figures 4-5 and 4-6 compare pitch and heave motions

produced by the PMS using trials data as the input signal. The results, Figure 4-5, show

that the PMS produces pitch motions which are a good match with the measured data

from the trial. Close examination of the data shows that there is a delay in the PMS

output signal which increases with time. This is attributed to delays in the data logging

system and the computer (pC based system) used to control the PMS. Comparison of

the heave disturbance data from the trial with the output of the PMS in general shows

similar trends but the PMS output shows marginally larger amplitudes, Figures 4-6. A

closer agreement would have been obtained by reducing the offset in the rig mounting

position and the PMS centre of rotation. A Power Spectral Density (PSD) analysis of

the input signal (Figure 4-7(a», and output signals, (Figure 4-7(b», show reasonable

agreement between the measured data and output motions of the PMS.

4.4 Method of assessment and experimental work

The performance of the system is assessed using the frequency-domain and time-domain

tests commonly used to specifY control system requirements. In addition to these the

ability of the system to reject the effects of an external disturbance referred to as system

stabilization are measured using a platform motion simulator. The terminology used to

describe the tests refers to Figure 4-8 and 4-9 which show the component diagram and
block diagram of the system.

4.4.1 Measurement of system response

The frequency-domain responses of the closed-loop system and the plant (comprising

the amplifier, motor, gearbox, cantilever mechanism and transducers) are measured
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using the frequency response analyser, Solartron (691. The time-domain responses are

obtained using function generators to provide the input signals.

a) Plant responses
The responses of the plant are measured to validate the model of the electro-

mechanical system. These responses are obtained by applying input voltages to

the amplifier and the outputs measured by the gyroscope located at the hub.

Tests are carried out at several input amplitudes to determine the effects of

system nonlinearities. In these tests the controller is not connected to the system.

The plant response tests differ from open-loop tests which include the controller

with the feedback disconnected.

b) Closed-loop responses
Closed-loop tests follow the same procedures as the plant tests described above

but with the feedback signal enabled and input applied to the system via the

controller as illustrated in Figure 4-8 and 4-9.

4.4.2 External disturbance responses

Response of the plant to external disturbances

In the vertical plane the plant response can only be measured on the balanced system as

any out-of-balance causes the system to drift to the lower limits under the influence of

gravitational force. In a perfectly balanced system vertical acceleration has no effect on

the mechanism. However, the tests on the balanced system were carried out with the rig

mounted on the PMS with zero offset to minimise errors due to any imbalance in the

system. The plant response is measured with the motor disconnected from the amplifier

so that the forces driving the mechanism are due to friction in the gears, bearings and

seals. In the frequency-domain tests sinusoidal signals are used to drive the PMS

system; which is the input disturbance and the output is the motion of the mechanism.

The input rate and the output rate are measured using the two gyroscopes located on the

platform and the hub of the cantilever mechanism respectively.



Stabilisation response of the closed-loop system
The stabilisation performance of the system is assessed in both the frequency and time-

domain. The closed-loop frequency-domain tests fullow the same procedure as

described above for the plant response tests but with the control system activated. The

stabilisation performance of the system sometimes is referred to as the Disturbance

Rejection Ratio (DRR) is calculated in decibels as follows:

DRR=20*loglO (output response of mechanismfmput motion of platform)

A low value ofDRR indicates good stabilisation performance.

In the frequency-domain tests described above the stabilisation response of the system is

obtained at several individual amplitudes and frequencies. While this provides a method

for assessing the performance in the laboratory it does not give an overall, or average

response for the system in its operating environment. To assess the response of the

system to disturbances encountered in a typical operating environment, measured data

from field trials is used as input to the PMS. Disturbance Rejection Ratio using time-

domain data is obtained as follows [70):

T (/) = Pxy(/)
xy Pxx(f)

Where Pxx = auto-spectral density

~y = cross-spectral. density

1;;y = transfer function from x to y

4.5 Concluding remarks
•

Chapter 4 provides the details of the cantilever mechanism to be stabilised and the

experimental setup used in the laboratory. An outline of the test procedures is provided

and following limitations of the experimen~ setup are noted.

a) Platform Motion Simulator limitations
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The PMS only provides pitch motions and therefore independent control of

heave motions is not available. However, tests have shown that by mounting the

rig so that it is offset from the main rotational axis of the PMS provides a good

approximation of heave disturbance.

b) Changes in out-of-balance and inertia of the system

The out-of-balance is changed by adding masses to the system. While this varies

the out-of-balance it also changes the inertia of the system. Similarly when

masses are added to the dumb-bell arrangement to vary the inertia the overall

mass of the mechanism also changes.

c) Changes to friction levels

The friction levels in the system are changed using a disc brake operated by a

pneumatic system. It is not possible to fully characterise the friction but the

system provides an indication of the change in peak friction values.
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Offset position

Gyroscope

Controller

Amplifier

Platform motion simulator

Figure 4-8(a): Schematic of cantilever mechanism mounted on PMS showing the
location of control system components

Platfonn

Accelerometer Gyroscope Gyroscope

heave Pit4:h

Figure 4-8(b): Block diagram of the control system components. Components in
shaded area move with the platform. The cantilever mechanism is able to move
independently of the platform
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SIMULATION OF CANTILEVER MECHANISM
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5.0 Simulation of cantilever mechanism

5.1 Introduction

This section describes simulation of the system which is developed using MATLAB and

SIMULINK packages. The simulation is produced in modules which represent system

components such as the motor, gearbox, amplifier, etc. This approach has the advantage

that the modules can be easily updated or changed to incorporate different types of

system components, improved component models, or control system algorithms. The

modules are developed using transfer functions, primitive blocks provided in the

package, and customized routines using M files.

The simulation incorporates the following features of interest to this research.

• Generic model of the out-of-balance servo system.

• Effects of heave and pitch external disturbances acting on the system due to

motions of the platform.

• System nonlinearies such as friction, backlash and gains etc.

• Structural flexibility of the cantilever mechanism.

A model of the frequency response analyser (FRA) is also developed to enable

frequency domain analysis to be carried out on the nonlinear simulation for direct

comparison with measured experimental results.

5.2 Derivation of the system equations

5.2.1 Model of the cantilever mech.anism .
The details of a aeneric non-uniform flexible cantilever mechanism to be stabilised are
shown in Figure 5-1. In systems which are stiff or where the tip movement is not

needed the mechanism can be modelled ~ lump-parameter techniques. The two
inertia lump-parameter model, one inertia representing the hub and a second the beam,
has been used to represent the dynamics of $UChsystems by elephan(71). Oats et

Cd.(72]. The main advantage these models ~ lie tUt simulation run times and
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systems due to large or ill conditioned matrices. However, control systems designed

using low order or truncated models can result in performance degradation caused by

spillover effects Joshi and Kelkar(14), Balas[15J.

To study these spillover effects both lumped and distributed parameter models are

developed. The distributed parameter model is developed using the finite element (FE)

technique which enables an accurate model to be obtained directly from the physical

dimensions of the structure. The accuracy of the model, which can cover modes of

vibrations ranging from a few Hz to several kHz, is determined by the number of

elements used to approximate the structure. Ingeneral these models are too complex for

control system studies and have to be simplified by using reduction and truncation

techniques to cover frequencies for the first few modes of vibration. In the section

5.3 .1.2 several methods for reducing the size of the system matrices are described and

the use of elements with non-uniform characteristics, which may improve model

accuracy, are considered.

Whether the system is modelled as a set of lumped mass, spring and damping

components, finite elements or assumed modes, the essential difficulty of modelling a

distributed parameter system with a finite number of coordinates remains. In this study

the models are validated using modal analysis.

5.2.1.1 The distributed parameter FE model

In the FE technique a complex structure is subdivided into many simple shaped

elements, which can be easily modelled. The elements are then assembled together to

obtain an approximation of the whole structute. The non-uniform beam structure is

divided into several cylindrical shaped elements ~hich have constant cross-sections.

The tapered sections are approximated as cylindrical elements using the average cross-
sectional values.

Each element is modelled using Bernouli-Euler theory, M~ovitch(73) , Craig(74J.

Figure 5-2 shows a beam element with uniform croll-section capable of resisting axial

forces, bending moments about the two principal axes in the plane of its cross-section
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and twisting moments about its centrodial axis. Inthe vertical plane only the transverse

motion needs to be considered as shown in Figure 5-3. The transverse displacement

within the element is approximated by considering the displacements at the two ends.

4

U(x,t)=I IfIlt)ult)
1=1

(5-1)

The shape functions f!/I(X) shown in Figure 5-3 are obtained by statically loading the

beam at the two ends.

(5-1a)

(5-1b)

(5-1c)

(5-1d)

The Bernoulli-Euler stiffness, mass and generalised force matrices are obtained by
SUbstitutingthe shape functions into the following:

(5-2)

(5..3)

(5-4)

which result in the following stit1hessand lUaU. matrices.
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12 6L -12 6L

k=(~;)
4L2 -6L 2L2

(5-5)
12 -6L

symm. 4L2

156 22L 54 -13L

m=(PAL)
4L2 13L -3L2

420 156 -22L
symm. 4L2

(5-6)

These matrices are assembled together using

n
K = ~)A]~[k]s[A]s

a=1

(5-7)

n

M = 2)A]~[m]s[A]s
8=1

(5-8)

n
p = L[A]~[p1s

$.1

(5-9)

and for each element [Als takes the form

1 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 1 0 0

(5-10)[A]I ::= , [Al2 = etc.
0 0 1 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0-0 1

Damping

Element damping matrices can be obtained u.ma techniques similar to tb,ose described

above. Damping in solids and structures is'oot as well defined and it is difficult to

attribute precise values for each element. Damping in II:nlctures is dominated by

external influences such as joints, pivots, sudIce covering, friction etc. It is usual to
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define the damping properties for the whole structure. One commonly used method

called Rayleigh damping, Clough[7!], Weaver(76),is defined by: -

(5-11)

Where ao and at can be obtained by considering damping at two modes using

r = .!.(~+a m )~n 2 I nmn
(5-12)

where ao M produces damping inversely proportional to m n and atK provides damping

proportional tomn as shown in Figure 5-4.

Rayleigh's method enables damping to be specified at two nodes, however when precise

control of damping is required at several modes the following equation is used.

(5-13)

The above produces no damping for modes greater than Ne or when t;n =O. The

equation can be modified so that modes beyond Ne have a higher damping then Ne as

follows: -

(5-14)
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System matrices and state space formulations

When the elements have been assembled and damping incorporated the following

equation of motion results

[M]{x}+[C]{x} +[K]{x} = {P} (5-15)

These equations can be readily converted into state space form

x=Ax+Bu

y=Cx+Du

(5-16)

(5-100)

(5-16b)

C = output matrix and D = feedforward matrix

5.2.2 Reduced order models

The FE method produces high order structural models which have many degrees of

freedom. These high· order models are unsuitable for control system work as the tools

used to design the controllers fail due to m conditioned matrices or result in large order

controllers which are difficult to implement in hardware. Simulations which incorporate
large order models and contain discontinuous nonlinear characteristics also require long.
~ times. Several methods for model reduction have been developed which are

described in the review by Craig et 01.(771. Typical examples are modal truncation (77)1)

Guyan reduction, Guyan (711, and balanced model reduction, Moore(,,). Many of

these techniques have been incorporated in MATRIXJ; tool bok described in reference by

ISI[IOI on model reduction.
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5.2.2.1 Non-uniform element model

The cantilever mechanism to be controlled is very approximately a tapered beam which

can be modelled using constant cross-section (uniform) beam elements. Theaccumcy of

the model is improved by increasing the number of elements used. Unfortunately this

also results in large order system matrices. The use of non-uniform beam element is

considered as a means of reducing the size of system matrices while still retaining the

accuracy, as illustrated in Figure 5-5.

The non-uniform beam element, illustrated in Figure 5-6, described in reference by

Gallagher[81 J has the following mass and stiflhess properties which directly replace the

linear element matrices described earlier. (Note the 2nd and 3rd row and columns have

been exchanged so that the coordinates correspond to the linear element discussed
earlier).

The elements of the mass matrix are given by:
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and the elements of stiffness matrix are as follows»

k22 = 4E/o [1+r (_4___ 12 +_9 __ ).]
L g ag +1 aB+2 a, +3·.

k -6E/a [ (1 5 6)]41,-k43 = 2 1+2rg -- ..-- + ..
L ag +1 =, +2 lX, +3
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2EIo [ (2 9 9)]k42 =-- 1+2r --- +
L g ag+l ag+2 ag+3

k44 =_4E_I0[1+r (_1__ 6 +__9_)]
L g «, +1 «,+2 aft +3

From reference Gallagher (81] the coefficients rg,sg,aft,Pg are defined by the

following:-

(5-19)

(5-20)

The subscripts refer to the following:-

c properties at the center of the element

d properties at furthest (deep) end of the element

o properties at the near end of the element

5.2.3 Lump-parameter model

The lump-parameter model of the mechanics of the cantilever mechanism is shown in

Figure 5-7. In systems which are stiff or where the tip position is not needed the

structure can be modelled as a two inertia system; one inertia representing the hub and a

second the beam which are linked together usit'IIlumped stifthess and damping. The
•

equations of motion for an out-of-balance tylten:i, referring to Figure5-1a, are II
follows: -

Beam

Jiib =(81;-8b)KI; +(81;-8b)Dh (5-21)
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Hub

J/jh =(Bgb -Bh)Kgb +(Ogb -Oh)Dgb -(In -Bb)Kh -(Bit -Bb)Dh -Fp(91t -9p)

(5-22)

5.2.4 The gearbox model

Although, it is possible to produce a detailed model of the gearbox, for control systems

work it is usually unnecessary. In this simulation a two gear model is used which

incorporates the dominant features associated with a gearbox such as inertia, stiftb.ess,

friction, and backlash. The model is illustrated in Figure 5-8b and the following

equations describe its operation.

(5-23)

Equations at gearbox output

Z; =(Bgb -Bh)Kgb +(Ogb -iAt)Dgb +Toob (5-24)

TOObincludes static torque due to gravitational acceleration and due to acceleration of the

platform.

The external motion of the platform modifies the gearbox output as follows

Z; =(Bgb +Bp -(J,)Kgb +(9gb +9p -9h)Dgb +Toob (5-25)

The motor side and the gearbox outputs are telt1ted by

Bm = so;
T2 = NT;.

(5-26)

(5-27)

The total backlash and the stiftbess in the lCtVo drive system are incorporated at the
output of the gearbox. The backlash charac~e used in the model is illUitratedin

Figure 5-9. The gearbox inertia is modelled. _input of the gearbox and combined
with the motor inertia.
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5.2.5 The servo motor model

In its simplest form the servo motor can be modelled as a simple gain which converts

current to a torque. However, this model does not take into account the effects of

armature or stator resistance, inductance and back electro motive force (EMF) which

add damping to the system and also determine the maximum speed of the motor under

no-load conditions. Figure 5-10 shows a tchematic of the motor.

The voltage in the armature is given by

Vi - R' L di, Vi°a - ala + a dt + "« (5-28)

With constant flux the voltage generated by the armature moving through the flux is
given by

(5-29)

The torque generated by the motor is given by

t; =Ktia

5.2.6 The servo amplifier model

The servo amplifier is a complex system which converts the input signal to three phase

output. The amplifier is a switching amplifier whose output power is controlled by

varying the pulse-width ratio, Anon (82), Kuol83J. The switching frequency of these

amplifiers can be as high as 100kHz. Because of the high switching rates accurate

models of the amplifiers require small intepltion time steps which results in long

simulation run times. To overcome this difficult;)' the amplifier is modelled as an

equivalent linear amplifier. Linear servo a.tnpli:fters use a combination of current and

voltage feedback for stable operation as abown in Figure 5...11. The gain of an ideal
amplifier is constant and independcmt of~, however mOlt practical amplifiers

have a limited band width typically between 50_ 100.&.
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VOa= Kv (Vo. -i K,n.)
('268+1) I a !IV

(5-31)

The model of the amplifier can be furt:her simplified as a simple gain which converts

input voltage to current output. This model assumes that the amplifier has high

bandwidth and the current feedback from the motor is dominant. When this

representation of amplifier is used the servo motor simplifies to a simple gain term

which converts current to torque as described earlier.

5.2.7 Friction models

Friction is difficult to model accurately as it is effected by many factors such as relative

velocity between the surfaces, lubrication, temperature, normal force, rate at which

tangential force is applied, dwell time etc. The survey in chapter 2 noted that several

different types of friction models have been developed which range from detailed seven

parameter model developed by Arms1:rOng-Helouvry el al. [9],(10), to a simple classical

model. Several authors have noted that the classical model is not adequate for control

systems work and that the seven parameter model is too complex requiring parameter

measurements which are difficult to obtain. To overcome these difficulties alternative

models which capture of friction characteristics while being simple to use have been
proposed.

Friction models are broadly classified as either static or dynamic models. Static friction

models simply map friction force as a function of velocity and normal load. Inaddition

to forces due to velocity, dynamic friction models account for pre-sliding displacements

and hysteresis in friction force due to varying velocity which occur in the low velocity
and pre-sliding regions.

A toolbox of friction models is developed in this thesis to investigate how. accurately

these models represent the friction in the test and to determine their effect On

system stabilization. The salient features of each are summarised below while details
can be found in the references.
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5.2.7.1 Statie models

Classieal model (191

The elementary representation of the classical friction model as a function of relative

velocity between the contacting surfaces is shown in Figure 5-12(a). When the relative

velocity is zero the friction force is indeterminate and can take any value between the

Coulomb friction limits. This simple. model which does not include viscous friction,

stiction or the Stribeck effect is represented by: -

1=t,sgn(V) (5-32)

Figure 5-12(b) shows a model which includes both Coulomb and viscous friction, a

force proportional to velocity.

f = le sgn(V)+ IvV (5-33)

A model with stiction is illustrated in Figure 5-12(c). Stiction is static force which

occurs when two surfaces are at rest The Stiction force is larger than the Coulomb

friction which disappears when the surfaces start to move. The following equations

describe the stiction forces which can be added to the above equations.

I=/e
or (5-34)

f = Is sgn(fe) if V =0 and lfel ~ Is

These effects can be combined in different ways and the resulting models are all referred
to as the classical model.



Tustin model [24]

Tustin developed a model which describes the friction force at velocities close to zero.

Experimental studies have shown that the model can predict friction forces with an
accuracy of 90%.

f ::::fc sgn(V) + (Is - IJe -(V IV,) + Iv V (5-35)

A more general form of the model is referred to as the exponential model.

Exponential model [431

f ::::le sgn(V) + (Is - fc)e -(V IV.)" + f,V (5-36)

When a:::: 2 the model is known as Gaussian exponential. Other models similar to the

above are the polynomial model and the Lorentzian models. These models are

described in reference Armstrong-Helouvry ('),.(10).

Karnopp model [25)

In the representation of friction shown in Figure 5-12 at zero velocity friction is multi-

valued and can assume any value between the Coulomb or stiction limits. One approach

used to overcome this difficulty is to use a large gain at zero velocity. This model has

two limitations, firstly the model cannot predict sticK..slip motions and secondly the

steep gradient can result in very short integration time steps and numerical instability.

Karnopp developed a model which overcomes the anomaly at zero velocity. In
Karnopp's model, illustrated in figure 5-13, a small region +/- Dv at zero velocity is

introduced to ensure the system 'sticks' such that the friction force equals the driving or

applied force. When the driving force exceeds the stiction force the body accelerates

and moves beyond Dv. Other friction characteristics whioh depend on velocity then
apply to the system.

Although, the model is very effioient in terms of oomputing time the primary drawback
is that its complexity changes with the conlplexity of the system being modelled.

Karnopp demonstrates the increase in complexity of the friction model by considering

two bodies Which move relative to each other over a fixed surface. For such systems the



friction model can not be incorporated as a modular element and a new JnOdel bas to be

developed for each application.

5.2.7.2 Dynamic models

Dahl model [20),(211.

Dahl developed a solid friction model following experimental work on ball bearings.

From further experimental work using servo systems which used ball bearings he was

able to show that bearing friction and solid friction have similar characteristics.

Although, Dahl describes two models in reference (20) the second model, illustrated in

Figure 5-14, which is easier to use is favoured by most studies. Dahl uses the fact that

friction stress is a function of displacement and can be differentiated with respec~ to

time.

df_df.dx-_- -
dt dx dt

(5-37)

Dahl considers characteristics for the function !and from experimental work bas

determined that a square law is the most suitable function.

(5-38)

where 10 is the peak sliding friction and r .11 the effective spring rate. In a second

paper(21) Dahl provides a more general solution to thismodel.

df~ f dx i

d;=0'1- fc sgn(dt) s,
Where i is the solid friction model coefficient

(5..39)



Dahl's model captures the forces of Coulomb friction but it does not capture stiction or

the velocity related Stribeck effect shown in Figure 5-12(d). Models similar to Dahl's

have been used in adaptive control applications and one such model is described below

which was developed by Walrath.

Walrath model (17]

The Walrath model developed for an airborne tracking application is represented by the
following equation:

dT (t) .
TI(t) + 1: I = Tc(signA)

dt

signl = (+1 or -1) the relative gimbal velocity

(5-40)

From experimental work it is found that 1: is related to acceleration by a linear
relationship as follows:-
1 ..- = 1+ 0.37 ARMS

1:opt
(5-41)

Walrath uses this model as a feedforward element in the controller to improve the
stabilisation performance of the system.

Haessig and Friedland model (22)

Haessig and Friedland, who use the work of Dahl and Kamopp, present two models

referred to as the bristle model and the reset integrator model. The bristle model

attempts to model the distortion of surface asperities which causes the 'sticking'

phenomenon at zero velocity. The surface asperities, which are similar to mountain

peaks .and troughs, are modelled as bristles which bend and distort. The model is

numerically very inefficient and they propose the reset integrator model which does not

capture details of the sticking phenomenon but exhibits behavior similar to the

Kamopp's model. Although, the reset inteptar model is not as efficient as the

Kamopp's model it has the advantage that the"friction model can be readily incorporated

into simulations regardless of the complexity of syatem. A block diagram of the reset
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integrator model is shown in Figure 5-15. Using the nomenclature provided inreferenee

by Olsson et al.[84)

In the reset integrator model the friction force is given by:

f = (1+a(z» O'o(V)z + (j) dz
dt

(542)

and

: = 0, if (V > 0 and z ~ zo), (5-43)

or (V < 0 and z ~ -zo),

otherwise it is V.

(j) dz is a damping term which is active only when sticldng occurs
dt

and stiction is given by the term

a(z) = a if Izi< Zo

or 0 for other values

Sticking occurs when Izl<Zoand the force is a function of z, The force when slipping

occurs is given by the function a0 (V) .

LuGre model (23)

The LuGre model described by Canudas de Wit et al (23) is a dynamic friction model

which is related to the bristle model described by Haessig et al.122). The model

captures all the static and dynamic properties of friction likely to be of interest in

precision control systems applications. The model describes steady state characteristics,

hysteresis due to friction lag, spring like behaviour in the pre-sliding region and the

breakaway force which is dependent on rate of .o.applied force. Using the same
nomenclature as above.

(5-44)

(5-45)



z is the unmeasurable average deflection of the bristles and (J' 0' (J'l ,(J' 2' are coefficients

of forces due to stiffuess of the bristles, damping in the bristles and viscous mction due

to velocity. The Stribeck effect is modelled using the following function b a(x)

(5-46)

As beforej, is Coulomb mction,/s is stiction and is is the Stribeck velocity.

5.2.8 Transducer models

The gyroscopes

The electromechanical gyroscopes used to measure the hub and platform motions are
modelled as damped second order systems.

(5-47)

The accelerometers

The solid-state accelerometers used in the system also have a second order damped

response and are modelled using the following transfer function

(5-48)

5.2.9 The frequency response analyser model

The performance of control systems is often mwured and analysed in the frequency
domain using classical techniques such Bode, Nyquist, Niehois charts. The
eX:perimental measurements are carried out -ns hquency response analysers (FaA)
such as a Solartron 1250 or Hewlett-Packard 35fiaA dynamic .signal analyser,
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Most CACSD packages provide facilities for :frequency response analysis. However, the

algorithm produced by Laub(85), used in these packages requires that the system. is

linear. A nonlinear system can be linearised about an operating point using the facilities

provided in the packages. These linearising algorithms are based on Taylor theorem.

For systems which have continuous nonlinearities the results can be quite accurate.

However, when discontinuous nonlinearities are present the algorithms fail or produce

poor results when compared to those measured in the laboratory. In some instances,

where a single discontinuous nonlinearity is present, describing function approximations

can be used to obtain approximate responses, Dholiwar(86].

A model of a frequency response analyser has been developed which enables direct

comparison of measured results with outputs generated by the simulations. The basic

operation of the analyser is described below while the theoretical details can be found in

the references by Wellstead(871 and Luksicf88J. Referring to Figure 5-16 the following

equations describe the operation of the FRA.

(549)

(5-50)

Then the sine channel output R(T) is given by

U T
R(T) = .2!..IG(ji»~Jsinmt.sin(€Ot +;)dt

T (I
(5-51)

:::::UfralG( . )1 [ .,J. (T Sin2i»T) ';(COS2i»T 1 )].- 1i» cos" -- -sm· ---
T 2 4t» 4t» '4t»

so wh T _ Ncy7C _
en - N cy - 1, 2, 4 , thei» ahatmel output is

(5-53)
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similarly the cosine channel output leT) is liven by

U T
leT) = fra IG(jaJ~ Jcoswtsin(wt+;) dt

T 0

Ntr
which can be evaluated for T =......,2_ as

(fJ

(5-55)

The gain and phase are then obtained using

(5-56)

(5-58)

y
IG(jaJ)1= _f!!!_

Ufra
(5-59)

(5-6Q1

Phase == Arc tan(~) (5-61)

The above equations fonn the core of - ttoq-~ ~ .ued
!FA_SINGLE. As frequency responses take a a second pro~
named TFA_MAP, is developed whieh QV.. a .rqe of
frequencies and amplitudes to be produeedby bIteh~.
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5.3 The SIMULINK model

Figure 5-17 shows the model of the com~ ~ The.model~.,three ....

blocks which represent the controller, .. lifter ami motor., ami ·meehaies wJIdl

comprises the mechanics of the motor, the ~. ami the CID mechIaitm. The

three main inputs to the mechanics block .. the arapJitler_ motor Wock ~

pitch disturbance (radls) and heave aeceleratkm (milia). The tip and 1mb motions,_
the motor speed are the primary outputs. The model shows the transducer models_

the nonlinear compensation block. The three inputs into the system, shown on the .Ieft
side, are the demand input (sinusoidal, step _ trianauIar wave inputs), the heave_
pitch disturbances. Several outputs are incorporated in the simulations which enable

parameters to be monitored for system validation and performance measurement. typical

examples being the controller outputs. Brief details of each super block are described in

the following subsections.

The tlexible beam

Models of the flexible structure are illustrated in Fiaure 5-18. The state space model has

two inputs and several outputs which provide the rate and position at the boundary m
each element The position and rate outputs. at hub and the tip are saved for further

processing. The second diagram in the Fiaure lib shoWi the d.iflinntial equation

implementation.

The amplifier and motor

The model of the amplifier and the electrical ~ of the motor are illustrated in
"Figure 5-19. The amplifier has three input signalI,the first is the demand signal and two

feedback signals, speed and current, from the motor. The output of the amplifier feeds

into the motor armature which produces ~ The ftp also shows a simple linear
amplifier model and a nonlinear gain amplifter (Ulina measured data) which converts

the input voltage to a current output The to the is provided by the

controller illustrated in Figure 5..20. The.... the ..... transfer fbactions in the
controller are described in chapter 6.
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The motor and gearbox model

The model incorporates several friction models which are shown in the detailed motor

and gearbox block, Figure 5-21. The models can be selected by connectiDa their ~

to the motor torque summing junction, identifted .8$ motor_frietion variable. The
Karnopp model cannot be connected directly into the syttem and an alternate model

the motor with Karnopp friction has been included.

The friction models

The friction models are shown in FigUrel 5-21 to 5-26. Each model follows the

equations described in section 5.2.7.

• Tustin model (Figure 5-22)

• Karnopp model (Figure 5-23)

• Dahl model (Figure 5-24)

• Haessig and Friedland reset integrator model (Figure 5-25)

• LuGre model (Figure 5-26)

The transducer models.

The gyroscopes and the accelerometers used are modelled using transfer function block
provided in SIMULlNK.
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Mass Mass at tip

t
Centre of gravity

Figure 5-1: Schematic of the cantilever mechanism showing the hub andflexible
beam

S8

8h 87= axial forces
82,S3,S8,S9 = shearing forces
85, S6, SI h SI2 = bending moments
84,SIO = twisting moments(torques)

Figure 5-2: A beam element showing forces and moments
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r,~l-tr +{~)'
\VJ t ~ x

L

V/, ~ x- 2L(~r+L(~)'
\V2V ~ xauf

L

-------____--~-------------------- +_-- x

-
L

~4=-L(fr+L(fr
~7L x

Figure 5-3: Uniform beam in transverse motion and the shape functions
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Mass proportional:r at =0; t = i~

Figure 5-4: Relationship between damping ratio andfrequency for Rayleigh damping
(Clough [89), Craig [90})

[

[ J

Figure 5-5: Tapered structure to be modelled (top), using uniform elements (centre),
Usingnon-uniform elements (bottom)
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Ax ~ ~[l+Sg(~r]
t,~I{l+r,( ~r]

z
y

L

Figure 5-6: Non-uniform beam element (Gallagher [95J)
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Figure 5-8a: Lump parameter model of the cantilever structure

)
D

Toob

Fm refers to function of friction F (9 )m III

Figure 5-8b: Schematic of the gearbox
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output

inout

input

output

(a) Schematic of backlash (b) Output against input

Figure 5-9: Details of the backlash model

+

Figure 5-10: Schematic of a DC motor
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VO·I VOa +

Figure 5-11: An ideal linear amplifier with currentfeedback

force force

velocity velocity

(a) Classical coulomb friction (b) Classical coulomb and viscous

force force

velocity velocity

Cc) Classical coulomb, viscous and stiction (d) Friction with Stribeck effect

Figure 5-12: Static friction model characteristics
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~lJ: _J1l:rr~' -IN tw

s

CC)
M... 1Cttd upoII by. net IoIce and fI1clloft

Figure 5-13: Details of Karnopp [48J model
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f

Figure 5-14: Details of Dahl [35J dynamic friction model

v,
I '--.,.--'

'---------',I'----1-#-~_+
Fig. 7 Rese! Integrator friction model

Vr

(a)

(b)
Reset integrator modei during (a) slicking, and (b) slipping

F,

Figure 5-15: Haessig and Friedland [84J reset integrator dynamic friction model
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Model: state space flexible structure Date: 20 .Iuly 2007

heave force

(01----.
in_1

torque0~----'1
in_2

Demux

Author: D KDholiwar

t---__:::=------'-"---.0
out_1

tip rate o
out_2

Figure 5-18a: Model offlexible structure using state space formulation

Mod,l: Flexible .truoture Date: 20 July ~2007 Author: 0 K Dholtwar model using ml''',ltwrand damp matrlce.

t-----+C0
out_,

t-----+~
out_2

vet

r------,0
out_3

L-",..J------Q)
out_4

Figure 5-18b: Model of the flexible structure using mass, stiffness and damping
matrices
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Model: Amplifier motor Date:20 July 2007 Author: 0 K Dhollwar: thesJs_dJagram_ch5

2
motor rate

current

~C!:)
motor

)---,.--+![]Z]___ +,

input volts II:J"
Look-Up

Table measured

r-----~------------~-K- ~----------------------~h
simple linear amplifier

L_ (a_m_p_s_-_pe_~_v_o_lt_)__ ~~ ~

look-up
measured

Figure 5-19: Servo amplifier and the motor model (electrical)

Modal: systam model Date: 20 July 2007 Author: 0 K oholiwar: the.ls_dlagrlm_ch5

Figure 5-20: Controller block diagram

88



Model: Motor Friction

'f:
platform speed

Date: 20 July 2007 Author: D K Dholiwar

t---r---~~I mot_hae It=J r::at integrator model
haessig_mot

connect one friction model

dahl_mot

I mol_dahl

dahl model

~--.~r---~~~I~m~ogla~as~1~1t=J classicalmodel
classic with

coulomb& viscous

~----.~r------~~.Elm~oIt~tu~~~fn~~~nl

tustinrn_mot with sope tustin model

~--'~I----~~~I~m~O~~lug~re~

lugre_mot lugre model

~~----------~.,
velocity

motor_vrs

motor_stiction

Is stiction level

vrs-experimental value

Figure 5-22: Model offriction by Tustin

Figure 5-21: The motor and gearbox model showing thefriction models

Model name: Tustinfn.m Date: 20 July 2007 Author: D K Dholiwar

~
torque

motor_viscous t---J
Iv viscous coell r-----'.~IMux

motor_coulomb r--J
Ic coulomb level r-----~I
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Modol namo: karnopp motor.m Dato: 20 July 2007 Author: 0 K Dholiwar

~~
Clock time

~l3r~f----_""~1 vr_v~m I
Sine Wave Sign1

torque ;

~ rater~~-'~~"~ 1Isf-----i~

inverse mass Integrator ~

~ ...- Mux

Dv

~
Fn

~
F,jfp

friction_

Figure 5-23: Model offriction by Karnopp

Modol namo: Dahl.m Dalo: 20 July 2007 Author: D.K.Dhollwlr

0----+1 time_dhm2 I
Clock time

ffi-+~[0Jr---~.1 ,,_00hl_2 I
SIne Wave Sign vr

fdot

~-------,-------~~
Out1

L_ ~~.~.

Figure 5-24: Model offriction by Dahl
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Model name: Haessig.m Date: 20 July 2007 Author: O.K.Dholiwar

.ru---.~~--+.II vr_hae1 I
Sine Wave Sign vr

velocity vr

motor_viSCous

Figure 5-25: Reset integrator friction model by Haessig and Friedland

MOdel name:lugre.m Date:20July 2007 Author:0 K Dhollwar

.~~~-----~~I~Vr~_I~"g~~~_~mo~l=
SlOe Wave Sign

Figure 5-26: LuGre friction model by Canudas de Wit et al.
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CHAPTER6

DESIGN OF THE CONTROL SYSTEM
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6.0 Design of the control system

6.1 Introduction

This section presents the design of a control system for the generic simulation of the

cantilever mechanism described in chapter 5. The design is based on the robust control

technique described by Grimble (63) and uses the toolbox developed by Strathclyde

University [68]. While previous work, described in chapter 2, use simple models based

on lump-parameter techniques and static friction characteristics, the study presented in

this chapter uses a more representative model of the system.

The aims of this section are to:

a) Design of controllers for realistic system models which incorporate structural

flexibility of a cantilever beam and dynamic friction models.

b) Investigate the degradation in performance due to spill over effects by comparing

the performance of controllers designed using lump-parameter and FE models.

c) Investigate the robustness properties of the system to parameter changes such as

out-of-balance, friction, inertia and backlash.

A model based nonlinear observer is used to minimise the effects of friction. An

experimental technique, which varies from that described by Johnson and Lorenz et

a/.[27] in that it is applied directly to the H2 controlled system, is used to obtain the

parameters for the observer. In chapter 7, which covers experimental work, the

teChnique is extended to extract other system parameters such as out-of-halance torques

and nonlinear amplifier gain.

6.1.1 Control system performanee speeifteation

In common with many applications the control system in this research has to provide

acceptable response to input demand signals and has to maintain the desired accuracy in

the presence of external disturbances. The exact requirements are specified using

perfonnance criteria such as peak -overshoot, rise-time and steady-state errors in the
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time-domain and bandwidth, gain and phase margins in frequency-domain, Dutton.(89).

In addition to these commonly used criteria, the performance of stabilised systems is

measured by their ability to reject the external disturbances using Disturbance Rejection

Ratio (ORR). The ratio is derived by dividing the amplitude of the output, the cantilever

mechanism hub motion, by the amplitude of the disturbance which is the input to the

system. In the resulting frequency response graphs low gain indicates good stabilisation.

The measurement ofDRR is described more fully in chapter 4.

The stabilisation performance of the control system without the feedforward controllers,

i.e. the performance of the feedback control system, is first established and then the

improvements provided by the two feedforward control systems are quantified. As the

H2design technique is based on linear theory the performance is first analysed using the

linear models and then assessed using nonlinear models.

6.2 Models for control system design

The FE simulation packages used by structural dynamicists generate models with many

hundreds of dynamic degrees of freedom (OOF). However, while these models are

highly accurate, it is very difficult to design controllers based on large order models and

the tools used by control analysts fail when more than a dozen or so modes are

considered. Hughes[90] has shown that for practical designs the dynamics of flexible

structures can be adequately modelled using a small number of elements.

The performance of a control system designed using FE models is compared with a

control system designed using low order lump-parameter models. The control system

complexity, i.e. order of the controllers, is governed by the order of the model used in

the design process. The main advantage of using the lump-parameter model is that low

order control systems are produced which can be implemented in hardware relatively

easily without resorting to transfer function reduction techniques. The cost of

implementation is also reduced as lower specification processors can be used which can

be critical in price sensitive products. The main disadvantage is that the effects of

neglected modes can cause severe degradation in performance due to spill over effects

discussed in chapter 2. However, it is likely that in this application with the practical
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constraints of band-limited sensors and actuators, unmodelled high frequency dynamics

become less significant and their effects on control design is minimal.

6.2.1 Reduced order models for control system design

FE models for control system design

Several models of the structure are developed using different numbers of elements. The

results are compared with measured data and with models developed using PAFBC [911.

a commercial FE package. The PAFEC /tlJ model uses 129 elements to model the

flexible cantilever structure. The variations in modal frequencies for different number

of finite elements used to model the system, described in section 5, are summarised in

Table 6-1. The table compares the predicted modal frequencies with the experimental

measurements for the free-free case for the structure. The structure, which has a cross

section that is approximately tapered, is first modelled using elements which have

uniform cross-sections. The diameter of the element is the average diameter of the

tapered section. The accuracy of the model increases with the number of elements used.

In an attempt to improve the accuracy or reduce the number of elements, the structure is

modelled again using non-uniform elements with tapered cross-sections as illustrated in

Figure 5-5.

The 14-element model shows good agreement with the measured and the 129-element

model for the first 5 modes showing a variation of less than 4 %. The three-element

model shows good agreement, error of less than 10/0,while the model using non-uniform

elements shows an error of less than 0.2% for the first mode. The higher modes are not

as close in either of the 3-element models when compared to the 14-element model.

Interestingly, the first mode in the 14-element model is not as accurate as the 3-element

models. The model which uses the non-uniform FE element in general shows closer

agreement with measured results than the model which uses uniform cross-section

elements.

la] PAFEC model and modal frequency data provided by Mr D Lodge
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Mode Measured FE Uniform cross-section element Non-unifonn cross-
no. data package results section element results

results
129 14 3 2 1 3 2 1

element element element element element element element element

1 0.02762 0.02762 0.02660 0.02786 0.02692 0.03789 0.02767 0.02728 0.03615
2 0.07571 0.07565 0.07309 0.08852 0.09432 0.08539 0.08998
3 0.14697 0.14695 0.14513 0.18058 0.12943 0.18678 0.14492
4 0.24347 0.24476 0.24804 0.21506 0.21827
5 0.36075 0.36401 0.37300 0.34298 0.38128 0.35964 0.43451
6 0.49436 0.49938 0.53523 0.53652 0.53998
7 0.64727 0.66354 0.72310
8 0.82007 0.84169 0.95422 0.96069 0.94393
9 1.00000 1.06295 1.24417

Table 6-1: Comparison of predicted modal frequencies for various cases and with
measured data (normalised to measured v" modefrequency).fbJ

For H2 control system design the order of the model is further reduced by using modal

reduction techniques described in section 3. The transfer function for the plant with

input at the actuator and output at the hub is 21 st order. The reduction is carried out by

using minimum realization (POle/zero cancellation) followed by discarding the higher

modes, using the modred function in MA lLAB(91J. The reduced transfer function used

for the control system design is 11til order. The frequency responses of the 3-element

model and the reduced order models used for the control system design are shown in

Figure 6-1 for the three inputs. Figure 6-1(a) shows the response of the plant to input

demand signal applied to the amplifier, while Figures 6-1(b) and (c) show the response

to heave and pitch disturbances. The outputs of the system are hub rate.
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Lump-parameter models for control system design

The transfer functions of the plant derived using the lump-parameter model are

compared with the TFs obtained with the FE model in Figure 6-2(a), (b) and (c). The

lump-parameter TFs show good agreement with the FE model TFs for all three inputs.

However, in the lump-parameter model the higher modal frequencies are not present.

The lump-parameter model TF is 11til order.

6.3. Design of controHer using FE models

Details of the H2 controller design, summarised in Figure 6-3, are provided in appendix

5. The frequency responses of the feedback controller, which incorporates integral

action and the two feedforward controllers are illustrated in Figures 6-4(a), (b) and (c).

6.3.1 Linear model results using FE designed controUer

Frequency-doDlain

The frequency responses of the system are illustrated in Figures 6-5. The gain and phase

margins and the bandwidth using the open-loop and closed-loop responses, Figure 6-

5(a) and (b), are as follows:

Gain margin: 12 dB

Phase margin: 60 degrees

Bandwidth( -3dB): 3.8e-3 (normalised frequency)

Time-domain

The outputs of the closed-loop linear system to the three inputs are illustrated in.Figures

6-6. The response of the system to a unit step input, Figure 6-6(a), shows the following

performance indices:

Overshoot: 13%

Peak time: 0.025 (normalised)

Time to steady-state: 0.23 (normalised)

The effectiveness of feedforward control in eliminating the errors caused by external

disturbances is investigated by examining the stabilisation of the system for each
97



disturbance individually followed by the study of the combined effect of the two

disturbances acting simultaneously. In an ideal system each feedforward controller

should eliminate the effects of each disturbance completely. Figure 6-6(b) shows the

effect of the heave disturbance acting on the system with only the feedback control. The

improvements provided by the heave feedfoward control, illustrated in Figure 6-6(c).

shows that feedforward control provides a substantial reduction in errors (almost

eliminated) caused by the external disturbance. Similarly, Figure 6-6(d) shows the effect

of pitch disturbance acting on the system. The feedback controller reduces the peak

disturbances by a factor of 13. The improvements in system stabilisation, illustrated in

Figure 6-6(e), show that the effects of the pitch disturbance on the hub motion are

substantially reduced by the pitch feedforward controller. The effects of both these

disturbances, acting simultaneously, are illustrated in Figures 6-6(1) and (g). In these

graphs both the heave disturbance and pitch disturbance are included to provide a visual

indication of the improvements in performance. The results in Figure 6-6(g) show that

the feedforward controllers provide substantial improvements in system stabilisation.

6.3.2 Nonlinear model results using FE designed controUer

The nonlinear simulation results are presented in the same sequence as the linear results

to enable direct comparison of the two cases. In the nonlinear simulations a friction

observer is used to improve the system perfonnance, as described in section 6-1.

Time-domain results

The responses of the nonlinear closed-loop model to the three inputs are shown in

Figures 6-7. The results compare very favourably with those obtained for the linear

model, illustrated in Figure 6-6, for all the three inputs. The response of the system to

unit step input, Figure 6-7(a) shows the following:

Overshoot: 15%

Peak time: 0.0255 (normalised)

Time to steady state: 0.24 (nonnalised)
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Comparing these Figures with the linear case, the nonlinear system is under damped

showing a larger overshoot, higher amplitude oscillations and takes longer to reach

settling time. The steady-state errors are the same as the linear model. These

differences are primarily due to the effects of the linearisation process, which is an

approximation, and therefore cannot model discontinuous effects of Coulomb friction,

backlash etc.

The effects of heave disturbance on the hub motions are illustrated in Figures 6-7(b) and

(c). The effect of the disturbances acting on the system without feedforward compare

favourably with the corresponding linear results shown in Figures 6-6(b). The nonlinear

model shows some higher frequency oscillation and noise which is not present in the

linear results. Inclusion of the feedforward controller provides marked improvements in

system performance, showing similar results to those in the linear case. However, the

results show some deterioration in the stabilisation performance and high frequency

oscillations. The results for the nonlinear model to pitch disturbance again compare

favourably with the linear case shown in Figure 6.6(d) and the results with the

feedforward controller shows greater errors than the linear case but these are marginal.

Figure 6-7(t) and (g) show the system response to the combined heave and pitch

disturbances. The rejection of the external disturbances is only marginally worse than

those in the linear model but they show good overall agreement.

In all the nonlinear model results some minor high frequency oscillations are noted.

These are attributed to the effects of discontinuous nonlinearities which cannot be

accounted for by the linearisation process and also due to the nonlinear observer which

cannot completely compensate for the effects of friction. The control system can be

tuned further by additional iterations of the design process summarised in Figure 6-3 and

covered in appendix 5, which also provides examples of controllers with other

characteristics.

6.4 Design of controller using lump-parameter models

The design of the lump-parameter model controller follows the same process to that

described for the FE model controller, presented in section 6.3. It is interesting to
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compare the transfer functions of the controllers produced by the two methods. The

feedback controllers Figure 6-4(a), the FE model controller, and Figure 6-8(a), the lump-

parameter model controller, are very similar. The heave controllers Figure 6-4(b) and 6-

8(b) also show very close agreement. Similarly the pitch controllers Figure 6-4(c) and

6-8(c). It is interesting to note that at higher frequencies the truncation of the FE transfer

functions produce the same results as the lump-parameter results which are not

truncated.

The results of using these controllers are very similar to those obtained for controllers

designed using the FE controllers.

6.5 Robustness properties

Sections 6-3 and 6-4 are primarily concerned with design of controllers using H2 Robust

control technique. This section examines the robustness properties of the controller

when subjected to variations in system parameter which may occur due to changes in

operating environment, wear, aging, maintenance etc. In a complex system under

consideration there are a large number of parameters which can change, ranging from

variations in sensor characteristics to structural deformations of the mechanical

components. Parameters may also change gradually or abruptly. An exhaustive study of

all the likely combinations would be a mammoth undertaking well beyond the scope of

this chapter. While recognising that in an operational environment several parameters

may change simultaneously, in this study simultaneous changes in two or more

parameters are not considered. In the nonlinear model results presented in this section

the parameters are changed at the start of each simulation run.

Changes in hub inertia

The robustness properties of the control system are investigated by examining the

changes in system response to inputs demand signals and the two external disturbances.

The responses of the system to a step input are illustrated in Figure 6-9(a). In the Figure

the results are shown for 100010increase in inertia, which corresponds to double the

standard inertia value, and 50% reduction, which corresponds to half the standard inertia

value. The transient response, first overshoot, shows an increase to 20.5% and reduced
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to 13% for the increased and reduced inertia values respectively. The time at which the

first peak occurs also changes with longer time for the increased inertia case showing the

expected slower system response.

The stabilisation responses of the system, with and without feedforward control, are

illustrated in Figure 6-9(b) and Figure 6-9(c). The results are shown without the

external disturbances to enable closer comparison of variations in system response. In

both cases the results shows only minor changes in system stabilisation performance.

Changes in friction

The robustness properties of the system to changes in friction are examined by changing

the nonlinear friction, by 100% (double the standard value) and 500/0(half the standard

value). The results for the two cases are compared in Figures 6-9(d) to Figure 6-9(t).

As with the inertia case described above the system shows variations in performance

when the friction changes are introduced. The reduction in friction increases the

amplitude of the first peak and an increase in friction reduces the amplitude. The time

of the first peak is the same for the two cases when compared to the standard system.

The stabilisation results, Figure 6-9(e) and Figure 6-9(f), show degradation in

performance for both with and without feedforward control. When the parameters of the

friction observer are changed the step responses and the stabilisation performance is
restored to be similar to the standard system.

Changes in backlash

The changes in system performance due to variations in backlash are illustrated in

Figure 6-9(g) to Figure 6-9(i). The results to the changes in backlash, 100% and 50%,

show minimal degradation in system performance. The 1000/0case shows marginally

higher amplitudes, while the 50% case shows lower amplitudes when compared to the

standard model for step inputs. Similarly the results for stabilisation shown in Figure 6-
9(h) and Figure 6-9 (i).
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Cbanges in system out-of-balance

The variations in system performance are most marked when changes in system out-of-

balance are introduced. The results are illustrated in Figures 6-90) to Figures 6-9(1).

The step input results in Figure 6-9(j) show similar performance for all three cases.

However, the stabilisation results show wide variations when compared with the

standard case. In Figure 6-9(k), results without feedforward control, the variation

appears to be proportional to the changes in the out-of-balance. The increased in out-of-

balance produces larger stabilisation errors, while reduction in out-of-balance lowers the

stabilisation errors.

In the fully compensated system which includes the two feedforward controllers, Figure

6-9(1),changes in system out-of-balance increases the stabilisation errors for both cases.

The errors increase by a factor five for increased out-of-balance and four for reduced

out-of-balance when compared to the standard case.

These changes are primarily due to the heave feedforward controller. Redesigning the

controllers with the modified out-of-balance, illustrated in Figures 6-10(a) to Figure 6-

10(c), it is observed the feedback and the pitch disturbance feedforward controllers

remains unchanged for all three out-of-balance cases. The heave feedforward controller

for the three out-of-balance cases illustrated in Figure 6-1O(b) shows the changes the

controller characteristics. Results of the fully compensated system with the redesigned

controllers and the standard case are shown in Figure 6-10(d). Comparison of the three

shows that the changes in the out-of-balance can be accommodated if the heave
feedforward controller is modified.

For the system to provide acceptable performance when variation in system out-of-

balance occurs a mechanism for changing the gain of the heave feedforward controller is

required. In chapter 7 a method is presented which enables the heave feedforward

controller characteristics to be changed, to reflect the changes in system out-of-balance
thus maintaining the required performance.
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6.6 Concluding remarks

This chapter describes the design of control systems and the assessment of their

performance using both linear and nonlinear models. The performances of the system

are assessed using step inputs and extemal disturbances, typically experienced by the

system. The conclusions from this chapter are as follows:

• The results of the controller design process show that for this application low-order

controller designed using lump-parameter models gives similar performance to those

designed using FE models. The simulation results do not show any degradation of

performance due to spill over effects. Integral action in the feedback controller does

not cause the system to oscillate or limit cycle.

• The feedback controller, in conjunction with the nonlinear observer. shows that the

system remains stable and no degradation in stabilisation performances is noted

when large changes in inertia and backlash are introduced. Change in friction causes

degradation in stabilisation performance which is restored when the parameters of

the friction observer are updated.

• However, the stabilisation performance is particularly poor when system out-of-

balance is changed. The primary cause for the degradation is due to the limitations

of the heave feedforward controller. A scheme is required which can be used to

update the feedforward controller to maintain desired performance.
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Figure 6-9(a): The effect of changing hub inertia on step response. (100% increase
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Figure 6-9UJ: The effect of changing friction on stabilisation performance with
jeeciforward control (simultaneous heave and pitch disturbances).

126



· .'
1 .2 -------- ---------:----r---i--- ------:---------1"--------:------

: ".:. : : : '-..--------'

100% increase
50% reduction

--- step input
- standard

-------- --------OJ -'T:" : : : : : :, . . . . . . .
I : : : : : : :t . . . . . . .

1:.:c•••••••••••••••••[ ..••••••I•••••••••[•••••••••<••••••••1••••••••I•••••••••,••••••••!••••••••
a. 1:::::::t5 Iii iii ! i

0.2 ·········I.•• 1••••JJ1 ••••.••,...••••t••••••
o .

I , , , • , ,

: : : : . . .
~.2L___L___~ ___L __ _J ~~~~~~~--~ __ ~

o 0.05 0.1 0.15 0.2 0_25 0.3 0.35 0.4 0.45 0.5
Time (normalised)
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Figure 6-9(i) The effect of changing backlash on stabilisation performance with
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CHAPTER7

EXPERIMENTAL EVALUATION
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7.0 Experimental evaluation

7.1 Introduction

In this chapter simulation outputs produced using the models developed in chapter 5 are

compared with experimental results. A sound knowledge of system characteristics is of

Primary importance for controller selection and design if high performance

electromechanical servo systems are to meet the desired objectives. Especially, detailed

information regarding the linear, nonlinear, static and dynamic characteristics. To meet

this requirement the chapter commences, in section 7.2, by examining the plant

characteristics and validation of the plant model. The performance of several friction

models are compared with measured results using a technique based on the input and

output motions of the cantilever mechanism. The objective is to select the most

appropriate friction model in terms of accuracy and speed. The work then progresses,

section 7.3, to describe a novel identification technique used to determine the various

nonlinear parameters of the system. The predicted and experimental results of the control

system performance for the balanced and out-of-balance system are compared in section

7.4 followed by results of tests carried out to assess the robustness properties of the control

system in section 7.5. In section 7.6 simulation results are presented for a control system

Which automatically adjusts the parameters of the feedforward controller to account for

changes in system out-of-balance. The conclusions are presented in section 7.7.

7.2 Comparing performance of friction models with measured results

In Walrath's[l7] work on stabilised airborne electro-optical pointing and tracking

equipment the friction characteristics are obtained by adjusting the time constant of a

dynamic friction model of a closed loop system. The base of the stabilised system is
"

perturbed using a sinusoidal signal over a range of amplitudes (RMS speed) and

frequencies. The time constant of the friction model is adjusted by observing the

amplitude of the stabilised element until a minimum value is obtained. It is found that the

time constant is inversely related to the RMS value of acceleration. It is further shown that

a. system incorporating the friction model is fairly robust to changes in the values of the

time constant.
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A more direct method is used in this research to obtain the friction characteristics based on

measuring the frequency response between the platform and the cantilever mechanism.

The main advantage of the method over that used by Walrath is that it does not require a

closed loop system, and it does not assume structure of the friction model. The principles

of the experimental method are shown in Figure 7-1(a). The response is obtained by

mounting the rig on the Platform Motion Simulator (PMS). Sinusoidal signals at various

speed amplitudes (RMS) over a range of frequencies are used as input to the PMS and the

output signal is the response of the cantilever mechanism. Gyroscopes located on the

platform and the hub measure the input disturbance and the output response. The phase

and gain are generated by a frequency response analyzer (FRA). The limitations of the

experimental setup are shown in Figure 7-1(b). In the cantilever mechanism as all the

component masses (and their centre of gravity) are located along the longitudinal axis and

the system is balanced in the vertical plane the effects of the horizontal and vertical

translations are negligible or zero. The measured and simulation results presented in this

section are for a balanced system configuration with the amplifier disconnected from the

motor.

The measured results at several speed amplitudes over a range of frequencies are shown in

the frequency response diagram in Figure 7-2. The corresponding simulation results for

five friction models are shown in Figures 7-3 and 7-4, the static and dynamic friction

models respectively. In the simulations the gain and phase are obtained using a model of

the FRA enabling direct comparison with the measured results. All five models show

good agreement with measured results for the two larger input amplitudes. At the larger

input amplitudes the effects of pre-sliding displacements are less prominent than at lower

amplitudes. However, the simulation results for the three smaller amplitudes show that

the static models in Figure 7-3(a), (classical model) and Figure 7-3(b) (Tustin's model)
"

compare poorly with measured results. At the smaller amplitudes the effects close to zero

speed become more prominent.

Simulation results using dynamic friction models are illustrated in Figure 7-4(a), (b) and

(c). The Dahl model illustrated in Figure 7-4(c) shows excellent agreement with measured

results at all amplitudes and frequencies. The accuracy of the model is further confirmed

by comparing the time domain results at selected frequencies and amplitudes shown in
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Figure 7-5. The value of the rest stiffness parameter (0') in the Dahl model is used to tune

the simulation results to match the measured data and the value of exponent parameter and

stabilizing factor are both set to 1 as described by Dahl[20],[21]. The results for the

Haessig and Friedland's reset-integrator model[22] and the LuGre model[23) presented in

Figure 7-4(a) and 7-4(b) show fair agreement with measured data at four amplitudes but

both models show poor results for 0.083 amplitude at higher frequencies. Simulations

which use the Dahl model run about 1.5 times faster than the reset-integrator model and

about 3 times faster than the LuGre model. The results also confirm that, for this

application, the time constant is related to the RMS value of speed and not the RMS value

of acceleration as observed by Walrath. All the simulation results presented in this chapter

use the Dahl model.

7.2.1 Combined friction models and their locations

In many studies, such as Haessig [22], a single friction model is used which is either

located at the input (motor side) or the output (load side) of the gearbox. This

simplification is not ideal as in high ratio gearboxes the speed at the input will be

considerably different to that at the output. As a result the input shaft may be operating in

a part of the friction characteristic which is different to that at the output shaft. Clearly in a

gearbox each gear may be operating in different part of the friction characteristic. It is

cumbersome and not practicable to include a friction model at each gear. An investigation

is carried out using two friction models one located at the input and the other at the output

to determine the most effective method of modelling the system. The ratio of the friction

forces is varied between the two models such that zero percentage at input results in

hundred percentage friction at the output and vice versa. A triangular wave input signal is

applied to the closed loop system. The input signal, control signal and output signals are

recorded. The results are illustrated in Figure 7-6(a) and (b). Figure 7-6 (b) shows the

l11easured control signal plotted against the output signal. The simulation results for

various combinations of the friction models are illustrated in Figures 7-7. The results with

a single friction model, Figure 7-7(a) at input and Figure 7-7(b) at output, show poor

agreement with the measured results presented in Figure 7-6(b). The results with friction

divided equally, Figure 7-7(e), between the input and the output shows very good

agreement with the measured results. However, for out-of-balance systems further
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experimentation has shown that a ratio of 10-90% (motor-load) gives the most accurate

results.

7.2.2 Comparing electro-mechanical system (plant model) response

Frequency-domain response of the plant

The above section is primarily concerned with modelling of friction and validation of the

mechanical system. For control system design the characteristics of the electro-

mechanical plant are required. The frequency responses of the plant are measured by

applying an input voltage at the amplifier and output rate is measured by a gyroscope

located at the hub. The experimental and simulation results are presented in Figure 7-8(a)

and (b) respectively. The tests are carried out at four input amplitudes to gain insight into

the nonlinear behaviour of the system. The simulation results obtained using a model

FRA show reasonable agreement with the measured data and confirm the amplitude

dependent nonlinear behaviour of the system.

Time-domain response of the plant

Figure 7-9 shows the response of the plant to step demands. As the total travel of the

structure is limited to +15 and -15 degrees the input to the system is controlled manually,

indicated by the variable time step. Simulation results are generated using the same input

data as that used on the rig. In general the simulation results show good agreement with

the measured data.

7.3 Identification of nonlinear parameters

The identification of the nonlinear parameters is based on the technique described by

Johnson and Lorenz[27]. Unlike their work, which uses a three term controller, the

technique presented in this chapter is applied directly to the H2 controlled closed-loop

system with the primary aim of identifying the friction parameters, out-of-balance torque

and amplifier nonlinearities.
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As the controller is designed for the out-of-balance case the identification process is first

described for this system. A triangular wave input signal is applied to the closed-loop

system and the angular rate of the hub and controller output voltages are measured. Figure

7-1O(a) compares the measured and the simulation results for the system without nonlinear

compensation. Both the controller output signal, the top part of the figure, and the hub

rate, which is the gyroscope signal are shown in volts. For clarity the triangular input

signal is not shown. In the graph the simulation results are shown in blue and cyan and the

measured data in red and magenta.

The nonlinear characteristics of the plant are more clearly defined by plotting the

controller output voltage against the hub rate as shown in Figure 7-10(b). In these graphs

the offset voltage is the measure of the out-of-balance torque. The discontinuity at zero

hub rate is a measure of the total Coulomb friction and stiction. The gradient of the two

lobes either side of zero speed is due to combined value of the viscous friction and any

other effects proportional to the speed. The width of the loop !l.V voltage is proportional

to the inertia of the system.

The nonlinear observer used in this example employs a Dahl friction model which is

implemented as a feedback observer but a feedforward observer also produces similar

results. Figure 7-10(c) compares the response of the original system with the response of

the system which incorporates friction and out-of-balance compensation. The response of

the system on time axis is illustrated in Figure 7-1O(d) which can be compared directly

With Figure 7-1O(a), the original system without compensation. The most noticeable

features are the elimination of discontinuity at zero crossing in the hub rate and the offset

in the controller signal.

In all the results the experimental and the simulation data show fair agreement, however

the measured results show additional minor oscillations which are not present in the

simulation outputs. These oscillations, also seen in Figure 7-6, are due to experimental

noise and higher order effects. Similar oscillations are noted by Dahl [21], which

experimental work has shown to be caused by worn bearing surfaces.
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7.3.1. Identification of nonlinear gain of the amplifier

Amplifiers used in servo drive systems are generally assumed to have linear

characteristics. However, the amplifier used in this research has nonlinear characteristics

which change with amplitude of the input voltage. The measured nonlinear characteristics

of the amplifier, together with the linear gain are illustrated in Figure 7-11. The nonlinear

characteristics are obtained by locking the cantilever mechanism to the platform so that the

motor is stalled. Voltage is applied to the amplifier and the output current measured using

a Hall-effect current probe. The results show that the system is nonlinear at low input

voltages, at intermediate voltages the gain approaches the ideal linear characteristics and at

high inputs it follows the ideal characteristics as defined by the manufacturers.

By extending the method described above it will be shown the nonlinear characteristics of

the amplifier can be extracted from the measured results without the need to carry out

specific tests on the amplifier. The results for a balanced system are shown in Figure 7-

12(a) which compares the measured data with simulation results for a system with a linear

gain amplifier. In Figure 7-12(b), the controller output voltage is plotted against speed

which gives clearer indication of the discrepancy between the measured and simulation

results.

As a first estimate assume that measured and simulation hub rates, red and blue lines, and

accelerations, gradient of the two lines, are approximately equal - a reasonable first

assumption from Figure 7-12(a) if the transients near zero speed are ignored. As the speed

and the accelerations are approximately equal, then the resulting torques due to speed such

as viscous friction, and inertial torque due to acceleration will be approximately equal.

The torque produced at the motor for both cases is therefore approximately equal, and

therefore the current into the motor is also approximately equal for the two cases.

For any selected speed the differences in the controller output voltage between the

measured (magenta) and simulation results (cyan) are therefore due to the nonlinear gain

of the amplifier. The controller output voltage is the input signal to the amplifier. Using

the linear amplifier characteristic in Figure 7-11, amplifier current can be obtained for any

lIlput voltage. Table 7-1 below shows errors at selected points for the balanced system.
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Time (s) Measured (volts) Simulation (volts) Amplifier (amps)
linear amplifier

1.85 0.32 0.25 0.75
2.0 0.42 0.28 0.84
2.25 0.51 0.32 0.96
2.4 0.54 0.35 1.05
2.5 0.57 0.36 1.08
2.55 0.59 0.375 1.125
2.7 0.44 0.27 0.81
2.8 0.38 0.24 0.72
2.95 0.34 0.23 0.69
3.15 0.28 0.2 0.6
3.4 0.22 0.16 0.48
3.7 0.12 0.09 0.27

Table 7-1: Summary of datafor amplifier for the balanced system

The next set of points can be obtained in a similar manner for a different out-of-balance

case. As an illustration simulation results are used for an out-of-balance case midpoint

between the balanced and default out-of-balance. Simulation results for the linear and

nonlinear amplifier are shown in Figure 7-12(c) and (d) and selected points are provided in

Table 7-2 below.

Time (s) Simulation( volts) Simulation (volts) Amplifier (amps)
nonlinear amplifier linear amplifier

1.85 1.24 1.14 3.42
1.95 1.27 1.18 3.54
2.0 1.275 1.19 3.57
2.1 1.29 1.21 3.63
2.25 1.32 1.24 3.72
_2.4 1.34 1.27 3.81
2.5 1.24 1.15 3.45
2.65 1.22 1.13 3.39
2.8 1.20 1.1 3.3
3.0 1.17 1.05 ~ 3.15
1·2 1.135 1.02 3.06
).3 1.12 1.0 3
1.4 1.04 0.93 2.79
-175 0.53 0.32 0.96
1·8 0.49 0.3 0.9
.j.O 0.4 0.25 0.75

Table 7-2: Summary of data for amplifier for midpoint out-of-balance system
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In the default out-of-balance case the results for the linear amplifier are very close to the

measured results as shown in Figure 7-10(a) and (b) indicating that the amplifier gain is

linear. Figure 7-11 shows the correction in the amplifier gain after the first iteration,

marked with + symbol. The results show close agreement with the measured amplifier

characteristics. The process can be repeated again if necessary until the simulation results

match the measured data. Figure 7-12(e) and (f) compare the simulation results using the

nonlinear gain amplifier model with measured response for the balanced system.

Comparing these with the linear amplifier results, Figures 7-12(a) and (b), shows the

marked improvements in the simulation results with close agreement with measured

results.

7.4 Comparing the performance of balanced and out-of-balance systems

In this section the performance of the balanced and out-of-balance system are compared in

both frequency and time domain. The response of the systems to input demand signals is

assessed and then the ability of the control systems to reject external disturbances is

established. The results are presented in graphical form which can be readily assimilated

rather than summarised as a list of numbers in tabulated form. Performance criteria such

as overshoot, rise time steady state errors, bandwidth, damping etc. can be readily obtained

by inspection of the graphs.

7.4.1 Response of the system to input demand signals

Frequency-domain response of the closed-loop system

There are some control systems which have peculiar requirements but in general control..
systems have to provide fast response, short settling time and good steady state

performance. The system should provide a linear response to input demand signals, a

bandwidth which covers the expected range of external disturbance frequencies and a roll-

offrate to reject high frequency resonances and noise. Frequency responses of the closed-

loop out-of-balanced system, which incorporates the nonlinear observer, are presented in

Figure 7-13(a) and (b), the experimental and simulation results respectively. The system

shows a damped response with a bandwidth of 0.1, normalised frequency, which exceeds
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the range of disturbance frequencies, illustrated in the PSD Figure 4.7. The system shows

a linear response to input demand signals. The simulation results show good agreement

with the measured results up to the system bandwidth, but beyond this frequency they do

not correspond as well but generally show similar behaviour with roll-off rate. The

measured results show two lightly damped resonances which are not as well defined in the

simulation results.

The above results show the response of the system which incorporates the nonlinear

observer. The results for the out-of-balance system without the nonlinear observer are

illustrated in the Figures 7-13(c) and (d), measured and simulation respectively, which

show the marked improvements provided by the observer, shown in Figure 7-13(a) and 7-

13(b). The improvements in system performance provided by the nonlinear observer are

more clearly demonstrated in the time domain results presented in the next section. The

responses of the balance system are shown in Figure 7-13(e) and (f). The simulation

results for the balanced system, while similar, show greater variation when compared with

the measured results. The variation is particularly noticeable for the lowest input

amplitudes.

The measured responses for the balanced and out-of-balance systems, Figure 7-13(a) and

(e) show similar bandwidth and damped responses. Within experimental variations the

close agreement between the two measured responses confirms that the feedback

Controller is robust to large changes in amplifier gain, 2 amps/volt for the balanced

compared to 3 ampS/volt for the out-of-balance system, and changes in system inertia. In

the balanced case the inertia is increased to 133%, as a result of adding masses at the hub

to balance the system.

Time-domain response of the closed-loop system

The closed-loop step responses of the out-of-balance system are shown in Figure 7-14(a)

and (b). The response of the system without nonlinear observer, Figure 7-14(a), shows a

slow response which takes about 0.05 time (normalized) to reach steady-state. Figure 7-

14(b) shows the improvements in the system response when a nonlinear observer is
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incorporated in the control system design. The corresponding results for the balanced

system are shown in Figure 7-14(c) and (d).

Comparing the closed loop results of the balanced and out-of-balance system, the step

responses show very similar performance. The overshoot in both cases is similar-

marginally higher for balanced system which also shows lower damping which results in

settling time which is marginally longer for the balanced system. The steady state

performance is the same for both systems. The results confirm the robustness properties

of the feedback controller which is able to cope with changes in amplifier gain and system

inertia. The changes in amplifier gain, described in section 7.3.1, are illustrated in Figure

7-11. The responses of the system to triangular wave inputs, are discussed in section 7.3

and illustrated in Figures 7-10 and 7-12.

7.4.2 Response of cantilever mechanism to external disturbance (stabilisation)

This section presents the results of the study carried out to compare the stabilisation

performance of the balanced and out-of-balance system. The time-domain responses of

the system to external disturbances are obtained using PMS which is controlled using

measured data from field trials as described in section 4, To recap the stabilisation

performance, sometimes referred to as disturbance rejection, is the ratio of the output

divided by the input. The output is the motion of the cantilever mechanism and the input

is the disturbance or the motion of the PMS. For good stabilisation a low value for

disturbance rejection ratio is required. Time and frequency domain results are presented

and compared for the two systems.

Out-of-balance system

Predicted and measured responses for the out-of-balance case are presented in Figures 7-

lS(a) to (d). In these Figures the hub responses are presented along side motions of the

platform to provide a visual illustration of the ability controllers to isolate the system from

external disturbances. Both the simulation and measured results show that feedback

Control, Figures 7-15(a) and (c), is fairly effective at rejecting the external disturbances but

substantial improvements are provided by feedforward control as illustrated in Figures 7-
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lS(b) and (d). The simulation results compare favourably with the measured results when

closer examination is undertaken as in Figures 7-1S(e) and (f) which show the motions of

the hub. In these figures the simulation start time and the finish time does not correspond

exactly with the measured results. The simulation results, top graph in Figures 7-lS( e) and

(f), show similar trends as the measured data but as in other results the measured data

contains high frequency experimental noise. The simulation results show some high

amplitude peaks which are not present in the measured results.

The disturbance rejection response, obtained from the time domain results, for the

feedback controller and the feedforward controllers are shown in Figure 7-1S(g) and (h)

respectively. In both the measured and simulation results the improvements in system

performance due to the feedforward control are clearly demonstrated. The simulation

results with the feedforward controller, Figure 7-1S(h) show better stabilisation than the

measured results. The differences are not as marked in the time domain results shown in

Figure 7-15(t).

Balanced system

The performance of the controller, designed for the out-of-balance system, when used on a

balanced system is presented in Figures 7-16(a) to (i). Figures 7-16(a) to (c) show the

simulation results for the system

• without freedforward

• with both feedforwards

• pitch feedforward only

Pitch feedforward, Figure 7-16(c), improves the stabilisation when compared to the

feedback controller, Figure 7-16(a). While the introduction of both heave and pitch

feedforeward controllers reduce the stabilisation as illustrated in Figure 7-16(b). . The

simulation results show good agreement with the measured results for the three cases as

illustrated in the detailed examination in Figures 7-16(d) to (f). The corresponding overall

frequency response results, generated using time-domain data, are illustrated in Figure 7-

16(g) to (i). In general the simulation results for the balanced system are in closer

agreement with the measured responses than the out-of-balance system.
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Comparing the balanced system stabilisation, Figures 7-16(i) with the out-of-balance

stabilisation, Figure 7-1S(h) shows that the out-balance system provides better stabilisation

than the balanced system. This may be due to increased inertia of the balanced system

(133% of out-of-balance system), due to lower amplifier gain (33% lower than out-of-

balance system) or due to system backlash. The out-of-balance torque preloads the gears

reducing the effects of backlash as discussed in section 7.5.

7.5 Testing robustness properties of the control system

Tests are carried out to assess the variation in system stabilisation due to changes in

mechanical parameters. Besides the change in system balance and amplifier gain

described above three other parameters are changed. Variations in the parameters studied

may occur due to operating conditions, environmental changes, wear, aging, duty cycles or

due to maintenance schedules etc. The changes in system performance are assessed using

the frequency-domain tests which are summarised on a single graph, by comparing the

performance at one input amplitude which has normalised amplitude of 0.333. The tests

are carried out on the out-of-balance system where the amplifier gain is linear.

Variation in system backlash

In addition to the default backlash value used in the above studies the backlash tests are

Carried out at three other settings. The measured and simulation results are presented in

Figures 7-17(a) and (b). In both results the backlash has little effect on system

stabilisation. In an out-of-balance system the static torque due to gravitational acceleration

preloads the system so that the gears are forced to one end of the backlash region. In the

stabilisation tests carried out the forces and torques acting on the system are unable to

overcome these preload forces. As a result the ge~ maintain contact and the system

behaves as if there is zero backlash. Preloading of systems components is often used to

negate the effects of backlash in mechanical systems as described by Black et al. [93].

Variation in hub inertia

The inertia of the system was increased in three steps. The simulation and the measured

results are illustrated in Figures 7-17(c) and (d). The inertia values used in the tests have
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little effect on the stabilisation. The magnitude of the inertia changes which represent the

typical changes in a system under consideration were not sufficient to effect the system

performance.

Variation in friction

Tests are carried out to assess the effects of changing friction on system stabilisation.

Friction is changed using a disc brake mounted close to the hub bearing on the main shaft.

Variations in friction are obtained by adjusting the pressure in a pneumatic actuator which

operates the calipers acting on the disc. The graph of friction torque verses the pressure

provided by the manufacturers is shown in Figure 4-4 and the details of the mechanical

arrangement are discussed in chapter 4. As precise friction characteristics for the disc

brake are not available changes in Coulomb friction values at the hub bearing are used in

the simulations to model the disc brake. The experimental and simulation results, Figure

7-17(e) and (t), show that increasing friction reduces system stabilisation. In the measured

results the first increase in friction value, SONm, shows similar performance to the default

case. This may be due to the characteristics of the disk brake not being as precise as

suggested by the manufacturers at low input pressures. At other values the simulation

results compare fairly with the measured results.

7.6 Adapting to changes in out-of-balance

The results presented in section 6 and section 7.5 show that the stabilisation performance

is sensitive to changes in friction and to changes in system out-of-balance. Several papers

discussed in section 2 present techniques which can be used to overcome the loss in

performance due to changes in friction parameters. InflUs section a technique is presented

which adjusts control system parameters to maintain stabilisation performance in presence

of changes to system out-of-balance. In chapter 6 it was shown that the gain of the

feedforward controller is related to system out-of-balance. In the iterative parameter

identification technique presented in section 7.3 it shown that the control signal contains

information about the system out-of-balance. This control signal is used to estimate the

magnitude of the out-of-balance which is incorporated in the adjustment mechanism for

the heave feedforward controller. The adjustment of the feedforward controller can be

147



carried out manually, continually (such as every second), or automatically on detection of

change in out-of-balance or loss in stabilisation performance. The results presented in this

section consider abrupt changes in out-of-balance such as those which may occur due to

different weight of components picked-up by robots, changes in camera systems installed

or ammunition natures used in gun system, etcetera.

To demonstrate the adaptive process in operation first consider a system with linear

amplifier characteristics. Figure 7-18(a) shows various signals for the default out -of-

balance system. The magnitude of out-of-balance is estimated by taking the average value

of the control signal over a set period. Acceptable results are obtained when the

estimation period is set at 0.03 time (normalized) as it provides a fast response and a fairly

reliable estimate of the out-of-balance. In Figure 7-18(b) a step change in out-of-balance

is introduced at 0.3 time(normalized) shown in the trace (i), Trace (ii) shows the

estimated out-of-balance value, which has a delay, of 0.03 time(normalized), while the

estimation process is in progress. The variation in the control signal due to out-of-balance

change is shown in trace (iv) and the subsequent degradation in stabilisation performance,

huh rate gyro, is shown in trace (v). Trace (iii) shows the controller update signal, which

is not used in case.

Figure 7-18(c), shows the same system but with the controller updated at 0.7

time(normalized), as shown in trace (iii). The immediate improvement in hub rate

performance is seen in trace (v), the hub rate gyro signal. The performance after the

controller is updated is very similar to the system shown in Figure 7-18(a) when no change

in out-of-balance occurs. In Figure 7-18(d) the controller update starts at 0.03

time(normalized). As in the previous case the system shows improvement in system

performance which is similar to that in Figure 7-18Ja), the default out-of-balance. A

deterioration in hub rate is noted at 0.3 time(normalized) during the estimation.

The effectiveness of the adaptive system is demonstrated in a system which experiences

several changes, increase and decrease, in system out-of-balance. The degradation in

system stabilisation due to step changes in out -of-balance is illustrated in Figure 7-18(e).

The adaptive control system restores the system stabilisation to original levels as shown in

Figure 7-18(f).
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The effect of nonlinear amplifier gain on adaptation process

In the above example linear amplifier gain is used. The effects on the system

performance due to nonlinear amplifer gain are investigated and the results are

illustrated in Figures 7-18(g) and 7-18(h). These Figures can be compared directly with

the corresponding, linear amplifier gain results in Figures 7-18(d) and 7-18(f). A slight

deterioration in performance is noted in Figure 7-18(h) when the out-of-balance is at its

lowest value. This is due to slight variation in the estimate of the out-of-balance, but in

general the system operates satisfactorily providing significant improvement over the

system without adaptation as observed by comparing with Figures 7-18(b) and 7-18(e).

7.7 Concluding remarks

In chapter 7 theoretical results from simulation studies are compared with experimental

data. The measured stabilisation response of the cantilever mechanism is obtained by

mounting the system on a platform motion simulator and perturbing it over a range of

frequencies and speed amplitudes, for frequency domain results, and for time domain

results measured data from field trials is used to drive the simulator. A detailed

comparison of the performance of balanced systems and out-of-balance systems is

presented and in general the simulation results show reasonable agreement with the

measured results. The performance of several friction models is compared with test data

in the frequency domain and wide variations in the accuracy and performance (simulation

speed) of the models is observed. A novel experimental technique developed for

identifying friction parameters is used to determine the magnitude of the out-of-balance

and is modified to obtain the nonlinear gain characteristics of the amplifier. The results of

robustness study show that the system is sensitive to changes in friction parameters and

system out-of-balance. An adaptive technique is preJented which automatically adjusts

the controller parameters to maintain stabilisation performance when changes in system

out-of-balance occur.
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Mechanism rotation
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Figure 7-1(a): The rotation of the platform and the cantilever mechanism.
The rotational centres of the PMS and the cantilever mechanism coincide with
each other. (Not to scale)
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Figure 7-1(b): The rotation and translation due to the rotational centres of
the PMS and the cantilever mechanism not coinciding. The effects of the
translations are negligible if the system is balanced along the longitudinal and
perpendicular axes. (Not to scale)
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Figure 7-8(b): Simulatedfrequency response a/plant/or the balanced system.
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Figure 7-9: Comparing the transient response of the plant with simulation
results at several input amplitudes, (Note change of scale in Yaxis).
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Figure 7-13(b): Simulated closed-loop response oj out-of-balance system with
compensation.
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Figure 7-13(d): Simulated closed-loop response oj out-of-balanced system
withoutfriction compensation.
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Figure 7-13(e): Measured closed-loop response of balanced system with
friction compensation.
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Figure 7-16(e): Comparing simulation output (top) with measured response
Jor balanced system with both JeedJorward using out-oj-balance controller.
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Figure 7-16(1): Comparing simulation (top) with measured response Jor
balanced system with pitch jeedJorward using out-oJ-balance controller.
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Figure 7-16(h): Comparing simulation output with measured response Jor the
balanced system with both JeedJorward controllers using out-oj-balance
controller.

model

179



0.3

0.2 f-------..--------,---..-----,------c·----~----,--··:---c--:--~------------------------- ------~----..
O. 1 1---. --- ---------c··--- -----c- -- -··-c ----~ ----:--··-:---:---c; -~------ ------ ---- --------- ------:----

--:--+------- --------
- model
- measured

---.-- ... -- _-

___ 1 L _

- - -~- - - .. - - -
-0

,~ -0. 1 f--------OO -- - - - - '" - - --oO----,------CoO---~----,---~--+--r -~ -- - -- - - - - - -- - --- ~- - - - - - - - - - - - - - - ~- -- - --

roE -O.2f----------------c----oO---c---oO-c----i----r---;---;---r-;---
o
c

-0.5 --------------- -------- I I , , , I I ,
- - - - - - ....- - - - ~ - - - -,- - - ....- - -0- - - ....- ~- - - - - - - ., _

I , , I I I , I
I , , , , I I ,

I , , , I , ,
• , , , I , ,
, , , I , , ,

I I , , I I , ,------~----1---T--T--l--T-r-------------
I " "
, " I I.. ·--;---c·,,··----------------i----..

-0.6 ---------------~--------

-0.7

-O.8L-----~--~--~~~~~~----~--~--~~~~~
10-3 10-2 10-1

Frequency (normalised)

Figure 7-16(i): Comparing simulation output with measured response for the
balanced system with pitch feedforward only using out-of-balance controller.

180



0.2 r---;--~--:------:--;-..,---:-,,---:---;---;::r::::=:::r=::r:::::::::::=:::l
- default

, , ,

0.1 --------------~--------i------:----:---i--- --j--j-i---------------i---------:----- - ;~~~
, : : :: ::: :: 500%

u ~.:::::::: ..I::IJ:rL Jl1:::::::::::.:TI:·········'i·1·
~ -0.2 mmmm-r---mrnmr--n}m:-n Trmm--mm-r--ynm1-nT-rrr
E -0.3 nmmnnn~mmn;n_n_~ L_;m -' :! mnmn~ nu_!__m_;uu~_m~__;u;u;_
g :! iAf"Z::! .. :!!! ! ! ! i
~ -0.4 mmnum-P~mi-m+m'---:mfn~n!urm-mu-mt-um-i-mnj-n-+m:m:urr

-0.5 --------------:--------j----+---!---:---[--:--:-1---------------j---------:------1----+---:--j--:--j-
-0.6 r--------------"--------·------"----'---·---n--~-·---------------·---------:-----·----~---rtrj-
-0.7 --------------r--------1------r----~---i---~--r--i-1---------------1---------:------i----1----i--r-r-r

: : : :::: i : :: : : :_0.8L-----~----L-~~~~~~------~----~~-J-J~~~
1~ 1~ 1~

Frequency (normalised)
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due to changes in backlash.
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Figure 7-17(b): Measured results showing variations in system stabilisation
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Figure 7-17(c): Simulation results showing variations in system stabilisation
due to changes in inertia.
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Figure 7-17(d): Measured results showing variations in system stabilisation
due to changes in inertia.
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Figure 7-17(e): Simulation results showing variations in system stabilisation
due to changes infriction.
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Figure 7-17(1): Measured results showing variations in system stabilisation
due to changes infriction.
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Figure 7-18(a): Various outputs from the system with default out-of-balance.
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Figure 7-18(6): Various outputs when out-of-balance changes at 0.3 time.
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Figure 7-18(c): Various outputs when the system adapts at 0.7 time to out-of-
balance change at 0.3 time.
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Figure 7-18(d): Various outputs when the system starts to adapts at 0.03 time
and out-of-balance changes at 0.3 time.
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Figure 7-18(e): Various outputs when out-of-balance changes several times.
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Figure 7-18UJ: Various-outputs when the system starts to adapt at O.03time to
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balance changes for system with nonlinear amplifier gain.
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8.0 Discussion

8.1 Introduction

Difficulties in accurate positioning of stabilised systems are primarily caused by the

presence of system nonlinearities, external disturbances, joint compliance and the

inherently high-order coupled behaviour of mechanical structures. When presented

together meeting the performance specifications can be a formidable challenge. System

simulation greatly enhances the understanding of the system behaviour and plays an

important part in the control system design process. The work presented in this thesis

makes extensive use of simulations and a significant part of the work is devoted to

modelling techniques and validation of the models. The discussion which follows

brings together important aspects from each chapter is structured to address the aims and

objectives presented in chapter 1.

8.2 Modelling of system nonlinearities

Although friction models can be traced back to renaissance period, circa 1500, it is only

recently, 1986, that reliable frictions models for control systems work have been

developed. Interestingly of the three dynamic friction models used in this research

Dahl's[20),[2l), model which was the first dynamic model to be developed, provides the

most accurate prediction of friction characteristics when compared with experimental data

in both the frequency domain and the time domain, presented in section 7.2. It also has the

advantage that simulations which use the Dahl model run faster than simulations which

use other dynamic or static friction models. The main limitation of the Dahl model is that

it does not represent the forces due to stiction or capture the Stribeck effect. These

deficiencies are addressed in the reset-integrator model [22J. Further developments of..
these models have resulted in the LuGre model [23] which includes both the Stribeck and

stiction properties and in addition includes rate dependent friction phenomena such as

varying break-away force and friction lag. The very close agreement of the Dahl model

results with measured data indicates that in the cantilever mechanism used for the

experimental studies these additional effects are of secondary nature. Further parametric

study is required on reset-integrator and LuGre friction models to achieve a closer

agreement with the measured results. The close agreement between the measured and
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simulation results suggests that the time constant in the Dahl model is related to speed

(RMS) and not acceleration as observed by Walrath[17]. At high input amplitudes all

models, dynamic and static, show similar performance which is not unexpected as at high

amplitudes the effects of pre-sliding displacement become less prominent.

In balanced systems which use large ratio gearboxes a single Dahl friction model located

at the input or the output of the gearbox produces poor results when compared with

measured results. Significant improvements are achieved by using two friction models -

one located at the input and the other at the output of the gearbox. In the results presented

for the balanced system the friction forces are allocated equally between the two models

however results suggest that a ratio of 30:70 (motor to load) produces fairly acceptable

results. In out-of-balance systems the ratio of friction forces changes and the most

accurate results are obtained when a ratio of 10:90 (motor to load) is used. In simulation .

of out-of-balance systems, such as robots, cranes, large gun systems, where a single Dahl

friction model is used then it should be located at the load end of the gearbox.

8.3 Identifying system parameters

It is very useful to be able to determine system parameters without resorting to the use of

expensive instrumentation or specialized test procedures. A method proposed by Johnson

and Lorenz[27] which has been used on robot gripper application is used in this study to

identify the various parameters for the friction observer. The technique also provides a

simple method for determining the system out-of-balance and has been extended so that

the nonlinear gain characteristics of the amplifier can be extracted. The nonlinear gain

obtained by this method shows excellent agreement with measured data. The details of the

technique are described in chapter 7. The technique is applied directly to the closed loop
"

system and uses the control signal and the hub rate output signal, both signals used to

control the system. The plot of the control signal against the gyro signal provides a

graphical illustration which can be used by -operators in the field not be familiar with

control system design techniques:

190



8.4 Modelling of flexible structure

The mathematical models developed in this thesis are generic models which can be used to

carry out research into the stabilisation of cantilever mechanisms. The models incorporate

bending and distortion of the structure, and angular movements caused by the pitch and

heave motions of a mobile platform. Inmany studies, where tip movement is not required,

these systems are assumed to be stiff and modelled using lump-parameter techniques.

However, control systems designed using low order or truncated models can result in

performance degradation caused by spillover effects. To study spillover effects two sets of

models are produced. The 'high fidelity' distributed parameter models use finite element

techniques and simpler models are developed using lump-parameter methods.

The FE models of the structure are developed and validated with experimental

measurements using modal analysis. Several models of the flexible structure are

developed ranging in complexity from a single element to 129-element model. As the

cantilever mechanism is approximately tapered in cross-section two sets of models are

produced. The first set uses elements with constant cross-sections, and a second set uses

non-uniform cross-sectioned elements which enable the system geometry to be

approximated using fewer numbers of elements or more accurately using the same number

of elements. From the results it is established that a three element model gives a good

representation of the system. The models which use non-uniform cross-sectioned

elements are only marginally better than the constant cross-section elements and either

model can be used without significant loss of accuracy. The FE models are developed

from first principles for a cantilever mechanism which is a fairly simple shaped structure;

for more complex structures the mass, stiffness and damping matrices can be obtained

directly from commercially available FE packages and interfaced to the simulations as

described in chapter 5. The main difficulty with these models is that they have to be
'"

reduced for control system design. Considerable care is required when using the reduction

techniques as errors can be induced at low frequencies or additional modes can be

introduced at higher frequencies which are not present in the original high order model.

Comparison of the frequency responses at the hub of the FE models and lump-parameter

models show good agreement at low frequencies but higher frequency modes are not

present in the lump-parameter model which may be problematical in some applications.
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8.5 Design of the control systems

The design of the control system is based on the H2 robust control technique described by

Grimble[63] and uses the MATLAB toolbox developed by Strathclyde University(68).

The control system which is primarily concerned with system stabilisation consists of

three elements- feedback controller, heave feedforward and pitch feedforward. The design

process involves the selection of the weighting functions for the three elements of the

control system to obtain the appropriate controller characteristics to produce the required

system response. Robust control techniques produce high order controllers whose

complexity (order) is determined by the complexity of the weighting functions and the

linear model of the system. The control system design algorithms fail when large order FE

models of the system are used. These models are reduced using the techniques described

in section 8.4. The performance of the controllers designed using reduced order models

and lump-parameter models showed that in this application the effect of spillover effects is

negligible. The performance of the controllers is verified on large order FE models.

H2 robust control technique is a linear design technique which provides ideal performance

when used on linear systems. The results, using the linear model, show that while the

feedback control is able provide some rejection of external disturbances the inclusion of

the two feedforward controllers provide substantial improvements. However, in the

system under consideration friction is a dominant nonlinearity which causes substantial

reduction in system accuracy and the results do not compare well with the linear model

results. A nonlinear observer is incorporated in the control system which 'linearises' the

nonlinear system. The parameters for the observer can be determined using the iterative

identification technique presented in section 8.3.

The robustness properties of the control system are assessed using the nonlinear model of

the out-of-balance system and it is shown that the control system is tolerant to changes in

hub inertia and servo drive backlash, but is sensitive to changes in friction and system out-

of-balance. The performance is particularly poor when system out-of-balance is

changed. This degradation is caused by the limitations of the heave feedforward

controller. The performance of the system is restored to the original levels by redesigning

the controller with new out-of-balance values. In the redesigned controller the prominent
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changes occur in the gain of the heave feedforward controller which is related to the

change in magnitude of the out-of-balance. The pitch feedforward controller and the

feedback controller remain unaltered.

A simulation study is presented for an adaptive control system which tracks the changes in

system out-of-balance and automatically adjusts the heave feedforward controller to

maintain the system performance to the required levels. The feedback control signal is

used to determine the magnitude of system out-of-balance. The adaptive technique is able

to adjust the controller parameters regardless of the platform being mobile or stationary.

The adaptive control system produces excellent results when step changes in system out-

of-balance are introduced.

8.6 Experimental results

From the outset it was intended that the research would provide practical solutions which

could be incorporated in future systems and the techniques developed applicable to servo

systems in general. To this end the practical work was carried out on a real system which

was modified, without compromising its integrity, to include additional instrumentation,

facilities to change system parameters and the control system hardware and software

environment which enabled rapid development of control system algorithms.

The performance of the system is assessed using frequency and time-domain tests

commonly used to specify control system requirements. The primary interest being the

response of the system to input demand signals, the ability of control system to reject the

heave and pitch disturbances and the robustness properties of control system to changes in

system parameters. The design of the rig enabled the following parameters to be changed:..

• Balance of system

• System inertia

• System backlash

• Friction at pivot
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The response of the system to external disturbances is measured in the laboratory using

a Platform Motion Simulator. The effects of heave motions are simulated by mounting

the rig so that it was offset from the rotational axis of the PMS. Measured data from

field trials used to drive the PMS and analysis of the PMS response showed that the

heave motions can be simulated fairly accurately although the heave and the pitch

motions cannot be controlled independently. The use of the PMS proved to be

particularly useful as it enabled extensive experimental work to be carried out in a cost

effective manner and enabled specific tests which are used in control system design and

theoretical studies to be carried out. Some of the tests, particularly the frequency

response tests, used to determine the friction characteristics, would have been very

difficult and expensive to carry out in field trials.

The robust control design techniques produce large order linear controllers which were

converted to digital form (z-domain), using the facilities provided in the CACSD

package. These are converted into C code using automatic code generating software and

integrated, as a function, into the rig control system. The process proved to very

effective as portable software was developed quickly and imbedded into the rig control

system.

The measured stabilisation results, in both the frequency and time-domain, showed good

agreement with the predicted results. The theoretical frequency-domain results were

obtained using a simulation of the frequency response analyser which enabled direct

comparison with experimental results.

8.7 Concluding remarks

The results are promising and generally applicable to a wide variety of applications.

Some of the techniques have been extended to other domains most notably the

parameter identification technique which has been used to design control of actuators

for an autonomous vehicle, Heyes and Dholiwar et al.[931.
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9.0 Conclusions and recommendations for future work

9.1 Conclusions

a) The primary conclusion of the research is that out-of-balance systems can be

controlled as effectively as balanced systems and provide stabilisation performance

similar to those achieved for conventional balanced systems. However, the

controller for an out-of-balance system is slightly more complicated, which requires

the design of a feedforward controller and an additional transducer to measure the

heave accelerations. In the vertical plane the servo system has to provide static

torque to overcome the effects of gravitational acceleration. These torques can be

many times greater than the torques required for the motion control resulting in

higher powered servo components. This disadvantage can be overcome by using

springs or equilibrators, to statically balance the system. The additional transducer

and the higher capacity servo components result in increased system costs and

increased power requirements which may be at a premium in some mobile

applications.

b) Stabilisation performance is sensitive to both changes in friction and changes in

system out-of-balance. In the literature review, chapter 2, many papers are reported

which describe techniques which compensate for changes in friction values. In this

research the effects on system stabilisation performance due to the changes in

system-out-of balance are addressed. Results of simulation study of an adaptive

control system developed in this research show that changes in out-of-balance can be

accommodated so that the system maintains the desired levels of stabilisation

performance.

c)The iterative technique used for nonlinear system identification provides an elegant

method for parameter identification eliminating the need to install additional

transducer or sensor systems. The friction characteristics, amplifier nonlinearities

and out-of-balance torques were identified in this research. The out-of-balance

torque identified using this technique provides a simple method for manually scaling

the heave disturbance feedforward controller which enables the controller to cope

with changes in system out-of-balance. Similarly the changes in friction can be
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accommodated by tuning the parameters of the nonlinear observer. The graphical

technique is particularly suitable for use in the field as operators who may not be

familiar with control system design can make the necessary adjustments to the

system.

d) The three dynamic friction models, reset-integrator, LuGre and Dahl's model, used

in this study display high order nonlinear behaviour at low inputs observed in the

experimental results. Dahl's model provides the closest agreement with measured

results. The two static models show the poorest agreement with measured results at

low input speeds but show good agreement at higher amplitude inputs.

e) A model of the flexible structure is developed and validated using modal analysis.

The structure, which has a non-uniform cross-section, is modelled using finite

element technique and the results show that it can be modelled fairly accurately

using three elements.

f) The results show that the H2 robust control technique is able to cope fairly well with

large changes in system parameters such as amplifier gain, hub inertia, and backlash

but is sensitive to changes in system out-of-balance and friction. A friction observer

is used in the control system design and both the simulation and experimental results

show that it provides substantial improvements in performance for system

stabilisation and response to input demand signals.

g) The experimental work was carried out in the laboratory using a PMS, which has

many advantages, in terms of cost, safe environment, etc. The PMS was used to

determine the friction characteristics of the system. The main limitation of the PMS..
is that it only provides pitch disturbances. This limitation was overcome, by

mounting the rig so that it was offset from PMS rotational axis, which enabled the

research to be conducted on out-of-balance systems.
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9.2 Recommendations for future work

The work has successfully fulfilled both the theoretical and experimental objectives of

the research. However, completion of any work of this nature often highlights

difficulties and uncovers areas in which further research is required. The discussion

which follows first considers improvements in the work presented and then discusses

new directions for future research.

a) In the robustness tests the changes in friction were achieved using a fairly simple

commercially available mechanism which did not provide accurate control of

friction forces. The brake pads used in the system were made from synthetic

material which did not represent changes in friction which would occur in metal to

metal contact such as meshing gear teeth or bearing surfaces. A better designed

system is required which enables more accurate control of various parameters of

friction enabling more accurate assessment of the characteristics of friction which

have an effect on system performance.

b) The changes in system out-of-balance were achieved by installing additional masses

at the hub which not only changed the balance but also changed the moment of

inertia, and the mass of the system. An improvement in the mechanical design is

required so that both the inertia and the out-of-balance can be changed

independently while keeping the system mass constant.

c) The parameter identification technique described enables the system out-of-balance

to be estimated from the control signal which is then used to change the gain of the

feedforward controller. This technique can only be used in the vertical plane where

the static torque due to gravity produces an offset in the control system signal. For
«

out-of-balance systems which operate in the horizontal plane such as the azimuth

axis of a typical stabilised system or in zero gravity environment, other techniques

are required to determine changes in system out-of-balance. The signal can then be

used to scale the feedforward controller as.described in section 7.

d) Surprisingly the newer dynamic friction models, the reset-integrator and LuGre

models, were not as accurate in predicting the friction characteristics as the Dahl
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model when compared with the experimental frequency response data obtained from

the motions of the platform and the cantilever mechanism. More detailed

investigation is required to establish the reasons for this discrepancy and on the

selection of parameters for these models.

e) The controller in this research is based on H2 control system design which is a linear

technique and provides excellent results when used on linear models. It is

recommended that the performance of other control techniques such as fuzzy logic

control and variable structure control, which are both nonlinear techniques, should

be applied to the stabilisation of out-of-balance mechanisms.

f) In large stabilised cantilever mechanisms which are controlled using sensors

mounted at the hub it has been shown that the motions at the tip can cause

substantial errors in pointing accuracy. These errors can occur due to the thermal

distortion caused by uneven heating of the system by the sun, due to deposit of snow

and other debris or due to distortions caused by forces induced by the motions of the

vehicle. Future research should address the stabilisation at tip for both balanced and

out-of-balance systems. The techniques for modelling of these systems are

presented in chapter 5 which covers system simulation.
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Appendix 1

A 1.0Other techniques for control of systems with friction

Non-model based compensation schemes comprise impulse control, dither controllers,

joint torque controllers and magnetic bearings to reduce friction.

Al.l Impulse control

In impulse control small pulses are used to control the motion of the system. Several

different schemes have been proposed for impulse control but the general idea is to apply

impulses to the system when it is stationary or in 'stuck' condition and then use another

control scheme when the system is in motion. Typical examples of work using impulse

control are Hojjat et al.[l] and Deweerth et al.[2]; who use an ANN for their impulse

control scheme.

Al.2 Dither control

In dither control a small high frequency oscillation is introduced to minimise the effects

of the discontinuity, Lee and Meerkov[3], Godfrey[4J. This vibration can be introduced

using external vibrators or the actuating signal can be modified. When external vibrators

are used dither can be applied in a tangential or normal direction to the sliding contact.

Vibrators called Dippers have been used on large guns to reduce the effects of nonlinear

frictional. Experimental work by Leonard and Krisbnaprasad[5], showed that the dither

control used in conjunction with PID did not provide significant improvements in their

application. They speculate that this may have been due to the low dither frequency

used due to the sampling frequency limitation.

Al.3 Joint torque control

In joint torque control an inner loop is introduced which compensates for transmission..
and actuator friction. A torque transducer is required which measures the system output

torque and has to be located as close as possible to the load. Amongst others Luh et

al. [6], and Hashimoto et al. [7], have investigated the use of joint torque control. In the

first paper, which deals with a robot drive system, describing function techniques are

used to reduce oscillations caused by system backlash.
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Hashimoto et al. show that joint torque control techniques provide substantial

improvements in a position controlled system which uses PD for the primary loop. The

work investigates the use of feedforward control, feedforward with friction model and a

torque disturbance observer. The disturbance observer provides the best results and the

feedforward the worst of the three. However, all three provide substantial improvements

when compared to a system with no joint torque control. It should be noted that a fairly

simple primary loop controller is used in this paper.

Al.3 Magnetic suspension

The work of Bleun and Stua1t[8J on magnetic suspension is of particular interest as the

experimental study shows that considerable improvement in stabilisation performance is

achieved by using magnetic suspension system when compared to conventional bearing

mounted systems. Their work on the azimuth axis of an electro-optic system showed the

stabilised system performance is improved from -35dB to -60dB. The main

disadvantage of the system is the complexity and the additional power requirements by

the electro-magnetic system.
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Appendix2

A2.0 Robust control techniques

A2.1 Introduction

Classical control techniques are widely used and their continued success can be

attributed to several factors. Firstly, these methods are relatively easy to learn.

Secondly, the theoretical time and frequency domain results can be easily verified by

experimental measurements. Thirdly, the graphical nature of these techniques, such as

Nyquist and Bode diagrams, provide the designer with simple aids to manipulate and

diagnose system performance. Fourthly, simple rules of thumb such as those provided

by Ziegler-Nichols [1] can be used to obtain the desired performance. Finally, these low

order controllers can be readily tuned on-line in the field. However, classical techniques

struggle when used on MIMO systems which contain high degree of cross-coupling

between several inputs and outputs of the controlled system. In contrast to the classical

techniques the quadratic optimal control theories of the 1960's and 1970's are applicable

to multivariable systems. However, it is difficult to incorporate robustness in the

quadratic integral performance index used in the Linear Quadratic Gaussian (LQG)

problem. In the 1980's robust multivariable approach to controller design was studied

which resulted in, amongst other results, optimization theory known as Hoo.

Brief details of the three most commonly used techniques are outlined in this appendix

and references are provided which give fuller details of the techniques. Excellent

treatment of these techniques are presented in Skogestad and Postiethwaite[2], Dutton et.

al. [3] and tutorial examples can be found in MA 'fLAB Robust control toolbox user's

guide [4] which also gives details of the tools for solving the equations presented in this..
chapter.

A2.2 The LQGIL TR method

Although, The LQGILTR method is applicable to SISO systems it is inherently a

multivariable design method. It does not reduce a MIMO to a collection of SISO design

problems. The LQGILTR method involves two basic steps. In the first step a MIMO
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target feedback loop (TFL) is generated. The TFL is selected to meet the performance

specifications whilst maintaining the stability and robustness requirements. In the

second step the LQGILTR compensator is selected to approximate the performance of

the feedback system to that of the TFL selected in the first step. The compensator has

adjustable parameters which enable its characteristics to be manipulated to approximate

the TFL. If the design plant model is minimum phase then the degree of approximation,

or the recovery, of the target feedback can be quite good. If the design plant model is

nonminimum phase then the recovery will depend on the location of the nonminimum

phase zeros. Details of the design process are provided in reference by Athans(5), and

some of the salient results from the paper are summarised below. Fuller details on LTR

procedures are provided in the work by Kwakemaak [6), Doyle and Stein [7].

The design plant model (DPM) used in conjunction with the LQGILTR method not only

includes the nominal plant model, but also includes the scaling factors, augmented

dynamics (such integrators) that the designer has included and reflects all the modeling

errors to the output of the DPM, using multiplicative model error representation

described by Doyle and Stein [8].

The DPM is represented by

x=Ax+Bu

y =Cx+Du

(A2-I)

(A2-2)

Then the transfer function matrix (TFM) is given by

G(s) = C<P(s)B (A2-3)

Where

<P(s) == (sI - At) (A2-4)

The MIMO feedback loop is shown in Figure A2-I. The diagram shows the tracking

error vector E(s). For clarity the diagram does not show sensor noise and the

disturbances acting on the system which is accounted for as an additive disturbance

acting on the DPM output.
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Target Feedback Loop (fFL)

The structure of TFL is shown in Figure A2-2. It is simply defined by the parameters

C and cJ)(s) of the DPM and matrix H which is called the filter gain matrix.

The loop Transfer Function Matrix (TFM) associated with the TFL is given by

G KF (s) = CcJ)(s)H (A2-5)

The sensitivity of TFM

SKF(S) = [I +GKF(S)r1 (A2-6)

And the complementary sensitivity function

CKF(S) =[1 +GKF(s)r1 GKF(S) (A2-7)

For any filter gain matrix H we can evaluate the TFL so that it meets the stability-

robustness constraints and performance specifications.

The LQGILTR compensator, K(s).

The LQGILTR compensator illustrated in Figure A2-3 belongs to a class called the

model-based compensators. The compensator contains the design plant model (DPM)

and two feedback loops containing the gain matrix G and gain matrix H. These two

matrices are the design parameters in the compensator.

The transfer function matrix of the model based compensator is defined by:

U(s) = K(s)E(s) (A2-8)

and

K(s)=G[sI -A+BG+HCrIH (A2-9)

214



The closedloop poles of the feedback system in Figure A2-1, when represented by

equation A2, are the eigen values of( (A - BG) and (A - HC).

In the LQGILTR method when applied to model based compensator, the H and G

matrices in equation A2-9 are selected as follows. H is fixed to be the same as that in the

TFL and the control gain matrix G in K(s) is computed via the solution of the Linear

Quadratic Regulator problem. Details of this solution are provided in reference by

Doyle and Stein [8].

A2.3 Standard Hl and Hoocontrol

The limitations of LQG control were addressed in the 1980's which lead to the

development of Boo, with influential the work of Zames [9]. With further development

the two approaches Hl and Boo are now considered to be more closely related than

originally anticipated. Skogestad and Postlethwaite [2] use a standard formulation to

compare the two techniques. The general control configuration used is shown in Figure

A2-4. The details of the system which is used to derive the equations presented in this

section is shown in Figure A2-5.

The system is described by the following:

(A2-1O)

u = K(s)v

Where

u are control variables

v are measured variables

w are external signals such disturbances and demand

z are error signals
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The closed loop transfer function is as follows

(A2-11)

Which can be written as:

(A2-12)

Where

Fj(PG' K) = PGll + PGI2K(l- PG22Krl PG2l (A2-13)

The H2 and Hoo control involve minimizing the function Fj (PG' K) .

The H2 optimal control

The H2 control problem is to find a controller K which minimizes the following

The generalized plant model PG will include the interconnections and the weighting

functions defined by the designer. The left hand side is called the 2 norm of error. This

is minimzing the root-mean-square (RMS) of the error.

The Hoo optimal control

The alternative to the minimizing the average error is to minimize the peak value.

The Hoo optimal control is to find K which minimize

In practice it is much easier to design a suboptimal controller, which is close to optimal

using the algorithm described by Doyle [10]
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Figure A2-1: Closed-loop system with external disturbance

R(s) Y(s)

• + .~,---H--,HL-<J)(s___,) HL-c___.1 I ...

Figure A2-2: The target feedback loop structure

+ +

+

Figure A2-3: Structure of a Model based controller and an LQGILTR compensator
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Figure A2-5: Block diagram of system.
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Appendix3

A3.0 Feedforward control

The Transfer functions for the closed-loop system with external disturbance illustrated in

Figure A3-1 are as follows:

The equations for the system with feedforward control illustrated in Figure A3-2 are as

follows:

If Gis) is the inverse of Ga( s) then from the above equation the term [1- Gf (s)Ga (s)]

becomes zero and the effects of the disturbance are eliminated. However, it is not

always possible to invert G1(s) in which case the term Gis) Ga(s) is made to be close to

unity. Typical example is a system which is non-causal. A system is causal if its output

depends only on the past inputs, and non-causal if its outputs also depend on future

inputs.

The main difficulty with feedforward control compensation is that it is an open-loop

technique and if the transfer function Ga(s) changes or is not known then the term Gis)

Ga(s) will not be close to unity. Secondly, with feedforward control the disturbance has

to be known so that it can be used as an input to the feedforward controller.
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Appendix4

A4.0 Control system hardware and development envlronment"

The rig is controlled using a digital system based on VME bus architecture. The system

uses a MOTOROLA M68000/30 Central Processing Unit (CPU). Interface cards

installed in the system enable it to be connected to the rig and provide communication

links to other computer systems. The system has 32 differential analogue input channels

(64 single ended) and 8 analogue output channels. The analogue input channels have a

resolution of 16 bits which can be programmed to accept voltages which range from 0-

5V to +1- lOY. The analogue output channels have a resolution of 12 bits which can be

programmed to provide voltages similar to the input channels.

A digital I/O board supports 64 input and 32 output channels. The input channels are

optically isolated and on-hoard relays isolate the output channels. The digital input

channels are connected to limit switches, safety switches and other switches used to

control the rig etc. The outputs are used to activate the system components such as

safety brake, various alarms, and LEDs which monitor power amplifier operation such

as temperature and current limits etc. A resolver input board, which has two channels, is

used to measure the speed of the motor.

A timer counter hoard provides the real-time clock signal which is used to interrupt the

Central Processing Unit. Communication to the VME system is via an Ethernet link

connected to a PC.

A hard disk drive, installed in a rack system stores hoth the UNIX operating system and

the LYNXOS Cross Development System [1] used to create the real-time software. The

disk drive is also used to record experimental data from the various sensors. The

experimental data stored on the hard disk, can be downloaded into the PC and analysed

off-line using signal processing software such as MATLAB.

The sensor and the switches are connected to the computer system through a Sensor

Interface Unit (SIU) which provides a buffer between the computer and rig. The buffer

• The design of the computer hardware is not part of the research, but details provided as background
information.
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enables sensors, which have low power outputs, to be connected to other devices such as

plotters, tape recorders and oscilloscope. Analogue input signals connected to the

computer were filtered using anti-aliasing filters.

The rig is protected by hard wired safety interlocks, safety switches and mechanical limit

switches. These interlocks protect the system components such as power amplifier

against excessive temperatures, high current demands, limit the travel of the structure to

an arc of 30 degrees and enable the rig to be stopped quickly by activating the disc brake

located on the gearbox. The disc brake can also be activated manually using the safety

buttons.

An input unit is provided which enables the rig to be controlled manually or using

external signal sources. This is used to test the response of the system to various input

signals and also carry out open-loop and closed-loop frequency response analysis using

the Frequency Response Analyser.

A4.2 Real-time software development

The software which controls the system consists of several subroutines (procedures)

which are sequenced by the main program called the control executive. The program,

developed using C programming language, provides all functions which manage the

system such as system initialisation, input and output interfaces, Ethernet

communication, data logging, BITE facilities etc. The work described in this thesis is

concerned with the design of control system procedure which is summarised in a flow

diagram illustrated in Figure A4-2. All the other software which control the peripheral

functions are provided by the suppliers of the computer system.
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The VME bus computer system for control of the cantilever mechanism.

i) CPU Board: MVME167 single board computer system, MOTOROLA.
M68000/30 CPU
Ethernet LAN transceiver
Centronics printer port
SCSI bus interface
64MB DRAMl8KB static RAM

ii) Analogue 110: VXME452, XYCOM.
inputs
64 single-ended (32 differential) inputs
16 bits resolution, 0-5V, 0-10V,+1-5V, +1-I0V input range
10 micro seconds conversion time
outputs
8 channels
12 bit resolution 0-5V, 0-10V,+1-5V,+I-lOV output range
4 micro second settling time

iii) Digital 110: AVME 94451 and 9426L, ACROMAG.
input
64 opto isolated input channels
4-25 V or 20-55V DC input range
6 microseconds response
output
32 mechanical relay
125V ACorDC
5milliseconds response

iv) MPX 500B resolver input card, Pentland.
2/4 channel 2V input card
10-16 bit resolution
accuracy +1-2,3,4 and 8 arc minutes
25millisecond settling time

v) MPV 991 timer counter board, Pentland
10 general purpose 16 bit timer counters '"
5 internal frequency sources
AM9519A VME Interrupt Bus
8 digital input and outputs

vi) AB/ASF 1553 bus SBS
dual channell553 bus interface

vi) Disk drive 1.0GB and 3.5" floppy drive

Figure A4-1: Summary of the computer hardware
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Appendix5

A5.0 Details of the control system design

A5.l Introduction

The design is based on the robust control technique described by Grimble et aI.[l], and

uses the MATLAB toolbox developed by Strathclyde University [2]. The H2 control

system design is a frequency domain technique which requires an estimate of the system

transfer functions. Once a nonlinear model of the system has been obtained the next step

is to select a suitable design point for the control system. The model is then linearised

about this operating point and transfer functions are obtained. For the multi-input single-

output (MISO) system under consideration transfer functions between each input and

output are required.

Fundamental to the H2design is the selection of the weighting functions which determine

the controller characteristics. Although general guidelines are known, many iterations in

the selection of the weighting function characteristics are required to achieve the desired

performance. The performance of the controller is verified using the linear models

followed by the more detailed study using the nonlinear models. Several iterations of the

above process may be required before a suitable controller is obtained.

Inmany applications the H2 controller will result in a system which meets the designed

objectives. However, in the system under consideration the H2 controller does not

provide the desired performance due to the influence of system nonlinearities. The

method used to enhance the performance is based on the use of a nonlinear observer

which is described in chapter 6 and 7.

A5.2 The design of hub controller

In chapter 6 the feedback controller is presented which produces 13% overshoot to step

inputs. The control system can be refined to produce different responses. As an

example a new control system, presented in this appendix, has been designed to produce

smaller amplitude, 10010,overshoot. An additional controller, without integral control
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(type 0), is also designed to show how the weighting functions can be selected to

produce different controller characteristics.

AS.3 Defining the system transfer functions

The linear model, illustrated in Figure AS-I, is derived using Taylor's theorem. The

transfer function model, required by the toolbox has a structure illustrated in Figure AS-

2. The first transfer function is the open-loop response between the control signal and

the hub output, the second transfer function is the response of the system to heave

disturbance and the third transfer function is the response of the system to pitch

disturbance. The three transfer functions are illustrated in Figure AS-3. The reduced

order transfer functions are used for the control system design.

AS.3.t Selecting the operating point

In nonlinear systems the transfer function changes with the operating point. However, in

many systems a single transfer function is used as an approximation of the system

dynamics to design a fixed term controller. The most suitable operating point is a matter

of experience and engineering judgment. It may be selected to reflect the worst

operating condition, which will result in a conservative design, or may be optimized at

the mean operating condition, resulting in a controller which functions adequately at the

extremes of operating conditions.

In the system under consideration the design point is selected by considering the

operating range of the system. Responses at several points, within this range, were

obtained to enable a suitable feedback transfer function to be selected. A similar process

is used to obtain the transfer functions of the system -for the two external disturbances.

The characteristics and magnitudes of the external disturbances were obtained from field

trials carried out under typical operating conditions.
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AS.4 The weighting functions

In robust techniques, such as H, and H2, the controller is designed by selecting

characteristics of two weighting functions, known as error weighting and controller

weighting. Although, general guidelines for selecting the weighting functions are known

the design process is problem specific and as a result it is not possible to provide

definitive set of rules. One set of weighting functions may result in an entirely different

controller if applied to another model with dissimilar characteristics.

However, as in any good design the controller should provide the following:

a) Minimum steady state errors- high gain at low frequencies

b) Rejection of high frequency noise-low gain at high frequencies

c) Disturbance rejection at low frequencies -feedforward control

d) Accurate tracking -tracking controller

e) Operate within amplitude and rate limits of system components etc.

The weighting functions characteristics

The weighting functions for the controller with integral action are shown in Figure AS-4.

The weighting functions for the controllers without integral control are shown in Figure

AS-S. The resulting characteristics for the controllers are compared in Figure AS-6. The

transfer functions for the weighting functions are provided below, where the coefficients

(K1, at and bt etc) are selected to provide the characteristics in Figure AS-4 and Figure

AS-S.

ControUer with integral

The final weighting functions for the controller with iRtegral action are:

Feedback controller:

iehti K,Error welg tmg = -
a1s

Linear disturbance feedforward controller:

C I igh " Kib4 S2 +a, s + 1)ontro weI. tmg =
1

Error weighting = K3
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Angular disturbance feedforward controller:

C 1 ighti K6(b6 S2 +a6 S +0)ontro wer nng = 1Error weighting = K 5

Controller without integral

The weighting functions for the controller without integral action are:

Feedback controller:

ighti K7Error weI tmg = ---'--
(a7s + 1)

Control weighting = Kg (ags + 1)
1

A5.5 The linear model results

The results from the linear simulations using the two controllers are presented in Figure

A5-7 and Figure A5-S. The ability of the controllers to reject the effects of external

disturbances are similar for the two control systems when the feedforward controllers are

used as illustrated in Figures A5-7(c) and A5-S(c). However, from Figures A5-S(b) and

A5-9(b), the response without feedforward control, it is noted that increased gain reduces

errors caused by external disturbances.

The response of the system to step inputs shows that without integral control the system

has a steady state error, and the system becomes more oscillatory.
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Figure A5-1: Linear model of theplant used to generate the three transferfunctions

Model:system model (multi_input) Date:20 July 2007

2)---------~
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Control signal L-_":"':""-1
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3)---------~
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Figure A5-2: Transferfunction model of theplant required by the toolbox.
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Figure AS-4(c): Weightingjunctions used/or pitch motionfeedforward controller
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Figure A5-5(c): Weightingjunctions used/or pitch motion/eedforward controller
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Figure AS-7(a): Linear simulation step responses using controller (Withintegrator)

_._. heave acceleration

0.75
--- pitch rate
- hub rate

'0
'" 0.5
.!!!
"iii
E
0 0.25.s
'"[;!
.0
:::>

.s:::;

£
.B -0.25.5.
<Ii
ili -0.5'"I

-0.75

-1
0 0.25 0.5 0.75

Time (normalised)

Figure AS-7(b): Linear simulation response to disturbances withoutfeedforward control
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Figure AS-7(c): Linear simulation response to disturbances withfeedforward control
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Figure A5-8(a): Linear simulation response of high gain controller without integrator
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Figure A5-8(b): Linear simulation response to disturbances withoutfeedforward control
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Figure A5-8(c): Linear simulation response to disturbances withfeedforward control
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