3,685 research outputs found

    Spectral characterization of the Nigerian shoreline using Landsat imagery

    Get PDF
    The challenges of shoreline mapping include the high costs of acquiring up-to-date survey data over the coastal area. As a result, in many developing countries, the shoreline has not been consistently mapped. The variety of methods used for this mapping and the large time differences between the surveys (on the order of decades) could result in inaccuracies in shoreline data. This study presents the development of a shoreline characterization procedure for the Nigerian coastline using satellite remote sensing technology. The study goal is to produce a complete, consistent and continuous shoreline map using publicly available data processed in a GIS environment. A spectral analysis using different satellite bands was conducted to define the land/water boundary and characterize the coastal area around the shoreline. The satellite-derived shorelines were compared to charted shorelines for adequacy and consistency. The procedure was developed based on study sites along the Nigerian coastline. Although the shoreline characterization procedure is developed based on datasets from Nigeria, the procedure should be suitable for use in mapping other developing areas around world

    Uncertainty Modeling for AUV Acquired Bathymetry

    Get PDF
    Abstract Autonomous Underwater Vehicles (AUVs) are used across a wide range of mission scenarios and from an increasingly diverse set of operators. Use of AUVs for shallow water (less than 200 meters) mapping applications is of increasing interest. However, an update of the total propagated uncertainty TPU model is required to properly attribute bathymetry data acquired from an AUV platform compared with surface platform acquired data. An overview of the parameters that should be considered for data acquired from an AUV platform is discussed. Data acquired in August 2014 using NOAA’s Remote Environmental Measuring UnitS (REMUS) 600 AUV in the vicinity of Portsmouth, NH were processed and analyzed through Leidos’ Survey Analysis and Area Based EditoR (SABER) software. Variability in depth and position of seafloor features observed multiple times from repeat passes of the AUV, and junctioning of the AUV acquired bathymetry with bathymetry acquired from a surface platform are used to evaluate the TPU model and to characterize the AUV acquired data

    Seafloor characterization using airborne hyperspectral co-registration procedures independent from attitude and positioning sensors

    Get PDF
    The advance of remote-sensing technology and data-storage capabilities has progressed in the last decade to commercial multi-sensor data collection. There is a constant need to characterize, quantify and monitor the coastal areas for habitat research and coastal management. In this paper, we present work on seafloor characterization that uses hyperspectral imagery (HSI). The HSI data allows the operator to extend seafloor characterization from multibeam backscatter towards land and thus creates a seamless ocean-to-land characterization of the littoral zone

    EVALUATING SATELLITE DERIVED BATHYMETRY IN REGARD TO TOTAL PROPAGATED UNCERTAINTY, MULTI-TEMPORAL CHANGE DETECTION, AND MULTIPLE NON-LINEAR ESTIMATION

    Get PDF
    Acoustic and electromagnetic hydrographic surveys produce highly-accurate bathymetric data that can be used to update and improve current nautical charts. For shallow-water surveys (i.e., less than 50m depths), this includes the use of single-beam echo-sounders (SBES), multi-beam echo-sounders (MBES), and airborne lidar bathymetry (ALB). However, these types of hydrographic surveys are time-consuming and require considerable financial and operational resources to conduct. As a result, some maritime regions are seldom surveyed due to their remote location and challenging logistics. Satellite-derived bathymetry (SDB) provides a means to supplement traditional acoustic hydrographic surveys. In particular, Landsat 8 imagery: 1) provides complete coverage of the Earth’s surface every 16 days, 2) has an improved dynamic range (12-bits), and 3) is freely-available from the US Geological Survey. While the 30 m spatial resolution does not match MBES, ALB, or SBES coverage, SDB based on Landsat 8 can be regarded as a type of “reconnaissance survey” that can be used to identify potential hazards to navigation in areas that are seldom surveyed. It is also a useful means to monitor change detection in dynamic regions. This study focused on developing improved image-processing techniques and time-series analysis for SDB from Landsat 8 imagery for three different applications: 1. An improved means to estimate total propagated uncertainty (TPU), mainly the vertical component, for single-image SDB; 2. Identifying the location and movement of dynamic shallow areas in river entrances based on multiple-temporal Landsat 8 imagery; 3. Using a multiple, nonlinear SDB approach to enhance depth estimations and enable bottom discrimination. An improved TPU estimation was achieved based on the two most common optimization approaches (Dierssen et al., 2003 and Stumpf et al., 2003). Various single-image SDB band-ratio outcomes and associated uncertainties were compared against ground truth (i.e., recent Lidar surveys). Several parameters were tested, including various types of filters, kernel sizes, number of control points and their coverage, and recent vs. outdated control points. Based on the study results for two study sites (Cape Ann, MA and Ft Myers, FL), similar performance was observed for both the Stumpf and the Dierssen models. Validation was performed by comparing estimated depths and uncertainties to observed ALB data. The best performing configuration was achieved using low-pass filter (kernel size 3x3) with ALB control points that were distributed over the entire study site. A change detection process using image processing was developed to identify the location and movement of dynamic shallow areas in riverine environments. Yukon River (Alaska) and Amazon River (Brazil) entrances were evaluated as study sites using multiple satellite imagery. A time-series analysis was used to identify probable shallow areas with no usable control points. By using an SDB ratio model with image processing techniques that includes feature extraction and a well-defined topological feature to describe the shoal feature, it is possible to create a time-series of the shoal’s motion, and predict its future location. A further benefit of this approach is that vertical referencing of the SDB ratio model to chart datum is not required. In order to enhance the capabilities of the SDB approach to estimate depth in non-uniform conditions, Dierssen’s band ration SDB algorithm was transformed into a full non-linear SDB model. The model was evaluated in the Simeonof Island, AK, using Lidar control points from a previous NOAA ALB survey. Linear and non-linear SDB models were compared using the ALB survey for performance evaluation. The multi-nonlinear SDB model provides an enhanced performance compared to the more traditional linear SDB method. This is most noticeable in the very shallow waters (0-2 m), where a linear model does not provide a good correlation to the control points. In deep-waters close to the extinction depth, the multi-nonlinear SDB method is also able to better detect bottom features than the linear SDB method. By recognizing the water column contributions to the SDB solution, it is possible to achieve a more accurate estimate of the bathymetry in remote areas

    How Much Shallow Coral Habitat Is There on the Great Barrier Reef?

    Get PDF
    Australia’s Great Barrier Reef (GBR) is a globally unique and precious national resource; however, the geomorphic and benthic composition and the extent of coral habitat per reef are greatly understudied. However, this is critical to understand the spatial extent of disturbance impacts and recovery potential. This study characterizes and quantifies coral habitat based on depth, geomorphic and benthic composition maps of more than 2164 shallow offshore GBR reefs. The mapping approach combined a Sentinel-2 satellite surface reflectance image mosaic and derived depth, wave climate, reef slope and field data in a random-forest machine learning and object-based protocol. Area calculations, for the first time, incorporated the 3D characteristic of the reef surface above 20 m. Geomorphic zonation maps (0–20 m) provided a reef extent estimate of 28,261 km2 (a 31% increase to current estimates), while benthic composition maps (0–10 m) estimated that ~10,600 km2 of reef area (~57% of shallow offshore reef area) was covered by hard substrate suitable for coral growth, the first estimate of potential coral habitat based on substrate availability. Our high-resolution maps provide valuable information for future monitoring and ecological modeling studies and constitute key tools for supporting the management, conservation and restoration efforts of the GBR

    A two-part process for assessing the adequacy of hydrographic surveys and nautical chart coverage

    Get PDF
    IHO Publication C-55 contains information about the progress of hydrographic surveying and nautical charting for littoral states. Listed primarily as percent coverage, it is difficult to use this information to determine: 1) if the current level of surveying or charting is adequate or in need of action, or 2) can be used to compare different locations. An analysis methodology has been developed to assess the adequacy of hydrographic surveying and nautical charting coverage. Indications of chart adequacy as depicted on charts or sailing directions are spatially correlated with significant maritime areas associated with navigational/national interest. However, an analysis based solely on these datasets is limited without access to the current depth information. Publically-available, multi-spectral satellite imagery can be used to derive estimates of bathymetry and provide information in previously unsurveyed areas. Preliminary results show that multi-spectral satellite remote sensing is potentially beneficial as a reconnaissance tool prior to a hydrographic survey

    Modelling Coastal Vulnerability: An integrated approach to coastal management using Earth Observation techniques in Belize

    Get PDF
    This thesis presents an adapted method to derive coastal vulnerability through the application of Earth Observation (EO) data in the quantification of forcing variables. A modelled assessment for vulnerability has been produced using the Coastal Vulnerability Index (CVI) approach developed by Gornitz (1991) and enhanced using Machine learning (ML) clustering. ML has been employed to divide the coastline based on the geotechnical conditions observed to establish relative vulnerability. This has been demonstrated to alleviate bias and enhanced the scalability of the approach – especially in areas with poor data coverage – a known hinderance to the CVI approach (Koroglu et al., 2019).Belize provides a demonstrator for this novel methodology due to limited existing data coverage and the recent removal of the Mesoamerican Reef from the International Union for Conservation of Nature (IUCN) List of World Heritage In Danger. A strong characterization of the coastal zone and associated pressures is paramount to support effective management and enhance resilience to ensure this status is retained.Areas of consistent vulnerability have been identified using the KMeans classifier; predominantly Caye Caulker and San Pedro. The ability to automatically scale to conditions in Belize has demonstrated disparities to vulnerability along the coastline and has provided more realistic estimates than the traditional CVI groups. Resulting vulnerability assessments have indicated that 19% of the coastline at the highest risk with a seaward distribution to high risk observed. Using data derived using Sentinel-2, this study has also increased the accuracy of existing habitat maps and enhanced survey coverage of uncharted areas.Results from this investigation have been situated within the ability to enhance community resilience through supporting regional policies. Further research should be completed to test the robust nature of this model through an application in regions with different geographic conditions and with higher resolution input datasets

    Geo-Spatial Analysis in Hydrology

    Get PDF
    Geo-spatial analysis has become an essential component of hydrological studies to process and examine geo-spatial data such as hydrological variables (e.g., precipitation and discharge) and basin characteristics (e.g., DEM and land use land cover). The advancement of the data acquisition technique helps accumulate geo-spatial data with more extensive spatial coverage than traditional in-situ observations. The development of geo-spatial analytic methods is beneficial for the processing and analysis of multi-source data in a more efficient and reliable way for a variety of research and practical issues in hydrology. This book is a collection of the articles of a published Special Issue Geo-Spatial Analysis in Hydrology in the journal ISPRS International Journal of Geo-Information. The topics of the articles range from the improvement of geo-spatial analytic methods to the applications of geo-spatial analysis in emerging hydrological issues. The results of these articles show that traditional hydrological/hydraulic models coupled with geo-spatial techniques are a way to make streamflow simulations more efficient and reliable for flood-related decision making. Geo-spatial analysis based on more advanced methods and data is a reliable resolution to obtain high-resolution information for hydrological studies at fine spatial scale

    Using 3DVAR data assimilation to measure offshore wind energy potential at different turbine heights in the West Mediterranean

    Get PDF
    In this article, offshore wind energy potential is measured around the Iberian Mediterranean coast and the Balearic Islands using the WRF meteorological model without 3DVAR data assimilation (the N simulation) and with 3DVAR data assimilation (the D simulation). Both simulations have been checked against the observations of six buoys and a spatially distributed analysis of wind based on satellite data (second version of Cross-Calibrated Multi-Platform, CCMPv2), and compared with ERA-Interim (ERAI). Three statistical indicators have been used: Pearson’s correlation, root mean square error and the ratio of standard deviations. The simulation with data assimilation provides the best fit, and it is as good as ERAI, in many cases at a 95% confidence level. Although ERAI is the best model, in the spatially distributed evaluation versus CCMPv2 the D simulation has more consistent indicators than ERAI near the buoys. Additionally, our simulation’s spatial resolution is five times higher than ERAI. Finally, regarding the estimation of wind energy potential, we have represented the annual and seasonal capacity factor maps over the study area, and our results have identified two areas of high potential to the north of Menorca and at Cabo Begur, where the wind energy potential has been estimated for three turbines at different heights according to the simulation with data assimilation.This work has been funded by the Spanish Government’s MINECO project CGL2016-76561-R (MINECO/FEDER EU), the University of theBasque Country (project GIU14/03) and the Basque Government (Elkartek 2017 INFORMAR project). SJGR is supported by a FPIPredoctoral Research Grant (MINECO, BES-2014-069977). The ECMWFERA-Interim data used in this study have been obtained from the ECMWF-MARS Data Server thanks to agreements with ECMWF and AEMET. The authors would like to express their gratitude to the Spanish Port Authorities (Puertos del Estado) for kindly providing data for thisstudy. The computational resources used in the project were providedby I2BASQUE. The authors thank the creators of the WRF/ARW and WRFDA systems for making them freely available to the community. NOAA_OI_SST_V2 data provided by the NOAA/OAR/ESRL PSD,Boulder, Colorado, USA, through their web-site athttp://www.esrl.noaa.gov/psd/was used in this paper. National Centers for Environmental Prediction/National Weather Service/NOAA/U.S.Department of Commerce. 2008, updated daily. NCEP ADP GlobalUpper Air and Surface Weather Observations (PREPBUFR format), May1997–Continuing. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory.http://rda.ucar.edu/datasets/ds337.0/were used. All thecalculations have been carried out in the framework of R Core Team(2016). R: A language and environment for statistical computing. RFoundation for Statistical Computing, Vienna, Austria. URLhttps://www.R-project.org/

    On the effect of random errors in gridded bathymetric compilations

    Get PDF
    We address the problem of compiling bathymetric data sets with heterogeneous coverage and a range of data measurement accuracies. To generate a regularly spaced grid, we are obliged to interpolate sparse data; our objective here is to augment this product with an estimate of confidence in the interpolated bathymetry based on our knowledge of the component of random error in the bathymetric source data. Using a direct simulation Monte Carlo method, we utilize data from the International Bathymetric Chart of the Arctic Ocean database to develop a suitable methodology for assessment of the standard deviations of depths in the interpolated grid. Our assessment of random errors in each data set are heuristic but realistic and are based on available metadata from the data providers. We show that a confidence grid can be built using this method and that this product can be used to assess reliability of the final compilation. The methodology as developed here is applied to bathymetric data but is equally applicable to other interpolated data sets, such as gravity and magnetic data
    • …
    corecore