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ABSTRACT 
 

EVALUATING SATELLITE DERIVED BATHYMETRY IN REGARD TO 

TOTAL PROPAGATED UNCERTAINTY, MULTI-TEMPORAL CHANGE 

DETECTION, AND MULTIPLE NON-LINEAR ESTIMATION 

BY 

RICARDO RAMOS FREIRE 

University of New Hampshire, September, 2017 
 

Acoustic and electromagnetic hydrographic surveys produce highly-accurate bathymetric 

data that can be used to update and improve current nautical charts.  For shallow-water surveys 

(i.e., less than 50m depths), this includes the use of single-beam echo-sounders (SBES), multi-

beam echo-sounders (MBES), and airborne lidar bathymetry (ALB).  However, these types of 

hydrographic surveys are time-consuming and require considerable financial and operational 

resources to conduct. As a result, some maritime regions are seldom surveyed due to their remote 

location and challenging logistics. 

Satellite-derived bathymetry (SDB) provides a means to supplement traditional acoustic 

hydrographic surveys. In particular, Landsat 8 imagery: 1) provides complete coverage of the 

Earth’s surface every 16 days, 2) has an improved dynamic range (12-bits), and 3) is freely-

available from the US Geological Survey. While the 30 m spatial resolution does not match MBES, 

ALB, or SBES coverage, SDB based on Landsat 8 can be regarded as a type of “reconnaissance 

survey” that can be used to identify potential hazards to navigation in areas that are seldom 

surveyed.  It is also a useful means to monitor change detection in dynamic regions. 
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This study focused on developing improved image-processing techniques and time-series 

analysis for SDB from Landsat 8 imagery for three different applications:  

1. An improved means to estimate total propagated uncertainty (TPU), mainly the 

vertical component, for single-image SDB; 

2. Identifying the location and movement of dynamic shallow areas in river entrances 

based on multiple-temporal Landsat 8 imagery; 

3. Using a multiple, nonlinear SDB approach to enhance depth estimations and enable 

bottom discrimination. 

An improved TPU estimation was achieved based on the two most common optimization 

approaches (Dierssen et al., 2003 and Stumpf et al., 2003). Various single-image SDB band-ratio 

outcomes and associated uncertainties were compared against ground truth (i.e., recent Lidar 

surveys). Several parameters were tested, including various types of filters, kernel sizes, number 

of control points and their coverage, and recent vs. outdated control points. Based on the study 

results for two study sites (Cape Ann, MA and Ft Myers, FL), similar performance was observed 

for both the Stumpf and the Dierssen models. Validation was performed by comparing estimated 

depths and uncertainties to observed ALB data. The best performing configuration was achieved 

using low-pass filter (kernel size 3x3) with ALB control points that were distributed over the entire 

study site. 

A change detection process using image processing was developed to identify the location 

and movement of dynamic shallow areas in riverine environments. Yukon River (Alaska) and 

Amazon River (Brazil) entrances were evaluated as study sites using multiple satellite imagery. A 

time-series analysis was used to identify probable shallow areas with no usable control points. By 

using an SDB ratio model with image processing techniques that includes feature extraction and a 
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well-defined topological feature to describe the shoal feature, it is possible to create a time-series 

of the shoal’s motion, and predict its future location.  A further benefit of this approach is that 

vertical referencing of the SDB ratio model to chart datum is not required.  

In order to enhance the capabilities of the SDB approach to estimate depth in non-uniform 

conditions, Dierssen’s band ration SDB algorithm was transformed into a full non-linear SDB 

model. The model was evaluated in the Simeonof Island, AK, using Lidar control points from a 

previous NOAA ALB survey. Linear and non-linear SDB models were compared using the ALB 

survey for performance evaluation. The multi-nonlinear SDB model provides an enhanced 

performance compared to the more traditional linear SDB method. This is most noticeable in the 

very shallow waters (0-2 m), where a linear model does not provide a good correlation to the 

control points. In deep-waters close to the extinction depth, the multi-nonlinear SDB method is 

also able to better detect bottom features than the linear SDB method. By recognizing the water 

column contributions to the SDB solution, it is possible to achieve a more accurate estimate of the 

bathymetry in remote areas. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Traditional Hydrographic surveying 

 

According to International Hydrographic Organization (IHO) Standards for Hydrographic 

Surveys Special Publication Nº 44 (S-44, 2008), the basic purpose for conducting hydrographic 

surveys is to compile depth data to be used in nautical charts. However, such factors as the density 

of the depth data, the uncertainty of depth measurements, the ability detect or define underwater 

features, and the frequency in which surveys are conducted all affect the ability to provide 

sufficient information to ensure safety-of-navigation.  

Historically, hydrographic surveys were conducted from ships and boats using various 

types of equipment, systems and procedures.  In early days, direct measurements of depth were 

conducted using a lead line and a sounding pole. In the mid 1900’s, single-beam echo sounders 

(SBES) that were developed from military sonars started to be used in hydrographic surveys (IHO 

Manual of Hydrography, C-13, 2011). Side-scan sonar came into use in the 1970’s, but was 

primarily used for object detection.  Beginning in the 1990’s multi-beam echo sounder (MBES) 

and airborne lidar bathymetry (ALB) started to be used. Today, in relatively shallow-water areas 

(i.e., < 100 m depth) the most commonly used systems include SBES, MBES, ALB and side-scan 

sonar. 

While these types of systems provide high-accuracy measurements that meet IHO S-44 

requirements, conducting surveys from vessels or airplanes require considerable resource 
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management and logistics.  For instance, the survey vessel must transit to the study site, and there 

are high costs associated with installing/maintaining the survey system equipment and personnel. 

Ground support for horizontal/vertical control is often a major challenge. Sea-state conditions and 

weather affect the size of the survey vessel and boats that are required to conduct the survey. In 

particular, the size and location of shallow water areas can significantly impact the amount of 

underway time required to transit to and survey the area. The number of teams and the necessary 

skills of survey personnel can be significant.  In addition, medical support, transportation, shore 

accommodation, food and water supplies, and other provisions all impact the endurance of 

surveying crew. Regardless, these efforts must be performed to achieve suitable results that can be 

used for producing nautical charts and ensuring safety-of-navigation. However, because of the 

operational and logistical challenges, the number and frequency of surveys conducted, and their 

geographic coverage are often quite limited.  This becomes even more difficult when hydrographic 

offices are faced with increasingly limited budgets. 

 

1.2 Satellite Derived Bathymetry (SDB) 

 

An alternative approach is the use of Satellite Derived Bathymetry (SDB).   Recent studies 

and reports have shown that it can be an effective reconnaissance survey tool by providing a 

bathymetric model from a single satellite imagery and control points provided from the chart or a 

survey of opportunity (Pe’eri et al., 2014). Current access to publicly-available satellite imagery 

(e.g., Landsat 8, CBERS-4, and Sentinel-2A) provide repeatable coverage over most of the globe, 

and provide a means to infer bathymetry and bathymetry changes in remote areas that are difficult 

to access (Pe’eri et al., 2016). 
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Unlike active sensors used in echo-sounders or lidar systems that calculate water depth 

based on two-way travel time of a well-controlled transmitted signal, bathymetry derived from 

optical satellite imagery is inferred from image pixel values, based on intensity changes of an 

external source of radiation (e.g., sunlight) that is emitted or reflected by the target (i.e., the 

bottom). The optical imagery is generated using radiometers that scan specific ranges of spectrum. 

The SDB approach is based on the optical characteristics of light as it exponentially decays through 

the water column. The decay rate through the water column varies for different wavelengths and 

water conditions (Jerlov, 1976). The development of SDB began in the late 1960s (Polcyn and 

Rollin, 1969) and has since evolved to multiple approaches (e.g., Lyzenga, 1978, Philpot et al., 

2004; Stumpf et al., 2003; Dierssen et al., 2003; Louchard et al. 2003; Lyzenga 2006; 

Vanderstraete et al. 2006; Hogfe et al. 2008; Su et al. 2008; Bachmann et al. 2012; Flener et al. 

2012; Bramante et al. 2013).  

Although the use of SDB information in nautical charts is not well established worldwide, 

several hydrographic offices have started using this approach for updating their products. NOAA 

has been utilizing the SDB approach for marking features on their charts. Figure 1.1 shows an 

example of NOAA Chart 16081 (Raster chart and Electronic Navigational Chart) that includes the 

location of the potential uncharted shoal with a supplemental note and an illustration in the source 

diagram. NOAA has also utilized SDB for other charts in Alaska and along the western Florida 

coastlines. Similarly in France, SHOM has also been using SDB to update their charting products. 

As shown in Figure 1.2, SDB has been used to update the southern part of SHOM Chart 7458 

(Aratika Atoll chart in French Polynesia). In both cases SDB is a reconnaissance survey technology 

with the lowest hydrographic quality (i.e., CATZOC D). As such, all chart soundings have been 
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removed and only approximate depth contours were marked (Tournay and Quemeneur, 2013; 

Pe’eri et al., 2016).  

 

 

 

Figure 1.1.   NOAA Raster Chart 16081 that includes a new shoal that was identified using 

multi-temporal SDB: (a) revised 12-foot contour marking the location of the new shoal, (b) 

chart note describing the method used to identify the shoal, and (c) source diagram. (Peeri et 

al., 2016). 
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Figure 1.2.   SHOM Chart 7458 of Aratika Atoll chart in French Polynesia. The southern part 

of the Atoll has been updated with SDB information. As such, the depth areas are marked with 

different colors than the traditional chart (northern part of the chart). Also, all soundings in the 

areas that were updated using SDB have been removed (Tournay and Quemeneur, 2013). 

 

The physical assumption for the success for a band-ratio SDB approach is that the models 

assume a uniform bottom reflectance and water attenuation (Philpot, 1989; Dierssen et al., 2003; 

Stumpf et al., 2003). This assumption implies that any changes in either of these environmental 

parameters are minor with respect to the depth calculation. Therefore, it is assumed that a linear 

relationship exists between calibrations points (i.e., soundings) and the SDB model (i.e., the log 

ratio values between two bands of the satellite imagery). As such, SDB is typically used in tropical 

and subtropical regions with clear water conditions, and especially over sandy bottom areas 

(Stumpf et al., 2003; Philpot et al., 2004; Pe’eri et al., 2014). Another reason for the success of 

SDB as a reconnaissance tool for marine applications is that there no need to measure the tide 
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height during the image acquisition because transformation parameters used to vertically reference 

bathymetric model are accounted for though the use of control points that are selected from a 

nautical chart or smooth sheet, and are already in chart datum (e.g., Mean Lower Low Waters or 

Low Astronomical Tide).  

Although this procedure is relatively simple, it is important to note its limitations. The first 

is that this procedure is a reconnaissance tool and is not meant to replace traditional hydrographic 

survey technology (e.g., echo-sounders or ALB). Also, IHO S-44 document specifies that surveys 

used for charting application have an uncertainty estimation. To date, rigorous TPU estimates have 

been largely lacking from SDB studies. One preliminary effort was conducted to estimate the 

SISDB uncertainty using a Monte-Carlo method simulation (Pe’eri et al., 2014). However, the 

Monte-Carlo method is computationally expensive and requires environmental conditions that can 

be difficult to extend to other procedures and study sites. Another restriction is the dependency on 

known depths (e.g., control points) to perform the linear regressions. Areas with outdated 

bathymetric surveys or with no depth data available need to use a different approach to identify 

potential risks to navigation. Finally, the assumption of constant water column and bottom returns 

for the radiative transfer equation solution results in biased depth estimations. These types of 

limitations are the primary focus of the analysis in this dissertation. 

 

 

 

 



7 
 

1.3 Research Objectives and Dissertation Structure 

 

In recent years, studies have shown the potential use of the SDB method to derive 

bathymetry at chart datum from satellite imagery. However, several key steps are missing that 

limited the use of this method as a robust production tool for marine applications.  

The overarching goal of this study is to develop a set of tools related to the use of SDB that 

can provide cartographers and hydrographers an efficient and reliable means to evaluate chart 

adequacy on outdated survey areas. The study also aims to develop an empirical process for 

providing bathymetric information in areas where no survey has been conducted, nor where a 

current or reliable chart is available. By joining image-processing techniques and time-series 

analysis, this study has three main objectives for using Landsat 8 imagery as a means for producing 

SDB. 

i. Provide a full estimation of total propagated uncertainty (TPU) when evaluating 

single-image Satellite-Derived Bathymetry (SDB). 

ii. Develop a means to identify the location and behavior of dynamic shallow areas 

based on multiple-temporal Landsat 8 imagery. 

iii. Enhance the SDB algorithm to include its non-linear form for more accurate depth 

estimation.   

The following is a brief synopsis of the remainder of this dissertation. 

Chapter 2 provides a review of previous research related to the use of SDB for meeting 

hydrographic survey objectives. 

Chapter 3 details how TPU can be used to evaluate single-image SDB. Two traditional 

optimization models for SDB are modified to take into consideration control points (e.g., 

soundings) vertical uncertainty, by adding a weight matrix to linear regression. 
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Chapter 4 presents a topological approach for using satellite imagery to identify danger 

areas to navigation where traditional optimization SDB methods fail due to the lack of usable 

sounding. 

Chapter 5 presents a new SDB optimization method that empirically takes into 

consideration key physical parameters to estimate depth, including water column, bottom returns, 

and diffuse attenuation coefficient. In addition, this method shows clusters of bottom returns that 

enable a means for seafloor discrimination; 

Chapter 6 summarizes the combined results of the three study topics, draws some 

conclusions, and proposes further research areas that could be conducted. 
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CHAPTER 2 

 

BACKGROUND 

 

 Satellite derived bathymetry is a relatively new field that began to be considered as a tool 

to update navigation charts in the late 1960’s (Polcyn and Rollin, 1969).  The first Landsat satellite, 

known as Earth Resources Technology Satellite, was launched in 1972. The following year, a 

study from Polcyn and Lyzenga (1973) evaluated the potential use of Landsat 1 to map shallow 

waters. Since then, each new Landsat satellite, as well as other orbital platforms, has improved 

capabilities that enabled its use for ocean applications. 

 This chapter discusses some of the more important aspects and components of SDB 

including: 

iv. optical properties 

v. solar irradiance 

vi. water column radiance and diffuse attenuation coefficien 

vii. bottom radiance 

Also, the two basic procedures used to derive bathymetry are discussed: 

i. single image SD 

ii. multiple image SDB 
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2.1 Optical properties 

 

Solar light that penetrates the water and returns to the satellite detectors depends only on 

the optical properties of the medium (inherent optical properties – IOPs). Absorption coefficient 

and volume scattering function are the fundamental IOPs (Mobley, 1994). However, it is easier to 

measure radiometric variables such as the upwelling and down welling plane irradiances that lead 

to the use of apparent optical properties (AOPs) rather than IOPs to describe the bulk optical 

properties of water bodies (Mobley, 2004). Apparent optical properties depend both on the medium 

(i.e., the IOPs) and the geometric (directional) structure of the radiance distribution that display 

enough regular features and stability to be useful descriptors of a water body. The focus of this 

study will be on the optical contributions from the water column and the bottom on the solar light 

where the contributions from the atmosphere and the water surface mediums are considered 

negligible. Key optical properties (i.e., radiance and diffuse attenuation coefficient) are defined 

and briefly described in this section. Their relationships with the water column and the bottom will 

be used throughout the following chapters. 

 

2.1.1 Solar irradiance 

 

The light source that is used in the SDB method is the sun. It’s electromagnetic radiation 

power (i.e., energy per unit time) per unit area is defined as solar irradiance, 𝐸𝑑, with SI units of 

watts per square meter (W·m−2). To calculate the amount of solar irradiance at sea level, the sun 

is approximated as a black body at 6,000K. The total solar irradiance at top of atmosphere is 1,367 

W·m−2, which is an average value affected by annual variation of Earth-Sun distance. The Solar 
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Irradiance at sea level, at visible wavelength, is 522 W·m−2, which is 38.2% of the total solar 

irradiance (Mobley, 1994). 

 

 

 

Figure 2.1.   Solar irradiance spectrum models for a simulated black body (6000K) above the 

atmosphere and at sea level (adapted from Lamb and Verlinde, 2011). 

 

2.1.2 Water column radiance and diffuse attenuation coefficient 

 

Imagery sensors, such as cameras and scanners, have a limited field of view. As such, 

electromagnetic radiation power (i.e., energy per unit time) per unit area received from the 

interaction of the solar irradiance with a medium within a given solid angle in a specified direction 

is defined as radiance, 𝐿(𝜆), with SI units of watts per square meter (W·m−2). As light (e.g., 

radiances and irradiances) passes through the water (ignoring water surface and bottom boundary 
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conditions), it decreases exponentially with depth. The coefficient used to describe this light decay 

is defined as the diffuse attenuation coefficient, 𝐾(𝜆). This AOP varies for different water 

conditions and wavelength (Figure 2.2). Assuming that no losses of the solar irradiance occurred 

in the atmosphere, then the radiance at a given wavelength, 𝜆𝑖, collected at the water surface is 

𝐿(0, 𝜆𝑖). At this point it is possible to calculate the radiance returning from scattering within a 

given volume of water with a depth of 𝑧, 𝐿(𝑧, 𝜆𝑖), using Beer’s Law (Mobley, 1994) as: 

 

𝐿𝑤(𝑧; 𝜆𝑖) = 𝐿𝑤(0; 𝜆𝑖) ∙ 𝑒
−𝐾(𝜆𝑖)∙𝑧 2.1  

 

 

 

Figure 2.2.   Transmittance of light through different water conditions (Jerlov, 1976). 
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2.1.3 Bottom radiance 

 

 In contrast to the multiple studies on water column characteristics during the past 70 years 

(e.g., Jerlov, 1951; 1976; Preisendorfer, 1976; Mobley, 1994), investigation of underwater bottom 

characteristics using spectral imagery has been limited. The main reason is that bottom detection 

is typically only a narrow strip of several hundred meters from the shoreline depending the water 

quality. Depth penetration of solar light is typically only a few meters up to 30 meters for oceanic 

water condition.  In recent years, there has there been an increase in studies investigating optical 

remote sensing for bottom mapping, primarily for vegetation and corals. This increase in research 

is mainly due to the availability of datasets collected from advanced optical systems such as 

hyperspectral imagery (HSI), and airborne lidar bathymetry (ALB). HSI data is collected from 

remote sensing platforms (e.g., airborne or satellite). HSI uses large numbers of narrow, 

contiguous spectral bands (up to 20 nm) that can potentially detect and characterize optical water 

quality concentrations and vegetation such as colored dissolved organic matter, chlorophyll, 

suspended matter, macroalgae and seagrass (Brando and Dekker, 2003; Kirkpatrick et al. 2003; 

Yu et al., 2010; Pe’eri et al., 2016). ALB is an active pulsed laser system that provides water depth 

and reflectance at 532 nm (Lee and Tuell, 2003). Previous studies have shown the use of ALB to 

constrain spectral imagery for benthic mapping applications (Tuell and Park 2004; Tuell et al. 

2005a; Tuell et al. 2005b; Wang and Philpot, 2007; Park et al. 2010). 

 The bottom radiance is also used to derive bathymetry. Based on Beer’s law, it is possible 

to relate the observed radiance, 𝐿𝑜𝑏𝑠(𝜆𝑖), from an optical sensor to the water depth, 𝑧, (Lyzenga, 

1978; Philpot, 1989; Philpot and Maritorena et al. 1994): 
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𝐿𝑜𝑏𝑠(𝜆𝑖) = [𝐿𝑏(𝜆𝑖) − 𝐿𝑤(𝜆𝑖)] ∙ 𝑒
−2𝐾(𝜆𝑖)∙𝑧 + 𝐿𝑤(𝜆𝑖) 2.2  

 

𝐿𝑏(𝜆𝑖) is the bottom radiance for a single wavelength band and 𝐿𝑤(𝜆𝑖) is the observed radiance 

over optically-deep waters with no bottom contribution. It is important to note that this model 

assumes that the diffuse attenuation coefficient of the upwelling radiance is equal to the diffuse 

attenuation coefficient of the downwelling radiance. As a result, only a subset of the spectral range 

from the downwelling irradiance reaches the bottom and is reflected. The optically-deep waters 

yield optical observations that contain mainly radiance from scattering in the water column while 

the radiance contribution from the bottom is negligible. The depth limit using satellite-derived 

bathymetry algorithms is determined by the extinction depth which is the maximum depth that the 

light can penetrate the water, (𝐿𝑜𝑏𝑠(𝜆𝑖) → 𝐿𝑤(𝜆𝑖)). Areas deeper than the extinction depth will show 

an almost constant value that represents only the water column. 

 

2.2 Single image SDB 

 

2.2.1 Common approaches 

  

Several methods can be used to derive bathymetry based on a single-image approach. 

Based on descriptions provided by Philpot et al (2004), these include: analytical, optimization and 

look-up tables.  

i. Analytical methods – This approach derives water depth by calculating the 

attenuation of solar light through the atmospheric and water using radiometric 

transfer equations. Lyzenga (1978) used an analytical method to formulate a 

relationship between the radiance observed in imagery to the water depth and 
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bottom reflectance. His study also developed a radiative transfer model for sun light 

transmitted into the ocean and reflected back from the bottom to an imagery sensor. 

Depths are estimated based on a log-linear inversion model where the main 

assumption is that the bottom type and the water column are uniform. Later, Lyzena 

also developed a linear model to estimate depths based on pairs of bands from 

multispectral scanner using LIDAR data as benchmark (Lyzenga, 1985). Thus, 

multiple parameters are needed to derive bathymetry (e.g., diffuse attenuation for 

two wavelengths, water column radiance for two wavelengths, bottom radiance for 

two wavelengths, and control depths). Philpot (1989) expanded Lyzenga’s 

approach, introducing bottom type variability within a scene by presenting a scalar 

variable sensitive to bottom changes. Lyzenga et al. (2006) presented a sun glint 

correction algorithm based on near-infrared channel signal, since it presents 

minimum bottom return, allowing correction to be applied over the whole image 

without compromising depth correlation on analyzed bands. The model proposed 

was an update to Lyzenga (1985), and based on multiple linear regression among 

known depths and spatially equivalent natural logarithms of radiance values (Flener 

et al., 2012);  

ii. Optimization approaches – The optimization approach considers that similar 

radiometric conditions are observed by images at different wavelength ranges (i.e., 

bands). Radiometric differences between the two bands are related to optical 

properties of water. Thus, it is possible solve all but one radiometric parameter 

simultaneously using a ratio between two bands. Similar to the analytical approach, 

optimization approaches typically utilize a linear regression by assuming: 1) 
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optically-homogeneous water conditions, and 2) uniform bottom type. Stumpf et 

al. (2003) presented a non-linear model to estimate depths by tuning the ratio of 

natural logarithms of reflectance value from different wavelengths and matching 

pixels from different bands against chart bathymetry. The method is based on the 

fact that attenuation of light received by both bands is not equal. When changed 

into a linear equation, this proposed model also offers improved performance in 

relatively deep waters. Since bathymetry is extracted based on benchmark 

soundings, it will have the same vertical datum as the chart or the one used to reduce 

the survey depths (Pe’eri et al., 2014).  Vanderstraete et al. (2006) presented a 

multi-temporal, multi-sensor approach to detect changes on coastal area using 

Lyzenga (1978) approach to estimate water column correction. Su et al. (2008) 

enhanced Stumpf et al. (2003) method by using Levenberg-Marquardt optimization 

to deal with the non-linear inversion.  Kanno et al. (2011) proposed a semi-

parametric regression model by combining Lyzenga et al. (2006) with spatial 

interpolation. This method is intended to be used to increase bathymetric spatial 

resolution or to fill data gaps. Pe’eri et al. (2014) proposed a workflow for SDB 

products, whereby chart datum was used as an invariant vertical reference along 

imagery due to sensor rapid acquisition process, and not sensitive to tidal variations 

along its pixels. This is accomplished by the translation factor present at Stumpf et 

al. (2003) which accounts for tidal differences between chart soundings and 

imagery acquisition; 

iii. Look-up tables (LUT) – This supervised classification approach consists on 

creating a database of remote sensing reflectance spectra based on radiometric 
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calculation of the interaction of solar light spectrum with different bottom and water 

types at different depths. Then, each pixel reflectance spectrum from available 

imagery is compared against created database spectrum. Using least-squares 

approach, the minimum discrepancy between imagery and database is selected, 

providing the environmental conditions at each pixel. Louchard et al. (2003) 

presented a simulated bathymetric library (e.g., look-up tables) of remote sensing 

reflectance spectra for depths up to 20 m. Bramante et al. (2013) compared the three 

methods based on a modified Lyzenga et al (2006) model, Stumpf et al. (2003) and 

Louchard et al. (2003). 

  

2.2.2 SDB band-ratio procedure 

  

 In the remote sensing of optically-shallow coastal waters, a typical multispectral sensor 

contains several channels.  Each chanel captures a broad spectral range (70 to 150 nm wide) that 

collectively spans the visible through the infrared portions of the electromagnetic spectrum. Light 

transmittance through the water column varies as a function of wavelength. The solar irradiance 

that is able to penetrate seawater to appreciable depths is typically between 350 nm (ultraviolet-

blue) and 700 nm (red), depending on the water clarity and the water depth (Jerlov 1976; Mobley 

2004). Sunlight at wavelengths greater than 700 nm (i.e., near infrared) has very low transmittance 

in seawater (Parrish, 2013).  

According to equation 2.2, both the optical property values of the water column and the 

seafloor are needed to derive the bathymetry: 
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𝑧 = −
1

2𝐾
∙ 𝑙𝑛 (

Lobs (𝜆𝑖) − 𝐿𝑤(𝜆𝑖)

𝐿𝑏(𝜆𝑖) − 𝐿𝑤(𝜆𝑖)
) 2.3  

 

However, the requirements for Lyzenga’s (1978, 1985) inversion approach (i.e., an analytical 

method) presented over a complex environment with multiple seafloor types, and the potential 

accuracy required to calculate the diffuse attenuation coefficient do not meet the available 

resources for this study. Instead, a ratio transform approach that utilizes two bands to reduce the 

number of parameters required is used to estimate depth (Stumpf et al. 2003). Based on the 

assumption that the water column is uniformly mixed, the ratio of two bands will maintain a near-

constant attenuation value that is the difference of the diffuse attenuation coefficient values of the 

two different wavelengths. Dierssen et al. (2003) used a log-difference concept to derive 

bathymetry in turbid waters.  He determined thata strong absorption in the Red band and a 

relatively weak absorption in the Green band will produce a ratio that is correlated with the 

bathymetry. The results showed a linear relationship between the green/red (555 nm/ 670 nm) ratio 

and single-beam echosounder depth measurements, where the gain, 𝑚1, and offset, 𝑚0, are 

empirically determined: 

 

𝑧 = 𝑚1 ∙ [𝑙𝑛(Lobs(𝜆𝑖)) − 𝑙𝑛(Lobs(𝜆𝑗))] + 𝑚0 = 𝑚1 ∙ 𝑙𝑛 (
Lobs (𝜆𝑖)

Lobs(𝜆𝑗)
) + 𝑚0 2.4  

 

Stumpf et al. (2003) used a log-ratio approach with Blue and Green bands. Typically, in coastal 

conditions, light in the green wavelengths (500 to 600 nm) is absorbed with depth faster than blue 

wavelengths (400 to 500 nm) (Jerlov 1976). The Stumpf et al. (2003) algorithm can remove the 

errors associated with varying albedo in the atmosphere, water column, and the seafloor since both 
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bands are affected similarly. Accordingly, the change in ratio between bands is affected more by 

depth than by bottom albedo (Stumpf et al. 2003). Depth can then be derived using the following 

equation, where the gain and offset are again empirically determined, as in the Dierssen’s 

approach: 

 

𝑧 = 𝑚1 (
𝑙𝑛(Lobs(𝜆𝑖))

𝑙𝑛(Lobs(𝜆𝑗))
) + 𝑚0 2.5  

 

It is important to note that the linear transform approach has challenges when trying to 

obtain accurate values for the water column and the seafloor optical properties (Philpot, 1989). A 

loosely constrained model can fail to provide accurate depth values when the simplified 

assumptions (e.g., homogeneity of water column parameters) are not satisfied. In this study, only 

the ratio transform algorithms were evaluated since the ratio-transform algorithms require fewer 

constants and no optical properties to determine bathymetry. 

Key steps in the satellite-derived procedure include (Pe’eri et al., 2014):   

i. Pre-processing – Satellite imagery is downloaded based on the geographic location 

and environmental conditions (e.g., cloud coverage and sun glint) had to be used; 

ii.  Spatial filtering – ‘Speckle noise’ in the Landsat imagery is removed using spatial 

filtering; 

iii. Water separation – Dry land and most of the clouds are removed; 

iv. Identifying the extinction depth – The optical depth limit for one to infer 

bathymetry (also known as, the extinction depth) is calculated; 

v. Applying the bathymetry algorithm – The bathymetry is calculated using the 

Stumpf et al. (2003) algorithm on the blue and green bands; 
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vi. Vertical referencing – A statistical analysis between the algorithm values to the 

chart soundings references the Digital Elevation Model (DEM) to the chart datum. 

A detailed discussion on the SDB procedure is provided in Chapter 4.  

Vertical referencing of the SDB model to chart datum includes three sub-steps: selection 

of control soundings, determination of the extinction depth and vertical transformation of the SDB 

model. First step is to select reliable control soundings, ideally from a recent survey (ALB or 

acoustic). The reference soundings should be selected over areas in which the charted seafloor 

morphology shows visual correspondence with the algorithm result. Additional soundings may be 

selected from the chart over optically-deep waters (i.e., seafloor morphology cannot be recognized 

in the algorithm result) in order to determine the extinction depth. Next, the algorithm model 

results are compared to the control soundings at coincident points. The averaged values of the SDB 

model are plotted against the control point soundings (Pe’eri et al., 2014). It enables discriminate 

areas where the seafloor contributes to the recorded pixel values (i.e., optically-shallow areas) from 

those areas where contributions are only from water color and suspended particulates (i.e., 

optically-deep areas). Based on a visual inspection of the depth measurements, other depth 

boundaries were also determined (Figure 2.3). Areas shallower than the extinction depth show a 

linear relationship between the reference bathymetry and the algorithm results. Areas deeper than 

the extinction depth do not show a clear correlation between the reference bathymetry and the 

algorithm results, and will break from the linear trend of the optically-shallow waters. A regression 

analysis was used to indicate the linearity between the datasets. The calculated parameters in the 

regression analysis included 𝑟2 (the coefficient of determination), gain, and offset. Based on the 

highest correlation (𝑟2 closest to 1), the best procedure configuration was selected. 
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Figure 2.3.   A schematic illustration of the statistical analysis using the blue-green Stumpf et 

al. (2003) algorithm against ALB survey data over a study site in Cape Ann, MA (Pe’eri et al., 

2014).  Top part of the image shows the scatter plot of the algorithms results as a function of 

the chart sounding (MLLW). The bottom part of the image provides a possible explanation for 

the algorithm results and their relation to the depth of extinction. 

 

2.3 Multiple-image approach 

 

 Most of the studies related to multiple satellite images used a set of images from a single-

image approach over a time duration for monitoring a particular seafloor feature (e.g., coral reef 

habitats). Multi-temporal change detection on coral reefs has been described by Zainal et al. 

(1993), Andréfouët et al. (2001), Dustan et al. (2001), Matsunaga et al. (2001), Palandro et al. 

(2003) and LeDrew et al. (2004). These studies were primarily related to coral reefs classification, 
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and not bathymetry. Vanderstraete et al. (2006) presented a multi-temporal multi-sensor approach 

to detect changes on coastal areas. Pe’eri et al. (2015) presented the use of multiple satellite 

imagery to determine regions that were not influenced by turbidity. By evaluating the difference 

between image pairs, it was possible to determine areas with minimum depth differences. Those 

areas were assumed to contain clear waters. Assuming that turbidity is constantly changing, areas 

subject to its interference will present different depths based on its respective SDB. It was noticed 

that areas considered clear presented highest correlation to charted depths. To harmonize 

radiometric distributions received by two images (i.e., relative to the same area) at different epochs, 

a histogram equalization model was presented. Also, since the method aims to derive depths based 

on minimum difference of SDB, final product would result in a mosaic where overlapping areas 

are integrated by averaging depths. Tidal effects are taken into account based on the use of chart 

soundings as control points (Pe’eri et al., 2014).  SDB multiple-image approach is based on the 

same processing concepts used in a SDB single-image approach. 

  



23 
 

CHAPTER 3 

 

APPLYING TOTAL PROPAGATED UNCERTAINTY (TPU) TO SINGLE-IMAGE 

SATELLITE-DERIVED BATHYMETRY 

 

3.1 Introduction 

 

 Single-Image Satellite Derived Bathymetry (SISDB) is a remote sensing technique 

whereby multi-spectral imagery is processed by combining the underwater physical properties of 

the satellite bands (characterized by different wavelength ranges), and correlate these bands to 

known depths. This relatively new approach has been used by hydrographic offices and researchers 

to derive shallow-water bathymetry, and as a means of hydrographic survey reconnaissance 

(Lyzenga, 1978; Dierssen et al., 2003; Stumpf et al., 2003; Philpot et al., 2004; Lyzenga, et al. 

2006; Pe’eri et al., 2014). The revisit cycles and global coverage of multi-spectral satellite imagery 

enable a cost-effective alternative for obtaining near-shore bathymetry in areas in which traditional 

surveying (e.g., ship-based acoustic surveying or Airborne Lidar Bathymetry) is infeasible due to 

limited resources, and logistical or safety constraints. Landsat imagery is commonly used for 

SISDB because it is publicly-available through the U.S. Geological Survey (USGS) Earth Explorer 

website (http://earthexplorer.usgs.gov/). In particular, Landsat 8 (L8) imagery presents a higher 

image quality and has become recognized as a useful means to obtain nearshore bathymetry (Pe’eri 

et al., 2016). 

 Using simplified radiative transfer equations (Philpot, 1989; Lyzenga et al., 2006), it is 

possible to relate imagery radiance from the water column and bottom to the water depth. To 

establish a correlation between observed radiance (e.g., imagery pixel values) and the water depth, 
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most SISDB algorithms use an optimization approach (Philpot et al., 2004; Lyzenga, et al., 2006). 

Typically, the optimization approach is in the form of a ratio of the logarithms of the blue and 

green bands (Stumpf et al., 2003). Assuming that the turbidity in the water column is uniform, this 

ratio algorithm output is expected to vary linearly with depth (Lyzenga, 1978 ; Philpot et al., 2004; 

Lyzenga, et al., 2006). Survey soundings from smooth-sheets (i.e., fair-sheets), or survey data that 

is tidally-referenced can be used as ground truth to linearly transform the log ratio into meaningful 

depths referenced to chart datum. There is no need to measure the tide height during the image 

acquisition because the determination of the transformation parameters from the tidally-referenced 

control points automatically accounts for the tide (Pe’eri et al. 2014). Differences in water levels 

are usually well approximated as a vertical offset and do not impair the linear relationship between 

chart control points and ratio algorithm output. Therefore, the procedure eliminates the need for 

either tide-coordinated imagery or tide correctors. 

 Most research on SISDB has focused on the algorithms that are used to derive bathymetry. 

Typically, the performance of SISDB algorithms is evaluated by comparing the algorithm’s results 

against a reference data set of higher accuracy (e.g., Liceaga-Correa and Euan-Avila, 2002; Kanno 

et al., 2011; Bramante et al., 2013; Flener et al., 2013; Su et al. 2014). The International 

Hydrographic Organization (IHO) develops and publishes Standards for Hydrographic Surveys S-

44 (IHO, 2008) that regulate the conduct of hydrographic surveys required to produce or update 

nautical charts. According to IHO S-44 publication, all survey related uncertainties should be 

addressed when producing an estimation of the total propagated uncertainty (TPU).  

 To date, rigorous TPU estimates have been largely lacking from SISDB studies. A 

preliminary effort was conducted to estimate the SISDB uncertainty using a Monte-Carlo method 

simulation (Pe’eri et al., 2014). However, the Monte-Carlo method is computationally expensive 
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and requires environmental conditions that can be difficult to extend to other procedures and study 

sites.  

 The main objective of this research project is to present an improved TPU estimation that 

is based on the two most common optimization approaches (Dierssen et al., 2003 and Stumpf et 

al., 2003). Different SISDB model depth and corresponding uncertainties are compared against 

ground truth (i.e., recent surveys). Several parameters were tested, including various types of 

filters, kernel sizes, number of control points and their coverage, and recent versus outdated control 

points. 

This study revisits the SIDSDB procedure first described in Pe’eri et al. (2014), and 

generates a full TPU model based on the uncertainty contributions throughout the SISDB 

procedure. The Dierssen and Stumpf SISDB algorithms were evaluated in this study. Using 

Mathcad Prime 3.1 (http://www.ptc.com), L8 imagery was used to evaluate SISDB algorithms 

using linear regression to relate the control points and L8 channels ratio. Bathymetry models and 

uncertainty values were generated for two sites along the East Coast of the United States: Ft. 

Myers, FL, and northern Cape Ann, MA. Two control points datasets were used for the vertical 

transformation: 1) Airborne Lidar Bathymetry (ALB) with a small position uncertainty (i.e., sub-

meter accuracy), and 2) charted depth soundings shown on a NOAA nautical chart. However, since 

the scale of the chart is 1:40,000, there are some inherent limitations in using the charted sounding 

as quality control points.  This includes relatively few soundings per unit area, and each sounding 

having large degree of positional uncertainty (i.e., > 1 m vertically and >10 m horizontally). In this 

regard, the difference between SISDB derived depths based on chart soundings and SISDB derived 

depths based on ALB data calibration points was computed to verify if the derived soundings were 

within the vertical uncertainty, assuming a confidence level of 90% (CL90). 
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3.2 SISDB Procedure 

 

The relationship between the observed radiance in satellite imagery above shallow-water 

environment can be expressed using a simplified solution to radiative transfer equation (Philpot, 

1989; Lyzenga et al., 2006):  

 

𝐿𝑜𝑏𝑠(𝜆) = (𝐿𝑏(𝜆) − 𝐿𝑤(𝜆))𝑒
−2𝐾(𝜆)·𝑧 + 𝐿𝑤(𝜆) 3.1 

 

Where 𝐿𝑏(𝜆) is the bottom radiance, 𝐿𝑤(𝜆) the radiance scattered from the water column (no 

bottom contribution), 𝐾(𝜆) the diffuse attenuation coefficient and 𝑧 is depth.  

The exponential attenuation of light through the water column is wavelength dependent 

(Figure 3.1). Wavelengths greater than 0.85 μm typically do not penetrate more than a few mm of 

the water surface (Parrish, 2013). For most water cases, the diffuse attenuation coefficient values 

of the blue (around 0.4 - 0.5 μm) and green (around 0.5 - 0.6 μm) wavelengths are on the same 

order of magnitude (Fig. 3.1).  The diffuse attenuation coefficient value of the near infrared (NIR) 

band (> 0.85 μm) is larger by two orders of magnitude (Jerlov, 1961; Smith and Baker, 1981). In 

the absence of specular water surface reflections, water in the NIR band will typically be manifest 

through very low digital numbers (i.e., dark pixels), in comparison to the adjacent land,especially 

in the case of beaches composed of sand and vegetation that reflect strongly in the NIR. It is 

possible to avoid specular water surface reflections by selecting scenes acquired with 

advantageous solar illumination ray-path geometry with respect to satellite sensor and the water-

surface target, as described at Mahiny and Turner, 2007. 
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Figure 3.1.   Diffuse attenuation coefficient as a function of wavelength for open-ocean 

conditions (Smith and Baker, 1981). 

 

There are different approaches available to calculate SISDB including analytical methods 

(Lyzenga 1978; Philpot 1989; Lyzenga et al. 2006; Frener et al., 2012), optimization approaches 

(Dierssen et al. 2003; Stumpf et al. 2003; Vanderstraete et al., 2006; Su et al. 2014), and look-up-

table approaches (Louchard et al. 2003; Bramante et al. 2013). In this study a sub-category of the 

optimization approach was used based on a band ratio. The radiance values of the blue and green 

bands are typically used in the band-ratio algorithms.   

The two most commonly used band-ratio optimization algorithms are those developed by 

Dierssen et al. (2003) that models the difference between observed radiance log values and Stumpf 

et al. (2003) that uses the division between the observed radiance log values of the Blue (B) band 

𝐿𝑜𝑏𝑠 (𝜆𝐵) and the Green (G) band, 𝐿𝑜𝑏𝑠 (𝜆𝐺). SISDB determination will depend on a scaling 
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coefficient (based on the diffuse attenuation coefficient), 𝑚0, and a translation coefficient (based 

on bottom return and diffuse attenuation coefficient), 𝑚1.  These parameter values are presented 

at Dierssen’s algorithm (Dierssen et al., 2003): 

 

𝑧 = 𝑚0 ∙ 𝑙𝑛 (
𝐿𝑜𝑏𝑠 (𝜆𝐵)

𝐿𝑜𝑏𝑠(𝜆𝐺)
) + 𝑚1 3.2 

 

Stumpf’s algorithm (Stumpf et al., 2003) presents a slightly different model using a ratio of the 

observed radiance log values: 

 

𝑧 = 𝑚0 (
𝑙𝑛(𝐿𝑜𝑏𝑠(𝜆𝐵))

𝑙𝑛(𝐿𝑜𝑏𝑠(𝜆𝐺))
) + 𝑚1 3.3 

 

Both band ratio algorithms provide reasonable results for hydrographic reconnaissance (Pe’eri et 

al., 2014). The key steps in the SISDB procedure include: filtering, land/water separation, and 

vertical transformation. In this study, determination of the extinction depth (i.e., the depth limit for 

bottom detection using the satellite imagery) is considered as an initial, sub-step of the vertical 

transformation. Extinction depth was 8 m for both study sites. In certain instances, other types of 

pre-processing steps could be performed, including sun-glint removal, cloud removal, atmospheric 

correction, or radiometric calibration. However, these pre-processing steps are beyond the scope 

of this research project, and were not investigated. 
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3.2.1 De-noising 

 

 Based on a recent report by Czapla-Myers et al (2015), the signal-to-noise ratio (SNR) of 

L8 radiance imagery acquired by the Operational Land Imager can be often eight times higher than 

imagery acquired by Landsat 7 (L7) using the Enhanced Thematic Mapper Plus. This was caused 

by the radiometric quality of L7 being degraded after May, 2003, following a Scan Line Corrector 

error. The horizontal accuracy of L8 was also improved from 50 m at 90% confidence interval 

(L7) to 12 m at 90% confidence interval (Storey et al., 2014). The L8 imagery is available to the 

user in Universal Transverse Mercator (UTM) projected coordinates, and is referenced to the WGS 

84 (G872) datum. In addition to the limited dynamic range of 8 bit in L7 imagery, a type of ‘speckle 

noise’ was present in all bands.  In particular, the green band contained additional radiometric 

noise that is referred to ‘wave noise’ (Vogelmann et al. 2001; Pe’eri et al., 2015). L8 imagery 

contains 12-bit information stretched to a 16-bit dynamic range. Although the noise in the L8 

imagery is significantly lower than that of L7 imagery, some noise and striping artefacts has been 

observed in the datasets. According to the USGS Earth Resources Observation Systems (EROS) 

Data Center (Thomas Adamson, personal communication, 2015), the striping is due to:  1) per-

detector relative gain estimates; 2) individual detector instabilities; and 3) slight differences 

between each detector's linearity. 

Due to these limitations, only recent L8 imagery (from 2015) with cloud cover lower than 

5% was used for this study. The imagery was loaded into Mathcad Prime 3.1 as matrices using 

Geospatial Data Abstraction Library (GDAL) to transform the image files into ASCII format, since 

Mathcad was down sampling the 16-bit images to 8-bits when using its image reading tools. In 

order to enhance the image quality, spatial domain filters were applied in the pre-processing step. 

Four different types of spatial filters with kernel sizes of 3×3 and 5×5 were evaluated: average, 
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median, 2D adaptive Wiener and Gaussian low-pass (Gonzalez and Woods, 2017). From the four 

filters, the spatial domain Gaussian low-pass filter and average filter were chosen based on Signal-

to-Noise Ratio (SNR) analysis using the kernel’s mean, 𝜇, and standard deviation, 𝜎 (Brüllmann 

and d’Hoedt, 2011): 

 

𝑆𝑁𝑅 = 20𝑙𝑜𝑔 (
𝜇

𝜎
) 3.4 
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Figure 3.2. Spatial domain filter kernels. 

 

3.2.2 Water Separation 

 

Water body areas were separated from land areas based on the spatially filtered blue and 

green bands (i.e., Bands 2 and 3 in L8). A shortwave infrared (IR) band (Band 6 in L8) was used 

as a spatial condition to mask the land from visible bands and extract the water bodies. This 

land/water separation was done using the Normalized Difference Water Index (NDWI, as in 
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McFeeters, 1996, Gao, 1996, Ji et al., 2009 and McFeeters, 2013) IR band, 𝐿𝑜𝑏𝑠 (𝜆𝐼𝑅) and Red 

band, 𝐿𝑜𝑏𝑠 (𝜆𝑅), using: 

 

𝑁𝐷𝑊𝐼 =
𝐿𝑜𝑏𝑠 (𝜆𝑅) − 𝐿𝑜𝑏𝑠 (𝜆𝐼𝑅)

𝐿𝑜𝑏𝑠 (𝜆𝑅) + 𝐿𝑜𝑏𝑠 (𝜆𝐼𝑅)
 3.5 

 

As mentioned previously, water in the IR band will typically have very low digital numbers 

in comparison to the adjacent land. As shown in Figure 3.3, water pixels will typically be 

characterized by lower IR-band pixel values in comparison to Red-band pixel values.  On the other 

hand, land pixels will typically be characterized by higher IR-band pixel values in comparison to 

Red-band pixel values. As a result, water masses would have positive NDWI values. 

 

 

 

Figure 3.3.   Spectral characteristics of water, soil and vegetation in the visible and IR range 

(based on Gao, 1996). 
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3.2.3 Vertical transformation 

 

A vertical transformation is established between the log ratio values and chart datum using 

control points from a reference dataset that are referenced to the same datum used for the 

navigational chart (Pe’eri et al., 2014). It is important to note that the spatial distribution and spot 

spacing density (i.e., measurements per unit area) of the control points varies between survey 

locations. The main reason for this difference is the suitability of the available data that can be 

used as control points.  Whenever possible, it recommended to use the soundings contained on the 

SS that contain a denser spot spacing compared to nautical chart soundings. SS will potentially 

provide a stronger statistical solution.  However, even SS soundings typically contain an average 

spot spacing that ranges from tens to hundreds of meters (i.e., not all pixels in the Landsat imagery 

will contain a sounding). In cases where surveys are available (e.g., ALB or MBES), the horizontal 

point spacing of the survey data (< 3 m ) is usually an order of magnitude smaller than the image 

resolution (30 m for L8 imagery).  In this type of situation, it is necessary to statistically reduce 

the number of control points by using common sampling techniques (Cochran, 1977). In this study, 

the horizontal Root Mean Square Error (RMSEH) values provided in the Landsat Metadata (MTL) 

files from L8 imagery were used to sample the ALB and SS datasets (Figure 3.4). A geo-statistical 

averaging was applied to depth measurements in reducing them to a single value per image pixel 

to calculate the associated uncertainty value. Soundings average calculation disregarded depths 

that were considered near the pixel border, based on the horizontal uncertainty values at L8 

metadata (Figure 3.4). 

To evaluate the contribution of positioning quality of the control points on the vertical 

transformation, the same amount/position of ALB measurements and SS soundings were used as 

control points in this study. The adjustment metric was based on the 𝐿2-norm between down-
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sampled spatial resolution control points and estimated depths. The relationship between the 

distributions of the control points within the study site to the vertical transformation was also 

evaluated using control points covering 25%, 50% and 100% of the whole study area. For the 

vertical transformation, it is assumed that a linear dependency between the SISDB model and the 

control points (i.e., a linear regression) can be applied to the SISDB model within the optically-

shallow waters.  

 

 

 

Figure 3.4. ALB selected soundings within a L8 pixel, used to estimate the most probable value 

of depth related to that pixel. 
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Based on equation 3.1, band ratio algorithms have linear behavior if 𝐿𝑤(𝜆𝐵) ≈ 0 and 

𝐿𝑤(𝜆𝐺) ≈ 0 (Dierssen et al., 2003; Stumpf et al., 2003). Accordingly, both Dierssen’s and 

Stumpf’s SISDB band-ratio algorithms (Equations 3.2 and 3.3) can be described using an affine 

form. In order to calculate the scaling coefficient, 𝑚0, and a translation coefficient, 𝑚1 for both 

algorithms, a linear regression approach is used to match n-values of depth measurements, L, 

against n-values of the corresponding SISDB pixel values log ratio that are present in the first 

column of the Jacobian matrix 𝐴𝐷,𝑆(𝜆𝐵, 𝜆𝐺): 

 

𝑉𝐷,𝑆 = 𝐴𝐷,𝑆(𝜆𝐵, 𝜆𝐺) ∙ 𝑋𝐷,𝑆 − 𝐿 3.6 

 

Where 𝑉𝐷,𝑆 is the residual vector for Dierssen’s and Stumf’s linear regression, 

𝐴𝐷(𝜆𝐵, 𝜆𝐺) =

(

 

𝑙𝑛 (
𝐿𝑜𝑏𝑠(𝜆𝐵)0

𝐿𝑜𝑏𝑠(𝜆𝐺)0
) 1

⋮ ⋮

𝑙𝑛 (
𝐿𝑜𝑏𝑠(𝜆𝐵)𝑛−1

𝐿𝑜𝑏𝑠(𝜆𝐺)𝑛−1
) 1)

 , 𝐴𝑆(𝜆𝐵, 𝜆𝐺) =

(

 

𝑙𝑛(𝐿𝑜𝑏𝑠(𝜆𝐵)0)

𝑙𝑛(𝐿𝑜𝑏𝑠(𝜆𝐺)0)
1

⋮ ⋮
𝑙𝑛(𝐿𝑜𝑏𝑠(𝜆𝐵)𝑛−1)

𝑙𝑛(𝐿𝑜𝑏𝑠(𝜆𝐺)𝑛−1)
1)

 , 𝑋𝐷,𝑆 = (
𝑚0

𝑚1
); and 

𝐿 = (

𝑧0
⋮

𝑧𝑛−1
)  

Linear regression was applied to transform imagery log ratio into depths using ALB or SS 

control points. A weight matrix 𝑊, based on the uncertainty of sound selection procedure (Figure 

3.4), was defined to balance the adjustment. The linear regression itself is fitted using a Least 

Squares Method (LSM, Mikhail, 1976; Vaníček, 1995), where 𝑉𝐷,𝑆
𝑇 ∙ 𝑊 ∙ 𝑉𝐷,𝑆 = 𝑚𝑖𝑛, and: 

 

𝑋𝐷,𝑆 = (𝐴𝐷,𝑆
𝑇 ∙ 𝑊 ∙ 𝐴𝐷,𝑆)

−1
∙ (𝐴𝐷,𝑆

𝑇 ∙ 𝑊 ∙ 𝐿) 3.7 
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Where 𝑊 = (

1/𝜎𝑧0
2 … 0

⋮ ⋱ ⋮
0 … 1/𝜎𝑧𝑛−1

2
)  

After a solution is provided from the linear regression (3.7), it is possible to calculate the residuals 

vector, 𝑉𝐷,𝑆, and subsequently the root mean square error, 𝑅𝑀𝑆𝐸𝐷,𝑆: 

 

𝑅𝑀𝑆𝐸𝐷,𝑆 = √
𝑉𝐷,𝑆

𝑇𝑉𝐷,𝑆
𝑛 − 2

 3.8 

 

When using a large number of control points from either a survey dataset (e.g., ALB or 

MBES), the processing time required to calculate the vertical transformation will increase because 

of the calculations associated to using a weight matrix. Since weight matrix is a diagonal matrix, 

it is possible to optimize the processing time by calculating the sums for the 𝑋𝐷,𝑆 solution vector. 

This optimized calculation of weight matrix is also useful for vertical uncertainty propagation. The 

solution of the parametric linear adjustment matrices in Equation 3.7 can be defined by a set of 

coefficients: 

 

𝐴𝐷,𝑆
𝑇𝑊𝐴𝐷,𝑆 = (

𝐶5 𝐶3
𝐶3 𝐶1

) 3.9 

 

𝐴𝐷,𝑆
𝑇𝑊𝐿 = (

𝐶2
𝐶4
) 3.10 

 

Where 𝐶1 = ∑
1

𝜎𝑘
2

𝑛−1
𝑘=0 = ∑ 𝑊𝑘

2𝑛−1
𝑘=0 ; 𝐶2 = ∑ 𝐴𝐷,𝑆𝑘,0𝐿𝑘𝑊𝑘

2𝑛−1
𝑘=0 ; 𝐶3 = ∑ 𝐴𝐷,𝑆𝑘,0𝑊𝑘

2𝑛−1
𝑘=0 ; 𝐶4 =

 ∑ 𝐿𝑘𝑊𝑘
2𝑛−1

𝑘=0 ;  and 𝐶5 = ∑ 𝐴𝐷,𝑆𝑘,0
2𝑊𝑘

2𝑛−1
𝑘=0 . 
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Accordingly, depth estimations for Dierssen (�̂�𝐷𝑖,𝑗) and Stumpf (�̂�𝑆𝑖,𝑗) are described by: 

�̂�𝐷𝑖,𝑗 =

𝑙𝑛 (
𝐿𝑜𝑏𝑠(𝜆𝐵)𝑖,𝑗
𝐿𝑜𝑏𝑠(𝜆𝐺)𝑖,𝑗

) ∙ (𝐶1𝐶2 − 𝐶3𝐶4) + (𝐶5𝐶4 − 𝐶3𝐶2)

𝐶1𝐶5 − (𝐶3)2
 

 

3.12 

 

�̂�𝑆𝑖,𝑗 =

𝑙𝑛(𝐿𝑜𝑏𝑠(𝜆𝐵)𝑖,𝑗)

𝑙𝑛(𝐿𝑜𝑏𝑠(𝜆𝐺)𝑖,𝑗)
∙ (𝐶1𝐶2 − 𝐶3𝐶4) + (𝐶5𝐶4 − 𝐶3𝐶2)

𝐶1𝐶5 − (𝐶3)2
 

 

3.13 

Where 𝑖, 𝑗 stands for the rows and columns of the satellite image 

 

3.3 Total propagated uncertainty 

 

IHO S-44, contains guidelines on quality definitions for hydrographic surveys that are 

considered necessary for safety-of-navigation (IHO, 2008). More specifically, IHO S-44 states that 

“All components and their combination must be capable of providing data to the required 

standard.” The combination of all the components (both random and systematic) is defined as the 

total propagated uncertainty (TPU). Assuming that the horizontal and vertical components of the 

TPU are independent from each other, it is common practice to describe the TPU using the total 

horizontal uncertainty (THU) and the total vertical uncertainty (TVU). In the case of SISDB 

analysis, the THU will be strictly dependent on imagery horizontal uncertainty. Calibration 

information that predict the horizontal uncertainty of the imagery are available within metadata 
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files distributed with L8 imagery. TVU of SISDB will be calculated in this study by analyzing 

uncertainties related to satellite imagery, as well as available control points (soundings). Since 

both the horizontal and vertical components are assumed to have null covariance, TPU will be 

determined by the quadratic summation of THU and TPU. Also, the survey quality that produces 

the control point will affect the uncertainty estimation.  

 

3.3.1 Total horizontal uncertainty 

 

No horizontal transformation is performed along SDB depth estimation. As such, the 

horizontal uncertainty in the SISDB procedure is the same as the horizontal uncertainly of the L8 

imagery. According to the Landsat 8 Data Users Handbook (USGS, 2016), L8 imagery is 

referenced to WGS84, projected in UTM, and has a reported horizontal accuracy of 12 m at 90% 

confidence level (CL90). Image-to-image registration was conducted by the USGS that verified 

horizontal accuracies of pixel locations of L8 imagery are well within the 12 m CL90 specification 

(Storey et al., 2014). The x and y RMSE components described in metadata (MTL) files are 

quadratic summed to achieve THU and is also limited by 12 m CL90 specification. 

 

 

3.3.2 Total vertical uncertainty (TVU) components 

 

Based SISDB procedure described in section 3.2.3, the two key properties that contribute 

to the total vertical uncertainty (TVU) include: 1) uncertainty related to the radiometric 

characteristics of the satellite imagery and filtering process; and 2) uncertainty related to the quality 
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of the control points. It was assumed that the uncertainties of the two key properties are 

independent, and can be approximated as Gaussian variables. 

 

3.3.2.1 Radiometric uncertainty 

 

As previously confirmed by Mishra et al. (2014) and Czapla-Myers et al. (2015), the 

radiometric uncertainty design specification for L8 imagery is ±5%. Using the values of the kernels 

described in Figure 3.2, the radiometric uncertainty of the satellite imagery after using spatial 

domain filter kernel, H, can be calculated as: 

 

𝜎𝐿𝑜𝑏𝑠 = √∑∑[(5% ∙ 𝐻𝑖,𝑗 ∙ 𝑃𝑖,𝑗)
2
] 3.14 

 

 

Where Hi,j are values of filter kernel constituents, as described in Figure 3.2 and Pi,j 

represent image pixel values within the window (same dimensions as H). 

 

3.3.2.2 Water and bottom optical properties 

 

The diffuse attenuation coefficient, 𝑘(𝜆), constrains the effective depth penetration of 

sunlight into the water (Mishra et al, 2005, Equation 3.1). The optical properties of the bottom may 

also affect this result, based on the optical characteristics of the bottom that may absorb part of the 

energy of the incident solar light (Philpot et al., 2004). In the case of SISDB, the optical 

characteristics of the bottom are assumed uniform and scattering from the water column is very 



39 
 

small. As such, water column contribution for the observed radiance is assumed to be negligible. 

Also, bottom radiance for two different bands (i.e., 𝐿𝑏(𝜆2) and 𝐿𝑏(𝜆1)) are assumed as constant.  

 

3.3.2.3 Control points 

 

National Hydrographic offices collect hydrographic survey data based on the requirements 

contained in IHO S-44 publication. ALB or acoustic surveying in shallow waters (typically, < 40 

m) have relatively uniform spot spacing and uncertainty. SS data or chart sounding represent a 

subset of all compiled surveys in each area that employ an intentional bias toward shoal areas (i.e., 

the charted depth is often purposefully taken to represent the shallowest measured depth in each 

area). Typically, uncertainty of SS data is approximated according to maximum allowable 

uncertainty (Table 3.1). Because the IHO S-44 requires accuracy with a 95% Confidence Interval 

rather than the 90% used by NASA to report on the image quality, the results are based on the IHO 

S-44 standard. As such, a distinction will be made using 95% Confidence Interval (95% CI). 

 

Survey order Maximum allowable TVU 

(95% CI) 

Maximum allowable THU 

(95% CI) 

Special Order 
a = 0.25 m 

b = 0.0075 
2 m 

Order 1a/1b 
a = 0. 5 m 

b = 0.013 
5 m + 5% of depth 

Order 2 
a = 1.0 m 

b = 0.023 
20 m + 10% of depth 

Table 3.1. IHO S-44 maximum allowable uncertainties according to IHO S-44 survey standards, 

where the maximum allowable TVU is calculated using ±√𝑎2 + (𝑏 ∗ 𝑑𝑒𝑝𝑡ℎ)2 (IHO, 2008). 
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3.3.3 Total vertical uncertainty (TVU) solution 

 

The resulting SISDB TVU is primarily dependent on the radiometric uncertainty of each 

of L8 bands, and the maximum allowable uncertainty of the control points. It is important to note 

that the radiometric values of the bands used to calculate the uncertainty (i.e., 𝐿obs(𝜆B)𝑘 and 

𝐿obs(𝜆G)𝑘) are sampled from the images by using a spatial filter kernel. Depending on the chosen 

SISDB model, the uncertainty estimation is constrained to column 0 values of the Jacobian matrix 

(σAD,Sk,0
): 

σADk,0 = √(
σLobs(λB)k
Lobs(λB)k

)
2

+ (
σLobs(λG)k
Lobs(λG)k

)
2

 3.15 

 

σASk,0 =
√(

σLobs(λB)k
Lobs(λB)k ∙ ln(Lobs(λG)k)

)
2

+ (
σLobs(λG)k ∙ ln(Lobs(λB)k)

Lobs(λG)k ∙ (ln(Lobs(λG)k))
2)

2

 

 

3.16 

The TVU solution of the SISDB was calculated combining partial derivatives (of equations 3.12 

and 3.13) to its variables uncertainties. The uncertainties reported in the metadata were used as the 

control point uncertainties, 𝜎𝐿𝑘, of the SS soundings and for the ALB data in the study.  The model 

uncertainties, 𝜎𝐴𝐷,𝑆𝑘,0
, for Dierssen’s linear regression and Stumpf’s linear regression are defined 

in equations 3.15 and 3.16. As a result, the TVU per pixel is: 
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𝑇𝑉𝑈𝑖,𝑗 =

= √(
(𝐶1𝐶2 − 𝐶3𝐶4)𝜎𝐴𝐷,𝑆𝑖,𝑗

𝐶1𝐶5 − (𝐶3)2
)

2

+ 𝐴𝐷,𝑆𝑖,𝑗
2 (𝑅1𝑎 + 𝑅2𝑎) + 2𝐴𝐷,𝑆𝑖,𝑗(𝑅1𝑏 + 𝑅2𝑏) + 𝑅1𝑐 + 𝑅2𝑐 

 

3.17 

Where 

AD𝑖,𝑗 =  𝑙𝑛 (
𝐿𝑜𝑏𝑠(𝜆𝐵)𝑖,𝑗

𝐿𝑜𝑏𝑠(𝜆𝐺)𝑖,𝑗
) ; AS𝑖,𝑗 =  

𝑙𝑛(𝐿𝑜𝑏𝑠(𝜆𝐵)𝑖,𝑗)

𝑙𝑛(𝐿𝑜𝑏𝑠(𝜆𝐺)𝑖,𝑗)
; 

R1a = ∑ {(σ𝐴𝐷,𝑆k,0
∙ Wk)

2

[
C1Lk−C4

C1C5−(C3)2
−
2(C1C2−C3C4)(C1𝐴𝐷,𝑆k,0−C3)

(C1C5−(C3)2)2
]

2

}n−1
k=0 ; 

R1b = ∑{(σ𝐴𝐷,𝑆k,0
∙ Wk)

2

{[(
C1Lk−C4

C1C5−(C3)2
−
2(C1C2−C3C4)(C1𝐴𝐷,𝑆k,0−C3)

(C1C5−(C3)2)2
)] ∙ [(

−C2−C3Lk+2C4𝐴𝐷,𝑆k,0

C1C5−(C3)2
−

2(C5C4−C3C2)(C1𝐴𝐷,𝑆k,0−C3)

(C1C5−(C3)2)2
)]}}; 

R1c = ∑{(σ𝐴𝐷,𝑆k,0
∙ Wk)

2

[(
C1Lk−C4

C1C5−(C3)2
−
2(C1C2−C3C4)(C1𝐴𝐷,𝑆k,0−C3)

(C1C5−(C3)2)2
)]

2

}; 

R2a = ∑{(σLk ∙ Wk)
2
[
C1𝐴𝐷,𝑆k,0−C3

C1C5−(C3)2
]
2

}; 

R2b = ∑{(σLk ∙ Wk)
2
[
(−C3Ak,0+C5)(C1𝐴𝐷,𝑆k,0−C3)

(C1C5−(C3)2)2
]}; and 

R2c = ∑{(σLk ∙ Wk)
2
[
−C3𝐴𝐷,𝑆k,0+C5

C1C5−(C3)2
]
2

}  
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3.3.4 TVU verification 

 

Reducing point spacing ALB and SS datasets, as well as only using matching soundings 

from both datasets resulted on not using a large portion of down-sampled ALB data. For instance, 

depth and TVU were calculated at Cape Ann study site, using Dierssen’s model, with 399 control 

points. The residual amount of averaged ALB data was 5,740 points. Those points, which were 

not used on the adjustment, were used to validate TVU values. Estimated soundings and their 

correspondent uncertainties at CI95 were evaluated against those points. The averaged ALB depths 

should lie inside the estimated depth uncertainty boundaries. If so, TVU for the specific estimated 

depth is considered valid. Ideally, the number of depths with valid TVU is greater than 95%. 

 

3.4 Results 

 

Bathymetry of two study sites (Cape Ann, MA and Ft. Myers, FL, Figures 3.5 and 3.6) was 

derived through linear regression using Dierssens’s and Stumpf’s affine form algorithms. SS 

soundings and ALB measurement were used as control points for the vertical referencing (Table 

3.2). As described above, the number of ALB and SS measurements were reduced to match L8 

spatial resolution. Three dataset of control points were generated based on the amount of coverage 

over the study area (i.e., 25%, 50% and 100% of the whole area). Depth estimation of pixels not 

used on adjustment was restricted to log ratio range used to calculate linear regression parameters. 

Control points derived from ALB and SS were evaluated in terms of SISDB and TVU (Figure 3.7). 

In addition to the control point datasets, a third dataset was generated from ALB measurement as 

a reference dataset to evaluate the performance of the weighted SISDB algorithm. The reason to 

use ALB measurements as the reference “ground truth” was because of their high vertical accuracy 



43 
 

(<0.25 m). Finally, the contribution of the radiometric enhancement using two types of normalized 

filters (Average and Gaussian low-pass) with kernel sizes of 3×3 and 5×5. 

 

Data Details Ft. Myers, FL Cape Ann, MA 

L8 

Acquisition date 2015-03-17 2014-10-12 

Cloud coverage (%) 1.38 3.15 

Map projection UTM-17N UTM-19N 

Horizontal datum WGS84 WGS84 

ALB 

Survey agency USACE USACE 

Acquisition year 2010 2014 

Grid resolution 1 m 1 m 

Vertical datum MLLW MLLW 

SS 

Survey agency NOAA NOAA 

Survey ID H08194, H08195, H08196, 

H08358, H08362, H08363 
H08095, H08096 

Acquisition year 1957, 1960, 1959, 1957, 1960, 

1961 
1954, 1954 

Vertical datum MLLW MLLW 

Table 3.2. Study sites dataset description. 
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Figure 3.5. Fort Myers (FL) site, including with the coverage area of the three control point 

datasets: 25% (red box), 50% (gray box) and 100% (hollow blue box). 

 

 

 

Figure 3.6. Cape Ann (MA) site, including with the coverage area of the three control point 

datasets: 25% (red box), 50% (gray box) and 100% (hollow blue box). 
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(a) 

  

  

(b)  

Figure 3.7. Both images are based on Dierssen’s model, using a 5x5 kernel average filter, with 

ALB control points (100% of study area) at Cape Ann. (a) shows depth estimation for SISDB 

and (b) displays TVU values calculated for each estimated sounding. 

 

Overall, the study results using the Dierssen’s and Stumpf models for the SISDB produced 

similar depths and uncertainties (Figure 3.8).  Due to models’ agreement, only Stump’s model will 

be presented. TVU values for Cape Ann ranged from 0.92 to 2.75 m (1 Sigma), depending on the 

filter and number of control points. For Fort Myers, TVU ranged from 0.75 to 1.80 m. Although 

different kernels may present lower TVU values, this uncertainty enhancement seems to be 

artificial and is not reflected when validating TVU estimations.   

SS and ALB depths were down sampled to L8 spatial resolution, associating one pixel to 

one averaged depth. Matching down sampled ALB and SS data composed two control points 

datasets. The remaining down sampled ALB depths (blue points, Figure 3.8) were used to check 



46 
 

TVU estimations. TVU validation calculated the percentage of blue points (ALB) sitting inside 

the boundaries of depths estimations and its associated uncertainty – showed as “Predicted”. 

 

  

Figure 3.8. Study result using over Cape Ann, MA, using SS control points and 3x3 average 

filter: using Dierssen’s model (at left) and Stumpf’s (at right). Blue points represent depths 

derived from ALB averaging, not used in linear regressions. The line passing through (0,0) is 

SISDB depth estimation. The upper and lower lines represent depth’s TVU at CI95. Predicted 

percentages show the agreement between estimated TVU, and the difference between estimated 

depths and ALB data for 25%, 50% and 100% SS control points. 

 

Fort Myers study area showed significant problems in the TVU validation, primarily when 

using SS control points associated to a 5x5 average filter (Figure 3.10). On the other hand, Cape 

Ann presented no major problems when comparing estimated TVU to the difference between 

estimated depths and ALB reduced data (Figure 3.9).  

 

Dierssen’s model Stumpf’s model 
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Figure 3.9. Cape Ann, MA, estimated depths and uncertainties compared against averaged ALB 

depths (blue points, not used for linear regression). 
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Figure 3.10. Fort Myers, FL, estimated depths and uncertainties compared against averaged 

ALB depths (blue points, not used for linear regression). 
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3.5 Discussion 

 

The analysis of TVU model indicates it is primarily dependent on the quality of the satellite 

imagery. Regardless of the algorithm structure, the log ratio, or difference of logs, there is an 

observed dependence between the vertical uncertainty and scaling coefficient to the radiometric 

uncertainty of the imagery. An additional improvement would be to use a non-linear model to 

estimate bathymetry. Such model would consider non-uniform water column and bottom 

conditions. 

Another crucial factor is the temporal component. As time increases between the collection 

date of the control point and the acquisition of the satellite imagery, currents and strong weather 

events can change the bathymetry within the area of interest over time. Ideally, the survey can be 

conducted shortly before the acquisition time of the satellite imagery that is used in the SISDB 

procedure. For example, the use of a single-beam echo sounder immediately before satellite 

imagery is available (typically, two weeks) can provide a cost-efficient solution with a TVU on a 

sub-meter level. This assumption can be verified when analyzing the estimated depths and TVU 

validation on Figures 3.9 and 3.10. Cape Ann presents the almost the same results for ALB and 

SS estimation, even though SS data was collected in the 1950’s. Depth trend line matches blues 

points on both ALB and SS regressions, and indicates a stable area. Fort Myers is the opposite. 

This area has experienced strong storms during the past 60 years (e.g. hurricanes Donna, 1960, 

Gordon, 1994, Gabrielle, 2001 and Charley, 2004 – Ingargiola et al., 2013). Although most of Fort 

Myers TVU validation (Figure 3.10) showed good percentages, depth trend line (central) is apart 

from blue points which are translated to the upper TVU line. This problem is aggravated when 

using the 5x5 average filter. But,  it is important to note that it is present in all the other regressions 
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using SS control points. The reduced ALB control points indicate the solution. As previously 

stated, using a few updated survey points (such as SBES) would largely benefit SISDB and its 

TVU. 

The significance of the proposed uncertainty approach is that there is no need for an 

operator to find optically-deep water area within the image (Pe’eri et al. 2014). Previous work for 

estimating the SISDB uncertainty used a Monte-Carlo simulation depended on the sample size 

extracted from the image, and on random variables to converge to a stable error estimation. Also, 

the processing time required for this approach is significantly shorter since only one calculation is 

needed rather than multiple iterations necessary for the Monte Carlo approach. Potentially, there 

may be some benefit in further reducing the processing time.  If so, Equation 3.17 could be 

simplified:   

 

𝑇𝑉𝑈𝑖,𝑗 ≈ 1.11
(𝐶1𝐶2 − 𝐶3𝐶4)𝜎𝐴𝐷,𝑆𝑖,𝑗

𝐶1𝐶5 − (𝐶3)2
= 1.11𝑚0𝜎𝐴𝐷,𝑆𝑖,𝑗

 

 

3.18 
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CHAPTER 4 

 

CHANGE DETECTION OF DYNAMIC SHALLOW AREAS OCCURRING IN RIVER 

ENTRANCES USING MULTIPLE LANDSAT 8 IMAGERY 

 

4.1 Introduction 

 

 Conducting hydrographic surveys on navigable rivers is a challenging but necessary effort 

for Hydrographic Offices (HOs). Some of the more important challenges include dynamic 

fluctuations in river flow and sediment transport.  In turn, this can cause significant changes in 

water levels, depth areas, sediment types, and obstructions to safe navigation. Typically, HOs 

perform traditional hydrographic surveys in river entrances using single-beam echo sounders 

(SBES), multibeam echo sounders (MBES), or airborne LiDAR bathymetry (ALB). The type of 

equipment used is influenced by many factors, including by depth range, water clarity, time-frame, 

and budget.  Despite the importance of keeping nautical charts updated in the entrances of 

navigable rivers where dynamic changes are occurring, many Hydrographic Offices do not have 

the resources to conduct frequent hydrographic surveys. An additional challenge occurs where 

hydrographic surveys are needed in remote areas. SBES, MBES, and ALB surveys all require 

crews on site, logistical arrangements, and significant investments in time and effort. These types 

of constraints often result in long periods of time between surveys.  As a result, the existing nautical 

charts often do not reflect the present conditions, and may not be suitable for ensuring safe and 

efficient maritime navigation.  

Although satellite-derived bathymetry (SDB) provides bathymetric datasets at a coarser 

spatial resolution, and are less accurate compared to traditional hydrographic surveys, it provides 
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continuously repeating coverage over the same area. Satellite imagery, such as Landsat and 

Sentinel, are publicly available at no cost, although have some constraints caused by cloud 

coverage and sun glint. As a result, it is possible to generate a multi-temporal analysis using a SDB 

approach. Each SDB imagery dataset provides a snapshot in time of shallow-water bathymetry. 

Changes in the bathymetry can be identified by making a comparison between scenes acquired at 

different times over the same area. Identifying and mapping the morphological changes and 

correlating them with reference benchmarks can provide valuable information for hydrographers, 

cartographers, and coastal managers in terms that mariners often wonder: “What has changed?”  

A number of studies have been conducted on estimating bathymetry from SDB single 

imagery (Pe’eri et al., 2014, Pe’eri et al., 2013, Flener et al., 2012, Bramante et al., 2013, Su et 

al.). More recent papers discussed the use of multiple-image analysis on SDB to enhance the final 

product (Pe’eri et al., 2016, Pe’eri et al., 2014). The major drawback for these types of approaches 

is that calibration points (i.e., soundings from previous surveys) are needed to estimate bathymetry 

from SDB. This can be a significant challenge in highly dynamic environments where depth 

soundings are outdated or non-existent. Another challenge associated with mapping SDB 

variations occurs when extracted features of dynamic changes over time present complex 

topological variations.  This can make it difficult to identify displacement vectors. 

Delineation of a feature using multiple satellite imagery from different platforms, however, 

is not a straightforward task. After limiting the satellite imagery to near cloud-free conditions (e.g., 

less than 10%), there may be some areas that will have only one useful image per year, or per 

several years. In addition, historical images from different platforms (i.e., Landsat 7, 5 or 4) are 

characterized with a low dynamic range (8-bit) and radiometric noise that poses difficulties when 

a semi-automatic approach is used (e.g., the processing algorithms are guided by the operator). 
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The feature analysis over time enables several outcomes: 1) identifies the location of stable areas 

versus dynamic areas, 2) assesses the impact of major weather events that affected the seafloor 

(e.g., hurricanes), and 3) enhances the use of the single-image SDB approach. The goal of this 

portion of the research is to describe the use of SDB for charting dynamic features.  

A change detection process using image processing was developed to identify the location 

and movement of dynamic shallow areas in riverine environments. Two river entrances were 

evaluated as study sites using multiple satellite imagery scenes from current (i.e., Landsat 8) and 

legacy Landsat imagery (i.e., Landsat 7, 5 or 4) imagery over time: Yukon River (USA) and 

Amazon River (Brazil). The time-series analysis developed in this study was used to identify 

probable shallow areas on both sites. In particular, the process described does not require the use 

of charted soundings as calibration points for SDB.  This is important since the most recent survey 

of the entrance the Amazon River was in 1997, while the the last survey of the Yukon River site 

was in 1899. 

 

4.2 Feature extraction using SDB 

 

4.2.1 SDB process 

 

 The SDB procedure to derive reconnaissance bathymetry is already used for chart updates 

over remote and dynamic locations (Kampia et al., 2016; Pe’eri et al., 2016; Tournay and 

Quéméneur, 2013). By assuming uniform conditions for the water column and the bottom, it is 

possible to solve the depth parameter, z, by calculating a log ratio between two satellite bands, 

typically the blue and green bands. In this study, a SDB ratio model was utilized (Pe’eri et al., 
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2014) that included the following steps: (1) radiometric enhancement, (2) dry-land removal, and 

(3) calculation of the SDB ratio model. It is important to note that control points are not available 

for conducting a vertical reference of the SDB ratio model to chart datum. Instead, feature 

extraction and analysis was conducted directly from the SDB ratio model. 

 

4.2.1.1 Radiometric enhancement 

 

Landsat 8 is the most recent platform of the Landsat satellites that provides to the publicly-

available satellite imagery at no cost. Landsat 8 imagery contains 12-bit information stretched to 

a 16-bit dynamic range.  The signal-to-noise ratio radiometric performance using an Operational 

Land Imager is as much as eight times higher than its predecessor, Landsat 7 using the Enhanced 

Thematic Mapper Plus (Czapla-Myers et al., 2015). This difference in image quality can affect the 

comparison images analyzed from Landsat 8 to satellite images acquired from Landsat 7 or earlier 

platforms that are limited dynamic range of 8 bit. In addition, all satellite imagery contains some 

degree of radiometric noise (e.g., speckle noise, banding or striping). As part of the pre-processing, 

a 3X3 Gaussian low-pass kernel was applied on all the satellite imagery that was used in the study:  

 

1

16
(
1 2 1
2 4 2
1 2 1

) 4.1 
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4.2.1.2 Dry-land removal 

 

Water body areas were separated from land areas using shortwave infrared (IR) band 

𝐿𝑜𝑏𝑠 (𝜆𝐼𝑅) and Red (R) band, 𝐿𝑜𝑏𝑠 (𝜆𝑅), as a spatial condition to mask dry land areas from visible 

bands and extract the water bodies. This land/water separation was performed using a Normalized 

Difference Water Index (NDWI) following (McFeeters, 1996, Gao, 1996, Ji et al., 2009 and 

McFeeters, 2013): 

 

𝑁𝐷𝑊𝐼 =
Lobs (𝜆𝑅) − Lobs (𝜆𝐼𝑅)

Lobs (𝜆𝑅) + Lobs (𝜆𝐼𝑅)
 4.2 

 

 

If NDWI values are positive, they are considered as water area pixels. 

 

4.2.1.3 Calculation of the SDB ratio model 

 

For this study, assuming homogeneous turbid waters, a SDB ratio model was calculated 

using a log ratio between the Green (G) band 𝐿𝑜𝑏𝑠 (𝜆𝐺) and the Red (R) band, 𝐿𝑜𝑏𝑠 (𝜆𝑅), (Dierssen 

et al., 2003): 

 

𝑧 = 𝑚0 ∙ 𝑙𝑛 (
𝐿𝑜𝑏𝑠 (𝜆𝐺)

𝐿𝑜𝑏𝑠(𝜆𝑅)
) +𝑚1 4.3 
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Since no updated soundings were available in the study areas, the SDB ratio model was not 

vertically transformed to chart datum and remained in image space. As such the scaling coefficient 

(i.e., based on the diffuse attenuation coefficient) was equal to one, 𝑚0 = 1, and the translation 

coefficient was equal to zero, 𝑚1=0.   

 

4.2.2 Feature extraction 

 

Shallow-area structures were identified by using an edge-detection algorithm on log ratio 

imagery.  Canny edge-detection (Canny, 1986), based on Mathcad 3.1 Prime internal function 

“canny”, presented good results on creating boundaries around shallow features.  

Only the features of interest were selected from the Canny edge detection results on the 

SDB ratio model. Other less obvious features were removed manually (Figure 4.1, left image). To 

overcome the complexity of the shoal feature’s shape, a well-defined topological feature was used 

generalize Canny edge detection results. Constraints for the well-defined topological feature were 

selected as “extreme points” (Figure 4.1, yellow points in the right image). Having the list of pixel 

coordinates, its extreme limits were defined by maximum and minimum E, N. All points that had, 

at least, one coordinate matching such limits were used to compose the yellow points (Figure 4.1). 
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Figure 4.1. (Left image): Canny edge detection results based on log ratio of imagery bands. The 

edges are used to identify “extreme points” (shown in yellow).  

 

4.3 Change detection process for shallow-area features using time series and prediction 

 

 This section uses the mathematical simplification of complex features into ellipses 

(Appendix B). Knowing the parameters of such conics enables the establishment of a mathematic 

relationship among them along time. Based on this relationship model, predictions in how the 

features would behave in the near future can be estimated. 

Since this process is based on generalizing a caution area into an ellipse with known 

geometric parameters, it is possible to map feature transformations over time (Figure 4.2). As such, 

this process can be performed using all the imagery datasets that are available for a specific area 

over different time periods.  This can provide a means of historical change detection analysis over 

time.  

To predict a probable caution area ellipse for the near future, the general ellipse equation 

is modified by adding a time variable: 
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𝐸(𝑥, 𝑦, 𝑡) = 𝑥2 + 𝑐1𝑡 ∙ 𝑥 ∙ 𝑦 + 𝑐2𝑡 ∙ 𝑥
2 + 𝑐3𝑡 ∙ 𝑥 + 𝑐4𝑡 ∙ 𝑦 + 𝑐5𝑡 = 0 4.16 

 

Solving such system of equations can be performed more efficiently when parametric equation 

variables are used.  The process involves working with each of the variables separately, (e.g., a(t), 

b(t), θ(t), x0(t) and y0(t)) one at a time. A linear regression model was developed for each x0(t) 

and y0(t).   The prediction variables a(t) and b(t) were constrained by upper CL95 value or using 

a maximum observed value for each semi-axis, whichever was smaller. Finally, both lower and 

upper CL95 values for θ(t) were calculated, and provided a two-ellipse result for each prediction.  

However, if CL95 was beyond max/min observed range for θ(t), only the last two parameters were 

used. 

 

 

 

Figure 4.2. Ellipse transformations along time (1986-2015). 
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4.4 Study Sites 

 

The first study site investigated by the change detection process developed in this study 

was the Yukon River, Alaska, USA, which is 3,185 km long and discharges an average of 5.7 x 

103 m3 s-1 (Brabets et al., 2000). The Yukon River serves several communities in the area that 

require their essential commodities to be transported by barges, including: fuel, fishery, 

construction equipment and material (Lower Yukon River Regional Port Project, 2014). There 

have been efforts to create a hub at Emmonak to optimize river usage to distribute goods for other 

local communities. However, no hydrographic surveys were conducted in the region since the 

1898-1899 field seasons that were used to create the two first edition charts covering Apoon (Chart 

9372) and Kwikluak (Chart 9373) Passes in the Yukon River Delta at a scale of 1:80,000. The 

original sounding data are still found on the current largest scale NOAA Raster Navigational Chart 

(RNC) Chart 16240 at a scale of 1:300,000 (Figure 4.3). 
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Figure 4.3. Comparison of Chart 9373 in 1907 in feet (left) and Chart 16240 in 2016 in fathoms 

(right). 

  

The second study site investigated by the change detection process developed in this study 

was the Amazon River that is 6,992 km long. The delta region is ~150 km wide and contributes 

with almost 20% of Earth’s freshwater discharge into the ocean. The Amazon River contains more 

than  1,000 tributaries, three of them > 3,000 km in length (UNEP, 2009). It experiences an average 

of 1.3 x 106 km2 of sediment plume seasonally with discharges that vary from 0.8 x 105 m3 s-1 to 

2.4 x 105 m3 s-1 (Grodsky et al., 2013, Cunha et al., 2012 and Moura et al., 2016). The Amazon 

River basin and its tributaries are responsible for half of Brazil’s commercial maritime riverine 

network (Wiegmans and Konings, 2017). Due to logistical constraints of operating in a large river 

with strong currents and in a jungle surrounding, survey operations near the entrance have not been 

conducted since the late 1970’s. However, shoal and exposed features within the river have been 

observed shifting over time using satellite imagery (Figure 4.4).  
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Figure 4.4. Amazon River Study site: (left) DHN chart 203 (1:80,000), (center) Landsat 1 

imagery acquired in 1972, and (right) Landsat 8 imagery acquired in 2014. 

 

4.5 Results 

 

4.5.1 Yukon River 

 

NOAA has recently updated the river banks of the Yukon River and shoal-feature locations 

within it as newly released Electronic Navigational Charts (ENC) using on SDB data (Kampia et 

al., 2016).  However, no depth values are present since no hydrographic surveys have been 

conducted over the past 117 years. As such, the SDB results cannot be vertically referenced to 

chart datum without reliable control points available, and are subject to water level variations. To 

minimize the water-level impact on the SDB results, five satellite imagery datasets over a 13-year 

period were used for analysis of the shoal-feature location (Table 4.1). In is important to note that 

although the satellite repetition rate over a given site is 16 days, cloud coverage and ice limited the 

ability to use many images in the datasets at the latitude of the study site. 
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Satellite Date Cloud coverage 

(%) 

Dynamic 

range 

Landsat 7 2002-08-21 0.00 8-bits 

Landsat 5 2006-10-26 2.00 8-bits 

Landsat 5 2008-05-24 18.00 8-bits 

Landsat 8 2014-09-06 0.00 12-bits 

Landsat 8 2015-06-21 0.16 12-bits 

Table 4.1. List of Landsat imagery used at Yukon River. 

 

Two shallow-water areas at in the entrance of Yukon River were selected for this study 

(Figure 4.5). A topological linear regression for Site 1 located on the southwestern part of the 

entrance was created using the 2006, 2008 and 2014 imagery. The early three images (i.e., 2006, 

2008 and 2014) were also analyzed to generate two predictions (i.e., lower and upper CL95 

ellipses) for the shoal location in June 21, 2015. A time-series for Site 2, located on the northeastern 

part of the entrance, was created using satellite imagery acquired in 2002, 2006, 2008 and 2014. 

Similar to Site 1, the early four images (i.e., 2002, 2006, 2008 and 2014) were also analyzed to 

generate two predictions for the shoal location in June 21, 2015. Feature extraction and analysis 

from a 2015 satellite imagery was used as a reference and compared to the prediction results 

generated for both areas.  
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Figure 4.5. Two shallow-water sites in the Yukon River in which features were extracted using 

Canny edge detection. 

 

The calculated time-series over Site 1 (2006-2014) show that the shoal-area was advancing 

toward the Bering Sea at a rate of -0.103 km/yr easting and 0.043 km/yr northing. It is also 

noticeable that the fitted ellipses’ size and orientation changed as sediment eroded from eastern 

side and accreted on the western side. These changes were also dependent on the river’s water 

level. Based on the translation parameters of the fitted ellipses, a linear regression was calculated 

for each of the areas (Figure 4.6). At Site 2 (2002-2014) was observed a rate of 0.016 km/yr easting 

and 0.011 km/yr northing. This shoal showed the lowest determination coefficients. 
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Figure 4.6. Time series of Shoal area 1 calculated using the topological fitting over an 8-year 

period starting from Sep-01, 2006. The ellipses red (2006), blue (2008), orange (2014) and green 

(2015) are represent the best fitting for features extracted using Canny edge detection. 

 

 

 

Figure 4.7. Time series of Shoal area 2 calculated using the topological fitting over a 12-year 

period starting from Aug-21, 2002. The ellipses black (2002), red (2006), blue (2008), orange 

(2014) and green (2015) are represent the best fitting for features extracted using Canny edge 

detection. 
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The predicted ellipses (yellow), for each site, were compared against the fitted ellipses 

(green) extracted from the 2015 satellite imagery (Figure 4.8). Results indicate that it is possible 

to relate the dynamic motion of the feature to the performance of prediction tool. In Site 1, the 

extracted feature is contained by the predicted ellipses and only a small portion of fitted ellipse 

(about 3.5% of its total area) is outside the predicted ellipses. Although the geometric union of 

predicted ellipses (shown in yellow) does not contain the entire area of the fitted ellipse (show in 

green), the feature edges were all correctly bounded. The distance between the center of predicted 

ellipses and the extracted ellipse is 463 m.  The orientation of the predicted ellipses was 16º and 

111º with respect to the extracted ellipse. The prediction results for Site 2 are better than Site 1. 

Both predicted ellipses are close to each other and to the extracted ellipse. The distance between 

the center of predicted ellipses and the extracted ellipse is 141 m.  The orientation of the predicted 

ellipses was -1º and 2º with respect to the extracted ellipse. 

 

 

  
 

Figure 4.8. Yellow ellipses represent predicted geometries for 2015, while green one are based on 

actual observed data for this year. 
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4.5.2 Amazon River 

 

The shallow-water area selected at the entrance of the Amazon River Entrance is Pedreira 

Islands, near Macapá city, Amapá, Brazil (Figure 4.9). These islands, located on the northern 

branch of the river entrance, were analyzed using satellite imagery acquired over a 29-year period 

(1986 – 2015) to calculate and characterize the feature’s dynamic trend (Figure 4.10). Cloud cover 

and high-water levels (up to 6 m in range) restricted the dataset to ten usable images (Table 2). 

Features analyzed from satellite imagery acquired in 1986, 1987, 1996, 2000, 2006 and 2008 was 

used to calculate a trend. Satellite imagery acquired in 2013, 2014 and 2015 was used as a reference 

to predicted feature locations based on the calculated trend. 

 

Image file Date Cloud coverage (%) Dynamic range 

Landsat 5 1986-07-15 0.00 8-bits 

Landsat 5 1987-07-02 11.00 8-bits 

Landsat 5 1996-08-27 15.00 8-bits 

Landsat 5 2000-09-07 17.00 8-bits 

Landsat 5 2006-10-26 2.00 8-bits 

Landsat 5 2008-05-24 18.00 8-bits 

Landsat 8 2013-09-27 9.23 12-bits 

Landsat 8 2014-09-14 10.79 12-bits 

Landsat 7 2015-08-24 6.00 8-bits 

Table 4.2. List of Landsat imagery used at Amazon River. 
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Figure 4.9. Edge detection at Amazon River.  Image based on 2015 data. 

 

It is noticeable that a process of erosion and accretion affected Ilhas Pedreiras site over 

time. To map the dynamic changes that occurred during this process, the same assumptions used 

for the Yukon River ellipse parameters were applied to the Amazon study site. In particular, the 

translation variables were modeled using a linear regression while the other components were 

statistically constrained.  
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Figure 4.10. Time series of Shoal area calculated using the topological fitting over a 22-year 

period starting from Jul-15, 1986. The ellipses red (1986), dark blue (1987), orange (1996), 

green (2000), blue (2006), brown (2008), black (2013), grey (2014) and light blue (2015) 

represent the best fitting for features extracted using Canny edge detection. 

 

The prediction for the shoal feature location in the Amazon study site was conducted for 

5, 6 and 7 years into the future of the last satellite image (2008). These results allow to identify the 

differences between the predicted geometrics and the extracted (i.e., actual) location of a shoal 

feature over time. The results for a 5-year (i.e., 2013) and a 6-year prediction into the future show 

that the predicted ellipses are close in distance and in orientation to the extracted ellipses. For a 5-

year prediction (2013), the distance between the center of predicted ellipses and the extracted 

ellipse is 402 m.  The orientation of the predicted ellipses was 4º and 8º with respect to the extracted 

ellipse. For the 2014 prediction, the distance between the center of predicted ellipses and the 

r2=0.90 
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extracted ellipse is 694 m.  The orientation of the predicted ellipses was -3º and 10º with respect 

to the extracted ellipse. Finally, for 2015, the distance between the center of predicted ellipses and 

the extracted ellipse is 1890 m.  The orientation of the predicted ellipses was -6º and 7º with respect 

to the extracted ellipse. 

 

 

 

 

 

 

Figure 4.11. Yellow ellipses represent predicted geometries while green ones are based on actual 

observed data for 2013 (a), 2014 (b) and 2015 (c). 

 

4.6 Discussion 

 

The results of the study demonstrated the ability to update the suitability and extend the 

use of an existing nauticalchart using remote sensing techniques.  By using an SDB ratio model 

2013 2014 

2015 
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with image processing techniques that include feature extraction and a well-defined topological 

feature to describe the shoal feature, it is possible to create a time series of the shoal’s motion, and 

predict its location in the near-future (e.g., up to 7 years). The benefit of this approach is that there 

is no need for vertically referencing of the SDB ratio model to chart datum.  

The results of study also identify dependence of the change detection process on the image 

quality and the environmental factors, especially the two selected study sites located in Arctic and 

Amazon regions. Key steps in the change detection process are feature extraction and topological 

fitting steps. An area of interest is extracted and then generalized using a Canny edge detection. 

Then, the area is fitted into a well-defined topological feature. The use of multiple satellite 

platforms with different dynamic ranges (i.e., 8-bit and 12-bit) reduces the performance of the 

feature extraction step, especially with Landsat 5 and 7 imagery. Even after low-pass filtering per 

channel, the log ratio of Landsat 5 and 7 was noisier and affected the detection capability of the 

algorithms. It would be useful to investigate other adjustment techniques to enhance ellipses fitting 

around the edges. The elongated ellipse calculated for 2015 data in Amazon River could be 

readjusted by adding a geometrical constraint, such as applying a Lagrange multiplier that would 

also search for a minimum area or eccentricity.  

The environmental factors affecting the change detection process included persistent cloud 

coverage and freezing of the water surface (in the case of the Yukon River). These environmental 

factors limited the number of usable images to less than one image per year. The river’s water 

level also affected edge detection algorithms. Since the water levels in riverine environments vary 

according to meteorological conditions, it is hard to vertical reference a given feature from all the 

available satellite images and select the same elevations for boundaries. Instead, a selection of the 

last three or four images over a 5-year period or longer will cover most scenarios. It is expected 
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that areas with higher availability of satellite imagery would perform better since time interval 

between detected features would be minimized, and the influence of water level on the detected 

shallow structures would be more evident.  

Both the Amazon River and Yukon River (site 1) presented relevant coefficient of 

determination values for Easting and Northing. For the Amazon area, it is noticeable that Year 

2015 presented a greater difference between predicted and observed ellipse centers (1890 m). 

Although there is expected decrease in the ability to predict further changes over time, this 

difference is caused by the elongated geometry of the fitting ellipse. As such, imposing conditions 

to geometric adjustment may provide better predictions. The northing and easting rates shows a 

very dynamic environment (Figure 4.10).  When associated to high coefficient of determination 

values, this becomes an interesting site to develop meaningful prediction models.  The same 

consideration applies to Yukon River study site 1. Those two sites should be monitored 

continuously (e.g., annually), although it may be difficult to obtain usable images due to constant 

cloud coverage and persistent ice coverage (in Alaska case).  

When analyzing easting and northing of shallow features at Site 2, there are low 

coefficients of determination values.  However, these almost stationary shoals (rates of 0.016 

km/yr easting and 0.011 km/yr northing) exhibited the highest agreement between predicted and 

observed ellipses in the study. Although study site 2 poses a risk to navigation, its stability along 

time lessens its importance in terms of continuous monitoring. Perhaps checking it every 5-10 

years would be sufficient.  
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Figure 4.12. Translation of shoals at Pedreira Islands, Amazon River, Brazil between nautical 

chart 203 (1977) and satellite image (2014). 

 

Re-positioning shoal areas on charts using the SDB approach has been applied to several NOAA 

charts, including the Yukon River (Kampia et al., 2016). As mentioned previously, trend 

calculations of dynamic features using SDB can be used to extend the adequacy of the charted 

features for river navigation up to five years beyond the dates of the satellite imagery. This 

recommendation is illustrated in the Yukon River (Figure 4.13). Extracted ellipses from 8-year 

and 12-year datasets are stacked together with predicted ellipses one year beyond the last image in 

the dataset (shoreline and shallow water areas). As a result, the hydrographic office can predict the 

routes of the marine vessels along the river, and plan surveys accordingly. In Figure 4.13, the 

predicted traffic was marked (pink) and compared to Automatic Identification System (AIS) data 

(red circles). 
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Figure 4.13. Predicted route (pink) compared to Satellite AIS points (in red) overlaid on Chart 

16240, with ESRI Imagery Basemap service in the background (Courtesy of Lt. Anthony 

Klemm). 
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CHAPTER 5 

 

DERIVING OPTICAL CHARACTERISTICS USING A NON-LINEAR SDB 

APPROACH 

 

5.1 Introduction 

 

Optical remote sensing technologies have been used to acquire shallow-water bathymetry 

up to the shoreline since the 1990’s. The two main technologies include airborne lidar bathymetry 

(ALB) and Satellite-derived bathymetry (SDB). ALB is an active remote sensing technology that 

uses a pulsed laser beam to measure water depths by calculating the two-way travel time of the 

laser pulses through water column. SDB is a passive remote sensing technology that utilizes 

different multispectral bands to infer water depth based on changes in observed radiance 

measurements.  

Over the past two decades, ALB has been used extensively to map nearshore areas for chart 

updates (e.g., Pe’eri and Long, 2011; White et al. 2011; Pastol, 2011). Since ALB is an optical 

system its performance is dependent on the optical characteristics of the water (Guenther, 1985). 

The main limiting factor affecting the performance of ALB is water clarity, namely the diffuse 

attenuation coefficient. As a result, the water depth of the seafloor can only be estimated to the 

extent of light penetration.  

On the other hand, SDB provides a cost-effective reconnaissance tool for assessing 

bathymetry in remote locations, or prior to a hydrographic survey using traditional sensors, such 

as acoustic or ALB (Pe’eri et al., 2015). Although its accuracy is lower than ALB, there are 

publicly available multispectral imagery covering many parts of the world. Traditional SDB 
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optimization methods (Dierssen et al., 2003; Stumpf et al., 2003) assume a uniform bottom 

reflectance and water attenuation. This assumption implies that any changes in either of these 

environmental parameters are minor with respect to the depth calculation. Further, it is assumed 

that a linear relationship exists between calibrations points (i.e., soundings) and the SDB model 

(i.e., the log ratio values between two bands of the satellite imagery). 

Similar to ALB, a single SDB result may detect a plume of suspended matter in the water 

and be misinterpreted it as a shoal. Previous work has shown that sediment plumes produce "false 

bathymetry" areas that are different in depth than the actual bottom bathymetry (Pe’eri et al., 2014; 

Philpot et al., 2004; Stumpf et al., 2003). SDB also assumes a uniform linear relationship exists 

between calibrations points and the SDB model in specific environmental conditions (i.e., null 

water column and constant bottom type returns).  As such, non-uniform water column or bottom 

conditions will affect depth estimates using SDB.  

In this study, the goal is to use the multispectral bands in satellite imagery and its repeatable 

spatial coverage over an area to estimate environmental conditions using an enhanced SDB 

approach. The enhanced approach uses a non-linear calculation to estimate depth in non-uniform 

conditions, and compare the depth to available control points. It is possible to estimate water 

column conditions over time, assuming bottom characteristics do not change during the 

observation period.  

The study site that was selected presents a major challenge for a linear SDB model 

approach. As such, Dierssen’s band ratio SDB algorithm was developed into a full non-linear SDB 

model. The new non-linear SDB model was evaluated in the Simeonof Island, AK area using 

Landsat 8 imagery. The control points used in this project came from a NOAA ALB survey 

H12103, conducted between May and August of 2009. However, adverse sea-state conditions 
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during the time of the survey resulted in some ALB survey gaps.  A linear and non-linear SDB 

model were generated using control points acquired by NOAA ALB survey. Both models were 

compared to each other using the ALB survey for performance evaluation. 

 

5.2 Linear SDB model 

 

5.2.1 SDB approach 

 

The linear SDB model is an optimization approach that uses the ratio of the logarithms of 

the blue and green bands (Stumpf et al., 2003). Assuming that the turbidity in the water column is 

uniform, this ratio algorithm output is expected to vary linearly with depth (Lyzenga, 1978; Philpot 

et al., 2004; Lyzenga, et al., 2006). Tidally-referenced survey soundings can be used to linearly 

transform the log ratio into meaningful depths that are referenced to chart datum. There is no need 

to measure the tide height during the image acquisition since the determination of the 

transformation parameters from the tidally-referenced control points automatically accounts for 

the tide (Pe’eri et al. 2014). Differences in water levels are usually well approximated as a vertical 

offset, and do not impair the linear relationship between chart control points and ratio algorithm 

output. Therefore, the procedure eliminates the need for either tide-coordinated imagery or tide 

correctors.  

The linear SDB model involves four (4) main steps: (1) radiometric enhancement, (2) dry-

land removal, (3) calculation of the SDB ratio model, and 4) vertical referencing.  
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Radiometric enhancement - To remove radiometric noise (e.g., speckle noise, banding or striping) 

from the satellite imagery, a 3X3 Gaussian low-pass kernel was applied to the imagery dataset as 

a pre-processing step:  

 

1

16
(
1 2 1
2 4 2
1 2 1

) 

 

5.1 

Dry-land removal - Next, water body areas were separated from land areas using shortwave 

infrared (SWIR) band 𝐿𝑜𝑏𝑠 (𝜆𝑆𝑊𝐼𝑅) and Red (R) band, 𝐿𝑜𝑏𝑠 (𝜆𝑅), as a spatial condition to mask dry 

land areas from visible bands and extract the water bodies. This land/water separation was 

performed using a Normalized Difference Water Index (NDWI) based on McFeeters, (1996), Gao 

(1996), Ji et al.(2009), and McFeeters (2013): 

 

𝑁𝐷𝑊𝐼 =
Lobs (𝜆𝑅) − Lobs (𝜆𝑆𝑊𝐼𝑅)

Lobs (𝜆𝑅) + Lobs (𝜆𝑆𝑊𝐼𝑅)
 5.2 

 

 

Calculation of the SDB linear ratio model 

A SDB ratio model was then calculated using a log ratio between two bands 𝐿𝑜𝑏𝑠 (𝜆1) and 

𝐿𝑜𝑏𝑠 (𝜆2) (Dierssen et al., 2003): 

 

𝑧 = 𝑚0 ∙ 𝑙𝑛 (
𝐿𝑜𝑏𝑠 (𝜆1)

𝐿𝑜𝑏𝑠(𝜆2)
) + 𝑚1 5.3 
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Where, 𝑚0 is the scaling coefficient (based on the diffuse attenuation coefficient) and 𝑚1 is the 

translation coefficient (based on bottom return and diffuse attenuation coefficient).   

 

5.2.2 SDB approach 

 

It is useful to explain the development of the linear model to understand its limitations. 

Using a simplified radiative transfer equation (RTE) solution following Philpot (1989), it is 

possible to correlate observed radiance 𝐿(𝜆), bottom radiance Lb(λ), radiance scattered from the 

water column Lw(λ), and diffuse attenuation coefficient, k(λ), to water depth 𝑧. 

  

𝐿(𝜆) =  [𝐿𝑏(𝜆) − 𝐿𝑤(𝜆)]𝑒
−2𝑘(𝜆)𝑧 + 𝐿𝑤(𝜆) 5.4 

 

Next, this relationship is rearranged to have all the radiance parameters on the same side.  

 

𝐿(𝜆1) − 𝐿𝑤(𝜆1)

𝐿𝑏(𝜆1) − 𝐿𝑤(𝜆1)
=  𝑒−2𝑘(𝜆1)𝑧 

𝐿(𝜆2) − 𝐿𝑤(𝜆2)

𝐿𝑏(𝜆2) − 𝐿𝑤(𝜆2)
=  𝑒−2𝑘(𝜆2)𝑧 

5.5 

 

This enables solving for depth, z, by dividing between the λ1 and λ2 relationships: 

 

𝑧 =
1

−2(𝑘(𝜆1) − 𝑘(𝜆2))
[𝑙𝑛 (

𝐿(𝜆1) − 𝐿𝑤(𝜆1)

𝐿(𝜆2) − 𝐿𝑤(𝜆2)
) + 𝑙𝑛 (

𝐿𝑏(𝜆2) − 𝐿𝑤(𝜆2)

𝐿𝑏(𝜆1) − 𝐿𝑤(𝜆1)
)] 5.6 
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In the case of a linear SDB model, it is assumed that the water contribution for the observed 

radiance is negligible with uniform bottom conditions (i.e., (𝐿𝑏(𝜆2))/(𝐿𝑏(𝜆1)) ≈ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡). 

 

5.3 Non-linear SDB model and optical properties estimation 

 

5.3.1 Non-linear form 

 

In the case of a non-linear form, Equation 5.6 is used instead of Dierssen’s algorithm 

(Equation 5.3): 

 

𝑧 = 𝑚0𝑙𝑛 [
𝐿(𝜆1) − 𝐿𝑤(𝜆1)

𝐿(𝜆2) − 𝐿𝑤(𝜆2)
] + 𝑚1 5.7 

 

Where 𝑚0 = 
1

−2(𝑘(𝜆1)−𝑘(𝜆2))
 and 𝑚1 = 𝑚0𝑙𝑛 [

𝐿𝑏(𝜆2)−𝐿𝑤(𝜆2)

𝐿𝑏(𝜆1)−𝐿𝑤(𝜆1)
]. The solution vector for the non-linear 

system of equations defined from 5.7 is represented by 𝑋𝑇 = (𝑚0,̂ 𝐿𝑤(𝜆1)̂ ,𝐿𝑤(𝜆2)̂ ,𝑚1̂).  Like 

SDB based on linear regression, 𝑧𝑛 soundings are used as control points. However, in the case of 

a non-linear SDB, the solution vector X is an approximated solution to the system of equations. 

The residual vector, 𝑉, observation vector, 𝐿, and the non-linear model, 𝐹(𝑋), are related by: 
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(

𝑧1
⋮
𝑧𝑁
)

⏟  

𝐿

+ (

𝑣1
⋮
𝑣𝑁
)

⏟  

𝑉

=

(

  
 
𝑚0𝑙𝑛 [

𝐿(𝜆1)1 − 𝐿𝑤(𝜆1)

𝐿(𝜆2)1 − 𝐿𝑤(𝜆2)
] + 𝑚1

⋮

𝑚0𝑙𝑛 [
𝐿(𝜆1)𝑁 − 𝐿𝑤(𝜆1)

𝐿(𝜆2)𝑁 − 𝐿𝑤(𝜆2)
] + 𝑚1

)

  
 

⏟                      

𝐹(𝑋)

 5.8 

 

To calculate solution vector, 𝑋, it is necessary to first linearize 𝐹(𝑋). Based on Wells and 

Krakiwsky (1971) and Gemael et al. (2015), the linearization can be performed using Taylor’s 

series linear approximation around an initial approximation vector, 𝑋0: 

 

𝑉 = 𝐹(𝑋) − 𝐿 =
 
𝐹(𝑋0) − 𝐿⏟      

−∆𝐿

+
𝑑𝐹(𝑋)

𝑑𝑋
|
𝑋=𝑋0⏟        

𝐴

(𝑋 − 𝑋0)⏟      

∆𝑋

=  𝐴∆𝑋 − ∆𝐿
 5.9 

 

The Jacobian matrix, A, of the partial derivatives of the non-linear equations at 𝑋0 is: 

 

𝐴 =

(

 
 
 
𝑙𝑛 [

𝐿(𝜆1)1 − 𝐿𝑤(𝜆1)̂

𝐿(𝜆2)1 − 𝐿𝑤(𝜆2)
] −

𝑚0̂

𝐿(𝜆1)1 − 𝐿𝑤(𝜆1)̂

⋮ ⋮

𝑙𝑛 [
𝐿(𝜆1)𝑁 − 𝐿𝑤(𝜆1)̂

𝐿(𝜆2)𝑁 − 𝐿𝑤(𝜆2)̂
] −

𝑚0̂

𝐿(𝜆1)𝑁 − 𝐿𝑤(𝜆1)̂

𝑚0̂

𝐿(𝜆2)1 − 𝐿𝑤(𝜆2)̂
1

⋮ ⋮
𝑚0̂

𝐿(𝜆2)𝑁 − 𝐿𝑤(𝜆2)̂
1
)

 
 
 

 5.10 

  

The increment ∆𝑋 is calculated by minimizing the quadratic sum of the residuals, 𝑉𝑇𝑉: 

 

∆𝑋 = (𝐴𝑇𝐴)−1(𝐴𝑇∆𝐿) 5.11 
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Then, increment ∆𝑋 corrects the initial approximation 𝑋0 and produces a tentative solution vector, 

𝑋: 

 

𝑋 = 𝑋0 + ∆𝑋 5.12 

 

The solution vector will be determined after n-iterations, when RMSE between the observation 

vector, 𝐿, and the non-linear model, 𝐹(𝑋), converging, i.e., RMSE is not decreasing when 

compared to RMSE0, as follows: 

 

𝑅𝑀𝑆𝐸0 = √
𝑉0𝑇𝑉0

𝑁 − 4
      𝑅𝑀𝑆𝐸 = √

𝑉𝑇𝑉

𝑁 − 4
   

5.13 

 

Where 𝑉0 = 𝐹(𝑋0) − 𝐿 and 𝑉 = 𝐹(𝑋) − 𝐿. 

To summarize, the overall process for the proposed non-linear approach is shown as a flow 

chart in Figure 5.1.  The process begins with a ‘educated guess’ for initial approximation vector 

𝑋0 (Appendix 6-A) and its corresponding 𝑅𝑀𝑆𝐸0. The next step is to calculate the increment 

vector based on the incremental observations vector, ∆𝐿, at 𝑋0, as well as the Jacobian matrix, A, 

that stands for the partial derivatives from Taylor expansion at 𝑋0. Using increment vector result, 

the incremental ∆𝑋 is calculated. Then, an iterative process compares the RMSE of the potential 

solution vector, X, and the initial approximation RMSE0.  If RMSE is less than RMSE0, then a new 

X0 becomes X and the process is repeated until the smallest RMSE is achieved that becomes the 

‘final solution’ for vector X. 
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Figure 5.1. Non-linear adjustment flow chart, created using draw.io free online diagram 

software.  

 

5.3.2 Diffuse attenuation estimation 

  

The scaling coefficient, 𝑚0, is based on the diffuse attenuation coefficients.  It is possible 

to extract the diffuse attenuation coefficients using three band-pair combinations that include Blue-

Green (BG), Blue-Red (BR), Green-Red (GR): 

 

𝑘(𝜆𝐵) − 𝑘(𝜆𝐺) =
1

−2𝑚0
𝐵𝐺

𝑘(𝜆𝐺) − 𝑘(𝜆𝑅) =
1

−2𝑚0
𝐺𝑅

𝑘(𝜆𝐵) − 𝑘(𝜆𝑅) =
1

−2𝑚0
𝐵𝑅

 5.14 
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This system of equations has an intrinsic singularity. Traditional LSM would fail since 

the product of Jacobian matrices is not invertible. To provide a solution, Moore-Penrose 

pseudoinverse was used. 

 

5.3.3 Bottom estimation 

  

As mentioned previously, the translation coefficient, 𝑚1, in a SDB model is based on 

bottom return and a diffuse attenuation coefficient.  Using the calculated solution vector, 𝑋, the 

translation coefficient can be defined as: 

 

𝑚1̂ = 𝑚0̂𝑙𝑛 [
𝐿𝑏(𝜆2) − 𝐿𝑤(𝜆2)̂

𝐿𝑏(𝜆1) − 𝐿𝑤(𝜆1)̂
] 5.15 

 

Equation 5.15 can be reorganized to show the dependence of 𝐿𝑏(𝜆1) on 𝐿𝑏(𝜆2) for Blue, Green 

and Red bands combinations: 

 

𝐿𝑏(𝜆𝐵) = (𝑒
−𝑚1̂

𝑚0̂
⁄

) 𝐿𝑏(𝜆𝐺) + [𝐿𝑤(𝜆𝐵)̂ −(𝑒
−𝑚1̂

𝑚0̂
⁄

) 𝐿𝑤(𝜆𝐺)̂ ] 

𝐿𝑏(𝜆𝐺) = (𝑒
−𝑚1̂

𝑚0̂
⁄

) 𝐿𝑏(𝜆𝑅) + [𝐿𝑤(𝜆𝐺)̂ −(𝑒
−𝑚1̂

𝑚0̂
⁄

) 𝐿𝑤(𝜆𝑅)̂ ] 

5.16 
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𝐿𝑏(𝜆𝐵) = (𝑒
−𝑚1̂

𝑚0̂
⁄

) 𝐿𝑏(𝜆𝑅) + [𝐿𝑤(𝜆𝐵)̂ −(𝑒
−𝑚1̂

𝑚0̂
⁄

) 𝐿𝑤(𝜆𝑅)̂ ] 

 

Assuming that each of the solution vectors are constants, then the dependence of 𝐿𝑏(𝜆1) on 𝐿𝑏(𝜆2) 

is linear: 

𝐿𝑏(𝜆1) − 𝛼12𝐿𝑏(𝜆2) = 𝛽12 5.17 

 

As such, it is possible to extract the bottom radiance using three band-pair combinations that 

include Blue-Green (BG), Blue-Red (BR), Green-Red (GR): 

 

𝐿𝑏(𝜆𝐵) − 𝛼𝐵𝐺𝐿𝑏(𝜆𝐺) = 𝛽𝐵𝐺 

𝐿𝑏(𝜆𝐵) − 𝛼𝐵𝑅𝐿𝑏(𝜆𝑅) = 𝛽𝐵𝑅 

𝐿𝑏(𝜆𝐺) − 𝛼𝐺𝑅𝐿𝑏(𝜆𝑅) = 𝛽𝐺𝑅 

5.18 

 

It was also observed that land areas (removed using NDWI) present a strong correlation between 

the channels based on its determination coefficient (0.98). The result is consistent between the 

pairs of channels Blue, Green and Red (Figure 5.2). Unlike the local coefficients (𝛼𝑖𝑗, 𝛽𝑖𝑗) at 5.18 

(i.e., are based on water column and diffuse attenuation coefficients), the coefficients that map 

land areas between channels are valid for the entire study area: 
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𝛾𝐵𝐺𝐿𝑏(𝜆𝐺) − 𝐿𝑏(𝜆𝐵) = −𝜉𝐵𝐺  

𝛾𝐵𝑅𝐿𝑏(𝜆𝑅) − 𝐿𝑏(𝜆𝐵) = −𝜉𝐵𝑅 

𝛾34𝐿𝑏(𝜆𝑅) − 𝐿𝑏(𝜆𝐺) = −𝜉𝐺𝑅  

5.19 

 

 

 

Figure 5.2. Determination coefficient on land areas between Blue, Green and Red channels. 

Digital numbers values, in the axis, were divided by 1000. 

 

By reassigning 5.18 and 5.19 equations to a matrix format, it is possible to incorporate the bottom 

return radiance relationships into the solution vector, 𝑋𝑏: 

 

 

𝑋𝑏 = (

𝐿𝑏(𝜆𝐵)
𝐿𝑏(𝜆𝐺)
𝐿𝑏(𝜆𝑅)

) = (𝐴𝑏
𝑇𝐴𝑏)

−1
(𝐴𝑏

𝑇
𝑃𝑏) 5.25 
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Where 𝐴𝑏 =

(

 
 
 

1 −𝛼𝐵𝐺 0
0 1 −𝛼𝐺𝑅
1
−1
0
−1

0
𝛾𝐵𝐺
−1
0

−𝛼𝐵𝑅
0
𝛾𝐺𝑅
𝛾𝐵𝑅 )

 
 
 

 and 𝑃𝑏 =

(

 
 
 
 
 

𝛽𝐵𝐺
𝛽𝐺𝑅
𝛽𝐵𝑅
−𝜉𝐵𝐺
−𝜉𝐺𝑅
−𝜉𝐵𝑅)

 
 
 
 
 

. 

Finally, the solution vector values were constrained to the range of [5,000, 20,000]. If the 

result was not compliant, no bottom return was possible to detect for the analyzed cell. All three 

visible bottom band returns (i.e., blue, green, and red) are merged to a RGB raster using ArcGIS 

10.4.1.  Potentially, this enables the identification of different types of bottom conditions. Since 

there is no a-priori knowledge on the environmental factors or their spectral characteristics, an 

Iterative Self-Organizing Data Analysis Technique (ISODATA) is applied to the RGB raster 

image (Ball and Hall, 1965). This was achieved using ArcMap Spatial Analyst toolbox and 

selecting Iso Cluster Unsupervised Classification. Using the spectral information Red, Green and 

Blue bands, bottom responses were defined. The number of classes ranged from 5-10, a minimum 

class size was 20 and sampling interval was 10. This method of unsupervised classification 

provides the ability to estimate an initial number of classes that represent bottom conditions with 

similar spectral characteristics.  

 

5.3.4 Sub-dividing study area 

 

 Traditional optimization SISDB methods (Stumpf et al., 2003, Dierssen et al., 2003, Pe’eri 

et al., 2015) are normally used to calculate linear parameters within a study area. In doing so, two 

assumptions are made: 1) the water column contributions are null, and 2) the bottom returns per 
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band are assumed to be constant throughout the study area. The results of this research study are 

different in that the diversity of physical conditions that normally exist within any study area are 

more fully considered.   

A key assumption in this study is that the water column contributions and the bottom 

returns can be approximated as constant for each wavelength, but only within a small area. In this 

study, an ideal area for deriving a solution using the non-linear SDB processing was evaluated, 

where the area range is between 3x3 to 7x7 pixels. According to the maximum-area criteria, the 

study area was divided into a grid containing multiple, small cell areas (Figure 5.3). Using this 

approach, it is possible to develop more meaningful depth estimates for deeper areas than was 

previously possible using more traditional methods. Also, the use of a fixed value area, such as a 

grid, increases the computational performance when calculating the SDB model. 
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Figure 5.3. Southeast of Simeon of Island, AK study site divided into multiple small cells. 

 

5.4 Results 

 

The study site selected to test the non-linear SDB model is a shallow-water area (up to 30 

m deep) southeast of Simeon Island, AK (Figure 5.4). In addition to constant cloud cover that 

limited the number of usable Landsat 8 imagery, the study site is also characterized with dynamic 

non-uniform water column conditions and patches of vegetation (i.e., kelp). These environmental 

conditions pose a challenge for traditional SISDB processing. Landsat 8 imagery was used to 

evaluate the non-linear SISDB algorithms. The satellite imagery was acquired in July 2016 with 
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low cloud coverage condition (1.14%). ALB survey data (NOAA survey H12103) that was 

performed during May - August 2009 was used as control points to vertically reference the SDB 

model. It is important to point out that the 2009 ALB survey did not achieve full bottom coverage 

and contained gaps (Figure 5.4). A possible explanation to the limited distribution of the control 

points were the high sea-state conditions during the ALB survey (NOAA/NOS H12103 

Descriptive Report). The amount of ALB measurements was statistically down-sampled from 3-

m spot spacing to 30-m spot spacing, i.e. the Landsat 8 spatial resolution using common sampling 

techniques (Figure 5.4).  

 

 

 

 

 

 

 

Figure 5.4. Control points from a 2009 ALB survey: (left) all available ALB measurements at 

an average 3-m spot spacing; (right) statistically down-sampled ALB measurements at 30-m 

spot spacing. 

 

Bathymetry from the proposed non-linear SISDB model was compared to bathymetry 

derived using a traditional linear regression approach as described by Dierssen et al. (2003). The 
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effective optical depth (i.e., the extinction depth that the SDB model can detect the bottom) was 

also calculated using the control points in depths up to 30 m. Estimated extinction depths are 18 

m, 6 m, and 6 m for the traditional linear SDB approach using the blue-green, green-red and blue-

red bands, respectively (Figure 5.5). Linear model depths were estimated using control points until 

30 m to match non-linear depth range. When comparing the bathymetry results from both SDB 

models to the control point values, the traditional SDB algorithm provides a rather poor result: 

RMSE of 6.07 m for the blue-green 7.15 m for green-red, and 7.28 m using, for the blue-red 

bands(Figure 5.5). It is important to note that all negative depth estimations (e.g., values that are 

above zero depth curve at chart datum) were converted to zero.  Otherwise, the RMSE value could 

have be even higher. As shown in Figure 5.5, the scatter plot comparing depth estimations from 

the linear SDB model to its correlating control points is not tight around the control point trend 

line. In addition, the slope from the linear SDB models do not seem to overlap the control point 

trend line. This may be explained due to the water column geographic variability during the 

acquisition time of the satellite imagery.  

 

 

 

 

 

 

 

 

 

Figure 5.5. Scatter plots of the estimated linear SDB depths using blue-green, blue-red, and 

green-red band ratios against corresponding ALB measurements. The vertical colored lines 

stands for approximated extinction depth. 
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By subdividing the area into multiple cells and estimating the non-linear parameters for 

each cell, new depth estimations were calculated using a non-linear regressions and the selected 

ALB measurements in each given cell as control points. This non-linear method is dependent on 

the cell size, and a water column simulation process. Correlations between the nonlinear SDB 

model results and the control points were evaluated (Table 5.1, Figure 5.6).  It is also important to 

note that the imagery was not converted to radiometric units (i.e., W/m2/sr). Instead, imagery 

digital number values were used, assuming a 5% radiometric uncertainty (Mishra et al. 2014 and 

Czapla-Myers et al. 2015). The uncertainty was important to define the step used on the search 

algorithm that defined initial vector 𝑋0 (Appendix B). The SDB model results indicated that a 

smaller cell will provide a better RMSE result. These results are expected as it is easier to fit 

smaller area to a given surface. However, having less than three control points within a cell would 

prevent to estimate depths, even when using a linear SDB model (minimum degree of freedom of 

one). For the non-linear SISDB model, there is no indication of the extinction depth for the blue-

green, green-red and blue-red ratios (Figure 5.6). This issue is an artifact is caused by the image-

processing algorithm that do not use a threshold. Since each spatial section of image is fitted to the 

control dataset, a transformation will “force” the water column radiance with no bottom detection 

to match the control point’s surface solution.  

 

Squared Window 

Side (cells) 

RMSE (m) 

Blue-Green Green-Red Blue-Red  

3 0.67 0.69 0.66 

Table 5.1. RMSE values of multiple non-linear regressions when modifying band pairs. 
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Figure 5.6. Scatter plots of the estimated non-linear SDB depths using blue-green, blue-red, and 

green-red band ratios against corresponding ALB measurements. The squared cells had 3-pixel 

side. 

 

 In some cases, the squared Jacobian matrix of the partial derivatives of the non-linear 

equations, 𝐴𝑇𝐴, will have zero determinant and will prevent calculating a solution vector. In such 

scenario, a gap will be formed, even if five or more soundings are available inside the cell. Also, 

if a cell does not contain five valid control points, then a solution cannot be achieved and will 

result in a gap instead. 

 Diffuse attenuation coefficients are based on scaling factors 𝑚0
𝑖𝑗 where 𝑖, 𝑗 represent the 

bands used by SDB. Traditional linear regression fails since matrix 𝐴 presents rank two. The 

solution was achieved using Moore-Penrose pseudoinverse. The results were concentrated in the 

Blue channel, and were calculated for Landsat 8 images of 2015, 2016 and 2017. Values outside 

the range [0,1] m-1 were neglected. 

Bottom returns solution vector 𝑋𝑏, for each cell, presented outliers. Typically, six equations 

with three parameters (Equation 5.25). To minimize those unexpected results with Landsat 8 

imagery (16-bit dynamic range), solution vector 𝑋𝑏 should comply with the digital number ranges 

between 5,000 to 20,000. These pixel value limits are based on land area range values per channel 
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for cells size 3x3 pixels (Figure 5.8). The ISODATA algorithm in ArcGIS was defined with a 

maximum of 10 classes with a 20-pixel minimum threshold per class. All configurations converged 

to one type of bottom return per study area. 

 

 

 

 

Figure 5.7. (1) traditional linear regression Blue-Green, (2) multiple, nonlinear 3x3 pixels 

squared window side. 
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Figure 5.8. Diffuse attenuation coefficient (1) Landsat 8 2015, (2) 2016, (3) 2017, (4) Aqua 

MODIS 2015, (5) 2016 and (6) 2017. The pink pixel represents Simeonof Island on Aqua Modis 

spatial resolution. 
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Figure 5.9. ISO cluster results for cell side of 3 pixels. 

 

5.5 Discussion 

 

The multiple, non-linear SDB model provides an enhanced performance compared to the 

more traditional linear SDB method. This is most noticeable in the very shallow waters (0-2 m), 

where a linear model does not provide a good correlation to the control points. In deep-waters 

close to the extinction depth, the multiple, nonlinear SDB method can better detect bottom features 

than the linear SDB method. This ability to detect a feature is due to the calculations of the water 

column parameters in multiple, non-linear SDB method that if ignored, could mask (or “blur”) the 

bottom features. By recognizing the water column contributions to the SDB solution, it is possible 

to achieve a more accurate estimate of the bathymetry in remote areas. However, the multi-

nonlinear SDB approach requires more computational resources, and is more dependent on dense 

distribution of control points. In addition, solving a nonlinear system of equations can become 

challenging.  

A good estimation of the initial approximation vector, 𝑋0 (Appendix B) is required to 

produce a meaningful solution vector. This is due to the nature of a linearized RTE solution using 



96 
 

a Taylor expansion. The Jacobian matrix of the partial derivatives of the non-linear equations, A, 

yield incremental vectors ∆𝑋 that diverge the solution in the first interaction. Having the invariance 

of RMSE to linear parameters restricts the correlation analysis to the non-linear parameters. The 

definition of 𝑋0 is derived from simulating water column values using a step of 100 (digital 

number, DN). More consistent results could be achieved using steps smaller than 100 DN.  

This decrease in step value “challenge” is due to the amount of processing time required 

for each cell adjustment calculation. Initial tests showed no noticeable changes on RMSE when 

using weight matrices associated with control point uncertainty. As such, it is not necessary to use 

weight matrices when conducting multiple, non-linear adjustments.  However, if multiple survey 

sources are used as control points, weight matrices may be necessary to harmonize the different 

levels of survey accuracy. In this type of situation, using a weighted correlation should be 

considered when estimating the water column components for the starting vector 𝑋0. 

The study results also showed that when using traditional linear regression, it is difficult to 

identify the extinction depth (i.e., optically-deep waters) when using control points (Figures 5.5). 

The spread of points in shallower depths did not provide a clear indication of linear behavior 

between estimated depths and control points. A limitation in the multiple, non-linear approach is 

that it ignores the extinction depth, and forces a local solution that matches the surface generated 

from the control points (Figure 5.6).  

Further research could be performed to investigate a meaningful threshold for the multiple, 

non-linear SDB method that is close to the extinction depth.  This could be achieved by rearranging 

Equation 5.7 as follows: 
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𝐿(𝜆1) = (𝐿(𝜆2) − 𝐿𝑤(𝜆2))𝑒
𝑧−𝑚1
𝑚0⏟              

𝑎𝑛𝑎𝑙𝑦𝑧𝑒

+ 𝐿𝑤(𝜆1) 5.26 

 

The portion of equation 5.26 selected to be analyzed should be compared against 𝐿(𝜆1), without 

the water radiance value, 𝐿𝑤(𝜆1). Optically-deep waters beyond extinction depth are defined as 

𝐿(𝜆1) ≈ 𝐿𝑤(𝜆1). The analyzed part needs to represent a minimum significant percentage 

contribution of 𝐿(𝜆1) (e.g., 10%). Each cell should be analyzed separately. Similarly, another 

enhancement to the non-linear SDB algorithm is the use of different band pairs. The study results 

showed that the blue-red band pair performed better than the blue-green and the green-red band 

pairs (Table 5.1). This was not expected since the best penetration was achieved using the blue-

green band. Traditional optimization methods usually disregard the blue-red band pair 

configuration. Even better RMSE results could be achieved by evaluating all three band pairs 

RMSE results together over each cell, and selecting depth estimations with minimum quadratic 

error.  

When using the non-linear SDB method, it is also important to avoid receiving complex, 

infinite, and pole values for depth estimations that may occur. When simulating the water column 

components, it is necessary to first test if the pair of values would produce negative, zero or infinite 

values for the log ratio.  

Bottom discrimination occasionally produced sparse estimations. The main reason for the 

gaps was solution vector 𝑋𝐵 not complying to [5,000, 20,000] range. Smaller cells presented better 

spatial distribution. Cell sizes 3x3 converged to the same one class cluster, independent of the 

number of classes input (5-10). This was expected when observing NOAA raster nautical chart 
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16540. The area is marked as “Foul, with some rocks.” Without bottom sample data, it is believed 

that one class was likely “rocks” or “rocky area”. 

Diffuse attenuation coefficient estimation depends on scaling coefficient 𝑚0. Additional 

convex optimization methods should be investigated to enhance nonlinear solution vector and 

therefore diffuse attenuation estimative. Figure 5.8 shows the comparison between Landsat 8 and 

Aqua MODIS estimations. They both showed agreeing results within [0, 0.2] m-1 range. A time 

series analysis should be considered to analyze the variations of this optical characteristic. 

When solving Equation 5.25, all equations that composed Jacobian matrix 𝐴𝑏 and 

observation vector 𝐿𝑏 were assumed the same importance. An investigation on a weight matrix 

may yield better bottom estimation. 

The ALB survey was conducted in 2009 and the L8 imagery used was from 2016. Ideally 

a survey from 2016 would be a more useful external benchmark to compare with the multi-non-

linear SISDB. In the absence of such survey, it would be interesting to have this procedure tested 

under such controlled conditions to verify potential bias due to the changes on cell size for depth 

estimation. Also, bottom samples would be useful to check the ISODATA cluster classification. 

Ideally a training set would provide a more robust classification. It would be worthwhile to check 

the performance of this method using higher resolution imagery, such as Worldview 2 or 3 in areas 

where ALB survey presented less data gaps. 

For remote locations where no control points are available, it is possible to use the four 

non-linear parameters for each pixel, and derive a potential solution by using multiple images (i.e., 

multiple spectral observations) at the same location. For this process, depth becomes the 5th 

parameter in the non-linear adjustment whereby tide and wave height per pixel comprise the 
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observation matrix. Combining the channels into pairs based on multi-temporal images could 

potentially provide a solution without control points. To solve this problem, depth, water column 

components, bottom returns, and diffuse attenuation coefficients would need to be considered 

constant along time. As such, the time interval among images would need to be small enough to 

comply with such stable environment assumption. 
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CHAPTER 6 

 

SUMMARY AND CONCLUSIONS 

  

My three-part investigation (i.e., three separate, but related studies) focused on enhancing 

the use and capabilities of SDB approach to provide cartographers and hydrographers with an 

efficient and reliable means to derive near-shore bathymetry in poorly or outdated survey areas. 

Using a combination of image-processing techniques and time-series analysis, three study 

objectives were pursued.   

 

6.1 Study 1 – Provide a full estimation of total propagated uncertainty (TPU)  

 

For this study, the limitations of the two most common optimization algorithms used in 

SDB approaches (i.e., Stumpf and Dierssen) were investigated. A process was developed for 

SISDB TPU that considers the uncertainties related to control points, the radiometric quality of 

the satellite imagery, and the image processing steps used to calculate SDB. The process also 

included a means of vertical referencing to chart datum. Based on the empirical work of previous 

studies, it is assumed that the horizontal uncertainty of the SDB procedure is the same as the 

reported horizontal uncertainty of the Landsat 8 imagery metadata. As such, the primary focus of 

this study was on the total vertical uncertainty TVU. As part of the evaluation, a new approach 

was developed to calculate the vertical uncertainty without the need to manually find an optically-

deep water area within the image, or the need to use Monte-Carlo simulations. 
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The performance of various SDB configurations (i.e., pre-processing algorithms applied to 

the imagery, control point quality, and control point distribution over the study site) was quantified 

by comparing estimated depths and uncertainties to observed ALB data. Based on the results 

obtained at two study sites (Cape Ann, MA and Ft Myers, FL), similar performance was observed 

for both the Stumpf and the Dierssen models when using the same configuration. The best 

performing SDB configuration was achieved using low-pass filter (e.g., kernel size 3x3) with ALB 

control points at 100% coverage that were distributed over the entire study site.   

To reduce depths and TVU to optimal values, recent survey data should be used rather than 

chart soundings or high-quality (i.e., IHO S-44 order 1b) legacy data. In particular, a recent survey 

(e.g., SBES lines) becomes an effective solution to provide useful depth information when applied 

to the SDB procedure. Ideally, the survey data should be collected shortly before or after the 

acquisition time of satellite imagery. Overall, the SDB approach using Landsat 8 imagery provides 

a cost-efficient reconnaissance tool that can be used worldwide. However, this remote sensing-

based hydrographic survey reconnaissance tool is not a replacement for traditional hydrographic 

survey technologies (e.g., ALB and SBES and MBES) that provide depth measurements at a cm-

level accuracy. 
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6.2 Study 2 – Develop a means for change detection in dynamic shallow areas 

 

In this study, a change detection process was developed for identifying the location and 

movement of dynamic shallow areas in riverine environments. Two river entrances were evaluated 

as study sites using multiple satellite imagery scenes over several years: Yukon River (Alaska, 

USA) and Amazon River (Brazil). Using digital image processing techniques, shoal features were 

identified in both study sites, and their translational and orientation trends were calculated. In 

addition, a method was developed to predict the location of the shoal features into the future with 

respect to the acquisition date of the last satellite imagery available over the study site.   

The change detection process includes the use of Dierssen’s log ratio model on multiple 

satellite images over the study site, and extraction of a feature of interest using Canny edge 

detection from each imagery log ratio.  The extracted feature is then generalized and fitted into a 

defined topological feature (i.e., ellipse). By using multiple satellite imagery data over a period of 

years, a time-series is generated for the shoal feature’s location based on the parameters for each 

of the extracted ellipses. In addition, a prediction of the shoal features’ location, orientation, and 

flattening variations are calculated using linear regression models and statistical analysis.  

The results of this study demonstrated the ability to update the location of shoal areas in 

remote locations without the need to vertically reference the SDB ratio model to chart datum. The 

generation of a well-defined topological feature (e.g., an ellipse) provides the capability to chart 

dynamic shoal areas, and predict their movement over time. However, it is important to recognize 

that the ability to predict future changes over longer time- periods (>5-7 years) may be constrained 

due to limited amount of satellite scenes over a multi-year period. Although there is a high 

repetition rate of the satellite coverage over a given site, environmental conditions such as 
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persistent cloud coverage, or surface ice, can limit the frequency of usable images. Also, the 

dynamic behavior and the shape of shoal areas may change over time due to significant climate-

change events (e.g., global warming, major storms) or human activities (e.g., hydro-electric dams). 

Based on the results of this study, it is possible to extend the adequacy of the charted 

features for river navigation. By stacking a time-series with predicted location of a feature into the 

future, it is possible to predict the near future position of the shoal area. In addition to charting 

applications, the study results can also be used for short-term applications such as notice to 

mariners for vessels transiting the river.  

 

6.3 Study 3 – Develop non-linear approach for more accurate depth estimations 

 

For this study, a SDB approach was developed to estimate depth in non-uniform conditions 

from a linear model into a full, non-linear SDB model. In linear SDB models, it is assumed that 

water column and bottom conditions are uniform and the water contribution for the observed 

radiance is negligible. The non-linear model takes into account water column effects that enable 

an improved means for bottom discrimination. Those are not accounted for in a SDB model using 

a linear regression. Using satellite imagery acquired over Simeonof Island, AK, it was possible to 

estimate the physical properties of the water column over the study site by comparing the results 

from non-linear SDB model to control points collected by ALB surveys.  

Dierssen’s SDB model was further developed into a non-linear version where the 

variability in water column components were calculated by subdividing study site into small cells 

of 3x3 pixels. Each cell was modeled individually, and then adjusted to its control points depending 
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on the cell size. Unlike traditional linear regression where only two parameters are calculated to 

estimate depths, the non-linear SDB presents hundreds of parameters.  

The non-linear adjustment for each cell first requires a good estimation of a starting 

solution vector. Taking the correlation between non-linear log ratio and control points, simulation 

method was used to estimate the water column components. A linear regression was then 

conducted to calculate the remaining parameters which composed the initial solution vector. These 

values were then used to start an interactive adjustment for the non-linear case. Using the quadratic 

sum of the residuals as a threshold, the solution vector was achieved when no further convergence 

occurred. 

Using the multiple, non-linear parameters for all cells, diffuse attenuation and bottom 

return estimations were based on the solution vectors of non-linear adjustment for all three bands 

pair combinations. The relationship between land areas in the different channels was also 

considered in the bottom returns estimation. 
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6.4 Future Research 

 

Collectively, the results of these three studies can be regarded as improved methods that 

enhance the use SDB for hydrographic applications.  However, before mapping and charting 

organizations can implement the results of these three studies, the methods and procedures that are 

described will need to be adjusted to available resources and standards.  While there are many 

commercial software tools that can be used (e.g., ArcGIS, ERDAS, ENVI, MAPLE, MATLAB, 

MATHCAD) as well as Open Source tools (e.g., QGIS, GRASS, SAGA, and R), it will likely be 

commercial companies that specialize in hydrographic products and services (e.g., CARIS, IIC 

Technologies, QPS) that will develop new software applications.  Ideally, some of CCOM’s 

Industrial Partners may decide do this. 

Like most scientific investigations, the results of these three studies are not complete, and 

indicate the need for further research in several areas.  

 

6.4.1 Full development of the TVU model 

  

In the first study, the TVU model is primarily dependent on the quality of the satellite 

imagery. This TVU model employed an analytical approach using the Special Law of Propagation 

of Variances (SLOPOV). Although it overcomes some of the limitations of using Monte Carlo 

estimations (Pe’eri et al., 2014), this study assumes that all sources of uncertainty in the linear 

SDB calculations are Gaussian distributed. It is possible to further enhance the TVU calculation 

by characterizing the uncertainties with other distributions that may be more fitting to describe the 

uncertainty. In addition, another improvement would be to subdivide the area in small cells and 
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use a non-linear model to estimate bathymetry. Such model would consider non-uniform water 

column and bottom conditions, as described in the third study. 

 

6.4.2 Selection of topological features for describing dynamic shoals 

  

In the second study, change detection and prediction of shoals moving along rivers were 

described using ellipses. The benefits of using an ellipse is that this topological feature can 

approximate the general shape of the feature and its center using relatively simple math. However, 

polygons or more complex shapes may better describe a shoal boundary and its center of mass. 

Also, a more complex polygon could be developed, avoiding overlapping the shoreline or river 

banks. In addition, investigation on automatic canny edge detection parameters need to be 

conducted.  

 

6.4.3 Optical properties of the water column and the bottom 

  

In the third study, the optical properties of the water column were inferred from the non-

linear SDB model. Using more rigorous calculations based on solution derived from the Radiative 

Transfer Equations could provide a more accurate and comprehensive suite of water column and 

bottom indicators that can be used for oceanographic and benthic studies. Such parameters can 

include: diffuse attenuation coefficients, turbidity, chlorophyll concentrations, bottom sediments, 

vegetation, and more.  
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The non-linear solution was based on Least Squares Method. It is recommended to 

investigate this problem using other convex optimization methods, which potentially would reduce 

the dependency on the initial vector and improve processing time. 

The extinction depth should be addressed assuring meaningful outcomes from nonlinear 

SDB. A potential approach was presented on Discussion section of Chapter 5, but needs to be fully 

investigated. 

Diffuse attenuation variability along time should be examined, especially on areas where 

atmospheric conditions enable high rates of imagery acquisition. Other pseudoinverse algorithms 

should be explored in order to minimize losses in the least squares performance. 

 

6.4.4 Combining the non-linear model and multiple satellite scenes 

  

 The approach used in the third study to extract four optical parameters (i.e., water column 

components, bottom returns and diffuse attenuation coefficients) was to divide the study area into 

small cells. However, the optical properties of the water column are considered constant along 

time and do not take into account any temporal contributions, such as tides or currents. The use of 

depth measurements and multiple images acquired over a period about five (5) years would allow 

inferring the dynamic water column conditions over the study site. 

 Another potential research topic based on using multiple images is to estimate bathymetry 

without control points. It is possible to use the four non-linear parameters for each pixel, and derive 

a potential solution by using multiple images (i.e., multiple spectral observations) at the same 

location. As such, depth becomes the 5th parameter in the non-linear adjustment whereby tide and 
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wave height per pixel comprise the observation matrix. Combining the channels into pairs based 

on multi-temporal images would potentially provide a solution without control points. To solve 

this problem, depth, water column components, bottom returns, and diffuse attenuation 

coefficients would need to be considered constant along time. As such, the time interval among 

images would need to be small enough to comply with such stable environment assumption. 
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APPENDICES 

 

Appendix A – Ellipse fitting 

 

A.1 Mathematical definitions of the topological feature 

 

The topological feature that is used to describe an extracted area from the SDB ratio model 

is an ellipse. The reasons for using this type of conic are 1) it is a closed geometry, 2) its sensitivity 

to the dimensions of the feature (e.g., major and minor semi-axis and scaling factors), and 3) its 

orientation (i.e., rotation angle). The complex geometry derived from edge detection is then 

simplified by adjusting this topological feature. In this study, both the parametric and quadratic 

definitions of the ellipse are used. In its parametric form, it is possible to describe a shifted ellipse 

curve with a center located at (𝑥0, 𝑦0) that is rotated at angle of 𝜃 with respect to the coordinate 

system (Figure A.1) as follows:  

 

𝑥(𝑡) = 𝑎 ∙ 𝑐𝑜𝑠(𝑡) ∙ 𝑐𝑜𝑠(𝜃) − 𝑏 ∙ 𝑠𝑖𝑛(𝑡) ∙ 𝑠𝑖𝑛(𝜃) + 𝑥0

𝑦(𝑡) = 𝑎 ∙ 𝑐𝑜𝑠(𝑡) ∙ 𝑠𝑖𝑛(𝜃) + 𝑏 ∙ 𝑠𝑖𝑛(𝑡) ∙ 𝑐𝑜𝑠(𝜃) + 𝑦0
 A.1 

 

Where a is the semi-major axis, b semi-minor axis, 𝑥0 horizontal coordinate of ellipse’s center, 

𝑦0 vertical coordinate of ellipse’s center, t angle formed between semi-major axis a and segment 

line defined by any given ellipse point and ellipse center, ranging from 0 to 2π radians, and 

𝜃 rotation angle between X-axis and semi-major axis a. 
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Figure A.1. Parametric description of an ellipse. 

 

The curve of the ellipse can also be described in a quadratic form as (Weisstein, 2017): 

 

𝐴 ∙ 𝑥1
2 + 𝐵 ∙ 𝑥1 ∙ 𝑦1 + 𝐶 ∙ 𝑦1

2 + 𝐷 ∙ 𝑥1 + 𝐹 ∙ 𝑦1 + 𝐺 = 0 A.2 

 

The center of the ellipse (𝑥0, 𝑦0) will become: 

 

𝑥0 =
𝐶 ∙ 𝐷 − 𝐵 ∙ 𝐹

𝐵2 − 𝐴 ∙ 𝐶

𝑦0 =
𝐴 ∙ 𝐹 − 𝐵 ∙ 𝐷

𝐵2 − 𝐴 ∙ 𝐶

 
A.3 

 

The semi-major axis, a, and the semi-minor axis, b, will become: 
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𝑎 = √2 ∙
(𝐴 ∙ 𝐹2 + 𝐶 ∙ 𝐷2 + 𝐺 ∙ 𝐵2 − 2 ∙ 𝐵 ∙ 𝐷 ∙ 𝐹 − 𝐴 ∙ 𝐶 ∙ 𝐺)

(𝐵2 − 𝐴 ∙ 𝐶) ∙ [√(𝐴 − 𝐶)2 + 4 ∙ 𝐵2 − (𝐴 + 𝐶)]

𝑏 = √2 ∙
(𝐴 ∙ 𝐹2 + 𝐶 ∙ 𝐷2 + 𝐺 ∙ 𝐵2 − 2 ∙ 𝐵 ∙ 𝐷 ∙ 𝐹 − 𝐴 ∙ 𝐶 ∙ 𝐺)

(𝐵2 − 𝐴 ∙ 𝐶) ∙ [−√(𝐴 − 𝐶)2 + 4 ∙ 𝐵2 − (𝐴 + 𝐶)]

 
A.4 

 

The counterclockwise angle of rotation from the X-axis to the major axis of the ellipse will 

become: 

 

𝜃 =

{
 
 
 

 
 
 

 

0, 𝑖𝑓 (𝐵 = 0 ∧ 𝐴 < 𝐶)
𝜋

2
, 𝑖𝑓 (𝐵 = 0 ∧ 𝐴 > 𝐶)

1

2
∙ 𝑎𝑟𝑐𝑡𝑎𝑛 (

2 ∙ 𝐵

𝐴 − 𝐶
) , 𝑖𝑓 (𝐵 ≠ 0 ∧ 𝐴 < 𝐶)

𝜋

2
+
1

2
∙ 𝑎𝑟𝑐𝑡𝑎𝑛 (

2 ∙ 𝐵

𝐴 − 𝐶
) , 𝑖𝑓 (𝐵 ≠ 0 ∧ 𝐴 > 𝐶)

 
A.5 

 

A minimum of 7 points are required to describe the ellipse (A.2) and obtain at least one degree of 

freedom. However, the quadratic equation can lead to a zero-vector solution. This problem can be 

solved by forcing one of the coefficients, except for G, to have unit value:  

 

(𝐴 𝐵 𝐶 𝐷 𝐹 𝐺)𝑇 = (1
𝑐1
2

𝑐2
𝑐3
2

𝑐4
2

𝑐5)
𝑇

 A.6 

 

Thus, reducing the number of variables and allowing the quadratic equation to have a coherent 

solution.   
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𝑥1
2 + 𝑐1 ∙ 𝑥1 ∙ 𝑦1 + 𝑐2 ∙ 𝑦1

2 + 𝑐3 ∙ 𝑥1 + 𝑐4 ∙ 𝑦1 + 𝑐5 = 0 A.7 

 

This new equation (A.7) allows to determine the ellipse parameters with, at least, 6 points (instead 

of 7).  

 

A.2 Initial fitting 

 

The adopted procedure to solve a new system of equations is the Least Square Method 

(LSM) using a parametric adjustment (Vaníček, 1995): 

  

(
𝑥1 ∙ 𝑦1 𝑦1

2 𝑥1 𝑦1 1

⋮ ⋮
𝑥𝑛 ∙ 𝑦𝑛 𝑦𝑛

2 𝑥𝑛 𝑦𝑛 1
)

⏟                  

𝐾

∙
(

𝑐1
⋮
𝑐5
)

⏟

𝑋

=
(
−𝑥1

2

⋮
−𝑥𝑛

2
)

⏟    

𝐿

 A.8 

 

The solution for vector X is given by: 

 

𝑋 = (𝐾𝑇 ∙ 𝐾)−1 ∙ (𝐾𝑇 ∙ 𝐿) A.9 

 

In this study, the weight matrix is assumed to be an identity matrix since there is no usable 

information that can quantify the observation vector, 𝐿. Horizontal uncertainty (described in the 

imagery metadata files) is assumed constant for all image pixels. The result from the initial fitting 

show that the ellipse plot does not contain all the points that compose the extracted feature (Figure 

A.2). 
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Figure A.2. Ellipse adjusted based on extreme coordinate points, and identification of points 

outside the first approximation (in red). 

 

A.3 Iterative fitting 

 

To automatically identify all the points that are outside the ellipse solution from the Initial 

Fitting step, the coordinates of these points are analyzed against a conic geometry (Figure A.3). In 

addition, it is necessary to solve the general ellipse equation in order to analyze the ellipse’s curve 

against each axis: 

 

𝑓(𝑥) = 𝑥2 + 𝑥 ∙ (𝑐1 ∙ 𝑦0 + 𝑐3) + (𝑐2 ∙ 𝑦0
2+𝑐4 ∙ 𝑦0 + 𝑐5) = 0

𝑔(𝑦) = 𝑦2 ∙ (𝑐2) + 𝑦 ∙ (𝑐1 ∙ 𝑥0 + 𝑐4) + (𝑥0
2 + 𝑐3 ∙ 𝑥0 + 𝑐5) = 0

 A.10 
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Figure A.3. Checking for points outside the ellipse. 

 

If point P(𝑥0, 𝑦0) is located outside of the bounds of the ellipse, i.e., (𝑥1: 𝑥2, 𝑦1: 𝑦2), then the points 

outside of the ellipse must comply with at least one of the following conditions: 

 

(𝑥1, 𝑥2) ∈ ℝ ∧ [(𝑥0 < 𝑥1 ∧ 𝑥0 < 𝑥2) ∨ (𝑥0 > 𝑥1 ∧ 𝑥0 > 𝑥2)] = 1

(𝑦1, 𝑦2) ∈ ℝ ∧ [(𝑦0 < 𝑦1 ∧ 𝑦0 < 𝑦2) ∨ (𝑦0 > 𝑦1 ∧ 𝑦0 > 𝑦2)] = 1
 A.11 

 

The points presenting the highest residuals (i.e., distance) to the ellipse curve were selected and 

re-evaluated. Based on this new dataset, a new ellipse can be defined. In order to include all the 

extracted area points within an ellipse, an additional interactive analysis using a LSM was 

implemented. Using the initial ellipse that provides a good preliminary approximation, gradients 

from the points outside the initial ellipse to ellipse’s curve, E, are calculated (Appendix A). 

Normally-projected points, Q, based on the gradients on the ellipse curve are extracted and 
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distances, |𝑄𝑃⃗⃗ ⃗⃗  ⃗|, from the points outside the initial ellipse, P, to ellipse’s curve are calculated 

(Figure A.4).  

 

 

 

Figure A.4. Projecting feature points into ellipse E along its gradient. 

  

Let 𝐸(𝑥, 𝑦) be the general ellipse equation: 

 

𝐸(𝑥, 𝑦) = 𝑥2 + 𝑐1 ∙ 𝑥 ∙ 𝑦 + 𝑐2 ∙ 𝑦
2 + 𝑐3 ∙ 𝑥 + 𝑐4 ∙ 𝑦 + 𝑐5 = 0 A.12 

 

The gradient can be written as: 

 

𝛻𝐸⃗⃗⃗⃗  ⃗ = (
𝜕𝐸(𝑥, 𝑦)

𝜕𝑥
,
𝜕𝐸(𝑥, 𝑦)

𝜕𝑦
) = (2 ∙ 𝑥 + 𝑐1 ∙ 𝑦 + 𝑐3 , 2 ∙ 𝑦 ∙ 𝑐2 + 𝑐1 ∙ 𝑥 + 𝑐4) A.13 

 

Since |𝛻𝐸⃗⃗⃗⃗  ⃗| = 𝑘 ∙ |𝑄𝑃⃗⃗ ⃗⃗  ⃗|, where 𝑘 ≠ 0: 



123 
 

 

𝑥𝑄(𝑘) =
(𝑥 − 𝑘 ∙ 𝑐3) ∙ (𝑘 ∙ 2 ∙ 𝑐2 + 1) + [−(𝑘 ∙ 𝑐1) ∙ (𝑦 − 𝑘 ∙ 𝑐4)]

(𝑘 ∙ 2 ∙ 𝑐2 + 1) ∙ (𝑘 ∙ 2 + 1) − (𝑘 ∙ 𝑐1)2

𝑦𝑄(𝑘) =
(𝑘 ∙ 𝑐3 − 𝑥) ∙ (𝑘 ∙ 𝑐1) + (𝑘 ∙ 2 + 1) ∙ (𝑦 − 𝑘 ∙ 𝑐4)

(𝑘 ∙ 2 ∙ 𝑐2 + 1) ∙ (𝑘 ∙ 2 + 1) − (𝑘 ∙ 𝑐1)2

 A.14 

 

By substituting A.14 into A.12 you get: 

 

ℎ(𝑘) = 𝐸(𝑥(𝑘), 𝑦(𝑘)) = 0 A.15 

 

The k value that satisfies h(𝑘) = 0 enables a calculation of P coordinate values (x,y). A traditional 

Newton-Raphson is used in order to determine the h(𝑘) roots that satisfies h(𝑘) = 0 and enables 

a calculation of P(x,y) where: 

 

𝑘 = 𝑘0 −
ℎ(𝑘0)

𝑑ℎ(𝑘)
𝑑𝑘

|
𝑘=𝑘0

 
A.16 

 

Since this method is interactive, it depends on establishing a good initial estimate for 𝑘0. As a 

logical starting point, zero was selected to be the starting value. 

Points that contained the highest residuals after adjusting the first ellipse were identified, 

and only the ones outside the ellipse were selected. These points were grouped according to its 

quadrant (assuming that the origin of original ellipse to be the center).  A maximum of 8 points 

per quadrant were retained (Figure A.6).   
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To calculate the new extreme points, coordinates were developed using ellipse gradient 

analysis (Figure A.5).  To comply with conditions described in A.11, the new adjusted ellipse must 

have no feature point outside it. The point coordinates were then extended along the gradient vector 

using (Figure A.5): 

 

𝑥′ = 𝑥 + (𝑝) ∙ 𝑐𝑜𝑠(𝛼𝑖)

𝑦′ = 𝑦 + (𝑝) ∙ 𝑠𝑖𝑛(𝛼𝑖)
 A.17 

 

Where 𝛼𝑖 is the angular orientation based on the gradient vector, and 𝑝 is an integer value between 

[1,100], representing the pixel shift value that increases until the new adjusted ellipse.  

 Based on the new extreme points coordinates (point N, Figure A.5), the new adjusted 

ellipse provides a more robust and meaningful representation of all original feature points. An 

Illustration of the Iterative fitting step is presented in Figure A.6. 

 

 

 

Figure A.5. Calculating the new extreme points (point N) coordinates using ellipse gradient 

analysis.  
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Figure A.6. Illustration of the Iterative fitting steps: (Right) Points located outside of the initial 

ellipse fitting (in red); (Center) new extreme points (in green) used to fit a new ellipse; (Left) 

final ellipse fitting after several iterations (in green). 
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Appendix B – Starting vector X0 

 

 

The biggest caveat to calculate solution vector 𝑋 is its dependency on 𝑋0. If starting vector 

is not well defined, the algorithm may diverge and the system may not present a solution. To select 

a good ‘starting’ 𝑋0 vector, the variables were split into linear (𝑋01 and 𝑋04) and non-linear (𝑋02 

and 𝑋03). This separation is required to first estimate the non-linear values, and then the linear 

ones. 

The justification of this process is described as follows.  Let A and B be two aleatory 

variables and C, D two linear transformed aleatory variables from A and B, respectively:  

 

𝐶 = 𝑖𝐴 + 𝑗 

𝐷 = 𝑘𝐵 + 𝑙 

B.1 

 

The correlation between A and B is, based on Taboga (2012): 

 

𝐶𝑜𝑟𝑟(𝐴, 𝐵) =
𝑐𝑜𝑣(𝐴, 𝐵)

𝜎𝐴𝜎𝐵
=

Ε[(𝐴 − Ε[𝐴])(B − Ε[𝐵])]

(√Ε[(𝐴 − Ε[𝐴])2])√Ε[(𝐵 − Ε[𝐵])2]
 B.2 

 

The correlation between C and D is: 
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𝐶𝑜𝑟𝑟(𝐶, 𝐷) =
𝑐𝑜𝑣(𝐶, 𝐷)

𝜎𝐶𝜎𝐷
=
𝑐𝑜𝑣(𝑖𝐴 + 𝑗, 𝑘𝐵 + 𝑙)

𝜎𝑖𝐴+𝑗𝜎𝑘𝐵+𝑙
= 

=
Ε[(𝑖𝐴 + 𝑗 − Ε[𝑖𝐴 + 𝑗])(𝑘𝐵 + 𝑙 − Ε[𝑘𝐵 + 𝑙])]

(√Ε[(𝑖𝐴 + 𝑗 − Ε[𝑖𝐴 + 𝑗])2]) (√Ε[(𝑘𝐵 + 𝑙 − Ε[𝑘𝐵 + 𝑙])2])
= 

=
Ε[(𝑖𝐴 − Ε[𝑖𝐴] + 𝑗 − Ε[𝑗])(𝑘B − Ε[𝑘𝐵] + 𝑙 − Ε[𝑙])]

(√Ε[(𝑖𝐴 − Ε[𝑖𝐴] + 𝑗 − Ε[𝑗])2]) (√Ε[(𝑘𝐵 − Ε[𝑘𝐵] + 𝑙 − Ε[𝑙])2])
= 

=
Ε[(𝑖𝐴 − 𝑖Ε[𝐴] + 𝑗 − 𝑗)(𝑘𝐵 − 𝑘Ε[𝐵] + 𝑙 − 𝑙)]

(√Ε[(𝑖𝐴 − 𝑖Ε[𝐴] + 𝑗 − 𝑗)2]) (√Ε[(𝑘𝐵 − 𝑘Ε[𝐵] + 𝑙 − 𝑙)2])
= 

=
𝑖𝑘Ε[(𝐴 − Ε[𝐴])(B − Ε[𝐵])]

𝑖𝑘 (√Ε[(𝐴 − Ε[𝐴])2]) (√Ε[(𝐵 − Ε[𝐵])2])
= 𝐶𝑜𝑟𝑟(𝐴, 𝐵) 

B.3 

 

Based on B.3 the correlation between two variables is invariant if one (or both) is subject to linear 

transformation. 

For a given SDB linear regression where one wants to map from A (log ratio vector not 

considering water column contribution) into B (bathymetric control points), two linear parameters 

will do the mapping: 

  

𝐵1 = 𝑖𝐴1 + 𝑗
⋮

𝐵𝑛 = 𝑖𝐴𝑛 + 𝑗
 B.4 

 

To solve the system of equations in B.4, the matrix form: 
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(
𝐵1
⋮
𝐵𝑛

)
⏟  

𝐿

=
(
𝐴1 1
⋮ ⋮
𝐴𝑛 1

)
⏟      

𝐴0

(
𝑖
𝑗
)
⏟

𝐾0

 B.5 

 

The solution vector 𝐾0 will come from minimizing the quadratic sum of the residuals vector V: 

 

𝑉 = 𝐴0𝐾0 − 𝐿 

𝑑(𝑉𝑇𝑉)

𝑑𝐾0
= 0 

𝐾0 = (𝐴0𝑇𝐴0)−1(𝐴0𝑇𝐿) 

B.6 

 

The minimum value 𝑉𝑇𝑉 is the metrics for adjustment goodness under Least Squares Method 

(LSM). There is another way of estimating 𝑉𝑇𝑉 without calculating solution vector 𝐾0. Taking 

the coefficient of determination 𝑟2 between log ratio values and correspondent control points, it is 

possible to relate it to the minimum  𝑉𝑇𝑉 (Weisstein, 2017): 

 

𝑟2 = 1 −
∑ [(𝐴0𝐾0)𝑖 − 𝐵𝑖]

2𝑛

𝑖=1
 

∑ (𝐵𝑖 − �̅�)
2𝑛

𝑖=1

 

𝑟2 = 1 −
𝑉𝑇𝑉 

∑ (𝐵𝑖 − �̅�)
2𝑛

𝑖=1

 

B.7 
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Where �̅� is the mean value of bathymetric control points. 

Since 𝑟2 is the quadratic form of correlation coefficient, it is also insensitive to linear 

transformations of its aleatory variables. Going back to SDB linear regression, one could estimate 

the RMSE just using the correlation between the log ratio and its correspondent control points and 

the variance of observation vector 𝐿. If the intent is for a smaller 𝑉𝑇𝑉, the model should address 

non-linear parameters that will also minimize 𝑟2. Regarding the 𝑋0 estimation, the initial focus 

should be on 𝑋02 and 𝑋03. Since 𝑋01 and 𝑋04 have no potential impact on 𝑟2, they were assigned 

1 and 0 values, respectively. The non-linear parameters were based on simulated potential values. 

The range interval for each channel was based on: 

 

𝐿(𝜆1) ≈  𝐿𝑤(𝜆1) | 𝑒
−2𝑘(𝜆1)𝑧 ≈ 0 B.8 

 

B.8 condition is satisfied at optically deep waters. In the study site, each band values at deeper 

waters were evaluated to compose the ranges (Table B.1). The simulation also constrained the non-

linear values to ignore complex numbers for depth estimations.  

 

L8 Channel Maximum water column Minimum water column 

B2 (blue) 10000 8400 

B3 (green) 8000 6800 

B4 (red) 7000 5900 

Table B.1. Study site water column ranges per L8 channel. 
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Once the simulated 𝑋02 and 𝑋03 values are determined, they can be regarded as “fixed”, 

and a new linear regression can be performed to estimate 𝑋01 and 𝑋04, as follows: 

 

𝐾1 = (𝐴1𝑇𝐴1)−1(𝐴1𝑇𝐿) = (
𝑋01
𝑋04

) B.9 

 

Where 𝐴1 =

(

 

𝑙𝑛 [
𝐿(𝜆1)1−𝑋02

𝐿(𝜆2)1−𝑋03
] 1

⋮ ⋮

𝑙𝑛 [
𝐿(𝜆1)𝑁−𝑋02

𝐿(𝜆2)𝑁−𝑋03
] 1)

 . Finally, the initial vector 𝑋0: 

 

𝑋0 = (

𝐾11
𝐾01
𝐾02
𝐾12

) B.10 

 

Using this as a starting vector 𝑋0, it can be used to perform an interactive adjustment that 

will define solution vector 𝑋. 
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