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[1] We address the problem of compiling bathymetric data sets with heterogeneous
coverage and a range of data measurement accuracies. To generate a regularly spaced grid,
we are obliged to interpolate sparse data; our objective here is to augment this product
with an estimate of confidence in the interpolated bathymetry based on our knowledge of
the component of random error in the bathymetric source data. Using a direct simulation
Monte Carlo method, we utilize data from the International Bathymetric Chart of the
Arctic Ocean database to develop a suitable methodology for assessment of the standard
deviations of depths in the interpolated grid. Our assessment of random errors in each data
set are heuristic but realistic and are based on available metadata from the data
providers. We show that a confidence grid can be built using this method and that this
product can be used to assess reliability of the final compilation. The methodology as
developed here is applied to bathymetric data but is equally applicable to other
interpolated data sets, such as gravity and magnetic data. INDEX TERMS: 0910 Exploration

Geophysics: Data processing; 3045 Marine Geology and Geophysics: Seafloor morphology and bottom

photography; 4536 Oceanography: Physical: Hydrography; 9315 Information Related to Geographic Region:

Arctic region; KEYWORDS: bathymetry, Arctic Ocean, IBCAO, errors, Monte Carlo, grid
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1. Introduction

[2] There is a growing demand in the geophysical com-
munity for better regional representations of the world’s
bathymetry. Researchers dealing with sea level change,
ocean circulation, sediment transport, seafloor spreading,
and modeling of ice sheets all require information on the
shape of the seafloor. While multibeam sonar systems are
filling hydrographic databases with relatively accurate
bathymetric data sets from specific target areas, the quantity
of observations being collected in most of the deep oceans
(particularly remote areas) remains relatively small. The
accuracy and resolution achievable with modern sonars are
far better than that obtained with older single beam systems
particularly considering the recent improvements in ship
positioning. However, given the vastness of the oceans and
the relatively limited coverage of even the most modern
mapping systems, it is likely that many of the older data sets
will remain part of our cumulative database for several more
decades. Given this reality, regional bathymetric compila-
tions that are based on a mixture of historic and contempo-
rary data sets will remain the standard for the production of
bathymetric charts. This raises the problem of assembling
such bathymetric compilations and utilizing data sets with
both a heterogeneous cover and a wide range of accuracies
[Bernardel, 1997; Macnab and Jakobsson, 2000].

[3] We address the issue of compiling bathymetric data
sets with heterogeneous cover and a range of accuracies in
the context of generating regularly spaced grids. For gen-
erating the grid we are often forced to use a complex
interpolation scheme due to the sparseness and irregularity
of the input data points. Consequently, we are faced with the
difficult task of assessing the confidence that we can assign
to the final grid product, a task that is not usually addressed
in most bathymetric compilations.
[4] Traditionally, the hydrographic community has, after

processing for outliers, cross-track analysis, etc., considered
each sounding put on a chart as equally accurate and there
has been no error evaluation accompanying the bathymetric
end product. This has important implications for use of the
gridded bathymetry, especially when it is used for generat-
ing further scientific interpretations. The method we
describe is equally valid for the compilations of any other
gridded data that are based on multiple sources with varying
densities and accuracies (e.g., magnetic data, gravity data,
etc.) where a random error component will remain in the
source data after preprocessing.
[5] We approach the problem of assessing the confidence

of the final bathymetry gridded product via a direct simu-
lation Monte Carlo method. We start with a small subset of
data from the International Bathymetric Chart of the Arctic
Ocean (IBCAO) grid model [Jakobsson et al., 2000]
(Figure 1). This grid is compiled from a mixture of data
sources ranging from single beam soundings with available
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Figure 1. A color-coded shaded relief portraying bathymetry and topography of the Arctic region
created from the IBCAO 2.5 km grid model. The area subjected to our error modeling experiment is
indicated by a bold rectangle. Projection: Polar Stereographic with true scale at 75�N. Datum: WGS-84.
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metadata, to spot soundings with no available metadata, to
digitized contours; the test data set shows examples of all of
these types.
[6] The IBCAO grid model source data has (like most

hydrographic data) been preprocessed (section 2.1) to
remove identifiable systematic errors, so that we believe that
the only remaining error sources are random errors intrinsic
in the measurements themselves. To this source database, we
assign a priori error variances based on available metadata
(i.e., data describing the source data, such as navigation and
depth measurement system types), and when this is not
available, based on a worst-case scenario in an essentially
heuristic manner. We then generate a number of synthetic
data sets by randomly perturbing the source data using
normally distributed random variates, scaled according to
the predicted error model. These data sets are next regridded
using the same methodology as the original product, gen-
erating a set of plausible grid models of the regional
bathymetry that we can use for standard deviation estimates.
Finally, we repeat the entire random estimation process and
analyze each run’s standard deviation grids in order to
examine sampling bias and standard error in the predictions.
The final products of the estimation are a collection of
standard deviation grids, which we combine with the source
data density in order to create a grid that contains information
about the bathymetric model’s reliability.

2. Data Description

2.1. Implementation of the IBCAO Grid Model

[7] The International Bathymetric Chart of the Arctic
Ocean (IBCAO) was initiated during 1997 in St. Petersburg,
with the goal of collecting all available data north of 64�N
[Macnab and Nielsen, 1999]. One of the major goals was to
compile a regular grid model from the data collected within
IBCAO. The IBCAO data consists of digital information
that was obtained during recent icebreaker and Science Ice
Expeditions (SCICEX) submarine cruises [Rothrock et al.,
1999] and older digital information that consists of recently
declassified soundings collected between 1957 and 1988 by
submarines of the U.S. and U.K. navies, and of observations
obtained from the public domain archives of world and
national data centers. In addition, hydrographic charts and
compilation maps (portraying depth in the form of point
soundings and hand-drawn contours) published by the
Russian Federation Navy [Department of Navigation and
Oceanography, 1999], by the U.S. Naval Research Labo-
ratory [Perry et al., 1986; Cherkis et al., 1991; Matishov et
al., 1995], and by other agencies, were digitized using
‘‘heads up’’ digitizing techniques (a semi-automatic process
of digitizing a scanned bathymetric chart) to supplement the
original bathymetric measurements in the IBCAO data base.
[8] The IBCAO grid model also contains topography that

was derived mainly from the USGS GTOPO30 topographic
model [U.S. Geological Survey, 1997], with the exception
of Greenland where the topographic model developed by
KMS, the Danish National Survey and Cadastre, was used
[Ekholm, 1996]. In order to constrain the coastline the
World Vector Shoreline (WVS) [Soluri and Woodson,
1990] was used in all areas except Greenland and northern
Ellesmere Island, where an updated coastline was made
available by KMS.

[9] Initially, the original bathymetric soundings were
corrected for sound speed in water using Carter’s tables,
or CTD profiles where available. After sound speed
corrections, a suite of tools and statistical routines based
upon the Helical-Hyperspatial (HH) scheme for data
encoding [Varma et al., 1990] was used to flag data as
unusable if they were found to not statistically conform to
nearby data. After this initial statistical cleaning all data
(digitized bathymetric contours, land and marine relief
grids, point, profile and swath observations, and vector
shorelines) were imported into Intergraph’s GIS Software,
MGE (Modular GIS Environment). Polar stereographic
projection on the WGS 1984 ellipsoid was used, with true
scale at 75�N. For data sets derived from icebreaker data,
it is often the case that there are large clusters of
observations gathered during active ice breaking when
headway is limited, and thus very dense soundings are
collected in a very small area. To avoid these being
overemphasized in the compilation, the observations along
icebreaker ship tracks were sub-sampled to maintain a
minimum of 500–1000 m between every point in each
track. Soundings were color coded according to depth to
facilitate a visual inspection of the statistical cleaning
results. Outliers, cross-track errors, and the fit between
isobaths and original observations were checked during
this process. Further suspicious soundings were flagged,
and where contours showed major discrepancies with
soundings, the contours were adjusted manually to fit the
new bathymetric track line data.
[10] After editing the entire Arctic Ocean bathymetry

data set, the mixture of track and digitized contour
values were used to construct a grid with a cell size
of 2.5 � 2.5 km. The variable sampling density of the
different data in the compilation led the IBCAO com-
pilers to use an interpolated gridding algorithm, namely
the continuous curvature spline-in-tension algorithm of
Smith and Wessel [1990], as implemented in the GMT
package [Wessel and Smith, 1991]. Prior to gridding the
data was preprocessed by applying a block median filter
with a block size equal to the final grid cell spacing of
2.5 � 2.5 km. This filtering serves the main purpose of
preventing spatial aliasing. Finally, the GMT continuous
spline-in-tension algorithm was used with the tension (T)
parameter set to 0.35 in order to avoid overshooting in
the interpolated regularly sampled surface. The resulting
grid was inspected visually and problems identified. For
example, a common problem was in narrow fjords without
bathymetric data points where the gridding algorithm
assigned 0 m values, the same value as the coastline. This
was controlled by manually inserting control contours
typically representing a depth of a few meters near the
coastline, which conditioned the interpolation. A shaded
relief of the entire IBCAO grid is shown in Figure 1.
Further description about the IBCAO grid model is given
by Jakobsson et al. [2000] and Macnab and Jakobsson
[2000].
[11] We emphasize the preprocessing involved in the

IBCAO compilation, a process which we include in our
experiments here. As with all hydrographic data, prepro-
cessing is implemented to remove the systematic errors
and data outliers as well as they can be resolved (since
such errors can be very significant [Smith, 1993]). Our
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aim here is to show that irrespective of how well this
preprocessing is done, there are still random errors
inherent in the data. These errors will always affect the
end product, but their effect has not been addressed
previously.

2.2. Experimental Subset of IBCAO

[12] Our experiment is based on a subsection of the
data used to construct the IBCAO grid, as shown in
Figure 1. We have chosen the area around Svalbard since
it contains a cross-section of the various régimes within
the IBCAO source data, including nearshore regions,
dense single-beam data, transect lines, bathymetric con-
tours and control contours. There is also a significant
depth range due to the relatively shallow areas of the
Barents Sea around Svalbard and the contrasting deep of
the Greenland Sea in the western part of the area where
the Knipovich Ridge, the northernmost part of the North
Atlantic Spreading Ridge, comes through. We have fol-
lowed the exact same methodology as used for the
construction of the IBCAO grid model. The data stored
in the compilation database have been inspected and
cleaned relative to the original data, and if not previously

adjusted, the depths have been corrected for sound speed
using Carter’s tables. The resulting data set shows a
distinct data density gradient from very dense survey data
near Svalbard and in the southeast of the region to poorly
constrained redigitized contours in the north and northeast
(Figure 2).

3. Error Model

3.1. Methodology of Monte Carlo Simulation

[13] In principle, estimation of errors associated with the
grid is a relatively simple matter. We need to gather a
number of data sets for the same area (keeping track of the
error sources in each), estimate depths in the area con-
cerned, and then look at the variability in the depth
estimates. However, in the regional case the vastness of
the area and the difficulty and expense of collecting the data
precludes repeated surveys. As an alternative, we consider
an approximation of the error estimates required based on
the best available data, our knowledge of the likely errors
involved, and a simulation method.
[14] The Monte Carlo method [Hammersley and Hands-

comb, 1964; Gentle, 1998] is a numerical technique for
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Figure 2. Data from the IBCAO construction database used for the error modeling. This includes all
data that fall within the bounds indicated in Figure 1 and covers almost all of the component data sets
used in the entire IBCAO grid compilation. Projection parameters are as in Figure 1. The key to the color
coding of the source data is found in Table 1.
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evaluation of difficult integrals, particularly where the
integral is over multiple dimensions, or is otherwise com-
plex to compute [Brooks, 1998; Binder and Heerman,
1988]. In the current context, the integrals of interest are
the moments of random variables (i.e., depth at each grid
node), which are constructed from a large number of data
points using a complex iterative algorithm (as described
above). The Monte Carlo method utilizes pseudo-random
numbers to generate a set of simulations of a variable of
interest (in this case the bathymetric grid surface) for which
the statistical expectation is an estimate of the integral of
interest (in this case the second central moment, or variance,
of depth at a grid node) to within some numerical error. The
flow-graph of our experiment is illustrated in Figure 3.
[15] Our computed value of standard deviation at any grid

node is only an estimate of the true value due to our
numerical approximation to the integral, and the magnitude
of the error is a function of the number of random samples
that we use in the approximation. We estimate the magni-
tude of this sampling error through multiple runs of the
simulation. It is important to distinguish carefully between
estimated standard deviation of the computed bathymetry
(the target of the simulation) and the summary of the
sampling distribution of the standard deviation grids (i.e.,
the standard error of the standard deviation estimate),
computed between different simulation runs. Although
computed in a very similar fashion, the former exhibit true
variation corresponding to the problem under investigation,
while the latter is an artifact of the sampling approach to
estimation.
[16] The first assumption made here is that the data sets

and the measurements within them are independent of each
other and that they are free of any systematic bias. In this
case, we can use the data points given as a basis for all of
the pseudo-data sets, perturbing about the values supplied.
In effect, we assume that the points recorded are unbiased
estimates of the mean bathymetry and position. The only
location where this might not be justified is in the region of
the Barents and Kara seas, where some track lines present in
the database might have been used to form the contours that
were subsequently redigitized for IBCAO. There is cur-
rently no way to verify this due to limitations in the
amalgamated source databases. This is, however, only a
very small part of the compilation, and we do not believe
the effect to be significant.
[17] Our other principal assumption is that the random

errors in location and depth are normally distributed,
independent of each other and of each data point. This
assumption is more weakly justifiable, since we may have
some systematic bias in navigation (e.g., a poorly navigated
submarine track 10 km from the true location). In all
detectable cases, however, these have been resolved in the
preprocessing stage and should not concern us here. We
may also have some correlation between the two horizontal
offsets. However, such fine detail is essentially unknown
and unknowable in the data sets we are considering, and we
are forced, reluctantly, to accept this assumption in order to
carry out the analysis.
[18] In a similar vein, we note that this analysis does not

give us any more insight into the error budget for the grid
than a full formal error analysis would. However, it does
provide a very simple way to carry out what would other-

wise be a very complex computation. Pragmatically, we
trade off accuracy for tractability.

3.2. Estimation of Errors in the IBCAO Source Data

3.2.1. Track Lines
[19] Our error modeling approach is based on an assump-

tion of normally distributed random errors in the source
data. In the case of bathymetric data this may be subdivided
into errors in determining position (x, y) and errors in
measuring depths (z). We model (x, y) errors in terms of
meters, but model z error as a percentage of measured depth
[IHO Committee, 1996]. A more detailed model of errors
(e.g., [Hare et al., 1995]) would be preferable, but essen-
tially impossible to configure given the lack of metadata for
these data sets. For recently collected survey data an
estimate of the random errors and possible constant errors
(which then can be corrected) may be available from those
who collected the data. However, in the case of the IBCAO
source data, the majority of the data sets are historic. Thus,
only the metadata is available to make a realistic initial
random error assumption, although recent studies have
attempted to address the random error in position for radio
positioning error [Calderbank, 2001]. If there is no meta-
data available the assigned errors must be based on a worst-
case scenario in order to highlight this uncertainty. The most
critical information in the metadata is type of positioning/
navigational instrumentation, bathymetric instrumentation
and year. Other information like geodetic datum and sound
speed correction would also contribute to the initial error
assignment if available. From the metadata the random error
is estimated at a selected confidence interval, in this case
95%. This means that 95% of the normally distributed
positions should fall within a circle with a radius of the
assigned error.
[20] It is not a straightforward task to assign an error

simply based on the metadata, but it is the only approach
possible for historic data sets. For example, if it is found that
the positions were acquired using a GPS system during
1990, the random error may be on the order of ±80 m [Wells
et al., 1986]. However, if positions were acquired using
Loran C, error characterization is more complicated because
its accuracy varies more widely with time and location
[Maloney, 1985]. Again, the worst-case scenario is the
easiest and safest approach. Constant errors are more prob-
lematic to account for in historic data sets, although they
may possibly be distinguished through crossing track lines.
3.2.2. Contours and Associated Problems
[21] The contour is still the traditional means of display-

ing bathymetry. In theory, a contour represents exactly one
value along its entire extension. However, in reality, con-

Figure 3. Conceptual organization of the Monte Carlo
method applied to error estimation. Errors are estimated via
sample statistics computed pointwise over pseudo-randomly
generated grids.
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tours are typically interpolations based on underlying sparse
ship track data. Therefore, the depth is only true where the
contour crosses a track line. Without the source data and its
associated metadata being available, it is not possible to
judge the accuracy of the bathymetric contours. In addition,
a manually derived contour map will inherit a style from the
cartographer/geophysicist who drew it. All this makes it
difficult to produce an error estimation of a bathymetric
contour map. When contours are used as source data for
creating a gridded surface these problems go along with it.
In addition, a gridding algorithm suitable for interpolating a
regular grid from the contours is required [Smith and
Wessel, 1990]. For example, terracing is an artifact in grid
models that arises from gridding source data that consists

primarily, or in parts, of digitized contours. The terracing is
due to a bias toward the contour values. If artificial
illumination is applied to a gridded surface suffering from
terracing the surface shows steps between terraces at the
contour values. The IBCAO grid shows some terracing
along the central Arctic Ocean continental slopes where
digitized contours dominate. A histogram of depths of the
gridded surface’s nodes clearly reveals a bias toward the
digitized contours (Figure 4).
3.2.3. Error Assignment
[22] Some of the data sets within the IBCAO source data

have no metadata associated with them. However, in our
error modeling experiment, which is focused on developing
the modeling approach rather than producing the best
possible estimate of the errors in the subset of the IBCAO
grid around Svalbard, we have assigned generalized errors
to all data sets based on the classification described in
Table 1. Contours are assumed to have the largest errors
whereas the data from the Norwegian sources, which mainly
consists of hydrographic survey data is the lowest. Data
from the R/V Oden collected using GPS positioning is
considered to have the highest horizontal accuracies. The
data collected from submarines are considered to be
inaccurately positioned (±5000–10000 m) due to the use
of inertial navigation for long periods between surface
fixes. The data collected from the R/V Ymer was posi-
tioned using a Magnavox one-channel satellite system
[Eldholm et al., 1982], which we have assigned an
accuracy on the order of ±1 nm. The data retrieved from
the NGDC data center is assigned common positional and
depth errors. A full error estimation of the entire IBCAO
grid is one of our future goals. This will require a large
amount of time-consuming ‘‘data detective’’ work in order
to find metadata (i.e., descriptions of the data sets, for
example the type of positioning system) for many of the

Figure 4. Histogram of the grid node depths in the
subsection of the IBCAO model shown in Figure 1. The
spikes are caused by a bias toward the depths as represented
by contours in the source data.

Table 1. Classification of the Source Data Shown in Figure 2 and Initial Assignment of Standard Deviation of

Errors at 95% Confidence Interval

Source data Horizontal Error, m Vertical Error, % Depth

Digitized Contours
Contours drawn during the IBCAO project (yellow) 12,000 5
Bathymetry of the Franz Josef land area
[Matishov et al., 1995] (blue)

12,000 5

Bathymetry of the Barents and Kara Seas
[Cherkis et al., 1991] (black)

12,000 5

Bottom relief of the Arctic Ocean
[Department of Navigation
and Oceanography, 1999] (orange)

12,000 5

Soundings
Swedish icebreaker Oden, 1991 and 1996 (blue) 100 5
Swedish icebreaker Ymer, 1980 (green) 1,852 5
U.S. and British Royal Navies
submarines, 1958–1988 (brown)

10,000 5

Data collected during SCICEX
by USS Hawkbill, 1999 (cyan)

5,000 5

Data from Norwegian sources (black) 200 2
Soundings obtained from the
U.S. National Geophysical Data Center
(NGDC) (magenta)

1,000 5

Land and Support Data
World Vector Shoreline (gray) 0 0
Control contours (red) 0 0
GTOPO30 (blank) 0 0
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older data sets. Only then will it be possible to assign
errors that are more closely related to the ‘‘true’’ errors.

4. Data Preprocessing and Simulation

4.1. Preprocessing

[23] We used the bounds indicated in Figure 1 to extract
the relevant data from the IBCAO compilation. Data are
represented as flat-file (x, y, z) triples using projected
coordinates and corrected depths.

4.2. Data Set Simulation

[24] The experimental estimation of standard deviations
on the grids consists of a number of repeated simulations. In
particular, we have to consider M sets of N grids. We
therefore subscript all variables Anm or Am as appropriate,
where upper case bold letters indicate matrices (or grids) and
lower case bold letters indicate (column) vectors. Operations
on grids are always taken pointwise (so A = F (B) for some
operator F (�) means Aij = F (Bij) 8i, j on the domain). Sets
of variables are indicated by sans serif letters, e.g., Y =
{Y(1),. . ., Y(k)}; when appropriate, we refer to components
of a set indexed over N (the set of natural numbers) with an
essentially arbitrary, but fixed, indexing scheme.
[25] Given the collection of cleaned data sets X =

{X(1),. . ., X(s)} and a corresponding error model, E =
{e(1),. . ., e(s)}, e(i) = [sx2(i), sy2(i), a0

2(i)]T, we generate a
pseudo-data set Xnm by perturbing each sounding with a
random vector as follows:

Xnm ¼ Xnm 1ð Þ; . . . ;XnmðsÞf g ð1Þ

Xnm ið Þ ¼ X ið Þ þ EEEnm ið Þ 1 � i � s ð2Þ

EEEnm ið Þ ¼ hhh1ðiÞ; . . . ; hhhJ ið Þ ið Þ
h i

nm
J ið Þ ¼ jX ið Þj; 1 � i � s ð3Þ

hhh j ið Þ � M 0; diag s2x ið Þ;s2y ið Þ;a2
0 ið Þz 2j ið Þ

� �� �
ð4Þ

1 � j � J ið Þ; 1 � i � s

where M (M, �) is the multivariate normal distribution with
mean M and covariance matrix �.
[26] Gaussian variates are generated using the Box-Mul-

ler equations driven by a nonlinear congruential generator
that is known to have sequence length of at least 235 and
produces equally random bits in all sections of the output
word. The uniform variates are scaled to [0, 1) before
conversion to Gaussian distributions.
[27] The basic component of the simulation is a block of

N = 100 pseudo-data sets, from which we construct a set of
N grids using the same algorithm as the IBCAO compila-
tion, with a mask prepared from GTOPO30 topography to
constrain the standard deviation estimate to be zero on land.
We then compute the expectation Bm = E [Bnm] and the
standard deviation �����m = E [(Bnm � Bm)

2] of this set, the
latter estimating our confidence in the former’s depth
prediction. Computations are done directly on the grids
using the GMT grid calculator; this avoids any conversion
errors or approximations. The standard deviation estimate
�����m is the primary outcome of the simulation.
[28] To estimate the Monte Carlo error, we repeat the

above basic simulation M = 20 times. We then compute

the expectation ������ = E [�����m] and standard error estimate ����� =
E [(�����m � ������)2] of the individual standard deviation grids,
providing us with a spatially localized estimate of the
variability of standard deviation at each estimation grid
point.

5. Results

5.1. Standard Deviations in Gridding and
Gridding Stability

[29] Standard deviation grids for a single run of the
algorithm (i.e., :m) are shown in Figures 5a and 5b. We
can visualize the error in two ways: either as true meters, or
as a percentage of the depth estimated from the unperturbed
data, X. Based on the assumption that we are more inter-
ested in relative errors, especially in the nearshore region,
we will concentrate mainly on the percentage error grid
(Figure 5b).
[30] On first examination, the results appear to agree with

intuition. In regions where there have been rigorous hydro-
graphic surveys (e.g., 77�N, 22�300E), the estimated error is
significantly lower than regions where only a single track
line is used to constrain the grid (e.g., at 82�N, 5�E). We
also clearly see that where there are track lines, the error is
lower, and that inshore the error is proportionately higher.
[31] However, comparing the grids to the source data grid

(Figure 2), we see some anomalies. For example, the region
near 79�300N 37�E has suspiciously low error given the
scarcity of data in the area. We attribute this to the smoothing
interpolative nature of the gridding algorithm and the fact
that the source data in this region predominantly derives
from contours. That is, in flat regions with little data enclosed
by contours, what we see is a smooth approximation between
the contour limits, rather than a realistic error estimate.
[32] Consequently, we chose to remove from considera-

tion areas that are equal to or larger than 7500 � 7500 m
that contain no soundings. The resulting reduced grid, with
these areas shaded in gray, is shown in Figure 6, and by
comparison with Figure 5b, we can see that the anomalous
area described above is completely removed. We note that
some variant of a combination of sounding density and
different resolution grids may be a way to approach a
prediction of the required gridding density for any particular
data set, a topic we are currently investigating further.
[33] With the empty grid cells removed, we can interpret

the results with more confidence. The major feature of the
grid is the significantly increased error in regions of higher
slope (Figures 6 and 7). This is principally due to problems
of excessive horizontal error, which cause a significantly
increased depth error as they shift slopes from place to
place. This is also the case for the ridge of high error
running from Bjørnøya (74�300N, 19�E) to Svalbard,
although the ridge is not as obvious in the bathymetry.
[34] Perhaps more surprising than the regions with sig-

nificant errors is the remarkable uniformity of error over
much of the shelf area to the southeast of Svalbard. This is
due principally to the relatively even distribution of sound-
ings over the entire area (which are mainly derived from
Norwegian hydrographic survey data), in combination with
the general lack of large relief in the area. If the region being
studied were essentially flat on a suitably large horizontal
scale, then it is immaterial how much horizontal error is
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found in the data; all soundings should indicate the same
true depth, and hence the principal error source observed
will come from vertical error in the sounding system, rather
than from geographical variability coupled into the sound-
ings through mislocation.
[35] The potential of this approach is demonstrated by the

identification of the error associated with the seamounts at
82�N, 24�E (Figures 5a, 5b, and 7). The error estimate
shows clearly that significant error is associated with the
whole seamount, rather than just the slopes. Indeed, a
profile of the gridded bathymetry across the feature shows
a relief of approximately 1500–1700 m from the surround-
ing seafloor, and the estimated standard deviation is over
1000 m on the tops of the seamounts, suggesting that we
would not be able to tell the seamounts from the back-
ground with any significant confidence (in the sense of a
statistical test of the null hypothesis that there is no differ-
ence in depth between the background and the tops of the
seamounts). This would be the case for any high relief
feature defined by a single track line with poorly con-
strained navigation. A subsequent survey of the area by
the R/V Polarstern [Jokat, 1999] showed that the feature
did not really exist; further investigation of the original data
(from the R/V Oden) found a malfunctioning echo sounder.

5.2. Monte Carlo Estimation Errors

[36] The estimate of Monte Carlo error, �����, is shown in
Figure 8. Recalling that the purpose of this grid is to show

regions of the target area where our prediction of standard
deviation is more variable, we can see that most areas are
estimated in a stable fashion, but that there is more varia-
bility in the deeper areas. We conjecture that this is simply
due to the higher vertical error in deeper water, resulting in
higher variability in the grids, and hence in both the standard
deviation estimate and variability of that estimate.
[37] In practice (in this data set), the relative error in the

estimation is slight. We could reduce the Monte Carlo error
by generating more pseudo-random grids, or by agglomer-
ating two or more of the independent runs. However, this
only reduces the error slowly, and in this case is probably
not warranted.

6. Discussion

6.1. Assessment of Methodology

[38] As described previously, our numerical approxima-
tion to error estimates does not give us any more informa-
tion than a formal error propagation analysis of the gridding
algorithm would provide. However, we also observe that
such a formal analysis would be very difficult (or impos-
sible) to carry out under the circumstances, and hence the
approximation here is justified. Given the assumptions
inherent in the method, our results show that the technique
generates results in line with intuition and common sense.
However, the assumptions that we have made do limit the
applicability of the method as it stands.

Figure 5. (a) Estimated standard deviation of gridded depth based on N = 100 Monte Carlo simulation
runs. Standard deviation is depth in meters. (b) Estimated standard deviation of gridded depth based on
N = 100 Monte Carlo simulation runs. Standard deviation is shown as a percentage of the depth estimated
on the unperturbed grid. The percentage grid gives a better feel for the errors involved and is the preferred
grid for interpretation.
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[39] We have assumed that our input data was prepro-
cessed for systematic errors, and only random errors need to
be modeled. This is implicit in the use of normally dis-
tributed random variates to generate the pseudo-independ-
ent data sets used in the Monte Carlo estimation. Although
we believe that this is the most likely error mode for the data
once it is cleaned and entered into the database, it is not the
only error mode possible. In particular, we could encounter
a survey line that is very badly navigated, for example due
to long-term drift in inertial navigation systems. In this case,
a systematic bias has been introduced into the data and our
assumption that the recorded data is a valid estimate of the
population mean is violated. However, it is impossible to
identify these types of errors without further cross checks
(such as the repeated observations which highlighted the
problem with the pseudo-seamounts in this work), and we
consider the identification of such errors beyond the scope
of our statistical error assessment. A cross track analysis and
correction of data sets that are offset due to poor navigation
should be performed prior to the gridding; there are several
possible approaches to this problem [e.g., Caress and
Chayes, 2000; Smith, 1993].
[40] We have assumed that random errors in the source

data are distributed as Gaussian random variates, and that
the variance is the same for all points in each component
data set. Lacking a more formal assessment of the errors

associated with each data set, this is probably unavoidable.
Indeed, with historical data sets, it may be difficult to
determine reasonable errors with any certainty since the
metadata describing the instrumentation package may not
be adequate (or extant). As we have done here, future work
will have to assign subjective (but informed) error bounds,
making sure to err on the side of caution and assess slightly
exaggerated errors. Studies of the accuracies of positioning
systems [e.g., Calderbank, 2001] will be important in this
endeavor. Since the principal goal of the research is to
inform users as to the trust they can have in the generated
grid data, too high an error assessment is preferable to an
underestimate. The assignment of the initial errors bounds
to the data sets, which is fundamental for our modeling
approach, will be one subject of further research. During the
past century, depth and positioning measurements have
gone from lead lines to multibeam sonars and from sextants
to differential GPS. Each advance in technology is associ-
ated with a tremendous improvement in the accuracy and
resolution. Considering the technology used for bathymetric
data collection, a thorough classification in terms of random
errors may be done. However, there are also other factors,
more difficult to discern, that may add to the random errors
of the collected data, including weather conditions and
human factors.
[41] Finally, we have assumed that the IBCAO gridding

algorithm is the right way to compute the gridded product.
In terms of comparing the error assessment with the original
data this is unavoidable, but it is certainly a limiting factor
to the application of the methodology to other data sets.
However, nothing in the theoretical foundation of the
technique we describe requires that the IBCAO gridding
model is used, and substitutions may be made on a black-
box basis. The principal shortcoming of the methodology
outlined is that it is difficult to discriminate between low
errors arising from accurate data, and low errors arising
from gridding artifacts where there is low data density. This
is typically associated with areas defined principally
through contour data, which also causes significant terrac-

Figure 6. Standard deviation grid (percentage of estimated
depth) with empty grid cells removed. Interpretation of
standard deviation in the grid where there is no data is
essentially a function of the interpolation surface used in
gridding, rather than actual errors caused by variability of
data. We remove empty cells to avoid overinterpretation in
sparse data.

Figure 7. Three-dimensional image, created using the
Fledermaus software, showing the standard deviation as a
percentage of the depth estimated on the unperturbed grid
and draped on the IBCAO bathymetry. The error estimate
shows clearly that significant error is associated with the
indicated seamounts later revealed not to exist by a survey
with R/V Polarstern.
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ing in the bathymetry. Although we can avoid this problem
by removing from consideration areas with low data density,
it would be better to avoid contours whenever possible and
instead use the original source data. The need to rely on
contour-only derived data is probably most acute in the
Arctic where the strategic sensitivity of data sources has
resulted in a general reluctance to distribute original sound-
ing data.
[42] Related to the problem of density is one of resolu-

tion, which we have not really considered in the present
work. That is, at what grid resolution should we work, and
should this be the same across the entire grid? Determina-
tion of a reasonable resolution at which to work is essential,
particularly to ensure that we are making interpretations
correctly when we look at error estimates. Ideally, we
should work at a resolution determined by the spatial
frequencies associated with the bathymetry in question,
and have data-driven grid cells. In practice, the spatial
frequency spectrum of the bathymetry is not known a priori,
and we have to resort to some approximation, such as
reducing the resolution and repeating the error estimation
until our standard errors stabilize. We would then be able to
use the stabilization resolution as a local working resolution
for further work. Assessment of stability of the estimation
also informs us about the highest resolution that is reason-
able for interpretation of the data in question; and this is not
necessarily stable across the grid when we have many
different vintages of data sets. We consider that the issue

of gridding resolution is the most significant outstanding
issue with the current methodology, and are actively pursu-
ing improvements in this area.
[43] One of our initial goals was to create an error

assessment in the same format as the bathymetry grid.
The reason for this is to prevent overinterpretation of the
bathymetry by facilitating the visualization of the errors
associated with the gridded data set in modern GIS tools
and other grid analysis software. The standard deviation
error associated with each depth in a grid cell may be
represented as an attribute to the bathymetric depth. In
Figure 7 the form of the three-dimensional (3-D) surface
visualizes the morphology of the sea bottom while the color
coding represents the standard deviation error (as a percent-
age of depth) in each grid cell. In this way the relationship
between the uncertainty of the bathymetry and the regional
morphology can clearly be seen. Such an approach allows
for the intuitive interpretation of potential sources of uncer-
tainty. We have limited our error modeling to bathymetry.
However, this approach may be applicable to other geo-
physical data sets such as gravity and magnetics that exist as
gridded data compiled using similar approaches as we used
for the IBCAO bathymetry grid [Verhoef et al., 1996; Laxon
and McAdoo, 1994].
[44] Finally, we note that our approach could also be used

to address the uncertainty of a derivative product of a grid
model, for example isobaths built from a bathymetric sur-
face. An example is the isobath at 2500 m, which is used by
nations in the process of making a claim under Article 76 of
the United Nations Convention on the Law of the Sea
(UNCLOS). Stacking isobaths generated from each of the
Monte Carlo bathymetric grids could provide an estimate of
the variability in positioning of the 2500 m isobath due to
random errors in the source data, and hence in variability of
the potential claim [Jakobsson et al., 2001].

7. Conclusions

[45] We conclude that the prediction of accuracies in final
gridded bathymetric products is possible using a Monte
Carlo approach, with the added advantage that the output
error assessment is in the same form as the original gridded
product. Our predictions on a test data set agree with
common sense, and provide important caveats on the use
of gridded data products. Our experiments clearly show
areas of high certainty associated with the more accurate
data in the data set, and regions which are less reliable,
typically associated with contour-based data. We also dis-
covered areas of unexpectedly high uncertainty, which we
subsequently found to be associated with erroneous data
from a single track line.
[46] We have outlined a methodology for the assessment

of errors in gridded bathymetric data sets. Although the
method has been applied to the problem of sparse data sets
requiring interpolation, we believe that it can also be applied
to other types of data. However, there may be alternatives
when data is denser, for example when dealing with multi-
beam echo sounder data. The methodology relies on essen-
tially subjective assessments of the errors associated with
the data sets used. It would be preferable to assign errors
based on a more formal model of the data gathering equip-
ment, but these are often not available. In many cases, the

Figure 8. Estimate of Monte Carlo error associated with
the standard deviation estimates. This grid is estimated as
the sampler error associated with the standard deviation
estimates, computed overM = 20 example standard deviation
grids.
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subjective but conservative estimate of an experienced
observer may be more useful than the alternatives.
[47] We have essentially neglected the issue of resolution

in this analysis, although it is probably a significant con-
straint, especially in sparse data. The resolution at which
data is analyzed should be data-driven, rather than specified
a priori. However, implementation and theoretical difficul-
ties involved in this are not trivial, and are currently the
subject of further research.

[48] Acknowledgments. We thank Magnus Mörth for coming up
with the idea that the Monte Carlo method might be useful for our error
modeling of bathymetric data. We would also like to thank the Associate
Editor and two anonymous reviewers for comments that significantly
improved the manuscript. We gratefully acknowledge NOAA grant
NA970G0241 for supporting this project.

References
Bernardel, G., Digital terrain model for the Tasmanian region: A pilot study
into combining disparate datasets, Tech. Rep. AGSO Rec. 1997/61, Aust.
Geol. Surv. Org., Canberra, 1997.

Binder, K., and D. W. Heerman, Monte Carlo Simulation in Statistical
Physics, Springer-Verlag, New York, 1988.

Brooks, S. P., Monte Carlo Markov Chain method and its applications,
Statistician, 47(1), 69–100, 1998.

Calderbank, B., Radio positioning accuracies, Lighthouse, Spring/Summer,
12–15, 2001.

Caress, D., and D. Chayes, Optimal navigation adjustment for poorly na-
vigated swath bathymetry surveys, Eos Trans. AGU, 81(48), Fall Meet.
Suppl., Abstract T52C-14, 2000.

Cherkis, N. Z., H. S. Fleming, M. D. Max, P. R. Vogt, M. F. Czarnecki, Y.
Kristoffersen, A. Midthassel, and K. Rokoengen, Bathymetry of the
Barents and Kara Seas, scale 1:2,313,000, Geol. Soc. Am. Map Chart
Ser., MCH047, 1991.

Department of Navigation and Oceanography, Bottom relief of the Arctic
Ocean; map, scale 1:5,000,000., All Russ. Res. Inst. of Sci., St. Peters-
burg, Russia, 1999.

Ekholm, S., A full coverage, high-resolution, topographic model of Green-
land computed from a variety of digital elevation data, J. Geophys. Res.,
101, 961–972, 1996.

Eldholm, O., E. Sundvor, M. Sand, and K. Crane, YMER-80: Navigation
and Bathymetry, Univ. i Oslo, Oslo, 1982.

Gentle, J. E., Random Number Generation and Monte Carlo Methods,
Springer-Verlag, New York, 1998.

Hammersley, J. M., and D. C. Handscomb, Monte Carlo Methods,
Methuen, New York, 1964.

Hare, R., A. Godin, and L. A. Mayer, Accuracy estimation of Canadian
swath (Multibeam) and sweep (MultiTransducer) sounding systems, tech-
nical report, Can. Hydrogr. Serv., Ottawa, 1995.

IHO Committee, IHO standard for hydrographic surveys, Spec. Publ. 44,
4th ed., Int. Hydro. Org., Monaco, 1996.

Jakobsson, M., N. Z. Cherkis, J. Woodward, B. Coakley, and R. Macnab,
A new grid of Arctic bathymetry: A significant resource for scientists and
mapmakers, Eos Trans. AGU, 81(9), 89, 93, 96, 2000.

Jakobsson, M., B. Calder, L. Mayer, and A. Armstrong, The uncertainty of
a bathymetric contour: Implications for the cut-off line, in Acuracies and
Uncertainties in Maritime Boundaries and Outer Limits, ABLOS Con-
ference [CD-ROM], Int. Hydrol. Bur., Monaco, 2001. (Available at http://
www.gmat.unsw.edu.au/ablos/).

Jokat, W., The Expedition ARKTIS-XV/2 of Polarstern, Tech. Rep. 368-
2000, Alfred-Wegener Inst., Bremerhaven, Germany, 1999.

Laxon, S., and D. McAdoo, Arctic ocean gravity field derived from ERS-1
satellite altimetry, Science, 265(5172), 621–624, 1994.

Macnab, R., and M. Jakobsson, Something old, something new: Compiling
historic and contemporary data to construct regional bathymetric maps,
with the Arctic Ocean as a case study, Int. Hydrol. Rev., 1(1), 2–16,
2000.

Macnab, R., and A. Nielsen, IOC/IASC editorial board for the International
Bathymetric Chart of the Arctic Ocean, Open File Tech. Rep. 3713, Geol.
Surv. of Can., Ottawa, 1999.

Maloney, E. S., Dutton’s Navigation and Piloting, 14 ed., Nav. Inst. Press,
Annapolis, Md., 1985.

Matishov, G. G., N. Z. Cherkis, M. S. Vermillion, and S. L. Forman,
Bathymetry of the Franz Josef land area, Geol. Soc. Am. Map Chart
Ser., MC-56, 1995.

Perry, R. K., H. S. Fleming, J. R. Weber, Y. Krisoffersen, J. K. Hall,
A. Grantz, G. L. Johnson, N. Z. Cherkis, and B. Larsen, Bathymetry of
the Arctic Ocean, map, scale 1:4,704,075, Geol. Soc. Am. Map Chart
Ser., MC-56, Boulder, Colo., 1986.

Rothrock, D., et al., Arctic ocean sciences from submarines—A report
based on the SCICEX 2000 Workshop, Tech. Rep., Appl. Phys. Lab.,
Univ. of Wash., 1999.

Smith, W. H. F., On the accuracy of digital bathymetric data, J. Geophys.
Res., 98, 9591–9603, 1993.

Smith, W. H. F., and P. Wessel, Gridding with continuous curvature splines
in tension, Geophysics, 55, 292–305, 1990.

Soluri, E. A., and V. A. Woodson, World vector shoreline, Int. Hydrol. Rev.,
67(1), 27–36, 1990.

U.S. Geological Survey, GTOPO30 digital elevation model, EROS Data
Cent., Sioux Falls, S.D., 1997.

Varma, H., H. Boudreau, and W. Prime, A data structure for spatiotemporal
databases, Int. Hydrol. Rev., 67, 71–92, 1990.

Verhoef, J., W. R. Roest, R. Macnab, and J. Arkani-Hamed, Magnetic
anomalies of the Arctic and North Atlantic Oceans and adjacent land
areas, Open File Tech. Rep. 3125, Geol. Surv. of Can., Ottawa, 1996.

Wells, D. E., et al., Guide to GPS Positioning, Canadian GPS Associates,
Fredricton, N.B., Canada, 1986.

Wessel, P., and W. H. F. Smith, Free software helps map and display data,
Eos Trans. AGU, 72(41), 441, 445–446, 1991.

�����������������������
B. Calder, M. Jakobsson, and L. Mayer, Center for Coastal and Ocean

Mapping, University of New Hampshire, Durham, NH 03824, USA.
(brc@ccom.unh.edu; martin.jakobsson@unh.edu; larry.mayer@unh.edu)

JAKOBSSON ET AL.: ERRORS IN BATHYMETRIC GRIDS ETG 14 - 11


	University of New Hampshire
	University of New Hampshire Scholars' Repository
	12-20-2002

	On the effect of random errors in gridded bathymetric compilations
	Martin Jakobsson
	Brian R. Calder
	Larry A. Mayer
	Recommended Citation


	On the effect of random errors in gridded bathymetric compilations

