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Abstract 

This thesis presents an adapted method to derive coastal vulnerability through the application 

of Earth Observation (EO) data in the quantification of forcing variables. A modelled 

assessment for vulnerability has been produced using the Coastal Vulnerability Index (CVI) 

approach developed by Gornitz (1991) and enhanced using Machine learning (ML) clustering. 

ML has been employed to divide the coastline based on the geotechnical conditions observed 

to establish relative vulnerability. This has been demonstrated to alleviate bias and enhanced 

the scalability of the approach – especially in areas with poor data coverage – a known 

hinderance to the CVI approach (Koroglu et al., 2019).  

Belize provides a demonstrator for this novel methodology due to limited existing data 

coverage and the recent removal of the Mesoamerican Reef from the International Union for 

Conservation of Nature (IUCN) List of World Heritage In Danger. A strong characterization 

of the coastal zone and associated pressures is paramount to support effective management and 

enhance resilience to ensure this status is retained. 

Areas of consistent vulnerability have been identified using the KMeans classifier; 

predominantly Caye Caulker and San Pedro. The ability to automatically scale to conditions in 

Belize has demonstrated disparities to vulnerability along the coastline and has provided more 

realistic estimates than the traditional CVI groups. Resulting vulnerability assessments have 

indicated that 19% of the coastline at the highest risk with a seaward distribution to high risk 

observed. Using data derived using Sentinel-2, this study has also increased the accuracy of 

existing habitat maps and enhanced survey coverage of uncharted areas.  

Results from this investigation have been situated within the ability to enhance community 

resilience through supporting regional policies. Further research should be completed to test 

the robust nature of this model through an application in regions with different geographic 

conditions and with higher resolution input datasets.    



 

iii 

  

Declarations 

 

This work has not previously been accepted in substance for any degree and is not being 

concurrently submitted in candidature for any degree.  

 

This thesis is the result of my own investigations, except where otherwise stated. Other sources 

are acknowledged by footnotes giving explicit references. A bibliography is appended. 

 

I hereby give consent for my thesis, if accepted, to be available for photocopying and for inter-

library loan, and for the title and summary to be made available to outside organisations. 

 

The University’s ethical procedures have been followed and, where appropriate, that ethical 

approval has been granted. 

 

 

 

 

 

 

 

 

Signed: 

Date: 05/05/2023 

  



 

iv 

  

Contents 

 

Abstract ...................................................................................................................................... ii 

Declarations ............................................................................................................................. iii 

Acknowledgements ................................................................................................................ viii 

List of figures ............................................................................................................................ ix 

List of tables ............................................................................................................................. xii 

List of abbreviations .............................................................................................................. xiii 

PART I – INTRODUCTION .................................................................................................. 1 

1. Modelling coastal vulnerability from space ....................................................................... 1 

1.1. Coastal areas in a changing climate ............................................................................ 1 

1.2. Case Study: Belize ...................................................................................................... 3 

1.3. Thesis aim ................................................................................................................... 6 

1.4. Thesis structure ........................................................................................................... 7 

PART II – LITERATURE REVIEW .................................................................................... 8 

2. Coastal hazards in Belize .................................................................................................... 8 

2.1. The coastal zone .......................................................................................................... 8 

2.1.1. Physical environment ........................................................................................... 9 

2.1.2. Anthropogenic activity....................................................................................... 10 

2.2. Managing coastal hazards in Belize .......................................................................... 13 

3. Coastal vulnerability in Belize ......................................................................................... 18 

3.1. Geomorphology and geology .................................................................................... 20 

3.2. Oceanography............................................................................................................ 23 

3.3. Topography ............................................................................................................... 25 

3.4. Wind exposure........................................................................................................... 26 

4. Assessing vulnerability ..................................................................................................... 27 

4.1. The Coastal Vulnerability Index (CVI) ..................................................................... 27 



 

v 

  

4.2. Limitations with the CVI........................................................................................... 33 

5. Earth Observation (EO) in vulnerability mapping ........................................................... 35 

5.1. Sources ...................................................................................................................... 38 

5.2. Techniques ................................................................................................................ 42 

5.2.1. Image classification ........................................................................................... 42 

5.2.2. Satellite Derived Bathymetry (SDB) ................................................................. 45 

5.2.3. Satellite altimetry ............................................................................................... 50 

5.2.4. Digital Elevation Models (DEMs) ..................................................................... 54 

5.3. Machine Learning ..................................................................................................... 57 

5.3.1. Clustering algorithms ......................................................................................... 57 

PART III – METHODS ........................................................................................................ 62 

6. Methods ............................................................................................................................ 62 

6.1. Conceptual framework .............................................................................................. 62 

6.2. Data ........................................................................................................................... 66 

6.3. Primary data techniques ............................................................................................ 68 

6.3.1. Sentinel-2 ........................................................................................................... 68 

6.3.2. Supervised classification .................................................................................... 69 

6.3.3. Satellite Derived Bathymetry (SDB) ................................................................. 70 

6.4. Secondary data techniques ........................................................................................ 74 

6.4.1. Digital Elevation Modelling (DEM) .................................................................. 74 

6.4.2. Wave climatology modelling ............................................................................. 75 

6.4.3. Wind intensity .................................................................................................... 75 

6.4.4. Tides ................................................................................................................... 76 

6.5. Modelling approach................................................................................................... 77 

6.5.1. Coastal sampling ................................................................................................ 77 

6.5.2. Assigning vulnerability groups with machine learning ..................................... 79 

6.5.3. CVI Calculation ................................................................................................. 82 



 

vi 

  

6.5.4. CVI Model Evaluation ....................................................................................... 82 

PART IV – RESULTS ........................................................................................................... 83 

7. Characterisation of coastal vulnerability parameters ........................................................ 83 

7.1. Geomorphology component ...................................................................................... 83 

7.2. Marine slope component ........................................................................................... 87 

7.3. Terrestrial slope component ...................................................................................... 92 

7.4. Wave climatology component ................................................................................... 93 

7.5. Wind exposure component ........................................................................................ 97 

8. Modelling of coastal vulnerability in Belize .................................................................... 99 

8.1. Clustering of parameters ........................................................................................... 99 

8.2. Spatial distribution of vulnerability......................................................................... 104 

8.3. Validation of multi variate CVI model ................................................................... 108 

PART V – DISCUSSION AND CONCLUSIONS ............................................................ 117 

9. Uncertainties ................................................................................................................... 117 

9.1. Uncertainties in parameter derivation ..................................................................... 119 

9.1.1. Geomorphology component............................................................................. 119 

9.1.2. Marine slope component .................................................................................. 125 

9.1.3. Terrestrial slope component ............................................................................. 130 

9.1.4. Wave climatology component ......................................................................... 131 

9.1.5. Wind exposure component .............................................................................. 132 

9.2. Uncertainties in the approach to modelling............................................................. 136 

9.2.1. Clustering ......................................................................................................... 136 

9.2.2. Scale ................................................................................................................. 138 

9.2.3. The CVI approach ............................................................................................ 139 

9.2.4. Component assumptions .................................................................................. 141 

10. Analysis of vulnerable areas ....................................................................................... 143 

11. Supporting policy: a use in Integrated Coastal Zone Management (ICZM)? ............. 146 



 

vii 

  

12. Recommendations ....................................................................................................... 154 

13. Conclusions ................................................................................................................. 156 

REFERENCES ..................................................................................................................... 159 

APPENDIX ........................................................................................................................... 187 

 

  



 

viii 

  

Acknowledgements 

This thesis has been the result of two years of work. During this time, I have been fortunate 

enough to experience a great deal of support from a multitude of people without whom this 

thesis would not have been possible.  

My profound thanks is extended to: 

ARGANS Ltd. for supporting me with the initial project conception and for providing me with 

an experience and knowledge of Earth Observation through working across several marine 

projects. The technical experience in this role has provided me with the foundations to write 

this thesis and to which I am very grateful. I would specifically like to thank Jean Laporte for 

his technical advice and critical thoughts on my original project proposal. 

My advisors at Swansea University – Professor Peter North and Dr Sietse Los – have been 

exceptional source of support and knowledge. This is especially appreciated through being 

largely provided remotely! Thank you for always being available for advice and support. 

I am grateful also to Professor Eli Lazarus and Dr John Hiemstra for their time during my Viva 

exam. Their specialist expertise on Coastal Vulnerability and comments on the best ways to 

structure this thesis were certainly valued. 

Finally, a big thanks to my family and friends who have listened to my many ramblings on 

vulnerability and have been a great source of encouragement for the last two years. 

  



 

ix 

  

List of figures 

Figure 1: Location of Belize and the Mesoamerican Reef Ecoregion. ...................................... 4 

Figure 2: Average annual occurrence of natural hazards in Belize (1980 – 2020). ................... 5 

Figure 3: The coastal zone represents the area subjected to the interaction between land, sea 

and anthropogenic activity (Thia-Eng, 1993). ........................................................................... 9 

Figure 4: Areas of Belize affected by specific anthropogenic pressures (Verutes et al., 2016).

.................................................................................................................................................. 11 

Figure 5: Extent of mangrove forest clearance from public EO data (Cherrington et al., 2020).

.................................................................................................................................................. 12 

Figure 6: (a) Administrative districts in Belize. (b) Key stakeholders and their operating areas 

(Verutes et al., 2016). ............................................................................................................... 13 

Figure 7: Location of Marine Protected Areas (MPAs), Belize (Graham et al., 2008). .......... 14 

Figure 8: Disaster Risk Management Cycle (Le Cozannet et al., 2020). ................................. 15 

Figure 9: Requirements for Earth Observation in decision frameworks for disaster management 

(Le Cozannet et al., 2020). ....................................................................................................... 16 

Figure 10: Factors affecting coastal vulnerability (Noor & Maulud, 2022). ........................... 19 

Figure 11: Schematic of the Belizean cross-shore habitats with corresponding bathymetry 

profiles (Guannel et al., 2016). ................................................................................................ 21 

Figure 12: Incident wave climate and distribution of coral impedance (McNeill et al., 2010).

.................................................................................................................................................. 23 

Figure 13: Diurnal tidal range of the Caribbean Sea (Jevrejeva et al., 2020). ......................... 24 

Figure 14: Vulnerability groups and threshold ranges for each variable (Gornitz, 1990). ...... 28 

Figure 15: (a) Distribution of vulnerability with respect to each parameter. (b) Increased 

accuracy resulting from the inclusion of weighted parameters in CVI assessment. ................ 30 

Figure 16: Disparities to vulnerability assessments resulting from a difference in methods from 

Koroglu et al. (2019). (a) Lopez et al. (2016). (b) Thieler & Hammar-Klose (2000).  (c) Shaw 

(1998). (d) Gornitz (1991). ...................................................................................................... 32 

Figure 17: The role of remote sensing in coastal monitoring programmes (Harvey et al., 2018).

.................................................................................................................................................. 36 

Figure 18: Spatial and temporal resolutions of EO sensors (ESA, 2020). ............................... 38 

Figure 19: Appropriate spatial and temporal resolutions for analysis of coastal parameters 

(Phinn et al., 2010). .................................................................................................................. 40 



 

x 

  

Figure 20: Spectral band combinations of Sentinel-2 compared with Landsat (NASA, 2022).

.................................................................................................................................................. 41 

Figure 21: Spectral endmembers of different land cover types (Kaab, 2014). ........................ 43 

Figure 22: Random Forests decision tree architecture (Alshari & Gawali, 2021) ................... 45 

Figure 23: Conceptual model of photon travel in SDB (ARGANS Ltd., 2019). ..................... 47 

Figure 24: Satellite Derived Bathymetry results in Guadeloupe against ground truth (red) using 

various sensors: Pleiades (blue), Sentinel-2 (purple) and Worldview-2 (turquoise) (Laporte, et 

al., 2020). ................................................................................................................................. 48 

Figure 25: Light attenuation in open ocean and turbid coastal waters (NOAA, 2014). .......... 49 

Figure 26: Location of wave buoys (Dodet et al., 2020). ........................................................ 51 

Figure 27: Principles of satellite altimetry for wave climate (Liang & Wang, 2019). ............ 52 

Figure 28: Validation of wave height derived from satellite altimetry against in-situ buoy 

measurements (Dodet et al., 2020). ......................................................................................... 53 

Figure 29: Principles of DEM derivation (Japan Space Systems, 2016). ................................ 54 

Figure 30: Distinction between Digital Surface Models (DSMs) and Digital Elevation Models 

(DEMs) (Okolie et al., 2022). .................................................................................................. 55 

Figure 31: Clustering workflow (Xu & Wunsch, 2005). ......................................................... 58 

Figure 32: KMeans clusters in the feature space of an image (Wikipedia, 2022). .................. 59 

Figure 33: KMeans clustering workflow (Hao, 2021). ............................................................ 60 

Figure 34: KMeans clustering for coastal vulnerability in Latin America and the Caribbean 

(Calil et al., 2017). ................................................................................................................... 61 

Figure 35: Workflow for the derivation of CVI using remote sensing and machine learning. 64 

Figure 36: Belize study area. Key settlements (black) and management districts (gold) are 

labelled. .................................................................................................................................... 65 

Figure 37: SDB processing workflow...................................................................................... 70 

Figure 38: 1km coastal sample segments................................................................................. 77 

Figure 39: Conceptual representation of feature space used in KMeans for (a) Coastal slope 

parameters, (b) Classification parameters, (c) Wave climate parameters. ............................... 80 

Figure 40: Random Forest classification maps for land cover (left) and benthic cover (right).

.................................................................................................................................................. 85 

Figure 41: Spectral endmembers for each class defined. ......................................................... 86 

Figure 42: Physics-based Satellite Derived Bathymetry (SDB) model for Belize: (a) SDB 

DTM, (b) Study location, (c) SDB isobath model. .................................................................. 88 

Figure 43: Temporal variation to cross-shore depth profiles for three image acquisitions. .... 89 



 

xi 

  

Figure 44: Spatial variation to cross-shore depth profiles. ...................................................... 90 

Figure 45: Validation of Merged SDB against Electronic Nautical Chart (ENC) contours. ... 91 

Figure 46: ASTER Digital Elevation Model (DEM) for Belize. ............................................. 92 

Figure 47: WAVERYS modelled SWH at 20km resolution for the Yucatán Peninsula. ........ 93 

Figure 48: Magnitude and modal direction of wave climate from WAVERYS data. ............. 94 

Figure 49: Temporal variation of mean significant wave height (SWH). ............................... 96 

Figure 50: Validation of WAVERYS predictions against in-situ buoy data from NOAA. ..... 96 

Figure 51: Exposure to increased wind speeds as expressed by the Saffir-Simpson Hurricane 

scale.......................................................................................................................................... 97 

Figure 52: Relative vulnerability ranking of coastal segments for each parameter based on 

KMeans clustering. ................................................................................................................ 102 

Figure 53: Coastal vulnerability (CVI) in Belize using KMeans clustering. ......................... 105 

Figure 54: Distribution of CVI values across vulnerability groups. ...................................... 106 

Figure 55: Distribution of vulnerability for individual CVI parameters based on the traditional 

Gornitz (1994) thresholds. ..................................................................................................... 109 

Figure 56: Coastal flood inundation Hazard, Belize (CHARIM, 2016). ............................... 111 

Figure 57: Comparison of InVEST and KMeans results. ...................................................... 114 

Figure 58: Copernicus land cover classification for Belize. .................................................. 120 

Figure 59: Belize National Marine Habitat Map (NMHM) and accuracy assessment (CZMAI, 

2021). ..................................................................................................................................... 122 

Figure 60: Percentage of existing bathymetric survey coverage for Belize (IHO, 2022)...... 126 

Figure 61: Quality of Sentinel-2 imagery. Note the presence of cloud cover, glint, suspended 

sediment and sediment movement. ........................................................................................ 129 

Figure 62: Distribution of wind speed and storm surge flooding impact (Markert & Griffin, 

2014). ..................................................................................................................................... 133 

Figure 63: Tracks of historical hurricane events.................................................................... 134 

Figure 64: Iterative process for the development of management strategies (Rosenthal et al., 

2014). ..................................................................................................................................... 148 

 

 

 



 

xii 

  

List of tables 

Table 1: Disparities to vulnerability thresholds in CVI studies (Koroglu et al., 2019). .......... 31 

Table 2: Comparison between resolutions of satellite sensors. ............................................... 39 

Table 3: Remote sensing techniques pertinent to the derivation of CVI parameters............... 42 

Table 4: Comparison between ASTER and SRTM DEMs. ..................................................... 56 

Table 5: Overview of data sources used in this study. ............................................................. 67 

Table 6: Dates of Sentinel image acquisition for tiles T16QCE and T16QDE. ...................... 68 

Table 7: Conceptual NumPy arrays produced to characterise coastal segment properties. ..... 78 

Table 8: Conceptual NumPy array produced to characterise cluster centroid properties. ....... 81 

Table 9: Conceptual NumPy array to rank cluster centroids based on the magnitude of each 

metric. Higher ranks will indicate a higher vulnerability. ....................................................... 81 

Table 10: Confusion matrix accuracy assessments for image classifications.......................... 86 

Table 11: Results of KMeans clustering and the designation of vulnerability groups based on 

similar geomorphic properties demonstrated by the centroids of each cluster. ..................... 101 

Table 12: Datasets used in the InVEST model. ..................................................................... 114 

Table 13: Impacts of Hurricane Keith (2000) by location (GFDRR, 2000). ......................... 116 

Table 14: Uncertainties in CVI estimation using remote sensing. ......................................... 118 

Table 15: Comparison between Random Forest classification of Sentinel-2 against existing 

terrestrial and benthic maps for Belize. ................................................................................. 125 

Table 16: Hurricane storm surge extent for Belize City (NEMO, 2003). .............................. 132 

Table 17: Key stakeholders and relevant management issues in Belize. ............................... 147 

Table 18: Appropriate scales for the application of CVI modelling (Trigg & Smith, 2016). 152 

 

  



 

xiii 

  

List of abbreviations 

AC Atmospheric Correction LUT Look up Table 

AHP Analytical Hierarchy Process MAR Mesoamerican Barrier Reef 

ASTER Advanced Spaceborne Thermal Emission 

Reflection Radar 

MAUP Modifiable Areal Unit Problem 

CDOM Coloured Dissolved Organic Matter MBES Multi-Beam Echo Sounder 

CHARIM Caribbean Handbook on Risk Management ML Machine Learning 

CMEMS Copernicus Marine Environment Monitoring 

Service 

MPA Marine Protected Area 

CMP Coastal Management Plan MSI Multispectral Imager 

CRS Coordinate Reference System MSP Marine Spatial Planning 

CVI Coastal Vulnerability Index NDVI Normalised Difference Vegetation Index 

CZMAI Coastal Zone Management Authority and 

Institution 

NDWI Normalised Difference Water Index 

DEM Digital Elevation Model NGO Non-Government Organisation 

DOP Depth of Penetration NIR Near Infrared (spectral band) 

DSAS Digital Shoreline Analysis System NMHM National Marine Habitat Map 

DSM Digital Surface Model NOAA National Oceanographic and Atmospheric 

Administration 

DTM Digital Terrain Model OLI Operational Land Imager 

EM Electro-Magnetic (radiation) RCP Representative Concentration Pathway 

ENC Electronic Nautical Chart RF Random Forests 

ENSO El Niño Southern Oscillation RGB Red, Green, Blue (spectral bands) 

EO Earth Observation RMSE Root Mean Square Error 

EPSG European Petroleum Survey Group RS Remote Sensing 

ESA European Space Agency SBES Single-Beam Echo Sounder 

GAR Global Assessment Report on Risk Reduction SDB Satellite Derived Bathymetry 

GDAL Geospatial Data Abstraction Library SIDS Small Island Developing State 

GDP Gross Domestic Product SMP Shoreline Management Plan 

GEBCO General Bathymetric Chart of the Ocean SLR Sea Level Rise 

GIS Geographical Information System SOM Self-organising map 

IBTrACS International Best Track Archive for Climate 

Stewardship 

SRTM Shuttle Radar Topography Mission 

ICZM Integrated Coastal Zone Management SST Sea Surface Temperature 

InVEST Integrated Valuation of Ecosystem Services and 

Trade-offs 

SWH Significant Wave Height 

IOP Inherent Optical Properties ToA Top of Atmosphere 

IPCC Intergovernmental Panel on Climate Change UNDP United Nations Development Programme 

IQR Inter-quartile range UNESCO United Nations Educational, Scientific and Cultural 

Organization 

IUCN International Union for Conservation of Nature UTM Universal Transverse Mercator 

LAC Latin America and the Caribbean USGS United States Geological Survey 

LAI Leaf Area Index VHR Very High Resolution 

LAT Lowest Astronomical Tide WGS World Geodetic System 

LiDAR Light Detection and Ranging WMO World Meteorological Organization 

LULC Land Use Land Cover   

 



PART I – INTRODUCTION 

 

1 

 

PART I – INTRODUCTION 

 

1. Modelling coastal vulnerability from space 

1.1. Coastal areas in a changing climate 

Coastal environments are dynamic and complex networks which are subject to diverse 

pressures (Masselink et al., 2020). Ecosystems in this transitional region are highly productive 

and co-dependent due to their contributions to ecosystem services (Beatley et al., 2002). This 

has led to the World Wildlife Fund’s living planet index to suggest the economic value of the 

Blue Economy represents twenty percent of global nature; an equivalent of $24 trillion. Due to 

their ecological productivity, these areas are often densely populated. An estimated twenty-

three percent of the global population lives within 100m of the shoreline (Harvey & Nicholls, 

2008). 

Coastal areas also act as the buffer between terrestrial and oceanic regions. The converging of 

natural forces in these regions presents natural hazards. Hazards refer to processes with the 

ability to cause damage to people, livelihoods or the environment. The ability to manage them 

is critical for anthropogenic development in resource rich areas coastlines (Adger et al., 2005). 

Interdependency of coastal ecosystems provide the vital services that ensure these communities 

are protected from marine forces and extreme weather events through the absorption of wave 

energy.  

Storm surges are a specific coastal hazard. Formed as the result of high winds coincident with 

low barometric pressures characteristic of poor weather systems, these events are manifested 

as a rise in water level above the normal astronomical tide (Bryant, 2005). These are often 

accentuated through human and geographic factors. These include wind direction, storm 

intensity, coastal morphology, bathymetry and tidal state and disproportionately affect low-

lying areas of coast (Belfiore, et al., 2009). These hazards are frequently occurring, rapid-onset 

events which are often highly destructive. Damage to infrastructure is often the result of 

inundation and erosion. 

An identification of areas more vulnerable to these impacts is paramount for the protection of 

resources and populations and provides a metric to understand the disparities between the 

impacts of a hazard (Cutter, 2012). This can be evaluated in distinct segments through index-

based approaches and was pioneered by Gornitz (1991) through the Coastal Vulnerability 
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Index (CVI). The CVI quantifies the impact of coastal flooding using six parameters; 

geomorphology, coastal slope, sea-level change, significant wave height, shoreline change 

rates and tidal range. These approaches have been extended for application to coastlines 

globally (Abuodha & Woodroffe, 2010; Thieler & Hammar-Klose, 2000) and represents thirty 

percent of all coastal vulnerability studies (Cogswell et al. 2018).  

The CVI highlights vulnerable areas and associates these with contributing facets to provide a 

useful tool for risk management. Through a relative vulnerability analysis, the CVI aids rational 

decision making by providing a clear indication for where conflicted management authorities 

should invest their limited resources. However, current CVI results require expert judgement 

in the computation of indices. The coastline is divided into vulnerability groups based on the 

geotechnical conditions at a point. These groups are assigned through static thresholds and are 

determined by an expert dividing the range of conditions observed over the whole study area 

(Koroglu et al., 2019). Due to the diverse nature of coastal geographies, these are often only 

relevant for specific areas and require expensive in situ survey campaigns to produce. This 

causes a bias to categorisations and hinders their transferability for implementation globally. 

This distorts the distribution and range of assessments (Gibb et al., 1992) and demonstrates the 

need to reduce subjective expert assessments and provide a method to rank systems based on 

their local conditions. 

Innovative Earth Observation (EO) approaches using satellite imagery provide an efficient 

solution to these problems. This thesis presents the first national-scale analysis of coastal 

vulnerability using an automated approach to CVI using remote sensing. As a result of the 

dimensionality in the CVI, a machine learning based approach to classification has been 

employed to determine vulnerable regions that demonstrate similar environmental conditions. 

CVI variables have been derived using freely available data from remote sensing sources to 

alleviate the cost constraints and suboptimal requirement for expert knowledge or training. The 

method represents a modified version of the CVI approach suitable for a first-pass assessment 

of vulnerability which may identify areas of interest for additional local scale studies. A 

classification of coastal hazard distribution into representative groups is fundamental for 

assessing spatial variability. Developing best practices ensures this is legible and transferable 

at large scales. 
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1.2. Case Study: Belize 

In this study, the CVI method has been modified for application in the Latin American and 

Caribbean (LAC) region. Here storms and hurricanes were attributed to 50.2% of deaths and 

40% of damages from natural disasters in the period of 1972 to 2010 (Calil et al., 2017). 

Amplified storm climates with global climate change leads to a greater probability of coastal 

flooding due to an increase of storm intensity and frequency. Therefore, management 

authorities require reliable and regular information to protect populations from risk (Marcos & 

Woodworth, 2017).  

Many countries in this region represent Small Island Developing States (SIDS). These are 

regions where a significant proportion of their natural resources come from the ocean. Due to 

this socio-economic dependency, these areas are disproportionately vulnerable to climate 

change (Nurse et al., 2014). Sustainable development is impeded through amplified natural 

disasters and inundation. Urgent management priorities are required to aid decision making to 

increase the resilience of these areas. The cost of inaction is severe – this is estimated $2 billion 

by 2050 in the Caribbean alone. It is a region where SIDS lack geopolitical standing or 

resources to facilitate these studies (Rhiney, 2015).  

Situated on the eastern extent of the Yucatán Peninsula, the SIDS of Belize represents an area 

exposed to such hazards (figure 1). Rapid urbanisation is a significant problem because of mass 

migration to exploit the thriving tourism economy. This sector represents 41% of national 

income (Nature Conservancy, 2021) and has resulted in 45% of the population living within 

1.5km of coastline (Simpson et al., 2012). Coastal migration has led to anthropogenic pressures 

which threaten the wider functional ecosystem, such as intense development and inadequate 

infrastructure. Poor infrastructure will also act to increase risk and reduce adaptive capacity in 

the event of a natural disaster. An understanding of the trends to ecosystem dynamics resulting 

from these natural resource-based industries is critical to ensure their longevity. 

Furthermore, a proximity to the Mesoamerican Barrier Reef (MAR) provides a considerable 

source of biodiversity to the region. This remains the longest continuous reef system in the 

western hemisphere and holds the status of UNESCO World Heritage site due to the variety of 

reef structures which provide significant habitats for endangered species such as: marine turtles 

and manatees (UNESCO, 2018). In 2009, external pressures (including: removal of mangrove 

cover and unsustainable coastal development) resulted in the inscription of this region to the 

UNESCO ‘List of World Heritage in Danger’. 
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Figure 1: Location of Belize and the Mesoamerican Reef Ecoregion. 

 

Implementation of an Integrated Coastal Zone Management (ICZM) plan in 2016 provided an 

outline for strategies to mitigate these pressures. These included the moratorium of oil 

exploration and allocation of marine protected areas (MPAs) which have contributed to the 

MAR being removed from the ‘in danger list’. This decision is met with controversy due to 

the continued decline of reef health and is scrutinised for being the result of geopolitical 

pressure rather than scientific evidence (Murray, 2021). Significant issues need to be managed 

to prevent further degradation of the MAR ecosystem and the natural protection it provides. 

The need for an integrated and efficient approach to targeted management is pivotal. 

Belize is a country prone to hurricane storm surges. Fourteen storm events occurred from 1931 

to 2010 and adversely affected the tourism and agricultural industries (figure 2). The low-lying 

terrain further enhances the risk of flooding from these events. The World Bank (2021) 

suggests that $2.7 trillion of private investment is required to deploy appropriate innovation to 

enhance the adaptive capacity. This investment is difficult to acquire due to the uncertain 

causality of observations made. Geospatial data provides a pivotal role in quantifying 

vulnerability and resolving the complex relationships between hazards and ecosystems. An 
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implementation of data derived from satellite imagery presents exciting technological 

developments to ensure the provision of consistent, efficient and reliable monitoring (Blaschke 

et al., 2011).  

 

 

Figure 2: Average annual occurrence of natural hazards in Belize (1980 – 2020). 

 

Belize provides a useful case study for the assessment of vulnerability from satellite data for 

several reasons. As a dynamic area experiencing rapid change, updated assessments are a pre-

requisite for informed coastal management. These have not been updated since 2016. Satellite 

images provide an avenue for this, especially as Caribbean waters are optically clear – this is a 

perquisite for benthic assessment and satellite derived bathymetry (Hedley et al., 2012). 

Although, regular image acquisition can be difficult due to heavy cloud cover in the wet season. 

Moreover, the MAR presents a strong conservation focus to ensure the UNESCO 

categorisation and ecosystem productivity is retained. An incomplete ICZM strategy has meant 

the regulation of development and marine protected areas has been difficult. This should be 

enhanced with more robust approaches to aid management decisions. These issues pertinent in 

Belize are emblematic of SIDS and present transferability to the adversities they also endure. 
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1.3. Thesis aim 

This thesis seeks to develop an Earth Observation (EO) based approach to evaluate coastal 

vulnerability in Belize. The method should be suitable for use in Integrated Coastal Zone 

Management (ICZM) to enhance resilience to climate change.  This will be addressed through 

the following objectives: 

1. Identify and quantify the spatial variability of factors relevant to coastal vulnerability, 

using EO sources. 

2. Synthesise parameters into a bespoke (and semi-automatic) Coastal Vulnerability Index 

model using machine learning. 

3. Validate the model through a comparison with historical data and existing vulnerability 

assessments for Belize. 

4. Situate results in the context of Integrated Coastal Zone Management with 

recommendations for application in Belize. 
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1.4. Thesis structure 

This thesis is structured across six parts. Each part is subdivided by chapters which represent 

issues pertinent to each geophysical parameter. A summary is outlined below.  

 

Part One: Introduction – an overview on the contextual positioning of the project and 

outline of study aims and objectives.  

 

Part Two: Literature Review – four chapters; the former providing a synthesis of the 

pressures present in the coastal zone and the current state of coastal management 

in Belize. This is followed by an overview of the methods for evaluating 

vulnerability to hazards and concludes with an evaluation of the role of remote 

sensing in coastal management. 

 

Part Three: Methods – approaches employed for data acquisition, processing and 

modelling. 

 

Part Four: Results – this section presents the results from parameter derivation using 

satellite data and validates the performance of the machine learning model in 

Belize.   

 

Part Five: Discussion and Conclusions – a critical evaluation on the reliability of modelled 

vulnerability and the limitations of the approach. This is situated within a focus 

on coastal management. 

This section ends with the conclusions of the study and presents appropriate 

recommendations for the successful integration to management strategies. 
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PART II – LITERATURE REVIEW 

 

This section introduces specific coastal hazards in Belize through the characterisation of the 

coastal zone with respect to physical and anthropogenic activities. The management 

applications of these hazards are considered and vulnerability assessments are proposed as a 

metric for managing these problems. An analysis of how this is measured and the limitations 

of this approach are subsequently evaluated. Finally, Earth Observation approaches are 

assessed to combat these shortcomings with existing methods. This aims to create a 

comprehensive understanding of requirements and limitations to the successful implementation 

of effective risk assessment strategies. 

 

2. Coastal hazards in Belize 

2.1. The coastal zone 

Belize has a coastline which covers an extent of over 380km (Guannel et al., 2016). An analysis 

of the specific hazards in the coastal zone requires a comprehension of the spatial distribution 

of forcing parameters and the degree of protection they might provide. Contrasting definitions 

for what constitutes a coastal region makes the scale over which to conduct this analysis 

difficult to isolate with precise boundaries. The coastal zone can be defined from a physical 

perspective as the coincident area of land and sea which are affected by their proximity to each 

other (Sorenson & McCreary, 1990). Alternatively, the coastal zone has been defined as the 

extent of which anthropogenic land-based activities have measurable influence on marine 

ecology (CMSER, 2009).  

A holistic definition is appropriate for the complete characterisation of these regions including 

both physical and anthropogenic factors contributing to vulnerability. Benoit and Comeau 

(2005) suggest these are interface territories that are influenced physically, economically and 

socially by the interaction between land and sea (figure 3). Greig et al. (2013) takes this further 

to suggest these are also areas where adaptive management is required to ensure the human 

well-being. 
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The Belizean Coastal Zone has been described in the following section with respect to its 

human and physical characteristics (composed of terrestrial and marine environments). This 

provides a foundation for the parameters which might affect the disproportionate distribution 

of vulnerable areas. 

 

 

Figure 3: The coastal zone represents the area subjected to the interaction between land, sea 

and anthropogenic activity (Thia-Eng, 1993). 

 

2.1.1. Physical environment 

Climate is a significant hazard in the Caribbean region. The World Bank ranks 167 countries 

based on their climate risk and Belize retains the 8th place position. Climatic conditions in 

Belize are classified in the Köppen climate system as “Am” which indicates a tropical monsoon 

climate (Murray et al., 2003). Belize lies within the hurricane belt and is vulnerable to hurricane 

trajectories during the Atlantic hurricane season lasting from June to November. Threats from 

Hurricanes are the principle natural hazard due to their rapid parity for destruction. 

In the period since 1930, Belize has been subject to 16 hurricanes with 8 of these causing 

damage or fatalities (NEMO, 2016). If less intense systems, such as tropical storms, are also 

considered then this includes an additional 17 events. Hurricane hazards include intense winds 

and low-pressure systems which can result in storm surges. Impacts of such events are 

accentuated by the area’s low topography and are increasing with current rates of 

environmental degradation and SLR due to climate change. These are further amplified through 

the situation of populations in disaster prone regions. 
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Although exposed, the coastal zone provides access to an abundance of resources useful to 

industry. This is demonstrated by Hurricane Keith (2000) – which caused the worst damage to 

the country – through the loss of 45% of the Gross Domestic Product (Jordan et al., 2016). In 

fact, during the 20th century the country’s capital city, Belize City, had been devastated twice 

by hurricanes. In 1970, the capital was moved eighty kilometres inland to Belmopan to enhance 

the resilience of administrative authorities from hurricane events. This act demonstrates the 

severity of vulnerability in this country – few governments would create a new capital city as 

a resilience strategy (Karlsson et al., 2015). 

Belize is vulnerable to extreme climatic events (Karlsson and Mclean, 2020). In addition to 

hurricanes, the region is influenced by the El Niño Southern Oscillation (ENSO). This 

phenomenon of climatic variability is present within the Pacific Ocean but affects the 

Caribbean through teleconnection patterns. ENSO events are irregular but occur predominantly 

over a 2–5-year period. During ENSO periods, the Caribbean is subject to increased rainfalls 

and modified storm climates. Sustained trade winds can also bring higher wind generated wave 

climates and increase flooding risk. 

 

2.1.2. Anthropogenic activity 

In addition to the physical hazards of the coastline, the integrity of the coastal zone is further 

threatened by anthropogenic influences. In addition to the global patterns of anthropogenically 

driven climate change, the Blue Economy provides a substantial source of income to Belize. 

This attracts a large proportion of the country’s population and industry. These activities can 

lead to pressures acting to change the dynamics of the region; the distribution of areas most 

affected by individual pressures are shown in figure 4. Two significant practises provide 

significant contributions to the economy which paradoxically threaten the health of the region 

they are dependent on: agriculture and tourism (Rosenthal et al., 2014).  

The agricultural industry employs 20% of the Belizean population (Verutes et al., 2016). 

Farmland faces threats due to salinisation from seawater intrusion and will increase in most 

vulnerable areas as sea levels rise. Farming practises also rely heavily on pesticides which can 

enter the ocean through runoff. A mutual protection of this source of revenue along with the 

natural ecosystem is fundamental. 
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Figure 4: Areas of Belize affected by specific anthropogenic pressures (Verutes et al., 2016). 

 

Population density is one of the principal threats to biodiversity loss. Tourism contributes to 

almost half the national economy and resulted in rapid urbanisation of coastal zone. The world-

class status of MAR has attracted global tourists and investment; 80% of coastal land has been 

purchased by foreign investors (Moreno, 2005). In the period from 2000 – 2017, the coastal 

town of San Pedro’s population increased by 432% (SIB, 2017). This process of rapid 

urbanisation can be seen as unsustainable and has led to several impacts. Fuelled by 

urbanisation, areas closest to population centres have experienced a rate of mangrove 

deforestation of 3.6% a year (figure 5) which removes important ecosystems to protect against 

flooding. In addition, rapid urbanisation has resulted in inadequate infrastructure which has led 

to eutrophication of the water column from wastewater pollutants. Increased nutrients are 

detrimental for the health of corals and mangroves. 

Moreover, the discovery of crude oil reserves has added pressure to the preservation of the 

region. Many of these reserves are coincident within existing marine protected areas (MPAs). 

These pressures had been identified by UNESCO in 2009 and resulted in the MAR becoming 

listed as a “World Heritage Site in danger”. Poor coordination of government agencies has 

contributed to the inability for the Coastal Zone Management Authority and Institute (CZMAI) 

to operate effectively and increased the pressure to ensure these are managed appropriately 

(Gibson, 2011). 
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Figure 5: Extent of mangrove forest clearance from public EO data (Cherrington et al., 

2020). 
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2.2. Managing coastal hazards in Belize 

Coastal hazards are addressed through the Coastal Zone Management Act of 1998 which 

acknowledges the requirement of multi-sectoral planning to sustain ecosystem integrity and 

promote quality of life (Verutes et al., 2016). This legislation requires the implementation of 

an Integrated Coastal Zone Management (ICZM) strategy to identify and reduce the impacts 

of hazards at a subnational scale. ICZM is a holistic approach to addressing complex 

management issues to enhance resilience and encourage sustainable development. This is 

achieved through maintaining the function of ecosystem services, reducing conflicts in 

resource allocation and encouraging multisectoral development. This plan was accepted in 

2016 and implemented by the CZMAI through the explicit consideration of multiple 

stakeholders (CZMAI, 2016). Stakeholders in Belize are outlined in figure 6 and present 

complex challenges to evaluate compromises between investment and environmental impact 

(Maguire et al., 2012). 

 

 

Figure 6: (a) Administrative districts in Belize. (b) Key stakeholders and their operating 

areas (Verutes et al., 2016). 
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Management strategies are administered over zones based on geographic and cultural features 

(figure 6). Development guidelines are produced for each region depending on their suitability. 

This marks a significant improvement for management of development. Coordination between 

regions is required for effective management through adoption of the Coastal Management 

Plan (CMP) which will assist in regulating uncontrolled development and unsustainable 

tourism. 

 

 

Figure 7: Location of Marine Protected Areas (MPAs), Belize (Graham et al., 2008). 

 

  



Coastal hazards in Belize 

 

15 

 

The CMP emphasises the need for efficient planning to aid sustainable development. Graham 

et al. (2008) suggest a significant strategy for achieving this has been the designation of marine 

protected areas (MPAs). These are areas of sensitive marine habitats which are protected to 

prevent exploitation and ensure sustainable use (figure 7). MPA designation has been shown 

to increase reef quality and provide stronger protection from storm events. These benefits have 

encouraged a coordination of activities within MPAs under the integrated management process 

(Cho, 2005). Other management approaches have included the instigation of an oil moratorium 

and special development areas but these are not as well versed as MPAs.  

Risk mitigation is also considered by the CMP. The Disaster Risk Management Cycle provides 

a reference framework for the mitigation of risk (figure 8). This cycle consists of four 

components: prevention, preparedness, response and recovery. A focus of management 

budgets is typically given to crisis response given the immediate impact to save lives and this 

often neglects vulnerability mapping (Le Cozannet et al., 2020). However, reactive approaches 

are often less effective than those that are integrated within coastal zone management (Nicholls 

& Small, 2002). Hence, proactive approaches are best suited for enhancing resilience. Nicholls 

and Klein (2005) suggest this includes enhancing the assessment of vulnerable systems.  

 

 

Figure 8: Disaster Risk Management Cycle (Le Cozannet et al., 2020). 
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In the context of climate change, risks are continually evolving through time and emphasises 

the need for reviewing mitigation strategies (Stammer et al. 2019). Hazard mitigation requires 

access to maps demonstrating the spatial distribution of geographical settings to characterise 

physical vulnerability (figure 9). Access to this information allows stakeholders (such as local 

governments, industries, disaster response NGOs and residents) to make informed decisions. 

The modelling of vulnerability can help to support preventative actions through a definition of 

land-use policies which limits exposure to hazards and facilitates the optimisation of resource 

allocation to highly vulnerable areas. 

 

 

Figure 9: Requirements for Earth Observation in decision frameworks for disaster 

management (Le Cozannet et al., 2020).  

 

As a SIDS, Belize is a country that possesses limited government resources and a small 

population. Therefore, the ability to enforce these strategies is limited through financial and 

personnel restrictions (Salichon et al., 2007). Underlying inefficiencies in the ICZM framework 

act to inhibit enforcement regulations. Many management policies are outdated and require 

revision to achieve this. This requires cost-efficient strategies which are reliable and spatially 

coherent. The ICZM will seek to facilitate this through alternative approaches for enforcement 

including public participation and education (Gibson et al., 1998). 
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A scarcity of tools and limited synthesis of existing data makes it difficult to develop defensible 

approaches that identify shared priorities among stakeholders. The Natural Capital Project used 

the InVEST model to provide spatial estimates of changes to ecosystem services and their 

effect on vulnerability from storms (Arkema et al., 2014). These models provide tailored 

reports for at localised planning region scales but are limited by the quality and scarcity of 

input data. This results in a high uncertainty (Sharp et al., 2016). These should be improved 

regularly and using updated technology. 

The deficiency of effective modelling should be combated through a cost-efficient method of 

mitigating infrastructure and ecosystem damage from storm events are required to locate areas 

that are more vulnerable. This can promote further land management controls to discourage 

further development. 
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3. Coastal vulnerability in Belize 

The characteristics of the Belizean coastal zone demonstrate several human and physical 

parameters which act to influence the exposure of the coastline to coastal hazards. Such 

concerns about coastal hazards and disasters have become closely linked to risk and 

vulnerability. To quantify the degree of vulnerability present in an area, an understanding of 

the differences between these subjective terms is required. Hazards, risks, disasters, and 

vulnerabilities each have a subtly different focus, but the terms are occasionally used 

interchangeably (Cutter, 2012). 

The IPCC (2012) define vulnerability as “the degree to which a system is susceptible to, and 

unable to cope with, adverse effects of climate change, including climate variability and 

extremes”. The definition incites three facets: exposure, sensitivity and adaptive capacity. 

Exposure refers to the disposition to a natural system. Sensitivity suggests the degree to which 

an area might be impacted. While adaptive capacity provides an indication of a region’s 

resilience and ability to evolve to maintain key functions. 

Vulnerability is often considered a product of the distribution to hazard exposure to inform 

decision-making on mitigation (Muler and Bonetti, 2014). This requires an assessment of 

physical factors but also requires an extension to outline the degree of adaptive capacity for 

appropriation in resilience assessments. Otherwise, socio-economic factors which are relevant 

to vulnerability are neglected (Cardona et al., 2014). This is often challenging as there is little 

consensus on consistent social indicators for vulnerability when compared to physical 

geography. 

Lloyd et al. (2013) provides distinction between vulnerability and risk. Vulnerability outlines 

the degree to which factors that contribute to causing a hazard are present but this is not a direct 

measure of the hazard. Hence this metric is incapable in being considered in probabilistic terms. 

Risk provides the probability a hazard will have adverse effects to a population and is 

traditionally evaluated through hindcast analysis of impacts from historical events (Kearney, 

2013). Another distinction stems from risk analysis purporting to describe the social and 

economic consequences in addition to physical aspects. Through the inclusion of both aspects, 

vulnerability assessments can be extended as a measure of susceptibility useful in risk analysis 

(Boruff et al., 2005). 

Scale is a predominant factor in vulnerability studies. Spatial scale can influence whether 

national, regional or local pressures are considered. Yoo et al. (2011) suggest the spatial scale 
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is often too broad at regional scales or too fine at localised regions and shows a requirement 

for specific impact assessments that are not global climate studies. Localised studies provide 

contextualised assessments of vulnerability and are difficult to apply with climate projections 

as these are not produced with an appropriate spatial resolution (Romieu et al., 2010). This can 

be achieved through spatial analysis for the identification of segments which have propensity 

to be vulnerable to a hazard (Bonetti et al., 2013). 

For this thesis, vulnerability is defined as the geophysical susceptibility to storm-induced 

coastal flooding. The severity of impacts has been characterised with respect to the 

geographical constituents. As a result, resilience assessment of risk is not evaluated.  

 

 

Figure 10: Factors affecting coastal vulnerability (Noor & Maulud, 2022).  

 

Coastal hazards contribute to vulnerability and have a multivariate nature. These are often the 

combination of multiple processes which characterise a compound event. The vulnerability to 

such an event is dependent on physical and geological constituents of the coastline (figure 10). 

When considering storm surges, the most relevant factors have been suggested to be 

geomorphology, oceanography, topography and wind exposure. Sociocultural factors do not 

change the exposure to a hazard but act to modify the social vulnerability to a population. An 

understanding of the importance of each factor is vital for effective vulnerability assessments. 

These have been discussed in turn, with respect to Belize. 
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3.1. Geomorphology and geology 

Geomorphology is applied widely in vulnerability assessments to describe the variation in 

natural landforms present in the coastal zone (Pethick and Crooks, 2000). Each landform will 

have a relative parity for resistance to flooding. The unique combination of processes provides 

specific morphologies which can act to accentuate the effects of storm surges. This is 

represented by the pathway component of the Source-Pathway-Receptor model (Holdgate, 

1980). 

Guannel et al. (2016) demonstrate how healthy coastal ecosystems provide a source of coastal 

protection from storm events in Belize; the distribution of such habitats is shown in figure 11. 

Consideration should be made for the distribution of geomorphology as a proxy for wave 

attenuation. Coastal habitats act to reduce incident wave energy from between 35 and 71% 

(Narayan et al., 2016). Coral reefs and saltmarshes provide the most coastal protection and act 

to reduce wave height by up to 88 and 70%, respectively. Seagrass beds and mangroves also 

offer protection to the degree of 36% and 30%. Conversely, exposed seafloor, unconsolidated 

coastlines and urban areas are likely to have a higher degree of vulnerability to flooding. These 

observations show how the design of greenbelts can be an efficient approach for coastal 

protection (Koch et al., 2009). 

Wetlands consisting of mangrove dominate the terrestrial coastline and extend 200m landward 

(this represents 3.4% of Belize’s land area). Mangroves are a dominant example of a saline 

ecosystem present within the tidal range in Belize. Incident wave energy is reduced through 

the bottom friction of roots and is enhanced in areas of dense canopy close to the surface of 

water. Sediment stabilisation occurs through the establishment of roots and further reduces 

erosion. McIvor et al. (2016) show that as little as one-hundred metres of mangroves can reduce 

incident wave energy by up to sixty-six percent. As a result, mangroves provide a strong ability 

to reduce the vulnerability of an area. 

Benthic habitats refer to ecological regions on the seabed. The Mesoamerican Barrier Reef will 

act to reduce vulnerability in Belize through moderating wave height to dissipate wave energy 

(Quataert et al., 2015). Wave reduction capacity is the result of the ratio of reef width and depth 

relative to wave height. The most effective dissipation occurs on reefs twice as wide as the 

wavelength. At their most effective, corals can dissipate wave energy through a reduction of 

wave height of 88% (Ghiasian et al., 2021).  
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Figure 11: Schematic of the Belizean cross-shore habitats with corresponding bathymetry 

profiles (Guannel et al., 2016). 

 

Offshore morphology in Belize demonstrates a steep continental shelf to the coral reef. The 

reef provides protection but this is variable along the coastline due to the diverse reef structures. 

The MAR is divided from the mainland by a shallow lagoon (5-20m deep), which extends up 

to twenty-five kilometres, and encompasses many isolated island territories, including: 

Ambergris Caye, Lighthouse Reef and the Turneffe islands. 

This lagoon is populated by seagrass beds covering an area of approximately 6km in width 

between the depths of 1 and 13 metres. Seagrass will act to slow the rate of water flow through 

capturing silt and sand in their leaves. Much like mangroves, once established their roots 

provide stability for underlying sediment to reduce erosional transport and provide a buffer to 

the coastal zone (De Dominicis et al., 2023). The optimum conditions for enhanced seagrass 

defence occurs in shallow waters. Increased water levels with global sea level rise reduces 

energy dissipation in seagrass and reefs. The 6km area covered by seagrass in Belize has the 

capacity to reduce wave height by 1.5cm; albeit less so than reef structures. 
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Geology will affect the landforms observed. Shoreline recession rates can differ by a factor of 

ten based on their geological constituents (Brooks et al., 2012). Away from the Mayan 

Mountains, the coastal zone of Belize exhibits a limestone geology characteristic of sandy 

coasts. The rate of recession for unconsolidated sands can change by a factor of one hundred 

when compared to hard rock. Sandy coasts often possess shallow gradient slopes which 

facilitates the landward penetration of waves and increases the vulnerability to hazards (Poate 

et al., 2018). Sediment transport can lead to more complex systems than hard-rock geologies 

with the growth of features including nearshore sandbars providing additional protection. 

Beach morphology is dynamic and will alter the protection that is provided (Barbier et al., 

2011). 

Urban areas, including Belize City and San Pedro, are often built on coastal floodplains due to 

their fertile soil providing a source for agriculture and picturesque natural morphology ideally 

suited for exploitation from the tourist industry. Hence, these areas are often densely populated 

whereby social impacts of hazards are most heavily affected. Coastal flooding exposure is 

likely to increase in urban areas due to increased run off from impermeable surfaces resulting 

in slower water drainage and more surface water. This can also lead to secondary effects 

including local drainage failure which will exacerbate the natural effects of flooding (Cea & 

Costabile, 2022). 

A consideration of each of these habitats individually undermines the role that multiple habitats 

have in moderating wave climate. An improvement to the quantification of these drivers is 

paramount to characterise the extent of protection to Belize. Pressures in the coastal zone have 

capacity to influence the health of these ecosystems and hence the degree of protection they 

provide. In Belize, these specific challenges include direct impacts such as habitat 

fragmentation and the coastal squeeze caused by rapid urbanisation. Indirect factors including 

pollution and increased nutrients in the water can also lead to degradation and drastic 

alterations to ecosystem structure and function. These factors demonstrate the importance of 

considering these ecosystems in coastal planning in Belize (Hale et al., 2009). 
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3.2. Oceanography 

Wave climate represents the parameter of oceanography with strongest capacity for coastal 

flooding (Ghiasian et al., 2021). Significant Wave Height (SWH) is a measure of the average 

height of the highest third of surface waves. This metric is of interest because high waves 

represent a significant chance of overtopping and inundation. Furthermore, these higher waves 

are attributed to increased power and erosional capacity through the wave equation: 

 

 

where F = wave energy flux (F), P represents the density of salt-water, g is the acceleration 

due to gravity, Hs representing significant wave height and T demonstrating wave period. 

 

 

Figure 12: Incident wave climate and distribution of coral impedance (McNeill et al., 2010). 
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Two components can act to enhance the influence of wave propagation in coastal zones: water 

level and tidal currents or surges (Peregrine and Jonsson, 1983). Water level transforms waves 

through shoaling and refraction in shallow water which can reduce wave height through bottom 

friction. Tidal currents impact the generation of waves and ease of propagation. The tidal level 

is significantly accentuated in surge conditions (Horsburgh and Wilson, 2007). These are 

exacerbated by rising sea levels through increasing efficiency of wave transmission in deeper 

inshore waters. 

Wave conditions may be impacted by climatic phenomena such as the El Niño-Southern 

Oscillation (ENSO). ENSO represents a global climatic pattern of ocean surface warming 

through circulation patterns. Inclement warmer waters increase the probability of tropical 

cyclone production through the temperature gradient resulting in strong winds. This contributes 

to a seasonal variability of wave climate (often with higher wave energy and incident wave 

direction shifts) and atmospheric forcing in the tropics (Pereira & Klumb-Oliveira, 2015). 

McNeill et al. (2010) provide a thorough overview of the offshore topography of Belize. 

Bathymetry of the forereef is seen to drop rapidly to several thousand metres close to shore 

(figure 11). This suggests wave energy is not impeded by barrier reefs or through bottom 

friction until they are close to land. Figure 12 shows the degree of protection afforded by each 

reef system with respect to dominant incident wave direction. This steep reef morphology 

provides a significant contributor to oceanographic characteristics; including a diurnal 

microtidal range of less than 0.5m (figure 13). 

 

 

Figure 13: Diurnal tidal range of the Caribbean Sea (Jevrejeva et al., 2020).   
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3.3. Topography 

Topography represents the elevation of terrestrial surfaces and the gradient of offshore 

bathymetry. When combined these represent the coastal slope and provide a significant driving 

process behind the dissipation of wave energy. This is a proxy for inundation capacity. The 

distinct lack of accurate bathymetric mapping over coastal areas poses a prominent issue to 

produce functional risk assessments in Belize as 48% of the country has not been surveyed. A 

robust understanding of the seabed is essential to understand the propagation of energy 

dispersed from oceanic forces and has a direct impact on navigation, commerce, geo-hazards 

and marine habitats (Traganos, et al., 2018). 

Study of the complex dynamics of offshore bathymetry can highlight vulnerabilities to coastal 

areas and is pivotal to effective management. The properties of the ocean floor can elucidate 

physical processes acting to alter the coastal morphology contributing to coastal risk. This can 

include the variation of natural barriers to sea level rise and hurricane storm surges whose 

genesis and propagation can have substantial impact on the modification of morphology 

(Chiocci, et al., 2011). 

Furthermore, constant anthropogenic pressure from competing areas of the Blue Economy act 

to change the bathymetry of nearshore waterways indicating these regions are not static 

environments. Dredging has occurred to provide for shipping and navigation demands. This 

has included an increase of channel depth; aquaculture changing benthic habitats through 

unsustainable fishing practices; and over tourism physically damaging reef structures (Gibson, 

2011). These practices change the seabed structure with implications for sub-aquatic 

ecosystems by causing rapid changes to benthic morphology. These environments are 

inherently dynamic therefore there is a requirement to keep renewed assessments of the 

seafloor to understand the processes of sediment transport, erosion and deposition which act to 

alter the coastal morphology and present new hazards. 

Belize is characterised by a low terrestrial topography because over half the land area has a 

elevation lower than two-hundred metres (Murray et al., 2003). Coastal extents in the south of 

the county are dominated by mountainous terrain (derived from the Maya Mountain range) but 

these are found inland. This area of igneous rock is particularly resistant to coastal erosion and 

flooding. In the northern regions, however, the limestone lowlands are covered by mangroves 

and swamps indented by lagoons. Hence, these coastal regions are subject to flooding. 
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3.4. Wind exposure 

Storm surges represent a meteorologically driven parameter of ocean climate and are 

synonymous with strong winds. SWH has been shown to be influenced by the combination of 

wind speed, duration and fetch but the precise process of energy transfer between the 

atmosphere and sea is complex and not fully understood (Janssen, 2004). 

A characterisation of windspeed can aid in prediction of severity of flooding events as, when 

these events are coincident with high tide, extreme water levels generate high surges and are 

exhibited as storm tides. Locally generated waves occur through the influence of wind and will 

significantly alter sea level and runup (Stockdon et al., 2006). Understanding windspeeds is 

important as wind generated waves are not self-sustaining and subside when wind drops. 

Clarity on whether increased water levels is the result of storm surges or wind driven wave 

effects and hence there is a requirement for wind to be included in vulnerability assessments. 

Hurricane frequency and intensity metrics are used as a measure of hurricane impact. A 

measure of frequency is important to characterise the recovery period between events to 

demonstrate the adaptive capacity and aid in estimations of resilience. The Saffir-Simpson 

wind scale represents a widely used method to rate hurricanes on a scale of one to five based 

on their sustained wind speed. The International Best Track Archive for Climate Stewardship 

(IBTrACS) database provide an archive of tropical cyclone events occurring in the Caribbean 

over the last thirty-two years to characterise hurricane climatology (Knapp et al., 2010).   
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4. Assessing vulnerability 

4.1. The Coastal Vulnerability Index (CVI) 

The assessment of vulnerability aims to quantify the individual contributions from each factor 

impacting the disparate variation of exposure along the coast. This can provide a legible and 

comparable metric for analysis. Due to the subjective nature of vulnerability (and of the 

parameters being measured) assessments are situated within the epistemological assumptions 

of the study. This can provide contrasting results based on the approach utilised (Koroglu et 

al., 2019). 

Several approaches to mapping vulnerability have been produced through index-based, GIS 

based and dynamic computer modelling methods. This section will focus on index-based 

methods as these are the most abundant. Their abundance is due to their ability to indicate clear 

spatial disparities and merge multi-variate parameters. This analysis provides a proxy for 

systematic processes that cannot be directly measured to analyse patterns in their distribution 

(McIntosh & Becker, 2019). Thirty percent of studies on coastal vulnerability have adopted 

this method and demonstrates the robust nature of this method (Cogswell et al., 2018). 

A popular approach to mapping vulnerability is the Coastal Vulnerability Index (CVI); an 

extension of the coastal hazards database developed by Gornitz (1991). A reflection of the 

physical vulnerabilities in coastal areas is produced whereby parameters are quantifiably 

compared and directly equated with physical effects. In the original method, six variables are 

qualified with respect to their susceptibility to coastal flooding; (1) geomorphology, (2) coastal 

slope, (3) sea-level change, (4) shoreline change rate, (5) mean tidal range and (6) significant 

wave height. These variables have been utilised in various studies (Nageswara Rao et al., 2008; 

Pendleton 2004) and applied globally (Abuodha & Woodroffe, 2010). 

Gornitz (1994) later modified the CVI to incorporate climatological variables to model effect 

of hurricanes and severe storms through the addition of parameters including annual tropical 

storm probability, hurricane frequency-intensity index and mean hurricane surge. These 

variables are particularly pertinent in the Caribbean region. There is an abundance of analysis 

incorporating sea level risk and storm surges, however, wave data has only been used by a few 

studies (Toimil et al. 2017).  
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Marine and terrestrial variables are not coincident. This requires a sampling strategy to 

aggregate these parameters and determine their combined effects at a specific point on the 

coastline. Koroglu et al. (2019) suggest using a 1km x 1km sample grid that extends from a 

point on the coastline as an appropriate method to characterise coastal conditions. 

 

 

Figure 14: Vulnerability groups and threshold ranges for each variable (Gornitz, 1990). 

 

A measure of vulnerability is quantified in the CVI method through a ranking system (figure 

14). Values from one to five represent an increasing degree of vulnerability to a specific 

parameter which facilitates the use of qualitative and quantitative measurements. Static 

thresholds are defined to differentiate these groups based on supporting observations and are 

often subjective and site specific (Koroglu et al., 2019). These values are assigned for a section 

of the coastline; thus, at each sample point a measure of vulnerability for each parameter should 

be made. These values are input into the CVI equation (calculated as the square root of the 

product mean) to give a single value indication for combined vulnerability. The mean square 

root method is used to dampen extreme range due to sensitivity to small changes in factors. 

This relative scale is broken down into sections representing classes of severity using the 

percentile approach.  

 



Assessing vulnerability 

 

29 

 

 

Equation 1: Coastal Vulnerability Index (CVI). 

 

This approach has been employed by the United States Geological Survey (USGS) to determine 

vulnerability at a national scale and have demonstrated the application of this approach for 

easily identifying spatial patterns in most vulnerable areas (Thieler and Hammar-Klose, 2000). 

A key distinction of this method is the consideration of tidal forces. Gornitz (1994) posits that 

high tidal ranges are associated with most vulnerable areas through stronger currents and 

sediment transportation. However, Thieler and Hammar-Klose (2000) argue that micro-tidal 

environments are consistently closer to high tide and subsequently at the greatest risk to storm 

events. 

The CVI can be applied to any spatial-temporal scale depending on data availability. 

McLaughlin and Cooper (2010) have studied impacts of spatial scale in depicting vulnerability 

at three scales: national, local authority and site levels. As resolution increased, variables which 

operate over larger coastal scales become obsolete and a greater level of detail is required to 

provide distinction. This demonstrates how the scale of a study might provide different 

outcomes and conflicting assessments of vulnerability. 

The ability to implement at regional scales is constrained by the availability of consistent 

datasets across these large areas. Amendments to the methodology, particularly in the 

derivation of variable typology and thresholds, will be required to compensate for a variation 

of characteristics in different regions. The traditional CVI thresholds apply specifically to the 

Gulf of Mexico and will not be comparable to the range of conditions present in other areas 

(Thieler & Hammar-Klose, 2000). This means numerical values will differ such that 

vulnerability remains the same across a whole region because the entire coast falls within one 

vulnerability group. Numerical values may represent high vulnerability in one region and a 

moderate assessment in another area of the globe. As a result, this approach has not yet been 

applied in Belize. 
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To provide comparison of CVIs globally, national-scale studies should be implemented using 

bespoke vulnerability groups. This requires a prior understanding of the variation present on 

the coast. Aboudha and Woodroffe (2010) applied this approach to seven beaches in Eastern 

Australia and demonstrate how thresholds should be adapted using source data for successful 

implementation in new areas. 

 

 

Figure 15: (a) Distribution of vulnerability with respect to each parameter. (b) Increased 

accuracy resulting from the inclusion of weighted parameters in CVI assessment. 
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An index-based approach provides merit for the identification of priority vulnerable areas or 

systems but are lacking in a more detailed quantitative assessment with the corresponding 

adaptation measures. The resulting CVI metric can be broken down into individual component 

risk scores before compiling into the overall CVI (Abuodha & Woodroffe, 2010). This will 

allow for the identification of controlling factors in modulating vulnerability. Figure 15 shows 

the overall effect of each parameter on CVI which can be used to identify areas most prevalent 

for management. 

 

Table 1: Disparities to vulnerability thresholds in CVI studies (Koroglu et al., 2019). 
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Moreover, a shortcoming of this approach is the inability to include weighted parameters and 

not all components have the same importance on impacting vulnerability. The inclusion of the 

CVIWF metric in figure 15 acts to address this through the inclusion of weighted parameters to 

improve the accuracy of the model (Boumboulis et al., 2021).  

Distinction of the threshold values can provide conflicting results. Koroglu et al. (2019) 

reviewed four approaches to CVI, including those by Gornitz and Thieler and Hammar-Klose, 

and suggests that the mean CVI value varied by 25% (figure 16). Despite using the same 

method and datasets describing equivalent parameters, the difference to thresholds and 

methods of data aggregation presents significant differences in results. Table 1 summarises the 

range of physical variables used in this study and demonstrates the key requirement for 

strategies which facilitate comparability between outputs for coasts in different areas. Wolters 

and Kuenzer (2015) suggest this may be achieved through clearer definition of dominant 

processes and specification of approach to ranking variables. 

 

 

Figure 16: Disparities to vulnerability assessments resulting from a difference in methods 

from Koroglu et al. (2019). (a) Lopez et al. (2016). (b) Thieler & Hammar-Klose (2000).  

(c) Shaw (1998). (d) Gornitz (1991).  
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4.2. Limitations with the CVI 

Coastal vulnerability indices of this nature are limited to physical parameters and provide an 

ineptitude for the consideration socio-economic aspects (including economic damages and 

number of people impacted in the assessment of vulnerability). This does not conform to the 

definition of risk from Kearney et al. (2013) and will require supplementary information on 

social factors to be implemented within resilience building. Anthropogenic activities are 

presented as a significant driver of environmental degradation with communities lacking in 

economic resources the most susceptible (Malone and Engle 2011). Therefore, a holistic 

approach to incorporate social considerations (in addition to physical parameters) will shift the 

focus from what is vulnerable to who. This identifies areas of danger as well as impact to 

critical infrastructure, the people and communities and is crucial for resilience planning 

(Tragaki et al. 2018). Parameters relating to socio-cultural conditions are hard to define without 

prior contextual information and engagement with local communities which this preliminary 

study is lacking. 

An index-based approach provides a robust method for planning adaptation strategies to 

climate change. However, these results require expert analysis to avoid bias in clustering. 

Despite this, consistency between the selection of parameters and the distinction of 

vulnerability groups is poor (Koroglu et al., 2019). Although many of these parameters can be 

quantified, the evaluation of their contribution to vulnerability is subjective. The opinion of 

many researchers will conflict in the categorisation and ranking of variables and result in 

different approaches for the same parameter; as shown in table 1. 

Furthermore, extensive field campaigns are often required to characterise the specific dynamics 

of systems to reinforce the distinction of risk categories. Although Gornitz defines a threshold, 

these have been shown to be incompatible with other areas of the world due to differing 

coastline geographies. Therefore, information about the range of geomorphic conditions 

present in the coastline must be established through a physical measurement campaign. This 

presents a series of interrelated issues: scale, time and financial investiture. 

Variables have been considered over a range of spatial and temporal scales in previous studies. 

This produces variations to categorisation of parameters. Gargiulo et al. (2020) suggest that a 

high spatial resolution is crucial for effectiveness. Furthermore, temporal considerations are 

important as the index approach provides a static assessment for one point in time and does not 

account for physical and anthropogenic coastal processes which are highly dynamic. Variables 
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which vary in magnitude regularly over space and time require repeat assessments. If 

thresholds must be reconstructed from survey information each time an assessment should be 

made, this will become a cost prohibitive approach. 

Koroglu et al. (2019) demonstrate a lack of coordinated focus between localised surveys and 

threshold delimitation. Jackson et al. (2014) suggests a need for global protocols for data 

collection to prevent this. Furthermore, in areas where access for surveys is impractical only a 

small percentage of coastline can be surveyed leading to data gaps. This demonstrates an 

advantage to autonomous remote sensing surveys and image analysis (Beijbom et al., 2012).  
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5. Earth Observation (EO) in vulnerability mapping 

Remote Sensing is the indirect acquisition of physical characteristics from reflected or emitted 

EM radiation and covers technologies which range from airborne sensors to satellites 

(Campbell and Wynne, 2011). These techniques aid in the establishment of long-term baselines 

and are underexploited due to the relative infancy on space-borne observations (Nagendra, 

2013). Data records are large and are constantly increasing. This facilitates the design of 

monitoring programmes through a repeated qualification of natural parameters. An important 

prerogative of coastal management agencies is to prepare for natural hazards. This requires 

large scale and repeated qualification of coastal morphologies – a void which Earth 

Observation (EO) data can fill (Ostfeld, 2005). 

Issues with scale and cost in the CVI approach are ideally suited for EO techniques. The 

frequency and consistency of in situ measurements are often inadequate to discern meaningful 

patterns given the high variability of terrestrial and marine coastal processes (Andrefouet, 

2001). Accelerated development in coastal areas coupled with limited resources for research in 

tropical regions creates situations where conservation decisions must be based on limited data 

(Roberts, 2002). Therefore, there is a need for data-efficient tools that integrate spatial ecology 

and epidemiology. 

For the CVI to provide useful implementation in Belize, CVI thresholds must be adjusted to 

the conditions present in the area. This requires a complete evaluation of the relevant 

geotechnical conditions in the region. Data collection can be achieved through supplementing 

fieldwork with Earth Observation data to enhance the planning process with more cost-

effective methods and data processing techniques (Harvey et al., 2018). The role of EO in 

monitoring programmes is shown in figure 17.  

Covering the whole 380km of Belize’s coastline would be a vast undertaking and prohibitively 

expensive if surveyed in situ, especially for a SIDS. A consideration for the scale at which a 

study is undertaken is important as geographical processes often operate over entire coastal 

regions which cover hundreds of kilometres. Satellite imagery is one of the only technologies 

available to measure pressures at sufficiently large scales and capture widespread or subtle 

changes (Hedley et al, 2016). This is achieved through a simultaneous study of extensive 

regions to establish spatial patterns at a high spatial resolution and facilitates the quick 

surveying of a coastline. As a result, processing time and mobilisation costs involved with 

fieldwork are reduced (Ostfeld, 2005). Therefore, repeat surveys can be performed regularly 
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and updated based on changes to the dynamic coastal conditions in areas which have previously 

been inaccessible to survey vessels. 

Satellites often have high temporal resolutions meaning data is acquired regularly. This allows 

monitoring on a frequent basis or rapidly after a disaster event (Green et al, 1996). Regular 

acquisition is especially pertinent in Belize as mobile sediment and fast rates of urbanisation 

produce particularly dynamic areas. The clear coastal water in the Caribbean makes this area 

ideally suited to the evaluation of coastal properties – particularly those of the seabed due to 

the increased penetration capacity of EM radiation through water column in clear waters 

(Louvart et al., 2022). 

 

 

 

 

Figure 17: The role of remote sensing in coastal monitoring programmes (Harvey et al., 

2018). 
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In addition to the physical sampling of areas, the ability to map processes from high resolution 

satellites provide the most cost-effective solution. Although the same level of detail and 

precision cannot be provided as a field campaign, the statistical capacity for characterising 

patterns is increased through large data quantities. Mumby et al. (2004) suggest just twenty 

seconds of remote acquisition time is equivalent to six days of field survey. This represents a 

significant cost saving of open-source satellite data. As surveys can encompass large sections 

of management budgets, the minimisation of expenditure here provides more resources for the 

implementation of physical protection measures. The dissemination of vast quantities of data 

from satellite archives demonstrates a radical change to management. With less resources 

required for processing and integration of differing datasets, time can be spent more effectively 

in other areas of the programme. Despite this, Le Cozannet et al. (2020) argue that the potential 

for remote sensing in the prevention of natural disasters remains underutilised. 
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5.1. Sources 

A vast array of satellite constellations are available for Earth Observation (figure 18). 

Properties of sensors depend on their applications and will offer differing spatial and temporal 

resolutions (Campbell and Wynne, 2011). Open-source sensors (such as Sentinel-2 and 

Landsat) have the benefit of a huge timeseries of archive imagery beneficial for repeat 

assessments. Commercial sensors (such as Worldview) often have higher spatial resolution and 

increased revisit periods. However, this comes at the cost of data becoming voluminous and 

expensive at large scales. In addition, commercial sensors do not routinely capture data due to 

the size of images and require tasking. A focus will be placed on open-source optical sensors 

for this study due to their extensive application in studies of coastal areas and large data 

catalogue available.  

 

 

Figure 18: Spatial and temporal resolutions of EO sensors (ESA, 2020). 

 

In order to sequester the abundance of sensors, a key consideration should be made as to their 

respective resolutions. Within remote sensing, resolution refers to the ability to distinguish an 

object through four number separate parameters; these include spatial, spectral, temporal and 

radiometric properties (table 2).  
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There is often a trade-off between resolutions due to constraints on data volumes and satellite 

providers (Gamon et al., 2020). Therefore, studies require an understanding as to which 

resolution is the most influential for their phenomena of interest. A tendency exists to prefer 

sensors with the highest spatial resolution; however, these may not always be the most 

appropriate. For example, WorldView-2 may have a superior spatial resolution of two metres 

but is hindered by its four spectral bands (which cover only the RGB and NIR segments of the 

spectrum). This would limit the distinction of species which present distinct patterns of spectral 

response. 

 

Table 2: Comparison between resolutions of satellite sensors. 

Resolution Definition Sentinel-2 Landsat 
WorldView-

2 

Spatial 

A measure of the smallest 

object that may be resolved by 

the sensor. Represented by 

pixel size. 

10-60m 30m 2m 

Spectral 

Ability of a sensor to 

characterise the EM spectrum. 

Represented by the number of 

spectral bands.  

12 bands 

(0.44-

2.2μm) 

8 bands 

(0.45-

12.50μm) 

8 bands 

(0.45-1.0μm) 

Temporal 
Revisit period for image 

acquisition. 
2 – 5 days 16 days 1.1 days 

Radiometric 

The number of bits 

representing the data recorded 

in a pixel 

12 bits 16 bits 11 bits 

 

Phinn et al. (2010) provide an overview for the relevant scales at which to undertake analysis 

for different parameters (figure 19). Within the context of coastal vulnerability, this suggests a 

higher spatial resolution is required for parameters including land cover and bathymetry. 

Coarser scales are more appropriate to describe wave climate and atmospheric forces, however, 

these should be provided with a much finer temporal resolution. The temporal resolution used 

for analysis should be finer for climatic products as these are not static and change will occur 

rapidly. This is opposed to gradual variations seen with land cover. Figure 19 fails to capture 

the impacts of spectral resolution. However, Hedley et al. (2012) show the spectral confusion 

of heterogenous areas in land cover mapping and suggests low spectral resolutions provide a 

limiting factor. 
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Figure 19: Appropriate spatial and temporal resolutions for analysis of coastal parameters 

(Phinn et al., 2010). 

 

Sentinel-2 is a widely available open-source sensor. This twin satellite mission is part of the 

European Space Agency (ESA) Copernicus; a suite of satellites that are intended to monitor 

the environment. Designed primarily for terrestrial modelling, Sentinel-2 produces an image 

over a single point on the earth’s surface every five days at the equator (ESA, 2020). The 

Multispectral Imager (MSI) instrument provides a high spatial resolution in the ten to sixty 

metre range. Additionally, the MSI provides a narrow coastal band in the blue wavelengths of 

the spectrum (443nm) and an enhanced signal-to-noise ratio which makes it ideally suited for 

water applications, especially in the coastal zone (figure 20) (Tulloch et al., 2013). Therefore, 

based on the observations of Phinn et al. (2010), the high spatial and spectral resolution of 

Sentinel-2 should be deemed sufficient at elucidating the coastal parameters relationships. 

Moreover, the five-day temporal resolution is adequate for the observation of most coastal 

conditions with the exception of climatic and atmospheric parameters. These should be 

supplemented with additional remote sensing datasets. 
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Figure 20: Spectral band combinations of Sentinel-2 compared with Landsat (NASA, 2022). 
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5.2. Techniques 

Raw satellite data can be processed to characterise the parameters pertinent to coastal 

vulnerability using a range of methods (table 3). In this section, each technique has been 

critiqued in turn to evaluate the merits of the approach and how these may be integrated to 

coastal vulnerability studies. EO techniques in this section seek to provide information about 

the range of geomorphic conditions present in the coastline. Previously these have been either 

incomplete or outdated and present a limitation to the application of the CVI in Belize. 

 

Table 3: Remote sensing techniques pertinent to the derivation of CVI parameters. 

Parameter Remote Sensing Technique 

Geomorphology Image classification 

Marine coastal slope Satellite Derived Bathymetry (SDB) 

Terrestrial coastal slope Digital Elevation Models (DEM) 

Wave climate Satellite Altimetry and wave modelling 

 

5.2.1. Image classification 

Optical remote sensing using passive sensors produces images containing data across a range 

of spectral wavelengths. The objects observed will possess different spectral properties and can 

influence their interaction with electromagnetic radiation. Therefore, these can be 

differentiated due to their distinct solar reflectance values (Tempfli et al., 2009). The 

combination of reflectance values across the spectrum is known as a spectral endmember 

(figure 21).  

Land Use Land Cover (LULC) classification is the process of appointing discrete classes to 

pixels which can be separated and categorised based on their spectral responses. This is 

particularly useful in monitoring geomorphology of coastal zone. This approach has been used 

in coastal studies to map changes to terrestrial (Doyle et al., 2021) and benthic habitats 

(Poursanidis et al., 2019). LULC models have been applied in Belize with accuracies ranging 

from 60% to 92.6% (Meerman & Sabido, 2004; Doyle et al., 2021). These have typically 

focussed on monitoring wetland change and are tailored towards the identification of 

mangroves. Therefore, there is a need to update these classifications to reflect the range of 

geomorphologies present in the region. 



Earth Observation (EO) in vulnerability mapping 

 

43 

 

 

Figure 21: Spectral endmembers of different land cover types (Kaab, 2014). 

 

When considering the use of classification models in geomorphic mapping, Kennedy et. al 

(2021) suggest that a spatial resolution of 10 – 100m is required to capture the diversity of 

landforms. The quality of the classification is dependent on the extensiveness of spectral 

endmembers and can be enhanced with additional layers (Yu et al., 2014). Specific remote 

sensing indices, such as Normalised Difference Vegetation Index (NDVI), can utilise ratios 

between bands significant for certain land cover types and added to classification models to 

improve accuracy through the capacity for class differentiation. Hence, the accuracy of existing 

classifications in Belize can be enhanced through the application of more spectral bands in the 

analysis. Previously, these have only included four spectral bands (CZMAI, 2021). 

Supervised classification methods are dependent on user selected training data. The selection 

of good quality training samples, which fully characterise the variability of class signatures, is 

paramount. Training sample size presents a larger impact on classification accuracy than the 

algorithm used for processing (Huang et al., 2002). Large and accurate training samples are 

consistently important across any algorithm employed (Lu and Weng, 2007; Li et al., 2014). 

Doyle et al. (2021) have shown that the specific tailoring of training samples can be used to 

assess land use to a 90% accuracy. This is an improvement to an unsupervised approach which 

provides an approximate accuracy of 62.5% (Nurdin et al., 2019). 

Class imbalance of training samples can lead to bias in models. If imbalanced class samples 

are used then relatively rare classes will be underrepresented relative to their true proportions 

in final model due to their smaller proportions of the training set. Blagus and Lusa (2010) found 
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that Random Forests and Support Vector Machine classifiers were influenced by imbalanced 

training data and should be avoided using an equalized stratified random sampling design 

(Stehman and Wickham, 2011). In the situation where a small training sample is provided or 

the quality of training pixels are uncertain, an algorithm robust to these uncertainties should be 

used. Ensemble decision tree methods, including Random Forests (RF), are robust to these 

inconsistencies. 

The classification accuracy of individual classifiers is case dependent. With limited ground 

truth data on geomorphology in Belize, selecting data using a purely EO-based approach will 

result in uncertainties to the training data. This is because the pixels provided to train the model 

have not been validated on the ground and so may contain incorrect or multiple endmembers. 

Therefore, RF is a reasonable choice for this study to mitigate these inaccuracies. 

RF provides a popular choice of classifier (Nurdin et al., 2019). RF represents an ensemble 

classifier which utilises large number of decision trees with random subset of training data 

(figure 22). Each tree uses a small sample and so is less correlated making overall ensemble 

more reliable. In order to decrease the correlation between trees, Rodríguez-Galiano et al. 

(2012) posits that a large number of trees should be used with a small number of random 

predictor variables available at each node. An advantage of the RF approach is the ability for 

optimisation to require lower computational resources compared to other classifiers. This is 

especially prevalent with large training samples. In coastal areas, the Random Forest classifier 

has performed well and provided superior results to Support Vector Machines (Pal & Mather, 

2005).  

RF classifications can be applied at a per pixel or object-based scale (Weih and Riggan, 2010). 

At a pixel level, spectral information is only analysed for an individual pixel in turn and its 

surrounding values are ignored and a class assigned to every pixel of an image. Conversely, 

object-based approaches utilise an aggregation of neighbouring pixels containing similar 

spectral properties which yields a class prediction for groups of pixels this often requires pre-

processing of images to segment pixels into groups.  

Object-based approaches often yields superior results (Nurdin et al., 2019). This is due to pixel-

based methods exclusively considering pixel independent classification and result in 

limitations of mixed trait classification. Through the combination of pixels, spectral and spatial 

information is included concurrently and results in more accurate and reliable results (Pandey 

et al. 2019). Prior to object-based classification, an image must be divided into segments. The 
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segmentation algorithm employed for this can have strong influence over the outcome of 

classification and should be considered carefully.  

 

 

Figure 22: Random Forests decision tree architecture (Alshari & Gawali, 2021) 

 

Hence, the ability of a classifier to faithfully represent an environment is dependent on the 

quality of ground truth data to train models, the intricacy of user pre-processing and 

classification algorithm employed. 

 

5.2.2. Satellite Derived Bathymetry (SDB) 

Studies of the coastal zone, including the modelling of coastal risk assessments, require the 

availability of updated bathymetric data of high (10m) to very high resolution (2m) (Wölfl, et 

al., 2019). Coastal processes are not currently captured by existing coarse bathymetry datasets 

for Belize due to their limited spatial and temporal resolutions (IHO, 2022). Enhancing the 

assessment of bathymetry can aid in the measurement of how morphometric parameters vary 

through time to enable proper Marine Spatial Planning (MSP) and sharing of coastal waters 

(Foley et al., 2010). 
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Traditional methods for bathymetric surveys consist of a small craft equipped with Single 

Beam (SBES) or Multi-Beam Echo Sounders (MBES) for regional high-resolution mapping. 

A typical MBES survey would expect to produce a vertical precision of two centimetres (Aykut 

et al., 2013). This approach can be prohibitively expensive without substantial funding and 

inefficient as survey craft are impeded by their draught and can be prohibited from operating 

over protected areas. As a result, hazardous areas can often be under-represented due to the 

high risks involved with surveying; this is especially evident in developing regions. 

Furthermore, mapping campaigns can be time intensive which is not a viable option for the 

regular mapping required for the assessment of risk after hurricane events. 

In recent years, efficient technologies have facilitated the prolonged and regular mapping of 

the seafloor through innovations in Satellite Derived Bathymetry (SDB) serving to fill the gaps. 

Optical satellite imagery serves to enhance spatial and temporal continuity where surveys are 

limited. At a coarser spatial resolution than afforded by MBES surveys, satellites act to combat 

the time and economic resources required for traditional surveys while collecting enough data 

to elucidate prominent contour features of the seabed.  

SDB provides an assessment of the depth of the seafloor in shallow coastal waters using space-

borne multispectral sensors. Sensors will measure the seafloor reflectance through a utilisation 

of the upwelling signal of light (figure 23). The depth of the water column is established 

through a relationship between the intensity of upwelling reflectance recorded by the sensor 

and the depth (Hedley, et al., 2012). 

Passive remote sensing sensors estimate SDB through surface reflectance. The most popular 

approach proposed by Lyzenga et al. (2006) utilises depth invariant indices but requires a 

preliminary classification of seabed to account for bottom reflectance. These models have since 

been refined by Hedley et al. (2012) to encompass a more thorough adaptive lookup table 

approach. 

A physics-based model inversion approach to SDB will derive a depth estimate at each pixel 

using equations governing the propagation of photons through the water column. An 

assessment at each pixel will allow large areas to be surveyed very quickly with minimal 

resource requirement. A physics-based approach can be applied without the presence of known 

data points to train the inversion model. This is particularly useful in areas (such as Belize) 

which are lacking in existing depth data (Casal, et al., 2020). 
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Figure 23: Conceptual model of photon travel in SDB (ARGANS Ltd., 2019). 

 

Although there is no obligation for SDB models to utilise insitu bathymetric data, the 

assessment of the accuracy of a model is limited without this (Headley et al., 2012). 

Furthermore, the availability of in situ data can be utilised to calibrate parameters used in 

imperfect estimations of atmospheric conditions for the image to ameliorate effects of data 

bias. Traganos et al. (2018) show that the vertical uncertainty of SDB models recorded using 

Sentinel-2 is ±3m but can be improved to ±1.5m through training algorithms with appropriate 

data. Therefore, the ability to evaluate the performance of these models is limited by the data 

available for evaluation. 

Moreover, the accuracy of SDB models is dependent on sensors and algorithms employed 

(Ashphaq et al., 2021). A trade off exists between spatial, spectral and temporal resolutions 

and there is a focus on the requirement for very high-resolution (VHR) data amongst the 

hydrographic community. Laporte et al. (2020) refute this suggestion due to the reduction in 

image quality, absence of orthorectification and significantly increased processing 

requirements. Model quality can be adversely impacted over water in VHR imagery due to a 
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high signal to noise ratio increasing the impact of anomalies from ocean glint (figure 24). The 

expense of commercial VHR data and poor relative frequency of acquisition further contradicts 

the benefit of using SDB for regular and cheap monitoring. Sentinel-2 is, however, suggested 

as a viable alternative through the improved propagation of noise and environmental 

uncertainties. 

 

 

Figure 24: Satellite Derived Bathymetry results in Guadeloupe against ground truth (red) 

using various sensors: Pleiades (blue), Sentinel-2 (purple) and Worldview-2 (turquoise) 

(Laporte, et al., 2020). 

 

SDB relies on the relationship between reflected solar radiation and sea depth. However, this 

is not consistent in water columns of differing clarity (NOAA, 2014). Solar radiance will enter 

the water column as white light which is absorbed at different rates in relation to its wavelength 

(figure 25); hence the spectrum of light observed within the water column will change rapidly 

with increasing depth. In the clear ocean the red wavelengths will be attenuated at the fastest 

rate; this results in a blue hue. However, in more turbid coastal waters dissolved organic 

material will result in increased absorption in the blue spectrum which can shift the light 

spectrum towards the red wavelengths. 
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Figure 25: Light attenuation in open ocean and turbid coastal waters (NOAA, 2014). 

 

Furthermore, the penetration capacity of light in water can be influenced by the seabed 

characteristics as geologic composition can impede the concentration of reflected light 

(Louvart et al., 2022). Coastal areas that have large concentrations of sand deposits on the 

seafloor, for example, will reflect more radiation than the equivalent seabed consisting of 

seagrass or algae. Typically, coastal waters constitute more turbid environments with an 

abundance of Coloured Dissolved Organic Matter (CDOM), such as phytoplankton, and 

suspended sediments also impeding the penetration of EM radiation. 

As the results acquired through SDB rely on the reflectance of solar radiation from the seabed, 

accurate data acquisition is limited to a maximum of thirty metres in clear coastal areas due to 

these patterns of attenuation (Louvart et al., 2022). The effective cut off is dependent on the 

inherent optical properties of the water at each site and is generally likely to be less than this 

extent. This limits the use of SDB in coastal mapping to the nearshore area. 

The properties of SDB suggest that it could be a viable tool for survey planning and regular 

coastal monitoring, especially for national hydrographic offices with limited resources, 

however. Misra and Ramakrishnan (2020) demonstrate the application of SDB to aid 

management of the marine environment. Coastal erosion impacts were assessed through the 

mapping of geomorphological changes to the seabed. This study achieved a RMSE value of 

less than one metre with the highest inaccuracies observed at deeper depths. These uncertainties 

emphasise the intrinsic decrease of accuracy with depth and presents its relevance for use in 



Earth Observation (EO) in vulnerability mapping 

 

50 

 

shallow water coastal areas. SDB results were useful to management agencies through enabling 

a reduction to the number of repetitive in-situ surveys required. 

 

5.2.3. Satellite altimetry 

Characterising the variability in sea state conditions is a high priority in the assessment of 

vulnerability to coastal communities and is a key parameter in the CVI. Therefore, the accuracy 

of wave height derivation is vital. The World Meteorological Organisation (WMO, 2018) detail 

the requirements for wave height derivation accuracy at 5-10% (or 10-25cm), however, for 

applications in coastal regions this is required to be higher and presents significant challenges.  

One such challenge is that long term time-series data from observations is required and is often 

limited. Traditionally this information would be acquired from in-situ moored data buoys 

(Dodet et al., 2020). These work under the premise that the measured buoy motion can be 

converted into wave motion based on hydrodynamic characteristics. However, this can produce 

over estimations of up to 56% in high winds due to the mean tilt of the buoy (Bender et al., 

2010). Furthermore, these buoys are sparse and their distribution uneven (figure 26). Wave 

data is derived from buoys in the coastal margins of North America and Europe but present 

large data gaps for the rest of the global ocean. This is particularly prevalent in the tropics 

(Ardhuin et al., 2019). Wave buoy data is sparse and discontinuous leading to systematic errors 

on a regional basis and in extreme storms within the datasets. 

The limitation of sparse data coverage is reduced through historical hindcasting (Liang & 

Wang, 2019). Wave climate is determined in this method through running ocean response 

models for historical periods, a prominent example of which is the Copernicus Marine 

Environment Monitoring Service (CMEMS) WAVERYS model (Law-Chune et al., 2021). 

WAVERYS provides a comprehensive record of global ocean significant wave heights (SWH) 

from 1993 to 2020 at a three hourly resolution. Although satellite data is ingested into these 

models, hindcast models often rely on insitu observations for validation. The complimentary 

use of both datasets in WAVERYS have provided an accuracy of SWH derivation at 8.7% 

(Law-Chune et al., 2021). 
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Figure 26: Location of wave buoys (Dodet et al., 2020). 

 

Satellites are employed in the derivation of sea state through nadir-orientated altimeters and 

synthetic aperture radar (Collard et al., 2005). Data quality is dependent on calibration to 

combat instrument bias and drift (Ribal & Young, 2019). Radar altimetry works under the 

principle that pulses emitted from the sensor are reflected by the sea surface at nadir and are 

subsequently recorded as a function of time (figure 27). The time can provide an indication of 

distance between the instrument and inclement surface and facilitates the derivation of wave 

height.  

Satellite data can be acquired over larger volumes and hence sample more extreme sea states 

than traditional wave buoys (Hanafin et al., 2012). Although it is impeded by the short time 

series, extending 30 years in the case of WAVERYS. This makes it is difficult to establish any 

multi-annual fluctuations of wave height, including North Atlantic oscillations. Inconsistent 

representation can bias trends and result in inappropriate statistical weighting applied to 

observations which are strongly affected by a climatic mode (Timmermans et al., 2020). This 

should be considered in Belize, a country subject to the ENSO. 
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Figure 27: Principles of satellite altimetry for wave climate (Liang & Wang, 2019). 

 

WAVERYS is also limited by the spatial sampling of 0.2-degree grids. Smaller scales will be 

desirable for applications in the coastal zone due to the refraction of waves over shallow 

bathymetry and tidal currents modifying wave height. The issue with fine spatial resolutions in 

the coastal zone is the contamination of altimeter signals close to land which can cause data 

loss or accuracy reduction (Law-Chune et al., 2021). A sparse pattern to altimeter sampling can 

provide bias to the modelled wave condition and is prevalent in extreme conditions (Jiang, 

2020). 

Comparisons between altimeter data and in situ measurements showed much better agreement 

when coastal buoys (< 200 km) were discarded from the analysis with figure 28(a) 

demonstrating a higher RMSE and bias. This is attributable to land shading and refraction 

which modify SWH over short distances (Dodet et al., 2020). In addition, coastal backscatter 

results in inconsistencies with satellite footprints close to the coastline and stronger variation 

of wave properties in the coastal zone. This is as a result of tidal currents, bathymetric refraction 

and coastal winds and invalidates the assumption of homogeneity in sample grids. Altimetry is 

particularly useful in remote ocean areas or regions which lack infrastructure to populate 

hindcasting models. Jiang (2020) suggests a hybrid approach which incorporated both altimetry 

and reanalysis models. 
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Figure 28: Validation of wave height derived from satellite altimetry against in-situ buoy 

measurements (Dodet et al., 2020). 

 

The trajectory of hindcast modelling likely to continue with Surface Water Ocean Topography 

mission (Morrow et al., 2019) and the extension of the Sentinel-1 constellations with Sentinel-

1C & 1D launching in 2022 and 2023 with modified wave mode of two incidence angles for 

improved swell sampling demonstrating a robust and sustainable approach to wave height 

derivation with prediction accuracy set to increase in coming years. 
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5.2.4. Digital Elevation Models (DEMs) 

An understanding of topographic variability facilitates the characterisation of the interplay 

between dynamic earth systems (Wilson, 2018). The CVI requires an assessment of coastal 

topography as a proxy for the inundation capacity of surge water. Digital Elevation Models 

(DEMs) represent gridded rasters which can provide elevation data for this purpose. These are 

often provided as global products and derived from the remote sensing approaches of 

photogrammetry or interferometry. DEMs of this nature offer high positional accuracy with 

improved speed of data acquisition for areas that are difficult for survey access (Fuss, 2013). 

 

 

Figure 29: Principles of DEM derivation (Japan Space Systems, 2016). 

 

A photogrammetric concept for deriving topography from satellites involves a stereo image 

acquisition (figure 29). This consists of two images acquired at nadir and off-nadir angles for 

the same region. The stereo image product represents a Digital Surface Model (DSM) and 

accounts for natural and artificial features (such as trees and buildings). This must be converted 

to a DEM which represents the bare-earth surface referenced to a vertical datum (Okolie et al., 

2022). This pre-processing is achieved through morphological filtering to mask non-terrain 

features (Ismail et al., 2013). A distinction between DSM and DEM can be seen in figure 30. 
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DEMs are preferable for use in assessing flood risk because this represents the underlying 

coastal morphology and is not impeded by buildings or tree canopies which would infer a 

disproportionality lower vulnerability (Wilson, 2018). Belize has a low-lying topography and 

a gentle gradient. Therefore, the DEMS used must be reliable and robust to areas with subtle 

variations in their elevation. A DEM produced through this approach is the ASTER global 

DEM and provides regular topographic assessments at a 30m resolution (Japan Space Systems, 

2016). 

 

 

Figure 30: Distinction between Digital Surface Models (DSMs) and Digital Elevation Models 

(DEMs) (Okolie et al., 2022). 

 

Conversely, interferometric-based approaches have also been employed in the generation of 

elevation models. The Shuttle Radar Topography Mission (SRTM) was launched in 2000 and 

uses multiple radar images captured at the same time to create a DEM (Werner, 2001). This 

dataset is only available over a 90m spatial resolution for the year 2000 which presents issues 

for data relevance, especially in coastal areas subject to dynamic changes. 

Hayakawa et al. (2008) provide a comparison of the performance of photogrammetry and 

interferometric approaches. ASTER is shown to produce superior results is low elevations due 

to a higher spatial resolution and less missing data from a continued image acquisition. The 

vertical accuracy of ASTER is recorded as less than half that of SRTM (Farr et al, 2007). A 

full comparison of which can be seen in table 4.  
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Errors in derivation of DEMs are likely to extend from spatial sampling and interpolation 

methods (Guo et al., 2010). These processing techniques can insight bias. Measurement error 

may occur due to sensor noise which can produce speckle noise in the models. In addition, the 

age of data will cause inconsistencies because of land cover changes. The outdated nature of 

the SRTM further suggests ASTER will provide more suitable results in Belize; a region where 

rapid urbanisation is constantly changing the morphology of the coastal zone.   

To minimise these issues for flood mapping, topographic data should be acquired recently and 

provide high vertical accuracies. A large-scale assessment of topography is beneficial for 

coastal vulnerability assessments to determine low-lying areas as these are associated with 

highly vulnerable categories with low coastal slopes. Therefore, ASTER can be seen to provide 

superior results for this application. 

 

Table 4: Comparison between ASTER and SRTM DEMs. 

 ASTER SRTM 

Source 
Stereo image 

photogrammetry 

Synthetic Aperture Radar on 

board space shuttle 

Acquisition 

period 
2000 – Present 2000 (11-day mission) 

Spatial resolution 30 metres 
30 metres for United States 

90 metres globally 

Vertical accuracy 7 metres 16 metres 

Spatial coverage Global 
60 degrees North to 56 

degrees South 

Gaps to coverage N/A Areas with steep topography 
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5.3. Machine Learning 

Satellite data techniques can fill the gaps in data extents through efficiently surveying the 

coastline at a large scale. Another problem presented by the CVI, however, is the inability to 

automatically scale for application in new coastal regions or environments. Currently, this 

requires a manual adaptation of thresholds which divide the coastline into segments of relative 

vulnerability. This incites a subjective bias to the qualification.  

The analysis of data through machine learning (ML) is rapidly becoming a new paradigm in 

remote sensing through the ability to process large quantities of data without the interference 

of humans (Lary et al., 2018). ML allows for automation of complex tasks and provides 

multifaceted merits including modelling and image classification. 

In the context of modelling, unsupervised ML models involve the training of algorithms with 

an unlabelled dataset to learn independently to identify patterns in similar features within the 

dataset (Xu & Wunsch, 2005). Therefore, user guidance based on contextual information is not 

required. This allows for the discovery of unknown patterns in datasets and a more flexible 

approach to model automation. Unsupervised ML can be applied to several situations given an 

abundance of data but is particularly useful in the clustering of data. 

An application of ML to automate the detection of thresholds will reduce the subjective bias of 

hard defined boundaries and facilitates the automatic scaling to adapt the method for new 

environments (Calil et al., 2017). This is based on the conditions seen in an image rather than 

hard defined boundaries to subsets of a parameter (some of which may not even be present in 

the study area). This provides a consistent metric for grouping variables and will be comparable 

for conditions which may change in multiple images or in new regions of the globe. 

 

5.3.1. Clustering algorithms 

Clustering through ML will enable the division of coastal segments into groups representing a 

relative parity for vulnerability. This is based on whether similar geotechnical properties are 

demonstrated and have been evaluated in each EO parameter. Clustering involves the grouping 

of uncategorised objects based on their similar features to find natural distributions in the data 

(Xu & Wunsch, 2005). A typical clustering workflow is shown in figure 31 where a key 

consideration should be given to the clustering algorithm chosen. 
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Figure 31: Clustering workflow (Xu & Wunsch, 2005). 

 

The KMeans algorithm uses a partitional approach to distribute discrete data into a specified 

number of clusters with k representing the number of pre-determined groups (Ahmed et al., 

2020). Partitional clustering splits the data based on an iterative location of datapoints to assign 

clusters based on similar properties; the quality of partitioning is enhanced with more iterations. 

The granularity of which can be adjusted through number of clusters chosen. The algorithm 

constructs a feature space based on pixel values to determine the distribution of groups (figure 

32). In the context of remote sensing, each dimension of the feature space will represent a 

spectral band in an image or an individual parameter of a model. 

The KMeans workflow is outlined in figure 33. Clusters are assigned through the dropping of 

centroids. This is an iterative process which repeats a pre-determined k-number of iterations 

with a new cluster centre being dropped for each. With every iteration, the distance of the 

clusters shifts and the distance between the dropped centroid and surrounding datapoints is 

assessed. An optimal centroid location is determined through minimising the Euclidean 

distance to surrounding points and clusters are assigned to data points with closest to a centroid 

(Ahmed et al., 2020). This process continues until there is no more movement in the centroid 

of each cluster or until the stopping criterion is met. Iterating this process with different random 

centroids ensures groups are well separated and present a greater intra-cluster similarity than 

inter-cluster similarity. 

 

 



Earth Observation (EO) in vulnerability mapping 

 

59 

 

Figure 32: KMeans clusters in the feature space of an image (Wikipedia, 2022). 

 

This method is effective at computing clusters synchronously and is simple to implement with 

a low computational intensity (Jain, 2010). However, KMeans encounters limitations through 

the initialisation of parameters in the inability to propose optimal number of clusters – these 

are defined by user and provide suboptimal results if not appropriately defined to sufficiently 

split the group (Rathore et al., 2018). The number of iterations to obtain a suitable distribution 

is also unknown and must be defined by the user, overcompensation can increase memory 

requirements and processing time.  

Furthermore, KMeans is sensitive to outliers and can skew clusters through the forcing of data 

points which are far from the centroid into the group (Saxena et al., 2017). Moreover, datasets 

with large variations to their magnitude will present extreme values which results in narrower 

confidence intervals. These datasets should utilise a univariate index to account for this prior 

to clustering (Rueda et al., 2017). 
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Figure 33: KMeans clustering workflow (Hao, 2021). 

 

Calil et al. (2017) demonstrates the application of ML clustering to the identification of coastal 

risk hotspots with an emphasis on Self-Organising Maps and KMeans (figure 34). This study 

classified over 50,000km of coastline into nine distinct clusters based on coastal hazard, 

geographic exposure and socioeconomic vulnerability. Coastal hazard in this context was 

limited to the assessment of wave energy, storm surge, El Niño and cumulated cyclone winds. 

This method has shown merit for the processing of large-volume, multidimensional and 

multivariate data with a high computational efficiency to assess coastal risks to Latin America 

and the Caribbean on a comparative scale. Clustering is applied prior to the calculation of 

vulnerability indices to facilitate the simplification of analysis by categorising multivariate data 

based on similar attributes and allows for drivers of coastal risks to be traced back to individual 

clusters. These hotspots can be easily identified to show where consistent reduction strategies 
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might be applied. Calil et al. conclude by suggesting higher resolution and smaller scale studies 

are needed with a focus on coastal risk reduction. Localised case studies, such as that of Belize, 

will provide an extension of this approach in specific coastal zones. 

 

 

Figure 34: KMeans clustering for coastal vulnerability in Latin America and the Caribbean 

(Calil et al., 2017). 
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PART III – METHODS 

 

This section outlines the methodology employed in this study and the approach to the 

integration of remote sensing and machine learning within vulnerability studies.  

 

6. Methods 

6.1. Conceptual framework 

Coastal vulnerability has been assessed through the traditional index-based approach. The 

Coastal Vulnerability Index (CVI) has been evaluated using the corresponding indicators of 

geomorphology, coastal slope, wave climate, wind speed and tidal range. These have each been 

derived using satellite remote sensing techniques to address the issue of expensive field surveys 

required to characterise the coastal zone. Satellite images have been taken from the last five 

years provide an indication of current conditions scenario for vulnerability. 

Traditionally, the CVI metric incorporates shoreline change as a measure of erosivity of the 

coastline pertinent to vulnerability. Abuodha (2010) suggests this provides an indication of 

coastal response to storm surges as opposed to physical characteristics purporting to 

vulnerability and therefore was omitted from this study. Current rates of shoreline retreat for 

Belize are estimated at -0.49m/yr (Azueta et al., 2020) which is below the accuracy of current 

remote sensing (RS) derived methods which are dependent on the RS sensor used and must 

exceed half a metre per year (Luijendijk et al., 2018). Luijendijk et al. (2018) demonstrate the 

accuracy of vector shoreline data derived from Sentinel-2 is between one and five metres. This 

approach is more suitable to coastline experiencing higher erosivity and should be considered 

when evaluating vulnerability in such locations. 

Another parameter within the CVI framework is the rate of sea-level rise (SLR). Vulnerability 

has not been assessed with respect to this variable due to the homogenous effect of SLR in the 

region of interest. The global rate of SLR is 1.8mm/yr and is classified as a very low 

vulnerability. This is rate reflects a eustatic change apparent to all shorelines. An incorporation 

of this dataset would provide a constant quantity and not illustrate disparities along the 

coastline corresponding to SLR. A dataset representing heterogenous changes for Belize does 

not yet exist. 
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The framework proposed in this study (figure 35) revolves around the application of machine 

learning (ML) to cluster parameters into groups of similar geomorphic conditions. Each group 

will possess similar parity for vulnerability. This removes the need for the static thresholds 

shown in the vulnerability table (figure 14). The thresholds outlined by Gornitz are not 

appropriate to evaluate relative risk along coastlines around the world, coastlines with little 

variability will often all fall into one risk class and does not help isolate areas which may be 

disproportionately at risk. Derivation of appropriate thresholds will require technical insight to 

survey the coastline and divide observations into specific classes. These are instead evaluated 

whenever the model is run based on the conditions seen in an image. This provides a globally 

scalable approach as vulnerability is provided relative to other clusters. 

KMeans is a method of machine learning to group dimensional datasets. This has been used in 

this study to cluster segments of the coastline into vulnerability groups which contain similar 

properties. Due to the lack of spatial concurrence between marine and terrestrial variables in 

the CVI, parameters are sampled to provide generalised conditions across a one-kilometre 

gridded samples (Koroglu et al., 2019). The KMeans classifier facilitates the analysis of these 

large and multidimensional datasets at a low computational cost. Outputs of the model will 

consist of raster maps demonstrating vulnerability with respect to each parameter and an overall 

combined CVI value map with larger cell values representing an increased degree of 

vulnerability.  

A number of advantages are achieved through using this approach. The first is the easy 

identification of hotspots which can be traced to individual parameters demonstrating coastal 

vulnerability drivers. These clusters present similar conditions which can be attributed to 

consistent management strategies. Furthermore, the redundance of in-situ data results in a 

scalable approach to new locations without the need for prior study. This results in a cost 

effective and repeatable approach. 

This preliminary study will focus on the Northern and Central Belize coastal management 

districts due to their dense populations and low topography (figure 36).  
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Figure 35: Workflow for the derivation of CVI using remote sensing and machine learning. 
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Figure 36: Belize study area. Key settlements (black) and management districts (gold) are 

labelled. 
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6.2. Data 

To provide characterisation of the coastal zone, key coastal parameters have been quantified 

using a range of remote sensing techniques. These have been split into two broad groups based 

on the datasets utilised in their derivation.  

Sentinel-2 forms the basis of the optical remote sensing approach and has been used to evaluate 

parameters based on the emission and absorption of spectral radiation. This technique is 

specifically useful for the differentiation of spectral responses and is well suited to 

classifications and SDB. 

In addition to Sentinel-2, open-source remote sensing datasets have been employed to 

characterise other environmental conditions utilising several RS techniques, including 

altimetry and thermal emission. 

An overview of datasets and corresponding methodology can be found in table 5. 
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Table 5: Overview of data sources used in this study. 

Application Dataset Type Processing 
Temporal Resolution Spatial 

Resolution 

Coordinate 

Reference 

System 

Source 
Available Sampled 

Land & 

Benthic 

Cover 

L2A Sentinel-2 

Optical 

multispectral 

GEOTIFF 

Object-based 

supervised 

classification 

2-5 days 

2015 – 

Present 

11/2017 

– 

06/2020 

10m 
EPSG: 

32616 

(Copernicus, 

2022) 

Bathymetry L1C Sentinel-2 

Optical 

multispectral 

GEOTIFF 

Physics based 

inversion model 

for SDB 

2-5 days 

2015 – 

Present 

11/2017 

– 

06/2020 

10m 
EPSG: 

32616 

(Copernicus, 

2022) 

Terrestrial 

Elevation 

ASTER Global 

DEM 

Thermal 

emission optical 

GEOTIFF 

Mosaicked tiles 
2000 – 

Present 
N/A 

30m, 

resampled 

to 10m 

EPSG: 

4326 

(USGS, 

2019) 

Wave 

Climate 

WAVERYS 

Hindcast model 

Model using 

satellite 

altimetry 

NETCDF 

Sampled 

monthly 

maximum SWH 

and translated to 

coastal segment 

1993 – 

2020 

09/2015 

– 

01/2017 

21km 
EPSG: 

4326 

(Piollé et al., 

2020) 

Wind 

Exposure 

UNEP Global 

Risk Data 

Platform 

(Cyclone 

Intensity), derived 

from NOAA 

IBTrACS product 

Hindcast 

observations on 

storm 

trajectories 

GEOTIFF  

None 
1969 – 

2009 
N/A 

10km, 

resampled 

to 10m 

EPSG: 

4326 

(Knapp et. 

al, 2010) 

Tidal range Tide gauge data 

Open access in-

situ 

measurement 

None N/A N/A N/A N/A 
(PSMSL, 

2001) 
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6.3. Primary data techniques 

The following section outlines the methodology for quantifying coastal variables using the 

optical multispectral sensor onboard Sentinel-2.  

 

6.3.1. Sentinel-2 

In 2015, the European Space Agency (ESA) launched the twin optical satellite mission 

Sentinel-2 as part of the Copernicus programme. The Multispectral Instrument (MSI) payload 

affords a high spatial resolution of ten metres in the visible bands. A spatial resolution of ten 

metres reduces glint on the water surface as returning signal is more homogenous which results 

in a less signal to noise ratio in the model than the equivalent VHR sensor while still possessing 

capacity to elucidate contours of bathymetry. 

In addition, thirteen spectral bands encompass the EM spectrum from visible (443nm) to Short 

Wave Infrared wavelengths (2190nm) which aids the detailing of light transmissibility in water. 

Coordination between two satellites in a sun synchronous orbit provides a temporal revisit time 

of five days at the equator. This regular coverage produces a large database of imagery which 

can be especially useful in areas where adverse weather may prevent clear image acquisition. 

Finally, the georectification and orthorectification of products produce a reduce geometric 

biases to enhance positional accuracy. Fourteen Sentinel-2 images have been used in this study 

across seven acquisition dates. These cover the tiles T16QCE and T16QDE (table 6). 

 

Table 6: Dates of Sentinel image acquisition for tiles T16QCE and T16QDE. 

20171118 

20181203 

20190924 

20191118 

20200102 

20200122 

20200206 

1628GMT 

1628GMT 

1628GMT 

1628GMT 

1628GMT 

1628GMT 

1628GMT 
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6.3.2. Supervised classification 

Geomorphology is pertinent to expressing the degree to resistance to erosion and provides a 

proxy for the inundation potential of floodwater through their capacity to dissipate wave 

energy. This parameter will affect both the marine and terrestrial environment and has been 

evaluated in the form of a land cover classification and benthic sea floor cover assessment. 

In both instances, these classifications have been derived using atmospherically corrected 

Level 2 Sentinel-2 images. A time series approach has been used to merge individual scene 

acquisitions layers to create cloud free composite images through maximum value of NDVI 

(Corbane et al., 2020). This approach provides a superior spatial resolution to the existing 

CORINE open-source land cover map with a one-hundred metre positional accuracy.  

Data fusion of reflectance and spectral indices was used to produce and image composite which 

would enhance disparities between spectral features. Pre-processing was required to calculate 

an additional to an NDVI index layer, using the Near-Infrared and red bands. Hence, the 

classified images contained seven spectral bands (B01, B02, B03, B04, B05, B08 and NDVI).  

Image composites were classified by means of an object-based supervised classification using 

a bespoke Python script. A pixel-based approach was deemed inappropriate for this study due 

to the levels of noise produced in thematic mapping over large scales (Whiteside et al., 2011). 

Both an unsupervised and supervised approach were considered but the supervised approach 

has been seen to show superior accuracy. Each image was segmented using the Shepherds 

segmentation algorithm (Shepherd et al., 2019). 

The machine learning algorithm used to perform the classification was chosen to be Random 

Forests (RF). RF fits several decision tree classifiers on data sub-samples and uses averaging 

to improve the predictive accuracy. Predictions from each tree are averaged across all the 

decision trees to provide a better performance than individual trees. The data used to train 

supervised models has a large impact on output quality. If training samples are small or possess 

uncertain quality then a classifier that is robust to these problems should be used – this includes 

RFs (Huang et al., 2002). Due to the lack of ground truth data for Belize, the quality of training 

pixels selected have an increased degree of uncertainty and hence RF should be chosen. 
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Six distinct spectral classes were assigned to models over land (urban, mangroves, wetland, 

agriculture, forest and water) and five assigned over water (coral, bare substratum, sand, 

seagrass, deep water). Terrestrial classes were defined based on recommendations from the 

Ministry of Natural Resources in Belize (2020) who classify the region using cropland, 

grassland, forest, settlements and wetlands. Malthus and Mumby (2003) suggests appropriate 

benthic classes in Belize are corals, bare substratum dominated, seagrass dominated and sand 

dominated. A deep-water class was added for areas where the seabed could not be 

distinguished. Training data for each of these classes was generated by sampling a hundred 

pixels for each class. 

In order to provide an assessment of the accuracy of the classification models a confusion 

matrix was applied. The validation data required to achieve this includes an indication of the 

actual land cover type. This has been provided through higher resolution imagery including the 

open-source Planet base map imagery of the site. A sample of fifty points were produced across 

each class in this assessment. 

 

6.3.3. Satellite Derived Bathymetry (SDB) 

The following section outlines the approach to calculating bathymetry using a physics-based 

model inversion method. The processing workflow is shown in figure 37. 

 

 

Figure 37: SDB processing workflow. 

 

Pre-processing & image selection 

The large catalogue provided by Sentinel-2 gives the opportunity to select imagery based on 

favourable environmental conditions. Accuracy of the final model is dictated by the quality of 

the image used. As a result, each image in the timeseries has been inspected to consider the 

presence of high suspended sediment loads, ocean glint or high cloud cover and only images 

demonstrating low concentrations will be processed. One image will produce one digital terrain 

model. 
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As a result of the intense cloud cover in the wet season in tropical latitudes preventing the 

acquisition of useful images; all images used in this study have been acquired in the dry season 

to assess the impacts of the previous year’s hurricane season.  

Once a repository of images had been selected, masking of anomalous features is completed 

by hand per image to remove pixels which might impede on the reliability of bathymetry 

estimated and to decrease processing requirements. These include pixels over land, boats, and 

clouds. 

 

Deglint 

A glint correction will reduce the noise resulting from the sun’s reflectance on wave crests. 

Training samples have been selected in each image over deep water to include pixels with and 

without strong glint. From this sample, glint can be quantified through a regression calculated 

utilising NIR bands. 

 

In this equation, Ri represents the pixel value per band, Bi is the product of the regression slope 

and RNIR is the difference between the pixel NIR value and the MinNIR value (the ambient level). 

 

Atmospheric correction 

This study has utilised Level-1C Top of Atmosphere (ToA) reflectance products using a 

timeseries based approach to employ specialist assessments for atmospheric corrections. Each 

of the Top of Atmosphere (ToA) Sentinel products have been translated to surface reflectance 

to accommodate for atmospheric reflection and transmission. This correction is homogenous 

across the image extent and is defined by: 

 

Where Pi(x,y) is the input value in band i and P’i(x,y) is the atmospherically corrected value. 

The values for S and M represent subtraction values and multipliers, respectively. These are 

estimated from the image by constraining the values that may be plausible in terms of a 

radiative transfer model of the atmosphere, and the same water column model used in 

generation of bathymetry. Therefore, rather than an independent AC it may be better considered 
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a radiometric alignment with the water column model. To monitor the quality of the 

atmospheric correction, tests were carried out over points of known depth in deep and shallow 

water to ensure the estimated bathymetry was correct before proceeding. 

 

Bathymetry 

The forward model of spectral remote sensing reflectance (Rrs (λ)) used in this study is based 

on the parameters of the water column and sea bottom properties (Hedley et al., 2009): 

 

The parameters P, G, X and H characterise the water column phytoplankton, the coloured 

dissolved organic matter (CDOM), particulate backscatter, and depth, respectively. Bottom 

reflectance has been defined as a linear mix of two endmember reflectance spectra indexed by 

e1 and e2. The spectral endmember model used for this study incorporates the bottom 

reflectance spectra of sand, coral, dead coral, macroalgae and seagrass in tropical waters. 

Individual pixels in the satellite image are subject to an adaptive look up table method for 

model inversion to associate the input values with the model to provide the closest spectral 

correspondence with the image reflectance. This approach allows for the bounded ranges of 

validity for parameters and a per-pixel uncertainty estimate to be established. Uncertainty is 

propagated by inverting each pixel in a deep water setting twenty times with a random spectral 

error term added to the pixel reflectance derived from the covariance matrix. 

To further reduce the impact of noise and glint anomalies and provide enhanced depiction of 

bathymetric contours, the individual models are passed through a smoothing filter to convert 

each pixel into the mean value of a window encompassing an area of 5 x 5 adjacent pixels. 

A consideration should be made as to the influence of tidal forces when each image is acquired 

as the instantaneous water level at the time of image acquisition is unlikely to coincide with 

that of chart datum (Lowest Astronomical Tide (LAT)). In the case of Belize, tidal forces have 

been considered negligible and hence no addition corrections will be accounted for to translate 

results to chart datum levels. 
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Full utilisation of the Sentinel-2 repository is facilitated with a time-series merge. Pixel values 

for each individual Digital Terrain Model (DTM) will be statistically merged to produce one 

map which attempts to characterise the general representation of bathymetry through statistical 

uncertainty weighted average analysis to reduce the impact of anomalies such as suspended 

sediment and cloud cover. 

While the hydrographic coverage in Belize is limited, a validation of SDB models has been 

performed against existing Admiralty Electronic Nautical Charts (ENCs) where available. 

Three ENCs were utilised in this study covering the approached to Belize City, these have the 

references: GB400522, GB389330 and GB300662.  
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6.4. Secondary data techniques 

The following section outlines the methodology for quantifying coastal variables using open-

source remote sensing datasets. 

 

6.4.1. Digital Elevation Modelling (DEM) 

The gradient of the coastal slope over land and water will impact the degree of inundation due 

to storm surges as well as the potential speed of shoreline retreat (Nageswara Rao et al., 2008). 

To characterise this over terrestrial areas, the slope has been assessed using orthometric height 

from altimetry data from the Terra satellite. This open-source dataset has been pre-processed 

to provide indication of elevation at a thirty-metre resolution in the coastal zone. 

Elevation data for this study is derived from stereo-pair images collected by the Advanced 

Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument (USGS, 2019). 

This dataset was chosen due to its superior resolution and recent acquisition dates and is 

currently the DEM of choice for national studies in Belize. The Shuttle Radar Typography 

Mission (SRTM) DEM was considered, however, is only provided at a ninety-metre spatial 

resolution across the globe so was discounted. 

The ASTER DEM is generated using a regular grid and provided in GEOTIFF format. 

Topographic data is projected on the 1984 World Geodetic System (WGS84) Earth 

Gravitational Model (EGM96) geoid.  

Each scene encapsulates an area of approximately 100 square kilometres. For this study, four 

scenes have been selected to cover Belize (N18W089, N18W088, N17W089 and N16W089). 

These have been mosaicked into one single GEOTIFF and resampled to ten metres using the 

Python library GDAL. In addition, null data values over water were removed and the resulting 

raster reprojected to EPSG:32616. This is to ensure spatial congruency across data layers with 

differing spatial resolution and projections. 
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6.4.2. Wave climatology modelling 

Wave climate conditions have been characterised using the open-source WAVERYS 

hindcasting model (Law-Chune et al., 2021). This dataset extends from 1993 to 2020 and is 

compiled using altimeter data with insitu recordings from several satellite missions, including 

the Topex series and Sentinel-3. This dataset contains a significant wave height (SWH) product 

which is gridded at a 0.3-degree resolution over a global projection. 

The WAVERYS model has produced global merged multi-sensor time-series of gridded 

satellite altimeter SWH with a temporal resolution of three hours. This was deemed too fine 

for the purposes of long-term climatic monitoring. To reduce data volumes, the highest 

recorded monthly SWH was sub-sampled over an 18-month period. This was aggregated into 

a multiband GEOTIFF and reprojected to the local coordinate reference system (EPSG:32616). 

Due to the coarse spatial resolution, the extent of the dataset does not extend to within one 

kilometre of the coastline. Due to this, pixels along the coast have been resampled to contain 

the value of the closest pixel with recorded data. Therefore, SWH is more representative of the 

offshore wave conditions rather than in the coastal zone. Finally, the pixel size has been 

resampled to ten metres to allow direct comparison with other data layers. 

In-situ tide gauges are sparse on the Yucatán Peninsula and will not represent the wave 

conditions in Belize. WAVERYS provides a peer-reviewed method to indication of more 

precise wave climate across the coast and was used due to its low biases to SWH measurements 

of only three centimetres. 

 

6.4.3. Wind intensity 

Hurricane wind speed can be a driving force behind storm surges due to wind generated wave 

run-up. This is a particularly relevant parameter in Belize due to hurricane winds. The 

windspeeds associated with hurricanes have been included to these represent the vulnerability 

in the most severe scenario. 

The impact of tropical storm intensity has been evaluated in this study using the United Nations 

Environment Program (UNEP) Global Risk Data Platform. The UNEP raster dataset was 

developed as part of the Global Assessment Report on Risk Reduction (GAR) and provides an 

estimation of global tropical cyclone buffer footprints generated from 2534 cyclonic events 
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over the period 1970 – 2009. The UNEP model has been used to evaluate wind hazard analysis 

in the north Atlantic and indicates a reliable dataset for this study (Cardona et al., 2014). 

The impact of cyclones is recorded in the Saffir-Simpson categories which characterises 

hurricane frequency and intensity through a scale of 1-5 in increasing severity. This dataset has 

been derived using historical hindcast observations from the International Best Track Archive 

for Climate Stewardships (IBTrACS); a record of global tropical cyclone tracks used to assess 

distribution, frequency and intensity (Knapp et al., 2010). Windspeeds have been converted to 

the Saffir-Simpson scale through GIS modelling to take into consideration the movement of 

the cyclones through time. 

As this is a global dataset, the raster is first acquired WGS1984 (EPSG:4326) projection. To 

enhance the spatial precision for Belize, this is reprojected to the local coordinate reference 

system (EPSG:32616). Pixels are subsequently resampled to a ten-metre spatial resolution. 

   

6.4.4. Tides 

Tidal forces are associated with inundation hazards. As suggested in section 3.2., tidal forces 

in Belize are minimal with a mean diurnal range of 0.125m. This suggests that this region 

experiences a micro tidal climate. Koroglu et al. (2019) suggests that unless the analysis is 

completed at a large spatial scale (where tidal range will vary substantially) then this parameter 

does not add significant information to discriminate more vulnerable areas. In the case of this 

study, tidal forces have been considered as homogenous along the coast. 

There is conflicting opinion in the literature with regards to the impact of micro-tidal climates 

on coastal vulnerability. According to Gornitz (1991) and Shaw et al (1998) coastal zones with 

a high tidal range should be considered more vulnerable, as a macro tidal range is typically 

associated with stronger tidal currents, and thus deem micro tidal areas to be of low 

vulnerability. On the other hand, Thieler and Hammler-Klose (2000) suggest micro tidal areas 

are of greatest vulnerability due to the sea level always residing close to the high tide line. 

Therefore, in storm surges flooding is more likely to occur (Pendleton, 2004).  

Since this study has a focus on vulnerability against storm surges, tidal forces have been 

assumed to have a high risk in the CVI model and possess the equivalent high-risk class for all 

segments along the coastline. 
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6.5. Modelling approach  

6.5.1. Coastal sampling 

Each coastal parameter will occur exclusively over either the terrestrial or marine environments 

hence raster layers will not be spatially coincident. As a result of this, the data must be sampled 

and aggregated along the coastline. The extent of the coastline is determined from the 

vectorised shoreline produced using an NDWI index mask. 

A 10m resolution is deemed to be too fine for analysis as processes of interest operate over a 

much larger scale than this. Hence, a larger scale of aggregation is chosen through the 

application of a 1km buffer (figure 38). This buffer extends in all directions from a point on 

the coastline resulting in 215 cells on 1km x 1km. This will give an indication of coastal 

vulnerability at each 1km segment of the coastline.  

 

 

Figure 38: 1km coastal sample segments. 
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Each data layer is loaded into a bespoke Python script and resampled to the 1km grid using the 

coastline shapefile. In order to characterise the prominent environmental conditions that persist 

in this area, a spatial aggregation of pixel values has been applied in two approaches: grid 

statistics and grid pixel count. 

Sample cell statistics were calculated for the coastal slope (terrestrial and marine) and wave 

climate layers. The metrics calculated for each cell were the mean, median, standard deviation, 

minimum and maximum values. In the case of wave climate, the coarse resolution prevented 

variation in pixel values at a 1km scale, so these statistical metrics were calculated used across 

a time series of eighteen images to characterise conditions with respect to temporal variation 

as opposed to spatial variation in the grid. 

For the classification layers, the use of statistics would not be an appropriate metric to 

characterise the variation in conditions due to the independent and arbitrary designation of class 

values. Conditions were assessed through the prominence of landforms occupying that grid 

through pixel count of class. 

This process results in a single value for each metric per grid. A multidimensional NumPy 

array is constructed containing pixel stats or pixel counts depending on the layer. The 

conceptual structure of this array is demonstrated in table 7. 

 

Table 7: Conceptual NumPy arrays produced to characterise coastal segment properties. 

 Grid Statistics 

Coastline 

Sample Grid 

Number 

Mean Median 
Standard 

Deviation 

Minimum 

Value 

Maximum 

Value 

x 
     

x + 1 

 

 Grid Pixel Count 

Coastline 

Sample 

Grid 

Number 

1 – Urban 
2 – 

Mangrove 

3 – 

Agriculture 

4 – 

Mudflats 

5 – 

Forest 

6 – 

Water 

x       

x + 1       
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Hurricane intensity did not require any sampling as Saffir-Simpson categories naturally divides 

data into 5 clusters. These clusters correspond to increasing severity and can be easily adapted 

to the context of vulnerability. Tidal range also did not require sampling as this was considered 

equivalent for each coastal cell. 

 

6.5.2. Assigning vulnerability groups with machine learning 

The NumPy array containing coastal samples must be grouped with respect to cells containing 

similar conditions to demonstrate exposure. Traditionally these groups would be ranked with a 

specific vulnerability value and defined using a static range of thresholds. This is a major 

limitation of the Gornitz (1994) method as these values cannot be scaled to new environments 

and require prior knowledge of the geomorphic conditions present to define.  

Machine learning has removed the requirement for thresholds to be defined manually. In this 

case, the vulnerability ranking becomes a dynamic and relative scale based on areas where 

similar geotechnical conditions are observed in the image. Python has been used to develop a 

script which takes pixel values from individual parameter layers and groups these along the 

coastline using clusters suggesting underlying patterns.  

The KMeans classifier is an unsupervised machine learning clustering technique which 

classifies a given dataset into a pre-determined number of groups. This method learns 

iteratively to assign a K group to each data point based on its features. A feature space is 

constructed with axis relating to pixel values of each input layer and a series of points are 

dropped at random extents and over a defined number of iterations within this space. The 

distance to surrounding points is then established. Clusters are determined through the 

minimum distance to each centroid seed.  

Wind speed intensity data did not require clustering through this method as the Saffir Simpson 

scale is a labelled dataset and already divides the dataset into five clusters. In addition, tidal 

forces were not clustered using KMeans as these were considered homogenous along the 

coastline. 
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Figure 39: Conceptual representation of feature space used in KMeans for (a) Coastal slope 

parameters, (b) Classification parameters, (c) Wave climate parameters. 

 

In the CVI model developed, a feature space is constructed for the remaining parameters of 

coastal slope, geomorphology and wave climate to determine five distinct vulnerability groups 

(figure 39). These groups are determined using a generalisation of predominant conditions for 

each 1km coastal sample grid which can be grouped with others along the coastline. The feature 

space for each parameter is constructed with dimensions corresponding to the columns in table 

7. Data points in the feature space represent the values for each metric in coastal segments. As 

the number of dimensions in the feature space increases, the scalability decreases therefore a 

low dimensionality should be used. Number of iterations chosen to be three hundred as 

suggested by Calil et al. (2017).  

In the case of coastal slope, a 5-dimensional feature space axis is created consisting of the 

statistical metrics of mean, median, standard deviation, minima and maxima. A higher weight 

was assigned to the mean to emphasise the importance of this metric in describing conditions. 

For geomorphology, the feature space represents the pixel counts for each class in the 1km 

coastal grid. As a result, the feature space is 6-dimensional for land and 5-dimensional for 

benthic representing each class present. As the resolution of wave data is too coarse to have 

multiple pixel values within the coastal grids, the feature space instead contains eighteen 

dimensions constructed from a single value of wave height for each coastal grid. 

 

 

 

Mostly urban = high risk 

Mostly mangrove = low risk 

(a) (b) (c) 
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Table 8: Conceptual NumPy array produced to characterise cluster centroid properties. 

 Cluster Centroid Values 

Cluster Mean Median 
Standard 

Deviation 

Minimum 

Value 

Maximum 

Value 

x 
     

x + 1 

 

Once similar clusters are established, these must be related to a degree of vulnerability. 

Vulnerability is assigned to each of the five clusters through a determination of the cluster 

centroids for each group (table 8). These centroids are used to provide an indication of the 

generalised conditions represented by a cluster. Centroids are ranked for each dimension based 

on the magnitude of values observed against other clusters (table 9). In the case of wave 

climate, higher magnitude cluster centroids demonstrate higher classes of vulnerability and are 

ranked accordingly. Each statistic is ranked individually as a cluster may not demonstrate the 

same rank across each metric. These ranks are summed with the lowest ranks demonstrating 

the lowest vulnerability clusters. 

 

Table 9: Conceptual NumPy array to rank cluster centroids based on the magnitude of each 

metric. Higher ranks will indicate a higher vulnerability. 

 Cluster Centroid Rank 

Cluster Mean Median 
Standard 

Deviation 

Minimum 

Value 

Maximum 

Value 

x 
     

x + 1 

 

 

This approach affords the benefits of being a simple and computationally efficient workflow 

to process. As a result, this clustering is quickly scalable to large datasets and can easily adapt 

to new examples. 

  

Ranked values per metric based on comparison of magnitudes in each cluster. 
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6.5.3. CVI Calculation 

Once the relative vulnerability has been assigned to each of the parameters detailed above, the 

arrays containing information for each layer are overlaid and Coastal Vulnerability Index (CVI) 

calculated over coincident pixels. The following formula for CVI has been used, reflecting the 

seven parameters evaluated: 

a = Land Cover Classification 

b = Benthic Cover Classification 

c = Bathymetry 

d = Terrestrial Relief 

e = Wave Height 

f = Wind intensity 

g = Tidal range 

 

Once the CVI for each pixel is established, vulnerability groups are derived using quartiles. 

Diez et al. (2007) suggest there are alternative approaches to define the index values at which 

to place thresholds. The choice of which can determine sensitivity levels and result in 

contrasting impressions of the degree of vulnerability (Nageswara Rao et al., 2008).  In this 

study, quartiles were used consistent with that applied by Thieler and Hammar-Klose (2000). 

The first quartile representing low vulnerability, the central quartiles representing moderate to 

high vulnerabilities and values in the upper quartile show severe vulnerability groupings. The 

resulting vulnerability map is exported as a GEOTIFF at 1km pixel resolution. 

 

6.5.4. CVI Model Evaluation 

A model evaluation has been performed against previous studies. The distribution of 

vulnerability is first compared against existing flood maps in Belize. The model has also been 

evaluated against the existing exposure model for Belize; InVEST. This provides a quantitative 

indication for the level of agreement. These models have both been qualitatively compared 

against impacts from historical hurricane events.  
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PART IV – RESULTS 

 

Section seven outlines the results for each satellite derived parameter used in the derivation of 

the CVI. This is followed by a consideration of the ability for the KMeans CVI model to 

determine vulnerable areas and suggestions for its place in ICZM. 

 

7. Characterisation of coastal vulnerability parameters 

7.1. Geomorphology component  

Two supervised classifications were produced for this study, over the marine and terrestrial 

environments, using an object-based approach. Figure 40 demonstrates the geomorphological 

variation along the coastal zone.  

In the terrestrial classification, there is clear definition of urban areas including: Belize City 

(365000, 193000), San Pedro (395000, 197000) and Caye Caulker (385000, 196000). The 

surrounding Cayes present a dominance of mangrove and mudflat classes with sparse 

fragmentated areas of forest; likely resulting from misclassification. In the mainland, 

mangroves are typically seen to be present in the southern regions below Belize City. Mudflats 

are prevalent in the northern landward areas and correspond with areas of sandy seabed. 

Furthermore, the marine classification demonstrates a northern bias for sand with large extents 

present to the west of Ambergris Caye. Sand is also prevalent in mid latitudes and can 

demonstrate the impact of suspended sediment through plumes and river discharge surrounding 

Belize City. This region is typically comprised of bare substratum with sparse seagrass 

assemblages and is reflected between coordinates 1950000 to 1980000. A section of the 

Mesoamerican Barrier Reef subtends the region from north to south and has been identified by 

a high density of coral benthic types, however, coral is particularly subject to misclassification 

especially in areas close to the coast. Deep water has been well represented in areas where the 

seabed cannot be seen. This is prevalent to the east of barrier reef and through deep water 

approach channel to Belize City. This model produces a much more fragmented classification 

with high levels of noise. 
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Within the 1km coastal buffer, 50.9% has been identified as mudflats, 8.1% of pixels are 

classified as urban, 23.2% demonstrate mangroves and the remaining 17.7% show forest or 

fresh water. Within the 1km coastal buffer, 21.3% of pixels classified as sand, 16.8% 

demonstrate bare substratum, 15.3% showing seagrass, 40.8% deep water with the remaining 

5.8% characterising coral reefs. 

Each model has had their overall accuracy quantified and the resulting confusion matrices can 

be seen in table 10. A total of 500 points were compared with very high resolution (VHR) 

Planet base map imagery. The terrestrial classifier performed better than that of the seabed with 

accuracies of 70.4% and 61%, respectively. The kappa statistic is a measure of how similar 

pixels classified by random forest classifier match the ground truth. In the terrestrial 

classification a value of 0.63 was achieved and 0.51 in the marine. This suggests a substantial 

and moderate correlation (Koch et al., 2009). Sand and mangrove classes have likely been 

underestimated due to low producer accuracies of 48.31% and 48.68%. Sand also has the 

highest user accuracy which conversely suggests a strong parity for classification. 

Endmember spectral response curves for each class are shown in figure 41. The urban class 

demonstrates a high reflectance from the bright surfaces typical of anthropogenic construction. 

Classes representing vegetation experience a spike in band 8 which reflects the increased 

reflectance of near infrared wavelengths in photosynthesis. Benthic classes show a reduced 

degree of separability than terrestrial class and have tightly clustered reflectance values with 

similar trends across wavelengths. These characteristics make the individual endmembers 

harder to distinguish and disproportionately affects higher wavelengths.  
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Figure 40: Random Forest classification maps for land cover (left) and benthic cover (right). 
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Table 10: Confusion matrix accuracy assessments for image classifications. 

 

 

  

Figure 41: Spectral endmembers for each class defined. 
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7.2. Marine slope component 

Satellite Derived Bathymetry (SDB) has been provided using an uncertainty weighted average 

of pixels from seven models (figure 42). At a regional scale, the general bathymetric conditions 

show the shallowest water in the north of the image. These conditions typically occur above a 

latitude of 17.8 degrees and are sheltered by Ambergris Caye. In the south, below latitudes of 

17.4 degrees, the bathymetry is deeper. This includes the lagoon sheltered by the barrier reef 

with a well characterised deep water approach channel. Western extents along the shoreline 

represent a gentle slope of shallow water with the 5m contour occurring 5km from the coastline. 

The eastern extent of the model shows a steep gradient along the Mesoamerican Barrier Reef; 

this is particularly prevalent close to shore near Ambergris Caye.  

SDB profiles experience temporal variation due to the images used in their derivation (figure 

43). Three transects for 2018, 2019 and 2020 show the variable conditions; 2020 demonstrates 

a particularly deep model, high variation can be seen in 2019 suggesting mobile sediment and 

gaps in time series exist in 2018 through presence of cloud. Uncertainties in model LUT 

generation span from different conditions in image acquisition. This will affect model 

performance and highlights issues with taking one image in isolation. Moreover, these 

observations demonstrate the significance of merging individual models to establish a full 

characterisation of bathymetry. 

The RMSE of individual SDB models ranged between 4.86m and 6.88m (with a mean RMSE 

of 5.57m) for each date. Although not directly comparable, due to variations of image 

conditions, these errors are similar to those demonstrated by Kanno (2013) and Lyzenga et al. 

(2006). The time-series merging of multiple SDB models has been shown to be effective in 

improving the accuracy of models through reducing the RMSE to 4.88m. However, RMSE 

metric still appears high. This is due to the RMSE being calculated over the whole model which 

provides bias towards inaccuracies with deep water. Through considering RMSE at each depth 

contour, the model provides good accuracy to the 20m contours with low RMSEs of 3.00m, 

2.375m and 3.713m at 2m, 5m and 10m contours, respectively. This increases to 6.305m and 

13.967m for 20m and 30m depths.  
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Figure 42: Physics-based Satellite Derived Bathymetry (SDB) model for Belize: (a) SDB DTM, (b) Study location, (c) SDB isobath model.
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Figure 43: Temporal variation to cross-shore depth profiles for three image acquisitions. 

 

Figure 44 shows the variable gradient along the coastline. Profile one shows bathymetry in the 

north punctuated by shallow areas of offshore sandbars created by sediment mobility. This is 

evident at 6km offshore with a depth of 0.4m. At this distance, these features are not captured 

by coastal sample. This gradient fluctuates within a 2.5m range.  

Past the shelter of Ambergris Caye, profiles two and three show shallow slopes in the south of 

0.3% and 0.005%. The slope remains shallow under 5m until 20km offshore where a steep 

coastal shelf is experienced in both cases with a gradient of 3.4% and 5.6%, respectively. The 

negligible gradients (0.3%) of SDB profiles which are present in the lagoonal areas 

demonstrate the lowest risk for flooding in the traditional framework. This covers much of the 

coastal waters within 1km of the coastline with the shallowest areas in the north. Differences 

in transects show this region is not static and provides sediment mobility. These profiles show 

a marked drop off (5.6%) to deep water regions in the eastern extents of the model. This steep 

gradient suggests a high level of exposure to storm events and will affect the regions of 

Ambergris Caye and outermost Caye islands significantly. Moreover, strong wave energies 

from storm events have the potential to alter already mobile sediments rapidly. Hence, regular 

assessments are important to provide actionable intelligence. 
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Validation has been performed through comparison with existing depth contours from 

Electronic Nautical Charts (ENCs). A random sample of points are allocated along each ENC 

isobath and are compared with the coincident pixel value of the SDB model (figure 45). Median 

values for each contour show good agreement in shallow water (3.04 for 2m, 5.65m for 5m and 

9.58m for 10m) with the error due to underestimation increasing in deep water (17.33m for 

20m and 17.24m for 30m). The interquartile range is also low for 2 – 5m contours (2.02m and 

1.74m). This increases to 4.92 at 10m.  

 

 

 

 

 

 

 

Figure 44: Spatial variation to cross-shore depth profiles. 
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Results show an overestimation of shallow water up to the 5m contour, with strong accuracy 

from 5 – 10m. After this point, the range is high and suggests a cut off depth for SDB with data 

being valid up to the 15m contour. 

Features have been missed to north of Belize City due to sediment plumes from the mouth of 

Belize River. Conversely, coral head features have been identified in SDB to the south of 

channel which are not present in ENC and are visible in the RGB satellite image. 

 

 

Figure 45: Validation of Merged SDB against Electronic Nautical Chart (ENC) contours. 
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7.3. Terrestrial slope component 

The topography of Belize has been quantified through analysis of data from ASTER (figure 

46). Belize’s coastal region can be described as low-lying because all areas of the coast 

presenting an elevation under ten metres. The lowest elevation regions can be found offshore 

in the caye islands and the highest elevation is clustered to the south of Belize City. The CZMAI 

suggest the regions that are most susceptible to inland flooding are to the very north of Belize 

City and westward of Ambergris Caye (Azueta et al., 2020). This area is coincident with 

mangrove classes present in the RF classification. Elevation values vary by only a couple of 

metres along the coastline and demonstrates largely homogenous conditions. 

 

 

Figure 46: ASTER Digital Elevation Model (DEM) for Belize.  
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7.4. Wave climatology component 

Figure 47 shows estimates for the mean wave conditions over the sampled eighteen-month 

period. Due to limitations of data provision close to the coast, conditions at the coastline were 

estimated through receiving values for significant wave height (SWH) based on closest pixel. 

Consequently, this describes the wave climate conditions approximately 20km offshore and 

before they have broken on the shallower continental shelf. Mean SWH demonstrates modal 

conditions and is, therefore, not the best metric for storm induced vulnerability. The maximum 

recorded wave height is a more representative measure to simulate the strongest wave 

conditions and has been used within the CVI every month. 

The maximum recorded wave height of 2.3 metres was recorded in January 2016 and the 

minimum recorded wave height was recorded at 0.6 metres in September 2015; these occurred 

at northern and southern latitudes, respectively.  This suggests a diminishing wave energy trend 

from south to north which is corroborated by other hindcast models, including SWAN 

(Orejarena-Rondón et al., 2021).  

 

 

Figure 47: WAVERYS modelled SWH at 20km resolution for the Yucatán Peninsula. 
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Figure 48 shows the prevailing wave direction and magnitude. A gradient of increasing 

magnitude is evident southward along the eastern edge of the Yucatán Peninsula. This suggests 

high wave energy conditions. Higher magnitude waves will demonstrate faster speeds of 

propagation and cause an increase to kinetic energy. Swell is generated from the North Atlantic 

with an easterly incidence angle, which is perpendicular to the coastline of Belize, and suggests 

incident waves will transfer the maximum wave energy. These conditions diminish as the 

current flows around the Yucatán Peninsula. 

 

 

Figure 48: Magnitude and modal direction of wave climate from WAVERYS data. 
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Due to the coarse spatial resolution of this dataset, clustering was achieved through the analysis 

of sustained wave climate conditions over time. Figure 49 demonstrates the temporal variation 

in SWH. This time-series has been constructed from the multi-dimensional dataset through 

averaging all data values present on a single date. SWH can be seen to be highly variable and 

fluctuates around median height of 1.1m. A consideration of temporal trends enables the 

evaluation for the likelihood of strong wave energy incident on the coast and their return period. 

This is used in an assessment of vulnerability to determine the spatio-temporal extent at which 

an area will experience a high energy event.  

Despite the limited temporal extent of the dataset, there appears to be a distinct pattern of 

periodicity of inter-annual periods that show higher SWH. The height of waves in the wet 

season appears greater with January often experiencing the highest energy conditions. This is 

after the end of the Atlantic hurricane season (November). The precise return interval of which 

is unclear, however, due to the limited temporal extent of the data. This makes it difficult to 

provide any statistical indication of this relationship as only two annual cycles are captured. 

Data with longer temporal extents are required to establish these fluctuations further. 

Seasonal patterns are punctuated with infrequent climatic events. In August 2016, an 

anomalous increase in recorded SWH is seen. This event is attributable to Hurricane Earl which 

made landfall in Belize on 4 August and brought waves of up to 4.7m. These magnitudes have 

not been captured by this dataset due to the use of the mean and spatial-temporal sampling. 

During the hurricane season, the lowest mean wave climate is observed but is punctuated by 

the largest extreme waves. 

Furthermore, figure 49 provides evidence to suggest strongest wave conditions are coincident 

with ENSO events and is supported by increased wave heights during this period. The 2015-

16 ENSO is one of the strongest on record. During this time, unusually high SWHs were seen 

in satellite images and linked to flooding in South America (Masoero, 2016). During the 

warming ENSO phase, the strength of trade winds increases and becomes more consistent. This 

leads to larger wind generated waves. Münnich and Neelin (2005) describe the correlation 

between ENSO and SWH suggesting a statistically significant relationship and lag times of up 

to four months. This relationship suggests a strong indication for ENSO driving climate in 

MAR, however, a longer temporal dataset is required to establish the trend of ENSO events.  
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Figure 49: Temporal variation of mean significant wave height (SWH). 

 

Validation of wave data results is achieved through evaluation against wave buoy data in the 

Caribbean Sea. The buoy used for validation is NOAA Station LLNR 80 situated in the 

Yucatán basin.  Figure 50 demonstrates in-situ wave heights are well characterised by the 

WAVERYS model. The correlation coefficient (R) is 0.6 suggesting a good relationship 

between observed and predicted wave heights. It is evident that high energy waves are 

systematically under-represented. Under-representations of this nature are a known limitation 

of wave modelling. 

 

Figure 50: Validation of WAVERYS predictions against in-situ buoy data from NOAA. 
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7.5. Wind exposure component 

Figure 51 represents the spatial distribution of coastal exposure due to hurricane winds. This 

has been generated from existing data produced by the UN Environment Program (UNEP). 

The Saffir-Simpson scale shows a visualisation of the annual accumulated and sustained 

windspeed of storm tracks derived from IBTrACS dataset. 2594 historical tropical cyclones 

are characterised by this dataset from the period 1969 to 2015. 

 

 

Figure 51: Exposure to increased wind speeds as expressed by the Saffir-Simpson Hurricane 

scale. 
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The distribution of wind speed demonstrates a northern bias. The highest vulnerability to 

hurricane winds occurs above a latitude of 21-degrees and shows a diminishing trend towards 

the Gulf of Honduras. This area is particularly susceptible due to the situation in the path of 

several tropical storm tracks. Strongest winds can be seen over open ocean and significantly 

lose power inland; this is the result of wind shear. 

The whole Belize region falls within two distinctions of windspeed: class three and four. These 

classes represent the 111-129mph and 130-156mph ranges, respectively. The boundary of 

conditions can be seen to occur at the tip of Ambergris Caye coincident with the town of San 

Pedro. There is little variability due to wind exposure; this is not surprising as Phinn et al. 

(2010) suggest atmospheric parameters will vary over scales of one to ten kilometres. 
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8. Modelling of coastal vulnerability in Belize 

8.1. Clustering of parameters 

Machine learning clustering techniques were used to delineate segments of the coastline which 

exhibit similar characteristics. Clustering was performed through an application of the KMeans 

algorithm over 215 coastal sample grids. Each of which has been assigned a vulnerability score 

from one to five. The application of this approach has been shown for the classification of 

coastal areas by Calil et al. (2017). 

Quantitative variables have been assigned clusters based on the ranking of centroid statistics. 

These represent the generalised conditions present in the coastal sample. In the case of waves 

and SDB, higher centroid values suggest a greater risk. Whereas for the DEM, the lowest values 

represent the highest risk group. Centroid statistics have not been used to rank the qualitative 

variables present in the geomorphology component. Instead, the proportional abundance of 

each class has been evaluated to represent the dominant land cover types in that cluster. 

Cluster characteristics and thresholds are outlined in table 11. As the feature space contains 

multiple dimensions for each parameter, cluster centroids have been simplified to show only 

the mean centroid statistic. This figure shows the coastline has been well segmented into areas 

of similar conditions. These values differ significantly from those defined by Gornitz (1994) 

and present an automated method for the adaptation of thresholds to new coastal regions. 

An indication of the spatial distribution of vulnerability clusters for each parameter is shown 

in figure 52. As suggested by Calil et al. (2017), the ability to track causes of vulnerability in 

the final model back to individual clusters or parameters is an advantage of clustering prior to 

the calculation of the CVI index. KMeans has provided a distinct distribution of parameters 

along the coastline to demonstrate segments with similarities. The spatial trends are largely 

reflective of the vulnerability for each parameter.  

Coastal segments that demonstrate a consistently high risk across parameters have been 

identified. These areas include Caye Caulker and Ambergris Caye. In the case of Caye Caulker, 

the only low vulnerability is attributed to the geomorphology parameter. This is due to the 

dominance of mangroves and seagrass. The seaward side of Ambergris Caye demonstrates low 

vulnerability with respect to elevation and wave climate but is otherwise subject to medium to 

high vulnerability across all parameters. 



Modelling of coastal vulnerability in Belize 

 

100 

 

Conversely, areas of low vulnerability are less apparent due to a lack of consistent coincidence 

between each parameter. Areas demonstrating a spatially consistent low risk are situated in the 

northern extent of the mainland coastline. This covers the lagoonal area of Belize District 

North. In this region, a low risk from land and marine geomorphology is observed but a very 

high risk is associated with the low topography (a characteristic often associated with mangrove 

dominated areas). 

In figure 52(d), the clustering of DEM values show a significant proportion of the coastline at 

the highest risk with 34% of the coastline attributed to this cluster. KMeans clustering will 

differentiate groups in the feature space based on the proximity of points to centroids (Jain, 

2010). Therefore, the distribution of points across clusters will not always be equal and is 

demonstrated by the percentage distributions in table 11. This is prevalent in parameters which 

have low range of values or with uneven distributions as low and high clusters will be 

disproportionately affected by extreme outliers (Rueda et al., 2017). 

The data populating the CVI demonstrate variation over several spatial scales. The most spatial 

variability to clustering occurs with respect to land cover and the least variability occurs in 

wind exposure. Geomorphology varies over a ten-metre spatial resolution – the minimum pixel 

size of datasets – and thus provides an increased degree of heterogeneity in and between 

individual coastal samples. This results in variation to vulnerability clusters over a smaller 

spatial scale. 

As an indication of an initial national-scale study, the comparitively low-resolution datasets for 

some parameters is adequate. This will identify broad areas of vulnerability which can be 

prioritised with further detailed studies (López Royo et al., 2016). The CVI clusters can 

efficiently assess the impact of individual physical factors acting over a range of scales. These 

can be used to identify hotspots and provide targeted management information. This 

information can be used to detail the areas which are more vulnerable but also what parameter 

they are vulnerable to. This will provide an indication as to where to target initial management 

resources in that area and will be vital for sustained, large-scale coastal zone planning. 
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Table 11: Results of KMeans clustering and the designation of vulnerability groups based on similar geomorphic properties demonstrated by the 

centroids of each cluster. 

  Vulnerability Cluster 

 

1 2 3 4 5 

Cluster 

centroid 

attributes 

% 

coastline 

segments 

Cluster 

centroid 

attributes 

% 

coastline 

segments 

Cluster 

centroid 

attributes 

% 

coastline 

segments 

Cluster 

centroid 

attributes 

% 

coastline 

segments 

Cluster 

centroid 

attributes 

% 

coastline 

segments 

P
a
ra

m
et

er
 

Land 

Mangroves 

with sparse 

forest 

assemblage 

15.3 

Agricultural 

& 

mangroves 

24.2 

Mudflats 

& 

agriculture 

26.1 

Mudflats 

with 

sparse 

mangroves 

and urban 

14.4 
Predominantly 

urban areas 
20.0 

Benthic 
Coral with 

sparse sand 
20.5 

Seagrass 

with sparse 

deep-water 

areas 

36.3 

Rocky 

areas with 

sparse 

sand and 

coral 

28.8 

Sand with 

limited 

coral 

10.7 Deep water 3.7 

SDB 1.361m 31.6 1.608m 21.4 1.775m 19.5 2.942m 12.6 7.348m 14.9 

DEM 4.937m 24.2 4.632m 12.1 3.339m 15.7 1.819m 14.0 0.907m 34.0 

Waves  0.508m 24.7 0.858m 8.8 1.203m 24.2 1.213m 37.6 1.472m 4.7 

Wind 74-95mph 0.0 96-110mph 0.0 
111-

129mph 
79.1 

130-

156mph 
20.9 >157mph 0.0 

 
 

     Low Vulnerability                                                                                                                                High Vulnerability 
 

 

 



Modelling of coastal vulnerability in Belize 

 

102 

 

 

 

Figure 52: Relative vulnerability ranking of coastal segments for each parameter based on KMeans clustering. 

(a) Terrestrial geomorphology (b) Benthic geomorphology (c) Marine coastal slope 
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Figure 52: Relative vulnerability ranking of coastal segments for each parameter based on KMeans clustering. 

(d) Terrestrial coastal slope (e) Wave climate (SWH) (f) Wind exposure 
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8.2. Spatial distribution of vulnerability 

The Coastal Vulnerability Index (CVI) is given for Belize using KMeans clustering in figure 

53. The range of CVI values is between 3 and 48 with a standard deviation of 8.77. These 

metrics were divided into categories of low, moderate, high and severe based on the following 

quartiles: 

1. Low CVI 3 – 7  22% coastline 

2. Moderate CVI 8 – 12  26% coastline 

3. High CVI 13 – 21 33% coastline 

4. Severe CVI 22 – 48 19% coastline 

 

Figure 54 shows the distribution of CVI values amongst vulnerability classes around the sample 

mean. The deviation of values is not normally distributed with a skewness mean of 0.84. The 

mean CVI is 14.46 and median 12.00, this range is comparable to other CVI studies (López 

Royo et al., 2016; Pendleton, 2010). Cogswell et al. (2018) posit that the CVI equation is 

sensitive to the percentile division of vulnerability classes because of skewed index values. As 

a result, the translation of index values into vulnerability percentiles is subjective and subject 

to opinion (Füssel and Klein, 2006). This instates a user bias in the demonstration of 

vulnerability. 

The bell curve distribution of CVI tails off at the two extremities. Therefore, dividing the values 

based on quarterly percentiles would incite bias as the high skewness value supports a dense 

cell distribution around the moderate vulnerability class. The interpretation of skewness stats 

provides the justification of defining vulnerability classes through the natural breaks approach 

(Koroglu et al., 2019). This ensures the model provides the most effective indication for 

targeted planning as the disproportionately vulnerable areas should be adequately highlighted. 
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Figure 53: Coastal vulnerability (CVI) in Belize using KMeans clustering. 
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Figure 54: Distribution of CVI values across vulnerability groups. 

 

The distribution of most vulnerable regions accounts for 19 per cent of the coastline. A seaward 

bias is demonstrated through significant concentrations in the east. In this thesis, processes 

have been quantified which contribute to vulnerability. Areas with the highest vulnerability 

have been seen to include Ambergris Caye and Caye Caulker. The highest CVI value of 48 is 

seen in Caye Caulker. These coastal sections are typical of low-lying regions with a steep 

marine coastal slope and high energy waves. Land-use is a mix of urban and mudflat classes 

surrounded by bare substratum under water. Coastlines of this nature have been demonstrated 

to be subject to adverse effects of inundation and ecosystem loss (Nicholls et al., 2007). This 

is supported by the observations of Lane et al. (2013) who suggests these regions demonstrate 

cumulatively higher storm surges. 

Several severe vulnerability hotspots contain concentrated population centres, including San 

Pedro and Caye Caulker; these areas have a population of 1,767 and 11,778, respectively. 

Further regions of high vulnerability can be seen in parts of Belize City – including the area 

coincident with Sir Barry Bowen Municipal Airport – and would account for an additional 

vulnerable population of 57,310. These areas are known to have significant flooding impacts 

(NEMO, 2016).  



Modelling of coastal vulnerability in Belize 

 

107 

 

An exception to the seaward trend is found at the northern-most and southern-most extents of 

Ambergris Caye; which are classified as low risk. A low wave climate with a dominance of 

mangroves, coral and seagrass clusters combine for a low CVI score. This observation should 

be contextualised against other significant policies implemented in Belize. In the south, this 

region contains the Marco Gonzalez Archaeological Reserve (which accounts for significant 

forest and mangrove land use in the area) and is surrounded by the Hol Chan Marine Reserve 

– a government defined marine protected area (MPA). In the north, the MPA of Bacalar Chico 

Marine Reserve intersects areas of lower risk. These areas are protected and carefully managed 

which likely contributes to a lower terrestrial vulnerability and are evidenced by dominant land 

uses in geomorphology clusters. 

Low and moderate risk areas represent 48% of the coastline. Such areas include the town of 

Ladyville (population: 5,468) where coastal segments demonstrate CVI values of less than 12. 

Although, historical evidence indicates that storm events have had significant impacts here in 

the past (NEMO, 2016). The lowest CVI value of 3 is seen in the lagoonal area of Belize 

District North. These areas exhibit low vulnerability due to the dominance of mangroves and 

inland lagoonal areas. Low vulnerability areas should not be disregarded by management 

policies as these are reflected through the protection provided by land use practices in the area. 

Therefore, the maintenance of functional habitats provides a pressing management priority. 
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8.3. Validation of multi variate CVI model 

Vulnerability is an inherently intrinsic characteristic which provides difficulty for absolute 

quantification or validation (Roy and Blaschke, 2013). Performance of the KMeans CVI model 

has been evaluated against other relevant studies in the region. This has formed an integral part 

of validation and testing. Validation has been performed against: the traditional approach 

employed by Gornitz, national flood models, existing vulnerability models and impacts of 

historical hurricane events. Direct comparison between these studies will be impractical due to 

the differences in resolution, derivation methods and approach to designation of composite 

vulnerability groups. The approach for comparison of separate modelling approaches 

suggested by Perini (2016) has been appropriated. 

 

Traditional CVI Thresholds 

Figure 55 shows the process of sensitivity testing through a comparison of CVI assessments 

obtained using the original thresholds defined by Gornitz (1994). This figure demonstrates poor 

contributions to the CVI variance from terrestrial elevation, bathymetry and wave climate as 

these are homogenous along the coastline. Identifying the whole coast as a high vulnerability 

is not a helpful metric for prioritising management targets. 

A high degree of variability in the CVI stems from the qualitative parameters of terrestrial and 

benthic coverage. The resulting vulnerability level is difficult to interpret as, despite all classes 

ranking highly, percentiles will differentiate the data values. Variation to the degree of 

vulnerability will be subject to the changes in geomorphology identified. This parameter 

requires subjective definition and pixels are more likely to fall within discrete class bands than 

those with numerical thresholds. 

These parameter ranges are defined with respect to the northern Gulf of Mexico and are not 

comparable to ranges in other localities (Pendleton, 2010). Even though this is an area not too 

geographically detached from Belize, these discrepancies demonstrate the requirement for 

adapting thresholds to regional-specific studies. Machine learning takes away need for careful 

deliberation of thresholds to allow rapid and automatic deployment at scale in new areas. To 

this degree, the KMeans model is effective at improving upon the assessment of vulnerability 

to provide distinction along coast for each parameter. This can be used to provide actionable 

intelligence for decision makers.  
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Figure 55: Distribution of vulnerability for individual CVI parameters based on the traditional Gornitz (1994) thresholds. 
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Mullick (2018) also suggests these thresholds ignore the spatial variability present in global 

coastlines and that thresholds based on data distribution are more appropriate. KMeans has 

reduced the complexity of the computational framework and reduced the qualitative and 

quantitative uncertainty. This is a major obstacle for studies with limited budgets in national-

scale assessments (European Environment Agency, 2011).  

 

National Flood Models (Caribbean Handbook on Risk Information Management, 

CHARIM) 

The current flood assessments utilised within ICZM for Belize are produced by CHARIM 

through hydraulic modelling and topographic consideration at a national scale. Figure 56 shows 

the extent of coastal flooding modelled for each Saffir-Simpson category. In this study, 

offshore islands have not been included due to lack of data but are deemed very high risk. 

The spatial distribution of flood extent shows almost 100% of the coastline would be flooded 

in a category one hurricane. This is except for Belize City and some sporadic southern-most 

regions. The worst flooding occurs in Belize City is corroborated by the two high severity 

hotspots seen in figure 53. In addition, the penetration of flood water extends further in the 

north of the coastline suggesting these areas are more vulnerable to storm surges. This was an 

area that was assessed as holding a low risk to storm surge in the CVI assessment. 

Disparities are likely stemming from the consideration of multiple variables in the CVI. The 

northern extent of the coastline is inherently low lying but the impacts of land use in this area 

are neglected in the CHARIM assessment. Furthermore, the elevation derived in this model is 

limited by the coarse 90m resolution of the SRTM DEM used and will provide an 

overestimation of flood extents. This demonstrates an advantage of utilising the ASTER DEM 

to improve the relief component with higher resolution data. 

The CVI method in this thesis further combats the lack of data availability in rural areas and 

provides an indication of flood vulnerability for the entire region. 
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Figure 56: Coastal flood inundation Hazard, Belize (CHARIM, 2016). 
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InVEST Exposure Model 

In addition to the CVI equation, subsequent index-based assessments have been made of the 

coastal zone. The Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model, 

developed as part of the Natural Capital Project, calculates the exposure index for a coastal 

segment through the combination of six ranked bio-geophysical variables. Based on the ranking 

schema defined by Thieler and Hammar-Klose, this model defines vulnerability of variables 

based on statistical groups rather than static thresholds. These groups are provided by quartiles 

and result in hard boundaries which cannot represent clusters of similar conditions. This 

approach has been used by Hopper and Meixler (2016) to model changes to vulnerability over 

time and represents the primary approach for vulnerability mapping in Belize. 

 

 

Equation 2: InVEST Exposure Index (EI). 

 

Figure 57 shows an exposure assessment based on the InVEST model; a geographically 

scalable approach to vulnerability through thresholding coastal characteristics using 

percentiles. This model has been validated previously (Onat et al., 2018; Ballesteros & Esteves, 

2021) and is currently accepted for use in ICZM for Belize.  

Variability in the relative vulnerability assessment of InVEST show a good corroboration with 

KMeans. 54.0% of coastal segments fall within one vulnerability class of each other while only 

4.65% of segments show a significant difference of three classes. InVEST demonstrates a high 

clustering of mid-vulnerability values which tend to underestimate the extremities with the 

least vulnerable regions accounting for 5% of the coastline and highest severity covering 13%. 

Both studies demonstrate a good agreement of high vulnerability regions for the outermost 

cayes, however, the severity is seen to be less in InVEST and especially at the south of 

Ambergris Caye. 

Due to differences in the scale of data used and the complex approaches to modelling, 

discrepancies should be expected between the two models. A key distinction is the large 

disparities seen in the northern extents of the mainland. This is the same region as demonstrated 
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by the CHARIM flood map and suggests the KMeans model is under-representing the severity 

of vulnerability in this area. This is an area demonstrating high proportions mudflat landforms 

and can be attributed to the difference in parameter weighting in the two models. InVEST 

suggests mudflats retain the maximum exposure class while these landforms prominently 

feature in the moderate to high clusters in KMeans. This provides an indication of the bias 

stemming from the subjective ranking of qualitative classes rather than the results of clustering 

processes. Discrepancies such as this suggests the value of an expert assessment to defining 

cluster groups which may be prone to subjective uncertainties to ensure these are appropriate. 

Prior to modelling, input datasets are also derived from different sources and have inconsistent 

spatial resolutions (table 12). KMeans will show more changes to vulnerability within small 

spatial scales which will not be apparent in InVEST due to its poorer resolution. The InVEST 

model is likely to overpredict the extent of flooding because of the low spatial resolution of 

these datasets. Furthermore, these are unlikely to properly represent small topographic features 

across the 1km coastal segments.  

Despite inequivalent modelling approaches, the identification of vulnerable spots is consistent 

with results produced by InVEST (which aims to fulfil the requirements of mapping the value 

of natural goods and services) and demonstrates robustness for both methods. Although, the 

similar trends observed may not provide an indication of model reliability and requires ground 

truth to increase the confidence of this assessment. 

Although both models act to assess spatial distribution of vulnerability, the differences 

observed show that CVIs must be adequately used to be a useful tool in identifying coastal 

areas at risk. Different approaches may indicate a contrasting vulnerability for a given area 

which will result in critical repercussions to management decisions (Koroglu et al., 2019). Due 

to these disparities, it is crucial to analyse the bias and uncertainties resulting from the 

modelling approach to isolate the cause of differences. This includes an understanding of each 

component’s contribution to the overall vulnerability for context as to how these differences 

will spatially vary. 
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Table 12: Datasets used in the InVEST model. 

InVEST Parameter Dataset Resolution 

Bathymetry GEBCO 100m 

DEM USGS (SRTM30) 10m 

Wave climate Wavewatch III 18,600m 

Geomorphology 
Allen Coral Atlas benthic 

coverage 
25m 

Mean Sea Level 
Permanent service for mean 

sea level (PSMSL) 
N/A 

 

 

Figure 57: Comparison of InVEST and KMeans results. 

(a) InVEST modelled assessment of vulnerability in Belize. (b) Difference between KMeans 

and InVEST vulnerability assessments. 

 

(a) (b) 
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Previous Hurricane Events in Belize 

Bertin et al. (2014) suggest flood hazard maps are generally not tested against survey 

information after a storm event. Hence, in addition to the comparison with InVEST, 

vulnerability maps produced for this study have been validated against areas affected by 

historical events. As spatial maps showing physical flood inundation are sparse, this was 

achieved through comparison of damage assessments and anecdotal evidence from reports 

provided for significant events in recent years as a proxy for flood damage.  

Hurricane Earl provides capacity for comparison due to its widespread impacts and intersection 

with the time-series availability of Sentinel-2 imagery used in this study. This suggests 

conditions observed in the imagery are likely to represent conditions present at the time of the 

event. Anecdotal evidence is available but can be further validated using SAR imagery from 

Sentinel-1 – which can provide imagery acquired within a week of the event – to map the extent 

of flooding (Uddin et al., 2019). 

Earl made landfall in Belize as a category one hurricane on 4th August 2016 and primarily 

impacted the districts of Belize City and Belize Rural (containing Ambergris Caye and the 

outer-lying islands). A nine-foot surge was seen in San Pedro which caused damage to houses 

and businesses; including 56% of National Hotel Stock and $30,000 in damages to households.  

On the eastern coast of Ambergris Caye, 227 of 252 docks were impacted and 135 of which 

were destroyed. Likewise, in Caye Caulker 49 of 54 docks were affected. These damages 

amounted to $14 and $2 million, respectively. This was sufficiently greater than the $470,000 

of dockland damage occurring in the commercial area of Belize City – a factor of four times 

less! Adverse impacts also resulted due to flash flooding in the Cayo district inland. This is not 

captured by this model, however, as these impacts did not occur in the vicinity of the coast and 

are likely the result of rainfall rather than storm surges (NEMO, 2016). 

Moreover, an indication of the spatial distribution of damage can be seen more extensively by 

Hurricane Keith in 2000. Table 13 demonstrates the total population affected by the hurricane. 

A significant proportion of the regional populations were affected in San Pedro and Corozal 

(66.7% and 42.5%). This supports areas that have been outlined to have the highest 

vulnerability in the model. Although Corozal experiences a significant affected population, 

only $80 of damages is experienced here which is likely the result of low population density 

and dominance of agriculture. Caye Caulker and Belize City also experience the highest 

concentration of damage.  
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Table 13: Impacts of Hurricane Keith (2000) by location (GFDRR, 2000). 

  Location 

 
 

Belize 

District 

Belize 

City 

Caye 

Caulker 
San Pedro 

Corozal 

District 

N
u

m
b

er
 a

ff
ec

te
d

 (
a
s 

o
f 

1
1
 O

ct
o
b

er
 2

0
0
0
) 

Total 

population 

(2000) 

62,729 49,059 742 4,499 26,748 

Affected 

population 
27,308 14,717 279 3,000 11,356 

Families 

affected 
N/A 1,168 45 1,145 816 

Living in 

flooded 

areas 

24,029 14,717 N/A N/A 19,126 

Homeless 3,279 N/A 279 3,000 N/A 

High risk of 

health 

impairment 

35,314 14,711 1,300 10,000 15,419 

Damaged 

houses 
BZ$2,761 N/A BZ$6,625 BZ$10,280 BZ$80 

Destroyed 

houses 
BZ$3,490 N/A BS$9,625 BS$46,735 BZ$80 

 

Despite the different incidence tracks of these hurricane events, the areas experiencing the 

worst impacts are consistent. KMeans predictions have been shown to be consistent with 

qualitative observations and provides evidence for the application of the model at a regional 

scale. The seaward regions of the coast (including Ambergris Caye and Caye Caulker) show a 

better correspondence with the historical information than INVEST which suggests Ambergris 

Caye presents a low-moderate vulnerability.  

The social impacts of storm surges are modulated by more than just the geographic components 

which are captured by the model. The CVI fails to capture elements (such as population 

density) which may influence these observations. Recording data following a storm event is 

fundamental to improve the methodology and identify whether the areas modelled represent 

true vulnerable areas. Although, Cote and Nightingale (2012) argue these modes of risk 

assessment are related to power relations as opposed to clear quantifiable values. The use of 

satellite estimations in the wake of hurricane events for impartial assessments is a beneficial 

approach to equalise this. 
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PART V – DISCUSSION AND CONCLUSIONS 

 

This section provides an analysis of the value for Earth Observation data within CVI 

assessments. The initial chapter outlines the inherent uncertainties in deriving parameters from 

satellites and the modelling approaches employed. This is followed by a consideration for the 

implications of the KMeans CVI model results to determine areas which may be 

disproportionately vulnerable and are situated within the context of Integrated Coastal Zone 

Management (ICZM). 

 

9. Uncertainties 

Sources of uncertainty require comprehension to interpret the results of CVI studies and 

understand how to increase the accuracy and reliability of the model (Boumboulis et al., 2021). 

Due to the inclusion of novel remote sensing techniques in this study, sources of uncertainty 

span from the derivation and integration of parameters within the modelling process. Inherent 

uncertainties are associated with deriving variables from satellites and have been considered 

individually in respective sections. The ability to precisely derive parameters from satellite 

provide a more significant impact on model effectiveness than by the modelling process itself. 

Remote sensing is not a perfect substitute for in-situ measurements, however, this technique 

provides an effective method for quantifying parameters at scale and with a good degree of 

accuracy. A trade off should be considered between the benefits of accuracy, scale and cost 

required for geotechnical information in coastal management. When working at scale, highly 

accurate data will be costly – both in time and money.  

An overview of the key limitations discussed in this section are shown in table 14. Due to 

limitations in derivation and modelling, a cautious approach must be taken when making any 

deductions from the model outputs as these can provide a false impression of the certainty of 

results. Caveats have been explicitly communicated to not waste resources or present 

misleading management concerns amongst stakeholders. Hence, the use of a relative CVI scale 

as opposed to absolute values is appropriate (Rosenthal et al., 2014).  
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Table 14: Uncertainties in CVI estimation using remote sensing. 

Uncertainties in parameter derivation Uncertainties in modelling 

• Low spatio-temporal resolution. 

• Habitat quality not assessed. 

• Lack of observations for model 

calibration. 

• Qualitative measurements of 

habitats. 

• Inherent Optical Properties of the 

water column and Depth of 

Penetration (DoP) of solar radiation 

needed for SDB. 

• Compounded uncertainties resulting 

from individual parameter 

derivation. 

• Factors given same weight. 

• Scale of coastal sample – only 

captures 1km grid of coastal zone. 

• Over-simplification of dynamic 

coastal processes. 

• Variables with differing spatio-

temporal scales. 

• Anthropogenic factors disregarded. 

• Lack of observations for model 

calibration and validation. 
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9.1. Uncertainties in parameter derivation 

9.1.1. Geomorphology component 

Uncertainties in establishing the extent of land and marine geomorphologies have stemmed 

from the process of image classification. Existing terrestrial classifications are provided for 

Belize with accuracies ranging from 60% to 92.6% (Meerman & Sabido, 2004; Doyle et al., 

2021). These studies largely focus on changes to specific localised habitats, including 

mangroves, and so provide bespoke training samples for these habitats. The accuracy of the 

terrestrial RF model in Belize is substantial (70.4%), however, does not meet that of recent 

wetland studies. This can be attributed to a sub-standard quality of training data. 

Complete national coverage is provided by the Copernicus Global Land Service; a global 

model at a 100m spatial resolution and an accuracy of 80.3% (figure 58). This global accuracy 

may not be applicable in localised studies. A coarse resolution of 100m is well suited for studies 

at large scales but can present errors when representing localised assessments. Phinn et al. 

(2010) suggest that 100m is the top end of the appropriate scale for vegetation mapping and 

the limit for appropriate benthic assessments. The 10m resolution of Sentinel-2 improves upon 

the quality and volume of data to show the diversity of habitat types and will provide a better 

indication of the exact proportions without diluting habitats at large scale. This is evidenced as 

100m is too coarse to pick out sparse mangroves assemblages and thus would be missed in the 

Copernicus model.  

In highly diverse regions, these 100m pixels will present a mixed-pixel problem through 

containing multiple land use types. This results in pixels containing combined contributions of 

spectral information and is compounded through an object-based analysis as clusters of pixels 

are chosen as training data and underrepresents data on spatially heterogeneous classes 

(Stehman & Wickham, 2011). Through utilising a higher resolution dataset in Sentinel-2, the 

distinction between classes becomes clearer. A 10m resolution shows an improvement to the 

estimated coverage of each class (table 11) but could be further enhanced through VHR 

imagery. Wang et al. (2016) suggests a spectral unmixing approach should be used further 

improve the accuracy of Sentinel-2 classifications through a decomposition of pixel spectra 

into a set of endmembers with corresponding abundance. 
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Figure 58: Copernicus land cover classification for Belize. 

 

Benthic classifications exist as part of the CMP in Belize and have also employed a machine 

learning approach using Sentinel-2. Figure 59 shows the existing National Marine Habitat Map 

(NMHM) with a 58.7% accuracy. Several studies support similar accuracies for benthic 

mapping with comparable accuracies (58.2%; Poursanidis et al. 2019, 58.5%; Pottier et al., 

2019). An improvement to the accuracy of the benthic map can be seen through the RF model 

provided in this thesis (61.1%). These accuracies are low and can be associated with a highly 

fragmented seascape where multiple benthic types can exist within one Sentinel-2 pixel. Higher 

spatial resolution imagery should also reduce these uncertainties. 

Limitations of benthic mapping with current EO techniques were corroborated by the NMHM. 

The presence of the coastal aerosol band in Sentinel-2 is an advantage when downscaled to 

10m as this provides deeper penetration of the water column and allows more habitats to be 

identified (Poursanidis et al., 2019). The biggest differentiation to benthic endmembers is 
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observed at lower wavelengths so an ability to provide more spectral information covering this 

part of spectrum is advantageous. Through using only four visible spectral bands in their 

classification, the NMHM is limited in the ability to separate classes. The RF model improved 

the accuracy using seven bands to increase the separability of endmembers and capacity for 

distinction between classes. 

Despite representing a less diverse surface than the terrestrial classification, a reduced accuracy 

is observed for the marine model and is reflected by high levels of noise. The potential for 

misclassification extends from the endmembers observed in figure 41. These show a tight 

clustering of marine classes which demonstrate similar trends with minimal variation to their 

magnitude of reflectance. Distinctions between pixels become hard to distinguish without 

sufficient alterations in the magnitude of EM spectrum between classes. This is contrasted by 

the terrestrial classes which show high separability across spectral bands. Poor separability 

suggests that the clustering of marine classes is likely a result of reduced penetration capacity 

through the water column. The distinction between endmembers should be improved with an 

increased spectral resolution which may elucidate hidden patterns present within spectral bands 

of Sentinel-2. Hyperspectral sensors and drone surveys may provide a more suitable option if 

the highest levels of accuracy at local scales is desired. 

Endmembers may also be supplemented through incorporating more spectral bands. In this 

study, the NDVI index was used to enhance the distinction of vegetated classes and has 

contributed to an increased accuracy. Other indices should be investigated for their influence. 

Choubin et al. (2017) show the benefit of including indices such as LAI and NDWI for the 

calibration of ML models for forested or water classes, respectively. 
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Figure 59: Belize National Marine Habitat Map (NMHM) and accuracy assessment (CZMAI, 

2021). 

 

The producer accuracy observed in the RF benthic model range from 26.7% to 93.6% (table 

10). This broad range indicates a significant confusion between classes. Coral has a low 

producer accuracy of 63.3% and is often misclassified as seagrass. Inaccuracies in this class 

can be attributed to a high degree of spatial autocorrelation in training samples. Coral can only 

be seen in a narrow region of barrier reef which is hard to validate and often means samples 
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are tightly clustered. Data fusion provides a key solution to increase this distinction (Kulkarni 

and Rege, 2020). This should improve benthic mapping through a utilisation of supplementary 

data layers, such as bathymetry, which can provide additional parity for differentiation. Coral 

reefs occur in a distinct range of bathymetries and will differ from that of seagrass. An 

indication of depth will facilitate a contextualisation of the habitat. Fusion of optical and radar 

sources should also provide merit in mangrove identification due to the double bounce 

observed from these environments. This has led to classification accuracies of greater than 90% 

(Zheng and Takeuchi, 2020) although minimal research has utilised Sentinel-1 radar. 

Classifier results are highly sensitive to size of training data sets. The proportion of training 

data should be representative of the landscape and provide minimal spatial autocorrelation 

(Millard & Richardson, 2015). Through a utilisation of the Sentinel-2 time series, an extensive 

repository of training data is provided due to a regular image acquisition. Through exploiting 

more training samples, this model has provided an improved accuracy over studies with in-situ 

validation samples. This was achieved over a small subsample of the full time-series available.  

Training samples may also be improved through image pre-processing techniques including 

cropping the size of tile. Terrestrial and marine classifications were performed independently 

to limit invalid endmembers. This is especially useful in segmentation to provide specific 

training polygons and avoid confusion between similar land and water classes.  

Furthermore, identified areas of noise can be reduced through a consideration of object-based 

segmentation approaches. As the first stage in the classification workflow, the choice of 

segmentation algorithm can provide significantly contrasting outputs. Gao et al. (2011) show 

how the use of different algorithms can lead to the over-segmentation of an image. This can 

result in noise, especially if training samples are poor. Optimal classification should be 

provided using a combination of approaches based on the area characteristics. Homogenous 

areas of forest cover in Belize are well-suited to object-based classifiers (Kamal and Phinn, 

2011) but are less suited for areas of sparse seagrass. A hybrid-approach of pixel and object-

based classifications would be beneficial to map complex environments (Wang et al., 2016). 

An absence of in-situ data resulted in a reliance on user interpretation of the study site to 

produce classification training samples. As a result, the selection of high-quality training data 

was difficult and assumptions were made which may not reflect conditions on the ground as a 

result. A primary source of error in image classification extends from inadequate training data 

(Pal and Mather, 2005). Foody and Arora (1997) reinforce that the selection of high-quality 
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training data has a greater impact over model accuracy than the classification algorithm used. 

Ground control points over a small-scale sampling campaign could provide a useful and cost-

effective supplement to validate classification models. This is useful as many land cover types 

are hard to discern at the 10m resolution, especially without a prior contextual understanding 

of the area. Although, in the case of the NMHM, these have been shown to have minimal 

impact to accuracy and could be avoided to cut costs if required. 

The rate of land cover change is rapid and requires regular reassessment. Vegetation in 

Ambergris Caye has declined by 10.9% over the period from 2000 to 2017, while urban areas 

increased by 39% (Sweetman, et al., 2018). Such substantial land use change transforms the 

function of the coastal band. Satellite imagery facilitates numerous reassessments to 

compensate for these changes using a weekly acquisition of imagery. These rapid changes may 

suggest a relevance for the inclusion of a change detection product in the CVI, as opposed to a 

singular classification model, to determine the areas of the coast experiencing the fastest habitat 

loss. Although substantial change can be observed over terrestrial areas, these changes were 

not observed in marine reserves and suggests the success of MPAs as a management approach 

to limit degradation.  

Table 15 shows the differences in the estimated area covered by each class from the three 

models and highlights the disparities to the degree of protection estimated. The different 

resolutions and class distinctions of these studies will be a contributing factor towards this. The 

RF classification models produced in this thesis have provided an updated assessment of 

coastal habitat condition with a substantial accuracy. In the case of benthic assessments, the 

quality of models has improved upon those from existing studies. This product can be used 

within the CVI or independently to support policy development and supports the value of 

habitat protection in addition to providing assessments for development opportunities in the 

Blue Economy. 
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Table 15: Comparison between Random Forest classification of Sentinel-2 against existing 

terrestrial and benthic maps for Belize. 

 

9.1.2. Marine slope component 

Traganos et al. (2018) suggests the accuracy of SDB models should be in the range of +-3m 

and can be reduced to 1.5m through training data. The SDB models produced in this study meet 

this criterion up to the 10m contour; after which the IQR increases. However, these results do 

not meet the hydrographic standards (S-44 1b) for use in navigation as these require an 

accuracy of +-0.5m. Figure 45 illustrates a higher RMSE in deep water areas and indicates the 

underestimation of bathymetry here. Such areas should be masked from the final model to 

remove erroneous values. This approach is well suited for the sampling of coastal conditions 

within a kilometre of the shoreline as often these depths are shallower and will not exceed 5m. 

Depths of this magnitude provide lower uncertainties in SDB metrics. 

ENCs have been used to provide reference for the calibration and validation of SDB models. 

There is good agreement shown between shallow water pixels and existing chart coverage. 

However, these observations should be taken critically as charted isobaths are difficult to 

validate against since these prioritise the reduction of grounding risk and therefore are depicted 

to be shallower than the true depths. More accurate validation should be performed with raw 

survey data. Furthermore, these charts are outdated with 48% of the country without systematic 

Class 

Copernicus Global Land 

Service 

National Marine 

Habitat Map 

Random Forest Classification 

(Sentinel-2) 

Area (km2) % Area (km2) % Area (km2) % 

Urban 14.23 2.0 N/A 45.82 8.1 

Mangrove 23.59 3.3 N/A 131.25 23.2 

Mudflat 371.07 51.2 N/A 287.84 50.9 

Forest 296.90 40.9 N/A 68.10 12.0 

Water N/A 1,458.71 37.2 1,433.55 40.8 

Coral N/A 301.35 7.7 203.17 5.8 

Sand 

(algae) 
N/A 60.29 1.5 749.81 21.3 

Substrate N/A 523.99 13.3 589.76 16.8 

Seagrass N/A 1,572.51 40.2 537.96 15.3 



Uncertainties 

 

126 

 

survey data (figure 60). Charted coverage is not complete due to a limited ability to survey with 

echo sounders in shallow water; only the approach channel to Belize City and the southern 

inner channel are surveyed to modern standards (IHO, 2022). SDB models have allowed the 

first full coverage indication of bathymetry to be produced for the country. A robust, physics-

based indication for bathymetry can now be provided for the 90% of the coastal zone which is 

not currently represented. This EO-based approach provides merit for the use in increasing the 

percentage of surveyed coverage.  

Although, ENCs present limitations in their capacity for integration in SDB workflows, these 

represent consistent datasets which cover most of the globe. New models can be trained using 

ENCs with a consistent systematic bias to update outdated charts or supplement survey 

information in areas where this is absent.  

 

 

Figure 60: Percentage of existing bathymetric survey coverage for Belize (IHO, 2022).  

 

The uncertainty in deep water provides an indication for reliable cut off depth for light 

attenuation; although this is seen to occur above 15m and is significantly outside the range of 

values seen in coastal samples. Hence, these uncertainties have minimal impediment to 

vulnerability results. After the 15m contour, figure 45 demonstrates an under representation of 

depth after this point. Traganos et al. (2018) suggests a cut off depth from Sentinel-2 occurs at 

30.2m; almost double that seen in Belize. However, the observed attenuation of light is 

dependent on locality and environmental factors. The effect of turbidity, dissolved organic 

matter and clouds can all act to obscure the visibility of the water column. In the case of Belize, 
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suspended sediment plays a significant role. Through the application of the light attenuation 

curve and inherent optical properties (IOPs) of the water column, a Depth of Penetration (DoP) 

assessment can calculate the theoretical cut-off threshold after which the reflectance signal will 

become largely attributable to noise. This has been used as a supplementary method to SDB to 

provide validity as to whether the predicted depths fall within the feasible range based on the 

transmissibility of light in the specific IOP conditions present in each image (Louvart et al., 

2022). 

IOPs and clarity of the water column are closely linked to image quality. Figure 43 shows the 

high variability to transects and dependence on the quality of image used. Sentinel-2 provides 

the opportunity to exploit a large repository of images occurring every five days and increases 

the chance of acquiring images which reflect the best conditions. This is especially prevalent 

in areas limited by weather and hydrographic conditions. The diversity of conditions in Belize 

is shown in figure 61; cloud cover is a significant limiting factor in the regular acquisition of 

images and is often not absent. This can result in gaps to coverage if only one image is analysed.  

Limited studies have utilised multi-temporal satellite images in SDB. These models are 

disadvantaged due to the loss of data from clouds and sediment. This study has supported the 

work of Caballero and Stumpf (2020) who show how merging analysis from multiple images 

provides a robust approach for the elimination of outliers. The RMSE of SDB was reduced by 

12.4% through merging individual models. Sagawa et al. (2019) suggest the number of data 

points per pixel reduce missing or erroneous data. In this study, each pixel considers an average 

of seven data points and allows for erroneous results to be discarded. This is especially valuable 

for the highly variable range seen in deep water areas. The merge approach can also reduce 

changes to water column turbidity over the time-series and improves bathymetry by providing 

a considered assessment to the range of depths quantified. This is seen in the depth profiles for 

the northern lagoonal area. As such, the potential for application in both case 1 and case 2 

waters is demonstrated. 

Although uncertainty has been reduced through merging the time-series, errors are still present 

due to turbidity and are likely contributors to the high RMSE. Localised turbidity can be seen 

with sediment plumes observed at the mouth of Belize River and the lagoonal area behind 

Ambergris Caye. In these areas, it is a rarity that the seabed is not completely obscured. Areas 

of sustained sedimentation present shallower depth estimates than reality due to the obscured 
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seafloor and is prevalent in DTM to the west of the approach channel. More images should be 

used in the merge process to mitigate these anomalies. 

Sentinel-2 images were acquired during the dry season (occurring September to February) 

which does not coincide with the hurricane season. This suggests the method is limited in its 

assessment for the derivation of bathymetry as this is likely to change immediately after a storm 

event due to re-suspension. It will be difficult to assess bathymetry immediately after a storm 

event due to sediment in the water obscuring the seabed and an increased prevalence of clouds. 

In these circumstances active sensors should be used for the derivation of bathymetry; these 

include promising new methods of satellite lidar bathymetry (Schwarz et al., 2019). 

In order to transfer this approach to SBD globally, a consideration should be made as to the 

sensitivity to bottom habitat variability. Within the model inversion analysis, an endmember 

seabed reflectance model is included to characterise the natural reflectance observed by 

variations to benthic types. As SDB relies on the relationship between pixel brightness and 

estimated depth, variations to bottom types can influence the depth modelled (Hedley et al., 

2009). Input reflectance spectra will be different for climates around the world. In several 

localities in Belize, the bathymetry has been observed as deeper than validation chart data. 

These have occurred in areas where bottom constituents are darker, rocky areas and hence led 

to over-estimations of depth. Observations of this nature indicate their importance in SDB 

modelling and show a need for benthic characteristics to be considered on an individual site 

basis. 

Westley (2021) argues that the use of VHR imagery is beneficial in SDB assessments, however, 

model quality can be adversely affected due to the low signal to noise ratio. This increases the 

impact of anomalies such as ocean glint. Commercial VHR imagery is expensive and provides 

a relatively poor frequency of acquisition which is not suited for the regular and cheap 

monitoring solutions beneficial to coastal management authorities. Sentinel-2 has been 

presented as a viable alternative through the improved propagation of noise and uncertainties 

through merging multiple models.  
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Figure 61: Quality of Sentinel-2 imagery. Note the presence of cloud cover, glint, suspended sediment and sediment movement. 
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An open-source archive of imagery presents a regular approach for time and cost-efficient 

seafloor mapping. Although not up to S-44 charting standards, this method is accurate and 

provides a valuable approach to indicate bathymetry in areas devoid of previous survey 

information. These models can be used to determine precise geographical regions which 

require further surveying at a higher vertical accuracy. The facilitation of more precise survey 

designs from preliminary SDB models will significantly reduce the cost required for surveys 

(Chenier et al., 2018). Standardizing this approach will allow for monitoring of seasonal or 

decadal changes across localised or global scales to provide quantitative indicators for use in 

effective management. It is preferable to derive this parameter directly over secondary sources, 

such as the GEBCO Seabed 2030 dataset, as these open access data archives are limited by a 

100m resolution. This is well suited to unaltering deep sea regions but not sufficient to capture 

the complex nearshore bathymetry and will become dated in areas experiencing changes to 

their seafloor. 

 

9.1.3. Terrestrial slope component 

ASTER represents a widely used DEM with a robust accuracy providing better results than 

previous SRTM studies. However, Zhao et al. (2011) show the ASTER DEM demonstrates a 

negative bias for flat regions. This bias should be assumed negligible as the vulnerability 

assessment is looking at relative risk along the coast. Hence, the effect of which will be 

uniformly experienced. In coastlines with varied topographies, it is suggested to improve 

accuracy through the addition of the mean difference between SRTM3 and ASTER (Pakoksung 

and Takagi, 2021).  

The elevation derived shows Belize to have a flat and low-lying topography. An infrequence 

to variability in conditions along coastline suggests that terrestrial elevation does not hold a 

vast contribution over the relative vulnerability as most areas will be affected to the same 

degree. The difference is the distance over which the low topography extends inland. This 

factor is not adequately covered by 1km coastal sample grids – despite these sampling 

strategies being a popular choice in studies seeking to evaluate flooding. Topography should 

be considered alongside offshore coastal slope in Belize as this is shown to vary significantly 

along the coast. 

Although all areas can be seen to be low-lying, the impacts of such are not proportionately 

distributed. Anthropogenic activity acts to compound these flooding events by increasing 
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impermeable surfaces. This further supports the need for multivariate consideration. Tourism 

provides the central industry of Belize with 94% of resorts found within elevations of less than 

five metres (CZMAI, 2014). Analysis of land use can highlight areas of significant 

development to contextualise disparities to elevation risk. Areas of lower elevation are often 

coincident with areas of mudflats and mangroves identified in the RF classification. Cissell et 

al. (2021) suggest mangroves are often present in low lying areas and are regularly inundated. 

This multi-faceted nature of vulnerability demonstrates the importance of an integrated 

approach. 

 

9.1.4. Wave climatology component 

Systematic errors in WAVERYS data are well characterised in literature, including the under-

representation of SWH (Timmermans et al., 2020). This analysis will focus on the pre-

processing and data aggregation methods in extracting meaningful trends from the WAVERYS 

data used. It is important not to omit wave data from vulnerability assessments due to their 

ability to influence inundation. Hence, the limitations of the data must be fully established. 

The WAVERYS model provides data on global wave climate and is well suited for analysis of 

patterns at a global scale but this resolution severely impedes the assessment of wave climate 

at regional scales. Data is provided in the global projection system UTM WGS 1984 and 

requires reprojection for integration with local datasets. Inconsistencies in the CRS of input 

layers will introduce bias in model outputs (Cao, 2017). The process of reprojection will always 

cause distortion at local scales due to the imposition of a 3D spheroid on a 2D plane. 

Moreover, the coarse spatial scale of 20km presents a high variability in conditions within 

pixels. Data coverage does not extend to the coastline and thus the narrow shelf around the 

coastline is not adequately characterised. This compounds an underestimation of wave climate 

and is exacerbated by interference in altimeter readings from the disparty between the 

reflectivity of land and water. Resampling of data was required to provide an indication of 

conditions along the coast and will not accurately reflect true conditions in these areas. 

Figure 50 shows good ageement with wave buoy measurements but this is valid for deep water 

conditons and not in the coastal zone. To refine the use of satellite derived wave data in 

localised studies, region specific models should be implemented; although the availibility of 

which are sparse. Recent techniques have been proposed for deriving wave heights directly 
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from SAR imagery and would provide the most accurate and up-to-date localised wave 

assessments (Pramudya et al., 2019). 

Finally, a temporal resolution of 3 hours is the highest resolution of all the parameters 

evaluated; this results in large volumes of data. Aggregation techniques have been critical to 

subsample these datapoints and establish trends at a relevant resolution. 

 

9.1.5. Wind exposure component 

Northern areas are the most vulnerable to high winds with the most exposed regions occurring 

above 18.1 degrees of latitude in the CVI model. Despite only demonstrating a difference of 

one Saffir-Simpson class, there are distinct differences to the degree of impact between classes. 

Devastating damage, including uprooted trees and roof tiling removed, occurs for class three. 

While catastrophic damage – with homes sustaining severe damage, most trees uprooted and 

widespread power outage – occurring for class four. Table 16 shows the disparities between 

surge extents for each hurricane category. A category four hurricane is likely to provide a 25% 

greater storm surge than category three and ability to flood an increased elevation inland. This 

would suggest Ambergris Caye is substantially more vulnerable to hurricane-induced flooding 

than the rest of the coast. A category three hurricane could have capacity inundate the whole 

of San Pedro to the top level of single storey buildings. 

 

Table 16: Hurricane storm surge extent for Belize City (NEMO, 2003). 

Hurricane Category Storm Surge (metres) 

3 4.1 

4 5.5 

5 7.4 

 

Hurricane Earl struck Belize City in 2016. By the time Earl made landfall on August 4 2016, 

the depression had been degraded to a category one – the class demonstrating the lowest wind 

speeds. Despite this, Earl produced the most significant hurricane damage in ten years. 

Turneffe Atoll experienced surge heights of up to 1.8 metres which also impacted the northern 

areas of Belize City and Ladyville. In the north, lower surges of 1.22m were experienced 

(NEMO, 2016). These observations suggest that the incidence of hurricane events are not 
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proportional to the severity of impact. The UNEP dataset will provide merit to illustrate the 

disproportionate effects of windspeeds along coastline. 

This is supported by observations by Markert and Griffin (2014) who suggest east coast of the 

Yucatán Peninsula – primarily Belize – is at the greatest risk of experiencing hurricane hazards 

(figure 62). These areas occur in the north of the peninsula and coincide with the strongest 

observed hurricane wind speeds. 

 

 

Figure 62: Distribution of wind speed and storm surge flooding impact (Markert & Griffin, 

2014). 

 

The impacts of Hurricane Earl (2016) suggest the Saffir-Simpson scale is a poor metric for the 

distinction of vulnerability. This metric quantifies the magnitude of wind speed and assigns 

this to a discrete class based on the properties observed. Therefore, the specific windspeeds are 

not retained and an indication of the broad class range of values is given. These classes have 

finite boundaries. Hence, consideration of values at the boundary between classes can result in 

a significant jump in perceived risk due to a windspeed difference of one mile an hour. The 

jump in category will show an increased vulnerability when the intensity is not excessively 

dissimilar. Without the provision of exact wind speeds, it is difficult to differentiate areas of 

coast within the same class. This covers most of the study area. A poor distribution of classes 

in Belize – only across two groups – presents large incremental distances with the ability for a 

high degree of variation within each category. 
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Uncertainties are also presented by the generalisation of trends at the coarse resolution of the 

dataset. The spatial resolution of the UNEP dataset does not provide sufficient clarity to discern 

the true intensities of wind speed along the coast. The localities induced by meso-climates will 

not be captured and may be impacted through the effect of complex topography (particularly 

prevalent from Maya Mountains).  

On the other hand, an incorporation of windspeed analysis at a coarse scale increased the 

computational efficiency of clustering. The grouping of five distinct classes in the Saffir-

Simpson scale makes clustering simple as these are naturally reflective of the five vulnerability 

groups required for the CVI. A trade-off has been made between a sufficient resolution to 

discern changes accurately and processing time through suggestions from Phinn et al. (2010). 

Moreover, the highest magnitude windspeeds are saturated. Despite the actual maxima, a 

hurricane will be classed category five if it exceeds 156mph. This applied to thirty-seven 

hurricanes between 1851 and 2022 (with windspeeds up to 190mph recorded). This broad 

categorisation undermines the impact of the most severe events. More rigorous validation of 

this dataset would be required with in-situ wind gauges. Through the extrapolation of 

directional data from local weather stations, the variation of frequent exposure to anomalous 

wind speed by direction could be determined. 

 

 

Figure 63: Tracks of historical hurricane events. 
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Furthermore, average hurricane wind speeds seek to compensate for a lack of sufficient local 

wind data to simulate these events at the coasts. Reanalysis models help to fill these gaps by 

analysing events over a two-hundred-year period. The average metric used in this dataset, 

however, provides an equal weight for each hurricane event and does not consider the incident 

direction. These will likely change with each pass. Through ignoring directionality in a modal 

model, the disparity of impact severity from different trajectories is not represented. Figure 63 

shows that more hurricanes are impacting the south – although, the Saffir-Simpson scale 

suggests the severity of each is lower. With more incident tracks occurring in the south, there 

is more influence from erroneous events which can skew the average.  

As a result, the consideration of the frequency and intensity of hurricane events should also be 

made. Through the effects of Hurricane Earl, it can be seen that category four winds are not 

needed for a damaging storm surge. Repetitive wind damage at lower exposures may provide 

just as significant influence on vulnerability as the magnitude of the event itself. For example, 

forests will adapt to disturbance through changes to species composition – this is a long-term 

recovery and varies greatly between species. Continual inundation will impede this process. In 

future studies, directional data should be extrapolated to add a weight to each event based on 

the direction and frequency at which strong winds are recorded. 
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9.2. Uncertainties in the approach to modelling 

9.2.1. Clustering 

Individual errors in each method of component derivation are compounded when aggregated 

into the CVI. For example, the classification accuracies of 70.4% and 61.1% and the RMSE of 

4.88m in SDB measurements demonstrate errors to the derivation of conditions on the ground. 

These uncertainties will propagate to produce a conflated cumulative error for vulnerability in 

an area. Boumboulis et al. (2021) suggest methods for mitigating these satellite inaccuracies in 

coastal studies through the synergy of high-resolution satellite imagery and aerial photos. This 

approach has provided accurate results. One aerial flight will save six days of field survey 

(Mumby et al., 2004) – this still presents a considerable cost saving approach in addition to 

satellite imagery. 

The spread of data values can influence the degree of effective clustering. In the case of the 

DEM parameter, very little variation is observed between cluster one and two and for groups 

three to four in wave climate. This implies a poor separation of classes and a degree of overlap 

between these categories. The number of classes have been dictated by the CVI method but 

five groups may not represent an appropriate number of classes for every dataset. Some 

parameters have a small variation to data values and are not well separated so the imposition 

of five groups in this range may relate to little actionable differences to vulnerability. It is 

important to ensure these subtle variations are adequately characterised as Lionello et al. (2021) 

show that a difference in 0.5 metres elevation can impede the inundation of small magnitude 

surges. Observations of this nature are especially useful in areas with uniformly low 

topography as there is a lack of data objectively dividing the range of elevation into five 

vulnerability intervals (Sekovski et al. 2020).  

Furthermore, Rathore et al. (2018) shows that suboptimal results will be produced if the number 

of clusters defined does not sufficiently split the group. A much larger spread of values is 

observed for SDB than the DEM parameter; these are shown to be a highly skewed distribution 

due to the substantial jump in values at higher vulnerability groups. Rueda et al. (2017) suggests 

this should be compensated for through a box-cox transformation to normalise the data set – 

this will give all variables an equal weight despite their variation. However, the deterministic 

classification produced remains able to demonstrate the variability to parameters influencing 

storm surge risk at large scales. 
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In some cases, the maxima of cluster centroids occur at values significantly less than the 

maxima recorded in satellite-derived parameter maps. For example, the maximum SDB cluster 

centroid occurs at 7.384m whereas the maximum recorded SDB was 28.1m. This suggests that 

the coastal sample is too small to sufficiently capture the offshore typography or that these 

deep-water pixels have been saturated by shallower water across this sample size. This is 

especially prudent to areas of the coast with steep shelfs near the shore. 

The use of discrete classes for the geomorphology parameter will also present another source 

of bias. This is because clustering is based on the proportions of classes rather than continuous 

values. Through assigning a singular vulnerability score based on predominant land cover types 

will undermine the actual diversity present. This will conversely impede the assessment of 

coarse datasets, such as wave climate, due to the oversimplification of conditions. Therefore, 

higher resolution datasets are going to have more significance in determining the spread of 

variability along the coast in the final model. Errors in the characterisation of these parameters 

would result in substanital inaccuracies in the CVI model. 

Furthermore, satellite data is limited by the capacity to describe observable spatial information. 

Earth Observation cannot directly provide value for the cultural or socioeconomic 

considerations pertinent to vulnerability. These are also not considered within the CVI 

framework. Impacts of this nature include the number of people affected or economic costs to 

damaged infrastructure. Satellites can use proxies such as housing density to provide 

indications for these issues but are not measured directly. This is a major constraint to CVI 

studies (Fernández-Macho et al. 2020).  

Sustainable development will benefit from a detailed analysis of the degree of vulnerability 

with respect to a range of anthropogenic activities taking place in these areas. These limitations 

should be considered through incorporating additional indices which are able to represent 

complexity of the coastal system with a socio-economic focus. These should be utilised through 

the modification of the existing CVI equation to encompass parameters representing 

socioeconomics (Özyurt & Ergin, 2010). Understanding this will help to structure this research 

in the context of human resilience; a factor of interest to ICZM. 

In the individual component maps, wave height can be seen to be greatest in Belize District 

North. As this is an area to the west of shelter provided by Ambergris Caye, such an observation 

seems illogical and reinforces the inconsistencies with sampling wave values from offshore at 

a twenty-kilometre resolution. The wave climate associated for this region will be unaffected 
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by these changes to coastal morphology. Directly adjacent to this region is the lowest wave 

climate cluster. This rapid gradient change suggests limitations to the clustering of waves. This 

parameter presents the most dimensional class with eighteen dimensions of feature space due 

to the sampled time series. A high dimensionality is indicative of the Hughes Phenomenon 

(Hughes, 1968). Clustering accuracy has been reduced due to an increased complexity 

providing a reduced separability of points. To reduce the influence of this phenomenon, the 

application of data normalisation should be applied prior to KMeans. Self Organising Maps 

(SOMs) have been suggested as an effective approach to extract patterns of high-dimensional 

data and identify correspondence between parameter values (Calil et al., 2017). 

 

9.2.2. Scale 

The Modifiable Areal Unit Problem (MAUP) represents a biasing effect occurring from the 

imposition of arbitrary units for spatial sampling of continuous geographic phenomena. Each 

continuous parameter has been generalised through the imposition of pixels or mapping units 

from satellite data. This aggregation of spatial patterns will produce conflicting results 

depending on the scale at which areal units are analysed (Dark & Bram, 2007). 

Moreover, the division of coastlines into grids is a regular assessment approach to provide 

optimal results for vulnerability mapping (Cui et al., 2018). For example, Koroglu et al. (2019) 

used units of 1km grids, Abuodha and Woodroffe (2010) used 1.5km grids and McLaughlin 

and Cooper provide the CVI over 500m samples. Through the grouping of data by artificial 

boundaries, each study has yielded significant analytical differences.  

Ecological zones are much larger than the grids sampled in this study and likely modulate 

patterns due to processes acting at different scales. The ability to identify significant differences 

in environmental conditions is a problem of the working scale. Changing the Euclidean length 

of samples will omit detail for coasts which exhibit irregular or highly variable shapes 

(Kovaleva et al., 2022). In this study, a 1km sample was kept as the most appropriate scale to 

provide scalability for this approach and mitigate the irregular fractionation of the coast. 

However, this sample only considers an area of the coastal zone covering the closest 1km to 

the shoreline. This fails to capture the significant processes which occur in the offshore region 

and results in generalisation of the coastal zone. Juanes et al. (2016) suggests the measurement 

of variables up to 5km offshore demonstrate appropriate coastal conditions. The sampling of 

coastline segments could be modified to make best use of the 10m resolution of Sentinel-2 
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through a transect based approach to aggregation. This would encompass a 5km transect of 

pixel rows extending landward and seaward of a point on the coast to characterise the range of 

conditions present in the coastal zone. This approach is currently limited by the poor spatial 

resolution of wave climate datasets used in this study. 

These observations highlight the disparities between the InVEST and KMeans models due to 

different resolutions of the studies. In the context of vulnerability studies, an insufficient scale 

derives generalisations which leads to inadequate or unnecessary responses detrimental to the 

ecosystem. Ju et al. (2021) suggest using a semi-variogram modelling approach to determine 

the optimal scales for interpolation of regional patterns as there are no single scales suitable for 

all requirements. Scale will provide a reflection of management priorities and can impact the 

influence of individual variables depending on the magnitude employed. This is limited by the 

sample length of the coastline and processing capacity. 

Scale and resolution are intrinsically linked. The CVI provides a useful first pass at national 

scale assessments where uncertainty will result from the low resolution of spatiotemporal data. 

Datasets with a coarse resolution, such as the globally averaged wave climate, will not provide 

enough clarity to elucidate changes at local scales. A priority should be the downscaling of 

global climate models and increasing the modelling accuracy of SWH in coastal regions. This 

will be prudent for more-rigorous localised assessments to be performed in areas identified as 

being more vulnerable than average by the CVI – especially if there is a potential high risk to 

communities (Lopez et al., 2016).  

 

9.2.3. The CVI approach 

Limitations with the broader CVI method have been well outlined (Roukounis & Tsihrintzis, 

2022). The CVI represents a synthesis of constituents within dynamic and complex coastal 

interactions. Limiting the inclusion of only geotechnical variables within a geometric mean 

provides an excessive generalisation of these processes. Although this study has quantified 

individual processes, the interaction between which has not been demonstrated. This acts to 

artificially deflate the degree of relative vulnerability in an area. These are ancillary at the 

regional scales used in this thesis but will have significant influence for localised studies. 
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Parameters are afforded equivalent weighting irrespective of their variation or parity for impact 

to vulnerability. In the case of this study, the model is biased towards the parameters with the 

finest spatial resolution due to their higher degree of variability across coastal grids. 

Increasingly, a weighted approach to CVI is being implemented (Boumboulis et al., 2021). The 

significance of each variable’s contribution to vulnerability should be reflected using the 

Analytical Hierarchy Process (AHP) and weighted accordingly. The focus of the model should 

be rigidly defined as conflicting focal points will influence the weighting of parameters and the 

thresholds of vulnerability groups in each parameter.  

Despite the introduction of new objective derivation techniques, qualitative measurements 

persevere in the model. This is primarily demonstrated by the geomorphology variables. 

Qualitative assessments limit the ability to quantify the role of an individual land cover type in 

modulating coastal hazards. Therefore, the assumption has been made that segments which are 

charactered by the same geomorphic clusters will behave in a similar way. This may not always 

be the case. Analysing on the proportion of the coast consisting of a particular habitat ignores 

the essential consideration of the degree of protection provided by healthy, functional habitats.  

The volume, density, quality and fragmentation of the habitats will also provide capacity for 

inundation protection and are not considered in this study. Degraded ecosystems are likely to 

provide reduced ecosystem services to the efficiency assumed in the model. This includes a 

reduced capacity for modulating wave run-up which alters vulnerability and is especially 

prevalent for Belize. Cherrington et al., (2020) have shown how the deterioration of mangrove 

habitats impedes their capacity to prevent marine ingress. 

There is a lack of observational data for the assessment of current storm surge hazards. A 

deficiency in observations limits the calibration of the model. Jevrejeva et al. (2020) suggest a 

relationship between model performance and the extent of observation gaps. Although limited 

for calibration, this CVI model helps to compensate for these gaps through an automated 

approach to parameter derivation using satellite images to provide continuous records quickly 

and efficiently. In addition, multiple images from the Sentinel-2 time-series were utilised in 

parameter derivation. This has represented the modal conditions present in Belize as opposed 

to the direct response to an individual event. This could be done through using specific images 

before or after and event to qualify change. 
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9.2.4. Component assumptions 

The selection of parameters used to populate the index is subjective and the way in which 

parameters have been considered can produce conflicting results (Koroglu et al., 2019). Balica 

et al. (2012) posits that fewer variables are less reliable than more thorough inclusions to the 

CVI. This is because large variations in a single parameter are likely to produce significant 

influence on the final calculation. Moreover, Del Río and Gracia, (2009) suggest an approach 

with fewer variables will reduce redundancy if closely related parameters reflecting equivalent 

processes. In this study, only seven parameters were used based on those identified by Gornitz 

(1994). The number of parameters were limited due to the aim of providing an index which 

had a wide application and performed in conditions which might be different and should be 

updated easily without extensive survey campaigns (Villa and McLeod, 2002).  

Although the number of parameters has been limited, the consideration of how each component 

has been perceived to modify vulnerability remains an area of potential uncertainty due to the 

subjective nature of the analysis. Micro-tidal forces in Belize, for example, have been deemed 

to present a high vulnerability due to the sea level always residing close to the high tide line 

(Thieler and Hammler-Klose, 2000). This is opposed to the traditional low vulnerability 

assigned to these areas by Gornitz. Pendleton (2004) suggests this state of tide means flooding 

is more likely to occur during storm surge. Since this study has a focus on vulnerability against 

storm surges in particular, the tidal forces have been considered as high-risk. 

Habitats provide essential protection from coastal flooding; the degree of which is dependent 

on the target of the vulnerability assessment. Mangroves and coral reefs have been determined 

to provide the most protection from hurricanes. This contrasts with the original Gornitz 

assessment. This decision was made as De Dominicis et al. (2023) suggests that mangrove 

forests placed in front of coastal protection structures reduce the risk of overtopping and wave 

impact allowing for lower construction costs. However, these areas are delicate ecosystems 

and can be deemed to be the most susceptible to damage and degradation. A small alteration to 

their conditions or a significantly strong storm event can destroy the functional habitat – even 

if the ingress of water inland is reduced in the process. As the focal point of this study is the 

vulnerability to coastal flooding and not ecosystem health, these areas have been deemed to be 

the least vulnerable. 
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The comprehension of coastal slope has also deviated from the orinial comprehension. Gornitz 

suggests that shallower gradients present a higher degree of risk. In this study, the steeper 

gradients associated with the offshore coastal shelf have been deemed to provide the highest 

degree of vulnerability. Adams et al. (2002) show how the process of wave shoaling on steep 

continental shelfs can result in an increase to wave amplitude as water propagates from deep 

to shallow water. This wave height is moderated significantly by tide and surge level. 

Shallower areas have been associated with the dissipation of wave energy due to bottom drag 

and wave breaking. As a result, these areas have been presented as a lower vulnerability. 

Furthermore, Gornitz suggests that elevations lower than five metres are at a very high risk of 

flooding. This represents a significant proportion of the coastline. As this is the minimum 

threshold in Gornitz study, the entire coastline of Belize is characterised as the highest risk 

from elevation and does not help to identify areas which may be disproportionately susceptible. 

Although the terrestrial elevation is low, variations to topography are still present along the 

coastline. Therefore, there is a requirement to subset the highly vulnerable (<5m) vulnerability 

threshold defined by Gornitz to provide specific and actionable groups. Although these will 

vary across small scales, topographic changes will still present significant disparities. As a 

result, the consideration of actionable topography classes in the CVI assessment are required 

and are facilitated by KMeans. 
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10. Analysis of vulnerable areas 

Vulnerable hotspots have been identified in the KMeans CVI model and the distribution of 

these areas has been discussed in the following section. This analysis aims to provide 

justification for the observed distribution through a contextualisation of results with wider 

coastal practises and provides the foundations for identifying issues or useful management 

practices. 

Marine Protected Areas (MPAs) are shown to be coincident with areas of low vulnerability, 

including the Hol Chan Marine Reserve. Protecting marine habitats can enhance positive 

feedback to the wider coastal zone through provision of services including the protection of 

critical habitats and preservation of biodiversity which restricts the transmission of forcing 

factors. MPAs are vulnerable to anthropogenic exploitation along the coastline and 

demonstrate the connected nature of the coastal system (Cicin-Sain & Belfiore, 2005). The 

correlation between MPA location and low CVI values suggests the protection of coastal areas 

should be integrated into management strategies over large areas and embedded within 

integrated coastal management (ICM) strategies. Pressure to develop protection for more 

vulnerable areas of the coast could jeopardise productivity of MPAs and threaten the protective 

value they provide. Therefore, the linkages between MPAs and the extended coastal zone 

should be maintained and enhanced with institutional policies. It is essential for effective ICZM 

to incorporate the coordination of polices and strategies to develop productive relationships 

with those that have a stake in the conservation (Maguire & Fletcher, 2012). 

Murray (2021) suggests an interdependence between sustainable coastal management and 

tourism in Belize leading to a conflict of management priorities. The Hol Chan Marine Reserve 

has become self-sustaining due to the implementation of a decentralised management approach 

funded entirely through tourism visitor fees. Paradoxical agendas exist between the 

maintenance of coastal protection and exploitation of tourism with the MAR representing the 

only UNESCO site in Belize so there is pressure to ensure the region retains prestige to tourists 

(Meskell, 2013). Tourism is the primary contributor to Belizean economic development and 

hence a focal point for the government (Diedrich, 2007). As a result, this can facilitate political 

support through pressure to increase the protection of natural areas and support the revenue 

accrued through tourism. 
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Moreover, an estimated 60% of tourists in Belize will visit Ambergris Caye. San Pedro has the 

highest concentration of visitor accommodation in the country with 75-80% of land purchased 

by foreign investors for development (Young, 2008). This region demonstrates the coincidence 

of severe vulnerability with high tourist concentrations. This would suggest an increased 

precedence for focused management in San Pedro due to the propensity for significant damage 

to property and livelihoods through the impact to the wider tourist economy. Scherer et al. 

(2014) suggest the prioritisation of coastal management should be based on the ability to solve 

socioeconomic problems. This is demonstrated by the significant international investment to 

these areas. A fine line must be struck, however, as a lack of regulation to control tourism can 

have adverse effects on the coastal zone in the long term. Increased development can modify 

land use and lead to the disruption of wider ecosystem integrity. Attention must be paid to 

enforcement and protection of natural resources in coastal management to ensure sustainability 

(Murray, 2021). 

A focus on tourist areas must not come at the neglect of other areas of the coast. Caye Caulker 

is one of the offshore cayes which demonstrates another region of severe vulnerability due to 

geographic factors. This assessment fails to provide a consideration of social parameters which 

may act to amplify this, however. These regions are independent and self-governed islands 

which limit the control of tourism and discourage foreign investment. A balance between 

compatibility of local ideals and income diversification are inherent to the successful 

development of Caye Caulker. Kapucu et al. (2014) argue that resilience is high in rural regions 

as the maintenance of sociocultural institutions and strong community networks provide 

support in times of crisis. Autonomy from exploitative economies retains the control of local 

communities on resource production and protection and ensures these are fairly distributed 

across the community. This enhances the capacity for disaster management. 

Bruneau et al. (2003) suggests that resilience represents the sustainability of resources through 

availability of alternatives. In this context, the vulnerability of rural communities is reduced as 

these areas have a scarcity of critical infrastructure and consistently located in highly 

vulnerable areas. Geographical fragmentation leads to disconnection with mainland 

infrastructure and access to resources is lost rapidly in systemic pressures which constrains the 

ability to adapt. This disproportionately impacts rural areas. Therefore, infrastructural facilities 

(such as increased transport networks) are an effective management strategy for these areas 

(Dasgupta & Shaw, 2017). 
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The CVI values in Caye Caulker are 48 compared with 42 in San Pedro. In rural areas, the 

assistance awarded per resident is often lower than that of urban areas (Seong et al., 2021) and 

enhances the inequality between these two regions. This is because urban areas often possess 

the allocation of more profitable resources and provides a higher management priority. The 

preservation of resources should not come at the expense of rural areas. Critical issues effecting 

each area should be considered alongside the intrinsic vulnerability to assist with careful 

prioritisation of resources to facilitate protection of people and resources (Armenio & Mossa, 

2020). Resilience to natural hazards should be improved through enhancing the partnerships 

between urban and rural communities to aid in resource distribution in rural settings. 

Management authorities should consider the effect of socially disadvantaged communities and 

ensure strategies are accommodating of their needs. An inclusion of socio-economic variables 

to the CVI can incite cultural bias as these are difficult to quantify and often reflect the most 

developed areas (McLaughlin & Cooper, 2010). Therefore, these must be carefully chosen to 

characterise these discrepancies. 

In Belize City, the most vulnerable segment has been shown as Sir Barry Bowen Municipal 

Airport. This presents an area of critical infrastructure and is highly important for transport 

links. Damage to critical transport hubs can directly impede the social and economic recovery 

of the region in a disaster (Rodrigue, 2020). Airports often provide centralised hubs for relief 

supplies including the delivery of food, medical and rescue services. Damage to infrastructure 

will result in indirect impacts including the impediment of supply chains and limits the 

interdependency with other nations. This can damage both the local economy and the ability to 

recover. This area provides a critical link to the wider area and hence is disproportionately 

vulnerable (Colon et al., 2021). Enhancing the resilience of critical infrastructure in severe 

vulnerability classes should be prioritised to ensure the capacity to restore services is rapid to 

cope with natural disasters. 

Impacts from climate change have not been a part of the scope for this study, however, it is 

important to consider the additional threats these pose to the coastal zone (IPCC, 2012). These 

will include an increase to the frequency of high-intensity storms with rising sea-levels which 

provide more severe inundation risks for communities. These results provide a useful approach 

for monitoring of changes regularly to adapt to recurrent flooding events and mitigate the 

impacts through the avoidance of overwhelming critical infrastructure. 
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11. Supporting policy: a use in Integrated Coastal Zone 

Management (ICZM)? 

Integrated Coastal Zone Management (ICZM) represents a governing framework to facilitate 

the development and management of coastal areas through an encorporation with 

environmental priorities and stakeholder participation. This mitigates conflicts and detrimental 

impediments to environmental resources. 

Verutes (2016) posits that the development of an ICZM strategy in Belize has been difficult to 

achieve due to the absence of systematic approaches to coastal planning. The responsibilty of 

managing the coastal region is held by the Coastal Zone Management Authority and Institute 

(CZMAI). Table 17 demonstrates key stakeholder considerations in Belize as outlined by 

CHARIM (2016). Stakeholder analysis shows that there is use for mapping vulnerability in 

nationalised and localised planning, emergency management and commercial concerns. 

Through an integration of scientific work, policy and stakeholder engagement, constructive 

outcomes can be achieved for each element of the management process.  

These stakeholders will develop strategies underpinned by geospatial information to facilitate 

the implementation of individual coastal zone agendas. Cartographic data at the relevant scale 

will provide context on the location of resources which contribute to reduced vulnerability and 

neccesary regions in need of planning support. There is a requirement for a centralised 

approach to mapping that locates spatial events with precision to assess where potential 

conflicts may occur. This will alleviate conflicting priorities between sectors analysing at 

different scales. In order to be effective in governance, these assessments must present an 

adequate degree of confidence resulting from high quality evidence (Azueta et al., 2020). The 

existing InVEST model is limited by the quality and scarcity of input data. 

The current ICZM plan for Belize suggests this research is progressing but is ill-defined and 

not centralised (Arkema & Ruckelshaus, 2017). To be effective at national level decision 

making, this requires an integrated approach. The vulnerability model in this study can generate 

knowledge to contribute towards considerations for multi criteria decision making and provide 

significant parity to support sustainable development and risk mitigation. CZMAI (2016) have 

outlined objectives to achieve this, including: promoting sustainable use of resources, 

integrated development and adapting to climate change. 
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Table 17: Key stakeholders and relevant management issues in Belize. 

 

 

These objectives should be built upon the framework from Rosenthal et al. (figure 64, 2014). 

An emphasis should be placed on sustainable planning and requires an ongoing process of 

iteration at appropriate scales to ensure data is pertinent to decisions; especially in areas of high 

risk. These must also be transparent to stakeholders. Vulnerability models act to support 

building capacity in phase two and typically encompass a coarse analysis to understand current 

distributions. This can aid in the identification of data gaps or areas exhibiting strong risk for 

further investigation or monitoring and can be important to determine a baseline condition from 

which to assess impacts of storm scenerios. However, often this does not occur due to a dearth 

of data with insufficient timelines and budget restraints to fully characterise these. The KMeans 

CVI model can support this through the production of tailored reports at national and planning 

regional scales which can be regularly updated at a low expense (Verutes, 2016). Such a regular 

monitoring approach should be valuable to evaluate the impact seen in response to management 

strategies. 
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Figure 64: Iterative process for the development of management strategies (Rosenthal et al., 

2014). 

 

The economy of Belize has a dependence on environmental services present in the coastal zone 

which results in paradoxical agendas between stakeholders. With tourism the fastest 

developing industry, the dependence on the revenue generated from this grows and puts 

pressure on the coastal zone. This is manifested through impacts including increased 

development and housing demand as Belizeans migrate to coastal areas. Pressure to retain 

prestige to tourists results in a salient divide as politicians exert pressure for wider 

constitutional agendas which may be detrimental to the longeivity of ecosystems (Meskell, 

2013). The trevails assoicated with vulnerability can be seen as symptomatic of wider issues 

and discourage investment from private entities (Ablerts & Hazen, 2010). Substantial 

challenges can propogate from a lack of political will and a disproportionate prioritsation of 

economic development. 

A comprehension of the distribution to vulnerability provides value in the designation of the 

magnitude for which services are provided by habitats. This can be influenced by the 

distribution of anthropogenic activities which alter ecosystem functions. New developments 

should utilise vulnerability assessments as a tool for determining the appropriateness of an area 

for development to increase economic benefits from the coastal zone. For example, 

development may require the clearing of mangroves or dredging of seagrass beds which 

exposes the area to increased wave action. This should be supported by strong regulation.  

The role of ICZM ensures the protection of functional habitats through the consideration of the 

resources required and the proportion of a population which may benefit from development. 

Shoreline Management Plans (SMPs) are a technique employed to facilitate the effective use 

of coastal resources and are dependent on access to relevant data. In the design of SMPs, 

specific areas which present crucial gain for the national economy and retain a high risk to 
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storm surge events status could be prioritised to mitigate the degradation of the most vulnerable 

tourist hotspots (Brooks & Adger, 2005). Climate change will continue to increase the 

complexity of management with increased rates of SLR.  

SMPs should not only consider economic analysis for the benefits of ecosystem services to 

development but also non-monetary values such as vulnerability (Spalding et al., 2014). The 

KMeans CVI provides value to support SMPs through a holistic consideration of the cascading 

impacts to coastlines. Through assessing satellite derived maps prior to clustering, these can 

show which areas have functional habitats that are actively contributing towards a lower 

vulnerability. This is evident with the identification of mangrove areas in the classifications 

owing to low vulnerability contributions in the final model. This is important for monitoring to 

avoid the destruction of functional habitats. KMeans provides a rigorous approach which is 

standardised and repeatable. As a result, it can be simply integrated to World Heritage 

processes (such as the IUCN State of Conservation Reports) and provides transparent 

assessments over time to assess trends. This data will be useful for a rapidly changing climate 

and will help make arguments for maintaing and managing coastal ecosystems.  

Information on the distribution of most vulnerable areas is of crucial importance to 

management. Nguyen et al. (2016) show that the segmentation of coastal grids based on 

vulnerability is beneficial for the determination of high priority areas for resilience 

enhancement. Coastal managers can utilise this tool to better characterise vulnerability and 

define levels of risk to coastal sectors due to a clear indication of these areas. This approach 

aggregates multiple relevant parameters where existing CHARIM models only assess flooding 

with respect to elevation. Further to model outputs, a large database of physical coastal 

characteristics will be provided as part of this process from satellite image derivation. This data 

may in turn be used separately for independent coastal evaluations. Regional managers 

demonstrate an awareness of the cruciality of the coastal zone, although specific and simple 

tools are not used in the derivation of vulnerability. The CVI model developed can therefore 

provide a step towards a more comprehensive evaluation of vulnerability and deployed by non-

experts to better regulate development in the coastal zone. 

Belize is particularly susceptible to storm and hurricane hazards. The impact of natural 

disasters is set to become accentuated with climate change and increased rates of SLR. Disaster 

management focuses on short-term impacts of extreme events but also addresses long term 

impacts to reduce vulnerability through management. Within the ICZM strategy, the National 



Supporting policy: a use in Integrated Coastal Zone Management (ICZM)? 

 

150 

 

Emergency Management Organisation (NEMO) has the responsibility for reinforcing security 

and preparedness through planning initiatives. This includes empowering stakeholder’s 

capacity to manage vulnerability and strenghten reduction information systems to reduce the 

exposure of new infrastructure (Azueta et al., 2020). In order to allow sustainable development 

in the littoral zone, there is a need to increase the adaptive capacity of vulnerable areas (UNDP, 

2022). This requires appropriate strategies to identify and reduce vulnerability. 

The UNDP (2022) presents elements required for risk management, these include: anticipatory, 

compensatory and reactive management. Anticipatory approaches ensure development will not 

accentuate risk and acts to proactively reduce storm surge impacts. Compensatory approaches 

mitigate damages caused by existing vulnerability. Reactive management ensures vulnerability 

is not re-established in the aftermath of a natural disaster. KMeans CVI can support anticipatory 

and reactive management approaches through provision of rapid assessments that provide a 

high level indication of consequences. Climatic variation is diverse and subject to rapid change 

where frequent assessement is important. An increase with the number of assessments required 

demonstrates a need to reduce costs. This is especially prudent in areas where assessments may 

be required quickly; this could include a post-hurricane scenario or in a highly variable 

environment where surveys become outdated quickly.  

CVI maps can also assist compensatory management through the visual communication of 

coastal threats to identify relative low vulnerability areas where emergency shelter could be 

located. These maps may also be combined with socioeconomic exposure maps to determine 

impacts of planning scenarios and support an integrated assessment of vulnerability (Alfieri et 

al., 2015). 

Compensatory management tools can be used to bolster coastal protection. In Belize, the 

implementation of marine protected areas (MPAs) has been seen as a method for this. However, 

a lack of effective monitoring on ecosystem condition has resulted in a lack of understanding 

for the extent of habitat decline. With current rates of decline, it is arguable that the removal of 

the MAR from the World Heritage in Danger list was premature (Murray, 2021). Remote 

sensing can overcome fragmentations in sectoral management to provide harmonization of 

strategies. The methods suggested in this thesis can be used to construct regular change 

detection analysis to determine areas that are degrading at the fastest rates. These should be 

suggested as areas to allocate as new MPAs to prevent further destruction and enhance 

ecological processes. 
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As a SIDS, Belize is confronted with limited resources and rapid development pressures. The 

KMeans CVI provides a low-cost and efficient tool for coastal hazard mapping. The fast 

identification of vulnerable hotspots can greatly enhance the facilitation of management 

strategies. Remote sensing can ensure this is achieved at a high resolution (Boumboulis et al., 

2021). Limiting the unnecessary expenditure of resources can be achieved through 

vulnerability studies. This enables the isolation of areas for which detailed assessments are 

subsequently required.  

Coastal vulnerability assessments using remote sensing may be undertaken at a variety of 

spatial scales: global, regional, national, and local. The application of CVI modelling at various 

scales is shown in table 18. The framework demonstrated in this thesis provides a modular 

approach and can offer scable solutions to different management problems for coastal nations 

and to meet sustainable development goals (Pereira et al., 2013). Through a range of remote 

sensing resolutions, this approach can provide vulnerabilty assessments at nested scales. Firstly 

through the identification of hotsports at a coarse national scale and subsequently supporting 

more detailed local scale studies. At macro-scales, this model can emphasise the effects of 

climate change to coastal communities and provide support for centrialsed government-level 

strategies. At micro-scales, the application of this model should identify specific vulnerable 

areas to support management authorities in the design of appropriate adaptation strategies 

(Torresan et al., 2008). 

Application of the KMeans model to assess vulnerability over transnational scales can faciliate 

international cooperation in managing inter-related coastal regions (Gibson et al., 1998). The 

MAR extends across the meso-american countries of Belize, Honduras and Mexico. Coastal 

processes are not impeded by international boarders and the successful management of the 

MAR system will depend on the consistency of initiatives between nations. This is because 

each indivdual reef is linked through bio-physical transport processes resulting in an 

interdependence. A holistic approach across these borders provides much more effective 

strategy for promoting the wellfare of the entire system while reaping benefits to individual 

countries through enchancing coastal protection and oceanic resource productivity to fuel the 

blue economy. The CVI can build capacity for consistent coastal management strategies at the 

scale of the Yucatán coastline through highlighting priority areas and issues. There is hope to 

establish trans-boundary reserves linking conservation areas between areas on the coast – the 

CVI tool is an efficient resource to enable this. 
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Table 18: Appropriate scales for the application of CVI modelling (Trigg & Smith, 2016). 

 

Application 
Scale 

(km2) 

Application 

of CVI 

model 

Suitability Limitations 

R
eg

io
n

a
l 

a
re

a
s 

National 23,000 Yes 
National risk 

assessment. 

Provides good 

assessment at national 

scale.  

Catchment 10-6,000 Yes 
Identify areas with 

natural vulnerability. 

Provides good 

assessment with 

accuracy reduced for 

smaller catchments. 

District 2-5 Yes 
Identify specific 

districts vulnerable. 

Provides good 

assessment at district 

scale.  

Settlement 0-22 Only largest 
Identify specific 

settlements vulnerable. 

All cities, most towns 

but villages too small. 

S
et

tl
em

en
ts

 

City 5-22 Yes 

Which cities are most 

vulnerable or which 

areas of the city are 

disproprionately 

vulnerable. 

Presence of urban 

artifacts in elevation 

models. 

Town 1-5 Only largest 

Which towns are most 

vulnerable or which 

areas of the town are 

disproprionately 

vulnerable. 

Small towns may not 

represent a full risk. 

Village 0-1 No  

Not ideal at this scale 

as the coastal sample is 

too coarse to 

differentiate small 

villages. 

In
fr

a
st

ru
cu

tr
e Agriculture ~0.5+ Limited 

Identification of fields 

requiring futher 

assessment. 

General assessment of 

whether location is 

vulnerable to storm 

surge. Quantification 

of risk unlikely at this 

scale. 

Buildings ~10mx10m No  

Too small to be picked 

up by coastal sample. 

Could be established 

using Sentinel-2 or 

VHR images. 
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The goal of ICZM is to attain sustainable development of coastal and marine areas, reduce 

vulnerability of communities to natural hazards and to maintain essential ecological processes 

driven by biodiversity. The CVI has been shown to have use in supporting each of these facets. 

Through incorporating remote sensing and machine learning in the CVI metric, this approach 

provides a standardised method with ability for consistent comparison over the globe. This 

provides an invaluable application within ocean planning for its simple ability to integrate 

within existing ICZM workflows. As a result, the potential to fundamentally change coastal 

management in Belize is demonstrated through targeted implementation of management 

strategies in areas of greatest vulnerability at a low cost. Development of Belize’s ICZM 

strategy will provide a good model for sustainable coral reef management globally due to the 

holistic approaches, such as those demonstrated in this study, showing clear advantages in a 

small country where the ability to implement management measures is simple.  
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12. Recommendations 

An approach for multi-disciplinary vulnerability modelling has been presented in this thesis, 

however, further research is still required. The use of machine learning and Earth Observation 

have produced a robust application to identify patterns in multivariate datasets. Limitations of 

this approach have been highlighted in chapter nine and specific recommendations pertaining 

to the improvement of data quality have been suggested here. This chapter will focus on the 

proposition of additional studies to the application of KMeans CVI in coastal management. 

Le Cozannet et al. (2020) suggest high resolution studies on coastal risk reduction are required 

at small scales. The current KMeans model is limited by methods of coastal aggregation and 

data processing. An imposition of static coastal samples has incited generalisation of 

continuous geographic phenomena which can result in conflicting results. Furthermore, at this 

1km scale, much of the coastal zone is not considered in the vulnerability equations. Features 

in these regions may have a contributing effect. Resolution of assessments should be improved, 

especially for the use of remote sensing in localised studies. This should be achieved through 

sampling the coastal band using a transect-based approach as opposed to gridded 1km samples. 

Parameters will hence be aggregated across the foreshore at the 10m resolution afforded by 

Sentinel-2. In order to achieve this, higher resolution secondary datasets pertaining to wave 

action must be acquired. The applicability of the ESA Sea State Level 3 dataset and methods 

for deriving wave height from SAR (Pramudya et al., 2019) should be investigated to improve 

this resolution. 

Sekovski et al. (2020) suggest a value to projecting models for future scenarios in the provision 

of evidence for proactive decision making. The KMeans CVI can be enhanced through the 

introduction of temporal variability and future projections. A change detection of RS imagery 

will provide an indication for the rates of change to habitats or bathymetry to show how land 

use is changing in the coastal zone. In addition, given the low-lying nature of the country, the 

CVI could be adapted to incorporate the RCP scenarios for global SLR rates or to include 

population growth metrics – factors which are rapidly changing in Belize. Hence, severity can 

be deduced through the assessment of CVI under two scenarios – current conditions with recent 

RS data and future conditions with extrapolated rates of change from time-series studies and 

SLR projections.  
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In addition to refactoring the model for use in future projections, the CVI could be adapted to 

provide an indication for social resilience. This will take the results from this thesis further to 

estimate the risk to a community in addition to its physical vulnerability. Socio-economic risks 

can be qualified to demonstrate the disproportionate nature of physical vulnerability. This 

should be achieved through the inclusion of additional metrics to the CVI pertaining to 

socioeconomic indicators. Hzami et al. (2021) have suggested the use of a Social Vulnerability 

Index (SVI) to provide a more holistic integrated vulnerability assessments. This has been 

combined to an Integrated Coastal Vulnerability Index (ICVI) and includes a description of 

socioeconomic drivers and their addition to physical vulnerability using the indicators of: land 

use, settlement area, transport networks and population density. These represent geospatial 

indicators which should be feasible to implement within the KMeans model using remote 

sensing assessments. 

An integrated approach for CVI assessment using Earth Observation has been demonstrated 

for Belize. This method provides aptitude for upscaling to continental or global scales. This 

would be a cheap and frequent approach to ensure millions of kilometres of global coastline 

are surveyed to provide evidence for targeted management solutions at scale. Many coastal 

regions are lacking detailed information pertaining to the changes occurring in the coastal zone. 

Due to remote sensing variables included in the CVI, these can be produced in data-poor coastal 

regions, although representing different accuracies as reflected in this thesis. This would 

enhance the collaboration between NGOs and help consistent metrics to be adopted in reports 

such as the State of the Coast reports from the UN. New satellites and machine learning 

capabilities are in continual development so the accuracy of such assessments are only set to 

improve. 

In order to provide evidence for such applications, the use of machine learning and EO based 

approaches for parameter derivation should be tested on their applicability to different 

typologies of coastal systems. This should include examples of different geomorphic types, 

underlying geologies and water column properties. Characterisation in new locations may 

require the inclusion of additional parameters to provide a tailored assessment (Hammar-Klose, 

2000). For example, the use of shoreline change is appropriate for highly erosive coastlines 

and could be incorporated to the CVI model using remote sensing based approaches including 

the Digital Shoreline Analysis System (DSAS) (Luijendijk et al., 2018) to provide applicability 

in these locations.  
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13. Conclusions 

This thesis seeks to develop and evaluate the application of Earth Observation (EO) based 

approaches within coastal vulnerability assessments. Specific consideration has been given to 

the nation of Belize to support the development of effective integrated coastal zone 

management (ICZM) strategies. ICZM is critical for Belize to enhance coastal protection from 

storm events and to encourage sustainable development. This should act to retain the 

conservation priorities of the region including the prestige of the Mesoamerican Barrier Reef; 

a UNESCO World Heritage site. 

The method developed provides a modified version of the Coastal Vulnerability Index (CVI) 

approach. Principal modifications to the CVI include: (1) the implementation of machine 

learning clustering approaches to facilitate the automatic scaling of vulnerability groups for 

new coastlines and (2) a use of EO methods to characterise coastal geotechnical parameters. 

These modifications have provided a quick, efficient and regular monitioring strategy to reduce 

the requirement for extensive in-situ survey campaigns. This approach is simple to implement 

by coastal managers and does not require require experienced professionals and equipment. As 

a result, the approach should be easy to upscale globally or to other management focuses. 

Phinn et al. (2010) show the application for high resolution satllite datasets, such as Sentinel-

2, for monitoring parameters in the coastal zone. Sentinel-2 has successfully provided an ability 

for data collection over large spatial regions with a frequent temporal extent to systematically 

map changes to features in Belize. The ten-metre resolution provides merit for mapping 

geomorphological components and a repetitive coverage is useful for the mapping of this 

dynamic area where surveys become dated and need updating regularly. A single image has 

shown functionality for analysis over a range of scales and for different applications. This data 

has been integrated with other supplementary layers to aid decision making with respect to 

vulnerability. This is more efficient than the equivalent in-situ surveys required as a pre-

requisite for CVI studies and to understand coastal protection. In this thesis, Sentinel-2 has 

been demonstrated to provide an accurate characterisation of geomorphology and marine slope 

parameters. These have improved upon the accuracy of existing benthic habitat maps used in 

Belize and, for the case of SDB, filled gaps in data coverage by producing survey results for 

areas which have not previously been surveyed.  

Through the incorporation of KMeans, the human bias in CVI thresholding is reduced with the 

ability for automatic scaling. The KMeans CVI model for Belize produces significantly 
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improved results to that of the traditional Gornitz (1991) approach. These original thresholds 

suggest a homogenous risk across the coastline and are not helpful in determining the relative 

vulnerability of areas. Nineteen per-cent of the coastline has been asssessed to retain the highest 

vulnerability to storm surge due to their physical geography and a seaward distribution is 

observed. Areas of highest vulnerability include the settlements of San Pedro and Caye 

Caulker; two popular and densely populated tourist areas. These areas are consistent with those 

identified by NEMO (2016) as areas vulnerable to the worse effects of previous hurricane 

events. These observations have provided a confirmation for the successful application of the 

KMeans CVI model in Belize. 

These predictions should be improved as the model is limited by the quality and scale at which 

data is analysed. The use of coastal segments – of an arbitrary one kilometre – to aggregate 

data which does not spatially intersect imposes bias through the generalisation of continous 

phenomena. This fails to capture the offshore factors contributing to vulnerability. Moreover, 

the use of datasets with differing spatial resolution has incited bias in the distribution of 

vulnerability with the highest resolution datasets having the largest impact over the degree of 

vulnerability in an area. This approach should be improved through two additions. The first is 

to fully utilise the ten metre resolution of Sentinel-2 using a transect-based approach to data 

aggregation. Secondly, an increase to the resolution of coarse secondary datasets, primarily to 

wave height, is required. This should be achieved by deriving quantities directly from SAR 

imagery. Higher spatial resolution data is needed to apply this method to a number of coastal 

processes and to transfer to new studies using different extents of coastlines.  

Furthermore, to ensure the robust application of modelling, this should be applied to new 

coastlines with differing geotechnical properties. This study has shown how EO can provide 

quantification in areas with sparse data coverage but there is a need to repeat this process for 

an area which provides more existing data to directly validate against. This may require the 

addition of more pertinent parameters to the CVI such as shoreline change rates. 

Machine learning and EO-based vulnerability assessments, such as that produced in this thesis, 

have been shown to provide a substantial role within ICZM to increase capacity for resilience. 

The CVI model can aid in all aspects of the UNDP (2022) framework for resilience building 

through anticipatory, compensatory and reactive management approaches. A provision of up-

to-date information on vulnerability and contributing factors will support resource allication 

and the design of holistic shoreline management plans. These are especially prevalent in Belize 
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due to increasing development pressures from tourism and limited resources for policy 

implementation. Moreover, a consistent approach acts to encourage transnational management 

approaches which can holistically consider the whole MAR ecosystem rather than individual 

regions. This is vital as the MAR reflects a dynamic and inter-related system. Consistent 

understanding and management action is key to avoid conflicting priorities and to maximise 

the effectiveness of policy outcomes. This is especially prudent with the increase to frequency 

and intensity of natural hazards increasing due to climate change. 
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APPENDIX 
 

Appendix 1 – Table of scripts written. 

Script Name Function Inputs Output 

calculate_CVI_kmeans.py 

Cluster coastal 

segments of 1km 

based on similar 

geotechnical 

properties for each 

parameter using 

KMeans. Calculate 

CVI value per cell. 

• Terrestrial 

classification 

GEOTIFF  

• Benthic 

classification 

GEOTIFF 

• DEM 

GEOTIFF 

• SDB GEOTIFF 

• Wave climate 

resampled 

GEOTIFF 

• Wind speed 

intensity 

GEOTIFF 

• Coastline 

extent raster 

• Sentinel-2 

image 

• Gridded 

GEOTIFF 

of CVI 

values. 

read_netcdf.py 

Read in wave data 

in netcdf format. 

Sub-sample the 

data and reproject. 

Save to GEOTIFF.  

• WAVERYS 

model output 

netcdf 

• GEOTIFF 

sampled 

wave 

height. 

supervised_classification.py 

Supervised object-

based image 

classification using 

Random Forests 

classifier. 

• Sentinel-2 

image 

• Training data 

shapefile 

• Number of 

classes 

• GEOTIFF 

10m pixels 

with 

discrete 

class 

values. 

waves_resampled.py 

Resamples wave 

climate geotiff so 

pixels intersect 

coastline. 

• Output raster 

from 

read_netcdf.py 

• GEOTIFF 

re-sampled 

wave 

height. 

 

The location of all CVI scripts associated with this thesis can be found on Github @hcook24 

https://github.com/hcook24/Coastal-Vulnerability-Modelling  

 

https://github.com/hcook24/Coastal-Vulnerability-Modelling



