152 research outputs found

    INTERMITTENTLY CONNECTED DELAY-TOLERANT WIRELESS SENSOR NETWORKS

    Get PDF
    Intermittently Connected Delay-Tolerant Wireless Sensor Networks (ICDT-WSNs), a branch of Wireless Sensor Networks (WSNs), have features of WSNs and the intermittent connectivity of Opportunistic Networks. The applications of ICDT-WSNs are increasing in recent years; however, the communication protocols suitable for this category of networks often fall short. Most of the existing communication protocols are designed for either WSNs or Opportunistic Networks with sufficient resources and tend to be inadequate for direct use in ICDT-WSNs. In this dissertation, we study ICDT-WSNs from the perspective of the characteristics, chal- lenges and possible solutions. A high-level overview of ICDT-WSNs is given, followed by a study of existing work and our solutions to address the problems of routing, flow control, error control, and storage management. The proposed solutions utilize the utility level of nodes and the connectedness of a network. In addition to the protocols for information transmissions to specific destinations, we also propose efficient mechanisms for information dissemination to arbitrary destinations. The study shows that our proposed solutions can achieve better performance than other state of the art communication protocols without sacrificing energy efficiency

    A critical review of the routing protocols in opportunistic networks.

    Get PDF
    The goal of Opportunistic Networks (OppNets) is to enable message transmission in an infrastructure less environment where a reliable end-to-end connection between the hosts in not possible at all times. The role of OppNets is very crucial in today’s communication as it is still not possible to build a communication infrastructure in some geographical areas including mountains, oceans and other remote areas. Nodes participating in the message forwarding process in OppNets experience frequent disconnections. The employment of an appropriate routing protocol to achieve successful message delivery is one of the desirable requirements of OppNets. Routing challenges are very complex and evident in OppNets due to the dynamic nature and the topology of the intermittent networks. This adds more complexity in the choice of the suitable protocol to be employed in opportunistic scenarios, to enable message forwarding. With this in mind, the aim of this paper is to analyze a number of algorithms under each class of routing techniques that support message forwarding in OppNets and to compare those studied algorithms in terms of their performances, forwarding techniques, outcomes and success rates. An important outcome of this paper is the identifying of the optimum routing protocol under each class of routing

    Enhanced Community-Based Routing for Low-Capacity Pocket Switched Networks

    Get PDF
    Sensor devices and the emergent networks that they enable are capable of transmitting information between data sources and a permanent data sink. Since these devices have low-power and intermittent connectivity, latency of the data may be tolerated in an effort to save energy for certain classes of data. The BUBBLE routing algorithm developed by Hui et al. in 2008 provides consistent routing by employing a model which computes individual nodes popularity from sets of nodes and then uses these popularity values for forwarding decisions. This thesis considers enhancements to BUBBLE based on the hypothesis that nodes do form groups and certain centrality values of nodes within these groups can be used to improve routing decisions further. Built on this insight, there are two algorithms proposed in this thesis. First is the Community-Based- Forwarding (CBF), which uses pairwise group interactions and pairwise node-to-group interactions as a measure of popularity for routing messages. By having a different measure of popularity than BUBBLE, as an additional factor in determining message forwarding, CBF is a more conservative routing scheme than BUBBLE. Thus, it provides consistently superior message transmission and delivery performance at an acceptable delay cost in resource constrained environments. To overcome this drawback, the concept of unique interaction pattern within groups of nodes is introduced in CBF and it is further renewed into an enhanced algorithm known as Hybrid-Community-Based- Forwarding (HCBF). Utilizing this factor will channel messages along the entire path with consideration for higher probability of contact with the destination group and the destination node. Overall, the major contribution of this thesis is to design and evaluate an enhanced social based routing algorithm for resource-constrained Pocket Switched Networks (PSNs), which will optimize energy consumption related to data transfer. It will do so by explicitly considering features of communities in order to reduce packet loss while maintaining high delivery ratio and reduced delay

    Constructing provenance-aware distributed systems with data propagation

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student submitted PDF version of thesis.Includes bibliographical references (p. 93-96).Is it possible to construct a heterogeneous distributed computing architecture capable of solving interesting complex problems? Can we easily use this architecture to maintain a detailed history or provenance of the data processed by it? Most existing distributed architectures can perform only one operation at a time. While they are capable of tracing possession of data, these architectures do not always track the network of operations used to synthesize new data. This thesis presents a distributed implementation of data propagation, a computational model that provides for concurrent processing that is not constrained to a single distributed operation. This system is capable of distributing computation across a heterogeneous network. It allows for the division of multiple simultaneous operations in a single distributed system. I also identify four constraints that may be placed on general-purpose data propagation to allow for deterministic computation in such a distributed propagation network. This thesis also presents an application of distributed propagation by illustrating how a generic transformation may be applied to existing propagator networks to allow for the maintenance of data provenance. I show that the modular structure of data propagation permits the simple modification of a propagator network design to maintain the histories of data.by Ian Campbell Jacobi.S.M

    Delay tolerant networking in a shopping mall environment

    Get PDF
    The increasing popularity of computing devices with short-range wireless offers new communication service opportunities. These devices are small and may be mobile or embedded in almost any type of object imaginable, including cars, tools, appliances, clothing and various consumer goods. The majority of them can store data and transmit it when a wireless, or wired, transmitting medium is available. The mobility of the individuals carrying such short-range wireless devices is important because varying distances creates connection opportunities and disconnections. It is likely that successful forwarding algorithms will be based, at least in part, on the patterns of mobility that are seen in real settings. For this reason, studying human mobility in different environments for extended periods of time is essential. Thus we need to use measurements from realistic settings to drive the development and evaluation of appropriate forwarding algorithms. Recently, several significant efforts have been made to collect data reflecting human mobility. However, these traces are from specific scenarios and their validity is difficult to generalize. In this thesis we contribute to this effort by studying human mobility in shopping malls. We ran a field trial to collect real-world Bluetooth contact data from shop employees and clerks in a shopping mall over six days. This data will allow the informed design of forwarding policies and algorithms for such settings and scenarios, and determine the effects of users' mobility patterns on the prevalence of networking opportunities. Using this data set we have analysed human mobility and interaction patterns in this shopping mall environment. We present evidence of distinct classes of mobility in this situation and characterize them in terms of power law coefficients which approximate inter-contact time distributions. These results are quite different from previous studies in other environments. We have developed a software tool which implements a mobility model for "structured" scenarios such as shopping malls, trade fairs, music festivals, stadiums and museums. In this thesis we define as structured environment, a scenario having definite and highly organised structure, where people are organised by characteristic patterns of relationship and mobility. We analysed the contact traces collected on the field to guide the design of this mobility model. We show that our synthetic mobility model produces inter-contact time and contact duration distributions which approximate well to those of the real traces. Our scenario generator also implements several random mobility models. We compared our Shopping Mall mobility model to three other random mobility models by comparing the performances of two benchmark delay tolerant routing protocols, Epidemic and Prophet, when simulated with movement traces from each model. Thus, we demonstrate that the choice of a mobility model is a significant consideration when designing and evaluating delay-tolerant mobile ad-hoc network protocols. Finally, we have also conducted an initial study to evaluate the effect of delivering messages in shopping mall environments by exclusively forwarding them to customers or sellers, each of which has distinctive mobility patterns

    Delay tolerant networking in a shopping mall environment

    Get PDF
    The increasing popularity of computing devices with short-range wireless offers new communication service opportunities. These devices are small and may be mobile or embedded in almost any type of object imaginable, including cars, tools, appliances, clothing and various consumer goods. The majority of them can store data and transmit it when a wireless, or wired, transmitting medium is available. The mobility of the individuals carrying such short-range wireless devices is important because varying distances creates connection opportunities and disconnections. It is likely that successful forwarding algorithms will be based, at least in part, on the patterns of mobility that are seen in real settings. For this reason, studying human mobility in different environments for extended periods of time is essential. Thus we need to use measurements from realistic settings to drive the development and evaluation of appropriate forwarding algorithms. Recently, several significant efforts have been made to collect data reflecting human mobility. However, these traces are from specific scenarios and their validity is difficult to generalize. In this thesis we contribute to this effort by studying human mobility in shopping malls. We ran a field trial to collect real-world Bluetooth contact data from shop employees and clerks in a shopping mall over six days. This data will allow the informed design of forwarding policies and algorithms for such settings and scenarios, and determine the effects of users' mobility patterns on the prevalence of networking opportunities. Using this data set we have analysed human mobility and interaction patterns in this shopping mall environment. We present evidence of distinct classes of mobility in this situation and characterize them in terms of power law coefficients which approximate inter-contact time distributions. These results are quite different from previous studies in other environments. We have developed a software tool which implements a mobility model for "structured" scenarios such as shopping malls, trade fairs, music festivals, stadiums and museums. In this thesis we define as structured environment, a scenario having definite and highly organised structure, where people are organised by characteristic patterns of relationship and mobility. We analysed the contact traces collected on the field to guide the design of this mobility model. We show that our synthetic mobility model produces inter-contact time and contact duration distributions which approximate well to those of the real traces. Our scenario generator also implements several random mobility models. We compared our Shopping Mall mobility model to three other random mobility models by comparing the performances of two benchmark delay tolerant routing protocols, Epidemic and Prophet, when simulated with movement traces from each model. Thus, we demonstrate that the choice of a mobility model is a significant consideration when designing and evaluating delay-tolerant mobile ad-hoc network protocols. Finally, we have also conducted an initial study to evaluate the effect of delivering messages in shopping mall environments by exclusively forwarding them to customers or sellers, each of which has distinctive mobility patterns

    An Embryonics Inspired Architecture for Resilient Decentralised Cloud Service Delivery

    Get PDF
    Data-driven artificial intelligence applications arising from Internet of Things technologies can have profound wide-reaching societal benefits at the cross-section of the cyber and physical domains. Usecases are expanding rapidly. For example, smart-homes and smart-buildings provide intelligent monitoring, resource optimisation, safety, and security for their inhabitants. Smart cities can manage transport, waste, energy, and crime on large scales. Whilst smart-manufacturing can autonomously produce goods through the self-management of factories and logistics. As these use-cases expand further, the requirement to ensure data is processed accurately and timely is ever crucial, as many of these applications are safety critical. Where loss off life and economic damage is a likely possibility in the event of system failure. While the typical service delivery paradigm, cloud computing, is strong due to operating upon economies of scale, their physical proximity to these applications creates network latency which is incompatible with these safety critical applications. To complicate matters further, the environments they operate in are becoming increasingly hostile. With resource-constrained and mobile wireless networking, commonplace. These issues drive the need for new service delivery architectures which operate closer to, or even upon, the network devices, sensors and actuators which compose these IoT applications at the network edge. These hostile and resource constrained environments require adaptation of traditional cloud service delivery models to these decentralised mobile and wireless environments. Such architectures need to provide persistent service delivery within the face of a variety of internal and external changes or: resilient decentralised cloud service delivery. While the current state of the art proposes numerous techniques to enhance the resilience of services in this manner, none provide an architecture which is capable of providing data processing services in a cloud manner which is inherently resilient. Adopting techniques from autonomic computing, whose characteristics are resilient by nature, this thesis presents a biologically-inspired platform modelled on embryonics. Embryonic systems have an ability to self-heal and self-organise whilst showing capacity to support decentralised data processing. An initial model for embryonics-inspired resilient decentralised cloud service delivery is derived according to both the decentralised cloud, and resilience requirements given for this work. Next, this model is simulated using cellular automata, which illustrate the embryonic concept’s ability to provide self-healing service delivery under varying system component loss. This highlights optimisation techniques, including: application complexity bounds, differentiation optimisation, self-healing aggression, and varying system starting conditions. All attributes of which can be adjusted to vary the resilience performance of the system depending upon different resource capabilities and environmental hostilities. Next, a proof-of-concept implementation is developed and validated which illustrates the efficacy of the solution. This proof-of-concept is evaluated on a larger scale where batches of tests highlighted the different performance criteria and constraints of the system. One key finding was the considerable quantity of redundant messages produced under successful scenarios which were helpful in terms of enabling resilience yet could increase network contention. Therefore balancing these attributes are important according to use-case. Finally, graph-based resilience algorithms were executed across all tests to understand the structural resilience of the system and whether this enabled suitable measurements or prediction of the application’s resilience. Interestingly this study highlighted that although the system was not considered to be structurally resilient, the applications were still being executed in the face of many continued component failures. This highlighted that the autonomic embryonic functionality developed was succeeding in executing applications resiliently. Illustrating that structural and application resilience do not necessarily coincide. Additionally, one graph metric, assortativity, was highlighted as being predictive of application resilience, although not structural resilience

    Intelligent deployment strategies for passive underwater sensor networks

    Get PDF
    Passive underwater sensor networks are often used to monitor a general area of the ocean, a port or military installation, or to detect underwater vehicles near a high value unit at sea, such as a fuel ship or aircraft carrier. Deploying an underwater sensor network across a large area of interest (AOI), for military surveillance purposes, is a significant challenge due to the inherent difficulties posed by the underwater channel in terms of sensing and communications between sensors. Moreover, monetary constraints, arising from the high cost of these sensors and their deployment, limit the number of available sensors. As a result, sensor deployment must be done as efficiently as possible. The objective of this work is to develop a deployment strategy for passive underwater sensors in an area clearance scenario, where there is no apparent target for an adversary to gravitate towards, such as a ship or a port, while considering all factors pertinent to underwater sensor deployment. These factors include sensing range, communications range, monetary costs, link redundancy, range dependence, and probabilistic visitation. A complete treatment of the underwater sensor deployment problem is presented in this work from determining the purpose of the sensor field to physically deploying the sensors. Assuming a field designer is given a suboptimal number of sensors, they must be methodically allocated across an AOI. The Game Theory Field Design (GTFD) model, proposed in this work, is able to accomplish this task by evaluating the acoustic characteristics across the AOI and allocating sensors accordingly. Since GTFD considers only circular sensing coverage regions, an extension is proposed to consider irregularly shaped regions. Sensor deployment locations are planned using a proposed evolutionary approach, called the Underwater Sensor Deployment Evolutionary Algorithm, which utilizes two suitable network topologies, mesh and cluster. The effects of these topologies, and a sensor\u27s communications range, on the sensing capabilities of a sensor field, are also investigated. Lastly, the impact of deployment imprecision on the connectivity of an underwater sensor field, using a mesh topology, is analyzed, for cases where sensor locations after deployment do not exactly coincide with planned sensor locations
    • …
    corecore