
An Embryonics Inspired Architecture for

Resilient Decentralised Cloud Service

Delivery

Thomas Welsh

A thesis submitted in partial fulfilment of the requirement of

Staffordshire University for the degree of Doctor of Philosophy

June 2020

Abstract

Data-driven artificial intelligence applications arising from Internet of Things technologies can have

profound wide-reaching societal benefits at the cross-section of the cyber and physical domains. Use-

cases are expanding rapidly. For example, smart-homes and smart-buildings provide intelligent mon-

itoring, resource optimisation, safety, and security for their inhabitants. Smart cities can manage

transport, waste, energy, and crime on large scales. Whilst smart-manufacturing can autonomously

produce goods through the self-management of factories and logistics. As these use-cases expand fur-

ther, the requirement to ensure data is processed accurately and timely is ever crucial, as many of these

applications are safety critical. Where loss off life and economic damage is a likely possibility in the

event of system failure. While the typical service delivery paradigm, cloud computing, is strong due

to operating upon economies of scale, their physical proximity to these applications creates network

latency which is incompatible with these safety critical applications. To complicate matters further,

the environments they operate in are becoming increasingly hostile. With resource-constrained and

mobile wireless networking, commonplace. These issues drive the need for new service delivery ar-

chitectures which operate closer to, or even upon, the network devices, sensors and actuators which

compose these IoT applications at the network edge. These hostile and resource constrained environ-

ments require adaptation of traditional cloud service delivery models to these decentralised mobile

and wireless environments. Such architectures need to provide persistent service delivery within the

face of a variety of internal and external changes or: resilient decentralised cloud service delivery.

While the current state of the art proposes numerous techniques to enhance the resilience of services

in this manner, none provide an architecture which is capable of providing data processing services in

a cloud manner which is inherently resilient. Adopting techniques from autonomic computing, whose

characteristics are resilient by nature, this thesis presents a biologically-inspired platform modelled

on embryonics. Embryonic systems have an ability to self-heal and self-organise whilst showing ca-

pacity to support decentralised data processing. An initial model for embryonics-inspired resilient

decentralised cloud service delivery is derived according to both the decentralised cloud, and resilience

requirements given for this work. Next, this model is simulated using cellular automata, which il-

lustrate the embryonic concept’s ability to provide self-healing service delivery under varying system

component loss. This highlights optimisation techniques, including: application complexity bounds,

differentiation optimisation, self-healing aggression, and varying system starting conditions. All at-

tributes of which can be adjusted to vary the resilience performance of the system depending upon

different resource capabilities and environmental hostilities.

Next, a proof-of-concept implementation is developed and validated which illustrates the efficacy

of the solution. This proof-of-concept is evaluated on a larger scale where batches of tests highlighted

the different performance criteria and constraints of the system. One key finding was the considerable

quantity of redundant messages produced under successful scenarios which were helpful in terms of

enabling resilience yet could increase network contention. Therefore balancing these attributes are

important according to use-case. Finally, graph-based resilience algorithms were executed across

all tests to understand the structural resilience of the system and whether this enabled suitable

measurements or prediction of the application’s resilience. Interestingly this study highlighted that

although the system was not considered to be structurally resilient, the applications were still being

executed in the face of many continued component failures. This highlighted that the autonomic

embryonic functionality developed was succeeding in executing applications resiliently. Illustrating

that structural and application resilience do not necessarily coincide. Additionally, one graph metric,

assortativity, was highlighted as being predictive of application resilience, although not structural

resilience.

Page ii

Dedication

This thesis is dedicated to the memory of the first security engineer I knew - Michael Welsh. Your

ramblings about security used to annoy me greatly. The irony is certainly not wasted.

iii

Acknowledgements

Firstly I want to thank my family, particularly Nadia and Steve Marsh, whose unwavering support

enabled to me write this thesis - and so much more. I would also like to thank my incredible wife Ruta,

who provided me with love and support when I needed it the most. I would also like to thank the

entire School of Computing at Staffordshire University who not only educated me in a diverse array

of subjects but who also motivated me, gave me countless opportunities and provided a stable and

inspirational learning environment for over a decade. I would especially like to thank my supervisor

Elhadj, along with the rest of the Cloud Computing and Applications research group, for the countless

discussions and support during this research.

iv

List of Publications

1. On Resilience in Cloud Computing : A survey of techniques across the Cloud

Domain - This paper presents a comprehensive review of cloud computing resilience techniques

across both traditional centralised and decentralised models. A subset of this work can be

found in Chapter 2. This paper was published in ACM Computing Surveys Journal May 2020.

It supersedes an initially published survey paper: Perspectives on Resilience in Cloud

Computing: Review and Trends - which was presented at the 2017 IEEE/ACS 14th

International Conference on Computer Systems and Applications (AICCSA).

2. Embyronic Model for Highly Resilient PaaS was presented at the 2018 Fifth International

Conference on Software Defined Systems (SDS). It maps embryonic characteristics to cloud

computing and resilience requirements in order to derive the initial embryonic cloud model that

was developed for centralised cloud features. Some of this work is presented in chapter 3.

3. Bio-Inspired Multi-agent Embryonic Architecture for Resilient Edge Networks was

published in the IEEE Transactions on Industrial Informatics Journal in May 2019. It presents

the Cellular Automata based model of the embryonic architecture including simulation results

for the majority of results in chapter 4. It presents the concept in the context of real-world use

cases for resilient industrial IoT at the network edge.

4. Embyronic-Inspired Resilient Service Delivery at the Hostile Mobile Edge - Is cur-

rently under review in Springer’s Peer to Peer Networking and Applications journal. It presents

the performance evaluation results of the proof-of-concept embryonic architecture. This work is

presented in chapter 6.

v

Contents

Abstract i

Dedication iii

Acknowledgements iv

List of Publications v

Table of Contents x

List of Figures xvi

List of Tables xviii

Glossary xxii

1 Introduction 1

1.1 Problem Definition . 1

1.2 Aim, Objectives and Research Methods . 4

1.3 Scope of the Thesis . 5

1.4 Resources and Tools . 7

1.5 Structure of the Thesis . 8

2 Literature Review 10

2.1 Introduction . 10

2.2 The Internet of Things . 10

2.2.1 Enabling Technologies . 11

2.2.2 Applications . 12

2.2.3 Security and Resilience Challenges in IoT . 14

2.3 Cloud Service Delivery . 16

2.3.1 Decentralised Cloud Computing . 17

2.3.2 Applications for Resilient Decentralised Processing 20

vi

Contents

2.4 Resilient Techniques for Cloud Computing . 20

2.4.1 Redundancy . 23

2.4.2 Diversity . 23

2.4.3 Autonomic . 24

2.4.4 Comparison . 25

2.4.5 Survey of Resilience Techniques for Decentralised Cloud Computing 25

2.4.5.1 Analysis of Decentralised Cloud Resilience 29

2.4.6 Resilience Metrics and Evaluation . 30

2.5 Resilience for Decentralised Cloud Services . 33

2.5.1 The Requirement for Autonomic Service Management 34

2.5.2 Embyronics for Resilient Decentralised Cloud Service Delivery 37

2.6 Conclusion . 38

3 Embryonic Model for Resilient Cloud Service Delivery 39

3.1 Introduction . 39

3.2 Resilient Cloud System Requirements . 39

3.2.1 Functional Cloud Requirements . 40

3.3 Embryonic Development Characteristics . 40

3.3.1 Cellular Signalling . 43

3.4 Embryogensis for Resilient Decentralised Cloud Computing - Feature Mapping 43

3.4.1 The Cell . 46

3.4.1.1 Cell Functionality . 48

3.4.2 Multi-Cellular Organism . 48

3.4.2.1 Communication . 50

3.4.2.2 Application Management . 50

3.4.2.3 Self-organisation and Self-healing . 51

3.5 Use-Cases . 53

3.5.1 Smart Transport with VANETS . 54

3.5.1.1 Potential Application - Cooperative Vehicle Telemetry 54

3.5.2 Adversarial Warfare . 56

3.5.2.1 Potential Application - Secure and Resilient Communications 56

3.5.3 Industrial IoT in hostile environments . 58

3.5.3.1 Potential Application - Robotic Marine Data Processing 58

3.6 Summary . 59

4 Cellular Automata Embryonic Simulation 60

4.1 Introduction . 60

Page vii

Contents

4.2 Cellular Automata Model Simulation Description . 61

4.3 Cellular Automata Model Simulation Description . 61

4.3.1 Definitions . 61

4.3.2 Variables . 62

4.4 Simulation Model . 65

4.4.1 Validation . 66

4.4.1.1 Graphical Validation . 66

4.4.1.2 Extreme Condition Validation . 68

4.4.1.3 Internal Validity . 70

4.4.2 Results and Analysis . 70

4.4.2.1 Stochastic Model of Best-Case Function Distribution 70

4.4.2.2 CA Results . 77

4.4.2.3 SpawnRate . 77

4.4.2.4 Cell Update Function . 78

4.4.2.5 Organism Start Size and Location . 84

4.5 Discussion . 85

4.5.1 Application Complexity . 85

4.5.2 Aggressive Spawning . 86

4.5.3 Complex System Characteristics . 86

4.5.4 Increasing Search Space . 87

4.5.5 Function spread through differentiation algorithms 87

4.5.6 System states . 88

4.6 Considerations for Practical Implementation . 88

4.7 Summary . 90

5 Proof-of-Concept Implementation 91

5.1 Introduction . 91

5.2 Software Specification . 91

5.2.1 Software Requirements . 92

5.3 High-level Software Design . 92

5.3.1 Message Registry . 92

5.3.2 User-driven Variant . 94

5.3.3 Self-organised Variant . 97

5.4 Implementation Details . 105

5.5 Validation . 106

5.5.1 Experiment Test Bed . 107

5.6 User driven test-case . 110

Page viii

Contents

5.7 Self-organising Test-Case . 110

5.8 Analysis and Comparison . 118

5.9 Summary . 120

6 Proof-of-Concept Testing and Evaluation 121

6.1 Introduction . 121

6.2 Methodology . 121

6.2.1 Dependent Variables . 122

6.2.1.1 Application Performance measures . 122

6.2.1.2 Graph-based metrics . 124

6.2.2 Independent Variables . 127

6.2.2.1 Functions . 128

6.2.2.2 Division Rate . 128

6.2.2.3 Subscriptions . 128

6.3 Results and Analysis . 129

6.3.1 0 Failure Rates . 129

6.3.1.1 Division effect upon network structure 129

6.3.1.2 Subscriptions effect upon network structure 131

6.3.1.3 Application Performance . 135

6.3.1.4 Summary . 144

6.3.2 Failure Rates . 144

6.3.2.1 Application Performance . 144

6.3.2.2 Metric Investigation . 146

6.4 Discussion . 160

6.4.1 Application Performance . 160

6.4.1.1 Communication Complexity . 160

6.4.1.2 Temporal Performance . 161

6.4.2 Measuring Resilience . 162

6.4.2.1 Validating Assortativity Periodicity for State Change Measurement . 163

6.4.2.2 Proposed Method . 166

6.4.2.3 Further Comments . 169

6.5 Summary . 169

7 Conclusion 170

7.1 Introduction . 170

7.2 Revisiting the hypothesis . 170

7.3 Challenges and Limitations . 171

Page ix

Contents

7.4 Future Work . 172

7.5 Contributions to Knowledge . 173

A Appendix A - Data 187

B Appendix B - Publications 196

Page x

List of Figures

1.1 Research Methodology Process . 6

2.1 Cloud data centre layers . 16

2.2 Centralised and Decentralised Cloud Layers . 18

2.3 Centralised and decentralised cloud computing model. Illustrating the relationship and

overlap between different cloud models and architectural components. MEC=Mobile

Edge Computing, MCC=Mobile Cloud Computing . 19

2.4 The resilinets model of resilience disciplines (Sterbenz et al. 2010) 21

2.5 Resilience Disciplines . 22

2.6 Classification of techniques used in cloud resilience . 26

3.1 Asymmetric Segregation of Protein Determinants . 41

3.2 Inductive Signalling . 42

3.3 Cell architecture . 47

3.4 Cell Inception and Communication Loop. This flow chart illustrates the process by

which the mother cell self-reproduces. This child subscribes to it’s mother then loops,

waiting for messages. It will receive all messages but process only those relevant to it. 49

3.5 This diagram illustrates the constrained application execution. The application starts

as a tuple of data (D) and functionality F). The data is passed to the top function of

the list which is removed as the data is passed to the next cell. The current state of

the application therefore resides in the message. 51

3.6 This diagram illustrates to time steps in the platform showing the keep alive being

broadcast by cell 1 to its surrounding neighbours. In the first instance one or more

cells differentiated to function 3 will notice that there is another cell in the vicinity at

which point they will differentiate to an under represented function in the next instance. 53

3.7 The architecture inspired by animal embryonic development, composed of Multi-Cellular

Platforms (MC). It provides resilient service delivery in hostile environments through

leveraging the concepts of self-healing, cell division and differentiation. 54

xi

List of Figures

3.8 Multicellular architecture leveraged as a SaaS platform for smart transport and VANETS.

At the device, the platform provides resilient, distributed data processing to enable co-

operative driving amongst mobile device. As data moves towards the cloud it can be

pre-processed to optimise resource consumption where it will finally reach the cloud in

order to provide full features analytics and control. 55

3.9 A use case illustrating resilient and collaborative data processing 56

3.10 Example MC Architecture in an adversarial environment. 57

3.11 Example MC Architecture in an industrial IoT hostile environment 59

4.1 Connected0 and Connected1 modelled as von-neumann neighbourhoods r=1 and r=2

respectfully. The red squares indicate the nodes in the central squares neighbourhood,

the nodes which will receive communications. 62

4.2 An example of a fully connected network. The arrows indicate the connection flow

between nodes. 63

4.3 A network is connected if all nodes can communicate in consecutive order, otherwise it

is unconnected. The left red node is an example of an unconnected network as it is not

able to reach the next node (blue) in 0 or 1 hops. The red node on the right is a fully

connected network with 1 hop allowed as it can reach its second node (blue) through

communicating via the green node. 64

4.4 The nodes in the red box are examples of a network which is not fully connected within

the connected0 tests. The two starting nodes (node 1) can reach a single node 3 using

local only communication (i.e. via a node 2) but not to the final required function

(node 5). In contrast the networking with a starting node highlighted in the green box

can reach up to node 5. 64

4.5 GTK GUI which permits experimentation in a graphical manner. The coloured nodes

allow ease when examining the function of the networks. 67

4.6 ASCII Graphical interface. The grid is composed of a number of cells which can be

in states 0 to the number of functions. A fully connected network is one in which the

functions can be reached consecutively. 67

4.7 An example test run of a Low Stress Network where time(t) is a discrete time step.

This test was not included in the data set and was run as an example for only 200 steps.

Each line indicates quantity of functions at each point in time where blue is failed or

inactive cells. The low variability illustrates the stability of the network. 68

Page xii

List of Figures

4.8 A validation run for 200 steps for 1 function where FR = 0.4 and 0.45. The periodic

cycling between high-levels of nodes is an elementary representation of the system

states. With high numbers of cells it is resilient, with low numbers of cells it is not

resilient. Moving from high to low failed nodes illustrates the networks ability to heal

after losing nodes. 69

4.9 This graph illustrates the probability of finding the next node for neighbourhood sizes

of 5 and 13. The decline indicates that connection issues relating to function quantity

can be mitigated through increasing the neighbourhood size. 71

4.10 Illustrated probability of finding the next cell where r=0 and q=5 or q=6. The num-

bers on the nodes indicate the function type. The central node must reach the next

consecutively numbered node in order for the application to connect. In the diagram

on the left, n=q, so the probability of finding that node is 1. Where 2 can be seen

adjacent to to the central node. However in the diagram on the right, as q > n there

is only an 80% chance of the next node being adjacent. In this diagram the next node

cannot be found. 72

4.11 Illustrated probability of finding the next cell where r=0 and q=5 or q=6. The num-

bers on the nodes indicate the function type. The central node must reach the next

consecutively numbered node in order for the application to connect. In both the left

and right diagrams, the central node is not able to find the next consecutive node as

failures have decreased the probability. 72

4.12 Illustrated probability of finding the next cell where r=1 and and q=7 or q=13. The

inner layer of nodes (red) illustrate the first hop in the neighbourhood whilst the outer

layer (blue) illustrates the next hop. All nodes can be reached by the central node. In

the digram on the left, the next consecutive node can be reached as q < n. However in

the digram on the right q > n, decreasing the probability of finding the correct node,

causing the next consecutive node to not be found. 73

4.13 This diagram illustrates an example probability tree used to calculate the connectedness

of a service where F=0.1, Q=5 and N=4. Only a number of examples are given due

to the real scale of the tree being unsuitable for diagrammatic scale. Following the

left most branch at all times will give the probability of finding all 5 functions with 0

failures. Highlighted in orange with the formula at the bottom of the diagram. 74

4.14 Results of the model comparing different FRs, simulating average connectedness of

networks with 0 hop communication allowed where functions are evenly distributed. . 76

4.15 Results of the model comparing different FRs, simulating average connectedness of

networks with 1 hop communication allowed where functions are evenly distributed. . 76

4.16 Results of average connectedness of applications with 0 hop communication allowed. . 77

Page xiii

List of Figures

4.17 Results of average connectedness of applications with 0 hop communication allowed

where spawnrate==1 . 78

4.18 Average connectedness comparing differentiation methods for connected0 tests 81

4.19 Average connectedness comparing differentiation methods for connected1 tests 83

4.20 50 test runs with FR == 0.3, functions 3 and Neighbourhood startsize 1. Showing just

under 50% of tests were successful whilst the rest were unsuccessful. 84

4.21 50 test runs with FR 0.3, functions 3 and Neighbourhood startsize 9. Where the

majority of tests were highly successful. 85

4.22 On the left is the original model where all messages are passed between cells indiscrim-

inately. The complexity of the applications (the larger number of functions) causes the

probability of finding the next function needed low. The model on the right attempts

to mitigate this through grouping the functions into sub-applications, where messages

will be passed between sub functions. 86

5.1 Usecase for MC architecture. It consists of 3 distinct users, the developer requests and

uploads the application to the system. The Cloud management actor monitors the app

status for billing purposes and also scales resources as necessary. Finally the end-user

will simply access the application to push or pull data. 95

5.2 Activity Diagram for MC . 96

5.3 Activity Diagram for Atomic Cell . 98

5.4 Sequence diagram for application Lifecycle . 99

5.5 Sequence diagram for the cell . 100

5.6 MC Use-Case Diagram Self-Organising . 101

5.7 MC Activity Diagram Self-Organising . 102

5.8 Cell Activity Diagram Self-Organising . 103

5.9 Cell Sequence Diagram Self-Organising . 104

5.10 Simplified Class Diagram illustrating the relationship between the components within

the python implementation of the cell. This diagram is reduced for clarity purposes. . 105

5.11 Embyronic Platform operating upon multiple different virtualisation platforms. 106

5.12 The execution flow of the tools used for experimentation and validation of the embryonic

proof-of-concept implementation . 108

5.13 Dashboard Architecture . 109

5.14 User Driven Test Case Stage 1 - Initial Cell Spawn . 110

5.15 User Test Case Stage 2 - API Application Request . 112

5.16 User Test Case Stage 3 - Cell division . 112

5.17 User Test Case Stage 4 - Capacity requests . 113

Page xiv

List of Figures

5.18 User Test Case - Stage 5 - The network becomes converged and the application processes

successfully . 113

5.19 User Test Case - Stage 6 - timeout . 114

5.20 User Test Case - Self-heal upon request . 115

5.21 Self Organising Test Case Step 1 - Network convergence 116

5.22 Self Organising Test Case Step 2 - self-organisation . 117

5.23 Self Organising Test Case Step 3 - self-heal . 117

5.24 Finite state automata for the embryonic implementation 120

6.1 The execution flow for the methodology for batch experimentation of embryonic system

performance and resilience tests . 123

6.2 Example networks at full convergence with differing division rates. All are where Sub = 4130

6.3 Network convergence curve where Div = 4 . 132

6.4 Network convergence curve where Div = 5 . 132

6.5 Network convergence curve where Div = 6 . 133

6.6 D5 F6 and S7. Even clusters are formed at specific division and Subscription quantities.134

6.7 D4 F2 S7 - Stable States . 136

6.8 D6 F4 S5 Output - Cyclic States . 137

6.9 D4 F4 S3 graph metric comparison . 138

6.10 3 runs of the same test parameters D4 F5 S7 illustrating varying network convergence

and chaotic conditions. 140

6.11 Output, assortativity and clustering for 2 different runs of the same parameters (D4 F5

S7) . 141

6.12 Process, assortativity and clustering for 2 different test groups (D4 F6 S3 and D6 F7

S3) where no application executed successfully. 143

6.13 D4 F2 S6. The figure on the left indicates the application execution performance. The

figure on the right illustrates the rate in change of nodes and therefore the network’s

ability to self-heal . 147

6.14 Output and relevant graph metrics for D4 F2 S6 for 600 seconds 148

6.15 D5 F2 S4 for 600 timesteps The figure on the left indicates the application execution

performance. The figure on the right Illustrates the rate in change of nodes and therefore

the network’s ability to self-heal. The figures on the bottom row are the same except

for a lower failure rate to illustrate the difference in growth. 150

6.16 Output, N and connectivity along the top row and assortativity, clusters and network

criticality for D5 F2 S4 running for 20 minutes (1200) seconds. A range of different

metrics can be combined to understand further about the change in system state. . . . 151

6.17 Periodograms of assortativity in 100second intervals for the test D5 F2 S4 152

Page xv

List of Figures

6.18 Periodograms of assortativity in 100second intervals for the test D5 F2 S4 153

6.19 Output, N and connectivity along the top row and assortativity, clusters and network

criticality for D6 F2 S6 running for 20 minutes (1200) seconds. A range of different

metrics can be combined to understand further about the change in system state. . . . 155

6.20 Periodograms of assortativity in 100 second intervals for the test D6 F2 S6 156

6.21 Periodograms of assortativity in 100 second intervals for the test D6 F2 S6 157

6.22 Output is plot against relevant graph metrics for D5 F5 S7. A range of different metrics

can be combined to understand further about the change in system state during this

test with borderline success. 159

6.23 D5 F2 S4 Assortativity Recurrence Plot . 164

6.24 D5 F2 S4 Periodograms of every 100 graph changes. The label at the top of each graph

indicates the starting graph index. 165

6.25 D5 F2 S4 Assortativity Recurrence Plot . 167

6.26 The proposed method for measuring system state change to determine resilience. . . . 168

Page xvi

List of Tables

2.1 A non-exhaustive list of standards and protocols used in IoT 13

2.2 Network Layer Insecurities . 14

2.3 Cloud Resilience Technique Cost Comparison . 25

2.4 Some example graph metrics seen in literature for measuring resilience of different

network types . 31

3.1 Cell types and the range of coverage for different cells. 42

3.2 Cellular Signalling Methods . 44

3.3 Requirements to Feature Mapping . 45

4.1 Simulation Parameters . 66

4.2 Correlation Coefficients for validation via an extreme condition. FR == 0 & Spawnrate

== 1 . 70

5.1 Functional and Non-functional Software Requirements using the MoSCoW classification

system . 93

5.2 Register of messages . 94

5.3 User driven test case stages . 111

5.4 Self-Organising Variant Test-case Steps . 114

5.5 Comparison of architecture characteristics . 118

6.1 Example data processing application messages for performance testing 124

6.2 Variables recorded per each test to record network performance 125

6.3 Variables recorded per each test to record network structure statistics 127

6.4 Independent variables chosen for their ability to affect service resilience 128

6.5 N at 300 seconds per division value in figure 6.2 . 130

6.6 Quantity of timeouts for each test run . 131

6.7 Correlation Coefficients For Subscriptions . 133

6.8 Correlation Coefficients for Application Performance 135

xvii

List of Tables

6.9 Correlation Coefficients for Application Performance for Successful Applications 135

6.10 Correlation Coefficients for Application Performance in the Failure Tests 145

6.11 Correlation Coefficients for Application Performance in the Failure Tests for Successful

Applications . 145

A.1 Average performance values for 0 failure rate tests part 1 188

A.2 Average performance values for 0 failure rate tests part 2 189

A.3 Average performance values for 0 failure rate tests part 3 190

A.4 Average performance values for 0 failure rate tests part 4 191

A.5 Average performance values for failure rate tests part 1 192

A.6 Average performance values for failure rate tests part 2 193

A.7 Average performance values for failure rate tests part 3 194

A.8 Average performance values for failure rate tests part 4 195

Page xviii

Acronyms

ABE Attribute-Based Encryption.

ACO Ant Colony Optimisation.

AI Artificial Intelligence.

AIS Artificial Immune System.

ALife Artificial Life.

ANN Artificial Neural Networks.

API Application Programming Interface.

CA Cellular Automata.

CD Client Device.

COAP Constrained Application Protocol.

CONST Constrained Devices.

CP-ABE Ciphertext-Policy Attribute-Based Encryption.

CPS Cyber Physical Systems.

CSP Cloud Service Provider.

DC Data Centre.

Div Divisions.

DNA Deoxyribonucleic acid.

DT Disruption Tolerance.

EDGE Edge computing.

xix

Acronyms

FAOT Function Application Traffic Out.

FDPR Function Application Traffic In.

FR Failure Rate.

FSA Finite State Automata.

FT Fault Tolerance.

Func Functions.

GPRS General Packet Radio Service.

GPS Global Positioning System.

GTK Gnome Tool Kit.

GUI Graphical User Interface.

HTTP Hypertext Transport Protocol.

IaaS Infrastructure-as-a-Service.

IIoT Industrial Internet of Things.

IoT Internet of Things.

IP Internet Protocol.

LB Load Balancing.

LongRecv Longest receive time.

M2M Machine to Machine.

MANETS Mobile Area Networks.

MAPE-K Monitor Analyse Plan and Execute according to Stored Knowledge.

MC Multi-Cellular.

MCC Mobile Cloud Computing.

MDC Micro Data Centres.

MEC Mobile Edge Computing.

MoSCoW Must, Should, Could, Won’t.

Page xx

Acronyms

MQTT Mosquito Telemetry Transport.

MTBF Mean Time Between Failures.

MTTR Mean Time To Repair.

N Neighbourhood Size.

NFC Near Field Communication.

OBU On board units.

OCRQ Organisation Capacity Request.

OKA Organisation Keep Alive.

OPAR Organisation Peer Advertisement Request.

Out Output messages.

P2P Peer-to-peer.

PaaS Platform-as-a-Service.

PAPP API Push Application.

PCA Probabilistic Cellular Automata.

PCD Programmed Cell Death.

PFRQ API function load request.

PI Physical Infrastructure.

PN Physical Networking.

Proc Processed messages.

PyGTK Python Gnome Tool Kit.

Q Quantity of Functions.

QoS Quality of Service.

Recv Received messages.

REST Representational State Transfer.

RFID Radio Frequency Identification.

Page xxi

Acronyms

RM Resource Management.

RPL Routing Protocol for Low-Power and Lossy Networks.

RSU Road side units.

SaaS Software-as-a-Service.

SCH Scheduling.

SDN Software Defined Networking.

ShortProc Shortest process time.

SLA Service Level Agreement.

SO Service Orchestration.

SR Spawn Rate.

SRV Survivability.

Subs Subscriptions.

TotalProc Total process time.

TRAN Transportation Layer.

TTL Time to Live.

UML Unified Modelling Language.

VANETS Vehicle Area Networks.

VI Virtual Infrastructure.

VM Virtual Machine.

VMM Virtual Machine Monitor.

VN Virtual Networking.

VNet Virtual Network.

VS Virtual Storage.

WSN Wireless Sensor Networks.

XMPP Extensible Messaging and Presence Protocol.

Page xxii

”The world is either the effect of contrivance or chance; if the latter, it is a world for

all that, that is to say, it is a regular and beautiful structure. Now can any man

discover symmetry in his own shape, and yet take the universe for a heap of disorder?

I say the universe, in which the very discord and confusion of the elements settles into

harmony and order.”

– Marcus Aurelius

Chapter 1

Introduction

1.1 Problem Definition

The ever increasing societal dependence upon information systems has catalysed the drive towards

novel computer service delivery models. Traditionally, users of computer equipment would purchase,

maintain and upgrade their own. However, more recently, the growing complexity of computer tech-

nologies and systems in tandem with economic and environmental factors have driven the creation of

the cloud-computing paradigm. The notion of allowing resources to be provisioned from a 3rd party

who will own, maintain, and support them (Mell & Grance 2011). Initially a business model to allow

owner’s of pooled resources to share their spare capacity with the public, cloud-computing rapidly

grew into the foremost computing delivery paradigm of choice. Benefits include: increased economy

due to lack of software licenses, enhanced staff expertise, hardware costs, security and maintainability

from trusted expertise, economical and environmentally friendly resource management, on-demand

resource scalability and more (Vu et al. 2020).

Cloud computing’s service-oriented perspective focuses upon the Service Level Agreement (SLA)

which defines the constraints in which the service must be delivered according to the costs agreed

by the Cloud Service Provider (CSP) and the user who provisions them (Mell & Grance 2011). For

example an SLA may dictate that a specific application functionality will be available to a specific

quantity of users in a geographical location with a specific up time percentage, at a particular speed

and latency, whilst supporting certain interfaces. Failure to meet the SLA would be in breach of a

business contract and thus not reflect positively upon the CSP (Sun et al. 2019).

Modern applications are complex, composed of multiple layers, operating in a modular manner.

An example application may involve the integration of a number of services : e.g. back-end data stor-

age, data processing and analytics (business-logic), data-presentation and web services. Moreover, to

accommodate management processes such as software updates and scalability, there has been a trend

for cloud service architectures towards microservices. Where large numbers of loosely coupled small

1

Chapter 1. Introduction

services connect together to deliver a complete service (Gan et al. 2019). Therefore the success of

an application’s service delivery, from the user’s perspective, will require the successful integration

of a number of potentially disparate components, each with their own underlying requirements. To

accommodate this, at scale, for multiple simultaneously running applications, cloud data-centre man-

agement relies upon autonomic resource management and mass resource redundancy to ensure these

applications are delivered, particularly in the case of inevitable hardware failures (Colman-Meixner

et al. 2016) (Panwar & Supriya 2019) . This ensures that cloud services must be delivered resiliently.

Where Laprie (2005) describes resilience as ”the persistence of service delivery that can justifiably

be trusted, when facing changes”. While Sterbenz et al. (2010) suggests ”the ability of the network

to provide and maintain an acceptable level of service in the face of various faults and challenges to

normal operation”. Within this context, a service could be considered to be executed resiliently if all

required sub-components are made available in order to enable the total execution of the service, de-

spite changes in the underlying environment. Therefore, the goal of a resilient service delivery platform

would be to maximise the availability of these service sub-components in the presence of perturba-

tions. The variation in this availability between sub-components could be considered as connectedness.

Where a fully connected application is one where all sub-components can currently communicate with

each other, thus enabling the application to successfully execute.

However, not all applications are created equally. Advances in energy efficient microprocessors and

internet connectivity, combined with both an industrial, societal and commercial demand for ubiqui-

tous computing devices has driven the creation of new business markets. The novel paradigm: the

Internet of Things (IoT) where everyday objects are induced with sensors and actuators to enable their

greater observation and influence upon the physical world has birthed the creation of smart-objects

(Al-Fuqaha et al. 2015a). They may be integrated into buildings (Metallidou et al. 2020) to create

smart-homes and smart-factories (Oztemel 2019), or aggregated together to create smart-vehicles. At

scale these components can provide management of transport, waste, crime and energy in smart-cities

(Ismagilova et al. 2019). While these applications still rely upon the supporting cloud service deliv-

ery infrastructure, they have drastically different characteristics from the conventional. The mobile

and possibly hostile environments they operate within decree the use of wireless communications.

This in turn creates further constraints for energy consumption and communication activity. To

complicate matters further, many of these use-cases, such as autonomous vehicles, or manufacturing,

require low-latency responses from their back-end application (Bellavista et al. 2019a). The addition

of safety-critical operation requirements ensures that cloud service delivery infrastructures hosted in

remote geographical locations do not offer data processing responses within the latency constraints

of these safety critical applications (Desai & Punnekkat 2019). This fundamentally pushes the data

processing closer to the end-devices, at the edge of the network or the devices themselves (Bellavista

et al. 2019b).

Page 2

Chapter 1. Introduction

Unfortunately the applications which were currently being hosted within resilient data-centres are

now found operating on decentralised architectures, distributed across resource constrained devices,

potentially operating upon mobile nodes and across wireless links. This has driven an even stronger

requirement for resilient cloud service delivery, although now it operates upon hostile decentralised

environments. This is also referred to as decentralised cloud computing (Ferrer et al. 2019).

Three main techniques for providing resilience to systems are redundancy, diversity, and autonomic

management (Maruyama 2013). Additionally, introducing decentralisation minimises any central weak

point and should be employed wherever possible. However providing resilience comes at an expense

of both resource cost, and code/system complexity. Providing redundancy is the simplest form of

resilience, but increased in a linear manner with the additional resource cost. Providing stronger

techniques such as diversity come at the cost of complexity and sometimes additional resource cost also.

Increasing all of these attributes has negative effects upon already resource constrained environments

such as those within IoT and edge networks. Additionally, an increase in resources or software/system

complexity also increases the attack surface, creating more places for components to fail or attackers

to target.

For an extensive survey of the resilience techniques in cloud computing, the reader is directed

to Appendix B - Paper 1. In summary, the requirements for providing resilient service delivery are

defined below:

• Decentralisation is crucial. System centralisation or even hierarchy presents central weak

points which may be exploited through subversion or component/system failure. Many systems,

such as Peer-to-Peer (P2P) networks remain resilient through reducing or eliminating centrali-

sation. Therefore in order to remain resilient, decentralised cloud services should operate in a

decentralised or distributed architecture to minimise this central point of failure.

• Autonomic management is an enabling factor for decentralisation, to reduce centralised

control. Additionally, self-management enables a system to adapt to a variety of changes and

thus makes them inherently resilient. Selected autonomic processes will need to focus on service

management and operate with minimal overhead.

• Redundancy is a critical component of resilience. Therefore, the ability to provide it should

be universal. This means the capacity for service components or resources to scale and integrate

as needed so that replicas will always exist to replace those failed or subverted. This will occur

without the constraints of the resources available at the hostile IoT/edge networks.

• Diversity is another common technique for resilience. While simple characteristics such as

diverse hardware may be included by default in decentralised architectures they may be difficult

to control. As with redundancy, the focus of diversity should therefore be on the distribution of

service components.

Page 3

Chapter 1. Introduction

Autonomic management of resources is a common technique for both cloud resource and service

management in addition to application to a variety of decentralised processes (Vu et al. 2020) They

enable system self-management characteristics which are inherently resilient due to their self-adaptive

nature. This comes at the expense of additional code complexity, which may pose difficulties for

development and maintenance. To mitigate this, developers of autonomic solutions often take inspi-

ration from biology. One such bio-inspired autonomic architecture, embryonics, has been shown to be

particularly adept at self-healing (Benkhelifa et al. 2013) (Mange et al. 1998) whilst having an affinity

for distributed data processing. This work selects embryonics as a potential architectural solution for

providing resilient service delivery in hostile edge network environments.

An investigation will determine its efficacy in providing cloud service functionality in constrained

environments. It will also seek to understand practical implications such as suitability for different

platforms and the bounds of successful application delivery under different resilience requirements.

Finally, optimal parameters according to use-case and methods of measuring the system’s state and

resilience will be determined.

1.2 Aim, Objectives and Research Methods

The aim of this thesis is to test the hypothesis ”A P2P architecture, with characteristics inspired

by embryonic development, will provide persistent decentralised cloud service delivery in the face

of system perturbations.” This aim will be fulfilled through achieving the following objectives and

corresponding deliverables:

1. To conduct a literature survey which covers the area of service resilience for decentralised cloud

computing. (Deliverable 1 - Literature Survey)

2. To model the characteristics of the chosen embryonic development process and develop a P2P

service delivery architecture in its likeness. This architecture should be suitable for constrained

and hostile decentralised cloud computing environments. (Deliverable 2 - Embryonic Decen-

tralised Cloud Model)

3. To implement the proposed architecture and evaluate it’s ability to provide persistent service

delivery. (Deliverable 3 - Embryonic Cloud Implementation)

4. To determine the constraints of the system to understand the suitability of different applications

and scenarios. (Deliverable 4 - A data set and analysis detailing the system constraints)

5. To investigate different metrics for analysing the embryonic system’s state for inferring informa-

tion about its resilience. (Deliverable 5 - A data set and a proposal for quantitative measurement

of the proposed system)

Page 4

Chapter 1. Introduction

6. To evaluate the resilience of the system using the predetermined metrics and employ as a basis

for comparison. (Deliverable 6 - A data set with corresponding analysis of the embryonic system’s

resilience)

Figure 1.1 presents an overview of the methodology used to achieve these objectives. Firstly a

literature review covers 3 areas: the IoT whose emerging use-cases and applications require resilient

service delivery, cloud computing and its novel decentralised paradigms which provide the service

delivery, and finally the state-of-the-art in resilience techniques for decentralised cloud computing.

This also includes a review of resilience metrics to be employed later for evaluation of the system.

Next, a model for resilient cloud service delivery is derived through a mapping of resilient de-

centralised cloud requirements and embryonic characteristics. This is then validated qualitatively,

including through use-cases. The self-healing characteristics of embryonic development, derived from

cellular differentiation and division is then simulated through two complementary means. The first is

a probabilistic model (for defining initial constraints) while the second is a Cellular Automata (CA)

based simulation which is used to examine the resilience of the model. The results of this analysis

inform the later development of characteristics enabling resilience.

Next, software engineering processes utilising Unified Modelling Language (UML) and test-driven

development realise the practical implementation of a proof-of-concept of the embryonic cloud service

delivery system. This is then validated against its requirements. In the next section, batches of

tests are conducted to develop a dataset which can be employed to analyse the service performance

characteristics of the proof-of-concept, in addition to an analysis of its resilience during different

system states. These two analyses will feed into an overall qualitative and quantitative evaluation of

the proof-of-concept embryonic system.

1.3 Scope of the Thesis

This research designs and implements a resilient decentralised cloud service delivery architecture,

modelled on the self-healing characteristics of embryonic development.

Traditional cloud computing operates upon data-centres employing vast resources which are re-

silient by nature and therefore there is a low need for novel resilient service delivery solutions there.

Emerging use cases for cloud service delivery operate upon decentralised networks (e.g. fog comput-

ing) with low resources situated at the edge of the network or even deployed across the end-devices

themselves. The architecture within this work is specifically for deployment in these decentralised

cloud environments which will see high-levels of node churn. For example, this could be through

continued network link or system failure/subversion.

Resilience techniques can be found employed on any networking or system layer. For example,

numerous solutions exist within hostile networking environments to provide routing and networking

Page 5

Chapter 1. Introduction

Figure 1.1: Research Methodology Process
Page 6

Chapter 1. Introduction

protocols which are resilient. However, the focus of the resilience enabling characteristics in this

work is purely on the service-layer. I.e. the availability of sub-components of functionality which will

collectively contribute to the delivery of a service. A platform which delivers services resiliently should

be successful operating upon a variety of lower level networking protocols and system architectures.

This can increase the resilience of the system due to diverse underlying architectures although it will

also increase the complexity of the system, which should be managed.

In evaluating the resilience of the system, a number of resilience metrics, from literature, are

employed to develop a technique for determining the current system’s state and use as a basis for

comparing with the resilience of other systems. One of the metrics in particular, assortativity, was

successfully employed in this manner. However the exact method developed is only for use with the

embryonic system and, as yet, cannot be deployed for resilience analysis of other systems. Although

the output of this method is easily employed for comparison.

1.4 Resources and Tools

To achieve the objectives, numerous resources and tools are employed. This work relied heavily on

custom developed code and therefore the majority of tools employed are 3rd party software libraries.

All code was developed and executed on an i5 Linux Laptop with 4GB of ram. 1

• Literature - All Thesis - To manage the organisation and review of literature on the 4 topics

of IoT, Cloud Computing and Biologically inspired autonomic methods, a number of tools are

employed. Bibtex reference management software tools (Fenn 2006) are used to store, organise

and search references of academic papers. Online resources including: Google Scholar, IEEE

Explore, ACM Computing Library and Science Direct are used to search for suitable academic

work.

• Modelling and Diagramming - Chapters 1 to 6 - to aid in understanding and representing

complex conceptual topics, visual representations were essential. A number of different tools are

used. Diagrams.net2 was employed for the vast majority of diagrams for visual representation

of concepts, in addition to UML based software engineering diagrams. Data representation in

the form of different graphs were developed predominately using R - the statistical package3 but

also using Libre Office Calc/Microsoft Excel4.

• Simulation Tools - Chapter 4 - Two different simulations are conducted, one stochastic based

and the other a CA. Both of these simulations are written from scratch using Python 5 while a

1All code and datasets developed for this thesis can be found at : https://github.com/tomwelsh/embryonic-cloud
2https://apps.diagrams.net - Previously draw.io
3https://www.r-project.org/
4https://www.libreoffice.org/
5https://www.python.org/

Page 7

Chapter 1. Introduction

Graphical User Interface (GUI) for the Cellular Automata simulation was developed using the

Gnome Tool Kit (GTK)6 with Python Bindings (PyGTK). Data analysis of both simulations is

conducted using a combination of R Studio and Libre Office Calc/Microsoft Excel.

• Prototype Development and Validation - Chapter 5 - The embryonic development pro-

totype is written in Python 3. It relies on the ZeroMQ library which is employed for high

performance, brokerless distributed message passing (Hintjens 2013). For system validation,

a custom back end logging environment is employed using a custom written ZeroMQ based

message sink which stores all of the system and test communication activity in a MYSQL

database7. This database is accessed through a custom developed RESTFul web service. A

custom developed web GUI written using the Python Flask Library8 then allows presentation

and examination of a current, or historically run system for validation and experimentation

purposes. The alchemy.js9 library is employed for visualation of discrete graph structures, while

bootstrap.js10 and jquery.js11 were employed for presentation and data retrieval.

• System Analysis and Evaluation - Chapter 6 - Experimentation and analysis of the re-

silience and performance characteristics of the embyronic architecture used the prototype imple-

mentation developed in chapter 5. However to perform experimentation and analysis, Python

scripts were employed to execute tests with different parameters. After each test, a timeline

of activity is created using custom developed Python scripts using the networkx library12 for

graph analysis, the numpy library13 for mathematical operations and matplotlib library14 for

images. This tool creates a snapshot everytime the network changes and uses the aforementioned

libraries, in addition to custom algorithms, to analyse different resilience and performance cri-

teria. Data analysis was conducted entirely using R statistics package.

1.5 Structure of the Thesis

This thesis is structured as follows: Chapter 2 provides a literature review for this work. Firstly

an overview of IoT technologies and their resilience challenges. It then discusses cloud computing

and the need for resilient service delivery close to the IoT devices. Next, it presents the state-of-

the-art in resilience techniques for decentralised cloud computing. Chapter 3 derives an embryonic

decentralised cloud model and evaluates it against resilience and functional service requirements.

6https://www.gtk.org/
7https://www.mysql.com/
8https://flask.palletsprojects.com/en/1.1.x/
9https://graphalchemist.github.io/Alchemy//

10https://getbootstrap.com/
11https://api.jquery.com/
12https://networkx.github.io/
13https://numpy.org/
14https://matplotlib.org/

Page 8

Chapter 1. Introduction

Chapter 4 simulates the embryonic cloud model using CA to evaluate its efficacy in meeting the

resilience objectives. Chapter 5 presents a software engineered proof-of-concept implementation with

validation for the embryonic architecture. Chapter 6 presents the results and analysis of a dataset

consisting of the performance of the proof-of-concept, which is used to determine a method for its

resilience measurement. Finally, chapter 7 concludes the work.

Page 9

Chapter 2

Literature Review

2.1 Introduction

The literature review presented in this chapter lays the background research for the thesis and high-

lights the gap in literature and motivation for this work. Firstly the scope of this work is discussed

through an overview of IoT technologies which have a high requirement for resilient data processing.

Next discussed are the variety of cloud computing models, whose architectures typically delivers the

services for IoT. Next, resilience techniques for decentralised cloud computing are discussed for their

suitability in enabling the persistent and trusted delivery of services. Finally a discussion of current

work within the area of resilient service delivery for decentralised cloud computing highlights gaps in

the area of bio-inspired autonomic solutions; deriving a motivation for this work.

2.2 The Internet of Things

The Internet-of-Things (IoT) is a paradigm concerned with building a pervasive environment of smart

devices (or things), seeking to enhance everyday life through ubiquitous connectivity (Atzori et al.

2010). This is accomplished via the interconnectivity of sensors and actuators, in order to facilitate

smart decisions made via analysis of an inherent wealth of data. The IoT technologies are expected to

offer unprecedented opportunities to interconnect human-beings. Additionally, the proposed platform

for the future IoT will be through Machine-to-Machine (M2M) communications, whereby sensors and

networks allow all ‘things’ to communicate directly with each other to share vital information. This

will allow us to have a truly instrumented universe where accurate data is radially available to inform

optimal decision making.

The IoT is typically considered to have partially evolved from the implementation of Radio Fre-

quency Identification Devices (RFID) (Atzori et al. 2010). RFID consists of very low power, wireless

tags used to electronically identify physical objects and animals. Whilst allowing the wireless intel-

10

Chapter 2. Literature Review

ligent tracking of objects within confined spaces, RFID tags are passive and unintelligent; features

disallowing the ability to log and understand their environment (Kortuem et al. 2010); preventing col-

laboration with other devices and generally stunting the evolution and further analysis of the inherent

wealth of data. With the realisation that the interconnection of these devices, coupled with intelligent

data analytics, may enhance services and facilities in the physical world; such devices evolved from

being passive objects to interactive, cooperative and smart devices. Although, still retaining the orig-

inal mantra of low-power and wireless communication, these devices combine sensors with RFID tags

to produce wireless devices capable of sensing their environment and thus producing dynamic data.

However due to the low power nature of these devices, their range is limited. Therefore, by harnessing

the enabling technologies from wireless computing networks, the capabilities to produce wide-scale

sensor networks were achieved (Atzori et al. 2010). Also, in order to economise on this sensor usage, it

is important to implement these networks in an efficient manner, which is accomplished by applying

ad-hoc and distributed networking protocols.

Despite the growing adoption and interest in IoT systems, the term IoT merely describes the idea

of global connectivity among smart devices, i.e. it does not specifically define the way in which these

devices should communicate. Therefore IoT might best be considered an umbrella term encompassing

a variety of technologies and standards, both hardware and software, and does not denote any par-

ticular standardisation. IoT networks typically consist of heterogeneous, intercommunicating devices

Or ”things” and their networks.

2.2.1 Enabling Technologies

IoT networks are (in the majority) driven by and built upon wireless networking specifications. As

stated previously, RFID is one of the founding hardware types for IoT devices. Other low-power

wireless technologies used include Wireless Sensor Networks (WSNs), Near Field Communication

(NFC), Zigbee, 6LoWPAN etc. most of which are considered personal area network technologies due

to their low range and bandwidth. Networks may also be constructed upon slightly longer range such

as Wi-Fi and Bluetooth (Zanella et al. 2014). In addition, IoT devices may utilize wide area protocols

(Ali et al. 2017) such as General Packet Radio Service (GPRS), 3G, 4G, WiMax etc. or bridging with

wired protocols to facilitate access to the internet and other external networks (Borgia 2014) Whilst

these protocols and technologies are not specifically designed for IoT, their integration and potential

use is illustrative of the array of protocols which will require consideration. An extensive survey of

these technologies is given by Al-Fuqaha et al. (2015a) and Al-Fuqaha et al. (2015b).

IoT may be thought of as a 3-layer model. Consisting of the perception, transportation and

application stages (Borgia 2014) (Frustaci et al. 2017). Where the perception stage consists of the

sensing technologies such as RFID and Global Positioning System (GPS) and short range transmission

such as Bluetooth and 802.15.4. The transportation stage consists of longer range communication such

Page 11

Chapter 2. Literature Review

as Internet Protocol (IP), 802.3, 4g, etc. Whilst the final application phase, consists of platforms such

as cloud architectures for data management and actuators e.g. traffic management systems.

Due to the resource constraints of the devices, some protocols have been designed specifically

to support low power hardware. For example IEEE 802.15.4 is a low power physical and media

access specification for resource constrained wireless hardware, Zigbee and 6LoWPAN are both built

upon this specification (Gutierrez et al. 2001). With networking protocol packets being mostly too

large for constrained resources, 6LoWPAN was developed as a low resource replacement. Specifically

designed to connect constrained devices to the internet; 6LoWPAN provides compression in order to

accommodate IPv6 over IEEE 802.15.4 or other low power physical and media access protocols. In the

literature, 6LoWPAN is often discussed with the Routing Protocol for Low-Power and Lossy Networks

(RPL), a multi-functional routing protocol for constrained devices, where both are considered the most

common IoT based networking set-ups (Raza et al. 2013).

Within security specifically, this lack of standardisation creates issues when attempting to develop

generalised research solutions to determine exactly what must be secured. Therefore, this section

described an overview of the characteristics of IoT technologies; including the networking technologies

used and the specific device features. IoT based networking stacks may be considered as a typical

layered networking stack; with each layer being dependent upon the other.

As IoT based networks may still be quite diverse, it is important to consider all types of IoT

protocols. A non-exhaustive overview of protocols and standards which may be seen in current IoT

systems are depicted in Table 2.1. For a more comprehensive coverage of IoT enabling protocols the

author is directed to the work of Borgia (2014).

2.2.2 Applications

Applications in IoT are commonly known within the home such as smart lighting and smart appliances

(Fridges, toasters, etc.). As the technology progresses these applications steadily integrate to become

larger smart homes with integrated intelligent security, power, environmental controls etc. (Hassija

et al. 2019)

As the need for a globalised access to networks of heterogeneous device types was realised in all

facets of society, the IoT was born as a vision of global interconnectivity where embedded devices

and sensors facilitate a new age where internet connected devices improve our everyday lives. This is

famed to be accomplished via the mass collection and analysis of data, however with this enhanced

interconnectivity comes further issues.

Moving out of the home, these technologies integrate with more serious concerns for security and

energy management in smart buildings (Hassija et al. 2019). On a wider scale the introduction of IoT

into public applications such as transportation, crime, and waste gives rise to smart cities (Gharaibeh

et al. 2017), and smart energy (Sun et al. 2015) where the services delivered affect large groups of

Page 12

Chapter 2. Literature Review

Name Layer Description

COAP Application Constrained Application Protocol

HTTP Application HyperText Transport Protocol

MQTT Application MQ Telemetry Transport

XMPP Application Extensible Messaging and Presence Proto-

col

REST Application Representational State Transfer

IPV4/6 Network Internet Protocol 4 / 6

RPL Network Routing Protocol for Low power and Lossy

Networks

6LoWPAN Network IPv6 over Low power Wireless Personal

Area Networks

802.15.x Link / Physical IEEE Wireless Personal Network Stan-

dards

802.11 Link / Physical IEEE Wireless Local Area Network Stan-

dards

802.3 Link / Physical IEEE Local Area Network Standards

2G/3G/4G/5G Link / Physical 2nd-5th Generation Mobile Telephony

Standards

RFID Link / Physical Radio-frequency identification

NFC Link / Physical Near Field Communication

WiMax Link / Physical Broadband Wireless Metropolitan Area

Networks

ZigBee Link / Physical High-level Wireless Personal Area Network

Standard

GPS Other Global Positioning System

Table 2.1: A non-exhaustive list of standards and protocols used in IoT

Page 13

Chapter 2. Literature Review

Networking Layer Attack Facilitating Features

Physical External deployment, open wireless medium, em-

bedded design, constrained resources

Link-Layer Contention based access / collision avoidance

Network Multi-hop routing, decentralization, broadcast

transmissions

Application Insecure-lower levels, lack of encryption

Table 2.2: Network Layer Insecurities

people. Furthermore, due to the popularity of IoT, many safety-critical applications are now deployed

on the IoT technologies described above. The term Industrial IoT (IIoT) refers to the application of

IoT technologies within industrial settings. This includes the concept of smart factors, where IIoT

technologies autonomously manage machinery and products (Xu et al. 2018). Failures within the

system can be extremely costly to a business and therefore they come with enhanced requirements for

safety, security, and resilience.

2.2.3 Security and Resilience Challenges in IoT

Security within computer networks has always been a major issue. With sensor based networks being

used in a variety of critical infrastructures and applications, the need to secure them is arguably

greater than ever (Hassija et al. 2019). With the introduction of data protection laws decreeing the

responsible collection and storage of data (Seo et al. 2017); coupled with issues relating to privacy of

the individual and above, the secure handling of data contained within IoT based networks is vital to

everyone. In addition, digital forensics is becoming an essential tool for the police as well as anyone

wishing to protect their own legal interests. Therefore the correct logging of computer network activity

is a must. IoT is an emerging technology, famed with being able to change and improve societal life,

as such its security is a crucial issue.

Therefore, due to the heavy data collection and processing aspects of IoT, it is particularly prevalent

to ensure data security (Availability, Integrity, Confidentiality). Types of attacks on data may be

classified as being passive or active (Modares et al. 2011). While passive attacks are concerned

with the theft of data or privacy subversion, active attacks are concerned with the destruction, or

subversion of data within the network. Table 2.2 lists the features at each networking layer which

have been known to create security related issues within IoT networks.

A number of inherent characteristics of IoT cause security issues to be prevalent and varied from

conventional security issues. These mostly stem from the perception layer, due to the constrained

nature of these devices. According to Trappe et al. (2015), all of these security issues could be

Page 14

Chapter 2. Literature Review

thought of an extension of device power limitations. Something which conventional security solutions

do not suffer from due to their non-mobile nature, allowing them to draw from fixed (and potentially

unlimited) energy sources. As a unconstrained energy source is able to support large amounts of

memory and processing, Cryptographic principles, which are the foundation of information security,

require considerable processing and memory for key storage and processing in order for them to be

effective (Trappe et al. 2015).

However, technology and implementation related issues are not the only area which causes IoT

devices to be insecure. Profit-driven business and a novel, competitive market causes device manufac-

turers to consider security as an afterthought, if at all (Frustaci et al. 2017). Due to the predominate

sensing nature of the devices, theft of data is considered the largest risk. Unfortunately, the data

is often seen to be too trivial for concern. However this tends to be far from the truth e.g. Smart

Meters can betray privacy and even physical security breaches through the leaking of data (Asghar

et al. 2017). A deeper concern is with smart cities, where data privacy issues may cause ”an unequal

society” through discrimination (Eckhoff & Wagner 2017).

Whilst data security aspects are an essential consideration, the rise of IoT in safety critical appli-

cations means that ensuring that the services that they are part of operate resiliently is vital. The

networking features of IoT listed in Table 2.1 all require networking solutions for resilience. However,

many of the complex smart services discussed which employ IoT networks have low-latency require-

ments (Bellavista et al. 2019a). Low latency coupled with data security and safety critical applications

strengthens this requirement even further. While IoT technologies are adept at sensing and actuat-

ing upon data, their inherently constrained nature used to reduce power consumption makes them

unsuitable for heavy data processing. The same constraints that reduce their capacity to provide

strong security mechanisms reduce their feature set in other means. Additionally, not only do these

constraints ensure they lack the ability to provide data processing functionality, they also lack the

ability of centralised and unconstrained resources to provide service management, orchestration and

scheduling facilities (Al-Fuqaha et al. 2015b). Finally, the open wireless mediums and mobile nature

of nodes ensures they are susceptible to partial link failure, requiring network protocols to survive

non-deterministic and hostile environmental conditions. While these have developed over the years

(Paradis & Han 2007) to be resilient in terms of maintaining network communication (Al-Fuqaha

et al. 2015b), they can be costly in terms of energy usage.

Therefore IoT applications depend upon a supporting back-end in which to store and process data

to provide intelligence to their services. The foremost delivery model for IoT is cloud computing

(Biswas & Giaffreda 2014) (Al-Fuqaha et al. 2015b) and therefore cloud computing provides resilience

to the IoT service by providing additional resources in a stable and persistent manner. It also creates

another layer in which to provide security and resilience services.

Page 15

Chapter 2. Literature Review

Figure 2.1: Cloud data centre layers

2.3 Cloud Service Delivery

Cloud computing is a service-driven computing model whereby an end-user will provision and use

computing resources from a Cloud Service Provider (CSP) in line with an agreed upon Service Level

Agreement (SLA). The service hosted by the CSP could take many forms. Consisting of networking,

storage or computational components (Mell & Grance 2011). Similar to traditional computing envi-

ronments, cloud environments are multi-layered. The composition differs depending upon the CSP

infrastructure, the application’s use-case or the particular model used for analysis.

A typical cloud datacentre (DC) (Figure 2.1) would consist of the underlying physical infras-

tructure: servers, storage arrays and networking hardware. Virtualised Infrastructure (VI), a pool

of resources: virtual machines (VMs) and/or containers running atop of virtual machine monitors

(VMM)s with Virtual Storage (VS) devices and Virtual Networks (VNs). These resources are sit-

uated upon the Physical Infrastructure (PI) hardware, connected by Physical Networking (PN). A

management layer coordinates physical Resource Management (RM) and the service life cycle. Per-

formance is managed through distributing services using Load Balancing (LB). Services are created

and managed using Service Orchestration (SO) and executed using Service Scheduling (SCH). Further

service-oriented capabilities such as security are also provided.

In the NIST definition for cloud computing (Mell & Grance 2011) the prominent service delivery

models are defined as a layered architecture:

• SaaS - Software as a Service - the CSP provides the software application only. The end-user

will use the application and provide some configuration/customisation.

• PaaS - Platform as a Service - the CSP provides a programming interface typically with logical

storage, networking etc. The user end-user must program their own application logic.

Page 16

Chapter 2. Literature Review

• IaaS - Infrastructure as a Service - the CSP provides only the infrastructure, such as virtual

machines, virtual networking etc. The user must configure, install and maintain their own

systems.

Within each model, the level of responsibilities (for the management/configuration/security etc.)

of the service being delivered will vary between the Cloud Service Provider (CSP) and the end-user

who provisions the service. This division of responsibility is an important concept to be aware of within

the context of resilient services, as the level of control given to the management and configuration of

the service may determine the user’s abilities to affect its resilience.

Within the datacentre, these models and roles fit well. However services are frequently being found

away from the datacentre. A number of emerging use-cases require data processing to be closer to the

end device, at the edge of the network. In tandem with new technologies and use-cases, new forms

of cloud computing have therefore developed to accommodate emerging paradigms such as the IoT

and big data. These involve distributing the cloud services across devices or network architectures

dissimilar to the typical DC only model. Combining these two models gives a distinction between

centralised cloud computing, which operates from datacentres, and decentralised cloud computing

(Figure 2.2) where cloud services are delivered across more constrained devices closer to, or at, the

network edge (Ferrer et al. 2019) (Appendix B Paper 1).

2.3.1 Decentralised Cloud Computing

A variety of different architectural models which push the resources to the network edge are employed

in order to reduce latency and enable communication in real-time (Bilal et al. 2018). Despite their

differences, these variants all largely attempt to accomplish the same goal. What varies is their

use-case, and the underlying technologies in which the new processing occurs (Baktir et al. 2017).

They have evolved to provide data processing for end-devices to mitigate latency issues resulting from

processing in the DC hosted clouds.

A summary of these emerging architectural cloud models are below:

• Fog Computing - seen first as an extension to the cloud but now as complimentary or indepen-

dent from it. It involves a hierarchy of services where some processing/storage is executed closer

to the edge of the network whilst analytics can occur in the cloud. This can occur in small-scale

clouds but also on a variety of different hardware such as base stations, routing hardware, etc.

(Roman et al. 2018) (Mouradian et al. 2018) (Bilal et al. 2018) (Pan & McElhannon 2018)

• Mobile Cloud Computing (MCC) - the concept of resource augmentation from a mobile

to a remote device in order to maximise resource efficiency and power consumption. Originally

intended for centralised cloud DCs, the potential for processing at the edge and on other mobile

devices is now seeing interest (Wang et al. 2017) (Bilal et al. 2018) (Roman et al. 2018).

Page 17

Chapter 2. Literature Review

Figure 2.2: Centralised and Decentralised Cloud Layers

• Cloudlets - involve the deployment of small clouds, used to reduce short falls in mobile cloud

computing (Bilal et al. 2018) (Ai et al. 2018) .

• Edge Computing EC and Mobile Edge Computing (MEC) - provides cloud services at

the edge of the network such as gateway devices or even the end-user devices. This increases

performance through latency reduction, traffic optimisation and enhanced services e.g. location-

driven. MEC specifically operates upon cellular networks such as 5G nodes (Roman et al. 2018)

(Mach & Becvar 2017) (Mao et al. 2017). (Pan & McElhannon 2018) (Bilal et al. 2018) (Wang

et al. 2017) .

• Mist Computing - pushes data processing services as far as possible to the sensor and actuator

devices (Preden et al. 2015) (Vasconcelos et al. 2018)

These definitions illustrate the variety of related disciplines which have developed to accommodate

different service delivery use-cases. While many still maintain characteristics of cloud computing,

specifically shared service delivery models, their inherent characteristics such as a resource constrained

nature, wireless mediums, and mobile nodes prevent feature rich applications from being processed,

although the latency issues have been solved. The goal of these architectural models, in essence, is to

Page 18

Chapter 2. Literature Review

Figure 2.3: Centralised and decentralised cloud computing model. Illustrating the relationship and

overlap between different cloud models and architectural components. MEC=Mobile Edge Computing,

MCC=Mobile Cloud Computing

permit services to be delivered in environments which are considered to be more resource constrained

and non-deterministic than those of cloud services in a DC. To accomplish this, they employ protocols

for communication, data storage, and processing which are more robust in terms of failure and latency.

Figure 2.3 illustrates the comparison in component use and the way in which emerging cloud models

are distributed across the underlying architecture. The constrained resource nature of these devices

ensures their feature set is drastically reduced and security issues are greater, when compared to a

resource rich centralised cloud. Levering Fog computing nodes as a data processing platform for IoT

is discussed in a number of places (Baccarelli et al. 2017) with use-cases such as energy management

(Faruque & Vatanparvar 2016), smart-cities (Lyu et al. 2018), they benefit from only simple data

pre-processing on the nodes closest to the edge. Additionally, to improve the chance of successful

service delivery, particularly in more hostile open environments, these techniques require techniques

to further enhance their security and resilience.

Page 19

Chapter 2. Literature Review

2.3.2 Applications for Resilient Decentralised Processing

A number of use-cases are highlighted within the application of Industrial IoT (Aazam et al. 2018).

Mining (Singh et al. 2018), transportation, crime (Neto et al. 2018) and agriculture (Heble et al.

2018) are examples where large scale IoT systems may operate in environments with changing and

non-deterministic environmental conditions in addition to device mobility.

There are many types of networks which must persist in their service delivery yet their underly-

ing environmental conditions are non-deterministic, resulting in Intermittently Connected Networks.

Examples of these include: Mobile Ad-hoc networks, such as with mobile devices or vehicle communi-

cations, wireless sensor networks used for environmental monitoring often in extreme conditions and

Exotic Media Networks in highly disruptive locations such as space. Most solutions rely on employing

delay or disruption tolerant networking approaches such as store and forward, parallel routing, error

correction etc. (Khabbaz et al. 2012).

Networking solutions are not compatible with all types of harsh environments. Some use-cases

involve the destruction of nodes such as adversarial attacks in warfare (Amin et al. 2015) or node

subversion during cyber-attack (Makhdoom et al. 2018). This increase in use-cases integrated with

Cyber Physical Systems (CPS) ensures that breaks in service could be catastrophic, with the potential

for huge financial loss, or even loss of life. This safety-critical motivation and complexity of security

issues drives a focus upon services to be delivered resiliently, where the service delivery must persist

in the face of internal and external threats.

2.4 Resilient Techniques for Cloud Computing

Due to the constrained nature of IoT devices, data processing, storage and representation must be

provided by a third party platform, typically the cloud. However, the high latency, non-deterministic

wireless mediums and high volume of data make this relationship difficult. Decentralised cloud com-

puting (e.g. Fog, Edge, Mobile Cloud etc.) is the medium in which cloud services, mostly temporary

data processing, are provided closer to the edge of the network and/or distributed across end devices.

Processing data in this form has a requirement for resilience due to device mobility, open wireless

mediums, constrained device resources, heterogeneous device types, cyber-physical systems and hos-

tile environmental conditions. This resilience may be accomplished through a number of different and

complementary techniques.

The Resilinets model (figure 2.4 proposed by Sterbenz et al. (2010)) is often refereed to within

resilience literature and helps to classify resilience techniques in terms of their disciplines. The authors

provide a comprehensive analysis of resilience, defining it as superset of a number of sub-disciplines

with two major sets consisting of challenge tolerance and trustworthiness. The authors explain that

some of these disciplines are means and others are quantifications of resilience. Taking this clas-

Page 20

Chapter 2. Literature Review

Figure 2.4: The resilinets model of resilience disciplines (Sterbenz et al. 2010)

sification further, figure 2.5 classifies these disciplines into means or quantifications to more easily

determine their influence in work to be surveyed.

Page 21

C
h

ap
ter

2.
L

iteratu
re

R
ev

iew

Figure 2.5: Resilience Disciplines

P
age

22

Chapter 2. Literature Review

A number of resilience techniques exist for resilient cloud computing. Appendix B - P1 presents

a comprehensive survey of these techniques across all cloud layers. It highlights 3 main categories:

redundancy, diversity, and autonomic management. A summary is found below:

2.4.1 Redundancy

Providing redundancy is a simple and effective technique for resilience. It works through providing

sufficient back up quantities of any resource such that if the resource being used failed, is subverted or is

not currently available, the redundant copy of the resource can be employed in its stead. Redundancy

can be applied almost anywhere, it can start at the physical layer by having multiple cloud datacentres

(Goścień & Walkowiak 2017), or through duplicate network hardware and links (Luo & Liu 2011),

or even duplicate storage and servers. Virtual resources are replicated in a similar manner, although

given the inherent functionality of virtual infrastructure the resilience techniques are more varied and

some optimisation is given. For example, snapshots of instances of virtual machines or containers can

be periodically taken and reverted to when necessary (Lombardi et al. 2010)(Jhawar & Piuri 2013).

Similarly, virtual storage replication can take advantage of coding techniques to reduce space (Jaiswal

et al. 2014). Redundancy techniques are a wholly effective solution to resilience. Unfortunately

they come at considerable cost, which typically increases linearly with the quantity of redundant

resources. Some virtualisation techniques are developed to mitigate this cost effect to a degree.

However, maintaining replicas of instances and storage that are accurate can be challenging, increasing

strain on networking resources. Storing long expired replicas is also a concern. Redundancy techniques

are simple to implement and are generally suitable for environments such as centralised cloud, which

have considerable amounts of spare resources available.

2.4.2 Diversity

Diversity techniques for resilience consider that threats specific for one situation, architecture, soft-

ware, location, protocol etc. are typically designed only for that circumstance. Having diversity in

any characteristic therefore increases the resilience of the system. On the lowest levels, diversity of

hardware (both physical and virtual) prevents issues related to code bugs, exploits, or hardware com-

ponent defects from affecting the entire system. For example, a flaw affecting one vendor’s network

switch will unlikely affect a different vendor. Similarly software bugs affecting x86 architecture are

unlikely to affect x64 Similarly, this concept can be employed at the software layer. Execution diver-

sity techniques can compile multiple versions of the same software, with identical functionality, yet

with different underlying code logic (Kanter & Taylor 2013). A service might use multiple different

types of protocols in tandem to accomplish the same functionality, these could be largely different

or simply different versions. A service itself might use multiple clients, for example a web service

might run Apache and IIS simultaneously (Guo & Bhattacharya 2014). Finally location diversity is

Page 23

Chapter 2. Literature Review

a commonly employed technique, for example distributing cloud services across multiple geographical

locations (Souza Couto et al. 2014) or network paths (Secci & Murugesan 2014).

Similarly to the cost of deploying redundancy, diversity costs are high. Although this is dependent

upon the technique employed, if the diversified resource is simply replacing a resource then the major

cost is the complexity of the solution. This includes the level of work for pre-deployment, such as

developing a new technique to diversify software. There is additional software complexity required

to ensure disparate technologies interoperate. Sometimes this can be through the multiple layers of

abstraction inherent to computing, such as differences in hardware being less relevant if the service

is developed in a high-level cross-platform language. A caveat of this approach is the increased code-

complexity for interoperability and pre-deployment can create a larger attack surface, therefore this

should be minimised as much as possible.

2.4.3 Autonomic

Autonomic computing was initially proposed by IBM (Ganek & Corbi 2003), and describes a visions

in which computer systems can dynamically manage themselves through self-adaptation. It is inspired

by the biological nervous system’s ability to manage low-level vital functions of a biological being.

An autonomic computing system is described as having a number of self-* properties. At the highest

level self-managing, but also self-healing, self-protection, self-optimisation and self-configuring. These

autonomic systems employ a control loop. The most common activities are to Monitor, Analyse, Plan

and Execute according to stored Knowledge (MAPE-K) actions in order to adjust their processes

according to the current situation and environment (Rutten et al. 2017). Self-* properties create

resilient systems by nature, self-healing and self-repair are some obvious attributes. Whilst the fun-

damental ability to adapt to a variety of internal and external perturbations using self-management

permits autonomic systems to maintain their operation in the face of changes. Cloud computing itself

is inherently autonomic, particularly for service-level resource management (Faniyi & Bahsoon 2015).

Management processes within the cloud such as service scheduling and orchestration, and resource

provisioning are all good target for resilience optimisation. Additionally, networking at both the

networking and service layers are strong targets to accommodate variable performance. Autonomic

techniques tend to come at a cost of high computational complexity, which can be distributed across

many nodes or conducted on a single node. The heavy reliance upon these processes requires them

to operate with a high degree of accuracy and dependability. Therefore they will likely require a high

cost of development pre-deployment. For these reasons, these techniques are often developed in the

likeness of their original motivation, biology. Many differenet aspects can be seen in literature such

as animal cell-based models (Hariri et al. 2011), networking approaches based upon the distributed

processing capabilities of ant colonies (Baran & Sosa 2000), intrusion detection methods (Mart́ı &

Schoenauer 2018) or service orchestration methods (Ha 2018) based upon artificial immune systems,

Page 24

Chapter 2. Literature Review

alternatives to public key infrastructure based upon family genetics (Wang et al. 2010) and many

more.

2.4.4 Comparison

Figure 2.6 classifies the previously discussed resilience techniques for coud computing. Table 2.3

compares the cost and complexity of each of the cloud techniques in terms of their pre-deployment,

deployment, maintainability and code complexity. Redundancy has a low pre-deployment cost as it

requires minimum effort to integrate redundant resources. However the deployment and maintain-

ability costs are both high, as needing to replace the resources is costly. The overall complexity is low

due to homogeneous resources. Diversity has a medium to high pre-deployment cost, as this depends

on the particular technique but will almost always require the interoperability of diverse technolo-

gies. Its deployment is medium, as it often requires less cost than a complete replica, but there is

additional code to employ, likewise with the maintainability. The complexity of the solution is also

medium, due to the additional code required to link diverse resources yet this tends to be minimal.

Autonomic techniques have a high pre-deployment cost, largely due to the issues associated with their

development. However their deployment cost is low as the code is capable of self managing itself.

Maintainability is medium as it may be difficulty to change the code while it is operating. Finally the

code complexity is ranked as minimum, as while autonomic techniques tend to use simplistic control

loops, their implementation may cause them to be deployed in a distributed manner.

Description Pre-Deployment Deployment Maintainability Complexity

Redundancy Replicated re-

sources

Low High High Low

Diversity Heterogeneous

configurations

Medium-High Medium Medium Medium

Autonomic Adaptive self-

management

High Low Medium Medium

Table 2.3: Cloud Resilience Technique Cost Comparison

While these techniques are easily employed in the centralised cloud, the resource constrained

nature of the decentralised cloud makes them non-trivial. Therefore techniques to enable resilience in

decentralised cloud environments focus on novel applications number of different cloud service related

attributes.

2.4.5 Survey of Resilience Techniques for Decentralised Cloud Computing

Following from the classification of resilience techniques, this section surveys a number of different

works which attempt to enhance service resilience in the decentralised cloud.

Page 25

Chapter 2. Literature Review

Figure 2.6: Classification of techniques used in cloud resilience

Service orchestration (SO) is an important process to conduct resiliently in fog computing. In

order to optimise constrained device resources, only the minimum amount of nodes necessary will

be provisioned for an end-user. This requires service requirements to be broadcast for a network

which provides a number of security issues, particularly confidentiality. Viejo & Sánchez (2019) use

Ciphertext-Policy Attribute-Based Encryption (CP-ABE), whereby nodes will have keys correspond-

ing only to the attributes they are allowed to process. Their network is structured hierarchically so

that nodes pass messages to those they can control further down the tree. The nodes will require

a generalised key. For example, a message containing ”temperature” will also need a ”weather” key

to process it. These messages form policies such as ”temperature, zone 1” which are then encrypted

separately and transmitted. If any messages can be decrypted by a node it means that further nodes

in the hierarchy can also be decrypted so the service discovery can continue. Once the service has

been orchestrated between the required nodes, the client and nodes exchange keys to communicate

securely. The cryptography heavy nature of this solution is questionable in terms of energy cost.

Chejerla & Madria (2017) instead chose to develop a scheduling algorithm that uses a game-theoretic

and Bayesian approach to mitigates against attack in real time, for Cyber Physical Systems (CPS).

Scheduling is a known key focus of cloud resilience although assuming the rationalisation of an attacker

such that they can be modelled is contentious.

Rios et al. (2017) explain that modelling fog networks in a hierarchical manner, with a singular

provider, is oversimplified and detrimental to its security. They should instead be considered as a

Page 26

Chapter 2. Literature Review

federated architecture with numerous service providers within different trust domains. The authors

propose an architecture (SMOG) to provide resilience in fog networks. It consists of number of

baseline characteristics such as secure interconnection, authentication and authorisation, protection

of virtualised environments and situational awareness. They list enhanced characteristics as trust

services, distributed decision making, privacy capabilities and digital evidence management. They

explain that these base line requirements are largely missing from literature and are necessary to

ensure a secure and resilience fog. This work highlights that for some scenarios, resilience requirements

can require multifaceted and complex solutions. Highlighting their inherent inadequacy.

The edge nodes are without doubt a point of failure in any decentralised cloud network. Le et al.

(2017) give a solution to partial failures in MEC (e.g. connectivity loss) between the edge nodes. Their

architecture is again hierarchical, with mobile nodes storing local back up data dispersed amongst

them. If partial failure with the edge nodes occurs, the devices switch to a P2P model, processing

data collaboratively. This is an alternative mobile computing model and the results show good time

reduction performance when the task is disrupted across the nodes. However the power consumption

is likely to be highly variable according to the difference between nodes and therefore the suitability

will not be universal.

Modarresi & Sterbenz (2017) consider Fog Computing as a solution for resilient IoT/edge com-

puting in. They argue that the uncertainty surrounding resource, link and bandwidth availability

ensures that typical edge computing is not resilient for IoT processing. For example, too many clients

can overload resources and thus cause a denial-of-service. They argue that the introduction of fog

nodes between the edge and the cloud creates greater autonomy within the network. If a connection

is lost between the edge and the cloud, the fog maintains this network and increases the survivability

of the ecosystem. Further to this, they suggest that the diversity of standards, protocols and network

links, which cause fog computing to be quite complex, is actually beneficial to its resilience due to

the increase in variety. They also indicate that through fog reducing traffic further in the core and

distribution network, its implementation provides traffic tolerance. Finally, disruption tolerance is

enhanced through a reduction in latency permitting applications to be processed quicker and thus

any disruption has less impact. The authors support these statements with numerous simulations

inclusive of the fog environment.

Hussein et al. (2017) provide a mobile edge computing solution which applies Software Defined

Networking(SDN) to 5G provide resilient processing to Vehicle Area Networks (VANETS). Safety con-

cerns are paramount in vehicles and as such so is the resilience of VANETs. Their proposed solutions

provides enhanced security through an additional security layer using SDN. As opposed to a tradi-

tional centralised SDN approach or a traditional distributed VANET approach, they present a hybrid

method. A centralised 5G base station is used to manage SDN security functions distributed across

a number of roadside controllers. This approach illustrates a strong example of custom networking

Page 27

Chapter 2. Literature Review

hierarchy technologies being supported at the edge for specific use-cases and resilience requirements.

Modarresi et al. (2017) deploys SDN again in tandem with fog for resilience. This time fog

nodes are used to detect anomalies in network traffic and notify the SDN controller. This can make

security-focused decisions about what traffic to drop or restrict. A strongly illustrative example of

the application of fog for greater network resilience although does not help to strengthen resilience of

the fog nodes themselves.

Benson et al. (2018) takes a middleware approach to provide continued operation of critical events

from IoT devices when their connection to the cloud fails . Their system contains two components, the

first periodically probes different paths to the cloud, detecting possible faults or failures. The second

provides multicast message dissemination according to information received from the first component.

They again use SDN to provide this information and use it create ”resilient overlays”. This middleware

approach enables varied support for IoT devices as the middleware works seamlessly.

Kahla et al. (2018) provide a solution to low trust in IoT environments. They leverage moving

target defence to migrate targeted or subverted virtual instances to another host fog machine. It is not

clear how this would prevent a number of different attacks or heal the instance once it had migrated

although the autonomic aspect of integrity verification is commendable.

Eisele et al. (2017) state that resilience is necessary to consider in edge environments due to

both resource and network uncertainty. Whilst security is important due to the resource constrained

nature of edge devices preventing virtualisation providing adequate isolation. They propose a novel

programming paradigm: RIAPS (Resilient Information Architecture Platform for Smart Grid) which

provides a platform for distributed applications to be deployed resiliently. The platform provides a

diverse number of different services and managers (such as for security, persistence, fault management

etc.). Whilst the platform appears to be complex and thus has an increased attack surface, given the

number of required components, it illustrates the notion of an underlying platform providing resilience

to higher levels.

Aral & Brandic (2018) use bayesian belief networks to mine dependencies between replicated edge

nodes. Their solution uses past server performance from logs and temporal dependencies to highlight

the probability of when failures may occur concurrently. Although their current solution is theoretical

it shows strong optimisation through replica reduction.

Araujo Neto et al. (2018) tackles a somewhat different resilience problem . Where a Fog enabled

service does not suffer a fault but an outage related to the CSP’s SLA. They focus on Amazon’s

Spot Instances which are transient servers acquired by the user when the maximum they wish to pay

(bid) is greater than the value of the instance. Due to the nature of this acquisition the continued

operation of these servers cannot be guaranteed. Therefore in this fog platform the failure results from

the unavailable CSP back-end. To mitigate this, they propose an agent-based case-based-reasoning

solution which aims to predict the survival time of an instance. This enables checkpoints to be made in

Page 28

Chapter 2. Literature Review

order to resume the work in case of application fault. Their solution could be modified for application

processing closer to the edge, although the resource requirements for checkpoints must be considered.

Ozeer et al. (2018) have a similar focus on recording and reverting to application states. They

take an uncoordinated approach, recording application events with a corresponding recovery timer.

Expiration indicates lack of synchronisation with the physical world and can’t thus be ignored. Event

details are logged in a global and failure-free storage system to permit recovery to any node from a

central location. This centralised storage suffers from central point of failure. The authors present

a competent yet complex solution consisting to enable system fault tolerance. The question of how

failures are to be handled in the system handling the failures is still open.

Khalifa et al. (2014) move away from a traditional cloud architecture, improving the resilience of

Hybrid Mobile Clouds. Mobile clouds require a static system due to the dynamic network charac-

teristics. The proposed architecture is interesting due to its flexibility in running on diverse devices,

essentially ignoring the underlying hardware. The resilience requirements are aided through a re-

source prediction mechanism and an early failure detection mechanism to facilitate handover of vital

services. The system proves successful, although performance is still dependent upon the quantity of

fixed nodes within the cloud, making the system not purely mobile. However, overall it exhibits a

good example of how cloud systems can be built upon non-deterministic environments.

2.4.5.1 Analysis of Decentralised Cloud Resilience

The requirement for resilience at the decentralised cloud layer is greater than the centralised due

to data-centre hardware being resilient by nature. Such constrained environments have less ability

to fall back upon redundancy and cryptographic methods in order to provide their resilience and

generally operate in a hostile environment. Literature on techniques for decentralised cloud service

resilience are spread across a number of disciplines. Survivability and fault tolerance are present

but a number of security disciplines can be seen in addition such as disruption and traffic tolerance.

These techniques often focus on networking such as routing or middleware, which is intuitive given

the hostile networking environment. These are the strongest resilience techniques given the history of

wireless sensor networks’ focus on resilient networking. However while they enable network routing

and communication, they do not provide service support. The foundation of IoT networks (WSNs

and MANETS) have seen bodies of literature (Zhou et al. 2008) (Benkhelifa et al. 2018) attempting

to optimise resilient communication, security etc. It could therefore be argued that the entire focus

of these disciplines is in delivering a resilient platform given the hostile environment in which they

operate. However the decentralised cloud disciplines defined previously consist of more than simply

IoT networks. There is now an entire ecosystem where continuously evolving use-cases demand rich

data processing at any and all layers from the IoT device, to the transportation/Fog layer back

to the centralised cloud. These networks are heterogeneous and non-deterministic which further

Page 29

Chapter 2. Literature Review

complicate matters. Traffic will traverse multiple governance domains, operate on a diverse plethora

of hardware/software configurations and requirements for performance and resilience will change in

fractions of a second according to external and internal requirements.

The data-driven nature of these environments, coupled with the inherently low security drives data

security methods. Techniques such as CP-ABE and anomaly intrusion detection are low-resource al-

ternatives to traditional security solutions, designed to operate in hostile environments. Unfortunately

they are also resource intensive and costly in terms of computation, storage and therefore energy. Re-

dundancy techniques are still prevalent despite the lack of resources through the use of instance check-

pointing, although the efficacy of this is questionable. While diversity related techniques are deployed

in a minor way due to disparate hardware involved. Finally, decentralised autonomic management

techniques are shown to be effective and are suited to the decentralised environment. However their

complexity is in question. Additionally, none of the works surveyed accomplish the effect of providing

all resilient service management features.

Some key challenges to the future or resilient cloud computing are highlighted below:

1. Use-case Diversity - While cloud environments are inherently employed to provide resources

for diverse use-cases, resilience techniques tend to be developed for specific use-cases. This

highlighted the need for cloud environments to provide adaptive resilience according to the

need. Integrating a plethora of techniques and selecting the most appropriate is thus an ongoing

challenge for the current and emerging cloud.

2. Uncertain and dynamic governance and responsibility - Traditional cloud delivery mod-

els (SaaS/PaaS/IaaS) define clear responsibility boundaries between the CSP and the user. They

can assist in determining which actor can affect resilience at which layer. However, in decen-

tralised cloud disciplines, particularly those with node mobility (e.g. MEC and fog computing)

these actors can dynamically change according to physical boundaries and network requirements.

Ensuring the capacity to both understand and monitor who has responsibility for resilience ex-

temporaneously is crucial to providing resilience in decentralised clouds.

3. Evolving cloud paradigms - Summarising a key concern during this survey is the manner

in which cloud computing, as a concept, is continuously in flux. Driven by both changing

use-cases and continuous strives for optimisation, the deployment of new and emerging cloud

paradigms poses a challenge to service resilience. Where the resilience of new techniques should

be considered during their development and not post-deployment.

2.4.6 Resilience Metrics and Evaluation

As with the resilience disciplines, measurement of cloud resilience could follow traditional performance-

based resilience metrics such as Mean Time Between Failures (MTBF) and Mean Time Taken to Repair

Page 30

Chapter 2. Literature Review

(MTTR) and the corresponding availability which is easily calculated from the two. However these

metrics could be considered primitive at best (Colman-Meixner et al. 2016) considering the complexity

of these environments. The resilinets model (Sterbenz et al. 2010) provides a method of determining

which resilience features are available through binary selection of distinct features (e.g. the network

provides confidentiality or it does not). Other non-cloud specific resilience metrics also suffice, such

as graph metrics. Graph metrics are noted for their ease of comparing distinct architectures as they

examine the structural characteristics of a network. Alenazi and Sterbenz evaluate a number of graph

metrics for resilience are (Alenazi & Sterbenz 2015a) and (Alenazi & Sterbenz 2015b). These include

elementary metrics such as the quantity of nodes, node connectivity (the average number of connected

nodes to each other node), node centrality (the most important nodes) etc. They also include those

specifically for network resilience through removal of links and nodes e.g. network criticality and

effective graph resistance. All of the above are arguably strongest when examining a distinct service

as opposed to the entire cloud environment. Some of the works surveyed according to layer perform

some simulation of a model in order to evaluate resilience within the context of that particular use-

case, the following works focus upon more generalised models for resilience. An example of some of

these metrics found within literature which have been used for measuring resilience in networks to

varying degrees can be found in table 2.4

Name Description

N The total number of nodes

Total Path Diversity Links between alternative paths between two communicating nodes

Average Node Connectivity The average number of nodes each node is connected to

Weighted Spectrum Distribution Permits comparison between graph through ranking feature importance

Average Shortest Path Length The average shortest path between two nodes

Eccentricity The longest of the shortest path length between two nodes

Betweenness The number of shortest paths through a node or link

Clustering Coefficient The connectedness of a node’s neighbours

Node Degree centrality Indicates how important a node is. i.e. the network will be disrupted

if removed

Assortivity Describes node similarity

Network Criticality Used to measure the resilience of a network against structural changes

Effective Graph Resistance Used to measure the resilience of a network against structural changes.

Table 2.4: Some example graph metrics seen in literature for measuring resilience of different network

types

Jabbar (2010) states that resilience is more difficult to measure than traditional security metrics

due to the need to evaluate how effectively the service is still being delivered. They propose that

Page 31

Chapter 2. Literature Review

resilience should be measured as a state space considered in terms of degradation. Where a service

is more resilience if it contains more states in which it stays operational and not severely degraded.

Such a high-level approach may be applicable to complex environments.

Ghosh et al. (2010) provides a model for resiliency based on stochastic reward nets. The work is

interesting in that the metrics for resiliency focus upon evaluating how effectively the job is scheduled

through Quality of Service (QoS) metrics. Those given are the rate of rejected jobs, and the delay in

VM provision. Following from the definition of resiliency: ”quantification of service delivery during

changes”, the authors evaluate changes as fluctuations in job arrival rate and the quantity of physical

machines. Their results showed a faster provision rate was more resilient. Also that removal of a hot

physical machine has an adverse effect upon resiliency, whereas removal of a cold one has a minimal

effect.

Ju et al. (2013) evaluate the resilience of OpenStack. They develop a novel fault injection frame-

work for both the architecture and its services. They uncovered 23 different bugs which developed

into faults in the system. Highlighting the lack of effective resilience considerations within the stock

cloud management software.

Tu & Xu (2013) present a resilience model built for a typical IaaS cloud, using Eucalyptus. They

explain that resilience and robustness are strongly connected in complex systems, where both prop-

erties describe the system’s ability to react to disturbances but vary in how they do so. Considering

the cloud as a multi-component, hierarchical system, the model evaluates the component interaction

and interdependency upon resource consumption. Resilience is modelled by the strength of interac-

tions between the components, where the strength is the percentage needed to consume from another

component. A disturbance within the system results in a large queue, exhausting resources causing

the services to fail. The authors describe system wide resilience as the quantity of processes which fail

due to the inability to consume. They note that this system does not take into account factors which

may influence the interaction strength such as one to many and many to one resource consumption

interactions. It is mentioned that resiliency is accomplished through redundancy, which has an ad-

verse affect upon cost. To fit in line with the author’s model, they explain that increased redundancy,

weakens the requirements for resource consumption links between individual components. Whilst re-

dundancy is a key component of resiliency, it is not the only method, and poor implementations can

even reduce resiliency under certain circumstances. The authors then attempt to understand more

about this effect, examining of replication algorithms with modularisation of a cloud system. Their

results show that as size increases, modulation is more important to prevent duplicate replication

updates. However they also mention that poor modularisation implementation can create a single

point of failure and thus become an enabling factor for poor resilience.

Scholler et. al. present an architectural model which enables insight into the security implications

of cloud architectures (Scholler et al. 2013) (Hecht et al. 2014). Their motivation is that current

Page 32

Chapter 2. Literature Review

cloud services do not accommodate security and resiliency for critical infrastructures. Their model

distinguishes between the different roles, (such as the physical provider, service developer and service

user) as well as the different infrastructures (the physical and virtual) to assess the given requirements

against the system. It promotes greater logging for audit purposes, as well as increased transparency

between the physical and virtual layers, in order to increase trust between the users. Arguably,

many issues within current cloud architectures ensure their unsuitability for a wide range of critical

infrastructure services.

Sousa et al. (2014b) conduct an evaluation of Quality of Resilience evaluation criteria within the

cloud, in order to activate appropriate proactive resilience measures. They propose to use multiple

criteria to evaluate the resilience, partly due to the wide variety of requirements associated with

resilience and also because many proactive mechanisms require further information. The authors

implement proactive resilience systems using multiple criteria for the cloud, MeTH (Sousa et al.

2014a) and TOPSIS (Tran & Boukhatem 2008). The results showed that both methods improved the

resilience of protocols which were unable to detect cloud layer faults but MeTH provided the greater

performance in both fault and non-fault scenarios.

A classification of types of resilience metrics found within cloud computing are described below:

• Binary feature based metrics are those relating to the resilinets model such as confidentiality

which either exist in the service of cloud or do not.

• State-based are those which examine the degradation of service to determine when resilience

has failed.

• Performance-oriented metrics are the traditional type such as MTTR or QoS which typically

involve examining one distinct service.

• Graph-based metrics examine issues in topologies such as network criticality.

• Multi-criteria metrics aggregate and summarise a variety of metrics into one to take into

account very complex systems.

2.5 Resilience for Decentralised Cloud Services

It was highlighted in the previous sections that there is a wider uptake of IoT enabled services which

are more safety critical in nature and whose failure or gaps in service delivery could be costly to life

or economy. Additionally, the emergence of many applications requiring lower latency has caused

data processing to be pushed to the edge of the network or to the end-devices themselves. Tradi-

tionally data-centre hosted cloud services are now required to operate in a decentralised manner yet

simultaneously in more hostile environments.

Page 33

Chapter 2. Literature Review

This drives the need for enhanced resilience for decentralised cloud services. This is particularly

pertinent to those use-cases with strongly constrained resources and the mobile, wireless and poten-

tially hostile environments cause failure between computing network entities. Enabling resilience will

then also permit feature rich data processing within non-deterministic environments, and typically

over mobile wireless links. Section 2.4.5 analysed a number of these techniques and highlighted that

predominately they provide resilience through costly redundancy (Le et al. 2017), security techniques

(Viejo & Sánchez 2019) (Kahla et al. 2018) or rely upon centralised or hierarchical management

(Viejo & Sánchez 2019) (Le et al. 2017), which present single points of failure. Most importantly,

no techniques currently exist which permit data processing to exist distributed across the resource

constrained nodes, in a resilient manner while also providing: redundancy, diversity and standard

service management techniques. Some techniques proposed novel architectures for resilient service

delivery, but are generally complex and require additional servers (Modarresi & Sterbenz 2017) being

less suitable for the constrained environments.

2.5.1 The Requirement for Autonomic Service Management

Lacking in particular are autonomic techniques specifically focused on service delivery, which have seen

much success within centralised cloud computing (Panwar & Supriya 2019). They are also found with

good success in the lower level networking protocols in IoT such as for self-organising and self-healing

routing protocols (Dressler & Akan 2010) (Zheng & Sicker 2013). Autonomic techniques strongly fit

the requirement for providing resilient decentralised cloud services for the following reasons:

• Decentralised nature - Autonomic techniques have been shown to be adept at self-managing

environments void of centralised control (e.g. with wireless sensor networks (Marsh et al. 2004)).

This is suitable firstly because decentralisation is a strong requirement for resilience and many

of the current techniques reviewed are centralised or hierarchical. Secondly, due to the hostile

network environments operating themselves in a largely decentralised manner.

• Low resource cost - In comparison to redundancy and diversity techniques, autonomic man-

agement has a low resource cost per each device. After a medium-high resource cost to develop

the technique, overall the cost is low. This is accomplished through distributing computational

complexity across the network and using relatively simple control loops. This is suitable for

nodes at the network edge (or distributed across the end-devices) due to their lower resource

capacity.

• Inherent Resilience - autonomic techniques create resilient systems by nature of their ability to

adapt to changes in their environment. Many of the techniques for decentralised cloud resilience

discussed are solutions adapted for resilience. The ability to self-heal, self-repair, and self-

organise according to environment perturbations is inherent to autonomic systems.

Page 34

Chapter 2. Literature Review

• Compatibility with Cloud Service Management - the cloud service management functions

(discussed in section 2.3) are typically employed in an autonomic manner in order to allow

resources to be provisioned autonomously, provide resource optimisation and be able to react to

service and environment changes.

Therefore by building service delivery platforms at the edge which are autonomic by nature, service

delivery will also be resilient by nature. Many autonomic techniques have been shown in different

areas of computing. As mentioned in section 2.4.3, autonomic computing was inspired by biological

autonomic systems. Developing bio-inspired systems in this manner mitigates the issue of having a

high pre-development cost, due to the effectiveness of a bio-inspired technique being already proven.

Artificial Neural Networks (ANNs) are arguably one of the most commonly known bio-inspired

techniques. ANNs are modelled upon biological neural networks, which are the fundamental structure

and function of the animal brain. The programs in use today are founded upon the propositional logic

model proposed by McCulloch & Pitts (1943). This model simplifies the neuron (the atomic structure

of a neural network) as a threshold function which ”fires” to another node if a threshold value is

breached from its input neurons. From this base model, ANNs are constructed from multiple neurons,

in varying quantities of layers and with varying threshold functions. Used as method for learning

built upon the connectivist theory of intelligence. Initially they were thought to drive a revolution

in computing as artificial brains. However initial progress was relatively slow, with the perceptron

being a famous failure in that it couldn’t learn the XOR logic due to being a non-linear problem.

The effectiveness of ANNs is mostly being seen today, with the rise of deep-learning algorithms

beginning to match the effectiveness of biological algorithms with processes such as complex pattern

recognition in images (Kulwa et al. 2019) or document classification (Marinai et al. 2005). While

ANNs provide distributed learning capability, they are typically used for converging on a particular

result and therefore are not suitable architecturally for building distributed software systems, due to

their non-dynamic nature.

Another popular biologically inspired technique is modelled on the theory of evolution such as with

Genetic Algorithms (Davis 1991) and Genetic Programming (Koza et al. 1994). These processes find

optimal solutions through the selection of the best offspring which are produced through recombination

of previous generations as well as mutation. These new solutions allow the population to be adaptive

but also robust to changing environmental conditions. This process allows survival of the overall

species through the diversity which is introduced through mutations and allows adoptions. Whilst

proven in a variety of situations they typically find solutions in an offline setting. Similar to ANNs

these techniques are less suitable to be employed as a distributed system architecture due to their

convergence and high resource cost.

Swarm computing is a common autonomic technique which is self-organising and self-optimising

(Tambouratzis 2009). Swarm intelligence is developed from a large number of decentralised and

Page 35

Chapter 2. Literature Review

distributed, cooperating agents. Ant Colony Optimisation (ACO) is perhaps one of the most well-

known examples. Proposed by Dorigo et al. (2007), he provides a fitting description of ACO as well as

all other swarm algorithms when he states they are, for “distributed problem solving and optimization

based on the result of low-level interactions among many cooperating simple agents that are not aware

of their cooperative behaviour”. ACO in particular was designed for finding the shortest path in a

graph but since its conception it (and other swarm algorithms) have been used for solving different

problems within computer systems. Networking optimisation (Hsin et al. 2014), intrusion detection

(Gao et al. 2005) and pattern recognition (Tambouratzis 2009) are just some examples of these. These

techniques are typically employed to solve a specific problem, as opposed to have support for diverse

logic processing.

Artificial Immune Systems (AIS) are modelled upon biological immune systems. Forrest et al.

(1994) proposed a system based upon the theory of an immune system’s ability to distinguish infected

cells from uninfected cells known as negative selection. T-cells within an immune system attach to an

infected cell in numbers in order to destroy it, however each T-cell is designed to specifically attack

only one type of infected cell. The t-cells are created with random features and any features which

might bind to healthy cells cause the t-cells to be destroyed prior to entering the blood stream. Forrest

et al. (1994) successfully used this scheme within an integrity checking system. Additional work in

AIS adapts this scheme to include a concept within immunology known as ”danger theory” which

posits that t-cells detect danger vs. safe as opposed to self vs non-self. The difference being that

the dangerous cells would exhibit a signal which would declare them dangerous. In computers, for

example, this might be a symptom such as suspicious activity. AIS techniques are typically used for

a classification problem and (as with swarm computing) lack the ability to arbitrarily compute.

Another bio-inspired autonomic technique is embryonics (Benkhelifa et al. 2013) (Sipper et al.

1997) (Miorandi et al. 2010). They are distinguished by their ability to inspire the creation of systems

composed of multiple-cells which divide from the mother cell, each one containing the same code (or

zygote) which allows it to perform any function as the other, ensuring it is capable of self-replication,

and thus the organism’s ability to self-heal. The way in which the cells differentiate varies according

to their surrounding neighbours and therefore the systems develop according to the functions required

as a whole and from their neighbours, although flaws in the original genome will be present in every

single cell. The characteristics of adapting and self-healing through cellular differentiation and division

are advantageous for resilience. In addition, embryonics share an affinity for distributed processing

using a cell-based architecture. Therefore, this work selects embryonics as a proposed autonomic

architecture for providing resilient decentralised cloud service delivery which is discussed below.

Page 36

Chapter 2. Literature Review

2.5.2 Embyronics for Resilient Decentralised Cloud Service Delivery

Embryogenesis inspired electronics have shown that resilience may be achieved by modelling a system

on these self-healing capabilities (Benkhelifa et al. 2013). Some early examples of similar systems

in computing are Von-Neumans self-replicating automata (Von Neumann et al. 1966). They have

been applied to electronic engineering to provide circuits with the ability to self-heal (Sipper et al.

1997). Embryonic software has been shown to provide similar self-healing properties for distributed

systems (Miorandi et al. 2010) and is therefore proven in its application for the management of

complexity for resilience. Therefore the concepts of cellular differentiation and cellular division of

animal embryonic development are employed to provide self-healing functionality in a multi-agent

system. Within embyronics, cells (which compose the system) employ the MAPE-K control loop to

permit distributed self-organising, self-healing and adaptive behaviour.

Embryonic techniques have a strong affinity with the requirements for resilient decentralised cloud

service delivery:

• Embryonics are distributed systems composed of many atomic units. The atomic component

is the cell, whose goal is to deliver a specific functionality. Collectively, many cells functioning

together create more complex functionalities which emerge from the interactions of these cells.

This characteristic is easily suited to distributed service delivery environments, such as cloud-

based systems. This is because services within cloud-based systems are composed of many

interacting, loosely coupled units which each provide a distinct functionality. These are usually

virtualised machines or containers, which collectively can be employed to create more complex

services out of these atomic functions.

• Embyronic systems have fundamental characteristics of cellular differentiation (functionality spe-

cialisation) and division (replication). These characteristics give rise to self-healing behaviour.

The system is able to respond to internal and external changes and self-heal in order to maintain

the overall functionality of the system. This provides inherent service resilience and is a strongly

beneficial requirement of a resilient cloud platform.

• In addition to the self-healing functionality, an additional behaviour which emerges as a result

of cellular differentiation and division is self-organisation. Differentiation occurs according to

the need for specific functionality and therefore cells collectively organise. This ability to self-

organise meets another requirement of resilience decentralised cloud service delivery. Whereby

service management and orchestration can occur void of centralised control.

This work proposes that through modelling distinct application functions as embryonic cells and

then employing the characteristics of cellular division and differentiation, a service delivery architecture

for decentralised cloud environments which is resilient by nature can be developed. The rest of this

thesis will promote the investigation of this approach and will evaluate its efficacy.

Page 37

Chapter 2. Literature Review

2.6 Conclusion

This chapter reviewed the necessary background literature in resilient decentralised cloud environments

for this thesis. It began with a review of IoT technologies, whose devices and technologies are the

users of cloud services. Due to emerging low-latency and safety critical use-cases, there are now

greater requirements to have cloud service delivery physically closer to or even upon these devices.

Due to the constrained nature of these devices and the hostile environment in which they operate,

providing services resiliently is essential to their operation. A review of different resilient techniques

in decentralised cloud computing highlighted that currently no architectures permitted decentralised

cloud service delivery distributed in a resource efficient and resilient manner. In particular, it was

highlighted that autonomic techniques create environments which are resilient by nature but solutions

of which are largely lacking. Due to the initially high development cost for these techniques, they are

often inspired by biologically processes and systems. Embryonics was highlighted as a technique with

an affinity for the proposed environments and resilient requirements so was selected as a technique for

investigation within this work.

Page 38

Chapter 3

Embryonic Model for Resilient

Cloud Service Delivery

3.1 Introduction

In the review of the state-of-the-art in decentralised cloud resilience, the need for autonomic manage-

ment solutions and their lack in literature highlighted their suitability for this task. Many autonomic

techniques are developed through inspiration from biology due to their inherent self-adaptive charac-

teristics. Embryonics was selected as a bio-inspired technique for this study due to its characteristic

affinity for resilience and decentralised cloud environments. Consequently, this research leads into the

investigation of the suitability of embryonic techniques for providing resilience in decentralised cloud

environments.

In order to determine if embryonic concepts can be applied to cloud environments in the interests

of providing a resilient platform, this chapter defines requirements for decentralised cloud functional-

ity. It then maps these to derived characteristics of embryonic development. A conceptual model is

then developed closely to the functional requirements in line with their available resources and envi-

ronments. Finally, an analysis of the conceptual model is given to assess it’s suitability in achieving

the previously defined requirements.

3.2 Resilient Cloud System Requirements

As a follow up from the previous definition of resilience, now the requirements for a novel highly-

resilient cloud architecture are given. These are broken down into two categories, functional require-

ments to provide a cloud architecture and requirements for resilience.

39

Chapter 3. Embryonic Model for Resilient Cloud Service Delivery

3.2.1 Functional Cloud Requirements

In order to provide a cloud service, the following characteristics are required of the architecture:

• As the purpose of a cloud service platform is to replace the traditional computing facilities,

a resilient decentralised cloud will also provide standard computing capabilities: computation,

storage, communication. Each resource is varied according to the user’s specific needs and

constraints.

• Continuously emerging and evolving cloud disciplines are driven by evolving user-cases. A re-

silient cloud model will be required to deliver a resilient service across emerging decentralised

architectures. In particular, those which are particularly resource-constrained, mobile and wire-

less.

• The system should expose an interface which permits a user to upload, execute and interact

with an application which provide an on-demand and automated service for the provisioning of

the aforementioned computing resources.

• The system should permit an application to scale up and out according to load, cost and other

service requirements, in an autonomous manner. This would be within the maximum constraints

of the system.

• The system should have the capacity to provide resource monitoring for metering and billing

This is essential for the underpinning agreement of the cloud service which is the SLA. It is also

necessary to maintain the economy driven model of cloud environments.

3.3 Embryonic Development Characteristics

To meet the requirements, this study focuses upon testing the resilience of a cloud architecture inspired

by embryonics. Embryogensis is the development of a biological being from a mother cell - the

zygote. This biological process provides a high degree of resilience through redundancy and self-

healing. Embryonic inspired electronics have shown that resilience may be achieved by modelling a

system on these self-healing capabilities (Mange et al. 1998) (Benkhelifa et al. 2013), whilst embryonic

software has shown similar self-healing properties for distributed systems (Miorandi et al. 2010) and

is proven in it’s application for the management of complexity for resilience. This section will briefly

discuss the basic process of embryonic development and cellular self-repair so as to derive some features

to enable future modelling. This is a high-level abstraction and is by no means comprehensive.

The development of a biological animal is accomplished through embryogenesis. It is a process

of iterative cellular-division, whereby each cell will contain the information, DNA (Deoxyribonucleic

acid) or genome, to create additional cells. The cells begin as stem-cells, which are pluri-potent, in that

Page 40

Chapter 3. Embryonic Model for Resilient Cloud Service Delivery

Figure 3.1: Asymmetric Segregation of Protein Determinants

they can develop into any cell. Whilst all cells in an organism will share the same DNA, different cells

will express different genes, which in turns causes differing proteins to be made and in effect will cause

the cells to develop differently; also known as cellular differentiation (Wolpert 2008). This process

enables extremely complex, multi-organ biological systems to develop from a single cell and with the

process of self-check and cell-division, this organism has the ability to self-repair and self-organise

(Mange et al. 1998).

Cellular-differentiation may be instigated through a number of means which may be either internal

or external to the cell. Internally, the selection comes about through the presence of transcription

factors, which are proteins found within the zygote. They are spatially-distributed according to the

DNA and as the cells divide, those that remain in the same location denote the proteins which will

be activated. This process is knows as asymmetric segregation of protein determinants (figure 3.1)

(Knoblich 2010).

Externally, the cell can receive a prompt from other cells in a process known as inductive signalling

or induction. This may occur in three forms: a) diffusion from a group of cells b) direct contact with

another cell c) via a gap-junction between cells (figure 3.2) (Rudel & Sommer 2003). These cellular

signalling methods are analysed in further detail in the next section.

Once the organism has developed, it maintains the ability to self-repair certain tissues through

the application of stem-cells, also known as somatic stem cells. Typically, these cells, which are from

an already developed animal, will be multipotent at best and thus only able to differentiate into a

subset of the collection of possible cells. Pluri-potent stem-cells are less common although may be

induced through artificial means (Mitalipov & Wolf 2009) (Schöler 2016). Table 3.1 lists the coverage

of different cell potencies.

Self-repair will occur due to cell-death, which in turn may be instigated in a number of forms.

Programmed Cell Death (PCD) or apoptosis which is cell-suicide and can occur due to an intrinsic

prompt e.g stresses to the cell causing chemical changes, or damage to the DNA; or may be due to an

extrinsic prompt from proteins binding externally to the cell. An alternative method is necrosis which

is due to an external prompt such as trauma or infection. Necrosis is considerably more traumatic to

the processes and other cells within the body than apoptosis (Majno & Joris 1995).

To summarise, embryonic systems consist of the following key characteristics:

Page 41

Chapter 3. Embryonic Model for Resilient Cloud Service Delivery

Figure 3.2: Inductive Signalling

Potency Coverage of Cell Types

Totipotent Embryonic

Pluripotent Any type of cell

Multipotent Multiple but similar

Oligopotent A minority of cells

Unipotent Only the self cell

Table 3.1: Cell types and the range of coverage for different cells.

Page 42

Chapter 3. Embryonic Model for Resilient Cloud Service Delivery

• Genome - all cells contain the same genetic material. The genes which are enabled denote the

proteins which will be made and thus the function and form of the cell.

• Division - a cell may self-reproduce through division.

• Differentiation - cells become specialised to a number of different functions and through dif-

ferent means.

• Self-repair - an organism can repair through the application of stem-cells although the potency

of each cell varies the type in which they can reproduce.

The aggregation of these characteristics will be the basis for the structure and architecture of the

resilient cloud architecture.

3.3.1 Cellular Signalling

In addition to the development and self-repair functionality detailed previously, it is also necessary to

understand the communication methods of multi-cellular systems, which is particularly relevant for

development and self-healing.

Cells must have the right receptor (ligand) to receive a message and thus not all cells will receive all

messages. Therefore signals are only acted upon by a cell if the cell has the correct receptor and thus

supports that signal type. Therefore signals are received and processed according to their purpose, as

opposed to be directed towards a specific cell (Dressler & Akan 2010).

There are a variety of different forms of cellular signalling. Predominately they differ in the distance

and recipient of the message, although some usages and features vary. These are autocrine where a

cell communicates with itself or the same type of cell. Paracrine used for communication with cells

within the immediate vicinity. Endocrine which is used for long distance/scale is based on hormones

which provides global control such as encouraging growth and physiology. Juxtacrine which must be

direct contact with an adjacent cell and could operate through either: gap junctions or direct contact

via bind due to corresponding receptors (Ben-Jonathan & Liu 1992). A comparison of these signalling

methods is presented in table 3.2.

3.4 Embryogensis for Resilient Decentralised Cloud Comput-

ing - Feature Mapping

The natural resilience of embryogenesis is indubitable due it’s self-healing functionality. This sec-

tion illustrates how the characteristics of embryogesis can aid in achieving the previously defined

requirements for a resilient decentralised cloud architecture. In order to correctly leverage these char-

acteristics into a resilient architecture, the appropriate features must be mapped to the previously

Page 43

Chapter 3. Embryonic Model for Resilient Cloud Service Delivery

Type Propagation Usage Message Distance / Scale

Autocrine Self / Same Development (reinforce-

ment) / Pain / Inflamma-

tion / Self-destruction

Low

Juxtacrine –

Gap Junction

Local Differentiation / State Info

(coordination)

Very Low

Juxtacrine –

Contact

Local Differentiation / Immune

(safe non-safe)

Low

Paracrine Vicinity Differentiation / Behaviour Diverse but Streamlined/Quick/

Degrades Rapidly/ High Concen-

tration

Endocrine Long Dis-

tance/Scale

Most common. Hormonal

used for global control.

Physiology and Growth

Slow and Long Lasting Low concen-

tration

Table 3.2: Cellular Signalling Methods

defined requirements. Table 3.3 refers to the combined features of a resilient cloud architecture (as in

section 1) which are mapped to the appropriate embryonic features and corresponding implementation

method.

Page 44

C
h

ap
ter

3.
E

m
b

ryon
ic

M
o
d

el
fo

r
R

esilien
t

C
lou

d
S

erv
ice

D
elivery

Number Requirement Represented as Implementation

Functional F1 Provide standard computing capabilities: computation,

storage, communication.

Cell Network Node

F2 Deliver across decentralised cloud models. Constrained / Hierarchical Functionality Virtual Instances

F3 Expose an interface which permits a user to upload, ex-

ecute and interact with a an application.

Cell receptors RESTful API, Message-oriented communi-

cation

F4 Provide an on-demand and automated service. Multi-cellular Organism, Cellular Sig-

nalling

Autonomic management

F5 Permit the application to scale up and out according to

load, cost and other service requirements.

Multi-cellular Organism, Cellular Sig-

nalling

Autonomic management

F6 Provide resource monitoring for metering and billing. Higher-level Platform Cloud manager

Resilience R1 Purely distributed architecture to exclude central point

of failure.

Multi-cellular Organism Multiple nodes with network overlay

R2 Provide universal redundancy. Cell division Self-reproducing software

R3 Provide diversity in the service network. Cell diversity Cross platform support, geo-distribution

R4 Enable the selection of appropriate resilience features

such as security based characteristics.

Differentiation Software libraries

R5 Permit the ability to verify the integrity of any node. Autocrine DNA check Cryptographic node hash

R6 Provide dynamic self-organisation for service-

composition and self-healing.

Multi-cellular Organism, Cellular Sig-

nalling

P2P Overlay Network

Table 3.3: Requirements to Feature Mapping

P
age

45

Chapter 3. Embryonic Model for Resilient Cloud Service Delivery

3.4.1 The Cell

The cell is the only architectural component. Total system functionality is distributed across cells to

create a true P2P network. Cells differentiate according to the functionality required by the system

and are networked together to provide platforms for the cloud architecture. Therefore their software

functions and their collective network structure may vary, but their internal architecture does not.

The components of the cell are illustrated in figure 3.3 and described as follows:

• Genome - will differentiate to a particular software function, as required by the global network.

It will only process data of its function type, ignoring other messages. Once the data has been

processed it passes the output to the node, for distribution to other cells or the end user.

• Node - uses the publisher/subscribe communication pattern to pass messages between other

cells. There are two types of messages, data messages to be processed by the corresponding

function and organisational messages. Organisational messages involve broadcasting known

local node addresses, the current function types the cell can see, and requests for differentiation.

• RESTFul Application Programming Interface (API) - is exposed to the end-user/devices.

It is used to push data to be processed onto the MC platform and also to return results.

Page 46

C
h

ap
ter

3.
E

m
b

ryon
ic

M
o
d

el
fo

r
R

esilien
t

C
lou

d
S

erv
ice

D
elivery

Figure 3.3: Cell architectureP
age

47

Chapter 3. Embryonic Model for Resilient Cloud Service Delivery

3.4.1.1 Cell Functionality

The cell consists of a number of concurrently processing components. The different functionality of

the cell is described below.

Cell Inception - Upon creation the cell must communicate with its neighbours. If it is not the

first cell it will be given the address of its mother node upon start-up. This address is stored as its

closest node and will use it to request further information about the network. If it is the first cell it

will divide to provide further functionality as required. The cell receives ”DNA” from its mother cell

which defines the parameters of its life. This can include how many times it should divide, and the

range of applications (genes) it can execute. Figure 3.4 presents this process in a flow chart.

Node - Organism Functions - The node will listen from its peers for signals. If a message

contains data appropriate for its genome then it will be passed for processing. It forwards messages

to its vicinity according to the message hop count and current resilience requirements.

Node - API Functions - The node will listen for requests, and pass responses to, an external

client interfacing with the API. These will be processed and/or forwarded to other cells as appropriate.

Differentiation - involves activation or deactivation of software functions in order to provide

specialism for a particular purpose. Appropriate genes will be toggled which will enable the corre-

sponding functionality. The cell will then process requests for this functionality from the organism

as well as advertise capability when appropriate. The differentiation process will occur as the cell is

spawned, through a prompt from the MC organism or self-initiated according to an internal decision

made according to information about requirements and the state of the network.

Self-check Integrity Verification Periodically, or when prompted, the cell will perform a hash-

check on its internal genome to verify its integrity and will respond to challenges from adjacent nodes.

Failure indicates that the underlying code is subverted or corrupted. If this check fails then the node

will be cut off from the rest of the network or will self-destruct.

Self-reproduction Through an external prompt or internal decision the cell will self-reproduce,

generating a new version of its application and notify the new cell of its heritage with corresponding

DNA to establish communication.

3.4.2 Multi-Cellular Organism

The multi-cellular (MC) organism is an autonomic network with self-organising and self-healing prop-

erties. It is a composition of an arbitrary and dynamically determined number of atomic cells with

the purpose of executing numerous, scalable applications simultaneously and in a resilient manner.

Therefore it only consists of one architectural component, the cell, yet maintains the resilient service

delivery provision through collective self-organisation. Its functionality is discussed below.

Page 48

Chapter 3. Embryonic Model for Resilient Cloud Service Delivery

Figure 3.4: Cell Inception and Communication Loop. This flow chart illustrates the process by which

the mother cell self-reproduces. This child subscribes to it’s mother then loops, waiting for messages.

It will receive all messages but process only those relevant to it.

Page 49

Chapter 3. Embryonic Model for Resilient Cloud Service Delivery

3.4.2.1 Communication

Operating in a hostile, mobile and wireless environment requires a system to accommodate high-levels

of node churn. Due to this, the ability to maintain routing tables is deemed unsuitable, therefore

flooding is used to distribute messages. Subsequently this architectural model employs local-only

communication to mitigate network link contention. Each cell will receive messages from all other

cells it is subscribed to, however it will only process those messages which are related to its par-

ticular function, or any global messages. This flooding based communication will put excess strain

on communication links due to the increase in sent traffic. Therefore a number of operations must

be tuned to minimise this link contention whilst still enabling services to be delivered in a resilient

manner. For example, a cell may choose to propagate messages further to other cells that subscribe

to it, depending upon the platform characteristics and Time To Live (TTL) of the message. Cells

will also not make collective decisions, request information or respond to queries in order to reduce

communication. Instead, each cell will act in a local manner, using gossiping methods (Haas et al.

2006) to provide information to its local peers about the current environment and can then choose to

act accordingly.

To accomplish this, the communication functionality employs local only (juxtacrine), i.e. nodes

will only communicate with their immediate neighbours and therefore no medium or long range

communication, or routing, will occur. An example message could consist of the cell informing its

neighbours of its current state (e.g. genome function and availability) or data for applications.

Due to the constraints upon the networking features, the applications placed upon this system will

have less functionality. The state of each application will now be contained in the transmitted message,

which will allow it to be executed upon any node and thus permit a higher degree of dynamism in

the system, such that the loss of one node should not adversely affect any one application. The

consequence of this is providing less power and customisability to each end-user application. However

whilst this might seem less useful, such a constrained system would be more applicable to decentralised

cloud architectures. It has been shown that Fog and other edge architectures are more suited to the

use of SaaS/PaaS architectures due to the devices’ constrained nature (Dastjerdi & Buyya 2016)

(Vandebroek 2016).

3.4.2.2 Application Management

A service is an application composed of a number of different distinct software functions in a micro-

services like fashion. This division of distinct functionality relates to the concept of cellular differenti-

ation. The application data resides in the passing of messages and therefore no crucial data persists on

any cell. Figure 3.5 presents the message based application execution which has reduced functionality

when compared to the unconstrained architecture. As opposed to writing and executing a script or

application (e.g. in an interpretive language such as Python or Ruby) the user must now define the

Page 50

Chapter 3. Embryonic Model for Resilient Cloud Service Delivery

Figure 3.5: This diagram illustrates the constrained application execution. The application starts as

a tuple of data (D) and functionality F). The data is passed to the top function of the list which is

removed as the data is passed to the next cell. The current state of the application therefore resides

in the message.

data and function calls in a tuple, which will then be iterated upon until it reaches its final destination

and is sent back onto a network external from the MC.

The primary goal of the embryonic platform is to persistently deliver applications regardless of

threats to its operation. Micro services based paradigms partition applications according to distinct

functionality in a loosely coupled manner where an application is composed of a number of different

microservice functions (Thönes 2015). An application is argued to be successfully delivered if all

functions can communicate, permitting data to flow from start to finish. This may be quantified

as its connectedness, an application which is fully connected at any point in time such that the

next function is fully connected. An application which has temporarily lost connectivity is partially

connected. This requirement for connectedness drives the autonomic management of the system which

attempts to distribute the spread of functions in an optimal manner.

A service is delivered successfully if all required functionality of the application can be reached,

in the required order within the networking hop constraints. These constraints will be set accord-

ing to the network resilience requirements in order to reduce excessive communication due to the

flooding-routing. The purpose of the platform is to autonomously operate in a way which maximises

the connectivity between different applications according to the user’s requirements in the face of un-

derlying internal and external changes to the system. Due to the state of applications residing in the

messages and not the cells, the application management is markedly less complex and mostly consists

of optimising the distribution of function types across the network according to prompts from cells

and the user. The autonomic functionality to accomplish this is described below.

3.4.2.3 Self-organisation and Self-healing

In order to optimise the structure of the network to maximise the connectedness of functions execut-

ing upon genomes, the underlying platform self-organises in a decentralised manner. Self-healing of

the network occurs through cells dividing according to requests for applications, or through noticing

that capacity has been reduced. Through simply dividing and differentiating, cells refill capacity

Page 51

Chapter 3. Embryonic Model for Resilient Cloud Service Delivery

and therefore the overall system self-heals. This autonomic functionality is chosen over a centralised

organisation mechanism for resilience purposes. Through reducing any central point of failure the

application can continue to operate in the face of node subversion/destruction. However these de-

centralised mechanisms come at increased operating overhead and communication complexity. The

original protocol design (first defined in Appendix B Paper 2) proved to be too complex and posed

a number of security flaws. Therefore a minimalist approach was taken in an attempt to reduce the

amount of possible organisational functions, attack service and communication overhead. This drove

the architecture to be more suitable for the most resource constrained environments. The chosen tech-

nique leverages gossiping protocols, which in contrast to the original design which involved a number

of request and response communication functions, in the new design, cells will continuously gossip in

a localised manner about their current view of the network and opt to make their own decisions about

how to act.

Cells periodically broadcast their view of the network consisting of their current function and the

last time they saw functions local to them, in keep-alive packets. A cell will check the updates received

to determine if their particular function is over-represented. This could be due to local visibility,

extremely low update times or a more complex algorithm. If the cell determines that its current

function is over-represented it will differentiate to one deemed under-represented. For example, if a

cell were to see many neighbours processing cryptographic data they might differentiate to a function

for compressing data, after seeing corresponding requests being not-processed. Figure 3.6 presents an

example, where cell 1 broadcasts keep alives to its neighbours. After the first broadcast both cells

which have differentiated to function 3 will notice that another function 3 is being regularly updated.

After a random amount of time one or both of the cells will choose to differentiate to one that can’t be

seen in order to minimise the likelihood of updates not being seen and having both cells differentiate

to the same. This is a race condition as it is possible that both cells will differentiate causing 3 to no

longer be represented well. A number of factors will be put in place to mitigate this such as random

timeouts, verification of time between keep alives or more complex distributed verification algorithms.

User Interaction The previously discussed functionality which enables the architecture to self-

organise and self-heal is only relevant when considered within the context of user/node interaction

which provides SaaS functionality. This section illustrates the way in which the service requests from

a user, drive the autonomic aspects of the platform.

Figure 3.7 illustrates the entire autonomic processes of the platform via interaction from the end-

user. A user (person or device) will submit their application and data to the API of any cell. The

cell will then check its latest information about the network state (achieved through gossiping). If the

full capacity to process each function within the application does not exist or the delay is too long,

the cell will request it’s neighbour cells to differentiate, divide, or divide itself if none are able to.

Once enough functionality is available to process the application, the user will begin transferring the

Page 52

Chapter 3. Embryonic Model for Resilient Cloud Service Delivery

Figure 3.6: This diagram illustrates to time steps in the platform showing the keep alive being

broadcast by cell 1 to its surrounding neighbours. In the first instance one or more cells differentiated

to function 3 will notice that there is another cell in the vicinity at which point they will differentiate

to an under represented function in the next instance.

first message which will be subsequently propagated through the network until its processing has been

completed. This enables the platform to scale up to process data as needed. After a predetermined

time of no data processing, cells may self-destruct according to a predefined timeout. This can assist

in freeing up resource capacity for later divisions.

3.5 Use-Cases

This section will discuss a number of real-world use-cases deemed suitable for the architecture. Specif-

ically these are cases where constrained devices, require low latency cloud like data processing in a

resilient manner. Most of which may suffer from partial link failures due to mobility or total failure

due to node subversion or destruction.

A number of use-cases are highlighted within the application of IIoT where a large number of

nodes collect data on the edge (Aazam et al. 2018). Mining (Singh et al. 2018), transportation,

crime (Neto et al. 2018) and agriculture (Heble et al. 2018) are examples where IoT systems may

operate in environments with dynamic and non-deterministic environmental conditions in addition to

device mobility. The next few subsections present some fictional scenarios which have been based on

a number of these use-cases. These scenarios are discussed whilst illustrating the application of the

proposed embyronic architecture to illustrate its benefit over alternative solutions.

Page 53

Chapter 3. Embryonic Model for Resilient Cloud Service Delivery

Figure 3.7: The architecture inspired by animal embryonic development, composed of Multi-Cellular

Platforms (MC). It provides resilient service delivery in hostile environments through leveraging the

concepts of self-healing, cell division and differentiation.

3.5.1 Smart Transport with VANETS

Vehicle Area Networks (VANETs) are an emerging concept which will become more commonplace

with the rise of autonomous vehicles. Cooperative driving between smart vehicles, optimised traffic

management and emergency response will be enabled through the sharing of information concerning

threats, location of vehicles and other actors, and environmental conditions etc. The highly mobile

nature of the nodes, delay intolerant nature of the data processing and safety critical nature of the

applications are only some problems which VANETs must overcome. As with the work by Pereira

et al. (2019), VANETs which leverage a fog architecture consist of On Board Units (OBUs) which

provide data processing on the vehicle, Road Side Units (RSUs) which provide data processing at the

base station, and the back-end cloud platform which provides enhanced data processing and storage

capabilities. Figure 3.8 illustrates this architectural model with the MC nodes overlayed.

The MC platform can provide a variety of low-latency data processing tasks to enable vehicles to

communicate with each other without having to reach the cloud. As node mobility inevitably causes

partial-failures, the self-healing aspects of the platform will enable data processing to continue.

3.5.1.1 Potential Application - Cooperative Vehicle Telemetry

VANETS may support autonomous vehicles in the future by permitting them to collaborate through

the sharing of information. This might, for example, include the awareness of possible incidents such

Page 54

Chapter 3. Embryonic Model for Resilient Cloud Service Delivery

Figure 3.8: Multicellular architecture leveraged as a SaaS platform for smart transport and VANETS.

At the device, the platform provides resilient, distributed data processing to enable co-operative

driving amongst mobile device. As data moves towards the cloud it can be pre-processed to optimise

resource consumption where it will finally reach the cloud in order to provide full features analytics

and control.

as collisions or bad weather conditions. It might also involve the sharing of real time traffic information

to mitigate congestion or simply to process and send this important data to the cloud to be processed

to provide benefit to all. This use-case presents such a scenario, where critical car telemetry data

needs to be processed and sent to the cloud in a resilient manner, which is described below.

As the car is conducting its journey from point A to point B, data is periodically forwarded to the

cloud about it’s current location, speed, known environmental conditions (e.g. the state of the road

and weather) and any other important environmental information. This information is important for

legal and insurance purposes so must be processed correctly following strict data-provenance methods.

During a routine trip the vehicle periodically moves in and out of range of nearby RSUs so data

is collaboratively processed between nearby vehicles. A collision occurs between two vehicles whereby

both vehicles are no longer able to process or send data. The speed of the collisions ensures that

the most recent data was not processed but fortunately it had been pushed to other cells on external

devices and continues its journey to the cloud. Figure 3.9 illustrates this scenario.

Without the multi-cellular network the data would struggle to reach the cloud or it would only be

half processed, the collaborative nature of the data processing ensures this. Additionally, redundant

messages and links increase the likelihood of the data arriving despite the loss of link to the back

end cloud and through the originating system’s destruction. In this case the data will provide crucial

evidence for crash investigation in addition to warnings for local vehicles.

Page 55

Chapter 3. Embryonic Model for Resilient Cloud Service Delivery

Figure 3.9: A use case illustrating resilient and collaborative data processing

3.5.2 Adversarial Warfare

Military applications for information processing are seeing increased deployment in order to provide

an advantage over the enemy. Application types are many which include secure communication,

ordinance targeting, remote system commands or even cooperative unmanned vehicle coordination

(Tortonesi et al. 2012). Consequently, transmitting nodes may be jammed or destroyed in order

to disrupt supporting operations (Amin et al. 2015). Aerial vehicles can be used to provide bridging

between distant terrestrial nodes, although link failure can be induced by device mobility and external

attack. Therefore communication between terrestrial nodes may be frequently disrupted.

This scenario therefore consists of an environment in which node failure is an almost certainty

and data processing requirements are critical. Therefore there is a very high resilience requirement.

Traditional mitigation techniques focus upon disruption tolerant networking approaches. In this

instance the MC architecture intends to provide persistent service delivery despite conditions of the

underlying infrastructure.

3.5.2.1 Potential Application - Secure and Resilient Communications

In this scenario, the MC architecture is distributed across all nodes in the battlefield. The application

used is a simple one, consisting of a destination identifier (a cryptographic hash) and a communication

Page 56

Chapter 3. Embryonic Model for Resilient Cloud Service Delivery

Figure 3.10: Example MC Architecture in an adversarial environment.

Page 57

Chapter 3. Embryonic Model for Resilient Cloud Service Delivery

payload. As the message is pushed from node to node it is authenticated to further enhance the

security of the message. Messages that cannot be authenticated will be dropped in order to prevent

misinformation from the adversary. Aerial support units both leverage the platform for communication

and data processing whilst additionally providing redundancy for communication links.

Figure 3.10 illustrates such a scenario where the blue team have deployed MC nodes across all

available architecture. The soldiers on the left and right can communicate in a resilient manner using

the MC architecture as their destruction or disruption does not prevent the data from continuing to

be transmitted. If a node is to be destroyed, the initial payload can still be processed on future nodes.

Finally, constrained nodes (such as the mobile units) can leverage the richer processing of stationary

nodes to provide enhanced data processing in a cloud-offloading manner.

3.5.3 Industrial IoT in hostile environments

There are numerous cases discussed previously where the application of IoT to industrial environments

results in these technologies being deployed in hostile conditions. Similarly to warfare situations,

networks of nodes operating in these environments will likely have an adversary which results in the

destruction of nodes or communication links between them. However in these instances that adversary

is more often than not weather phenomena, although the potential for human-driven attack still exists.

The disruption may be predictable, permitting the system to adapt to provide higher resilience in times

of need.

The requirements for these environments may vary although the likelihood of data collection and

decision making to perform some actuation is high. Additionally the potential for financial loss due

to the result of incorrect information causing the mismanagement of industrial machinery is also high.

Therefore resilient, autonomous, and accurate data processing is required.

3.5.3.1 Potential Application - Robotic Marine Data Processing

In this scenario, a network of autonomous sensors and robots are operating in a remote marine

location. Their goal is to collect data concerning a variety of environmental parameters including

the local weather, the chemical consistency of the water and the known quantity of some marine life.

The nodes are constrained to minimise power usage and widely dispersed to create an accurate data

sample of a wide area. These combinations of characteristics, combined with the hazardous weather,

variable power and node mobility ensures that link failures are frequent.

The MC architecture is therefore deployed across all nodes in the environment. In this instance,

environment data is sensed, then data processing consists of a number of steps which culminates

in a validation of the data before a collective decision is made by all MC nodes. As with previous

scenarios, once transmitted the data can still be processed through the iterative functions of the

application despite link or node failure. Redundancy in processing will enhance the ability of the

Page 58

Chapter 3. Embryonic Model for Resilient Cloud Service Delivery

Figure 3.11: Example MC Architecture in an industrial IoT hostile environment

system to successfully process the application. Finally the distributed data processing will allow

resource constrained nodes to perform complex calculations in a timely manner which might otherwise

not be possible. Figure 3.11 illustrates this scenario.

3.6 Summary

This chapter has presented a conceptual model for a resilient decentralised cloud architecture inspired

by animal embryonic development. A review of embyrogensis characteristics gave way to a mapping

between decentralised cloud resilience requirements and this features. The purpose is to determine if

a cloud platform could be developed in it’s likeness, enabling cloud functionality and also maintain

a high-level of resilience using these embryonic development characteristics. A model was developed

which employed cellular signalling methods and reduced networking communication to a flooding-

based local-only communication. As routing-based methods were unsuitable due to the potential for

high levels of node churn. The chapter ended with some suitable use-cases.

Page 59

Chapter 4

Cellular Automata Embryonic

Simulation

4.1 Introduction

In the previous chapter, an architectural model based upon embryonic development was presented for

a decentralised cloud service. The architecture was designed to provide cloud computing functionality

yet in a manner which has greater resilience than its traditional form. It was proposed to investigate

the embryogensis-derived model’s ability to provide resilience at the decentralised cloud layer. Driven

by the concept of emergent, self-organising behaviour as a result of local communication, this model

removes the need to maintain routing tables or traffic by employing flooding based routing and tactical

node placement.

In order to understand more about the resilience characteristics of this embryonic cloud model, a

Cellular Automata (CA) based simulation will examine its ability to maintain network connectivity

under varying environmental and application conditions. The results of this stage provide quanti-

tative data which supports whether or not a cloud architecture modelled on embyronics can deliver

applications resiliently. Successful delivery within hostile environments will provide support for this

model being deployed to provide cloud services in domains which currently are unsuitable.

This study starts by defining the CA model and linking it to the previously defined embryonic

architecture. The model is implemented in Python. It was then validated using a number of means

such as graphical validation, extreme conditions and internal validity. Batches of tests were then

conducted in an empirically sound manner to derive a dataset of 10 lots of each possible configuration

permutations resulting in 27000 different test runs. These are described in further detail later in

this chapter. This enables insight to determine the constraints of applications processing upon this

architecture. A quantitative analysis of this dataset then provides insight into this question. Finally,

60

Chapter 4. Cellular Automata Embryonic Simulation

the results of this analysis drive further considerations for a proof-of-concept implementation.

4.2 Cellular Automata Model Simulation Description

This section describes the Cellular Automata (CA) based model for the embryonic architecture in-

cluding the independent and dependent variables with motivations for their use. CA are discrete

models of dynamical and complex systems. They are employed for modelling and simulating a variety

of discrete scenarios of complex systems. Within this simulation a stochastic CA is employed, due

to having varying factors, such as the decision to spawn, the function, to spawn and the simulated

FR being dependent upon a random distribution. These stochastic CA are sometimes referred to as

Probabilistic Cellular Automata(PCA) (Kephart & Chess 2003). When appending service character-

istics and algorithms for service self-organisation, these can be suitable for simulation of the previously

defined embryonic decentralised cloud model.

4.3 Cellular Automata Model Simulation Description

4.3.1 Definitions

The following definitions should be considered within the context of this model.

• Cell - representing a node within the network and the cell in the cellular automata. It also

represents the biological cell within the model. It differentiates to a particular software function

and will execute code of that function. Or it will be dead (state 0)

• Function - A logical software function e.g. cryptographic functions, web service

• Application - Composed of multiple functions to provide a specific service. An application’s

functions must be able to reach each other in a consecutive manner.

• Update Function - Probabilistic function which determines the state of each cell within the

simulation. Executed upon each cell. Updated asynchronously and randomly to account for

similarities to real world networking.

• Multi-Cellular Organism (MC) - a collection of multiple cells which allows 1 or more appli-

cations to be executed via functions distributed across the cells.

• Connectedness - the quantity of fully connected applications. I.e. those where all functions

can be reached consecutively in order to fully process the data.

Page 61

Chapter 4. Cellular Automata Embryonic Simulation

Figure 4.1: Connected0 and Connected1 modelled as von-neumann neighbourhoods r=1 and r=2

respectfully. The red squares indicate the nodes in the central squares neighbourhood, the nodes

which will receive communications.

4.3.2 Variables

The purpose of the simulation is to understand more about the constrained model’s ability to resiliently

deliver services. The external or internal changes to the system will be represented by the failure of

nodes, according to a given stochastic variable. Whilst the resilience of the system will be measured

through the number of services that are fully connected at any step within the simulation. This

therefore will illustrate to what degree the network is still able to deliver its service under varying

changes.

The following dependent variables (connectedness values) will be used to measure this resilience.

• Connected0 - % of fully connected services with 0 networking hops allowed

• Connected1 - % of fully connected services with 1 networking hop allowed

Neighbourhoods are von-neumann, where r=1 is a neighbourhood size of 5 inclusive of the central

cell and r=2 is a neighbourhood size of 13, inclusive of the central cell. Connected0 and connected1

networks are von-neumann neighbourhood sizes of r=1 and r=2 respectfully (figure 4.1). Von-neumann

neighbourhoods were chosen over larger neighbourhood sizes, such as moore neighbourhoods, as it is

essential to reduce the number of communications being broadcast to nodes due to the flooding routing

present in the network.

Figure 4.2 illustrates a network which is successfully connected with 0 hops allowed. Whilst

figure 4.3 illustrates two possibilities. The 1st red node on the left is not fully connected in 0 or 1 hop

networking, whilst the network on the right is fully connected with 1 hop networking allowed.

Connectedness is calculated as follows: at each step in the simulation, all starting nodes are checked

to see if they can reach the next consecutive function. This process continues until the next consecutive

Page 62

Chapter 4. Cellular Automata Embryonic Simulation

Figure 4.2: An example of a fully connected network. The arrows indicate the connection flow between

nodes.

function cannot be found (i.e. no function 4 can be found after function 3), or if the final function

(i.e. function 5 in a list of 5 functions) is found creating a fully connected application. The quantity

of fully connected networks is then recorded for that step in the simulation. Figure 4.4 illustrates two

sub networks in a test network. One where the starting node can create a fully connected network

and the other where it cannot.

The following application related independent variables are used within the simulation to under-

stand more about the self-healing characteristics:

• Spawn Rate (SR) - % chance a node will grow another cell

• Failure Rate (FR) - % chance a node will fail

• Quantity of Functions (Q) - the variety of different function types

• Neighbourhood Size (N) - quantity of adjacent nodes to each cell.

The following independent variables are employed to understand more about the complexity char-

acteristics of the system and their effect upon the resilience of the network.

• Starting Location - the starting location of the MC in the grid. e.g. central, top-left, bottom-

left etc.

• Neighbour Start Size - the initial size of the neighbourhood.

The initial cell update function is shown in Algorithm 1, as follows: firstly a random variable will

decree (according to a pre-set probability of failure) if the node fails. If not the node checks its local

Page 63

Chapter 4. Cellular Automata Embryonic Simulation

Figure 4.3: A network is connected if all nodes can communicate in consecutive order, otherwise it is

unconnected. The left red node is an example of an unconnected network as it is not able to reach

the next node (blue) in 0 or 1 hops. The red node on the right is a fully connected network with 1

hop allowed as it can reach its second node (blue) through communicating via the green node.

Figure 4.4: The nodes in the red box are examples of a network which is not fully connected within

the connected0 tests. The two starting nodes (node 1) can reach a single node 3 using local only

communication (i.e. via a node 2) but not to the final required function (node 5). In contrast the

networking with a starting node highlighted in the green box can reach up to node 5.

Page 64

Chapter 4. Cellular Automata Embryonic Simulation

neighbourhood. If a node is found to contain the same function as the current node, then the current

node will differentiate according to an under-represented function.

Algorithm 1: Cell Update - No differentiation Optimisation

Data: NeighbourhoodState, CellState, Functions

Result: CellState, DivideCellState

Check Neighbourhood States;

if Cell is alive then

if Cell does not die then

if CellState is in NeighbourhoodState and N > 4 then

CellState = random from Functions not in NeighbourhoodState;

end

if Cell should divide then

Check Functions in NeighbourhoodState;

for Function in Functions do

if Function not in NeighbourhoodState then

DivideCellState = Function;

else

DivideCellState = random from Functions;

end

end

Divide with DivideCellState;

end

else

CellState = dead;

end

end

4.4 Simulation Model

This section presents the simulation of the CA-based model presented in the previous section. Includ-

ing implementation characteristics, validation and results. The model was implemented in the Python

scripting language using test driven development and executed on an i5 Linux system with 4GB of

RAM. The grid of cells was represented as a 2D array, where the state of each cell is in the range 0

to function quantity.

Page 65

Chapter 4. Cellular Automata Embryonic Simulation

Parameter Description Value

Time Steps The quantity of discrete increments per test, chosen

through experimentation

500

Grid Size Discrete area of the simulation test. Chosen in line with

similar applications and to constrain test sizes for later

processing.

10x10

Nodes Total number of possible network nodes in each test. 100

Independent Variables The number of variables which are varied. Chosen

through analysis of the embyronic model characteristics.

5

Test Runs Number of test runs per each variable. Chosen as a mid-

dle ground between empirical consistency and experiment

run time.

10

Total runs Total number of tests which were executed 27000

Table 4.1: Simulation Parameters

4.4.1 Validation

The simulation model was validated through a number of different yet complimentary means.

4.4.1.1 Graphical Validation

The two graphical representations were used to validate the model simulation. The independent vari-

ables related to resilience could be adjusted prior to the simulation. The interface would then permit

stepping through the simulation (up to the maximum 500 time steps). The graphical representations

(figures 4.5 and 4.6) would then enable stepping through varying configurations. This was used to ex-

amine the system operating under varying levels of strain. For example, operating under a maximum

SR and zero FR allowed easily validation that the software was representing the model correctly, as

these two scenarios are easily verifiable. Conversely, using a high FR and low SR caused the system

to be completely inactive. Both of these cases illustrate validation of the model through extreme

condition testing.

A time series graph will display the quantity of node types at each point at the end of the simulation.

For example figure 4.7 indicates a low stress network where there is minimal change in the environment

(low node failures) whereas figure 4.8 indicates a network with a high degree of failures. The failed

nodes (dashed line) at some points increase drastically. The self-healing ability of the system can

clearly be seen through its ability to maintain an even distribution of function types and return to a

nominal baseline despite this. This can be seen through the cyclic peaks. The peak representing active

nodes will fall as they fail, but rise again once the system has self-healed through self-replication.

Interestingly the cyclic nature of these graphs illustrate an elementary method of determining the

Page 66

Chapter 4. Cellular Automata Embryonic Simulation

Figure 4.5: GTK GUI which permits experimentation in a graphical manner. The coloured nodes

allow ease when examining the function of the networks.

Figure 4.6: ASCII Graphical interface. The grid is composed of a number of cells which can be in

states 0 to the number of functions. A fully connected network is one in which the functions can be

reached consecutively.

Page 67

Chapter 4. Cellular Automata Embryonic Simulation

Figure 4.7: An example test run of a Low Stress Network where time(t) is a discrete time step. This

test was not included in the data set and was run as an example for only 200 steps. Each line indicates

quantity of functions at each point in time where blue is failed or inactive cells. The low variability

illustrates the stability of the network.

state of the system. Known from complexity theory, a system will iterate through different states or

attractors. In these examples, the first part of the simulation shows the network converging into a

relatively baseline state. Note that at these higher FRs the majority of tests do not get to this stage

and fail. Once the converged state is reached the system will cycle between performing and degraded

performance as illustrated by the increase and decrease in cells. These stages, and the transitions

between them, will prove useful when deriving a method for measuring resilience later in this work.

4.4.1.2 Extreme Condition Validation

Within the empirical experimentation dataset (presented in the next section) unstressed networks

(0 FR) were tested. Verification occurred by examining only those tests where the FR == 0 and

SR == 1, with the means of each quantity of function being approximately Grid size / Function

quantity. Table 4.2 presents these values. Which illustrates that in a non hostile environment where

the software is aggressively reproducing, the random selection algorithm evenly distributes the function

types. However as there is no cell destruction this network will converge to a solution with minimal

dynamism and informs very little about the selection process’ effect upon resilience.

Page 68

Chapter 4. Cellular Automata Embryonic Simulation

Figure 4.8: A validation run for 200 steps for 1 function where FR = 0.4 and 0.45. The periodic

cycling between high-levels of nodes is an elementary representation of the system states. With high

numbers of cells it is resilient, with low numbers of cells it is not resilient. Moving from high to low

failed nodes illustrates the networks ability to heal after losing nodes.

Page 69

Chapter 4. Cellular Automata Embryonic Simulation

Variables Functions NeighbourhoodStart Connected0 Connected1

Connected0 -0.954 -0.049 1.000 1.000

Connected1 -0.896 0.096 1.000 1.000

Quantity of Node 0 0.012 -0.523 0.003 -0.086

Quantity of Node 1 -0.977 0.032 0.920 0.864

Quantity of Node 2 -0.125 -0.024 0.166 0.25

Quantity of Node 3 0.419 0.010 -0.350 -0.288

Quantity of Node 4 0.713 0.000 1 -0.697 -0.649

Quantity of Node 5 0.786 -0.006 -0.760 -0.737

Quantity of Node 6 0.651 -0.004 -0.642 -0.654

Table 4.2: Correlation Coefficients for validation via an extreme condition. FR == 0 & Spawnrate

== 1

4.4.1.3 Internal Validity

The empirical experimentation consisted of 27000 simulation tests. These consisted of 10 runs of

all independent variable permutations. The averages were then taken and due to the low variability

and large amount of consistency (presented in the next section), these results seek to validate the

simulation model.

4.4.2 Results and Analysis

The purpose of the simulation was to verify that the constrained system with no real routing could

remain resilient i.e. continue to deliver services under varying network changes. As the services

(applications) will successfully execute when all functions of each application are fully connected,

the goal is to examine the quantity of connected applications at each time step. This connectedness

of each network is then compared against the independent variables (application and complexity

characteristics) mentioned in the previous section.

4.4.2.1 Stochastic Model of Best-Case Function Distribution

Prior to the CA results, this section presents a theoretical analysis to examine the effect of cell

distribution on the connectedness of the applications where functions are evenly distributed. This

provides a baseline ideal result with which to compare the CA results.

In an ideal situation where the cells would differentiate in a manner which left the functions evenly

distributed the following applies. If q <= 4 then there is > 100% chance of a neighbour node being

in a required state. As q increases, this value decays at an exponential rate (figure 4.9). Therefore

in a less than ideal situation where nodes will fail and there is a chance that one or more cells are

non-functional then this will decrease further by the FR. Figure 4.10 illustrates the probability for

Page 70

Chapter 4. Cellular Automata Embryonic Simulation

Figure 4.9: This graph illustrates the probability of finding the next node for neighbourhood sizes of

5 and 13. The decline indicates that connection issues relating to function quantity can be mitigated

through increasing the neighbourhood size.

finding a next node where q = 5 and q = 6. Whilst figure 4.11 illustrates this with FRs included. The

central node in all diagrams must reach the next function (consecutively numbered node) in order for

the application to remain connected and execute.

A primary method of optimisation is therefore the ability to differentiate in a way which causes

the needed functions to be located in the next hop, particularly where q > n. Following on from the

previous example where all function types are evenly distributed across the map through intelligent

differentiation. The following section presents a model that assumes this scenario.

Page 71

Chapter 4. Cellular Automata Embryonic Simulation

Figure 4.10: Illustrated probability of finding the next cell where r=0 and q=5 or q=6. The numbers

on the nodes indicate the function type. The central node must reach the next consecutively numbered

node in order for the application to connect. In the diagram on the left, n=q, so the probability of

finding that node is 1. Where 2 can be seen adjacent to to the central node. However in the diagram

on the right, as q > n there is only an 80% chance of the next node being adjacent. In this diagram

the next node cannot be found.

Figure 4.11: Illustrated probability of finding the next cell where r=0 and q=5 or q=6. The numbers

on the nodes indicate the function type. The central node must reach the next consecutively numbered

node in order for the application to connect. In both the left and right diagrams, the central node is

not able to find the next consecutive node as failures have decreased the probability.

Page 72

Chapter 4. Cellular Automata Embryonic Simulation

Figure 4.12: Illustrated probability of finding the next cell where r=1 and and q=7 or q=13. The

inner layer of nodes (red) illustrate the first hop in the neighbourhood whilst the outer layer (blue)

illustrates the next hop. All nodes can be reached by the central node. In the digram on the left, the

next consecutive node can be reached as q < n. However in the digram on the right q > n, decreasing

the probability of finding the correct node, causing the next consecutive node to not be found.

Page 73

C
h

ap
ter

4.
C

ellu
lar

A
u

tom
a
ta

E
m

b
ryon

ic
S

im
u
lation

Figure 4.13: This diagram illustrates an example probability tree used to calculate the connectedness of a service where F=0.1, Q=5 and N=4. Only a number

of examples are given due to the real scale of the tree being unsuitable for diagrammatic scale. Following the left most branch at all times will give the

probability of finding all 5 functions with 0 failures. Highlighted in orange with the formula at the bottom of the diagram.

P
age

74

Chapter 4. Cellular Automata Embryonic Simulation

For values of N neighbourhood size, Q quantity of functions and F FR, the model will determine

the probability of finding a fully connected application through the sum of all possible fully connected

outcomes. Using a probability tree, the product of the probabilities of all occurrences where an

application will remain fully connected (i.e. communication from the 1st node can reach the last) will

determine the applications connectedness under varying scenario characteristics. The probability tree

can be divided into distinct stages denoting whether the next function has been found.

At each stage of the tree there is the possibility between 0-N nodes will fail. As the only interesting

results are those where a node finds the next function, the only branches in the tree followed are those

with 1 or more active nodes. Figure 4.13 illustrates an example walk through. At each stage, all

probabilities of node failures (excluding where all fail) are calculated. Each one is then multiplied by

the probability of finding the next cell as discussed previously (n/q). Each one of these results spawns

N new branches and the process is iterated Q− 1 times. The results of the final stage are multiplied

together to determine the overall probability.

To calculate this model the following formula can be used. Firstly we sum the probabilities of all

nodes not failing (formula 4.1).

p(notfail) = 1− (

N∑
n=1

(fn)/Q (4.1)

Then we determine the probability of the next node being found (formula 4.2).

p(notfail) ∗ (N/Q) (4.2)

This branches the tree and keeps iterating N − 1 times where the resulting probabilities at N are

multiplied. Next, all the possibilities where nodes have failed 1 to (N −1) and the next node is found.

As before the results where the next node is found iterate N−1 times where the results are multiplied

(formula 4.3).

N∏
n=1

(Fn) ∗ ((N − n)/Q) (4.3)

In order to examine the results, a recursive function was written in Python to iterate through

all paths of the tree and determine the product of the probabilities. Figures 4.14 and 4.15 show the

results of simulations of connected0 and connected1 simulations.

Page 75

Chapter 4. Cellular Automata Embryonic Simulation

Figure 4.14: Results of the model comparing different FRs, simulating average connectedness of

networks with 0 hop communication allowed where functions are evenly distributed.

Figure 4.15: Results of the model comparing different FRs, simulating average connectedness of

networks with 1 hop communication allowed where functions are evenly distributed.

The results of the connected0 model (figure 4.14) clearly illustrates the problem concerning the

reduction in probability of finding the next required function due to the neighbourhood size. This

is shown in the steep drop at 6 service size. Whilst the results of the connected1 tests (figure 4.15)

illustrate how this problem is mitigated greatly through increasing the neighbourhood size and search

space.

Page 76

Chapter 4. Cellular Automata Embryonic Simulation

Figure 4.16: Results of average connectedness of applications with 0 hop communication allowed.

4.4.2.2 CA Results

The groups of tests examined in this section are simulated for a MC under stress, where FR > 0. We

are seeking to determine how well the applications can still communicate using local only-interaction

when under varying levels of network stress (FR) and application complexity (function types 2-6).

Variables such as spawnrate and the cell differentiation process were examined in order to optimise

the performance of the MC.

4.4.2.3 SpawnRate

During an initial analysis, it was shown that through aggressive spawning a performance improvement

could be made. Conversely, reducing the spawnrate always caused negative performance. Figures 4.16

and 4.17 show the connected0 tests where SR == All and SR == 1, respectfully. The smoother

declines indicates that this small optimisation can increase the ability for the applications to be

connected, where higher FRs benefit more over lower FRs. This is due to the aggressive spawning

increasing the likelihood of nodes filling gaps where previous nodes had failed (state 0) i.e there is a

greater number of functional nodes and a reduced number of failed nodes. At lower FRs this has less

of an effect due to lower quantity of failed nodes.

Page 77

Chapter 4. Cellular Automata Embryonic Simulation

Figure 4.17: Results of average connectedness of applications with 0 hop communication allowed where

spawnrate==1

4.4.2.4 Cell Update Function

Another method of performance optimisation made within the CA is the update function, which may

choose to differentiate cells in order to optimise the MC. Therefore this section presents the results

of 2 different groups of tests, each with 2 additional update functions. The update functions are as

follows:

• No Differentiation Optimisation (NoDif) - Cells do not attempt to optimise the distribu-

tion of cells except to remove redundancy. The cell firstly examines the states of all adjacent

cells. If its state is the same as an adjacent cell and the quantity of functions is greater than

the neighbourhood size, it will attempt to differentiate to to an unseen state. The cell will still

divide to a random function when there is adjacent space (Algorithm 1).

• Differentiation upon duplication (Dif1) - If the cell shares the same function type as a

neighbour cell, it will differentiate to a function which is not represented (Algorithm 2).

• Differentiate according to weighting (Dif2) - As above the cell first examines the adjacent

node states and determines the least represented functions out of the global set of functions.

It will then differentiate to the least represented function or if there are many of the same

weighting, a random function from this subset (Algorithm 3).

Page 78

Chapter 4. Cellular Automata Embryonic Simulation

Algorithm 2: Cell Update - Differentiation upon Duplication

Data: NeighbourhoodState, CellState, Functions

Result: CellState, DivideCellState

Check Neighbourhood States;

if Cell is alive then

if Cell should not die then

if Cell should divide then

Check Functions in NeighbourhoodState;

for Function in Functions do

if Function not in NeighbourhoodState then

DivideCellState is Function;

else

DivideCellState is random from Functions

end

end

Divide with DivideCellState;

end

else

CellState is dead;

end

end

Page 79

Chapter 4. Cellular Automata Embryonic Simulation

Algorithm 3: Cell Update - Weighted Differentiation

Data: NeighbourhoodState, CellState, Functions

Result: CellState, DivideCellState

Check Neighbourhood States;

if Cell is alive then

if Cell does not die then

for Function in Functions do

Count Function in NeighbourhoodState;

end

minFunctions = Calculate min(Function in NeighbourhoodSate);

CellState = random(minFunctions)

if Cell should divide then

Check Functions in NeighbourhoodState;

for Function in Functions do

if Function not in NeighbourhoodState then

DivideCellState = Function;

else

DivideCellState = random from Functions;

end

end

Divide with DivideCellState;

end

else

CellState = dead;

end

end

Page 80

C
h

ap
ter

4.
C

ellu
lar

A
u

tom
a
ta

E
m

b
ryon

ic
S

im
u
lation

Figure 4.18: Average connectedness comparing differentiation methods for connected0 tests

P
age

81

Chapter 4. Cellular Automata Embryonic Simulation

Figure 4.18 presents the results of network connectedness for the connected0 tests. A clear trend

can be seen that as the quantity of functions increases the ability for the applications to remain

connected decreases. This is caused by the complexity of the application ensuring the likelihood of one

function being adjacent to another to reduce. In the currently measured von-neumann neighbourhood

where r=1, a cell will be able to communicate with 4 other cells. Therefore if Q > 4 the chance of

finding the next node is < 100. This explains the considerable performance drop at functions 4 or

greater. Regarding the difference between NoDif, Dif1 and Dif2, the trend illustrates dif2 providing

increased connectivity over NoDif and Dif1 where Q >= N . This performance increase appears to be

strong at medium FR of 0.2 and 0.3 but less favourable at 0.4. This evidences that attempting to

optimise the distribution of cells does increase performance but only to a certain FR.

Figure 4.19 presents the results of network connectedness for the connected1 tests. The same

trend can be seen as in connected0, however this time the decay is slower and the decline is a lot

smoother, there are no sudden jumps (such as when Q > N). This would suggest that the issue of

reduced probability is mitigated as the size of the search space is now increased. If it is assumed that

the self-organisation of the MC will force differentiation of under-represented cells within the same

time scale as the communication to next node, then the search space at each step will be N ∗N , else

it will be N ∗ (N − 1). A considerable increase over simply N . The function distribution algorithm

dif2 follows a similar performance improvement trend as with connected0 and therefore highlights the

efficacy of this approach. As with the connected0 tests, high FRs and tests where Q > N still have

poor performance.

Page 82

C
h

ap
ter

4.
C

ellu
lar

A
u

tom
a
ta

E
m

b
ryon

ic
S

im
u
lation

Figure 4.19: Average connectedness comparing differentiation methods for connected1 tests

P
age

83

Chapter 4. Cellular Automata Embryonic Simulation

Figure 4.20: 50 test runs with FR == 0.3, functions 3 and Neighbourhood startsize 1. Showing just

under 50% of tests were successful whilst the rest were unsuccessful.

4.4.2.5 Organism Start Size and Location

Starting location was examined for its relationship to complex systems, in case it had an effect upon

the resilience of the MC. However due to a correlation of < 0.009 it was determined to have no effect.

A characteristic of the MC which is internally adjustable and is also concerned with complex

systems is its starting size, i.e. the number of starting cells. Test groups were run with starting cells

of 1, 5 and 9. For all tests, as start size increases, as does the connectedness, which is an intuitive

finding. At high FRs, this can be quite a considerable performance increase of 50%, where Q < N .

Figures 4.20 and 4.21 show the distribution of tests which ended up with either an early failure or

successfully survived, with the corresponding connectedness. In figure 4.20, the results for a starting

MC of 1 show that a greater number of tests would fail than succeed. However figure 4.21 shows the

same distribution but for a starting neighbourhood of 9 where only a small number of tests failed.

This illustrates the effect of starting size upon success.

These graphs highlight some interesting aspects relating to the efficacy of different intelligent

dynamic differentiation algorithms. At the higher start sizes the algorithms appear to be almost on

par. However where start size == 1, the results don’t fit a clear trend. Closer examination of these

groups of tests indicates something interesting. That the test results were polarised where they either

tend to be highly connected, (> 0.9%) or not at all which explains the poor performance where

FR = 0.3 in Dif1. This is a trend that is persistent throughout the tests where those that did not fail

had consistent connectedness where the performance improvement could be gained by increasing the

start size.

Examining this at the highest FR of 0.4 illustrates still good performance, however this only holds

true where N > 4. This strongly illustrates that the initial stages of an MC are vital to its ongoing

survival.

Page 84

Chapter 4. Cellular Automata Embryonic Simulation

3

Figure 4.21: 50 test runs with FR 0.3, functions 3 and Neighbourhood startsize 9. Where the majority

of tests were highly successful.

4.5 Discussion

This section presents a discussion of the results provided in the previous section. The results of all tests

have indicated a number of points concerning factors which affect the connectedness of applications,

within the embryonic model. All of which highlight methods to optimise the resilience of the MC

dependent upon its characteristics. The independent factors (those variables which can be internally

adjustable by the MC) are: the application complexity (quantity of functions per application), the

level of division aggressiveness, starting MC size and the algorithm to determine differentiation. All

of which are discussed in further detail below.

4.5.1 Application Complexity

The quantity of functions within an application undoubtedly has a direct effect upon its connectedness.

This is by the inherent nature of needing to connect more cells within an application, leaving more

points for failure. However, dividing application functionality is a prime characteristic of the MC

architecture and a requirement of resilience, in order to distribute risk. Therefore any technique which

increases connectivity under increased application complexity is a positive benefit to the resilience of

the embryonic architecture. A clear point is that adjusting the complexity of an application can enable

it to survive during periods of particular stress although at an obvious reduction of functionality. For

example, functionality could be aggregated or divided as appropriate. This can pave the way for

networking algorithms that downgrade according to perceived performance.

If it is not feasible to manage complexity through reduction of functionality, applications could

be divided into sub sections or ”organs” following the biological model. This would cause the overall

likelihood of the application to still execute successfully albeit with a largely increased resource usage.

Page 85

Chapter 4. Cellular Automata Embryonic Simulation

Figure 4.22: On the left is the original model where all messages are passed between cells indiscrim-

inately. The complexity of the applications (the larger number of functions) causes the probability

of finding the next function needed low. The model on the right attempts to mitigate this through

grouping the functions into sub-applications, where messages will be passed between sub functions.

Whilst the application complexity would be reduced, communication protocols and network man-

agement complexity would increase due to the additional network overlay. Therefore finding an

appropriate balance would be necessary.

4.5.2 Aggressive Spawning

In the previous experiments it was quickly determined that given the option, dividing to create a new

cell increased the connectedness within the MC. The performance increase was considerable at higher

FRs but also decreased proportionally to application complexity. This is intuitive as a greater number

of cells permits a higher chance of finding the next required function. This is directly through the

required function being adjacent to the cell and indirectly through enhanced communication. However,

during practical testing, the time period for spawning will need to be determined appropriately so as

to not delay execution of other components with the cell, e.g. function execution.

4.5.3 Complex System Characteristics

Two characteristics of complex systems were also investigated for their effect upon connectedness, the

cell’s initial starting size and location. The start location showed little benefit as varying it made

no difference to the connectedness results with a almost zero correlation. However the starting size

Page 86

Chapter 4. Cellular Automata Embryonic Simulation

correlated with an increase in connectedness, particularly at higher FRs. The reason for this is the

same as the aggressive spawning point previously mentioned. This is a strong finding considering

this could give networks starting in highly hostile conditions an increased chance of survival. As it

was noted that networks either survived entirely or failed early on, this highlighted the necessity for

ensuring strong survival in early stages, where increased MC start size is a strong enabling factor.

4.5.4 Increasing Search Space

Throughout all the results, a clear improvement can be seen with the connected1 tests over the

connected0. As explained previously, this is due to increasing the potential search space through the

increased neighbourhood size, which can also be understood as von-neumann networks where r=1

and r=2, respectfully. If the quantity of functions is greater than the neighbourhood size (which is

decreased further by the FR) then the probability of connectedness decreases and therefore increasing

this search space can mitigate this issue and thus improve the connectedness of the service. However

due to the application of flooding based routing, larger sized neighbourhoods will have a detrimental

effect upon MC performance. Through permitting 1 hop communication, the search space can be

considerably increased and thus the likelihood of remaining connected increases. Optimisations will

need be determined once more is known about the effect of communication upon the MC in later

stages of the research.

Therefore, we can deduce from the previous analysis that the relationship between the neighbour-

hood size and function quantity (application complexity) has a direct effect upon the connectedness

of that application. The probabilistic model presented in section 4.1 indicates that during a best case

scenario, the most optimal selection for function quantity is any which is less than the neighbourhood

size. This can be explained as follows:

If Q > N then the chance of the application to remaining connected is < 100%, which reduces

considerably with larger service sizes. Therefore increasing the neighbourhood size, and in particular

ensuring it is larger than the application size including FR, such that is N > Q or N > (Q ∗FR) will

cause a considerably increased chance for the application to remain connected.

4.5.5 Function spread through differentiation algorithms

Another point of optimisation is the method used by cells to differentiate according to the needed

functions. The probabilistic model illustrates a best case scenario where function types are evenly

distributed. However, as a result of node failures and possible differentiation methods the CA is

incredibly dynamic, causing cell states to be in a constant state of flux, potentially changing at each

time step. Therefore through deriving intelligent mechanisms which differentiate to force a given

spread of functions, the connectedness can be improved. This can be seen with the performance

improvement between the two differentiation algorithms, particularly where Q > N and at higher

Page 87

Chapter 4. Cellular Automata Embryonic Simulation

FRs. However this performance does not reach that of the probabilistic model although it does help

to confirm its findings. This is largely due to the highly dynamic nature of the CA which also lacks

many features making it less representative of the real-world system. The next stage of this research

will develop a prototype implementation to permit investigation of the model with the currently

lacking communication and processing performance attributes.

4.5.6 System states

As discussed during the system validation, it is possible at this point to observe the change in system

states in an elementary manner through the quantity of cell types. At this point it can be seen when the

system is converge at the initial spawn and the cycle between degraded and acceptable performance,

with the transitions between the two. This is useful as it provides direction for examining the state of

the system externally, without the use of processing applications. An important point here is that the

the converging state is distinct from the degraded state. Specifically that once cells reach a converged

state they tend to persist and cycle between degraded and converged. However those that don’t reach

the converged state may simply die.

4.6 Considerations for Practical Implementation

In the previous chapter, modelling of the embryonic characteristics against the required functionality

highlighted a disparity between goals. Whilst the networking functionality decreed an array of features

such as routing tables; the resilience and complexity characteristics were at odds, due to the increase in

attack surface. Therefore this chapter provided models and corresponding simulations to understand

the efficacy of the embryonic model yet with the negative networking aspects removed. This enabled an

investigation into the architectural structure of the model without skewing the results with complexity

of the communication.

The simulations examined the effect of the independent factors (those variables which can be

internally adjustable by the MC) which are: the application complexity (quantity of functions per

application), the level of division aggressiveness, starting MC size and the algorithm to determine

differentiation. These were varied to determine the ability for applications to remain connected under

varying levels of failure. The results of simulations indicated a number of theoretical findings which

benefit the development of the proposed resilient embryonic platform. Primarily they confirm that

through replacing routing with flooding based, local-only communication, the proposed model can

still effectively communicate in a p2p manner.

However the connectedness of an application will decrease as its complexity increases. Particularly

when the quantity of functions is greater than the size of the local communication neighbourhood al-

though increasing the size of the neighbourhood will cause increased communication overhead. There-

Page 88

Chapter 4. Cellular Automata Embryonic Simulation

fore this highlights an area for focus during the practical implementation to determine the trade-off

between neighbourhood size and performance. A similar point relates to the starting size of the MC.

It was found that the larger the number of starting cells, the greater the chance of a MC to survive,

particularly under high levels of stress.

Another optimisation method is through applying differing levels of intelligence during the cell’s

dynamic differentiation. This investigation indicated that it is important to distribute the function

type so that the likelihood of successful communication increases, particularly for smaller neighbour-

hood sizes. Within the context of the practical development this creates an area of focus relating to

the self-organisation of the MC platform. In the next stages this will be managed according to the

user interaction and changes in the system.

The next chapter concerns further practical implementation of the proposed architecture where

the findings from the simulations within this work help to drive the focus of the next investigation.

As the practical implementation will mostly increase complexity at the communication layer, a key

focus of these investigations will examine performance degradation as a result of increased communi-

cation. Any optimisation methods which involved widening the scope of communication, such as the

neighbourhood size and application complexity, will need to be heavily examined for their effect upon

performance in tandem with the communication. Communication should increase exponentially in line

with the number of communicating cells, therefore performance degradation is expected. Therefore

any optimisation methods which will not involve the creation of increased communication scope will

be essential to managing this. Methods such as determining differentiation decision or novel methods

involving communication optimisation.

Overall the results of the CA simulations have highlighted a number of key points relevant to the

next (practical) stage of the investigation:

• Structural characteristics can be varied in order to increase resilience under varying levels of

stress. These will provide the baseline categories for the next stages of tests.

• Increasing structural characteristics tend to be resource intensive in all manners, so their use-

fulness in a practical context will be quantified when using real-world systems.

• An elementary measurement of state-space can be seen through the quantity of cell types. This

may prove useful for deriving metrics in later investigations.

• Further methods of intelligent decision making relating to optimising the function spread when

choosing to differentiate can be investigated in a greater manner, as the discrete nature of the

CA simulation prevented this but did highlight its effectiveness.

The practical implementation will be in some ways less constrained than the CA simulation as the

CA operated in discrete time steps and without communication. This ensures that decision making

Page 89

Chapter 4. Cellular Automata Embryonic Simulation

can be operated on a more precise scale. However this may also mean that synchronisation issues

could occur. Overall the CA simulations were focused on examining structure and architecture, whilst

the practical implementation will examine communication performance and effect.

4.7 Summary

This chapter provided models and corresponding simulations to understand the efficacy of the embry-

onic model. The results of the CA simulations have highlighted a number of key points relevant to the

next stage of the investigation: structural characteristics can be varied in order to increase resilience

under varying levels of stress. Increasing structural characteristics tend to be resource intensive in

all manners, so their usefulness in a practical context will be quantified when using real-world sys-

tems. Further methods of intelligent decision making relating to optimising the function spread when

choosing to differentiate will be investigated in a greater manner, as the discrete nature of the CA

simulation prevented this but did highlight its effectiveness.

Page 90

Chapter 5

Proof-of-Concept Implementation

5.1 Introduction

In the previous chapters, embryonic development characteristics were modelled and then combined

with decentralised cloud platform characteristics in an attempt to provide an architecture that deliv-

ers services in a highly resilient manner. A Cellular Automata model was then simulated to evaluate

a number of the resilience characteristics. The CA simulation highlighted that the local-only com-

munication driven architecture could deliver the proposed applications in a resilient manner, within

the constraints of a number of parameters. This chapter presents the next stage of the research, in

which a proof-of-concept implementation (employing full networking and software functionality) of the

previously simulated architecture will enable further analysis of its resilience characteristics, driving

more avenues for investigation. Two slightly different variants of the architecture are presented. The

first is a user-driven variant, where the embryonic platform develops, organises and heals according

to user-requests. The second is an autonomic variant, in which the embryonic platform develops and

self-organises entirely autonomously depending upon starting conditions.

To achieve this goal, this chapter takes a software-engineering approach. The specification of the

software is defined with a set of formal functional and non-functional requirements. Designs are then

engineered from the high-level user interaction to lower-level sequence flow and data structures. Finally

the solution is validated against the given requirements. The development process is a strongly test-

driven iterative approach, in which individual components were built then integrated. Due to needing

to adhere to all requirements two different variants are derived and validated.

5.2 Software Specification

The goal of the developed application discussed in this section is to realise a practical implementation

of the embryonic model defined in the previous chapter. Data processing applications designed for

91

Chapter 5. Proof-of-Concept Implementation

decentralised cloud disciplines (e.g. edge/fog/mobile cloud) will be executed upon the platform in a

resilient manner (i.e. delivered in a trusted manner despite the presence of internal and external threats

to the network). The P2P overlay network that the platform operates upon will contain self-healing

and self-organising properties, driven by the characteristics of cellular differentiation and division.

Finally the platform will communicate in a message-oriented manner using local-only communication

as much as possible in order to maintain high-level of node churn. The proof-of-concept will be

leveraged as an investigation platform to provide further empirical investigation of the embryonic

architecture.

5.2.1 Software Requirements

This section presents the formal software requirements for the platform and will be used to evaluate

the success of the implementation and drive testing plans. These are split into functional and non-

functional requirements, and prioritised using the MoSCoW method (The classification of whether a

requirement Must, Should, Could or Won’t feature in the solution) shown in table 5.1. The first point

of note is that there are very few functional requirements compared to non-functional requirements.

Intuitively this is by nature of the platform being autonomous whereby the user (which dictates

functional requirements) drives the platform which should execute applications requested of it and

provide simple billing information. All other characteristics of the platform should be abstracted away

from the user such that it operates without any user-intervention. This polarisation of requirements

illustrates the autonomic nature of the design and therefore the adherence to the self-organising and

complex nature of the system.

5.3 High-level Software Design

This section describes the high-level functional processes of the architecture using a series of UML

diagrams with descriptions. There are two architectural variants. The first is a user-driven variant

which was developed closely in line with the functional cloud user requirements. The second diverges

away from the traditional cloud requirements and aligns with the characteristics of a complex system

due its emergent behaviour. It investigates the findings from chapter 4 concerning the differentiation

optimisation.

5.3.1 Message Registry

The first important design component of the application is the messages sent and received. The

previously defined application logic can operate with differing messaging types. Initially, (Appendix B

Paper 2), the communication protocol was extensive, consisting of multi-hop communications, directed

messages and request/response pairs. This was conceived in order to write a robust protocol which

Page 92

Chapter 5. Proof-of-Concept Implementation

. Description MoSCoW Rationale

F1 Receive a sufficiently defined application and pro-

duce the correct output

M Cloud

F2 Divide and differentiate according to external pro-

cessing requests

M Embryonic

F3 Present metering usage information per user. S Cloud

NF1 Scale as required to meet processing requests or

fail gracefully

M Cloud

NF2 to self-organise to meet varying internal and ex-

ternal conditions

M Embryonic, Resilience

NF3 to self-heal through division when nodes are lost M Embryonic, Resilience

NF4 Employ cellular signalling based communication

methods

M Embryonic

NF5 Provide a specified level of QoS C Cloud

NF6 Provide portability to diverse hard-

ware/architecture/platforms

S Resilience

NF7 Provide data integrity and confidentiality when-

ever needed

S Resilience

NF8 Enable user modification of architecture W Embryonic, Resilience

F=Functional, NF=Non-Functional, MoSCoW prioritisation is one of Must, Should, Could or Won’t

Table 5.1: Functional and Non-functional Software Requirements using the MoSCoW classification

system

Page 93

Chapter 5. Proof-of-Concept Implementation

provided the functionality available to process full applications in the likeness of the embryogenesis

process. To more strongly adhere to the requirements of complex systems and the decentralised

environment, this protocol steadily became reduced. Firstly due to the introduction of local-only

communication, any multi-hop, directed messages and request/response pairs were removed. Finally

any redundant messages were condensed in order to reduce bandwidth consumption due to the flooding

network. The majority of functionality was reduced into the single keep alive message - OKA. This is

the fundamental complex systems concept of nodes communicating locally where they will continuously

gossip to their neighbours about their known information. Table 5.2 presents the finalised messages

implemented in this proof-of-concept. These messages were not employed in the CA simulation as it

did not employ communication characteristics.

Type Code Function

Organism OKA Keep Alive – sends known state of local nodes

Organism OCRQ Capacity request for a particular function

Organism OPAR Advertise all known peers

Function FDPR Application function traffic in

Function FAOT Application function traffic out

API PFRQ Request to load function

API PAPP Push application to MC

Table 5.2: Register of messages

5.3.2 User-driven Variant

Figure 5.1 shows the use-case diagram for the multicellular architecture. Surrounding the system

boundary are 3 actors:

• Developer - is in charge of creating the app, compiling the data and pushing the application onto

the network for execution. The developer is responsible understanding the platform application

specification and validating their code before pushing it to the network. May be a human

operator or autonomous device.

• Cloud Management - who operates and manages the underlying supporting cloud infras-

tructure. Providing and scaling the supporting compute, storage and networking resources as

appropriate. Monitors resource usage for metering purposes. There can be one or more cloud

management entities working collaboratively or in isolation.

• End-User - receives the data from the platform for processing / presentation. As with the

developer this actor could be a human operator or an an autonomous device. The end-user and

developer could also be the same entity.

Page 94

Chapter 5. Proof-of-Concept Implementation

Figure 5.1: Usecase for MC architecture. It consists of 3 distinct users, the developer requests and

uploads the application to the system. The Cloud management actor monitors the app status for

billing purposes and also scales resources as necessary. Finally the end-user will simply access the

application to push or pull data.

Page 95

Chapter 5. Proof-of-Concept Implementation

Figure 5.2: Activity Diagram for MC

Figure 5.2 illustrates the execution flow for 3 distinct actors culminating in an entire activity

lifecycle diagram for an application. The external developer or user (left), the MC architecture

(centre) and the Cloud Infrastructure manager (right). The diagram highlights the user-driven nature

of the platform in that the user-request is what causes the MC platform to drive the resource to scale

according to need. The application is executed across each function until completed at which point

the result is pushed out to the user for presentation.

Figure 5.3 shows the activity diagram for the lifecycle of the cell. The leftmost entity is the

superset object, the cell, which executes the two daughter entities the node (which handles network

communication) and the genome (which executes function data). After initialisation, the genome

differentiates to the given function and then begins a loop involving polling a socket for any appropriate

messages to process. Concurrently the node will poll sockets for both the client side API and for any

locally connected cells and pass the messages to the appropriate location for processing, if appropriate.

Finally the cell loop will maintain an up to date list of local cells, and gossip any necessary information

Page 96

Chapter 5. Proof-of-Concept Implementation

to its peers.

Figure 5.4 shows the sequence diagram including function calls of the application lifecycle. It starts

from the developer/user who, using the MC API, first pushes a request to the MC consisting of an

application template. This data structure will illustrate the functional requirements of the applica-

tion where each function is individually checked for availability, prompting differentiation/division as

needed. Finally the function calls with corresponding data are transmitted to the MC either in one

block or distinct units with the output data presented back to the user.

Figure 5.5 finally illustrates the sequence diagram of the cell, which complements figure 5.3. Note

that after the preliminary variable settings, (thresholds, differentiation etc.) that the execution occurs

concurrently in 3 distinct places. The subscriber thread continuously polls local nodes for new messages

and processes them if appropriate, the genome continuously polls for new messages and executes them

if appropriate, whilst the cell provides a continuous loop which gossips about local knowledge and

prunes nodes as appropriate (providing self-healing functionality).

5.3.3 Self-organised Variant

Following on from the analysis of the user-driven test-case, this test-case takes a different approach.

In contrast to the user-driven variant, which required a user to send an application template which

drove the development of the MC platform, in this instance the cells receive information form their

mother (DNA) when they are first created. This information instructs them to divide according to

the range of functions that it could differentiate to. Nodes will then self-organise according to a global

requirement and their local information.

The difference in functionality is as follows:

• In the first architectural design the user requested function capacity and the local cell organised

the division and differentiation of this capacity local to the user. The required application types

are now built into the cell upon spawn by it’s mother cell.

• Having the functionality built in allows cells to differentiate according to local information to

ensure an even and dynamic distribution of functionality.

• Cells now divide to fill out their capacity and then self-heal to do so. This is encoded into

the cell by the ”DNA” given from the mother cell. This not only permits entirely autonomous

behaviour but also allows the entire platform to be re-started with different parameters by the

mother cell.

The lack of continuous user prompts reducing the user-requirements can be seen in an updated

use-case diagram figure 5.6. The lower user-facing functionality highlights this architecture’s stronger

lean towards autonomic behaviour.

Page 97

Chapter 5. Proof-of-Concept Implementation

Figure 5.3: Activity Diagram for Atomic Cell

Page 98

Chapter 5. Proof-of-Concept Implementation

Figure 5.4: Sequence diagram for application Lifecycle

Page 99

Chapter 5. Proof-of-Concept Implementation

Figure 5.5: Sequence diagram for the cell

Page 100

Chapter 5. Proof-of-Concept Implementation

Figure 5.6: MC Use-Case Diagram Self-Organising

Page 101

Chapter 5. Proof-of-Concept Implementation

Figure 5.7: MC Activity Diagram Self-Organising

Figure 5.7 shows the minor difference between the activity life cycle, in that the developer and

user instigates the cell with the template as opposed to making a request and waiting for division.

Whilst figure 5.8 shows the changes for the atomic cell. Firstly after initiation it divides. Then at

the end of the cell column there is an additional division if the timed out cell is a child which occurs

to ensure the system does not divide past its initial constraints. Finally the differentiate request will

now come via a check on the local neighbourhood as opposed to externally.

Figure 5.9 shows this autonomic functionality mostly in the cell sequence diagram. An additional

loop is added at inception which divides until capacity is reached. When a timeout occurs for a cell,

in this new architecture the cell will divide again if it was a child node to provide self-healing capacity.

Whilst finally an additional check is performed in the main cell loop which continuously tests the local

neighbourhood for even function distribution and differentiates if needed. In this validation case the

optimisation uses Algorithm 2 - Cell Update Differentiation upon duplication algorithm, defined in

section 4.4.2.4.

Page 102

Chapter 5. Proof-of-Concept Implementation

Figure 5.8: Cell Activity Diagram Self-Organising

Page 103

Chapter 5. Proof-of-Concept Implementation

Figure 5.9: Cell Sequence Diagram Self-Organising

Page 104

Chapter 5. Proof-of-Concept Implementation

Figure 5.10: Simplified Class Diagram illustrating the relationship between the components within

the python implementation of the cell. This diagram is reduced for clarity purposes.

5.4 Implementation Details

The high-level designs in the previous section enabled the practical implementation of the cell with

a number of supporting applications. The embryonic software contains only one component, the cell.

As such there is a singular python file named cell.py. This file contains 3 classes which correspond

to the cell’s top level components: cell, genome, and node. Figure 5.10 illustrates a simplified class

diagram of the relationship between these components.

The code is heavily supported by the ZeroMQ (which stands for zero message queue) library

(Hintjens 2013) which is an extremely fast and efficient high speed message passing library written

in C. ZeroMQ has many advantages over coding the networking application from scratch using an

operating system primitive such as Berkeley sockets (Stevens et al. 2004) (Vessey & Skinner 1990).

These advantages include:

1. Messages are transmitted message-oriented not node-oriented and thus easily fits the communi-

cation paradigm modelled on cellular communication.

2. The performance in terms of message transmit speed and resource footprint enables any appli-

cation to scale easily.

3. The brokerless queuing system easily permits the development of P2P architectures through the

removal of a central broker system.

4. The opensource and multi-platform/language nature of the library allows the code to execute

on a diverse array of hardware and software environments meeting the diversity resilience re-

quirement.

Page 105

Chapter 5. Proof-of-Concept Implementation

Figure 5.11: Embyronic Platform operating upon multiple different virtualisation platforms.

5. The publish/subscribe communication model permits the self-healing, apoptosis model of cel-

lular death whereby nodes will cease communication with misbehaving nodes through simply

unsubscribing.

Collectively, the ZeroMQ enabled cells will sit upon differing virtualisation platforms dependent

upon the underlying node. As node diversity is wide the the cells may operate upon highly constrained

embedded hardware or less constrained data-centre hardware. The virtualisation platform will be

provided by the host system. Cells will communicate with the underlying platform to make requests

to scale only. Figure 5.11 shows cells within corresponding virtualisation mediums operating upon

diverse virtualisation platforms and devices.

5.5 Validation

After the development has been completed the application is validated to determine if it meets the

requirements derived previously. This involves pushing an application to the architecture, testing

for its successfully execution and instigating self-healing activities. The validation involves a visual

analysis of the system at each stage in tandem with analysing messages sent and received by the cells

to determine the activity occurring.

Page 106

Chapter 5. Proof-of-Concept Implementation

5.5.1 Experiment Test Bed

To permit the development and investigation of an arbitrary number of cells it is important to have

a robust and accurate test bed environment. As cells within a network were headless and employed

very fast network communication, recording all messages occurring within the system is essential.

The experimentation environment consists of a full stack application which was custom developed

in Python. A front-end GUI provides a dashboard of current network state. As the application

was developed in a test-driven iterative method, this test bed was used to validate each individual

functionality of the software up until all requirements were met. Figure 5.12 illustrates the process flow

of the tools employed in this environment. As the architecture consists of singular components and

a linear data flow process, it is liable to numerous single points of failure/subversion vulnerabilities,

therefore it is intended for experimentation purposes and not for production use.

The environment is shown in figure 5.13 and consists of the following custom developed tools:

• Debug Server - Cells send all messages they send and receive from other cells, to a ZMQ

socket which parses them and stores them in a MYSQL server database for later processing and

analysis.

• Events Database - using a MYSQL server all messages from each test are stored for later

retrieval. MYSQL was eventually chosen after testing multiple database formats as the quantity

and rate of messages sent by nodes scaled quickly and was unmanageable by other services.

• Web Front End - The user then interacts with a HTML/Javascript front end. It employs

Bootstrap.css for presentation, jquery for data retriveal and presentation and alchemy.js to

dynamically produce graph images of networks, At the high-level, the user can view all nodes

known within the database and current network structure. The user can then drill down into

individual nodes and view information about each node such as subscriptions, last seen time and

the updates it is transmitting to other nodes. A low-level view allows examination of individual

node messages for debugging purposes, with the ability to sort by message type, or receiver,

sender node.

• RESTFul API - is used to retrieve messages logged in the MYSQL database and present them

to a web front end or any other application which may want to perform analysis on the tests.

Page 107

Chapter 5. Proof-of-Concept Implementation

Figure 5.12: The execution flow of the tools used for experimentation and validation of the embryonic

proof-of-concept implementation

Page 108

C
h

ap
ter

5.
P

ro
of-of-C

o
n

cep
t

Im
p

lem
en

tation

Figure 5.13: Dashboard Architecture

P
age

109

Chapter 5. Proof-of-Concept Implementation

Figure 5.14: User Driven Test Case Stage 1 - Initial Cell Spawn

5.6 User driven test-case

The user driven management of this platform provides an ease of requirement validation. Differing user

requests are presented to the platform with the appropriate output tested against the specification.

This may take a number of forms: the change in structure of the network, the ability to process the

data presented and the type / quantity of messages passed. Table 5.3 illustrates an example test-case

to illustrate the execution of the platform meeting a number of the requirements. Corresponding

figures 5.14- 5.20 related to each step show the output from the experimentation platform network

image at that stage and corresponding messages reported to the debug server which illustrate that

functionality.

The steps involve a walk through of a user-driven test case of the proof-of-concept. It illustrates the

ability for one cell to differentiate, divide and request further divisions in order to meet the capacity

to process an application as requested by an external user. It then illustrates the application being

processed across the nodes. Further to this, after destruction of nodes causing link failure, a secondary

request will cause the network to self-heal and create enough capacity to process the application again.

5.7 Self-organising Test-Case

The self-organising nature of this variant is illustrated through its reduction in user facing functionality

and its higher decree autonomy. With only a slight increase in code complexity it is able to quickly

adapt and self-organise at the expense of having a functionality that is static, not dynamic.

Table 5.4 illustrates the multi-step process for the self-healing variant for converging the network.

Upon cell spawn the network will automatically divide to maximum capacity, as defined by its starting

conditions, and then self-organise to distribute the function quantity correctly. If a node is to timeout

Page 110

Chapter 5. Proof-of-Concept Implementation

Stage Description Figure

1 – Cell spawn The initial cell is spawned and waits until it receives a user request.

An output message can be seen illustrating the cell has bound to an

address and port. OKA’s can be seen but are currently blank as the

node has no local information. No OPARs can be seen as the node has

no peers to advertise or advertise to

5.14

2 – API App Request The user submits an application request [[1,3,5,7],2]] to cell local-

host:16983. This cell notices that function 1 does not exist in its local

info. It has spare capacity so chooses to differentiate. It then notices

that the next function also does not exist but due to having no capac-

ity it divides to meet this requirement. It prompts the daughter cell to

differentiate to function 3.

5.15

3 – Cell Division The initial cell continues to spawn until it hits the limit of it’s local di-

vision capacity. All nodes become aware of each other through OPARs

and the network is fully connected.

5.16

4 – Capacity Re-

quests

Having now used all available capacity the initial cell needs to find

capacity for an additional function. It therefore sends an OCRQ,7 to

all subscribers. Any subscriber with available divisible capacity will

request a peer advertisements and then wait a random amount of time

before dividing and instructing the cell to differentiate to that function.

In this situation the timeouts cause an additional cell to be created

which in this instance can be used for redundancy.

5.17

5 – Network conver-

gence

The network has developed capacity for all the functionality for the

application and all nodes are able to communicate.

5.18

6 – App processing The initial cell responds to he user informing them that all functionality

can now be reached. The user then pushes the application. In this

simplistic example the data is merely multiplied by the value of each

function as it reaches each cell. The result can be seen in FAOT

5.18

7 – Node Failure Two cells are killed in the network which is represented by the loss of

connections in the network. The other nodes stop subscribing after a

predefined timeout

5.20

8 – Self-heal The user pushes the application again. The cell notices that capacity

is lost and requests further divisions. The additional cells with bi-

directional connections in the network are dead. The FAOT illustrates

the networks ability to process the data after healing. This self-healing

is a foundational resilience process.

5.20

Table 5.3: User driven test case stages

Page 111

Chapter 5. Proof-of-Concept Implementation

Figure 5.15: User Test Case Stage 2 - API Application Request

Figure 5.16: User Test Case Stage 3 - Cell division

Page 112

Chapter 5. Proof-of-Concept Implementation

Figure 5.17: User Test Case Stage 4 - Capacity requests

Figure 5.18: User Test Case - Stage 5 - The network becomes converged and the application processes

successfully

Page 113

Chapter 5. Proof-of-Concept Implementation

Figure 5.19: User Test Case - Stage 6 - timeout

Stage Description Figure

Initial spawn The initial cell is spawned with a function list and di-

vision depth. In this case it is 4 functions and divide

depth of 2. We can see that the 5 node structure is again

formed. With OKAs and OPARs causing the networking

to form quickly

5.21

Self-organisation The network self organises to provide the required struc-

ture. The OKAs illustrate the nodes function as the first

element and the list of functions visible in its neighbour-

hood as the second element (array). There is a repeated

function 4 seen by all nodes as there is a redundant cell.

5.21

App processing The user submits an application which is processed very

quickly with minimal processing time. The FDPR mes-

sages are slowly iterated upon until the result FAOT is

presented to the user.

5.22

Self-heal A cell is deleted causing timeouts to occur. The mother

node to the cell recognises that it is a daughter cell and

self-heals.

5.23

Table 5.4: Self-Organising Variant Test-case Steps

Page 114

Chapter 5. Proof-of-Concept Implementation

Figure 5.20: User Test Case - Self-heal upon request

Page 115

Chapter 5. Proof-of-Concept Implementation

Figure 5.21: Self Organising Test Case Step 1 - Network convergence

Page 116

Chapter 5. Proof-of-Concept Implementation

Figure 5.22: Self Organising Test Case Step 2 - self-organisation

Figure 5.23: Self Organising Test Case Step 3 - self-heal

Page 117

Chapter 5. Proof-of-Concept Implementation

then it’s mother cell will quickly spawn another. Finally a user can push their application to the MC

system at any point to have it processed.

5.8 Analysis and Comparison

Characteristic User-driven Self-organising

Feature library dynamic and adaptable static and stable

Network Structure unstructured Semi-structured

Organisation externally-prompted autonomic

Performance timeout-reliant autonomic

Table 5.5: Comparison of architecture characteristics

Two similar yet slightly different architectural variants of the embryonic cloud architecture have

been presented, with examples for each which illustrate their functional capability. The first architec-

ture is user-driven. It has a strong alignment with the functional cloud computing requirements as it

can dynamically support different applications and scale according to demand. However, whilst meet-

ing the functional requirements this implementation suffers from a number of short-comings. Firstly,

its organisational behaviour is entirely dependent upon user input - an external prompt. Whilst this

is functional it ensures the system lacks the true autonomic and complex system attribute of being

self-organising. When cells wait for an external request they become dependent upon this external

input to make decisions. A truly self-organising system will organise according to internal stimuli.

Therefore to mitigate this lack of autonomic behaviour and further align with the thesis’ hypothesis,

a second variant was developed which included self-organising behaviour to provide the required em-

bryonic functionality. An overall comparison of the two architectures is shown in table 5.5. Neither

one of these variants is incorrect and has can be seen from this discussion each have advantages and

disadvantages which will be suitable for different use-cases. For example if the environment has only

one application or function distribution requirement then the autonomic variant will likely be chosen.

A system designed for general public use or in the most constrained of resource requirements might

opt for the user-driven variant.

Functions The second architecture attempts to mitigate this short-coming of autonomic func-

tionality through providing self-organising functionality. It mimics the architecture simulated by CA

in section 4.4.2.4 where cells will aggressively divide until their environment is at full capacity. In

this manner they produce a semi-structured network. This heavy resource reliance provides them the

ability to more easily and rapidly respond to node failure without user-prompt or lengthy timeouts.

However this feature comes at the expense of all cells organising according to a desired and static

function distribution and thus complicates dynamic adjustment according to external need. Adding

Page 118

Chapter 5. Proof-of-Concept Implementation

different functionality requires all nodes to be destroyed and recreated with new start-up parameters

or ”DNA”. However it should be recalled that the results of the previous simulation highlighted that

the greater the initial starting network size the greater the chance of survival.

Network Structure A key difference between the two variants is that the autonomic uses a

structured network and the user-driven does not. A structured network has disadvantages in that

it exposes predictable points of weaknesses. In contrast the unstructured network can produce more

resilient, random and emergent structures which provide resilience in some areas but suffer from

management and bandwidth issues. The autonomic / structured network can ultimately scale in a

more stable manner due to not suffering from node communication and subscription issues. A key way

in which this network structure can be varied in terms of both performance and resilience is through

adjusting the number of children nodes that a cell can spawn. Due to the flooding-based routing

employed, even one additional node can have drastic effects on bandwidth contention.

Performance The autonomic variant reduces communication overhead and improves temporal

performance by allowing each node to organise according to local information i.e. decisions do not

need to be made through discussion or cooperation. To compare the two examples above, the user-

driven variant took 785 seconds in total against 300 seconds for the autonomic variant. Whilst the

reader should be aware that the performance could be tuned, timeout operations and waiting for

user input slow the process considerably. Regardless the proof-of-concept implementation requires

performance tuning in both variants prior to an accurate determination of it’s performance.

States As a complex system, one of the defining features which are observable are its states and

the transitions between them. If the goal of the system is to provide trusted service delivery then 3

states can be observed when considering the requirements at this point of the experimentation which

are shown as as a Finite State Automata (FSA) in figure 5.24 and are defined below:

1. Convergence - is the process in which the network is moving towards the state in which it can

deliver the service. It can be seen as the network is first initialised up until it is stable.

2. Acceptable Service Delivery - is when the network has reached an acceptable state and can

process the application.

3. Degraded Service Delivery - is where the system is between stages. It may have lost nodes

to failures or been self-organising to achieve convergence. At this point service delivery may be

sporadic.

4. Failed - the system which does not successfully converge or which failures happen quicker than

divides will be in a state of failure and must be restarted.

In the context of the user-driven and autonomic variant, these states are the same. However the

autonomic variant will change states without any user prompt. This distinguishing characteristic

Page 119

Chapter 5. Proof-of-Concept Implementation

Figure 5.24: Finite state automata for the embryonic implementation

highlights the greater alignment with emergence for the autonomic variant. A key point to note from

this FSA is that the change between states is driven by the cellular aspects of differentiation and

division.

5.9 Summary

This chapter presented the design and implementation for the embryonic cloud architecture. Through

attempting to meet the requirements, two different variants were derived. One was user-driven and

the other autonomic. Although both met the basic cloud functionality initially defined, the second

variant provides strong autonomic behaviour as the first is driven by user input. Due to this it is

concluded that although combined to meet all requirements successfully, the autonomic variant is

largely the more resilient as it contains the emergent property of self-organisation.

Page 120

Chapter 6

Proof-of-Concept Testing and

Evaluation

6.1 Introduction

In the previous chapter, a proof-of-concept for the previously defined embyronic architecture was built

and evaluated. It was shown that in order to meet all the requirements strongly, two different variants

arose. The first was user-driven and the second autonomic. In order to determine the resilience

capability of an embyronic-inspired cloud platform, this chapter evaluates the performance of the

autonomic variant against application processing and resilience criteria.

Firstly, a methodology is defined to provide empirical consistency and validate the proposed tests.

It leverages a consistent experimentation environment which automatically collects and then pre-

processes a timeline of events for each test run. Tests are initially conducted for networks with 0 failure

rates, to provide a lower bound for application processing and understand more about the independent

variables effect upon the network characteristics. Next, tests are undertaken upon networks with

induced failure rates to understand the resilience capacity of this network. Finally an analysis of these

results is given to provide insight in to methods of measuring the resilience of the platform such that

it may assist in answering this thesis’ hypothesis.

6.2 Methodology

All tests were run on a 64bit i7 quad core Laptop running Debian Linux where all cells used local-

host addresses and randomised port numbers. All communication was conducted over the operating

system’s internal network stack and therefore was minimally affected by any external conditions. Ad-

ditionally, all activity on the computer including background services was kept to the bare minimum

121

Chapter 6. Proof-of-Concept Testing and Evaluation

to provide fair and consistent test results.

Tests were autonomously executed in batches using a suite of scripts to provide empirical consis-

tency. Messages both sent and received by all cells were pushed to the debug server as per the setup

in the previous chapter where they were stored in a MYSQL database. However this time there was

no front-end web GUI. The mother cell was spawned with the configuration options for that test. A

loop then iterates every second up until the upper time limit (5 minutes in the first instance but up to

20 for specific investigations). The events which occur during the loops typically consists of pushing

applications to be processed and instigating artificial faults by killing nodes according to a pseudo-

random threshold. Post-test run, all of the messages would be retrieved from the back end database

and parsed to create a timeline of events. When ever a change in the network structure occurs, a

graph of the network is constructed using the networkx python library. A history of all graphs is then

stored (with a corresponding PNG image) for further analysis. This consists of a number of different

algorithms which examine the resilience of the network at each stage. Statistics about the application

processing time and messages sent and received are also recorded. Note: that graphs at this stage,

particularly for those tests with node failures, were pruned of isolates. Therefore the graphs do not

show all nodes that may be active, only those that are connected to other nodes. This is to ensure

more accurate reporting of performance and resilience statistics. Figure 6.1 illustrates this process.

6.2.1 Dependent Variables

The motivations for this evaluation are two fold: firstly the performance and resilience of the archi-

tecture must be evaluated to ensure it meets the fundamental requirements of providing a resilient

service. Secondly the data derived must be in a state that it can be used to compare with disparate

cloud architectures. As defined previously, resilience is the ability for the network to deliver the service

in a trusted manner, within the face of changes. Therefore two groups of quantifiable measures are

taken for each test. Firstly the success of the application executed at each point, and the quantity of

messages it took to accomplish this. Secondly, the structure of the network at each point as described

by a number of selected graph algorithms.

6.2.1.1 Application Performance measures

The first group of metrics are employed to evaluate the performance of application processing upon

the architecture. These seek to determine whether the embryonic architecture can successfully process

the application in the state it is currently in. How long does it take to process the application and

the number of messages sent and received during the course of this process? For the purposes of

this testing, the applications used are only representative of what is considered to be a real-world

data processing task as discussed previously. This is accomplished largely as it permits the timeline

of activity within each test to be examined easily from an external viewpoint. Determining if the

Page 122

Chapter 6. Proof-of-Concept Testing and Evaluation

Figure 6.1: The execution flow for the methodology for batch experimentation of embryonic system

performance and resilience tests

Page 123

Chapter 6. Proof-of-Concept Testing and Evaluation

application has been processed correctly requires the same logic as processing it upon the collection

of cells. Moreover a simplistic data processing application still permits investigation and evaluation

of the success of the platform as the focus is in connecting the distinct function types together to

form a complete application. Therefore the example services consist of a simplistic function which

merely multiplies the data it receives by its function number and then pushes it to the next function

until the data cannot be processed anymore due to all functions being exhausted. The application

values are generated according to a maximum value and cells will differentiate according to their local

information driven self-organisation as detailed in section 4.4.2.4. Table 6.1 presents an example data

processing application for 5 functions and input data of 2. As the data is received by each function it is

multiplied by that value and then pushed to the next. Although simplistic, this method is chosen as it

minimises any effects upon the system performance that may result from more complex applications.

Additionally the ability for software environments to execute arbitrary code is not in question and

therefore does not need to be evaluated. This test focuses upon the networking architecture and

self-organisation which permits the passing of messages between arbitrary software functions.

Parameter Data

Functions 5

Data 2

Stage 0 [[1,2,3,4,5], 2]

Stage 1 [[1,2,3,4], 10]

Stage 2 [[1,2,3], 40]

Stage 3 [[1,2], 120]

Stage 4 [[1],240]

Stage 5 [240]

Table 6.1: Example data processing application messages for performance testing

Applications are pushed to the architecture from the API every 10 seconds to allow time for the

other messages to clear for more accurate reporting. The data is incremented each time to ensure

different results to allow for ease of measurement. As the timeline is generated from processing the

messages after the experiment has concluded, performance related values are recorded next to each

application which are presented in table 6.2.

6.2.1.2 Graph-based metrics

The structural resilient characteristics were measured through a number of graph-based algorithms

which have been used throughout literature to examine the resilience of network structures (section

2.4.6). The purpose of these are to investigate the resilience of this system for comparison to others,

in addition to determining the most effective resilience metric for the embryonic system. They have

Page 124

Chapter 6. Proof-of-Concept Testing and Evaluation

Variable Description Reason

Application Data (Data) The output of the processed data. Used to determine which ap-

plication the messages are

for and what stage it is at.

Total Process Time (Total-

Proc)

The time in seconds from the first

message to the last.

How long does this applica-

tion exist for in total?

Shortest Process Time

(ShortProc)

The time in seconds from the first

message to the first output message.

How quickly can the data be

processed?

Longest Receive Time (Lon-

gRecv)

The time in seconds from the first

message to the last received mes-

sage.

How long are output mes-

sages still cycling around the

network?

Process Messages (Proc) The total number of data process-

ing messages

How many messages does it

take to process the data?

Output Messages (Out) The total number of data result

messages.

Used to determine if the ap-

plication was successful and

also how many messages ap-

pear.

Receive Messages (Recv) The total number of messages re-

ceived by nodes.

Used to determine the over-

all effect upon network con-

tention.

Table 6.2: Variables recorded per each test to record network performance

Page 125

Chapter 6. Proof-of-Concept Testing and Evaluation

been chosen for their ease of comparison to other architecture types and the ability to summarise the

network structure succinctly.

There are many possible metrics to choose from and whilst all may have some form of value,

many were pruned from the list of possible metrics. For example those which did not summarise the

information into one value instead providing lists of nodes or mappings between nodes and values

due to their difficulty in providing comparison between differing architecture types. Moreover, many

common metrics were not used due to their unsuitability for directional-graphs, which is a feature of

this architecture and a prominent component of its resilience due to the publisher/subscribe method of

node removal. All variables are listed in table 6.3 whilst the mathematical foundations are described

below.

A graph is defined as a tuple: G = (V,E) Where V is the set of vertices (nodes) and E is the set

edges between them. Edge eij connects vertex vi with vertex vj The total number of nodes N is thus

|V |.
Average node connectivity of a k-connected graph is defined in equation 6.1

k̄(G) =

∑
u,v kg(u, v)(

p
k

) (6.1)

Where

k(G) = min(kG(u, v) : u, v ∈ V (G)) (6.2)

Degree assortativity for a directed edge network as defined in equation 6.3 where ”ej , k is the

joint probability distribution of the excess degrees of the two nodes at either end of a randomly

chosen link....µq and εq are the expected value or mean and standard deviation of the excess degree

distribution qk” (Thedchanamoorthy et al. 2014).

r =
1

ε2q

[
(
∑
jk

jkej , k)− µ2
q

]
(6.3)

Where E is the number of edges. jα = E−1
∑
i j
α
i and σα =

√
E−1

∑
i(j

α
i − ja)2; kβ and σβ are

similarly defined.

Average shortest path length is defined in equation 6.4 (Kulig et al. 2015). Where V is the

set of nodes in G, d(s, t) is the shortest path from node Sub and t and n is the number of nodes.

d̄ =
∑

s,t∈′′V

d(s, t)

N(N1)
(6.4)

Clustering coefficient is defined in equation 6.5 (Saramäki et al. 2007)

CC =
1

N

∑
V ∈G

Cv, (6.5)

Page 126

Chapter 6. Proof-of-Concept Testing and Evaluation

Network criticality is defined in equation 6.6 where Trace(L+ is the Moore-Penrose inverse of

the Laplacian matrix (Alenazi & Sterbenz 2015a).

τ̂ =
2

N − 1
Trace(L+) (6.6)

Finally, effective graph resistance (for undirected networks) is defined in equation 6.2.1.2 (Ale-

nazi & Sterbenz 2015a).

RG = N

N∑
i=2

1

λ
(6.7)

Variable Description

N The total number of nodes

Average Node Connectivity (k̄(G)) The average number of nodes each node is connected to.

It gives ”the expected number of vertices that must fail

in order to disconnect an arbitrary pair of non adjacent

vertices” (Beineke et al. 2002).

Degree assortativity (r) The similarity of node connections. Chosen as the graph

is directed and therefore should provide insight as to this

effect upon the resilience. (Alenazi & Sterbenz 2015a)

Average Shortest Path Length (d̄) The average number of hops between nodes (Alenazi &

Sterbenz 2015a). Chosen as it describes network struc-

ture. A lower value should mean a greater chance of

application execution.

Clustering Coefficient (CC) The degree to which nodes cluster together. Chosen be-

cause it highlights structural issues in a simplistic way

(Alenazi & Sterbenz 2015a).

Network Criticality (τ̄) Used to measure the resilience of a network against struc-

tural changes. A lower value equates to a more struc-

turally resilient graph (Alenazi & Sterbenz 2015a).

Effective Graph Resistance (RG) Commonly used to measure the resilience of a network

against structural changes. A higher value equates to

a more structurally resilient graph (Alenazi & Sterbenz

2015a).

Table 6.3: Variables recorded per each test to record network structure statistics

6.2.2 Independent Variables

In order to evaluate the previously defined dependent variables whilst the system is under different

states a number of parameters were varied (table 6.4). These are related to those which were previously

Page 127

Chapter 6. Proof-of-Concept Testing and Evaluation

investigated within chapter 4 using CA although variations exist due to the continuous nature of these

tests contrasting with the discrete nature of the CA simulations.

Variable Description Range

Functions (Func) The quantity of possible function

types.

2 - 7

Division (Div) The extent to which nodes will di-

vide. This value is halved at each

division

2 – 6

Subscriptions (Sub) The maximum number of other

cells each cell can subscribe to

2 – 8

Table 6.4: Independent variables chosen for their ability to affect service resilience

6.2.2.1 Functions

The first variable is the function quantity (Func). It is the same parameter as that used in the CA

and also described in the previous section. It is known from the simulated investigation (chapter

4) that the number of distinct functions used to compose an application has a direct effect upon

the ability to resiliently deliver the service in local-only communication environments. This can be

mitigated through self-organisation techniques although a goal of this experimentation is to determine

the upper-bound of function quantity under different characteristics.

6.2.2.2 Division Rate

The first variable which differs from that in the CA-based simulations is the division rate (Div). Due

to the change in architecture type each cell is now initiated with a value given to it by its mother

cell which defines how many times it should divide, in order to control the number of divisions and

the size of the network this value is halved at each cellular division. This value therefore permits the

control of the size of the network.

As per the results from the CA simulations, the larger the network (at the onset) the greater

the chances of the organisms overall survival, resilience and ability to process applications. In this

experiment the size is tested to determine the network performance, i.e. the success and performance

of the application under these division rates. The trade-off is that a larger network causes considerably

greater resource cost.

6.2.2.3 Subscriptions

The second parameter is the maximum subscriptions allowed per each node (Sub). A greater quan-

tity of subscriptions permits greater node connectivity which enhances resilience and the chance of

Page 128

Chapter 6. Proof-of-Concept Testing and Evaluation

application execution being successful. However this comes at the expense of an increased number of

redundant messages being transmitted and received putting strain on the network. Moreover, causing

a node’s neighbourhood to increase varies the effectiveness of the self-organisation as there is now a

greater number of cell states to process. This value was adjusted to evaluate how much the network

performance was reduced given the increase in connectivity.

Note: this value was swapped for the variation in packet TTL (or connected 0, connected 1 during

the CA simulations) as it accomplishes the same increase in application execution success increase

with the added advantage of increasing network resilience through increased connectivity. Initial tests

using TTL values highlighted that messages would get lost when the network became hierarchical.

6.3 Results and Analysis

This section presents the results of the proof-of-concept test cases for test with 0 failure rates and

artificially instigated node failures. Note: during this analysis test variables are often shortened to

the initial of the variable. For example Div=4 Func=1 Sub=6 would be abbreviated as D4 F1 S6 for

clarity purposes.

6.3.1 0 Failure Rates

The first group of tests do not induce any artificial failures within the nodes, therefore the failure rate

of any node was 0%. Despite this they still permit self-organisation and may self-heal if a timeout

occurs. These tests were conducted for two reasons: the first is to identify the lower and upper bounds

for application execution given different network parameters. The second is to understand how the

independent variables affect the structure of the network with no failure rates. This therefore provides

baseline values for network size and structure according to the different independent variables. These

tests examine the effect of the independent variables upon the structure and size of the network.

Insights are gained from examining the quantitative network data and visually inspecting graphs.

6.3.1.1 Division effect upon network structure

Firstly, Div is analysed to determine the network sizes. Note: correlations between Div and the graph

resilience metrics were not included as no significant trends were identified. Plotting the curves of the

network convergence provides insight into the state change from converging to converged.

Figure 6.2 shows example network structures for each Div at 300 seconds where S = 4 , whilst

table 6.5 lists the corresponding quantity of cells (N). S = 4 was chosen as a middle value and it

permits a clear visual representation of the number of cells due to a low amount of edges. These

results indicate the trend towards increasing cells as the division rate increases.

Figures 6.3, 6.4, and 6.5 plot the network convergence curves for groups of tests where Div = 4, 5

Page 129

Chapter 6. Proof-of-Concept Testing and Evaluation

Div N

3 7

4 25

5 47

6 85

Table 6.5: N at 300 seconds per division value in figure 6.2

Figure 6.2: Example networks at full convergence with differing division rates. All are where Sub = 4

Page 130

Chapter 6. Proof-of-Concept Testing and Evaluation

and 6 respectfully. Note that Div = 3 was removed from these tests as the low quantity of cells meant

that different subscriptions had little variation. The figures illustrate that although N increases as

Div increases, overall N does not increase in a linear manner with Sub. For example, in Div = 4 and

Div = 6, the network which converged the first, to the lowest amount of N was Sub = 7 . Div = 5

appears to be anomalous here as the higher values of Sub = 7 performs better and converges higher

than Div = 6 . This is due to the odd network structure permitting clusters of nodes to form, unlike

in Div = 6 where the number of nodes in a cluster is equal to Sub and therefore clusters become

isolated (figure 6.6).

When Sub > Div it clearly permits the network to converge within the 300 second timescale.

Timeouts appear to occur commonly at lower values of Sub for child cells which cause cells at these

stages to continue to divide until they fill their capacity. Table 6.6 shows the timeouts for the test runs

and illustrates a general trend towards less timeouts as Sub increase whilst the lowest is always where

Sub = Div+1. This is likely due to the constrained Subscriptions added to the cell’s division require-

ments being less than permitted. This illustrates the lower bounds for stable network configurations

at 0 failure rates. This is likely to have less of an effect during network stages so the configuration

will remain the same to permit stronger comparison.

Div Sub

- 3 4 5 6 7

4 22 22 8 16 14

5 34 26 28 5 7

6 45 46 40 27 7

Table 6.6: Quantity of timeouts for each test run

6.3.1.2 Subscriptions effect upon network structure

Next, the network structure is examined from the perspective of changing subscriptions as more edges

fundamentally changes the network structure. Table 6.7 presents correlation coefficients between

subscription tests and some relevant graph metrics for divisions where the network has converged.

Network criticality can be seen affected by mid size networks (2-5) but again this tales off where

div = 6. A negative value indicates the desired effect, as sub increase the network criticality decreases.

Finally effective graph resistance generally increases with subscriptions across all groups of tests which

indicates further benefits. Overall this preliminary analysis of these tests indicate that subscriptions

are beneficial to the network resilience.

Page 131

Chapter 6. Proof-of-Concept Testing and Evaluation

Figure 6.3: Network convergence curve where Div = 4

Figure 6.4: Network convergence curve where Div = 5

Page 132

Chapter 6. Proof-of-Concept Testing and Evaluation

Figure 6.5: Network convergence curve where Div = 6

Div Func CC d̄ τ̄ RG r

All 0.411 0.294 0.307 0.0109 0.064 0.0609

3 0.39 0.36 0.09 -0.25 0.316 -0.01

4 0.43 0.143 -0.3927 -0.1292 0.2428 0.127

5 0.65 0.42 -0.55 -0.539 0.527 0.1447

6 0.82 0.95 0.39 -0.059 0.91 0.0524

Table 6.7: Correlation Coefficients For Subscriptions

Page 133

Chapter 6. Proof-of-Concept Testing and Evaluation

Figure 6.6: D5 F6 and S7. Even clusters are formed at specific division and Subscription quantities.

Page 134

Chapter 6. Proof-of-Concept Testing and Evaluation

6.3.1.3 Application Performance

These tests evaluate the effectiveness of the platform to deliver the applications. To provide context

for the performance, table 6.8 shows the correlation coefficients for application performance versus the

independent variables. Out could be argued to be the most relevant as a greater number of output

messages means more successful data processing. The strong negative correlation between Func

and Out indicates that as application complexity increases the probability of a successful application

decreases. Noting that this trend does not stay true for the Proc and Recv indicates that in many

cases the applications are still being executed although just not to completion. An increase in both

Div and Sub coincide with better application processing success overall.

Table 6.9 shows the correlation coefficients again but only for rows where Out > 0. These values

show that for successfully executed applications, those tests at lower success rates were less strongly

correlated with greater values of Sub. Func is strongly correlated with Proc but this is likely due to

the increase in quantity of messages being sent rather than any performance increase. Finally Div is

positively correlated with Out. This is both intuitive due to the increase in N but also informative

as it ensures that despite some network structures being conventionally non-resilient (hierarchical)

the data is still processed successfully. Proc values also increase with Div. With the shortest Proc

increasing with Func but not the total, whilst Proc does not increase with Sub. This is a very

informative point, as it means that greater values of Sub can be used to enable resilience yet without

the extra overhead caused by increasing numbers of nodes as Div increases.

– Div Func Sub

Proc 0.56 0.13 0.23

Out 0.30 -0.42 0.26

Recv 0.47 -0.10 0.37

Table 6.8: Correlation Coefficients for Application Performance

- Div Func Sub

Proc 0.65 0.47 0.23

Out 0.43 -0.22 0.21

Recv 0.59 0.18 0.39

ShortProc 0.27 0.46 0.12

LongRecv 0.39 0.00 0.00

TotalProc 0.43 0.09 0.09

Table 6.9: Correlation Coefficients for Application Performance for Successful Applications

Application Execution Success - Tests from all divisions where the division was highest and

Page 135

Chapter 6. Proof-of-Concept Testing and Evaluation

Figure 6.7: D4 F2 S7 - Stable States

subs > funcs executed the most successfully. Figure 6.7 shows an example case of stable and suc-

cessful execution output - a baseline. Figure 6.8 shows an example where applications are executed

successfully but the performance cycles and presents a glimpse of the system states. Table A.1 -A.4

list the average of Proc, Recv and Out values for all tests. In terms of general performance, some

large ratios can be seen between Recv messages mostly related to the greater Subscriptions but also

due to the size of the network as Div increases.

Test configurations where the division was close or equal to the Subscription performed variably.

The volatility in these tests provide insight into the network due to the variability in data which are

discussed to provide insight into why the performance varied. Figure 6.9a shows the output message

rate over time for a test where the system cycles between processing well and processing poorly.

Neither of the other two test runs of this variant were as successful. This illustrates the importance

of initial starting conditions. Manual investigation of the recorded graph statistics predominately

showed nothing of merit other than a general sloping trend across all other metrics, which would

indicate that the network became less resilient over time (if these metrics are believed to represent

a resilient network in this instance). However figure 6.9b plots the assortativity for this test, which

interestingly illustrates a similar cyclic pattern, whilst figure 6.9c shows the plot for clustering which,

while not as apparent, still indicates the cycling pattern seen in the application output. Additionally

Page 136

Chapter 6. Proof-of-Concept Testing and Evaluation

Figure 6.8: D6 F4 S5 Output - Cyclic States

the initial curve as the network converges indicates the convergence state. All 3 graphs indicate the

same dip at approximately 210 seconds (note that the output graph is skewed by approximately 20-30

seconds) which highlights the possibility of these graph metrics being applied as a resilience metric

for determining network states.

Page 137

C
h

ap
ter

6.
P

ro
of-of-C

o
n

cep
t

T
estin

g
an

d
E

valu
ation

Figure 6.9: D4 F4 S3 graph metric comparison

P
age

138

Chapter 6. Proof-of-Concept Testing and Evaluation

The effect of starting conditions is again highlighted in figure 6.10 where 3 runs produced two

converged networks which did not execute applications successfully and one which did. This indicates

the chaotic nature of this system. Due to the lack of node failures, networks will remain in this

structure. Figure 6.11 shows the output, assortativity and cluster curves for one successful and

one unsuccessful network. Note that for run 1, the timeline ends at approximately 100seconds as

the network does not change further and the graphs report changes only. Unlike in the previous test,

there is little relationship between clustering and the application execution effectiveness. Assortativity

clearly drops to 0 in the 1st test run as application execution stops. In the successful test run it remains

high through successful execution with a minor upward trend. These results again lend support to

assortativity being a strong candidate for measuring resilience in the context of this platform. Other

graph metrics were not plotted (as before) due to following the same downward trend. Which is

similar to elementary statistics such as node quantity and node connectivity.

Page 139

Chapter 6. Proof-of-Concept Testing and Evaluation

Figure 6.10: 3 runs of the same test parameters D4 F5 S7 illustrating varying network convergence

and chaotic conditions.

Page 140

C
h

ap
ter

6.
P

ro
of-of-C

o
n

cep
t

T
estin

g
an

d
E

valu
ation

Figure 6.11: Output, assortativity and clustering for 2 different runs of the same parameters (D4 F5 S7)

P
age

141

Chapter 6. Proof-of-Concept Testing and Evaluation

Unsuccessful Applications - a number of parameter sets produced no outputs over all test-cases.

Particularly where sub = 3 or 4, and func = 5 or 6. Figure 6.12 shows the assortativity and clustering

for test D4, F6 and S7 and test D6, F7, S3. As there are no output messages in these tests the curves

are plotted next to the process curve for each test to provide an analysis. Process messages have a

greater chance than output messages of varying in quantity during each peak as they may be received

by different nodes depending upon the network structure and cell self-organisation. However the cyclic

nature of the peaks can still be seen in these graphs matching with the assortativity and somewhat

with the clustering. Therefore this illustrates that assortativity and clustering are not suitable for

determining resilience in terms of the successful application execution alone. The constraining factor

here is the divisions and predominately the function size. A clear rule is that outputs will successfully

occur when the subscription size is equal to or greater than the function size.

Page 142

C
h

ap
ter

6.
P

ro
of-of-C

o
n

cep
t

T
estin

g
an

d
E

valu
ation

Figure 6.12: Process, assortativity and clustering for 2 different test groups (D4 F6 S3 and D6 F7 S3) where no application executed successfully.

P
age

143

Chapter 6. Proof-of-Concept Testing and Evaluation

6.3.1.4 Summary

In this section, results of tests with no failure rate were presented and discussed to understand the

relationship between the independent variables, network structure, and performance. It was shown

that two graph algorithms, assortativity and clusters can illustrate the likelihood of successful appli-

cation execution under low stress for the short length tests examined here. However this assumes the

network parameters to be optimal for the application type. i.e. the subscriptions are greater than the

divisions and the division rate must be higher with higher functions.

6.3.2 Failure Rates

These tests follow from those conducted previously although with a fundamental addition of an arti-

ficial failure rate. At every 2 seconds, for every currently running child cell a pseudorandom variable

is produced. If the variable is less than the given failure rate then the cell will be killed. The purpose

of the failure rates is to evaluate the performance of the system under a high rate of churn. There-

fore, these tests will evaluate the self-healing capabilities of the system and the application execution

success alongside it.

From the previous section a number of points were discovered about networks with no failure

rates. The first analysis was concerned with the independent variable effect upon the structure of

the network. Analysing the network from the perspective of it being converged is not suitable in this

instance as the failure rates cause the network to be dynamic. The failure rate was set at a specific

level to further understand the limits of the system under different parameters as a higher failure rate

causes a greater perturbation of the system. In this instance, 0.01 was determined as a suitable value

after manual experimentation. During preliminary testing, a slightly lower value of 0.001 causes the

network to remain stable and high, evidence of which is provided later in this section.

6.3.2.1 Application Performance

To evaluate the application performance whilst the system is self-healing, tables 6.10 and 6.11 present

the correlation values for the independent variables against application performance variables for

all tests and tests where the application was successfully executed, respectfully. In the values of

all tests, the effect upon the quantity of messages processed performs less well in across all values

compared to the 0 failure rate tests. In this instance as functions increase the quantity of messages

processed actually decrease slightly, whereas in the 0 failure rate tests they increased ever so slightly.

This illustrates the stronger relationship for tests which include failures between a high application

complexity and the ability of the services to remain connected. For both out and recv, the performance

is slightly worse than the 0 failure rate tests. These results are intuitive overall as the network is under

stress in comparison to the 0 failure rates.

Page 144

Chapter 6. Proof-of-Concept Testing and Evaluation

In terms of the successful applications, the relationships between the independent variables and

the application performance on the whole follow the same trend as 0 failure rate tests yet with worse

performance. Some times the performance degradation is to such a degree that the relationship is

insignificant such as with TotalProc and LongRecv with func. This is interesting as it indicates that

in this instance the time taken to complete applications is unrelated to their complexity.

. Div Func Sub

Proc 0.43 -0.11 0.04

Out 0.23 -0.54 0.10

Recv 0.41 -0.25 0.14

Table 6.10: Correlation Coefficients for Application Performance in the Failure Tests

. Div Func Sub

Proc 0.47 0.48 0.09

Out 0.39 -0.27 0.09

Recv 0.48 0.22 0.21

ShortProc 0.07 0.21 -0.02

TotalProc 0.25 0.00 -0.08

LongRecv 0.23 0.00 -0.07

Table 6.11: Correlation Coefficients for Application Performance in the Failure Tests for Successful

Applications

Tables A.4 and A.5 list the averages for performance variables for all tests, sorted by out descending.

Whilst a higher quantity of output messages generally means the application has been executed

successfully, it is important to note that a network with a higher output relative to another does not

necessarily equate to better performance overall. For example if the ratio of messages (recv : output)

is skewed towards Recv then this may not be operating at optimal performance, considering resource

cost. Additionally, the larger value of div which equates to a larger network will use considerably

more resources.

These tests provide a comparison from the baseline presented for the 0 failure rate tests. Comparing

the results there is a general trend across all values with worse performance than the 0 failure rates.

This serves to validate the results as the failure rate is likely to worsen performance overall. Unlike in

the 0 failure tests, sub appears to have no signification relationship with application performance. Out

increases with div, which is again intuitive due to the increase in N . Finally the results of functions

follow the same trend as in the previous tests, which is intuitive.

It can be seen that just under 50% of the test cases still successfully executed with an average of 1

or more output messages, albeit often with a considerable amount of messages received and processed.

Page 145

Chapter 6. Proof-of-Concept Testing and Evaluation

Additionally a number of tests which had no output messages still had a considerable quantity of

messages processed and received. These results mostly consisted of high application values which is

intuitive and illustrates that lower application complexity strongly increases the chance of application

survival.

In terms of temporal performance, some interesting performance variations can be seen. Particu-

larly at the lower output performing tests and higher division rates such as D6 F5 S6 is 1.45 seconds

faster than D6 F6 S5. Whilst D6 F4 S5 is a whole second slower again with 1 less function. This

illustrates the potential non-linear speed increases through reduction of application complexity.

6.3.2.2 Metric Investigation

A sample of tests will be examined in further detail to investigate methods of measuring resilience

according to the structural graph methods investigated. An initial analysis of tests which were largely

unsuccessful (i.e. on average they have around 1 output message) indicates the same findings from

the unsuccessful tests, in that where func > sub or div is simply too low then the application has

an extremely low or impossible chance to execute (in agreement with the findings from Chapter 4).

Therefore the graph metrics in this instance do not wholly represent the resilience of the application

in terms of successful application execution as they do not include information about the size of the

service. Therefore this investigation focuses on test-cases which were successful.

D4 F2 S6 is selected as a sample test for analysis due to it being a high output performing

test case. Plotting the output curve of one instance illustrates that performance is again variable

(figure 6.13), the test was re-run for a longer duration (600 seconds) to illustrate the cyclic nature

of the tests and that at these parameters the network can be seen to self-heal back to a resilient

state although it is still cyclic in nature (figure 6.14). The rise and fall of the curves for both N

and connectivity clearly illustrates the network structure losing nodes and self-healing as it does so.

With the shorter test run it is also difficult to evaluate if the additional graph metrics indicate state

change or not. While the frequency of the peaks in the output do coincide with the peaks of the

assortativity and clustering graphs, it is difficult to determine at this larger scale. While the trend in

incline does not relate, nor does the scale. While network criticality indicates little information after

the initial network convergence. Network criticality, which is a known metric to describe network

resilience, tales off and does not vary much in line with the output. This preliminary finding hints

that traditional structural metrics may not be valuable to the resilience of this system as they do

not include information relating to the application. Overall this illustrates that the graph metrics

do follow similar trends to the output, such as timing and frequency of peaks, although with the

additional networking perturbance it is difficult to view visually when compared to the networks in

the 0 failure rate tests.

Page 146

Chapter 6. Proof-of-Concept Testing and Evaluation

Figure 6.13: D4 F2 S6. The figure on the left indicates the application execution performance. The

figure on the right illustrates the rate in change of nodes and therefore the network’s ability to self-heal

Page 147

C
h

ap
ter

6.
P

ro
of-of-C

o
n

cep
t

T
estin

g
an

d
E

valu
ation

Figure 6.14: Output and relevant graph metrics for D4 F2 S6 for 600 seconds

P
age

148

Chapter 6. Proof-of-Concept Testing and Evaluation

D5 F2 S4 is evaluated as another seemingly successful test candidate. Having a lower ratio of

process to receive messages with only 3 less inputs than D4 F2 S6 might indicate its efficiency. This

time the initial test case length is doubled to provide further detail about the cycle. It illustrates that

in a double length (600 seconds) only one cycle is observed. Figure 6.15 plots the test against a lower

failure rate to illustrate the effectiveness of the self-healing at a lower failure rate. This illustrates the

effect a higher failure rate has on the network’s ability to create nodes and the stress the network is

under.

Figure 6.16 therefore plots curves for output against relevant graph metrics for this test where the

test run was executed for twice the previous length (20 minutes or 1200 seconds) to understand more

about this variable system. Firstly, the output curve shows a reduction in output around application

index 60 (approximately 600 seconds) which flat lines and then drops further instead of cycling back

to an acceptable state. The system then drops to 0 output, before steadily returning. Examining

the curve for N shows that just before this there was a drastic reduction in cells. This is likely due

to a cascading of failure causing a number of cells to be removed. The connectivity of the network

actually increases at around this period. While this might sound counter-intuitive of a network which

is failing, understanding that many nodes may be weakly connected to one or two cells hierarchically

means that a failure of a number of these cells would increase the connectivity of the network overall.

Assortativity, which has been noted as a prime candidate for accurately representing resilience in

terms of application execution across different scales can be seen at this point (approximately 600

seconds) to be fundamentally changing from relatively stable oscillations to suddenly erratic oscilla-

tions, similarly (although less apparent) this can be seen in the clusters metric. This cross evaluation

illustrates an interesting point in that the change in state could be measured by the uniformity of the

oscillations which may be viewed from multiple metrics, where assortativity is the cleanest represen-

tation of this. This is confirmed through examining the periodicity of the spectrum and the variation

in peak height. Where a low variability indicates a more uniform frequency and thus a stable system

(one state) and a higher variability indicates a less stable system.

Figures 6.17 and 6.18 show the periodograms for assortativity in 100 second intervals for the

test D5 F2 S4. Periodograms plot the power spectral density and therefore are an effective method

for determining variability in a time series (Hernandez 1999). The first noticeable difference is the

quantity of samples. As the data was sampled whenever a structural change occurred in the network,

the quantity of different samples indicates how much the network changes. The greatest number of

samples can be seen in the 1st graph, which represents seconds 0-100 and clearly the convergence of

the network. From time 100-500 the graphs are fairly regular, which illustrates the stable state of

the system. From seconds 500-1100 the state of the system is clearly variable at each period. Finally

network criticality shows a clean drop at this time which could be considered in the same context as

connectivity, in that the lower the more resilient the network is structurally.

Page 149

Chapter 6. Proof-of-Concept Testing and Evaluation

Figure 6.15: D5 F2 S4 for 600 timesteps The figure on the left indicates the application execution

performance. The figure on the right Illustrates the rate in change of nodes and therefore the network’s

ability to self-heal. The figures on the bottom row are the same except for a lower failure rate to

illustrate the difference in growth.

Page 150

C
h

ap
ter

6.
P

ro
of-of-C

o
n

cep
t

T
estin

g
an

d
E

valu
ation

Figure 6.16: Output, N and connectivity along the top row and assortativity, clusters and network criticality for D5 F2 S4 running for 20 minutes (1200)

seconds. A range of different metrics can be combined to understand further about the change in system state.

P
age

151

C
h

ap
ter

6.
P

ro
of-of-C

o
n

cep
t

T
estin

g
an

d
E

valu
ation

Figure 6.17: Periodograms of assortativity in 100second intervals for the test D5 F2 S4P
age

152

C
h

ap
ter

6.
P

ro
of-of-C

o
n

cep
t

T
estin

g
an

d
E

valu
ation

Figure 6.18: Periodograms of assortativity in 100second intervals for the test D5 F2 S4P
age

153

Chapter 6. Proof-of-Concept Testing and Evaluation

D6 F2 S6 is the final test sampled for analysis due to its larger size and increased substitutions.

Figure 6.19 plots the graph metrics against the output as per the previous test analysed. The output

illustrates a steady decline and then a relatively consistent output before an increase again. Unlike

the previous tests, the state changes are less clear when observing visually. The decline and then

consistency in the quantity of nodes (at about 600 seconds) hints at a change and in performance and

can be seen in the output also. An increase in network criticality at this time also illustrates this at

about 600 seconds although reverts back to a baseline. Assortativity also illustrates a considerable

change in peak height at around this time which unlike the other graphs this change is maintained,

representing a distinction between two different system states.

This investigation follows the findings of the previous test, which highlighted that examining the

spectral density of assortativity can possibly indicate state change within the system. Therefore figures

6.20 and 6.21 illustrate the periodograms for 100 second periods. The change in state at time period

600-900 can be clearly seen. Either side of this period, at 500 and 1000, the frequency is much more

dispersed and could indicate a state transition period.

Page 154

C
h

ap
ter

6.
P

ro
of-of-C

o
n

cep
t

T
estin

g
an

d
E

valu
ation

Figure 6.19: Output, N and connectivity along the top row and assortativity, clusters and network criticality for D6 F2 S6 running for 20 minutes (1200)

seconds. A range of different metrics can be combined to understand further about the change in system state.

P
age

155

C
h

ap
ter

6.
P

ro
of-of-C

o
n

cep
t

T
estin

g
an

d
E

valu
ation

Figure 6.20: Periodograms of assortativity in 100 second intervals for the test D6 F2 S6P
age

156

C
h

ap
ter

6.
P

ro
of-of-C

o
n

cep
t

T
estin

g
an

d
E

valu
ation

Figure 6.21: Periodograms of assortativity in 100 second intervals for the test D6 F2 S6P
age

157

Chapter 6. Proof-of-Concept Testing and Evaluation

D5 F5 S7 Some test cases were borderline. i.e. on average 1 application was successfully executed.

On closer examination these are due to bursts of activity which indicate some but not consistent

success. Figure 6.22 shows the relevant graph metrics for test case D5 F5 S7. Given that func < div

one might consider this application execution to be successful but this is largely not the case. In

this instance the general trend for the graph metrics does not indicate much in terms of determining

persistent execution success or failure relative to the successful applications. However without plotting

the periodograms for assortativity considerable variation in the spectral density can be seen between

each peaks. If the hypothesis that assortativity is suitable for measuring state change is to be believed,

this would strongly indicate high variability in system states and therefore a chaotic system.

Page 158

C
h

ap
ter

6.
P

ro
of-of-C

o
n

cep
t

T
estin

g
an

d
E

valu
ation

Figure 6.22: Output is plot against relevant graph metrics for D5 F5 S7. A range of different metrics can be combined to understand further about the change

in system state during this test with borderline success.

P
age

159

Chapter 6. Proof-of-Concept Testing and Evaluation

6.4 Discussion

The previous section presented and analysed the test results for the embryonic cloud platform proof-of-

concept from two separate groups of tests both of which where used to analyse the system performance.

The first where there was no failures instigated and thus the network was not stressed, and therefore

did not instigate self-healing. The second was where a high rate of node failures caused the system

to be perturbed and therefore instigated self-healing. The first group was conducted to understand

more about the network structure whilst the second was mostly conducted to investigate methods of

resilience measurement and validate the self-healing functionality. This section provides a discussion

of the results in the context of the objectives of this work.

6.4.1 Application Performance

The performance of the application execution was conducted to evaluate the success of the proof-

of-concept in delivering its intended goal. i.e. is an application still delivered within the face of

external and internal changes to the system successfully, and what are the constraints involved?

It is important to note prior to this discussion that the results of this performance analysis are

representative of this proof-of-concept only and should therefore be used as a guideline for performance

of a production ready implementation of the system. This point is particularly relevant to the timings

of the application performance. As the experiment was in a controlled environment, delays as a

result of network hardware or links were not introduced to the tests. This factor is useful for empirical

consistency but less representative of a real-world environment. Additionally the implementation of the

application has not been tuned for performance purposes. However the results are still representative

of the architectural model and thus provide insight into performance to enable selection of particular

parameters according to use-case.

6.4.1.1 Communication Complexity

The number of messages transmitted in order to execute the application is relevant to the performance

of the system as an increase in messages both transmitted and received has a direct effect on the cost

of executing the application. Messages transmitted over a network link create contention between

other applications whilst messages both sent and received must be processed in one form or another.

Using the publisher-subscribe model employed by the embryonic architecture ensures that a message

will not be processed by the cell it is not intended for, however the message may still be received by the

system and will therefore be processed by the operating system’s network stack and the initial layers

of the application in one form or another. Therefore the reduction in message complexity is essential

to the performance of the system. However an increase in messages does provide redundancy in the

system and therefore could increase resilience. Given the above, a trade-off is required between the

Page 160

Chapter 6. Proof-of-Concept Testing and Evaluation

probability of application success and any resource strain on the system. Fundamentally this decision

is down to the users of the system and the particular use case employed. In this context, the following

results were found:

• In the 0 failure rate tests, at the higher end of the output scale, the ratio of messages received

to output is extreme, where for approximately 60 output messages there were approximately

600 received. This could be considered a waste of resource usage particularly for constrained

resource environments.

• In the tests involving node failures, the resource wastage is drastically reduced to approximately

90 messages received to 13 output. Moreover, the highest tests also performed less well in the

failure rate tests than those with no failure rate. While intuitive, this indicates that a key

negative aspect, the excess message redundancy, is appropriate for the architecture operating in

more hostile conditions.

• Even in tests where no application executed successfully, there was still a large ratio of messages

received. This is due to the subscriptions creating more links between cells and the divisions

increasing the connectivity of the network and therefore enabling messages to still be passed.

The lack of output was due to the complexity of the application (function size) being the con-

straining factor here. This strengthens the argument for adapting complexity according to the

environment, where possible.

To summarise the conclusions of these results, it was shown that larger networks created drastically

increased communication complexity, which is intuitive. These results served the investigation well, as

it was defined during the previous investigation that it would be necessary to evaluate the performance

trade off. In this instance it was shown that the increased redundancy was used effectively to provide

increased resilience to networks where nodes failed. Additionally the ability to successfully output the

message was largely constrained by the quantity of functions combined with the subscription value.

6.4.1.2 Temporal Performance

In terms of temporal performance of each application, the results illustrated were variable, which

was intuitive. The increase in network size would increase overall processing time and the increase

in application complexity would also increase processing time with some clear performance gains to

be made through a slight reduction in function type. As mentioned previously it should be noted

these results are purely representative of this proof-of-concept with many optimisations not included,

particularly as it was developed in a high-level language. The strongest finding in these results is that

the intuitive results validated the implementation.

Page 161

Chapter 6. Proof-of-Concept Testing and Evaluation

6.4.2 Measuring Resilience

The second motivation for undertaking an analysis of the test results is to further provide insight

into methods of assessing the resilience of the system, with a particular aim of permitting comparison

between disparate cloud architectures. The proposed solution to this is discussed in this section.

During the literature review stage, a number of different types of resilience metrics were discovered

and classified from literature (section 2.4.6). A number of graph metrics were chosen to analyse the

structural resilience of the network, as these provide ease of comparison between architectures whilst

also summarising the current state of the network structure in a succinct manner. According to the

evaluated literature, no metric had been converged upon as definitive as performance varied according

the underlying network structure and purpose. Therefore a subset of metrics were selected according

to certain criteria and applied to every stage of the network in each test during this research. The

following insights were gained from this analysis:

• The structural graph metrics chosen did provide a description of the network at each stage which

could be compared and contrasted against other networks for comparison. Often they would

corroborate the state of the network (e.g. through similar trends) and for this reason allowed

insight into the network at that point in time.

• As the metrics described the structure and did not contain information about the application

execution, on the whole their relationship with resilience did not always relate to whether an ap-

plication was successfully executed. This highlights the contrast between service and structural

resilience. Therefore it was also important to understand if other constraints were in place (e.g.

high application complexity) to determine if an application would execute successfully, prior to

attempting to run it on the embryonic platform.

• The metrics employed specifically for resilience, and not simply for description, which were

network criticality and effective graph resistance, did not correlate (on the whole) with the

resilience of the network. If previous literature is to believed this means that the network

is successfully executing applications and self-healing despite the structure being traditionally

non-resilient.

• Assortativity showed the most promise in correlating with successful application output in a

manner which illustrated a change in system state. As the changing peaks on the graph were

roughly correlated with the level of execution success on the output graphs. Further spectral

analysis using periodograms highlighted this to be true.

These points highlight a key finding of this work, which is that the embryonic platform is not

structurally resilient when compared to traditional architectures using standard metrics. However,

Page 162

Chapter 6. Proof-of-Concept Testing and Evaluation

the ability for applications to still be delivered, despite this low level of structural resilience in the

network indicates the self-healing and service-resilience of the system is operating correctly.

6.4.2.1 Validating Assortativity Periodicity for State Change Measurement

The result of assortativity being a candidate for representing the quantity of application output and

therefore the variability in system state was an informative finding. It links two of the metric categories

of graph metrics and state measurement. State measurement is deemed suitable as it is also grounded

in complex systems theory. Therefore, these concepts will be combined to determine the particular

state of resilience the architecture is in at each point in time.

In this section assortativity is therefore validated as a method for measuring state change. A

proven method of determining state change is a a recurrence plot (Eckmann et al. 1995) which is an

advanced method often used in chaotic systems analysis to visualise the recurrence of the system to

a particular state. Taking a timeseries of data as an input, the function plots a matrix where each

element is a point at which a recurrence to the state occurs (Marwan 2008). As recurrence plots

are a proven method for determining system state (Marwan et al. 2007), its concurrence with the

periodicity of the assortativity would suggest its suitability for measuring state change. Note that

recurrence plots are a less suitable method for extemporaneous measurement as they are resource

intensive and require capture of the full time series, whereas potting the periodicity of the graph can

be conducted on smaller samples and is less resource intensive.

Whilst in the previous section the periodograms for assortivity were plotted against time, these

periodograms are plotted against the index of changing graphs to more easily compare against the

recurrence plots. For this reason they contain uniform frequency as opposed to the variable seen

previously.

Page 163

Chapter 6. Proof-of-Concept Testing and Evaluation

Figure 6.23: D5 F2 S4 Assortativity Recurrence Plot

Page 164

C
h

ap
ter

6.
P

ro
of-of-C

o
n

cep
t

T
estin

g
an

d
E

valu
ation

Figure 6.24: D5 F2 S4 Periodograms of every 100 graph changes. The label at the top of each graph indicates the starting graph index.

P
age

165

Chapter 6. Proof-of-Concept Testing and Evaluation

Figure 6.23 presents the recurrence plot for the test D5 F2 S4 and figure 6.24 shows the peri-

odograms in 100 graph changes. On the recurrence plot, the graph index between approximately

50-100 shows a very condensed area which is individual and does not recur across the rest of the

system. When compared to the periodogram starting at index 0, a similar variation can be seen

through the long frequency distribution indicating high variety. The periods between 100-200 graph

index indicates a particularly consistent time recurrence which is confirmed by the low variability in

the frequency of the periodogram starting at index 100. Following from this, the period from approx-

imately 200-450 is divided into two distinct but similar states. A new state appears to be seen from

350-450, which is confirmed in figure 6.25 which plots the periodogram for this period and shows a low

variability in frequency. The final period of the graph shows low uniformity in recurrence, although

clearly indicates a different state at 450-600 which is confirmed by the variable frequencies in the 400

and 500 periodograms.

In the previous analysis it was shown that assortativity could be used to determine the change

in system state, which correlated with the variety in output messages and therefore the resilience of

the system at that point. This analysis has shown that a known method for complex system state

measurement clearly illustrates that the periodicity of the assortivity is comparable. Therefore this

seeks to validate this method for use in measuring the state of the embryonic system.

6.4.2.2 Proposed Method

This section describes the proposed method of measuring the resilience of the system through analysis

of the current state. As discussed in section 5.8, a number of states can be seen in the context of

resilient service delivery. If the given metric can provide insight into the particular state of the system

then the resilience can be determined. According to the given findings a method for determining

the resilience of a particular system is given below. A model of each system under parameters will

need to first be developed to provide a baseline for comparison. This will them allow selection of an

appropriate graph sample size and a characteristics of each system state.

The following steps can then be conducted:

1. The characteristics of the system are chosen within the constraints of div and sub to maximise

success.

2. The graph structure of the system is sampled when a change occurs. A set of graphs is compiled

through an aggregation according to a sample rate which is predefined according to the size and

rate of change of the network.

3. The assortativity of each graph in the set is calculated and then plotted to illustrate the change

in assortivity.

Page 166

Chapter 6. Proof-of-Concept Testing and Evaluation

Figure 6.25: D5 F2 S4 Assortativity Recurrence Plot

4. Spectral analysis is then conducted on this assortativity curve to determine different states.

In the investigation conducted in this research, periodograms are employed to determine the

difference states. Other spectral analysis techniques may be employed for accuracy.

5. The determined state then indicates whether the system is currently operating in a degraded,

failed or acceptable manner.

Page 167

C
h

ap
ter

6.
P

ro
of-of-C

o
n

cep
t

T
estin

g
an

d
E

valu
ation

Figure 6.26: The proposed method for measuring system state change to determine resilience.

P
age

168

Chapter 6. Proof-of-Concept Testing and Evaluation

6.4.2.3 Further Comments

The resilience measurement method defined in this section was the result of a combination of re-

silience methods defined in literature. Many traditional graph metrics were deemed unsuitable during

experimentation due to their lack of correlation or information involving application complexity. One

graph metric, assortativity, appeared to indicate changes in system state. Further validation using

recurrence analysis showed this method to be accurate. Therefore a linear method of initial model cre-

ation and then system sampling leads into a determination of system state, which in turn determines

the system resilience. This method follows both graph-based and state-based resilience measurement

methods found in literature.

6.5 Summary

This chapter presented the final stage of the investigation into the resilience of embryogenesis inspired

resilient cloud architectures. After the implementation of a proof-of-concept which was deemed to have

met the resilience and functional requirements previously defined, batches of tests were executed to

understand further about the performance and the resilience of the system. A number of findings were

determined involving the effect of system parameters on the structure and resilience of the system,

application execution success under different system parameters and finally a method to determine

the system state according to spectral analysis of the assortativity.

Page 169

Chapter 7

Conclusion

7.1 Introduction

This chapter concludes the research in this thesis through revisiting the hypothesis and evaluating

it against the resulting research contributions of the work. This then highlights limitations in the

work which leads to proposals for future research directions. It concludes through highlighting the

contributions to knowledge.

7.2 Revisiting the hypothesis

The aim of this work was to test the hypothesis ”A P2P architecture, with characteristics inspired

by embryonic development, will provide persistent decentralised cloud service delivery in the face of

system perturbations.” This was conducted in response to the emergence of new, low-latency use-cases

which require cloud data processing yet in hostile environmental conditions. The motivation for this

was discovered and documented in chapter 2.

To accomplish this, in chapter 3 firstly the requirements for both resilient service delivery and

decentralised cloud computing were derived. After background reading into the self-healing and com-

munication characteristics of animal embryonic development, feature mapping successfully occurred

between these concepts. This culminated in a proposed architectural model for resilient decentralised

cloud service delivery.

The key variables which may affect performance and resilience concerned with this architecture

were then investigated under simulation in chapter 4. Cellular Automata were employed as the

simulation tool due to their applicability for decentralised, complex systems. After varying both

internal parameters (such as the application complexity, the aggressiveness of the cellular division

and optimal differentiation algorithms) and the external environment which caused nodes to fail, a

number of interesting findings emerged. These included the importance of initial starting conditions

170

Chapter 7. Conclusion

which illustrated that once a system had reached a period of convergence, it would persist despite

the hostile conditions. Methods for improving resilience were also shown such as through improving

self-organising optimisation and network hop count. Finally, analysis during this simulation hinted

that the system cycled through different states, which may be used later for measuring its change in

resilience capacity.

After the efficacy of the approach was illustrated through simulation, a proof-of-concept imple-

mentation was realised in chapter 5. It was shown during this work, in order to meet the initial

requirements, two different variants were proposed. One which responded to user-requests and which

was able to self-organise according to the requested functionality. However it became time-constrained

according to these prompts, delaying self-healing behaviour. While another variant was entirely au-

tonomic but provided less flexibility in terms of applications processed. The fully autonomic variant

was selected as the most applicable to the decentralised cloud use-case due to its quicker self-healing

ability. However the user-driven variant would still be applicable to small-scale network environments.

In chapter 6, the selected autonomic embyronic implementation was empirically evaluated to un-

derstand more about its performance characteristics. It was shown that the system, which was resilient

by design, successfully provided persistent service delivery despite continued node failures. Redundant

messages were noted as being quite high, which while beneficial for a high level of resilience, may have a

negative impact upon network bandwidth. During this experimentation, network structures were also

examined for their resilience against common quantifiable metrics from literature. It was highlighted

that the network appeared to not be structurally resilient, according to the resilience metrics taken

from literature. However this illustrated that it was able to continue to deliver services resiliently

despite its low structural resilience. During the testing of these metrics, it was finally highlighted

that the periodicity of assortativity could be employed as a measure of the system’s current state and

therefore could be employed as part of a metric for later comparison.

Overall, this thesis was successful in answering the hypothesis. It illustrated that through the

design and development of a service delivery system based upon the self-healing and self-organising

characteristics of embyronic development; the developed system would be resilient by design. Empir-

ical evaluation of the performance and resilience criteria highlighted this to be the case.

7.3 Challenges and Limitations

A number of challenges and limitations were posed to this work and are described below:

• Some limitations are a result of the technical direction of the work. For example the measurement

of resilience is conducted in the context of application delivery when analysing technical factors.

However the the cost of delivering the service is vital to on-going continuation (and therefore

resilience) of the service yet is excluded from the initial hypothesis. Non-technical factors could

Page 171

Chapter 7. Conclusion

be considered in future models of resilience.

• The implementation of the work, while representative of the proposed architecture, is a proof-of-

concept. It therefore provides quantitative investigation of different resilience characteristics but

the performance variables could change dependent upon further performance tuning. Addition-

ally the tests were conducted in a highly controlled manner to provide for fair and consistent

comparison between test cases, this mean that the results, while comparable, were not truly

representative of the diverse environments available due to the lack, for example, of link delays

between nodes. However given that the research was more strongly focused upon execution

success (resilience) than performance this was not deemed to be a crucial factor.

• A recurring problem during the empirical investigation of different concepts in this was the

scalability of data analysis. During the the CA, probabilistic modelling and proof-of-concept

evaluation, it was quickly realised that small increases in network parameters created large

jumps in dataset pre-processing times. This issue contributed to continued delay during ex-

perimentation (partially due to the lack of available computational resources) and many blocks

of code had to go through optimisation to provide concurrency in order to reduce processing

times. Consequently, in the interests of empirical consistency whole groups of tests were re-run,

delaying this phase of the work.

7.4 Future Work

Future work could be extended in multiple areas which are defined below:

• To further evaluate the efficacy of this software for real-world use-cases. The proof-of-concept

can be developed further, particularly with software optimisations. It could then be tested in a

number of real-world scenarios which involved physical hardware and real delays between nodes.

The previously defined examples of VANETs and drones would be well suited for this.

• The investigation of the metric highlighted that spectral analysis of certain graph metrics can

indicate system state change. The chosen method, assortativity, was valuable in this instance

and may be for similar systems. Therefore its efficacy should be evaluated further for other

complex system types. This could include complex systems of a non-embryonic type.

• The user-driven proof-of-concept variant was not investigated further during the investigation

of this thesis due to lesser alignment with the theoretical foundations of complexity theory.

However its ability to provide resilience in smaller scale systems should still be evaluated for

use-cases where it is more applicable.

Page 172

Chapter 7. Conclusion

7.5 Contributions to Knowledge

To summarise the findings of this thesis, the following contributions to knowledge can be identified. 1

• A new classification for cloud computing components and disciplines was defined and a compre-

hensive survey which analysed the resilience disciplines and components affected per layer was

presented. (Appendix B Paper 1)

• A simulation of the decentralised model determined that local-only communication could be

leveraged for resilient service delivery under certain parametric constraints. This work produced

a dataset and was published with the focus of real-world use-cases (Appendix B Paper 3) (Welsh

& Benkhelifa 2019).

• A proof-of-concept implementation (complete with experimentation platform) of the architecture

is released as opensource for public use. It confirmed the effectiveness of an embryonic cloud

model for delivering resilient services (Appendix B Paper 4).

• A dataset was produced during an empirical evaluation of the embryonic platform which is

released for public use. An analysis of this dataset determined that while many structural graph

metrics were not suitable for measuring resilience in this instance due to the lack of information

concerning the application, spectral analysis of assortativity could be leveraged as a method for

measuring the change in system state and therefore its performance.

1All source code and links to data sets can be found at : https://github.com/tomwelsh/embryonic-cloud

Page 173

Bibliography

Aazam, M., Zeadally, S. & Harras, K. A. (2018), ‘Deploying fog computing in industrial internet of

things and industry 4.0’, IEEE Transactions on Industrial Informatics 14(10), 4674–4682.

Ai, Y., Peng, M. & Zhang, K. (2018), ‘Edge computing technologies for internet of things: a primer’,

Digital Communications and Networks 4(2), 77 – 86.

URL: http://www.sciencedirect.com/science/article/pii/S2352864817301335

Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M. & Ayyash, M. (2015a), ‘Internet of

things: A survey on enabling technologies, protocols, and applications’, IEEE Communications

Surveys Tutorials 17(4), 2347–2376.

Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M. & Ayyash, M. (2015b), ‘Internet of things:

A survey on enabling technologies, protocols, and applications’, IEEE communications surveys &

tutorials 17(4), 2347–2376.

Alenazi, M. & Sterbenz, J. (2015a), Comprehensive comparison and accuracy of graph metrics in

predicting network resilience, in ‘Design of Reliable Communication Networks (DRCN), 2015 11th

International Conference on the’, pp. 157–164.

Alenazi, M. & Sterbenz, J. (2015b), Evaluation and improvement of network resilience against attacks

using graph spectral metrics, in ‘Resilience Week (RWS), 2015’, pp. 1–6.

Ali, A., Elsaadany, M. & Hamouda, W. (2017), ‘Cellular lte-a technologies for the future internet-

of-things: Physical layer features and challenges’, IEEE Communications Surveys and Tutorials

19(4), 2544–2572.

Amin, R., Ripplinger, D., Mehta, D. & Cheng, B. (2015), ‘Design considerations in applying disruption

tolerant networking to tactical edge networks’, IEEE Communications Magazine 53(10), 32–38.

Aral, A. & Brandic, I. (2018), Dependency mining for service resilience at the edge, in ‘2018

IEEE/ACM Symposium on Edge Computing (SEC)’, pp. 228–242.

174

Bibliography

Araujo Neto, J. P., Pianto, D. M. & Ralha, C. G. (2018), An agent-based fog computing architecture

for resilience on amazon ec2 spot instances, in ‘2018 7th Brazilian Conference on Intelligent Systems

(BRACIS)’, pp. 360–365.

Asghar, M. R., Dán, G., Miorandi, D. & Chlamtac, I. (2017), ‘Smart meter data privacy: A survey’,

IEEE Communications Surveys Tutorials 19(4), 2820–2835.

Atzori, L., Iera, A. & Morabito, G. (2010), ‘The internet of things: A survey’, Computer Networks

54, 2787–2805.

Baccarelli, E., Naranjo, P. G. V., Scarpiniti, M., Shojafar, M. & Abawajy, J. H. (2017), ‘Fog of

everything: Energy-efficient networked computing architectures, research challenges, and a case

study’, IEEE Access 5, 9882–9910.

Baktir, A. C., Ozgovde, A. & Ersoy, C. (2017), ‘How can edge computing benefit from software-defined

networking: A survey, use cases, and future directions’, IEEE Communications Surveys Tutorials

19(4), 2359–2391.

Baran, B. & Sosa, R. (2000), A new approach for antnet routing, in ‘Proceedings Ninth International

Conference on Computer Communications and Networks (Cat.No.00EX440)’, pp. 303–308.

Beineke, L. W., Oellermann, O. R. & Pippert, R. E. (2002), ‘The average connectivity of a graph’,

Discrete Mathematics 252(1), 31 – 45.

URL: http://www.sciencedirect.com/science/article/pii/S0012365X01001807

Bellavista, P., Berrocal, J., Corradi, A., Das, S. K., Foschini, L. & Zanni, A. (2019a), ‘A survey on

fog computing for the internet of things’, Pervasive and mobile computing 52, 71–99.

Bellavista, P., Berrocal, J., Corradi, A., Das, S. K., Foschini, L. & Zanni, A. (2019b), ‘A survey on

fog computing for the internet of things’, Pervasive and Mobile Computing 52, 71 – 99.

URL: http://www.sciencedirect.com/science/article/pii/S1574119218301111

Ben-Jonathan, N. & Liu, J.-W. (1992), ‘Pituitary lactotrophs endocrine, paracrine, juxtacrine, and

autocrine interactions’, Trends in Endocrinology & Metabolism 3(7), 254–258.

Benkhelifa, E., Pipe, A. & Tiwari, A. (2013), ‘Evolvable embryonics: 2-in-1 approach to self-healing

systems’, Procedia CIRP 11, 394 – 399. 2nd International Through-life Engineering Services Con-

ference.

URL: http://www.sciencedirect.com/science/article/pii/S2212827113005027

Benkhelifa, E., Welsh, T. & Hamouda, W. (2018), ‘A critical review of practices and challenges in

intrusion detection systems for iot: Toward universal and resilient systems’, IEEE Communications

Surveys Tutorials 20(4), 3496–3509.

Page 175

Bibliography

Benson, K. E., Wang, G., Venkatasubramanian, N. & Kim, Y. (2018), Ride: A resilient iot data

exchange middleware leveraging sdn and edge cloud resources, in ‘2018 IEEE/ACM Third Interna-

tional Conference on Internet-of-Things Design and Implementation (IoTDI)’, pp. 72–83.

Bilal, K., Khalid, O., Erbad, A. & Khan, S. U. (2018), ‘Potentials, trends, and prospects in edge

technologies: Fog, cloudlet, mobile edge, and micro data centers’, Computer Networks 130, 94 –

120.

URL: http://www.sciencedirect.com/science/article/pii/S1389128617303778

Biswas, A. R. & Giaffreda, R. (2014), Iot and cloud convergence: Opportunities and challenges, in

‘2014 IEEE World Forum on Internet of Things (WF-IoT)’, IEEE, pp. 375–376.

Borgia, E. (2014), ‘The internet of things vision: Key features, applications and open issues’, Computer

Communications 54(Supplement C), 1 – 31.

Chejerla, B. K. & Madria, S. K. (2017), ‘Qos guaranteeing robust scheduling in attack resilient cloud

integrated cyber physical system’, Future Generation Computer Systems 75, 145 – 157.

URL: http://www.sciencedirect.com/science/article/pii/S0167739X17302650

Colman-Meixner, C., Develder, C., Tornatore, M. & Mukherjee, B. (2016), ‘A survey on resiliency

techniques in cloud computing infrastructures and applications’, IEEE Communications Surveys

Tutorials 18(3), 2244–2281.

Dastjerdi, A. V. & Buyya, R. (2016), ‘Fog computing: Helping the internet of things realize its

potential’, Computer 49, 112–116.

Davis, L. (1991), ‘Handbook of genetic algorithms’.

Desai, N. & Punnekkat, S. (2019), Safety of fog-based industrial automation systems, in ‘Proceedings

of the Workshop on Fog Computing and the IoT’, pp. 6–10.

Dorigo, M., Birattari, M. et al. (2007), ‘Swarm intelligence.’, Scholarpedia 2(9), 1462.

Dressler, F. & Akan, O. B. (2010), ‘Bio-inspired networking: from theory to practice’, IEEE Commu-

nications Magazine 48(11), 176–183.

Eckhoff, D. & Wagner, I. (2017), ‘Privacy in the smart city 2013; applications, technologies, challenges

and solutions’, IEEE Communications Surveys Tutorials PP(99), 1–1.

Eckmann, J., Kamphorst, S. O., Ruelle, D. et al. (1995), ‘Recurrence plots of dynamical systems’,

World Scientific Series on Nonlinear Science Series A 16, 441–446.

Eisele, S., Mardari, I., Dubey, A. & Karsai, G. (2017), Riaps: Resilient information architecture

platform for decentralized smart systems, in ‘2017 IEEE 20th International Symposium on Real-

Time Distributed Computing (ISORC)’, pp. 125–132.

Page 176

Bibliography

Faniyi, F. & Bahsoon, R. (2015), ‘A systematic review of service level management in the cloud’,

ACM Computing Surveys (CSUR) 48(3), 1–27.

Faruque, M. A. A. & Vatanparvar, K. (2016), ‘Energy management-as-a-service over fog computing

platform’, IEEE Internet of Things Journal 3(2), 161–169.

Fenn, J. (2006), ‘Managing citations and your bibliography with bibtex’, The PracTEX Journal,(4) .

Ferrer, A. J., Marquès, J. M. & Jorba, J. (2019), ‘Towards the decentralised cloud: Survey on ap-

proaches and challenges for mobile, ad hoc, and edge computing’, ACM Computing Surveys (CSUR)

51(6), 1–36.

Forrest, S., Perelson, A. S., Allen, L. & Cherukuri, R. (1994), Self-nonself discrimination in a computer,

in ‘Research in Security and Privacy, 1994. Proceedings., 1994 IEEE Computer Society Symposium

on’, pp. 202–212.

Frustaci, M., Pace, P., Alot, G. & Fortino, G. (2017), ‘Evaluating critical security issues of the iot

world: Present and future challenges’, IEEE Internet of Things Journal PP(99), 1–1.

Gan, Y., Zhang, Y., Hu, K., Cheng, D., He, Y., Pancholi, M. & Delimitrou, C. (2019), Seer: Leveraging

big data to navigate the complexity of performance debugging in cloud microservices, in ‘Proceed-

ings of the Twenty-Fourth International Conference on Architectural Support for Programming

Languages and Operating Systems’, pp. 19–33.

Ganek, A. G. & Corbi, T. A. (2003), ‘The dawning of the autonomic computing era’, IBM Systems

Journal 42(1), 5–18.

Gao, H.-H., Yang, H.-H. & Wang, X.-Y. (2005), Ant colony optimization based network intrusion

feature selection and detection, pp. 3871 – 3875 Vol. 6.

Gharaibeh, A., Salahuddin, M. A., Hussini, S. J., Khreishah, A., Khalil, I., Guizani, M. & Al-Fuqaha,

A. (2017), ‘Smart cities: A survey on data management, security, and enabling technologies’, IEEE

Communications Surveys & Tutorials 19(4), 2456–2501.

Ghosh, R., Longo, F., Naik, V. K. & Trivedi, K. S. (2010), Quantifying resiliency of iaas cloud, in

‘Proceedings of the 2010 29th IEEE Symposium on Reliable Distributed Systems’, SRDS ’10, IEEE

Computer Society, Washington, DC, USA, pp. 343–347.

Goścień, R. & Walkowiak, K. (2017), ‘Modeling and optimization of data center location and routing

and spectrum allocation in survivable elastic optical networks’, Optical Switching and Networking

23, 129 – 143. Design and modeling of Resilient optical networks RNDM 2015.

URL: http://www.sciencedirect.com/science/article/pii/S157342771630042X

Page 177

Bibliography

Guo, M. & Bhattacharya, P. (2014), Diverse virtual replicas for improving intrusion tolerance in cloud,

in ‘Proceedings of the 9th Annual Cyber and Information Security Research Conference’, CISR ’14,

ACM, New York, NY, USA, pp. 41–44.

URL: http://doi.acm.org/10.1145/2602087.2602116

Gutierrez, J., Naeve, M., Callaway, E., Bourgeois, M., Mitter, V. & Heile, B. (2001), ‘Ieee 802.15.4:

a developing standard for low-power low-cost wireless personal area networks’, Network, IEEE

15(5), 12–19.

Ha, W. (2018), Cloud service selection with fuzzy c-means artificial immune network memory classifier,

in ‘2018 14th International Conference on Computational Intelligence and Security (CIS)’, pp. 264–

268.

Haas, Z. J., Halpern, J. Y. & Li, L. (2006), ‘Gossip-based ad hoc routing’, IEEE/ACM Transactions

on networking 14(3), 479–491.

Hariri, S., Eltoweissy, M. & Al-Nashif, Y. (2011), Biorac: Biologically inspired resilient autonomic

cloud, in ‘Proceedings of the Seventh Annual Workshop on Cyber Security and Information Intel-

ligence Research’, CSIIRW ’11, ACM, New York, NY, USA, pp. 80:1–80:1.

URL: http://doi.acm.org/10.1145/2179298.2179389

Hassija, V., Chamola, V., Saxena, V., Jain, D., Goyal, P. & Sikdar, B. (2019), ‘A survey on iot security:

application areas, security threats, and solution architectures’, IEEE Access 7, 82721–82743.

Heble, S., Kumar, A., Prasad, K. V. V. D., Samirana, S., Rajalakshmi, P. & Desai, U. B. (2018), A

low power iot network for smart agriculture, in ‘2018 IEEE 4th World Forum on Internet of Things

(WF-IoT)’, pp. 609–614.

Hecht, T., Smith, P. & Scholler, M. (2014), Critical services in the cloud: Understanding security

and resilience risks, in ‘Reliable Networks Design and Modeling (RNDM), 2014 6th International

Workshop on’, pp. 131–137.

Hernandez, G. (1999), ‘Time series, periodograms, and significance’, Journal of Geophysical Research:

Space Physics 104(A5), 10355–10368.

Hintjens, P. (2013), ZeroMQ: messaging for many applications, ” O’Reilly Media, Inc.”.

Hsin, H., Chang, E., Lin, C. & Wu, A. (2014), ‘Ant colony optimization-based fault-aware routing in

mesh-based network-on-chip systems’, IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems 33(11), 1693–1705.

Hussein, A., Elhajj, I. H., Chehab, A. & Kayssi, A. (2017), Sdn vanets in 5g: An architecture for

resilient security services, in ‘2017 Fourth International Conference on Software Defined Systems

(SDS)’, pp. 67–74.

Page 178

Bibliography

Ismagilova, E., Hughes, L., Dwivedi, Y. K. & Raman, K. R. (2019), ‘Smart cities: Advances in

research—an information systems perspective’, International Journal of Information Management

47, 88 – 100.

URL: http://www.sciencedirect.com/science/article/pii/S0268401218312738

Jabbar, A. (2010), A Framework to Quantify Network Resilience and Survivability, PhD thesis,

Lawrence, KS, USA. AAI3417968.

Jaiswal, V., Sen, A. & Verma, A. (2014), ‘Integrated resiliency planning in storage clouds’, Network

and Service Management, IEEE Transactions on 11(1), 3–14.

Jhawar, R. & Piuri, V. (2013), ‘Fault tolerance and resilience in cloud computing environments’,

Computer and Information Security Handbook, pp. 125–141.

Ju, X., Soares, L., Shin, K. G., Ryu, K. D. & Da Silva, D. (2013), On fault resilience of openstack,

in ‘Proceedings of the 4th Annual Symposium on Cloud Computing’, SOCC ’13, ACM, New York,

NY, USA, pp. 2:1–2:16.

URL: http://doi.acm.org/10.1145/2523616.2523622

Kahla, M., Azab, M. & Mansour, A. (2018), Secure, resilient, and self-configuring fog architecture for

untrustworthy iot environments, in ‘2018 17th IEEE International Conference On Trust, Security

And Privacy In Computing And Communications/ 12th IEEE International Conference On Big

Data Science And Engineering (TrustCom/BigDataSE)’, pp. 49–54.

Kanter, M. & Taylor, S. (2013), Diversity in cloud systems through runtime and compile-time relo-

cation, in ‘Technologies for Homeland Security (HST), 2013 IEEE International Conference on’,

pp. 396–402.

Kephart, J. O. & Chess, D. M. (2003), ‘The vision of autonomic computing’, Computer 36(1), 41–50.

Khabbaz, M. J., Assi, C. M. & Fawaz, W. F. (2012), ‘Disruption-tolerant networking: A comprehensive

survey on recent developments and persisting challenges’, IEEE Communications Surveys Tutorials

14(2), 607–640.

Khalifa, A., Azab, M. & Eltoweissy, M. (2014), Resilient hybrid mobile ad-hoc cloud over collaborating

heterogeneous nodes, in ‘Collaborative Computing: Networking, Applications and Worksharing

(CollaborateCom), 2014 International Conference on’, pp. 134–143.

Knoblich, J. A. (2010), ‘Asymmetric cell division: recent developments and their implications for

tumour biology’, Nature reviews Molecular cell biology 11(12), 849.

Kortuem, G., Kawsar, F., Fitton, D. & Sundramoorthy, V. (2010), ‘Smart objects as building blocks

for the Internet of things’, Internet Computing, IEEE 14, 44–51.

Page 179

Bibliography

Koza, J. R. et al. (1994), Genetic programming, MIT press Cambridge.

Kulig, A., Drożdż, S., Kwapień, J. & Oświcimka, P. (2015), ‘Modeling the average shortest-path length

in growth of word-adjacency networks’, Physical Review E 91(3), 032810.

Kulwa, F., Li, C., Zhao, X., Cai, B., Xu, N., Qi, S., Chen, S. & Teng, Y. (2019), ‘A state-of-

the-art survey for microorganism image segmentation methods and future potential’, IEEE Access

7, 100243–100269.

Laprie, J.-C. (2005), Resilience for the scalability of dependability, in ‘Network Computing and Ap-

plications, Fourth IEEE International Symposium on’, pp. 5–6.

Le, M., Song, Z., Kwon, Y. & Tilevich, E. (2017), Reliable and efficient mobile edge computing in

highly dynamic and volatile environments, in ‘2017 Second International Conference on Fog and

Mobile Edge Computing (FMEC)’, pp. 113–120.

Lombardi, F., Di Pietro, R. & Soriente, C. (2010), Crew: Cloud resilience for windows guests

through monitored virtualization, in ‘Reliable Distributed Systems, 2010 29th IEEE Symposium

on’, pp. 338–342.

Luo, B. & Liu, W. (2011), The sustainability and survivabiltiy network design for next generation

cloud networking, in ‘Dependable, Autonomic and Secure Computing (DASC), 2011 IEEE Ninth

International Conference on’, pp. 555–560.

Lyu, L., Nandakumar, K., Rubinstein, B., Jin, J., Bedo, J. & Palaniswami, M. (2018), ‘Ppfa: Privacy

preserving fog-enabled aggregation in smart grid’, IEEE Transactions on Industrial Informatics

14(8), 3733–3744.

Mach, P. & Becvar, Z. (2017), ‘Mobile edge computing: A survey on architecture and computation

offloading’, IEEE Communications Surveys Tutorials 19(3), 1628–1656.

Majno, G. & Joris, I. (1995), ‘Apoptosis, oncosis, and necrosis. an overview of cell death.’, The

American journal of pathology 146(1), 3.

Makhdoom, I., Abolhasan, M., Lipman, J., Liu, R. P. & Ni, W. (2018), ‘Anatomy of threats to the

internet of things’, IEEE Communications Surveys Tutorials pp. 1–1.

Mange, D., Sanchez, E., Stauffer, A., Tempesti, G., Marchal, P. & Piguet, C. (1998), ‘Embryonics: A

new methodology for designing field-programmable gate arrays with self-repair and self-replicating

properties’, IEEE Transactions on Very Large Scale Integration (VLSI) Systems 6(3), 387–399.

Mao, Y., You, C., Zhang, J., Huang, K. & Letaief, K. B. (2017), ‘A survey on mobile edge computing:

The communication perspective’, IEEE Communications Surveys Tutorials 19(4), 2322–2358.

Page 180

Bibliography

Marinai, S., Gori, M. & Soda, G. (2005), ‘Artificial neural networks for document analysis and recog-

nition’, IEEE Transactions on Pattern Analysis and Machine Intelligence 27(1), 23–35.

Marsh, D., Tynan, R., O’Kane, D. & O’Hare, G. M. P. (2004), ‘Autonomic wireless sensor networks’,

Engineering Applications of Artificial Intelligence 17(7), 741 – 748. Autonomic Computing Systems.

URL: http://www.sciencedirect.com/science/article/pii/S0952197604001101

Mart́ı, L. & Schoenauer, M. (2018), Bio-inspired approaches to anomaly and intrusion detection, in

‘Proceedings of the Genetic and Evolutionary Computation Conference Companion’, pp. 1121–1137.

Maruyama, H. (2013), Towards systems resilience, in ‘2013 43rd Annual IEEE/IFIP Conference on

Dependable Systems and Networks Workshop (DSN-W)’, pp. 1–4.

Marwan, N. (2008), ‘A historical review of recurrence plots’, The European Physical Journal Special

Topics 164(1), 3–12.

Marwan, N., Romano, M. C., Thiel, M. & Kurths, J. (2007), ‘Recurrence plots for the analysis of

complex systems’, Physics reports 438(5-6), 237–329.

McCulloch, W. S. & Pitts, W. (1943), ‘A logical calculus of the ideas immanent in nervous activity’,

The bulletin of mathematical biophysics 5(4), 115–133.

Mell, P. M. & Grance, T. (2011), Sp 800-145. the nist definition of cloud computing, Technical report,

Gaithersburg, MD, United States.

Metallidou, C. K., Psannis, K. E. & Egyptiadou, E. A. (2020), ‘Energy efficiency in smart buildings:

Iot approaches’, IEEE Access 8, 63679–63699.

Miorandi, D., Lowe, D. & Yamamoto, L. (2010), Embryonic models for self–healing distributed ser-

vices, in E. Altman, I. Carrera, R. El-Azouzi, E. Hart & Y. Hayel, eds, ‘Bioinspired Models of

Network, Information, and Computing Systems’, Springer Berlin Heidelberg, Berlin, Heidelberg,

pp. 152–166.

Mitalipov, S. & Wolf, D. (2009), Totipotency, pluripotency and nuclear reprogramming, in ‘Engineer-

ing of stem cells’, Springer, pp. 185–199.

Modares, H., Salleh, R. & Moravejosharieh, A. (2011), Overview of security issues in wireless sen-

sor networks, in ‘2011 Third International Conference on Computational Intelligence, Modelling

Simulation’, pp. 308–311.

Modarresi, A., Gangadhar, S. & Sterbenz, J. P. G. (2017), A framework for improving network

resilience using sdn and fog nodes, in ‘2017 9th International Workshop on Resilient Networks

Design and Modeling (RNDM)’, pp. 1–7.

Page 181

Bibliography

Modarresi, A. & Sterbenz, J. P. G. (2017), Toward resilient networks with fog computing, in ‘2017

9th International Workshop on Resilient Networks Design and Modeling (RNDM)’, pp. 1–7.

Mouradian, C., Naboulsi, D., Yangui, S., Glitho, R. H., Morrow, M. J. & Polakos, P. A. (2018), ‘A

comprehensive survey on fog computing: State-of-the-art and research challenges’, IEEE Commu-

nications Surveys Tutorials 20(1), 416–464.

Neto, A. J. V., Zhao, Z., Rodrigues, J. J. P. C., Camboim, H. B. & Braun, T. (2018), ‘Fog-based

crime-assistance in smart iot transportation system’, IEEE Access 6, 11101–11111.

Ozeer, U., Etchevers, X., Letondeur, L., Ottogalli, F.-G., Salaün, G. & Vincent, J.-M. (2018), Re-

silience of stateful iot applications in a dynamic fog environment, in ‘Proceedings of the 15th EAI

International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services’,

MobiQuitous ’18, ACM, New York, NY, USA, pp. 332–341.

URL: http://doi.acm.org/10.1145/3286978.3287007

Oztemel, E. (2019), ‘Intelligent manufacturing systems, smart factories and industry 4.0: A general

overview’, Digital Manufacturing and Assembly Systems in Industry 4.0 p. 1.

Pan, J. & McElhannon, J. (2018), ‘Future edge cloud and edge computing for internet of things

applications’, IEEE Internet of Things Journal 5(1), 439–449.

Panwar, R. & Supriya, M. (2019), Autonomic resource allocation frameworks for service-based cloud

applications: A survey, in ‘2019 International Conference on Computing, Communication, and

Intelligent Systems (ICCCIS)’, IEEE, pp. 214–219.

Paradis, L. & Han, Q. (2007), ‘A survey of fault management in wireless sensor networks’, Journal of

Network and systems management 15(2), 171–190.

Pereira, J., Ricardo, L., Lúıs, M., Senna, C. & Sargento, S. (2019), ‘Assessing the reliability of fog

computing for smart mobility applications in vanets’, Future Generation Computer Systems 94, 317

– 332.

URL: http://www.sciencedirect.com/science/article/pii/S0167739X18307076

Preden, J. S., Tammemäe, K., Jantsch, A., Leier, M., Riid, A. & Calis, E. (2015), ‘The benefits of

self-awareness and attention in fog and mist computing’, Computer 48(7), 37–45.

Raza, S., Wallgren, L. & Voigt, T. (2013), ‘Svelte: Real-time intrusion detection in the Internet of

Things’, Ad Hoc Networks 11, 2661–2674.

Rios, R., Roman, R., Onieva, J. A. & Lopez, J. (2017), From smog to fog: A security perspective, in

‘2017 Second International Conference on Fog and Mobile Edge Computing (FMEC)’, pp. 56–61.

Page 182

Bibliography

Roman, R., Lopez, J. & Mambo, M. (2018), ‘Mobile edge computing, fog et al.: A survey and analysis

of security threats and challenges’, Future Generation Computer Systems 78, 680 – 698.

URL: http://www.sciencedirect.com/science/article/pii/S0167739X16305635

Rudel, D. & Sommer, R. J. (2003), ‘The evolution of developmental mechanisms’, Developmental

Biology 264(1), 15 – 37.

URL: http://www.sciencedirect.com/science/article/pii/S0012160603003531

Rutten, E., Marchand, N. & Simon, D. (2017), Feedback control as mape-k loop in autonomic com-

puting, in ‘Software Engineering for Self-Adaptive Systems III. Assurances’, Springer, pp. 349–373.

Saramäki, J., Kivelä, M., Onnela, J.-P., Kaski, K. & Kertész, J. (2007), ‘Generalizations of the

clustering coefficient to weighted complex networks’, Phys. Rev. E 75, 027105.

URL: https://link.aps.org/doi/10.1103/PhysRevE.75.027105

Schöler, H. R. (2016), The potential of stem cells: An inventory, in ‘Humanbiotechnology as social

challenge’, Routledge, pp. 45–72.

Scholler, M., Bless, R., Pallas, F., Horneber, J. & Smith, P. (2013), An architectural model for

deploying critical infrastructure services in the cloud, in ‘Cloud Computing Technology and Science

(CloudCom), 2013 IEEE 5th International Conference on’, Vol. 1, pp. 458–466.

Secci, S. & Murugesan, S. (2014), ‘Cloud networks: Enhancing performance and resiliency’, Computer

47(10), 82–85.

Seo, J., Kim, K., Park, M., Park, M. & Lee, K. (2017), An analysis of economic impact on iot

under gdpr, in ‘2017 International Conference on Information and Communication Technology

Convergence (ICTC)’, IEEE, pp. 879–881.

Singh, A., Singh, U. K. & Kumar, D. (2018), Iot in mining for sensing, monitoring and prediction

of underground mines roof support, in ‘2018 4th International Conference on Recent Advances in

Information Technology (RAIT)’, pp. 1–5.

Sipper, M., Sanchez, E., Mange, D., Tomassini, M., Perez-Uribe, A. & Stauffer, A. (1997), ‘A phylo-

genetic, ontogenetic, and epigenetic view of bio-inspired hardware systems’, IEEE Transactions on

Evolutionary Computation 1(1), 83–97.

Sousa, B., Pentikousis, K. & Curado, M. (2014a), ‘Methodical: Towards the next generation of mul-

tihomed applications’, Computer Networks 65, 21 – 40.

Sousa, B., Pentikousis, K. & Curado, M. (2014b), Optimizing quality of resilience in the cloud, in

‘Global Communications Conference (GLOBECOM), 2014 IEEE’, pp. 1133–1138.

Page 183

Bibliography

Souza Couto, R., Secci, S., Mitre Campista, M. & Kosmalski Costa, L. (2014), ‘Network design

requirements for disaster resilience in iaas clouds’, Communications Magazine, IEEE 52(10), 52–

58.

Sterbenz, J. P. G., Hutchison, D., Çetinkaya, E. K., Jabbar, A., Rohrer, J. P., Schöller, M. & Smith, P.

(2010), ‘Resilience and survivability in communication networks: Strategies, principles, and survey

of disciplines’, Comput. Netw. 54(8), 1245–1265.

Stevens, W. R., Fenner, B. & Rudoff, A. M. (2004), UNIX network programming, Vol. 1, Addison-

Wesley Professional.

Sun, L., He, J., Wang, C., Dong, H., Ma, J. & Zhang, Y. (2019), ‘Survey of cloud sla assurance in

pre-interaction and post-interaction start time phases’, Journal of Computers 30(1), 23–30.

Sun, Q., Li, H., Ma, Z., Wang, C., Campillo, J., Zhang, Q., Wallin, F. & Guo, J. (2015), ‘A com-

prehensive review of smart energy meters in intelligent energy networks’, IEEE Internet of Things

Journal 3(4), 464–479.

Tambouratzis, G. (2009), ‘Using an ant colony metaheuristic to optimize automatic word segmentation

for ancient greek’, IEEE Transactions on Evolutionary Computation 13(4), 742–753.

Thedchanamoorthy, G., Piraveenan, M., Kasthuriratna, D. & Senanayake, U. (2014), ‘Node assorta-

tivity in complex networks: An alternative approach’, Procedia Computer Science 29, 2449 – 2461.

2014 International Conference on Computational Science.

URL: http://www.sciencedirect.com/science/article/pii/S1877050914004062

Thönes, J. (2015), ‘Microservices’, IEEE software 32(1), 116–116.

Tortonesi, M., Stefanelli, C., Benvegnu, E., Ford, K., Suri, N. & Linderman, M. (2012), ‘Multiple-

uav coordination and communications in tactical edge networks’, IEEE Communications Magazine

50(10), 48–55.

Tran, P. N. & Boukhatem, N. (2008), The distance to the ideal alternative (dia) algorithm for in-

terface selection in heterogeneous wireless networks, in ‘Proceedings of the 6th ACM International

Symposium on Mobility Management and Wireless Access’, MobiWac ’08, ACM, New York, NY,

USA, pp. 61–68.

Trappe, W., Howard, R. & Moore, R. S. (2015), ‘Low-energy security: Limits and opportunities in

the internet of things’, IEEE Security Privacy 13(1), 14–21.

Tu, M. & Xu, D. (2013), System resilience modeling and enhancement for the cloud, in ‘Computing,

Networking and Communications (ICNC), 2013 International Conference on’, pp. 1021–1025.

Page 184

Bibliography

Vandebroek, S. V. (2016), 1.2 three pillars enabling the internet of everything: Smart everyday objects,

information-centric networks, and automated real-time insights, in ‘2016 IEEE International Solid-

State Circuits Conference (ISSCC)’, pp. 14–20.

Vasconcelos, D., Severino, V., Neuman, J., Andrade, R. & Maia, M. (2018), Bio-inspired model for

data distribution in fog and mist computing, in ‘2018 IEEE 42nd Annual Computer Software and

Applications Conference (COMPSAC)’, Vol. 02, pp. 777–782.

Vessey, I. & Skinner, G. (1990), Implementing berkeley sockets in system v release 4, in ‘Proceedings

of the Winter 1990 USENIX Conference, Washington, DC’, pp. 177–193.

Viejo, A. & Sánchez, D. (2019), ‘Secure and privacy-preserving orchestration and delivery of fog-

enabled iot services’, Ad Hoc Networks 82, 113 – 125.

URL: http://www.sciencedirect.com/science/article/pii/S1570870518305493

Von Neumann, J., Burks, A. W. et al. (1966), ‘Theory of self-reproducing automata’, IEEE Transac-

tions on Neural Networks 5(1), 3–14.

Vu, K., Hartley, K. & Kankanhalli, A. (2020), ‘Predictors of cloud computing adoption: A cross-

country study’, Telematics and Informatics 52, 101426.

URL: http://www.sciencedirect.com/science/article/pii/S073658532030085X

Wang, S., Zhang, X., Zhang, Y., Wang, L., Yang, J. & Wang, W. (2017), ‘A survey on mobile edge

networks: Convergence of computing, caching and communications’, IEEE Access 5, 6757–6779.

Wang, T., Ye, B., Li, Y. & Yang, Y. (2010), Family gene based cloud trust model, in ‘2010 International

Conference on Educational and Network Technology’, IEEE, pp. 540–544.

Welsh, T. & Benkhelifa, E. (2019), ‘Bio-inspired multi-agent embryonic architecture for resilient edge

networks’, IEEE Transactions on Industrial Informatics pp. 1–1.

Wolpert, L. (2008), The Triumph of the Embryo, Dover books on biology, psychology and medicine,

Dover Publications.

URL: https://books.google.co.uk/books?id=VfdFOKz3O5UC

Xu, H., Yu, W., Griffith, D. & Golmie, N. (2018), ‘A survey on industrial internet of things: A

cyber-physical systems perspective’, IEEE Access 6, 78238–78259.

Zanella, A., Bui, N., Castellani, A., Vangelista, L. & Zorzi, M. (2014), ‘Internet of things for smart

cities’, IEEE Internet of Things Journal 1(1), 22–32.

Zheng, C. & Sicker, D. C. (2013), ‘A survey on biologically inspired algorithms for computer network-

ing’, IEEE Communications Surveys & Tutorials 15(3), 1160–1191.

Page 185

Bibliography

Zhou, Y., Fang, Y. & Zhang, Y. (2008), ‘Securing wireless sensor networks: a survey’, IEEE Commu-

nications Surveys & Tutorials 10(3), 6–28.

Page 186

Appendix A

Appendix A - Data

This appendix lists datasets as referenced in the main thesis.

Tables A.1 to A.4 present the averages performance values for 0 failure rate tests grouped by

quantity of output messages descending.

Tables A.5 to A.8 present the average performance values for tests with 0.01 failure rate grouped

by quantity of output messages descending.

187

Appendix A. Appendix A - Data

div func sub proc recv out short long total

6 2 6 27 601 58 0.24 6.02 7.61

6 2 7 20 510 55 0.23 2.74 4.21

6 3 7 29 568 54 0.46 4.39 5.09

6 4 6 53 647 51 0.87 5.91 7.24

6 3 6 42 591 42 0.58 5.05 6.17

6 2 5 16 333 40 0.25 3.22 5.28

6 3 5 34 370 40 0.47 4.21 4.96

6 4 7 32 495 38 0.68 5.08 5.35

6 5 6 51 534 32 1.25 4.59 5.56

5 2 7 8 289 31 0.14 1.94 3.82

6 2 4 13 185 25 0.21 4.45 6.94

6 5 7 52 528 22 1.18 4.62 4.71

5 3 7 12 175 18 0.28 1.50 2.74

6 2 3 18 179 18 0.25 4.73 5.47

4 2 3 6 94 17 0.15 2.05 2.86

5 4 7 23 315 17 0.49 2.72 3.96

6 5 8 36 475 17 1.07 3.86 4.21

6 4 5 42 270 15 1.02 2.75 4.28

4 3 7 11 146 14 0.22 1.13 1.47

5 2 6 4 100 14 0.06 0.72 0.95

4 3 5 12 126 13 0.26 0.99 1.06

5 3 3 20 120 13 0.46 2.26 3.77

5 3 6 10 145 13 0.21 1.12 1.23

5 2 3 5 69 12 0.12 1.31 2.75

5 3 5 17 162 12 0.32 1.49 2.19

6 3 3 20 112 12 0.34 2.00 4.36

5 2 4 4 76 11 0.13 1.23 2.15

4 2 4 5 70 10 0.15 1.27 1.96

4 2 6 3 73 10 0.10 0.58 0.94

6 3 4 23 150 10 0.44 2.20 4.77

Table A.1: Average performance values for 0 failure rate tests part 1

Page 188

Appendix A. Appendix A - Data

div func sub proc recv out short long total

3 2 6 4 79 9 0.02 0.44 0.73

4 2 5 3 66 9 0.10 0.60 0.83

3 2 7 3 63 8 0.03 0.45 0.61

4 3 3 11 71 8 0.30 1.36 2.88

4 3 6 5 69 8 0.22 0.78 1.03

5 2 5 5 82 8 0.15 1.46 1.71

6 6 7 38 318 8 1.62 3.29 3.37

6 7 7 36 328 7 1.64 3.29 3.38

3 3 5 6 64 6 0.20 0.51 0.59

3 3 6 8 87 6 0.20 0.54 0.80

4 4 6 15 128 6 0.48 1.41 1.43

4 4 7 8 94 6 0.49 0.82 0.88

6 6 6 38 269 6 1.69 3.50 4.13

3 2 5 1 33 5 0.04 0.19 0.35

3 3 7 4 60 5 0.15 0.41 0.53

4 2 7 1 41 5 0.08 0.24 0.48

4 3 4 9 67 5 0.25 1.15 1.67

4 4 4 15 87 5 0.46 1.33 1.47

3 3 4 5 39 4 0.15 0.29 0.48

6 4 4 26 130 4 0.68 1.81 3.11

6 5 5 33 192 4 1.31 2.18 3.33

3 2 4 2 29 3 0.04 0.15 0.34

3 4 6 9 75 3 0.45 0.61 0.74

4 4 5 8 61 3 0.44 0.72 0.74

4 5 7 7 73 3 0.56 0.68 0.83

5 4 3 11 63 3 0.96 1.06 1.67

5 4 6 10 63 3 0.26 0.48 0.54

5 5 7 15 121 3 0.70 1.18 1.96

3 2 3 2 10 2 0.01 0.14 0.13

3 4 4 4 28 2 0.28 0.30 0.29

Table A.2: Average performance values for 0 failure rate tests part 2

Page 189

Appendix A. Appendix A - Data

div func sub proc recv out short long total

3 5 7 6 47 2 0.51 0.63 0.49

4 4 3 12 60 2 0.67 0.93 1.92

4 5 5 10 66 2 0.56 0.80 0.83

5 3 4 8 45 2 0.43 0.53 1.13

5 4 4 13 70 2 1.61 1.14 1.80

5 5 5 11 75 2 1.78 1.30 1.61

5 5 6 14 87 2 0.55 0.80 0.90

3 4 7 4 34 1 0.37 0.50 0.41

3 5 4 7 34 1 0.39 0.35 1.27

4 5 6 10 66 1 0.71 0.69 0.76

4 6 7 10 68 1 0.69 0.61 0.68

5 4 5 8 47 1 0.54 0.62 0.73

5 6 7 17 143 1 1.11 1.52 2.57

6 4 3 18 85 1 1.51 1.71 2.78

6 6 5 26 157 1 1.18 1.65 3.80

6 7 6 26 194 1 1.58 2.41 2.77

3 3 3 3 10 0 1.40 0.76 0.54

3 4 3 1 4 0 -1.00 0.05 0.05

3 4 5 5 23 0 0.21 0.32 0.26

3 5 3 1 3 0 -1.00 -1.00 0.02

3 5 5 8 44 0 0.46 0.41 0.54

3 5 6 4 27 0 0.55 0.36 0.25

3 6 3 1 5 0 -1.00 0.11 0.09

3 6 4 4 20 0 -1.00 0.22 0.31

3 6 5 5 31 0 0.59 0.63 0.38

3 6 6 3 21 0 0.52 0.42 0.23

3 6 7 1 5 0 -1.00 0.01 0.05

3 7 3 2 5 0 -1.00 0.12 0.09

3 7 4 1 7 0 -1.00 0.09 0.10

3 7 5 4 21 0 -1.00 2.95 1.05

Table A.3: Average performance values for 0 failure rate tests part 3

Page 190

Appendix A. Appendix A - Data

div func sub proc recv out short long total

3 7 6 2 13 0 -1.00 0.24 0.22

3 7 7 1 10 0 -1.00 0.14 0.13

4 5 3 8 41 0 0.31 0.48 1.66

4 5 4 9 48 0 0.46 0.63 0.84

4 6 3 7 45 0 -1.00 0.83 3.34

4 6 4 8 39 0 -1.00 0.42 0.58

4 6 5 7 49 0 0.59 0.58 0.59

4 6 6 7 45 0 0.37 0.32 0.42

4 7 3 6 37 0 -1.00 0.35 1.52

4 7 4 1 18 0 -1.00 0.36 0.28

4 7 5 4 24 0 -1.00 0.61 0.61

4 7 6 3 25 0 -1.00 0.27 0.71

4 7 7 1 13 0 -1.00 0.10 0.20

5 5 3 10 44 0 -1.00 0.80 2.37

5 5 4 7 36 0 -1.00 0.37 0.81

5 6 3 5 30 0 -1.00 0.33 1.38

5 6 4 4 27 0 -1.00 0.57 0.72

5 6 5 3 21 0 10.20 0.34 0.40

5 6 6 1 13 0 -1.00 0.13 0.14

5 7 3 7 40 0 -1.00 0.43 2.43

5 7 4 5 40 0 -1.00 0.46 1.21

5 7 5 2 16 0 -1.00 0.14 0.24

5 7 6 3 24 0 -1.00 0.12 0.27

5 7 7 7 49 0 -1.00 0.46 1.07

6 5 3 13 65 0 0.64 0.77 2.53

6 5 4 14 79 0 0.79 1.07 2.43

6 6 3 12 67 0 0.54 0.80 3.32

6 6 4 11 73 0 -1.00 1.08 2.16

6 7 3 10 71 0 -1.00 1.58 2.24

6 7 4 10 69 0 -1.00 0.91 3.14

6 7 5 17 120 0 1.50 1.25 2.87

Table A.4: Average performance values for 0 failure rate tests part 4

Page 191

Appendix A. Appendix A - Data

div func sub proc recv out short long total

6 3 6 14 139 17 0.22 2.07 3.90

6 2 5 10 109 14 0.16 3.44 4.59

6 2 6 4 89 13 0.07 1.91 3.41

6 2 4 8 90 12 0.12 3.52 5.09

6 2 7 5 88 12 0.07 0.94 1.49

6 2 3 13 111 11 0.16 4.69 5.83

4 2 6 5 68 9 0.07 0.64 1.36

5 2 5 6 68 8 0.34 1.91 2.92

5 2 6 3 54 8 0.21 0.83 1.83

5 2 7 6 66 8 0.10 1.49 2.32

5 3 5 9 80 8 0.32 1.39 2.09

6 3 4 13 77 8 0.29 2.72 4.43

4 2 7 3 49 7 0.06 0.47 1.41

5 2 3 4 43 7 0.11 1.79 3.45

6 3 5 15 93 7 0.38 1.46 4.02

6 3 7 8 84 7 0.27 1.33 1.75

5 2 4 1 26 6 0.05 0.19 2.59

3 3 6 6 55 5 0.43 0.79 1.18

4 2 3 5 44 5 0.10 1.62 2.36

4 2 4 2 27 5 0.13 0.81 2.02

6 4 6 15 106 5 0.64 1.36 3.86

3 2 6 3 29 4 0.06 0.74 1.04

3 2 7 1 28 4 0.05 0.42 0.91

3 3 7 7 54 4 0.19 0.45 1.31

4 3 4 6 36 4 0.80 1.18 1.87

6 3 3 12 59 4 1.00 1.90 3.35

3 2 5 2 17 3 0.04 0.36 0.60

4 2 5 2 21 3 0.06 0.25 0.43

4 3 3 7 34 3 0.93 1.21 2.82

4 3 6 5 37 3 0.29 0.88 1.59

Table A.5: Average performance values for failure rate tests part 1

Page 192

Appendix A. Appendix A - Data

div func sub proc recv out short long total

5 3 3 7 38 3 0.95 1.23 3.17

5 3 7 5 39 3 0.17 0.32 1.76

6 4 7 11 89 3 0.53 1.07 1.83

3 2 3 1 11 2 0.05 0.14 0.63

3 2 4 1 10 2 0.06 0.27 0.72

3 4 6 6 35 2 0.38 0.37 1.23

4 3 7 4 32 2 0.16 0.51 0.76

5 3 4 6 30 2 0.20 0.30 2.24

5 4 5 9 51 2 0.71 0.67 1.73

5 4 6 7 50 2 0.77 0.79 1.66

3 3 3 3 11 1 0.25 0.17 0.47

3 3 4 2 10 1 0.14 0.14 0.62

3 4 7 5 26 1 0.62 0.40 0.63

4 3 5 4 20 1 0.57 0.41 0.60

4 4 6 7 40 1 0.33 0.70 1.40

5 3 6 4 22 1 0.18 0.19 0.98

5 4 3 8 37 1 1.48 1.34 2.68

5 4 7 13 67 1 0.53 0.69 1.71

5 5 5 5 34 1 1.24 0.78 2.03

5 5 7 10 66 1 0.85 0.90 1.82

6 4 4 12 58 1 0.70 1.45 2.72

6 4 5 12 59 1 0.30 0.57 3.31

6 5 5 15 86 1 3.46 1.97 3.06

6 5 6 15 90 1 1.36 1.30 2.39

3 3 5 4 14 0 0.15 0.64 0.83

3 4 3 1 5 0 0.21 0.12 0.13

3 4 4 4 13 0 0.25 0.14 0.80

3 4 5 2 6 0 0.21 0.23 0.36

3 5 3 2 6 0 0.89 0.25 0.42

3 5 4 2 10 0 0.35 0.11 0.14

Table A.6: Average performance values for failure rate tests part 2

Page 193

Appendix A. Appendix A - Data

div func sub proc recv out short long total

3 5 5 4 17 0 0.25 0.31 1.06

3 5 6 2 12 0 0.31 0.24 0.51

3 5 7 3 16 0 0.75 0.33 0.63

3 6 3 1 1 0 -1.00 -1.00 0.01

3 6 4 3 13 0 -1.00 0.59 0.67

3 6 5 3 16 0 -1.00 0.23 0.64

3 6 6 3 18 0 0.98 0.42 0.64

3 6 7 3 15 0 -1.00 0.46 1.04

3 7 3 1 1 0 -1.00 -1.00 0.01

3 7 4 3 14 0 -1.00 0.31 0.50

3 7 5 2 9 0 -1.00 0.18 0.38

3 7 6 2 9 0 0.54 0.07 0.45

3 7 7 3 13 0 -1.00 0.25 0.46

4 4 3 5 24 0 0.61 0.36 1.42

4 4 4 5 23 0 0.30 0.31 0.90

4 4 5 5 22 0 0.64 0.43 0.51

4 4 7 4 25 0 0.29 0.62 0.81

4 5 3 4 17 0 1.92 0.41 1.07

4 5 4 6 20 0 0.35 0.22 0.86

4 5 5 3 14 0 0.50 0.34 0.40

4 5 6 6 31 0 0.32 0.48 0.89

4 5 7 5 21 0 0.37 0.32 0.39

4 6 3 5 25 0 -1.00 0.35 1.41

4 6 4 3 18 0 -1.00 0.18 1.12

4 6 5 2 9 0 -1.00 0.22 0.30

4 6 6 2 15 0 0.41 0.31 0.55

4 6 7 2 8 0 -1.00 0.13 0.37

4 7 3 3 18 0 -1.00 0.50 1.69

4 7 4 1 13 0 -1.00 0.24 0.77

4 7 5 1 8 0 -1.00 0.18 0.27

Table A.7: Average performance values for failure rate tests part 3

Page 194

Appendix A. Appendix A - Data

div func sub proc recv out short long total

4 7 6 2 11 0 -1.00 0.25 0.31

4 7 7 5 29 0 0.80 0.37 0.39

5 4 4 8 30 0 0.21 0.25 2.05

5 5 3 7 31 0 -1.00 0.74 1.99

5 5 4 6 27 0 0.26 0.22 0.81

5 5 6 7 33 0 0.45 0.26 1.16

5 6 3 6 28 0 -1.00 0.35 1.92

5 6 4 6 28 0 -1.00 0.48 1.15

5 6 5 5 29 0 0.46 0.42 0.74

5 6 6 3 14 0 -1.00 0.14 0.36

5 6 7 5 25 0 0.86 0.35 0.72

5 7 3 2 17 0 -1.00 0.11 0.74

5 7 4 6 30 0 -1.00 0.26 1.67

5 7 5 3 18 0 -1.00 0.22 0.42

5 7 6 1 8 0 -1.00 0.08 0.08

5 7 7 4 22 0 -1.00 0.72 0.93

6 4 3 10 44 0 3.60 1.42 4.60

6 5 3 7 39 0 0.37 1.19 3.53

6 5 4 10 45 0 0.58 1.14 2.95

6 5 7 7 48 0 0.79 0.71 1.38

6 6 3 6 31 0 -1.00 0.96 2.92

6 6 4 5 33 0 -1.00 0.88 2.37

6 6 5 9 46 0 0.80 0.41 1.72

6 6 6 13 77 0 1.16 1.22 2.35

6 6 7 7 49 0 1.65 0.74 1.38

6 7 3 4 27 0 -1.00 0.31 2.55

6 7 4 4 27 0 -1.00 0.19 2.62

6 7 5 7 42 0 0.45 0.36 3.27

6 7 6 6 36 0 -1.00 0.31 1.78

6 7 7 6 44 0 3.83 1.12 1.54

Table A.8: Average performance values for failure rate tests part 4

Page 195

Appendix B

Appendix B - Publications

This appendix presents all publications derived from this thesis at time of submission.

1. On Resilience in Cloud Computing : A survey of techniques across the Cloud Do-

main - This paper presents a comprehensive review of cloud computing resilience techniques

across both traditional centralised and decentralised models. A subset of this work can be found

in Chapter 2. At the time of writing the paper is ”in press” for publication in the ACM Com-

puting Surveys Journal. It supersedes an initially published survey paper: Perspectives on

Resilience in Cloud Computing: Review and Trends - which was presented at the 2017

IEEE/ACS 14th International Conference on Computer Systems and Applications (AICCSA).

2. Embyronic Model for Highly Resilient PaaS was presented at the 2018 Fifth International

Conference on Software Defined Systems (SDS). It maps embryonic characteristics to cloud

computing and resilience requirements in order to derive the initial embryonic cloud model that

was developed for centralised cloud features. Some of this work is presented in chapter 3.

3. Bio-Inspired Multi-agent Embryonic Architecture for Resilient Edge Networks was

published in the IEEE Transactions on Industrial Informatics Journal in May 2019. It presents

the Cellular Automata based model of the embryonic architecture including simulation results

for the majority of results in chapter 4. It presents the concept in the context of real-world use

cases for resilient industrial IoT at the network edge.

4. Embyronic-Inspired Resilient Service Delivery at the Hostile Mobile Edge - Is cur-

rently under review in Springer’s Peer to Peer Networking and Applications journal. It presents

the performance evaluation results of the proof-of-concept embryonic architecture.

196

59

On Resilience in Cloud Computing: A Survey of Techniques
across the Cloud Domain

THOMAS WELSH, University of Limerick, Republic of Ireland
ELHADJ BENKHELIFA, Staffordshire University, UK

Cloud infrastructures are highly favoured as a computing delivery model worldwide, creating a strong soci-
etal dependence. It is therefore vital to enhance their resilience, providing persistent service delivery under a
variety of conditions. Cloud environments are highly complex and continuously evolving. Additionally, the
plethora of use-cases ensures requirements for persistent service delivery vary. As a contribution to knowl-
edge, this work surveys resilience techniques for cloud environments. We apply a novel perspective using a
layered model of traditional and emerging cloud paradigms. Works are then classified according to the Resi-
linets model. For each layer, the most common techniques with limitations are derived including an actor’s
strength in influencing resilience in the cloud with each technique. We conclude with some future challenges
to the field of resilient cloud computing.

CCS Concepts: • General and reference → Surveys and overviews; • Computer systems organization
→ Dependable and fault-tolerant systems and networks; Cloud computing; • Security and privacy
→ Distributed systems security; Network security;

Additional Key Words and Phrases: Resilience, cloud, fog, edge, survey

ACM Reference format:
Thomas Welsh and Elhadj Benkhelifa. 2020. On Resilience in Cloud Computing: A Survey of Techniques
across the Cloud Domain. ACM Comput. Surv. 53, 3, Article 59 (May 2020), 36 pages.
https://doi.org/10.1145/3388922

1 SCOPE: CLASSIFYING RESILIENCE FOR THE CLOUD
Resilience, in the context of computer systems and networks, is defined in many ways. Some con-
sider it synonymous with fault-tolerance [84]. Laprie provides two descriptions: “the persistence
of dependability when facing changes” and “the persistence of service delivery that can justifiably
be trusted, when facing changes” [62]. Sterbenz et al. provide a similar definition: “the ability of
the network to provide and maintain an acceptable level of service in the face of various faults and
challenges to normal operation” [112]. Queiroz et al. suggest: “Resilience is the capacity of critical
services to adapt in order to provide their functionalities in cases of undesired events compromis-
ing parts of the system.” [95]. Abdullah et al. [1] consider a business/organisation perspective :
“Resilience refers to the capacity of human beings/system/organization to survive and thrive in
the face of adversity...it is a property that is closely associated with the capacity to avoid, contain

This work was supported, in part, by Science Foundation Ireland grants 16/RC/3918 and 13/RC/2094.
Authors’ addresses: T. Welsh, Tierney Building, University of Limerick, Sreelane, Limerick, V94 NYD3, Republic of Ireland;
E. Benkhelifa, Mellor Building, Staffordshire University, College Road Stoke-on-Trent, ST4 2DE, United Kingdom.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2020 Association for Computing Machinery.
0360-0300/2020/05-ART59 $15.00
https://doi.org/10.1145/3388922

ACM Computing Surveys, Vol. 53, No. 3, Article 59. Publication date: May 2020.

59:2 T. Welsh and E. Benkhelifa

and mitigate accidents.” Or simply: “the percentage of lost traffic upon failures” [67]. These few
definitions indicate the numerous factors that can be considered during the development and de-
ployment of a resilient system. This variety is related to the variety of fields in which resilience is
applied. As each will have different characteristics, numerous measurement methodologies will ap-
pear. Additionally, specific use-cases may omit certain characteristics due to their lesser relevance.

In this survey, we adhere to the comprehensive definitions of the Resilinets model by Sterbenz
et al. They cover a variety of measurable or desirable characteristics of resilience, grouped into
trustworthiness and challenge tolerance, viewed as internal and external factors, respectively. These
may be adapted as appropriate to take into account novel features of the cloud. We direct the reader
to the resilience discipline definitions categorised within [112].

1.1 Defining the Cloud
Cloud computing is a service-driven computing model whereby an end-user will provision and use
computing resources from a Cloud Service Provider (CSP) in line with an agreed upon Service Level
Agreement (SLA). The service hosted by the CSP could take many forms, consisting of networking,
storage, or computational components [76]. Similar to traditional computing environments, cloud
environments are multi-layered. The composition differs depending upon the CSP infrastructure,
the application’s use-case, or the particular model used for analysis.

A typical cloud datacentre would consist of the underlying physical infrastructure: servers, stor-
age arrays, and networking hardware. Virtualised Infrastructure (VI), a pool of resources: Virtual
Machines (VMs) and/or containers running atop of Virtual Machine Monitors (VMM)s with Virtual
Storage (VS) devices and Virtual Networks (VNs). These resources are situated upon the Physical
Infrastructure (PI) hardware, connected by Physical Networking (PN). A management layer coor-
dinates physical Resource Management (RM) and the service life cycle. Performance is managed
through distributing services using Load Balancing (LB). Services are created and managed using
Service Orchestration (SO) and executed using Service Scheduling (SCH). Further service-oriented
capabilities such as security are also provided.

The datacentre (DC) architecture is relevant when examining resilience within cloud infrastruc-
ture, as it is the foundation upon which the cloud service will sit. However, the resilience of the
DC is not always relevant to the resilience of a service being hosted. For example, a cloud service
may straddle multiple forms of infrastructure and, second, the user/CSP may have no ability to
affect the resilience at this layer, dependent upon the cloud service delivery model employed.

In the NIST definition for cloud computing [76] the prominent service delivery models are
defined as a layered architecture: Software-as-a-Servce (SaaS), Platform-as-a-Service(PaaS) and
Infrastructure-as-a-Service (IaaS). Responsibilities (for the management/configuration/security,
etc.) of the service being delivered vary between CSP and the user. This division of responsibility is
an important concept within the context of resilience, as the level of control given may determine
the user’s abilities to affect its resilience. NIST defines a further three actors: auditor, broker, and
carrier.

Due to emerging disciplines and delivery models, matters are complicated further. In addition
to those layers discussed above, there are layers within the decentralised cloud. Once considered
to be an emerging discipline, cloud computing is now arguably emerged, although is constantly
evolving. In tandem with new technologies and use-cases, new forms of cloud computing are
developed to accommodate emerging disciplines such as the Internet of Things (IoT) and big data.
These involve distributing the cloud services across devices or network architectures dissimilar to
the typical DC-only model.

Bilal et al. explain: “different emerging technologies situated at the edge of the network to
provide computational and storage resources to deliver real-time communication with minimum

ACM Computing Surveys, Vol. 53, No. 3, Article 59. Publication date: May 2020.

On Resilience in Cloud Computing: A Survey of Techniques across the Cloud Domain 59:3

latency” [20]. While Baktir et al. explain that despite differences, these disciplines all largely at-
tempt to accomplish the same goal and are variations of edge disciplines. What varies is their
use-case and presumably the underlying technologies in which the new processing occurs [11].

A summary of these emerging disciplines are below:

• Fog Computing - seen first as an extension to the cloud but now as complementary or
independent from it. It involves a hierarchy of services where some processing/storage is
executed closer to the edge of the network while analytics can occur in the cloud. This can
occur in small-scale clouds but also on a variety of different hardware such as base stations,
routing hardware, and so on [20, 82, 90, 98].

• Mobile Cloud Computing (MCC) - the concept of resource augmentation from a mo-
bile to a remote device to maximise resource efficiency and power consumption. Originally
intended for centralised cloud DCs, the potential for processing at the edge is now seeing
interest [20, 98, 124].

• Cloudlets - involve the deployment of small clouds used to reduce short falls in mobile
cloud computing [2, 20].

• Mobile Edge Computing (MEC) - provides cloud services at the edge of cellular networks
such as 5G nodes, this increases performance through latency reduction, traffic optimisa-
tion, and enhanced services, e.g., location-driven [20, 72, 73, 90, 98, 124].

• Mist Computing - pushes data processing services as far as possible to the sensor and
actuator devices [93, 119].

These definitions illustrate that decentralised disciplines involve distributing cloud services
closer to the edge of the network, where the end-user device, sensor, or actuator will be. Within
the context of this work, to manage the complexity associated with non-standardised and evolv-
ing definitions, these cloud disciplines are grouped into three layers. This creates a new hierarchy
of centralised and decentralised cloud architectures, where services may be positioned in one or
more layers. The topmost layer is the centralised cloud infrastructure within a data centre. The
middle layer is the fog, where cloud services and data processing can occur during transit to the
cloud or in a constrained manner upon devices closer to the application edge. The final layer, mist,
is where the sensors, actuators, and user devices sit and where minimal processing may occur.
This model represents the hierarchical layered cloud family of disciplines; components of these
disciplines (i.e., the physical devices, protocols, and actors) sit within these layers.

The following points are made considering resilience in emerging cloud disciplines:

• The cloud infrastructure’s distinct architecture is relevant to understanding its own re-
silience but not always responsible for guaranteeing service resilience. Therefore, the rela-
tionship between resilience techniques operating in lower levels and a service on a higher
level should be established.

• Emerging disciplines cause services to be delivered on decentralised cloud infrastructure
far away from the DC, sometimes independently from it.

• The chosen service delivery model will affect the ability of the user or CSP to adjust the
resilience of the service. Therefore, this is a key factor in resilience technique selection. All
delivery models can be employed upon all architectures although with greater constraints
closer to the edge.

We illustrate in Figure 1 the relationship between the centralised and decentralised cloud disci-
plines and their underlying architectural constituents. The diagram shows that cloud disciplines
(coloured) may span one or more architectural layers, potentially encompassing a variety of dif-
ferent hardware configurations in addition to physical and logical architectures.

ACM Computing Surveys, Vol. 53, No. 3, Article 59. Publication date: May 2020.

59:4 T. Welsh and E. Benkhelifa

Fig. 1. Decentralised cloud computing model. Illustrating the relationship and overlap between differ-
ent cloud models and architectural components. MEC=Mobile Edge Computing, MCC=Mobile Cloud
Computing.

1.2 Related Work in Cloud Resilience
Due to the novelty of this area, surveys in resilience are limited. This work extends our previous
survey in Reference [125], which lacks the detailed analysis according to techniques and disciplines
presented here, in addition to the further analysis of the decentralised cloud. Moreover, this work
complements our previous survey on intrusion detection for resilient IoT [17], which is out of the
scope of this article.

A few surveys encompass some aspects of this work. Cheraghlou et al. provide a survey of fault-
tolerant-specific architectures in the cloud [29], Milani et al. present a survey of data replication
techniques in the cloud [78], and Mistrik et al. discuss fault-tolerant workflow management tech-
niques [91]. Colman-Meixner et al. present the only survey on resilience techniques in cloud com-
puting infrastructure [30]. Employing a layered model, they provide an in-depth study involving
classification of resilience approaches used. Their primary findings highlight that for cloud sys-
tems, replication and checkpointing are the most common techniques for storage, virtualisation,
and migration from the storage side and multi-layer protection for networking. However, a con-
siderable number of techniques they evaluated are based on non-cloud environments that may be
applicable to the cloud. That approach is avoided in this work due to its open-ended nature. Ad-
ditionally, their model fails to account for emerging/decentralised cloud disciplines. Without this

ACM Computing Surveys, Vol. 53, No. 3, Article 59. Publication date: May 2020.

On Resilience in Cloud Computing: A Survey of Techniques across the Cloud Domain 59:5

consideration it becomes difficult to understand how integration and interoperability between
emerging disciplines will affect the resilience at different layers. In contrast, this review will fo-
cus upon resilience techniques that enable a given CSP to deliver services resiliently upon their
platform using any delivery model.

As a contribution to knowledge, we propose a model that encompasses the decentralised cloud
and its relationship with the centralised cloud. We review only cloud-centric techniques. Defini-
tions from the Resilinets model [112] are then applied to provide a rigid classification of techniques
employed throughout literature. Combining these two models, each work can now be classified
appropriately in terms of cloud layer, cloud components used, and resilience disciplines enabled.
This is important to manage the scope and complexity of the survey. This survey classifies work
in cloud service resilience according to a number of factors:

• Where in the hierarchy of centralised/decentralised cloud disciplines the work is situated.
• The architectural components according to the model in Figure 1 the work applies to.
• The cloud delivery model that the work applies to.
• The resilience disciplines that apply to the work, according to the Resilinets model [112].
• The techniques used to accomplish the resilience.

The work will therefore be considered within the following categories, which are representative
of the centralised/decentralised cloud environment:

(1) Physical and data-centre resilience - techniques used to enhance the resilience of the
datacentre. Placed here for completeness and to illustrate the underlying resilience.

(2) Virtual Resource Abstraction - the resilience of virtualised/abstracted resources such
as VS, VI, VMMs, and so on.

(3) Cloud Management - techniques associated with cloud middleware/management, e.g.,
orchestration of services.

(4) Decentralised Cloud - resilience techniques for cloud environments that are closer to
the network edge.

(5) Alternative Architectures - methods using unconventional architectures.

1.3 Paper Selection Criteria
Papers were selected for inclusion after searching popular databases, namely, ACM Library, IEEE
Explore, Science Direct, and Google Scholar. A number of keyword permutations were used that
involved “resilience” combined with different cloud computing models and architectures, e.g., “re-
silient PaaS,” “Cloud resilience,” and so on. During this search it quickly transpired that resilience
definitions vary considerably from author to author. This is the motivation for leveraging the Resi-
linets model [112], as it provided a consistent definition and classification of these disciplines. This
model is also frequently found referenced in other works and therefore provided support to its ac-
curacy. These disciplines then replaced the resilience keyword with variations of cloud computing
to procure more works for evaluation.

Scope management is an important issue due to the range of disciplines involved and the com-
plex nature of the cloud. First, papers were omitted that did not focus solely upon cloud environ-
ments. While intuitive, the authors in Reference [30] include a number of non-cloud works that
could still be applicable. Although relevant to resilience in general, it was decided this these papers
could skew our analysis and could cause the review to be open-ended. The one exception is works
that focus upon data-centre resilience where deemed relevant. In a similar manner a number of
security-oriented papers were excluded, as techniques for firewalls, intrusion detection systems,
and so on, can largely be applied anywhere, but the authors did not have a cloud resilience specific

ACM Computing Surveys, Vol. 53, No. 3, Article 59. Publication date: May 2020.

59:6 T. Welsh and E. Benkhelifa

Table 1. Data and Physical Layer Resilience

Method Model Components Disciplines Limitations
Back-up links [71] Phy PI SRV High cost
Optimal geo-distribution of datacentres
[110]

Phy DC DT High cost

Server placement for VM backups [32] IaaS PI; DC DT Physical layer only
Optimal routing using load balancing
and graph analysis [81]

Phy PI; DC R,FT Non-cloud

Topology and demographic/economic
focused DC placement [44]

Phy PI; DC SRV Only available to some CSP

Monte-Carlo tree search for resource
provisioning [3]

Phy PI; DC; RM SRV Only available to some CSP

Datacentre provision for resource
optimisation [130]

Phy PI; DC; RM SRV High cost and complexity

User aggregated link sharing [64] Phy, PI; DC; RM SRV Limited compartmentalisation
Simulating survivability scenarios [33] Phy PI; DC SRV Simulation only
Leverage SDN for survivability [27] Phy PI; DC; VN; RM SRV Centralised management

PI=Physical Infrastructure, DC=Data Centres, RM=Resource Management, VN=Virtual Networking, SRV=
Survivability, FT=Fault Tolerance, R=Resilience, DT=Disruption Tolerance.

goal. Finally, works older than 10 years at the time of first selection were omitted. Overall, these
works were selected to answer the following: What was the current state-of-the-art in cloud com-
puting resilience, including what techniques were used, how effective are they, and what are their
limitations? It was also conducted to identify any further gaps in the field to provide situation of
the work.

2 STATE-OF-THE-ART IN CLOUD RESILIENCE
This section surveys literature according to the layers defined previously. Each work is analysed
according to the techniques used and cloud components applied. A summary table is given for
each section.

2.1 Physical and Data-centre Resilience
DCs are used as a strong argument that the security and resilience of cloud computing is greater
than that of traditional paradigms, largely because cloud infrastructures are typically hosted in
DCs with greater facilities than those possible to finance or manage by a single organisation.
Highly redundant resources, excellent power resilience, excellent physical security, and strong
network links to the internet backbone. Therefore, these underlying characteristics ensure these
environments are resilient by nature. This section discusses a number of works in this layer that
attempt to improve this further. Table 1 summarises this literature.

Mohamed discusses the area comprehensively, without the cloud context. He reiterates the in-
herent resilience of data centres and evaluates routing protocols, load balancing, and graph anal-
ysis techniques to provide enhanced resilience [81].

Lou et al. consider Cloud network survivability and sustainability within the context of energy-
aware solutions: Energy Aware Backup Protection (EABP) [71]. They argue that as the require-
ment for energy-efficient services increases, survivability and resilience should not be ignored.
They present a new model that allows multiple links to share one backup, drastically reducing
capacity requirements with only a small increase in energy consumption. It is not certain whether
the system will maintain resilience in the case that the number of links failed exceeds the ca-
pacity of the backup. Goścień and Walkowiak also consider survivability [44]. They undertake a

ACM Computing Surveys, Vol. 53, No. 3, Article 59. Publication date: May 2020.

On Resilience in Cloud Computing: A Survey of Techniques across the Cloud Domain 59:7

study to investigate the physical placement of DCs along optical fibre links from a topology and
demographic-economical perspective. They illustrate that placement policies have a strong impact
upon survivability. Applying a Monte-Carlo tree search for resource allocation has been shown to
optimise this process [3].

Conversely, Couto et al. illustrate that survivability techniques including placement and redun-
dancy can have grave negative effects upon the latency of applications in highly survivable situ-
ations (up to 80% degradation) [33], which is intuitive yet relevant. They also discuss the design
for clouds that must be resilient in the face of disasters [110], in contrast to many surveyed works.
Their motivation is that most SLAs do not cover disaster resilience, (e.g., hurricanes). A key com-
ponent for their resiliency is geographical distribution and fail-over systems for activation during
the event of a failure. They present a methodology for developing disaster-resilient networks and
also a VM placement algorithm [32].

Zhang et al. propose resource orchestration as a technique to enable survivability in optical
networks through minimising datacentre provisioning [130]. Additionally, they aggregate backup
“k-node” links for multiple users to improve surivivability in a resource-optimal manner upon
disaster [64].

Chandna et al. present a survivability solution in optical DC networks using Software Defined
Networking (SDN) [27]. They illustrate the strength of these techniques and highlight that most
future methods are likely to employ SDN. However, while geo-distribution improves resiliency
it does not guarantee it. They highlight the necessity for VM placement algorithms as a high
priority for guaranteeing resilience for cloud SLAs. This work highlights the need to understand
the differing network layers when considering resilience in the cloud. Therefore, an important
question is: How effectively can resilient virtual networks be designed without information about
its lower layers?

2.2 Virtual Resource Abstraction
The works reviewed in the following sub-sections describe techniques that are used to provide
resilience to a particular VR such as VS, instances, VNs, or the VMMs such as hypervisors.

2.2.1 Storage. The most simplistic method of ensuring resiliency of data is replication. When
a failure happens, copies are accessed or migrated. This principle is the basis of many storage re-
siliency techniques such as the commonly deployed Redundant Array Inexpensive Disks (RAID).
Storage, however, is expensive, so techniques to reduce the cost of redundancy are sought after.
This is not just the cost of the hardware but also methods ensuring consistency. There is a cur-
rent drive to move the majority of an organisation’s storage to cloud infrastructures, due to their
inherent storage resilience upon mass redundancy of resources and global remote access. There-
fore, as the standard cloud could be considered a resilient storage mechanism, the techniques dis-
cussed will focus on more extreme scenarios or optimisation techniques. Table 2 summarises this
literature.

Jaiswal et al. present Resilient Storage Cloud Map (RSCMap) [53]. Its goal is optimising the de-
sign of resilient cloud storage via disaster recovery planning. It permits an appropriate replication
function to be selected according to the data type, needs, and cost available. This is applicable to a
variety of use-cases. The efficacy of relying on disaster recovery for resilience is questionable due
to the number of situations (e.g., data leakage, safety-critical systems) where resilience is required
prior to a system fault.

Westmark provides another technique focusing upon resilience to disasters (disruption toler-
ance) [126]. They propose Rapid Data Evacuation (RDE) in which a priori knowledge of an immi-
nent disaster permits a heuristic to determine the external network links with the least delay. This

ACM Computing Surveys, Vol. 53, No. 3, Article 59. Publication date: May 2020.

59:8 T. Welsh and E. Benkhelifa

Table 2. Storage Resilience Techniques

Method Model Components Disciplines
Cost-based disaster recovery
planning, replication [53]

IaaS VS A, DT Disaster-recovery not always
beneficial to service delivery

Code-based recovery [24] IaaS VS A, FT Cost resulting from groups
of nodes

Rapid Data Evacuation (RDE) prior
to disaster event using a heuristic
to select least delay paths [126]

IaaS/ VS DT A priori disaster knowledge,
bandwidth requirements

Network overlay on diverse
storage across multi DCs [43]

PaaS VS, VN, RM, SO FT High replication cost

Replication covering correlated
and non-correlated failures [68]

IaaS VS FT High replication cost

Storage across diverse cloud-of-
clouds [19]

IaaS VS, RM FT, SEC High replication cost

Provide security to the client side
of cloud storage services [75]

Client CD SEC Client side only

A survey and hybrid technique
between erasure coding and
replication [83]

IaaS VS, RM FT High replication cost

Efficient replication for unknown
query rate [94]

IaaS VS, RM FT High replication cost

Homomorphic token and erasure
data [123]

IaaS VS FT, I Data loss with loss of key

Component-based workflow RM
from client to cloud [128]

PaaS VS, RM FT, SEC Complex modelling process

Multi-DC backup disaster routing,
shortest window for disaster RB
[129]

IaaS DC, VS, RM DT A priori disaster knowledge,
high replication cost

VS=Virtual Storage, VN=Virtual Networking, RM=Resource Management, SO=Service Orchestration, CD=Client De-
vices, DC=Data Centres, A=Availability, DT=Disruption Tolerance, FT=Fault Tolerance, SEC=Security, I=Integrity.

enables safe and quick data migration from the cloud. Similarly, Yao et al. determine the shortest
window necessary for backups to optimise the cost of replication in case of a disaster scenario
[129].

An alternative to needing to evacuate data is to ensure it is replicated across diverse locations in
the first instance. Gonzalez et al. present a network overlay to optimise data management across
multiple data-centre sites [43]. Bessani et al. develop a software library called DEPSKY that utilises
consumer cloud storage solutions from multiple providers to provide diverse replication for object
storage [19]. Whereas Matos et al. give a different perspective providing the resilience from the
client through enhancing the security of the client machine [75].

Methods of optimising the replication, typically for cost reasons, can be frequently found. Calis
and Koyluoglu focus upon mitigating blocks (groups of storage nodes) that fail simultaneously
[24], using Block Failure Resilient codewords that facilitate the recovery of a block from neigh-
bour blocks utilising load balancing. Nachiappan et al. conduct a survey on both coding and repli-
cation techniques [83]. They suggest that a hybrid method of both is the only cost-effective way
of guaranteeing storage resilience in the cloud.

Liu and Shen argue that the majority of resilient storage techniques in the cloud are effective at
either correlated or non-correlated failures [68]. They propose a Multiple failure Resilient Repli-
cation scheme (MRR) accommodating both forms. They use a nonlinear integer programming ap-
proach to accommodate multiple objectives, which are a reduction in network latency to optimise

ACM Computing Surveys, Vol. 53, No. 3, Article 59. Publication date: May 2020.

On Resilience in Cloud Computing: A Survey of Techniques across the Cloud Domain 59:9

Table 3. Instance and VMM Resilience Techniques

Method Model Components Disciplines Limitations
Snapshots with error ranking
[85]

IaaS VI FT High replication cost and
storage, state-management

Snapshots with VM
introspection and anomaly
detection [69]

IaaS VI FT High replication cost and
storage, state-management,
windows only

Proactive recovery [96] IaaS VI FT High replication cost and
storage, state-management,
no physical fault protection

Periodic snapshots and
recovery [54]

IaaS VI FT High replication cost and
storage, state-management

Process-level replication,
checkpointing [36]

PaaS/IaaS VI, RM FT Medium replication cost and
storage, state-management,
VM integrity

Process checkpointing [115] PaaS/IaaS VI, RM FT Medium replication cost and
storage, state-management,
VM integrity

VI replication [101] IaaS VI FT High replication cost and
storage, state-management

VI replication [34] IaaS VI, RM FT High replication cost and
storage, state-management

Replication, checkpointing of
HV using introspection [21]

IaaS PI, VI RB, FT Liable for anomaly subversion

Compiler and runtime
software diversity [57]

IaaS PI, VI, RM SRV Requires application
source-code

VMM replication/mirrors
with minimal overhead [127]

IaaS PI, VI, RM FT High replication cost

VI=Virtual Infrastructure, RM=Resource Management, PI=Physical Infrastructure, FT=Fault Tolerance, RB=Robustness,
SRV=Survivability.

consistency and the optimal number of replications and storage upon inexpensive media while
still maintaining high availability.

Qu and Xiong attempt to optimise the quantity of needed replications for a specific use-case,
which is unknown quantity of web requests [94]. Their method of replication across all nodes is in
contrast to the typical micro-services architecture and raises questions of scalability and compart-
mentalisation. Wang et al. focus simply on ensuring the integrity of data in cloud infrastructures
[123]. Their technique is unconcerned with whether the data are altered maliciously or through
hardware fault. A block-based storage mechanism enables the location of data corruption to be
identified to permit fast recovery. Finally, Yanez-Sierra take a holistic approach by attempting to
provide resilience through modelling the entire data workflow, from client to cloud [128]. Their
component-based approach allows modularity and features to be applied and examined at each
stage.

2.2.2 Instance and VMM Techniques. Within this section, application layer resilience is referred
to as examining an individual instance such as a VM or container and not considering the platform
of multiple applications. Table 3 provides a summary.

Nguyen et al. argue that network and system fault-tolerance is well covered by conventional
architectures and therefore they focus upon application resilience [85]. They propose a test bed
facilitating error detection and recovery of cloud applications. They explain that errors may be
detected long after their cause was executed and that tracing the exact cause can be difficult due

ACM Computing Surveys, Vol. 53, No. 3, Article 59. Publication date: May 2020.

59:10 T. Welsh and E. Benkhelifa

to multiple software layers and component dependencies. They cite the complexity of scalable
software as a cause of these issues. To accommodate management of errors appropriately, they
deploy an error ranking system according to severity. This enables selection of an appropriate
action such as to ignore, restart, or revert. The software takes advantage of virtualisation within
cloud environments to accomplish this. The implementation details are scarce, but it is important
to note that this method does take into account generalised application faults so would detect
malicious and non-malicious faults although it is not explicitly stated as a goal of the software.

VI is a common solution to issues such as intrusion due to the ability to revert the system in
question to a clean state and migrate them to other nodes. Lombardi et al. present a system for
enhanced resilience of Windows VMs, recovering from malicious and non-malicious faults [69].
The solution employs VM introspection and anomaly-based integrity verification to detect intru-
sions or errors arising. A reactive solution using the VI is then employed. However, it could be
argued that repetition of malicious actions could allow a malicious user to plot the state changes
taken and thus understand the intent of the IDS. Likewise during the evaluation of the system,
the authors claim that despite a noticeable increase in resource use when implementing the intro-
spection system, the attacker would not be able to detect the use of the system. Again, this is not a
sufficient means of disguising the use of the system, as comparative analysis would result in wide
variations in performance against a system that did not employ the introspection.

Reizer and Kapitza also employ VI for a proactive recovery (periodic node refreshing) system
[96], primarily for intrusion relation failures. They explain that proactive recovery reduces support
for recovery from genuine faults and also decreases system availability time. In their solution a
domain is replicated across numerous, isolated guest domains where all network activity is proxied
via a remote server. Diversity between the guest and primary domains ensures attacks will not
affect the replica domains. This will hold true as long as the service is developed to be deterministic.
Although unable to protect against a physical fault, this system will prevent against malicious and
non-malicious faults. However, there are large cost and time implications due to the additional
resources required.

Jhawar and Vincenzo propose a similar method named Remus [54]. It uses replication leverag-
ing VI to provide a high degree of fault tolerance. The system periodically snapshots the host’s
state, storing a backup in memory. This ensures prompt availability. It is possible that anoma-
lous data would cause both systems to crash, whereas the diversity in the previous work clearly
protects against this. VM replication techniques are found often such as in References [101] and
[34]. Egwutuoha et al. [36] and Tchana et al. [115] examine resilience at the process level. They
provide replication and checkpointing of individual processes to recover from faults. These tech-
niques could be considered more resource-optimal than checkpointing an entire VM while also
more relevant to container-based architectures. However, the security implications of changing
the integrity of a running VM are concerning.

Binun et al. focus upon the resilience of the VMM [21]. They present a novel self-stabilising
hypervisor for increased robustness against malicious faults. A Stability Manager examines the
VMM and its VMs for any misbehaviour, resetting the VM, software, or physical machine when a
subversion is detected. While the system does provide an adequate method of resisting intrusions,
it is uncertain whether it is possible to recover from a persistent threat. Without adequate con-
straints, it might be easy for an attacker to perform a DoS upon the machine through corruption,
requiring a constant reboot. There are further performance issues, as with the integrity check,
requiring the entire system to freeze.

Kanter and Taylor present a hypervisor that uses compiler and run-time techniques to increase
diversity within an application, making attacks more costly [57]. Their combination of techniques
prevents all memory addresses within the application being known to an attacker a priori, however,

ACM Computing Surveys, Vol. 53, No. 3, Article 59. Publication date: May 2020.

On Resilience in Cloud Computing: A Survey of Techniques across the Cloud Domain 59:11

Table 4. Virtual Networking Resilience Techniques

Method Model Components Disciplines Limitations
Mapping between virtual and
physical, data centre hand over
[22]

Phy/IaaS PI, VI SRV Uniform DC distribution with
minimal performance increase

Optimal overlay networks [13] Phy/Iaas/Paas VN vs PN SRV, FT High VNet design complexity
Leverage VN for layer
selection [14]

Phy/Iaas/Paas VN vs PN SRV, FT Complex high-level
management

A framework for layer
selection [15]

Phy/Iaas/Paas VN vs PN SRV, FT Complex high-level
management

Shared protection with backup
links [12]

Phy/Iaas/ VN, PN SRV Lack of compartmentalisation

Scalable heuristic-driven
shared protection [47]

Phy/Iaas/ VN, PN SRV Lack of compartmentalisation

Shared protection with
rerouting [23]

Phy/Iaas/ VN, PN SRV Lack of compartmentalisation

Overlay networks creating
path diversity [105]

IaaS/PaaS VN SRV High complexity and
centralised management

Selection of physical, virtual,
or hybrid networking [15]

Phy/IaaS VN, PN R, FT High-level simulation

Cost vs RB across different
layers [48]

Phy+ VN, PN R High-level and constrained
simulation

Cloud DDoS survey and
mitigation framework [87]

Phy+ VN, RM TT Restricted failure types

PI=Physical Infrastructure, VI=Virtual Infrastructure, VN=Virtual Networking, PN=Physical Networking, RM=Resource
Management, SRV=Survivability, FT=Fault Tolerance, R=Resilience, TT=Traffic Tolerance, RB=Robustness.

it does require the application’s source code. This extreme case of diversity across the cloud in-
frastructure enables high resilience. The method is used in the deployment of an OS named Bear
consisting of a minimal kernel and a VMM, where the kernel and all other components, including
device drivers, are periodically refreshed with new, diverse replacements. A point of note is that
it does not attempt to detect intrusions and operates without any further information. This is a
useful characteristic that mitigates detection-related issues. They mention that performance is de-
graded due to the additional processes, the compile time decreases at 5% typically and sometimes
up to 16%. However, the benefits of having a different set of binaries for every individual host in
the cloud outweighs the performance hits.

Xu and Huang focus upon VMM resilience. [127], where execution of each VMM is replicated
across a another. This provides resilience against hardware layer faults. Essentially providing re-
dundancy for hardware, the system is successful with minimal overhead. However, the authors
mention that the replication mechanism is not self-protecting.

2.2.3 Virtual Networking. Providing resilience within the networking layers of a cloud archi-
tecture is the focus of a number of works seen in literature. Resilience within networks may often
be considered in terms of its survivability, distributed information systems being the focus of the
term survivability [126]. As networking operates on a variety of different layers, the resilience
may again differ, depending on the layer in question. Clouds may be distributed across multiple
geo-locations and therefore require resilience on the physical layer. They also employ considerable
quantities of virtualisation and with the advent of SDN networking in the upper application layers
can become complex. Table 4 summarises the following literature.

Bui et al. investigate two methods for ensuring resilience in virtual networks [22]. They con-
sider network resilience from the perspective of both the PN providers and VN operators and

ACM Computing Surveys, Vol. 53, No. 3, Article 59. Publication date: May 2020.

59:12 T. Welsh and E. Benkhelifa

in particular, the mapping between these two layers. Their resilience models involve handover
to another DC during primary failure, with the resilience techniques involving source routing to
the secondary DC. Two tests were conducted where data centres were uniformly distributed and
locally paired. The results showed that the VN routing performed slightly better than the PN rout-
ing during uniformed location distribution, while during the paired locations there was very little
difference.

Barla et al. consider the performance of network resilience methods [13] with the motivation of
SLAs guaranteeing various quality of IT services but not end-to-end communications. VN is cited
as a solution to this issue. The study simulates two scenarios: in the first the VN is responsible
for the resilience, and in the second, the PN operator is responsible for the resilience. The results
indicated that the VN always outperformed the PN. Complexity of the design is mentioned for
consideration. The authors expand this further in References [14] and [15], where they provide
models for developing the VNs. These were shown to outperform previous approaches by finding
a resilient solution in every case, drastically reducing communication delays. Barla et al. next
examine resilience in VNs using redundant back-up links (referred to as shared protection) [12],
similar to the approach employed in Reference [71] for physical networks. They use redundant
resources shared among multiple VNs, accomplished through appropriate information exchange
between the PN operator and VN operator. As before, the VNs outperformed the PNs with the
addition of cost-saving benefits through optimised set-up. This work highlights the effectiveness
of providing high-level resilience.

Harter et al. [47] confirm the benefits of shared protection mechanisms, with cost savings of
10%–20%. This model includes heuristics to make the algorithm highly scalable.

Bui et al. consider the problem of mapping VNs to PNs under varying time constraints [23]. Their
solution enables the selection of appropriate PN and (consequently) DC resources for resilient re-
routing of networks under varying time constraints. As an improvement upon schemes that allow
bandwidth sharing through various backup links, this system allows backup links to be repro-
grammed as needs change over time. Their results show that the benefits of reconfiguration are
only applicable if the standard working paths are also reconfigured. Also, they are only applicable
if the majority of traffic “does not have Quality of Service (QoS) requirements that prohibit path re-
configuration,” which could be an issue when considering the variety of use cases for cloud traffic.

Secci and Murugesan provide discussion regarding the current cloud network architectures
[105]. They stress the need for resilient clouds, as without resilience their services are sub-optimal
or even useless, due to the service-oriented nature. They explain that conventional cloud RM is
considered “dumb” due to over-provisioning of resources and, in particular, inefficient methods
of bandwidth utilisation. They argue that this has caused high centralisation in geo-distributed
clouds, which contributes to high risk of failure and, therefore, low resilience. As services must
be distributed across multiple cloud services for them to be resilient, this conventional bandwidth
utilisation is at odds with this requirement and, therefore, the authors suggest that further decen-
tralisation is necessary. To provide further decentralisation, appropriate overlay networks must be
employed to ensure network paths diversity and DC end points to ensure the necessary resilience.
The authors conclude by noting that resilience is not just a requirement of highly dependable ser-
vices but necessary to fulfil the fundamental cloud SLA. To provide this, the current architecture
must change.

Harter et al. provide a comprehensive discussion regarding the comparing the resilience of dif-
ferent layers and a novel consideration of the business-oriented responsibilities of each cloud deliv-
ery scenario [15]. They provide a method, determined through simulation, to determine the most
favourable layer to provide resilience depending on the use-case. They conduct a similar study,
investigating which layer is the most effective in terms of cost and fault tolerance to provide the

ACM Computing Surveys, Vol. 53, No. 3, Article 59. Publication date: May 2020.

On Resilience in Cloud Computing: A Survey of Techniques across the Cloud Domain 59:13

Table 5. Cloud Management Resilience Techniques

Method Model Components Disciplines Limitations
Comparison of task-scheduling
algorithms [25]

IaaS RM, SCH RB VM only

Energy-aware scheduling for
software FT [40]

IaaS SCH FT, DT Power-related faults only,
resource-intensive modelling

Monitor and optimal selection of
hosts [65]

PaaS SO RB In-depth application analysis

TCloud, a modular middleware
and layered multi-cloud solution
[120]

PaaS/IaaS DC, RM SEC, RB Strong interoperability issues,
high cost, contentious reliance
upon trust

Resilient state management
using a remote handler [106]

PaaS VI FT Single point of failure

Chains of virtual network
instances [103]

IaaS VN, VI, SO SRV Centralised management

Brownout experience downgrade
[60]

PaaS/IaaS VI, RM RB, TT Single replica only, experience
reduction

Brownout experience downgrade
with LB [61]

PaaS/IaaS VI, RM, LB RB, TT Single replica only, experience
reduction

SO using multi-agent monitoring
and feedback [116]

PaaS/IaaS VI, RM, SO, FT High communication cost

SO using diverse OS
configurations [45]

PaaS/IaaS VI, SO, FT/SRV Conceptual only

Service to hardware dependency
modelling, migration, and FT
monitoring [77]

PaaS/IaaS VI, VN, RM FT/SRV Static application requirements

SO using self-organisation and
self-management [26]

PaaS/IaaS RM, VI, SO SRV High complexity and
resource-intensive monitoring

RM=Resource Management, SCH=Scheduling, SO=Service Orchestration, DC=Data Centres, VI=Virtual Infrastruc-
ture, VN=Virtual Networking, LB=Load Balancing, RB=Robustness, FT=Fault Tolerance, DT=Disruption Tolerance,
SEC=Security, SRV=Survivability, TT=Traffic Tolerance.

resilience [48], this time considering PN, VN, and overlay networks. They give a framework for
ease of selection.

Osanaiye et al. focus upon one particular attack type/resilience problem [87]. They provide a
survey and framework of DDoS mitigation techniques in the cloud. While effective as a traffic-
tolerant technique, the lack of coverage for diverse failure types leaves this form of work behind
the others.

2.3 Cloud Management
This section reviews literature applying techniques that are operated upon via the cloud-
management layer. Tables 5 and 6 provide a summary.

As redundancy is a key component of resilience, task placement can influence its efficacy.
Cartlidge and Sriram present an analysis of the effect of different scheduling algorithms on re-
siliency [25]. This should be considered as resiliency of IaaS. They evaluated random, packed
(FILO) and clustered VM allocation, showing that packed was the least resilient, which is obvi-
ous when considering single point of failure. Additionally, their results illustrated a clear link
between hardware redundancy and resiliency, although the pack scheduling algorithm was not al-
ways consistent. When adjusting the DC architecture, they concluded that the pack was sensitive
to infrastructure types. Although this work is intuitive, it is interesting when understanding if re-
silience designed at high layers can overcome the shortcomings of poor resiliency at lower layers.

ACM Computing Surveys, Vol. 53, No. 3, Article 59. Publication date: May 2020.

59:14 T. Welsh and E. Benkhelifa

Table 6. Cloud Management Resilience Techniques II

Method Model Components Disciplines Limitations
Checkpoint-restart of stateless
applications upon decentralised DHT
[70]

IaaS VR, SO, RM FT, A Stateless only

Self-reconfiguring moving-target
defence [122]

IaaS VI, RM, FT High complexity and
replication cost

Optimised checkpoint-restart for HPC
using VI [86]

IaaS VR, RM FT High replication cost

GA-based SCH, homogeneous spread
of components across all nodes [39]

IaaS VI, SCH A, FT High initial resource cost and
web app only

Balance reduce for data locality and
job time reduction [8]

IaaS VI, SCH FT Constrained use-cases

Batches of jobs weighted to prevent
malicious faults [66]

IaaS VI, SCH FT, SEC Pull and then process can
cause synchronisation errors

Component quality ranking and
service construct to reduce faults [132]

IaaS VI, SO, FT High complexity

Risk minimisation using content
ranking and placement [38]

IaaS VR, PR, DC DT High complexity

Mixed integer-linear programming [5] IaaS VR, PR, SCH A Conceptual online
Replica-oriented middleware [51] IaaS/PaaS VI, RM FT Complexity and resource cost
Multi-component middleware to
enforce policies, determined by
anomaly detection [107]

Phy/IaaS RM, SCH, PM FT, SEC Complexity and resource cost

Networking protocol (sockets, web,
etc.) replication [131]

IaaS/PaaS VI, VN, RM FT High complexity and resource
cost, web sockets only

VR=Virtual Resources, SO=Service Orchestration, RM=Resource Management, FT=Fault Tolerance, A=Availability,
VI=Virtual Infrastructure, SCH=Scheduling, PR=Physical Resources, DC=Data Centres, PN=Physical Networking,
SEC=Security, VN=Virtual Networking.

Gao et al. present an energy-aware scheduling algorithm for cloud resilience [40]. Their frame-
work allows reliability when faced with soft-errors, often a consequence of varying voltage levels.
It has a performance increase of up to 50% achieved through a hybrid method, first conducting an
assessment of static reliability requirements that then leads into dynamic analysis that can occur
at run-time. Their implemented system also considers financial data, which is an often overlooked
yet is a principal component of service-oriented cloud systems.

Liang and Lee consider resiliency when developing PaaS clouds [65]. They take a robustness
approach that allows varied and unexpected program input. Their work appears to be concerned
with reliability through analysing sub-component effects upon the application. A SO approach is
applied to minimise failures through accurate selection or replacement of individual components,
maintaining a low failure rate.

Verissimo et al. present a novel paradigm, cloud-of-clouds, with their system: TCloud [120]. They
argue that DC distribution is not enough to provide resilience of applications within a cloud, as
the security aspects of federated clouds are not addressed. To provide resilience, the authors ar-
gued that a user must be able to combine clouds from multiple providers providing high diversity.
Additionally, open architectures are necessary to prevent proprietary vendor lock-in and security
features from the lower layers up. Their system accommodates these requirements through provid-
ing multiple solutions to “build layers of progressively more trusted components and middleware
systems,” which allows layers on the top layer to be trusted due to trusted lower layers. A flaw
in this system is that trust in a lower layer cannot always be guaranteed. The authors suggest an
intrusion detection system as an example of lower-layer security, which is regularly circumvented

ACM Computing Surveys, Vol. 53, No. 3, Article 59. Publication date: May 2020.

On Resilience in Cloud Computing: A Survey of Techniques across the Cloud Domain 59:15

to allow malicious traffic obfuscation. The system includes modularised components to provide
middleware to enable the paradigm, providing a secure and resilient PaaS.

Sharma et al. present the development of a resilient PaaS leveraging state management, known
as ReLo [106]. Resilient state-management enables a session to persist during application down
time. Within their system, agents reside within an application. If the agent goes down, a handler
agent redirects the session to another application. Essentially the system employs redundancy
via a middleware management solution. The single point of failure with the handler agent is a
questionable choice. The authors mention that memory constraints and router time-outs have a
negative effect upon the resilience.

Scholler et al. describe their method of deploying vNFC (chains of virtual instances, provid-
ing networking services) [103] resiliently using their Tenant Infrastructure Management Soft-
ware (TIMS) upon OpenStack. Different components within the network service have different
resiliency requirements, (e.g., scalability, redundancy). The service describes the requirement and
TIMS manages it appropriately. Both resource and network requirements are given through Ap-
plication Layer Traffic Optimisation (e.g., maximum delay between two components). The system
is dependent upon OpenStack’s availability zone feature, which groups pools resources, which al-
lows critical components of one service to be grouped in different failure locations. The authors
identified a number Openstack shortcomings such as low resource information within the pools.

Klein et al. discuss the brownout programming paradigm [60], proposed to provide enhanced ro-
bustness within cloud services. It attempts to mitigate the requirement to provision large amounts
of replicated instances during traffic increase. This should prevent service run-time failures such
as flash crowds. A brownout program will downgrade a user experience, such as with enhanced
features, to prevent excessive use of the system. They extend this by combining with load balanc-
ing, as the combination currently creates conflict [61]. They propose two novel algorithms and a
production-ready load balancer. Their results indicate strong performance compared to alternative
solutions.

Torres and Holvoet examine service composition architectures [116]. Their decentralised system
relies upon two distinct agents: the first monitors the network for appropriate, available subtasks
to compose a service with; the second evaluates available resources within the system. These two
agents continuously and dynamically assess the current status of the service, enabling a rapid
response to faults. Each agent delegates work to lower-level agents, which would appear to be
biologically inspired by ant processes. Empirical evaluation indicated that performance was better
than the common, reactive approach, with lower composition times of between 4% and 25%. The
authors note that the system suffers from high communication costs.

Minzhe and Prabir investigate diverse replica software in Reference [45], where the configura-
tion of the OS in which the service is built upon is varied across the service. The authors present
a game theoretical approach to the problem.

Mihailescu et al. consider the mapping of components of a service to hardware resources [77].
Their algorithm is more optimal than global shuffling algorithms and will eventually converge on
a stable global configuration as long as application requirements remain consistent. The system
improves resilience from hardware faults and network errors through understanding component
inter-dependencies. It models them as graphs where a division equates to VM migrations. The
system is dynamic, allowing an end-user to select the required resiliency. Further work might
consider the effect of cost upon this feature.

Carvalho et al. take a biologically inspired approach to cloud [26]. They employ a multi-layered
method with a focus on distributed service management. The authors focus on mission conti-
nuity and survivability during attacks. The work focuses upon the application of bio-inspired
methods of self-organisation and self-management, as well as distributed coordination, to the

ACM Computing Surveys, Vol. 53, No. 3, Article 59. Publication date: May 2020.

59:16 T. Welsh and E. Benkhelifa

service discovery and orchestration processes in the cloud. The system layers consist of first de-
tecting the damage through distributed sensors, optimised resource management, and then re-
sponse/immunisation to the threat.

Louati et al. focus upon stateless applications, which are easier to provide resilience to than
statefull [70]. Their solution uses checkpointing and application restart combined with a back-end
built upon Distributed Hash Tables (DHT) for resilient decentralised storage. Nicolae and Cappello
also consider checkpointing/restart of applications to mitigate failures [86]. This time for High
Performance Computing (HPC) applications using efficient Virtual Disk Image (VDI) snapshots.

Villarreal-Vasquez et al. argue that the typical replication techniques employed for cloud re-
silience increase the attack surface of an application and thus are detrimental [122]. They propose
a solution that uses Moving Target Defence (MTD), migrating instances once an anomaly has been
detected and providing self-reconfiguration to return to baseline state.

Frîncu applies Genetic Algorithms (GA) to component scheduling optimisation [39]; high avail-
ability web applications within the constraint of cost is considered. Two distinct algorithms are
considered: the first optimises the maximum number of components upon each node within the
cost; the second is sub-optimal, finding the minimum required so that the application is still avail-
able given that all but one node fails. Antony et al. also investigate scheduling to optimise resource
usage, this time for bandwidth consumption [8]. They provide a heuristic that optimises data lo-
cality to reduce the job completion time and provider fault tolerance to the Balance Reduce (BAR)
algorithm.

Liao and Cheng propose a resilient scheduling method that involves servers retrieving batches
of jobs and then processing them according to a specific weighting to mitigate the effect of a
malicious fault [66]. Zheng et al. take a similar approach [132]. They rank a component’s value
and orchestrate a service so that a fault will have a reduced or no impact upon operation. Ferdousi
et al. take a similar approach [38], again applying ranking, with a greater focus upon the placement
of content as opposed to the components themselves.

Al-Ayyoub et al. provide a framework that leverages mixed integer linear programming to con-
sider multiple objectives to optimise cost-effective resilience across all levels of cloud infrastructure
[5].

Imran et al. developed A middleware that uses watchdogs, checkpointing, and journaling [51]. It
is used to create, back up, and store replicas of application to provide fault tolerance. Whereas Zhao
et al. provide a replica-oriented middleware yet with comparatively considerable resource optimi-
sation [131]. While only for replications of network protocols (sockets, web protocols, etc.), it is an
interesting approach—although the integrity and confidentiality of the application is in question.

2.4 Decentralised Cloud Resilience
While the previous sections discussed centralised cloud architectures residing in data centres, this
section presents decentralised cloud models such as fog and edge computing. Table 7 summarises
this literature.

Due to the constrained nature of IoE devices, data processing, storage, and representation
must be provided by a third-party platform, typically the cloud. However, the high latency, non-
deterministic wireless mediums and high volume of data make this relationship difficult. Fog com-
puting is the medium in which pseudo-cloud services, mostly temporary data processing, are pro-
vided closer to the edge of the network. Processing data in this form has a greater requirement for
resilience due to device mobility, open wireless mediums, constrained device resources, heteroge-
neous device types, cyber-physical systems, and hostile environmental conditions.

Service orchestration (SO) is an important process to conduct securely in fog computing. To
optimise constrained device resources, only the minimum amount of nodes necessary will be

ACM Computing Surveys, Vol. 53, No. 3, Article 59. Publication date: May 2020.

On Resilience in Cloud Computing: A Survey of Techniques across the Cloud Domain 59:17

Table 7. Decentralised Cloud Resilience Techniques

Method Model Components Disciplines Limitations
SO using Attribute-based
encryption [121]

PaaS/SaaS EDGE, RM, SO C, I Resource-intensive
cryptography and hierarchical
network structure

Multi-component federated fog
architecture [97]

IaaS/Paas RM, EDGE, CONST, TRAN SEC Conceptual model for
resilience, high complexity

Hierarchical data replication and
service downgrade using p2p
networking [63]

Paas/SaaS CONS, EDGE, CONST A, DT Questionable energy
consumption per task

Fog computing for resilience [80] IaaS FOG SRV, DT, TT High resource cost and
governance issues

Decentralised SDN for 5G
VANETS [50]

IaaS CONS, IOT, TRAN, EDGE DT, SRV Centralised management

Fog-enabled anomaly detection
for SDN [79]

IaaS TRAN SRV, SEC Centralised management

SDN middleware for critical
events using rerouting and
backup links [18]

PaaS/SaaS EDGE, TRAN SRV, FT, Single point of failure

Anomaly detection and moving
target defence [56]

IaaS/PaaS VI, CONST, RM I, FT Questionable resource cost

Watchdog-based multi-layer
programming architecture [37]

PaaS VI, VN, RM FT High complexity

Dependency mining for replica
prediction and optimisation [9]

IaaS/PaaS VI, RM FT Theoretical

Agent-based spot-instance
survival reasoning [10]

IaaS/PaaS VI, RM DT Specific to one cloud provider

Uncoordinated application
checkpointing and replication [88]

IaaS/PaaS VI, RM FT, SRV Single point of failure

Resource-predicting hybrid
mobile cloud [59]

IaaS PH DT Dependent upon fixed nodes

Game theoretic with Bayesian
approach to SCH during real-time
attack [28]

IaaS SCH, VI, EDGE A, SEC Attack-specific

C=Confidentiality, I=Integrity, SEC=Security, A=Availability, DT=Disruption Tolerance, SRV=Survivability, TT=Traffic
Tolerance, RM=Resource Management, SO=Service Orchestration, CONS=Constrained Devices, TRAN=Transportation,
EDGE=Edge Devices, VI=Virtual Infrastructure, FOG=Fog Computing, IoT=Internet of Things devices, VN=Virtual Net-
working, PH=Physical Hardware, SCH=Scheduling, FT=Fault Tolerance.

provisioned for an end-user. This necessitates service requirements to be broadcast for a net-
work that provides a number of security issues, particularly confidentiality. Viejo and Sánchez
use Ciphertext-Policy Attribute-Based Encryption (CP-ABE), whereby nodes will have keys cor-
responding only to the attributes they are allowed to process [121]. Their network is structured
hierarchically so that nodes pass messages to those it can control further down the tree. The nodes
will require a generalised key. For example, a message containing “temperature” will also need a
“weather” key to process it. These messages form policies such as “temperature, zone 1,” which are
then encrypted separately and transmitted. If any messages can be decrypted by a node it means
that further nodes in the hierarchy can also be decrypted so the service discovery can continue.
Once the service has been orchestrated between the required nodes, the client and nodes exchange
keys to communicate securely. Chejerla et al. instead chose to develop a scheduling algorithm that
uses a game-theoretic and Bayesian approach to mitigate against attack in real time for Cyber
Physical Systems (CPS) [28].

ACM Computing Surveys, Vol. 53, No. 3, Article 59. Publication date: May 2020.

59:18 T. Welsh and E. Benkhelifa

Rios et al. explain that modelling fog networks in a hierarchical manner, with a singular provider,
is oversimplified and detrimental to its security [97]. They should instead be considered as a fed-
erated architecture with numerous service providers within different trust domains. The authors
propose an architecture (SMOG) to provide resilience in fog networks. It consists of a number of
baseline characteristics such as secure interconnection, authentication and authorisation, protection
of virtualised environments, and situational awareness. They list enhanced characteristics as trust
services, distributed decision making, privacy capabilities, and digital evidence management. They
explain that these baseline requirements are largely missing from literature and are necessary to
ensure a secure and resilience fog.

Edge nodes are without doubt a point of failure in any decentralised cloud network. Le et al.
give a solution to partial failures in MEC (e.g., connectivity loss) between the edge nodes [63].
Their architecture is again hierarchical, with mobile nodes storing local backup data dispersed
among them. If partial failure with the edge nodes occurs, the devices switch to a P2P model,
processing data collaboratively. This is an alternative mobile computing model, and the results
show good time-reduction performance when the task is disrupted across the nodes. However, the
power consumption is likely to be highly variable according to the difference between nodes and
therefore the suitability will not be universal.

Modarresi and Sterbenz consider fog computing as a solution for resilient IoT/edge comput-
ing in Reference [80]. They argue that the uncertainty surrounding resource, link, and bandwidth
availability ensures that typical edge computing is not resilient for IoT processing. For example,
too many clients can overload resources and thus cause a denial-of-service. They argue that the
introduction of fog nodes between the edge and the cloud creates greater autonomy within the
network. If a connection is lost between the edge and the cloud, the fog maintains this network
and increases the survivability of the ecosystem. Further to this, they suggest that the diversity
of standards, protocols, and network links, which cause fog computing to be quite complex, is
actually beneficial to its resilience due to the increase in variety. They also indicate that through
fog-reducing traffic further in the core and distribution network, its implementation provides traf-
fic tolerance. Finally, disruption tolerance is enhanced through a reduction in latency, permitting
applications to be processed quicker and thus any disruption has less impact. The authors support
these statements with numerous simulations inclusive of the fog environment.

Hussein et al. provide a mobile edge computing solution that applies Software Defined Network-
ing (SDN) to 5G, providing resilient processing to Vehicle Area Networks (VANETS) [50]. Safety
concerns are paramount in vehicles and as such so is the resilience of VANETs. Their proposed so-
lutions provide enhanced security through an additional security layer using SDN. As opposed to a
traditional centralised SDN approach or a traditional distributed VANET approach, they present a
hybrid method. A centralised 5G base station is used to manage SDN security functions distributed
across a number of roadside controllers. This approach illustrates a strong example of custom net-
working hierarchy technologies being supported at the edge for specific use-cases and resilience
requirements.

Modarresi deploys SDN again in tandem with fog for resilience in Reference [79]. This time fog
nodes are used to detect anomalies in network traffic and notify the SDN controller. This can make
security-focused decisions about what traffic to drop or restrict—a strongly illustrative example
of the application of fog for greater network resilience, although it does not help to strengthen
resilience of the fog nodes themselves.

Bensen et al. take a middleware approach to provide continued operation of critical events from
IoT devices when their connection to the cloud fails [18]. Their system contains two components:
the first periodically probes different paths to the cloud, detecting possible faults or failures; the

ACM Computing Surveys, Vol. 53, No. 3, Article 59. Publication date: May 2020.

On Resilience in Cloud Computing: A Survey of Techniques across the Cloud Domain 59:19

second provides multicast message dissemination according to information received from the first
component. They again use SDN to provide this information and use it to create “resilient over-
lays.” This middleware approach enables varied support for IoT devices, as the middleware works
seamlessly.

Kahla et al. provide a solution to low trust in IoT environments [56]. They leverage moving
target defence to migrate targeted or subverted virtual instances to another host fog machine. It
is not clear how this would prevent a number of different attacks or heal the instance once it had
migrated, although the autonomic aspect of integrity verification is commendable.

Eisele et al. state that resilience is necessary to consider in edge environments due to both re-
source and network uncertainty [37]; while security is important due to the resource-constrained
nature of edge devices preventing virtualisation providing adequate isolation. They propose a
novel programming paradigm: RIAPS (Resilient Information Architecture Platform for Smart
Grid), which provides a platform for distributed applications to be deployed resiliently. The plat-
form provides a diverse number of different services and managers (such as for security, persis-
tence, fault management, etc.). While the platform appears to be complex and thus has an increased
attack surface, given the number of required components, it illustrates the notion of an underlying
platform providing resilience to higher levels.

Arval et al. use Bayesian belief networks to mine dependencies between replicated edge nodes.
Their solution uses past server performance from logs and temporal dependencies to highlight the
probability of when failures may occur concurrently. Although their current solution is theoretical,
it shows strong optimisation through replica reduction [9].

Neto et al. tackle a somewhat different resilience problem [10], where fog-enabled service does
not suffer a fault but an outage related to the CSPs SLA. They focus on Amazon’s Spot Instances,
which are transient servers acquired by the user when the maximum they wish to pay (bid) is
greater than the value of the instance. Due to the nature of this acquisition, the continued opera-
tion of these servers cannot be guaranteed. Therefore, in this fog platform the failure results from
the unavailable CSP back-end. To mitigate this, they propose an agent-based case-based-reasoning
solution that aims to predict the survival time of an instance. This enables checkpoints to be made
to resume the work in case of application fault. Their solution could be modified for applica-
tion processing closer to the edge, although the resource requirements for checkpoints must be
considered.

Ozeer et al. have a similar focus on recording and reverting to application states [88]. They take
an uncoordinated approach, recording application events with a corresponding recovery timer.
Expiration indicates lack of synchronisation with the physical world and therefore can’t be ig-
nored. Event details are logged in a global and failure-free storage system to permit recovery to
any node from a central location. This centralised storage suffers from central point of failure. The
authors present a competent yet complex solution consisting to enable system fault tolerance. The
question of how failures are to be handled in the system handling the failures is still open.

Khalifa et al. move away from a traditional cloud architecture, improving the resilience of Hy-
brid Mobile Clouds [59]. Mobile clouds require greater resilience than a static system due to the
dynamic network characteristics. The proposed architecture is interesting due to its flexibility in
running on diverse devices, essentially ignoring the underlying hardware. The resilience require-
ments are aided through a resource prediction mechanism and an early failure detection mecha-
nism to facilitate handover of vital services. The system proves successful, although performance
is still dependent upon the quantity of fixed nodes within the cloud, making the system not purely
mobile. However, overall it exhibits a good example of how cloud systems can be built upon non-
deterministic environments.

ACM Computing Surveys, Vol. 53, No. 3, Article 59. Publication date: May 2020.

59:20 T. Welsh and E. Benkhelifa

Table 8. Alternative Architecture Resilience

Method Model Components Disciplines Limitations
SlapOS—cloud distributed across
homes [113]

IaaS VR, RM, CONS R Low/non-deterministic
redundancy

Modular and highly diverse SlapOS [31] IaaS VR, RM, CONS R Low/non-deterministic
redundancy

Diversity using community clouds [41] IaaS VR, RM, CONST DT, SEC Low redundancy,
uncertain governance

DefCloud using strong diversity across
all layers [111]

IaaS VR, PR, RM SRV, FT, High complexity

MEERKATS constant evolving diversity
[58]

IaaS VR, RM SRV, FT, Resource-intensive

DREME replica execution diversity [16] IaaS VR, RM SRV, FT, Resource-intensive
SCE+ using mass redundancy [99] IaaS VR, RM FT Resource-intensive
BioRac, cell-based diversity and
redundancy [46]

IaaS VR, RM SRV, FT, Resource-intensive, high
Complexity

SDN for resilient industrial IoT [100] IaaS CONS, CONST R Centralised management,
high complexity

VR=Virtual Resources, RM=Resource Management, CONST=Constrained Devices, CONS=Consumer Devices,
PI=Physical Infrastructure, R=Resilience, DT=Disruption Tolerance, SEC=Security, SRV=Survivability, FT=Fault
Tolerance.

2.5 Alternative Architectures
Some work will choose to encourage a conventionally different cloud architecture to provide in-
creased resilience. Table 8 summarises this literature.

An alternative to the infrastructure layer, Suciu et al. present SlapOS [113]. They choose to
provide a purely distributed cloud architecture where single point of failure is remedied through
distributed cloud resources over multiple PCs within homes, as opposed to within DC. While this
might bring forth bandwidth, capacity, and latency issues, the benefits of reducing single point of
failure are considerable, particularly for safety-critical events such as during disasters.

Courteaud et al. consider further resilience of SlapOS [31]. They refer to the concept of com-
munity cloud, whereby the cloud is collaboratively built from personal devices. The main current
issues are summarised as: (1) Migrating from commodity cloud to resilient, secure, and depend-
able clouds, (2) promoting diverse and open ecosystems, and (3) building a coherent, modular, and
reusable architecture. They also consider the leader selection problem (the process of selecting the
next master node after loss of the current). Further issues include: implementation and accurate
failure-detection methods, and methods of replicating the master database prior to handover to an-
other master node. The authors note that conventional delivery models (IaaS/PaaS/SaaS) become
obsolete. Finally, the authors explain that an implementation of hierarchical masters (such as with
DNS) will be implemented for increased resilience. While the architecture and delivery model is
certainly interesting, there are issues directly relating to resilience concerning master node hier-
archies that undoubtedly cause problems. A decentralised system such as this is not as resilient as
one that is purely distributed.

Garlick also considers community cloud-based resilience [41]. They promote the model as an
enhancer for organisational resilience. As with SlapOS, the author highlights the ownership and
location of current cloud models being unsuitable for providing resilience. The authors note that
for natural disasters, centralised disaster recovery is too late and excessive. They argue that disaster
recovery must be conducted at the community level. The breakdown of communication networks
is cited as a key issue, where the more effective communication was developed by the decentralised

ACM Computing Surveys, Vol. 53, No. 3, Article 59. Publication date: May 2020.

On Resilience in Cloud Computing: A Survey of Techniques across the Cloud Domain 59:21

communities. The author explains that community cloud models enable the benefits of public cloud
offerings with greater control. Issues surrounding community clouds, such as malicious users, are
said to be mitigated through user vetting, a process that may not always be practical or effective.
Sathiaseelan et al. present a similar discussion in Reference [100], where they similarly highlight
that commodity hardware-based community clouds have considerable advantages over resilience
due to the highly decentralised nature.

Sterbenz and Kulkarni present DefCloud [111], which attempts to provide greater resilience
through increasing diversity and redundancy within all layers of the cloud architecture. Highly
flexible, it allows resilience to be adjusted in a “service-aware manner.” This might be argued to
be similar in concept to the usability vs security trade-off. Such a feature is likely necessary for a
cloud platform that accommodates a wide spectrum of use-cases. The authors argue that the first
point in designing the infrastructure is the removal of monoculture, as it enables malware and at-
tacks to propagate effectively through only needing to attack one type of hardware architecture or
software application. This concept is then applied to all layers of the cloud. First is the infrastruc-
ture layer diversity. This encompasses data-centre diversity and cloud diversity. They consider DC
diversity where sub-trees of features where similar trees are not selected in tandem to maximise
diversity. For example, similar trees will utilise the same network vendor hardware or operating
systems. While diversity provides resilience against security related failures, it does not protect
against failures from direct physical DC attacks, e.g., natural disasters or military attacks (such
as an EMP). To mitigate these issues, the architecture applies cloud diversity through distribut-
ing the cloud over multiple geo-locations, using varying ISPs. After the infrastructure layer, the
DefCloud then assures resilience through Process-level Program diversity, where diversity focuses
upon distribution via space and time. Spatial diversity is concerned with distribution of different
software versions. Temporal diversity is concerned with varying application configurations over
time. Application diversity ensures binaries are diverse, e.g., an attack on one application binary
will not apply to another. While this has consequences on the current state of 0-day exploits, it
complicates the software development process. Although DefCloud undoubtedly covers resilience
in the cloud through adaptations of the conventional architecture, the system lacks real implemen-
tation or simulation and thus its resilience is yet to be determined. For one, the complexity of the
system is clearly greater, which increases the attack surface.

Keromytis uses similar diversity in their MEERKATS system [58]. It is a fully novel architecture
for a security mission critical cloud. The system constantly evolves across all aspects, reducing
monoculture and increasing diversity. One component of the system, DREME [16], is concerned
with execution diversity of replicas and provides a framework for I/O redirection.

IBM presents a somewhat novel architecture named SCE+ [99], which is built from the ground
up to be highly resilient. The authors make the distinction between typical cloud architectures
employed by Amazon and Google by explaining that they are constructed from “redundant, inex-
pensive, expendable building blocks,” whereas the IBM SCE+ employs “high-end building blocks
with significant internal redundancy and an established track record of very high MTBF for every
element.” It would appear that the contrast is in SCE+ employing mature and extremely resilient
fewer components with conventional architectures employing many less mature components and
relying upon replication/redundancy. The architecture applies resiliency to differing cloud layers.
The physical layer is designed to avoid single point of failure through division of resources and
replication in separate geo-locations with a backup dark-fibre link. Software resilience is then con-
sidered from multiple aspects. Components are deployed in redundant pairs and constant “health-
checks” are in place to monitor correct functioning. In addition, redundancy of data and regular
backups ensure resiliency within the data layer. The authors explain that standardisation of hard-
ware within the system components aids the resilience; however, this is contentious, as diversity

ACM Computing Surveys, Vol. 53, No. 3, Article 59. Publication date: May 2020.

59:22 T. Welsh and E. Benkhelifa

within hardware is surely a necessity for resiliency. They cite virtualisation as an enabling fac-
tor of the resilience; however, this is typically a component of cloud infrastructures anyway and,
therefore, offers the environment no additional advantage. Overall, the architecture offers a vari-
ety of additional components for resilience, although some are questionable, such as the physical
distance between components as well as the added complexity within the system.

Hariri et al. present an architecture based on biologically inspired processes that allows tunable
redundancy at multiple cloud levels, known as BioRAC [46]. One layer of the architecture involves
division of components into “cells,” which allows dynamic real-time configuration and combine
together to form an “organism” that is then applied to a particular goal. In an additional layer, the
system provides high levels of diversity through varying execution and finally it provides intelli-
gent algorithms for collaborative threat alert and detection. Although lacking an implementation,
the architecture is interesting for providing a system designed with resilience from the ground up
with novel components, as opposed to those adapted on top of conventional systems. However,
the system complexity due its multiple layers has an adverse effect upon its resilience.

2.6 Evaluation and Models
As with the resilience disciplines, measurement of cloud resilience could follow traditional
performance-based resilience metrics such as Mean Time Between Failures (MTBF) and Mean
Time Taken to Repair (MTTR) and the corresponding availability that is easily calculated from
the two. However, these metrics could be considered primitive at best [30], considering the com-
plexity of these environments. The Resilinets model [112] provides a method of determining which
resilience features are available through binary selection of distinct features (e.g., the network pro-
vides confidentiality or it does not). Other non-cloud-specific resilience metrics also suffice, such
as graph metrics. Graph metrics are noted for their ease of comparing distinct architectures, as
they examine the structural characteristics of a network. Alenazi and Sterbenz evaluate a number
of graph metrics for resilience in References [6] and [7]. These include elementary metrics such
as the quantity of nodes, node connectivity (the average number of connected nodes to each other
node), node centrality (the most important nodes), and so on. They also include those specifically
for network resilience through removal of links and nodes, e.g., network criticality and effective
graph resistance. All of the above are arguably strongest when examining a distinct service as
opposed to the entire cloud environment. Some of the works surveyed according to layer per-
form some form simulation of a model to evaluate resilience within the context of that particular
use-case; the following works focus upon more generalised models for resilience.

Jabbar states that resilience is more difficult to measure than traditional security metrics due
to the need to evaluate how effectively the service is still being delivered [52]. They propose that
resilience should be measured as a state space considered in terms of degradation, where a service
is more resilient if it contains more states in which it stays operational and not severely degraded.
Such a high-level approach may be applicable to complex environments.

Ghosh et al. provide a model for resiliency based on stochastic reward nets [42]. The work is
interesting in that the metrics for resiliency focus upon evaluating how effectively the job is sched-
uled through Quality of Service metrics. Those given are the rate of rejected jobs and the delay
in VM provision. Following from the definition of resiliency, “quantification of service delivery
during changes,” the authors evaluate changes as fluctuations in job arrival rate and the quantity
of physical machines. Their results showed a faster provision rate was more resilient. Also that
removal of a hot physical machine has an adverse effect upon resiliency, whereas removal of a cold
one has a minimal effect.

Ju et al. evaluate the resilience of OpenStack [55]. They develop a novel fault injection frame-
work for both the architecture and its services. They uncovered 23 different bugs that developed

ACM Computing Surveys, Vol. 53, No. 3, Article 59. Publication date: May 2020.

On Resilience in Cloud Computing: A Survey of Techniques across the Cloud Domain 59:23

into faults in the system, highlighting the lack of effective resilience considerations within the
stock cloud management software.

Tu and Xu present a resilience model built for a typical IaaS cloud using Eucalyptus [118]. They
explain that resilience and robustness are strongly connected in complex systems, where both
properties describe the system’s ability to react to disturbances but vary in how they do so. Con-
sidering the cloud as a multi-component, hierarchical system, the model evaluates the compo-
nent interacting and interdependency upon resource consumption. Resilience is modelled by the
strength of interactions between the components, where the strength is the percentage needed
to consume from another component. A disturbance within the system results in a large queue,
exhausting resources causing the services to fail. The authors describe system-wide resilience as
the quantity of processes that fail due to the inability to consume. They note that this system does
not take into account factors that may influence the interaction strength such as one-to-many and
many-to-one resource consumption interactions. It is mentioned that resiliency is accomplished
through redundancy, which has an adverse effect upon cost. To fit in line with the author’s model,
they explain that increased redundancy weakens the requirements for resource consumption links
between individual components. While redundancy is a key component of resiliency, it is not the
only method, and poor implementations can even reduce resiliency under certain circumstances.
The authors then attempt to understand more about this effect, examining replication algorithms
with modularisation of a cloud system. Their results show that as size increases, modulation is
more important to prevent duplicate replication updates. However, they also mention that poor
modularisation implementation can create a single point of failure and thus become an enabling
factor for poor resilience.

Scholler et al. present an archtiectural model that enables insight into the security implica-
tions of cloud architectures [49, 104]. Their motivation is that current cloud services do not ac-
commodate security and resiliency for critical infrastructures. Their model distinguishes between
the different roles (such as the physical provider, service developer, and service user) as well as
the different infrastructures (the physical and virtual) to assess the given requirements against the
system. It promotes greater logging for audit purposes, as well as increased transparency between
the physical and virtual layers, to increase trust between the users. Arguably, many issues within
current cloud architectures ensure their unsuitability for a wide range of critical infrastructure
services.

Sousa et al. conduct an evaluation of Quality of Resilience evaluation criteria within the cloud
to activate appropriate proactive resilience measures [109]. They propose to use multiple criteria
to evaluate the resilience, partly due to the wide variety of requirements associated with resilience
and also because many proactive mechanisms require further information. The authors implement
proactive resilience systems using multiple criteria for the cloud, MeTH [108] and TOPSIS [117].
The results showed that both methods improved the resilience of protocols, which were unable to
detect cloud layer faults, but MeTH provided the greater performance in both fault and non-fault
scenarios.

A classification of types of resilience metrics found within cloud computing is described below:

• Binary feature–based metrics are those relating to the Resilinets model such as confiden-
tiality that either exist in the service of cloud or do not.

• State-based are those that examine the degradation of service to determine when resilience
has failed.

• Performance-oriented metrics are the traditional type such as MTTR or QoS, which typ-
ically involve examining one distinct service.

• Graph-based metrics examine issues in topologies such as network criticality.

ACM Computing Surveys, Vol. 53, No. 3, Article 59. Publication date: May 2020.

59:24 T. Welsh and E. Benkhelifa

Fig. 2. Classification of techniques used in cloud resilience.

• Multi-criteria metrics aggregate and summarise a variety of metrics into one to take into
account very complex systems.

3 STATE-OF-THE-ART ANALYSIS
After reviewing the work in the previous section, an analysis of the state-of-the-art of resilience
in cloud literature is given in this section. It summarises the techniques used at each layer and
the limitations of these techniques within the context of resilience in cloud environments. The
complexity of the cloud environment is reflected in the multitude of characteristics and methods
involved that enable resilience in cloud systems.

3.1 Techniques and Disciplines—Discussion and Limitations
To reiterate, the work in the previous section was grouped depending upon the layer of the cloud
architecture it focuses upon. Some of the techniques employed may be seen across different lay-
ers but in different forms. Diversity and redundancy are two characteristics that are necessary
attributes for a resilient system, albeit inherently costly. Both may be seen throughout the litera-
ture of cloud resilience in differing forms. The other techniques are autonomic, enabling dynamic
adaptation to persist in service delivery.

The review in the previous section examined literature on cloud resilience for technique, archi-
tectural component applied, resilience disciplines used, and the cloud layer in which the work is
situated. Figure 2 classifies the techniques used to achieve resilience in the cloud into three separate
categories: redundancy, diversity, and autonomic management. Many of these techniques require
no description, such as redundancy and diversity in hardware. However, the autonomic techniques
may be considerably more complex and will provide for new avenues of research. For example, the

ACM Computing Surveys, Vol. 53, No. 3, Article 59. Publication date: May 2020.

On Resilience in Cloud Computing: A Survey of Techniques across the Cloud Domain 59:25

Table 9. Summary of Cloud Resilience Techniques and Their Limitations

Layer Techniques Summary Limitations
Physical layer and data centre Redundant network links and data centres Costly redundancy

Diversity through data-centre and server
placement

Not suitable, variable for majority of
cloud users

Autonomic management Centralisation and complexity
Storage resilience Resource replication optimisation State-management complexity.

Costly and could even be eliminated
in certain use-cases

Atomic instance Replication with some optimisation, e.g.,
checkpointing

State-management complexity.
Costly and could even be eliminated
in certain use-cases

Virtual networking Intelligent link selection and lower-level
mapping

Requires accurate information
exchange, complexity

Traffic aggregation Reduces compartmentalisation and
therefore incident isolation

Autonomic management Centralisation and complexity
Cloud management Service orchestration Complexity, multiple conflicting

goals (SLAs)
Task scheduling Complexity, multiple conflicting

goals (SLAs)
Component monitoring Resource-intensive
Centralised security management Complexity, resource-intensive,
Instance redundancy: replication,
checkpointing, etc.

Costly

Decentralised architectures Data-driven security methods Cryptography-heavy and
resource-intensive

Some redundancy Questionable resource usage
Decentralised autonomic management Complexity

Alternative architectures Strong diversity techniques Experimental nature suffering from
interoperability, “vendor” lock-in

management techniques to schedule and orchestrate services, and provision hardware are popu-
lar research topics although not always for resilience; while software diversity techniques also see
many different methods from dynamically altering protocols in transit to altering execution path
diversity. Table 9 summarises the techniques and their limitations at each layer in the cloud.

Data-centre and physical resilience techniques leverage redundancy and diversity in both
network links and data-centre distribution, with survivability a notable discipline that is intuitive
given the resilience upon networking at this layer. Most of these works tend to focus on resilience
in inter-data-centre optical networks and most strongly in the placement and provisioning of data
centres. The latest studies push towards software-defined techniques and evaluation/optimisation
with upper-layer techniques. This point illustrates the weakness in attempting resilience at this
layer due to the centralisation of management. Focusing resilience upon these layers is not feasible
for the mast majority of cloud users/providers. Only those that manage at the data centre or optical
fibre link layer can affect this resilience.

Storage resilience techniques largely rely upon fault tolerance, optimising replication to both
reduce the cost and optimise the processes involved. This is likely due to the most prevalent issue
occurring in storage resilience is the failure of physical mediums. These can involve low-level
techniques such as erasure coding or topology/policy-based placement methods. Due to the wealth
of data involved in storage, techniques involving the CIA triad are also prevalent. Arguably, data

ACM Computing Surveys, Vol. 53, No. 3, Article 59. Publication date: May 2020.

59:26 T. Welsh and E. Benkhelifa

storage is a point of weakness in environments due to its cost and high target for theft. Therefore,
a better method of resilience might be to prevent its long-term storage at all, where possible. These
techniques, although attempting to optimise storage usage, are still strongly resource-intensive.

Atomic instance resilience techniques, as with storage, mostly focus upon fault-tolerance tech-
niques enabling process and system-level snapshots and replication. Again, as with storage, these
techniques are very resource-intensive and highlight the weakness in statefull applications oper-
ating in these environments. On a slightly higher level, hypervisor resilience techniques can again
be seen using replication techniques, although the diversity in compiler and runtimes is certainly
an interesting and effective method if deployed correctly and with managed complexity.

Virtual networking techniques also tend to focus on survivability with some fault tolerance
and traffic tolerance also. This is again an intuitive finding, given the network-oriented nature
of these works. Overall, the techniques seen will often use some intelligence to optimise the way
virtual overlay networks select links or route traffic upon the lower-level physical networks, with
some resource optimisation occurring to aggregate traffic on links with similar requirements
and diversity selected to maximise survivability. Overall, physical-aware virtual techniques show
strong performance results. Virtual networks have been used for resiliency for a considerable
time, and it could be argued that many elementary networking techniques (e.g., VLANS) are
virtual abstractions of underlying resources leveraged to increase resilience. The current drive
towards software-defined-networking [102] is therefore a strong contender and proponent for
using virtual networking to provide resilience. However, software-defined environments have
considerable complexity and are often found in centralised form, therefore must be managed to
enable its resilience.

Cloud management resilience techniques have the largest body of works. These tend to focus
on the management of virtual resources (mostly virtual instances) to enable a wide variety of
disciplines, such as fault tolerance and robustness, but also a number of security disciplines, too.
This shift in focus from the other layers (which tend to focus on one isolated discipline or cloud
component) is likely due to the more holistic perspective at this layer. Component monitoring is a
prominent method here, with the orchestration and scheduling of services also highly ranked. The
majority of these techniques are accomplished through a novel middleware, with interoperability
a crucial enabling factor. Overall, this layer provides a clear advantage to conduct resilience and is
arguably essential in either monitoring or execution. Some limitations of techniques at this layer
include the lack of ability to affect lower-level resilience, the huge complexity involved, and the
contrasting objectives between different applications.

Decentralised cloud resilience studies are spread across a number of disciplines. Survivabil-
ity and fault tolerance are present as before, but a number of security disciplines can be seen in
addition to disruption and traffic tolerance. These techniques often focus on networking, such as
routing or middleware. However, the data-driven nature of these environments, coupled with the
inherently low security, drives data security methods. Techniques such as ABE and anomaly intru-
sion detection are low-resource alternatives to traditional security solutions, designed to operate in
hostile environments. Redundancy is still prevalent despite the lack of resources through the use of
instance checkpointing, although the efficacy of this is questionable. What is missing from these
disciplines are those disciplines that provide strong network resilience due to high node churn,
which may become an issue in contested and highly mobile smart environments in the future.

Alternative architectures present some variety on those previously mentioned. Diversity
techniques are strongly represented, from topology-based geo-spatial techniques on consumer
hardware, execution-level techniques, or simply including diversity into every aspect of the ar-
chitecture. The lack of redundancy-based techniques over diversity could be argued as an attempt
to move away from the costly methods that undoubtedly have a negative effect. The primary

ACM Computing Surveys, Vol. 53, No. 3, Article 59. Publication date: May 2020.

On Resilience in Cloud Computing: A Survey of Techniques across the Cloud Domain 59:27

Fig. 3. Cloud resilience techniques used at each layer with corresponding actor influence upon resilience.
0=No influence, 1=Mild Influence, 2=Moderate Influence, 3=Definite Influence.

limitations of these works is that most of these architectures are experimental, yet evidence that
drastically diverging from the traditional cloud architecture to provide stronger resilience yet meet
the functional requirements is possible and effective.

3.2 Resilience Techniques and Actor Influence
It is also necessary to understand which actors can influence resilience at each layer. Therefore,
Figure 3 illustrates the different techniques applied by actors at each layer. As the resilience tech-
niques discovered focus mostly upon the resilience of the service as it is composed, the three most
relevant actors were chosen: the CSP, the user, and also the cloud broker. The cloud auditor and
cloud carrier (as defined by NIST [76]) were excluded due to their lesser influence upon service
composition. The rationale for each actor’s influence at each layer is defined in Table 10, ranked
from 0 (no influence) to 3 (definite influence). The stronger user influence with VR can be strongly
seen. Additionally, the more even distribution of influence at decentralised vs centralised cloud
layers highlights a shift in responsibility.

3.3 Research Gaps
After an analysis of the previous work, a number of gaps may be seen in literature that may be
addressed in future work. This work can span multiple levels but specifically concerns resilience
in cloud environments that are disparate from the traditional cloud architectures.

3.3.1 Focus on specific layers. A key factor that is deemed relevant to the growing field of cloud,
which is one only investigated in an isolated context, is how does the effect of resilience upon
one layer affect the resilience of another layer? For example, if resilience is enabled by a user
in the platform/service-oriented layers but the underlying physical layer has low resilience, to
what extent is it still possible to enable increase of resilience in this manner? Such a topic is highly
relevant to the way in which cloud architectures are evolving to more mobile and less deterministic

ACM Computing Surveys, Vol. 53, No. 3, Article 59. Publication date: May 2020.

59:28 T. Welsh and E. Benkhelifa

Table 10. Rationale for Actor Influence upon Cloud Resilience Techniques

Layer CSP Broker User
DC and Physical 3 – Has definite control over the

selection of DCs, links, and
cloud management.

1 – Minimal selection
capacity

1 – Minimal selection
capacity

Storage and atomic
instance

3 – Ultimate control over
replication techniques chosen

1- Minimal technique
selection

2 – Some control over data
and software

VNetworking 3 – Ultimate control over traffic,
links, and management

1- Minimal technique
selection

2- Some control over virtual
overlays

Cloud management 3 – Ultimate control over all
aspects of cloud management

2 – Some capacity for
orchestration, etc.

0 – No capacity

Decentralised 2 – Cloud roles and
responsibilities become dynamic

2 – Some capacity to
select providers

2 – Influence with providers,
geospatial, and own devices

Alternative 3 – Has ultimate control over
management although often
autonomic

2 – Some capacity to
select providers

2 – Stronger influence with
user-driven models

networks and away from highly deterministic data centre environment. This has been touched on
in some works such as the mapping from VNETS to physical networks [22], but there does not
exist models or metrics to determine it for whole delivery platforms, i.e., a resilient PaaS on a
non-resilient infrastructure. In addition, this touches on the efforts of the layered resilience model,
which was the focus of the state-of-the-art survey.

In terms of physical layer resilience, the exact effect upon resilience in the cloud with different
levels of diverse hardware has seen minimal work. Therefore, future research directions in this area
could see the exact effect of diversification of hardware resources upon the resilience of a system
be investigated. Barriers to this research mostly involve cost and time; as the necessary hardware,
proprietary licenses, and practical work involved in evaluating these scenarios ensures it is difficult
to implement. However, simulations may enable a realisation of evaluating this approach.

3.3.2 Constraints and Adaptive Resilience. The ability to dynamically adjust within constrained
environments is another area not touched upon sufficiently. While some work within engineering
has focused upon applying dynamic algorithms to graph analysis and optimisation, little work has
been conducted that leverages this for the cloud. Again, this has particular relevance for mobile en-
vironments due to the constrained resources available for optimisation and the more dynamic en-
vironment. Autonomic optimisation in WSNs is not a new concept [74]. Portocarrero et al. conduct
a systematic review [92] and a number of optimisation and routing techniques [35]. Autonomic
self-* characteristics are employed in certain types of networking but further work can involve an
evaluation and comparison of different algorithms for both traditional and mobile cloud environ-
ments. Another area that could be expanded upon is the theoretical nature of enabling resilience
within the context of various constraints. This has particular relevance to cloud SLA but also to
constrained models. In short, it concerns the analysis of requirements to enable the degree of re-
silience for the service. As resilience can be considered a scale (i.e., with state-based metrics) as
opposed to a binary value, such a model could aid the construction of a service within its given
constraints across all cloud service models.

3.3.3 Emerging Cloud Paradigms. Although not resilience-specific, techniques are continuously
emerging that attempt to further optimise cloud processes. These are worthy of consideration,
given their potential effect upon resilience, although studies are largely lacking in literature. For
example, data-centre disaggregation is one such technique that involves managing cloud DCs in
a resource-centric manner. This is in contrast to traditional server-centric DCs where physical

ACM Computing Surveys, Vol. 53, No. 3, Article 59. Publication date: May 2020.

On Resilience in Cloud Computing: A Survey of Techniques across the Cloud Domain 59:29

resources (e.g., compute and memory) are stored on a single server. Through disaggregation, sim-
ilar resources can be physically decoupled and mounted together in same-resource blades or even
racks [114]. This is envisioned to vastly optimise resource management. Pages et al. illustrate a 50%
increase in virtual instance capacity in optically connected intra-DCs [89]. Not only limited to the
centralised cloud, Ajibola et al. illustrate a reduction in 50% of required fog nodes for specific tasks
[4]. Strong performance increases across a variety of paradigms enhances the possibility of uptake.
However, few works can be seen that highlight how these techniques affect resilience. At first
glance, homogenous resources spatially grouped together increases the likelihood of low avail-
ability of a specific resource and thus is not resilient. Conversely, enhanced and dynamic resource
optimisation may enable dynamic fault tolerance. There is considerable variation in effects upon
resilience with this new paradigm, which should therefore be studied prior to its implementation.

3.3.4 Decentralised Cloud. Arguably, the requirement for resilience at the decentralised cloud
layer (i.e., close to the edge) is greater than the centralised due to data-centre hardware being
resilient by nature. Such constrained environments have less ability to fall back upon redun-
dancy and cryptographic methods to provide their resilience and generally operate in a hostile
environment. They might also employ a variety of diversity-related techniques due to disparate
hardware involved. The foundation of IoT networks of WSNs and MANETS have seen bodies of
literature [17, 133] attempting to optimise resilient communication, security, and so on. It could
therefore be argued that the entire focus of these disciplines is in delivering a resilient platform
given the hostile environment in which they operate. However, the decentralised disciplines
defined previously consist of more than simply IoT networks. There is now an entire ecosystem
where continuously evolving use-cases demand rich data processing at any and all layers from
the IoT device, to the transportation/fog layer back to the centralised cloud. These networks are
heterogeneous and non-deterministic, which further complicate matters. Traffic will traverse
multiple governance domains, operate on a diverse plethora of hardware/software configurations,
and requirements for performance and resilience will change in fractions of a second according
to external and internal requirements.

3.4 Challenges for Resilience in Cloud Computing
A final meta-analysis of the results of this survey highlights challenges for resilience in cloud
computing, which we envision will drive new avenues of research. Characteristics that create
challenges to cloud resilience are discussed below:

(1) Use-case Diversity - While cloud environments are inherently employed to provide re-
sources for diverse use-cases, resilience techniques tend to be developed for specific use-
cases. This highlighted the need for cloud environments to provide adaptive resilience
according to the need. Integrating a plethora of techniques and selecting the most appro-
priate is thus an ongoing challenge for the current and emerging cloud.

(2) Uncertain and dynamic governance and responsibility - Traditional cloud delivery
models (SaaS/PaaS/IaaS) define clear responsibility boundaries between the CSP and the
user. They can assist in determining which actor can affect resilience at which layer. How-
ever, in decentralised cloud disciplines, particularly those with node mobility (e.g., MEC
and fog computing), these actors can dynamically change according to physical bound-
aries and network requirements. Ensuring the capacity to both understand and monitor
who has responsibility for resilience extemporaneously is crucial to providing resilience
in decentralised clouds.

(3) Evolving cloud paradigms - Summarising a key concern during this survey is the man-
ner in which cloud computing, as a concept, is continuously in flux. Driven by both

ACM Computing Surveys, Vol. 53, No. 3, Article 59. Publication date: May 2020.

59:30 T. Welsh and E. Benkhelifa

changing use-cases and continuous strives for optimisation, the deployment of new and
emerging cloud paradigms poses a challenge to service resilience. The resilience of new
techniques should be considered during their development and not post-deployment.

4 CONCLUSION
In conclusion, within this paper we provided a contribution to knowledge through a comprehen-
sive review and analysis of literature that focuses upon providing resilience across the entire cloud
computing consortium. The analysis was structured according to a novel methodology using spe-
cific layers within the cloud architecture to accommodate the complexity of these environments.
This provided a greater insight into the techniques employed and which were lacking at each
layer. We highlighted a number of gaps in literature that focused mostly on the greater need for
resilience at decentralised layers and the edge. First, we note that almost no works consider the
resilience of both centralised and decentralised cloud architectures in tandem. Applications for
resilience that vary according to the underlying requirements and can be distributed across mul-
tiple disciplines are essential due to the increasing and wide ranging use-cases for these areas.
We also note that many cloud resilience techniques rely on the costly method of redundancy. The
“seemingly unlimited” resources available in centralised cloud environments will be a key driver
of these techniques. However, for decentralised cloud disciplines, this is less applicable due to their
resource-constrained nature. One solution is to move to stateless applications where storage re-
dundancy is not needed. Autonomic techniques for managing decentralisation are highlighted as a
strong candidate for resilience in constrained environments. Finally, understanding and consider-
ing the dynamic boundaries of responsibilities for resilience in emerging and decentralised cloud
is vital.

REFERENCES
[1] N. A. S. Abdullah, N. L. Md Noor, and E. N. M. Ibrahim. 2013. Resilient organization: Modelling the capacity for re-

silience. In Proceedings of the International Conference on Research and Innovation in Information Systems (ICRIIS’13).
319–324. DOI:https://doi.org/10.1109/ICRIIS.2013.6716729

[2] Yuan Ai, Mugen Peng, and Kecheng Zhang. 2018. Edge computing technologies for Internet of Things: A primer.
Dig. Commun. Netw. 4, 2 (2018), 77–86. DOI:https://doi.org/10.1016/j.dcan.2017.07.001

[3] M. Aibin and K. Walkowiak. 2018. Monte Carlo tree search for cross-stratum optimization of survivable inter-data
center elastic optical network. In Proceedings of the 10th International Workshop on Resilient Networks Design and
Modeling (RNDM’18). 1–7. DOI:https://doi.org/10.1109/RNDM.2018.8489841

[4] Opeyemi O. Ajibola, Taisir E. H. El-Gorashi, and Jaafar M. H. Elmirghani. 2019. Disaggregation for improved ef-
ficiency in fog computing era. In Proceedings of the 21st International Conference on Transparent Optical Networks
(ICTON’19). IEEE, 1–7.

[5] Mahmoud Al-Ayyoub, Muneera Al-Quraan, Yaser Jararweh, Elhadj Benkhelifa, and Salim Hariri. 2018. Resilient
service provisioning in cloud based data centers. Fut. Gen. Comput. Syst. 86 (2018), 765–774. DOI:https://doi.org/10.
1016/j.future.2017.07.005

[6] M. J. F. Alenazi and J. P. G. Sterbenz. 2015. Comprehensive comparison and accuracy of graph metrics in predict-
ing network resilience. In Proceedings of the 11th International Conference on the Design of Reliable Communication
Networks (DRCN’15). 157–164. DOI:https://doi.org/10.1109/DRCN.2015.7149007

[7] M. J. F. Alenazi and J. P. G. Sterbenz. 2015. Evaluation and improvement of network resilience against attacks using
graph spectral metrics. In Proceedings of the Resilience Week Symposium (RWS’15). 1–6. DOI:https://doi.org/10.1109/
RWEEK.2015.7287447

[8] S. Antony, S. Antony, A. S. A. Beegom, and M. S. Rajasree. 2012. Task scheduling algorithm with fault tolerance for
cloud. In Proceedings of the International Conference on Computing Sciences. 180–182. DOI:https://doi.org/10.1109/
ICCS.2012.71

[9] A. Aral and I. Brandic. 2018. Dependency mining for service resilience at the edge. In Proceedings of the IEEE/ACM
Symposium on Edge Computing (SEC’18). 228–242. DOI:https://doi.org/10.1109/SEC.2018.00024

[10] J. P. Araujo Neto, D. M. Pianto, and C. G. Ralha. 2018. An agent-based fog computing architecture for resilience
on Amazon EC2 spot instances. In Proceedings of the 7th Brazilian Conference on Intelligent Systems (BRACIS’18).
360–365. DOI:https://doi.org/10.1109/BRACIS.2018.00069

ACM Computing Surveys, Vol. 53, No. 3, Article 59. Publication date: May 2020.

On Resilience in Cloud Computing: A Survey of Techniques across the Cloud Domain 59:31

[11] A. C. Baktir, A. Ozgovde, and C. Ersoy. 2017. How can edge computing benefit from software-defined networking:
A survey, use cases, and future directions. IEEE Commun. Surv. Tutor. 19, 4 (2017), 2359–2391. DOI:https://doi.org/
10.1109/COMST.2017.2717482

[12] I. B. Barla, K. Hoffmann, M. Hoffmann, D. A. Schupke, and G. Carle. 2013. Shared protection in virtual networks.
In Proceedings of the IEEE International Conference on Communications Workshops (ICC’13). 240–245. DOI:https:
//doi.org/10.1109/ICCW.2013.6649236

[13] I. B. Barla, D. A. Schupke, and G. Carle. 2012. Delay performance of resilient cloud services over networks. In Pro-
ceedings of the IEEE 10th International Symposium on Parallel and Distributed Processing with Applications (ISPA’12).
512–517. DOI:https://doi.org/10.1109/ISPA.2012.75

[14] I. B. Barla, D. A. Schupke, M. Hoffmann, and G. Carle. 2013. Optimal design of virtual networks for resilient cloud ser-
vices. In Proceedings of the 9th International Conference on the Design of Reliable Communication Networks (DRCN’13).
218–225.

[15] I. B. Barla Harter, D. A. Schupke, M. Hoffmann, and G. Carle. 2015. Optimal design of resilient virtual networks.
IEEE/OSA J. Opt. Commun. Netw. 7, 2 (Feb. 2015), A218–A234. DOI:https://doi.org/10.1364/JOCN.7.00A218

[16] A. Benameur, N. S. Evans, and M. C. Elder. 2013. Cloud resiliency and security via diversified replica execution
and monitoring. In Proceedings of the 6th International Symposium on Resilient Control Systems (ISRCS’13). 150–155.
DOI:https://doi.org/10.1109/ISRCS.2013.6623768

[17] E. Benkhelifa, T. Welsh, and W. Hamouda. 2018. A critical review of practices and challenges in intrusion detec-
tion systems for IoT: Toward universal and resilient systems. IEEE Commun. Surv. Tutor. 20, 4 (2018), 3496–3509.
DOI:https://doi.org/10.1109/COMST.2018.2844742

[18] K. E. Benson, G. Wang, N. Venkatasubramanian, and Y. Kim. 2018. Ride: A resilient IoT data exchange middleware
leveraging SDN and edge cloud resources. In Proceedings of the IEEE/ACM 3rd International Conference on Internet-
of-Things Design and Implementation (IoTDI’18). 72–83. DOI:https://doi.org/10.1109/IoTDI.2018.00017

[19] Alysson Bessani, Miguel Correia, Bruno Quaresma, Fernando André, and Paulo Sousa. 2013. DepSky: Depend-
able and secure storage in a cloud-of-clouds. Trans. Stor. 9, 4, Article 12 (Nov. 2013). DOI:https://doi.org/10.1145/
2535929

[20] Kashif Bilal, Osman Khalid, Aiman Erbad, and Samee U. Khan. 2018. Potentials, trends, and prospects in edge
technologies: Fog, cloudlet, mobile edge, and micro data centers. Comput. Netw. 130 (2018), 94–120. DOI:https:
//doi.org/10.1016/j.comnet.2017.10.002

[21] A. Binun, M. Bloch, S. Dolev, M. R. Kahil, B. Menuhin, R. Yagel, T. Coupaye, M. Lacoste, and A. Wailly. 2014. Self-
stabilizing virtual machine hypervisor architecture for resilient cloud. In Proceedings of the IEEE World Congress on
Services (SERVICES’14). 200–207. DOI:https://doi.org/10.1109/SERVICES.2014.44

[22] Minh Bui, B. Jaumard, and C. Develder. 2013. Anycast end-to-end resilience for cloud services over virtual opti-
cal networks. In Proceedings of the 15th International Conference on Transparent Optical Networks (ICTON’13). 1–7.
DOI:https://doi.org/10.1109/ICTON.2013.6603032

[23] Minh Bui, Ting Wang, B. Jaumard, D. Medhi, and C. Develder. 2014. Time-varying resilient virtual network mapping
for multi-location cloud data centers. In Proceedings of the 16th International Conference on Transparent Optical
Networks (ICTON’16). 1–8. DOI:https://doi.org/10.1109/ICTON.2014.6876287

[24] Gokhan Calis and Onur Ozan Koyluoglu. 2014. Repairable block failure resilient codes. CoRR abs/1406.7264 (2014).
[25] John Cartlidge and Ilango Sriram. 2011. Modelling resilience in cloud-scale data centres. CoRR abs/1106.5457 (2011).
[26] Marco Carvalho, Dipankar Dasgupta, Michael Grimaila, and Carlos Perez. 2011. Mission resilience in cloud comput-

ing: A biologically inspired approach. In Proceedings of the 6th International Conference on Information Warfare and
Security. 42–52.

[27] Sonali Chandna, Nabil Naas, and Hussein Mouftah. 2019. Software defined survivable optical interconnect for data
centers. Opt. Switch. Netw. 31 (2019), 86–99. DOI:https://doi.org/10.1016/j.osn.2018.10.001

[28] Brijesh Kashyap Chejerla and Sanjay K. Madria. 2017. QoS guaranteeing robust scheduling in attack resilient cloud
integrated cyber physical system. Fut. Gen. Comput. Syst. 75 (2017), 145–157. DOI:https://doi.org/10.1016/j.future.
2017.02.034

[29] Mehdi Nazari Cheraghlou, Ahmad Khadem-Zadeh, and Majid Haghparast. 2016. A survey of fault tolerance ar-
chitecture in cloud computing. J. Netw. Comput. Applic. 61 (2016), 81–92. DOI:https://doi.org/10.1016/j.jnca.2015.
10.004

[30] C. Colman-Meixner, C. Develder, M. Tornatore, and B. Mukherjee. 2016. A survey on resiliency techniques in cloud
computing infrastructures and applications. IEEE Commun. Surv. Tutor. 18, 3 (2016), 2244–2281. DOI:https://doi.org/
10.1109/COMST.2016.2531104

[31] R. Courteaud, Yingjie Xu, and C. Cerin. 2012. Practical solutions for resilience in SlapOS. In Proceedings of the IEEE
4th International Conference on Cloud Computing Technology and Science (CloudCom’12). 488–495. DOI:https://doi.
org/10.1109/CloudCom.2012.6427511

ACM Computing Surveys, Vol. 53, No. 3, Article 59. Publication date: May 2020.

59:32 T. Welsh and E. Benkhelifa

[32] Rodrigo S. Couto, Stefano Secci, Miguel Elias M. Campista, and Luís Henrique M. K. Costa. 2015. Server placement
with shared backups for disaster-resilient clouds. Comput. Netw. 93 (2015), 423–434. DOI:https://doi.org/10.1016/j.
comnet.2015.09.039

[33] R. S. Couto, S. Secci, M. E. M. Campista, and L. H. M. K. Costa. 2014. Latency versus survivability in geo-distributed
data center design. In Proceedings of the IEEE Global Communications Conference. 1102–1107. DOI:https://doi.org/
10.1109/GLOCOM.2014.7036956

[34] Brendan Cully, Geoffrey Lefebvre, Dutch Meyer, Mike Feeley, Norm Hutchinson, and Andrew Warfield. 2008.
Remus: High availability via asynchronous virtual machine replication. In Proceedings of the 5th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI’08). USENIX Association. Retrieved from https:
//www.usenix.org/conference/nsdi-08/remus-high-availability-asynchronous-virtual-machine-replication

[35] Miguel Franklin de Castro, Levi Bayde Ribeiro, and Camila Helena Souza Oliveira. 2012. An autonomic bio-inspired
algorithm for wireless sensor network self-organization and efficient routing. J. Netw. Comput. Applic. 35, 6 (2012),
2003–2015. DOI:https://doi.org/10.1016/j.jnca.2012.07.023

[36] I. P. Egwutuoha, S. Chen, D. Levy, and B. Selic. 2012. A fault tolerance framework for high performance comput-
ing in cloud. In Proceedings of the 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGRID’12). 709–710. DOI:https://doi.org/10.1109/CCGrid.2012.80

[37] S. Eisele, I. Mardari, A. Dubey, and G. Karsai. 2017. RIAPS: Resilient information architecture platform for decen-
tralized smart systems. In Proceedings of the IEEE 20th International Symposium on Real-time Distributed Computing
(ISORC’17). 125–132. DOI:https://doi.org/10.1109/ISORC.2017.22

[38] S. Ferdousi, F. Dikhiyik, M. F. Habib, and B. Mukherjee. 2013. Disaster-aware data-center and content placement in
cloud networks. In Proceedings of the IEEE International Conference on Advanced Networks and Telecommunications
Systems (ANTS’13). 1–3. DOI:https://doi.org/10.1109/ANTS.2013.6802881

[39] Marc Eduard Frîncu. 2014. Scheduling highly available applications on cloud environments. Fut. Gen. Comput. Syst.
32 (2014), 138–153. DOI:https://doi.org/10.1016/j.future.2012.05.017

[40] Yue Gao, S. K. Gupta, Yanzhi Wang, and M. Pedram. 2014. An energy-aware fault tolerant scheduling framework for
soft error resilient cloud computing systems. In Proceedings of the Design, Automation and Test in Europe Conference
and Exhibition (DATE’14). 1–6. DOI:https://doi.org/10.7873/DATE.2014.107

[41] G. Garlick. 2011. Improving resilience with community cloud computing. In Proceedings of the 6th International
Conference on Availability, Reliability and Security (ARES’11). 650–655. DOI:https://doi.org/10.1109/ARES.2011.
100

[42] Rahul Ghosh, Francesco Longo, Vijay K. Naik, and Kishor S. Trivedi. 2010. Quantifying resiliency of IaaS cloud. In
Proceedings of the 29th IEEE Symposium on Reliable Distributed Systems (SRDS’10). IEEE Computer Society, Wash-
ington, DC, 343–347. DOI:https://doi.org/10.1109/SRDS.2010.49

[43] J. L. Gonzalez, Jesus Carretero Perez, Victor J. Sosa-Sosa, Luis M. Sanchez, and Borja Bergua. 2015. SkyCDS: A
resilient content delivery service based on diversified cloud storage. Simul. Modell. Pract. Theor. 54 (2015), 64–85.
DOI:https://doi.org/10.1016/j.simpat.2015.03.006

[44] Róża Goścień and Krzysztof Walkowiak. 2017. Modeling and optimization of data center location and routing and
spectrum allocation in survivable elastic optical networks.Opt. Switch. Netw. 23 (2017), 129–143. DOI:https://doi.org/
10.1016/j.osn.2016.06.004

[45] Minzhe Guo and Prabir Bhattacharya. 2014. Diverse virtual replicas for improving intrusion tolerance in cloud. In
Proceedings of the 9th Cyber and Information Security Research Conference (CISR’14). ACM, New York, NY, 41–44.
DOI:https://doi.org/10.1145/2602087.2602116

[46] Salim Hariri, Mohamed Eltoweissy, and Youssif Al-Nashif. 2011. BioRAC: Biologically inspired resilient autonomic
cloud. In Proceedings of the 7th Workshop on Cyber Security and Information Intelligence Research (CSIIRW’11). ACM,
New York, NY. DOI:https://doi.org/10.1145/2179298.2179389

[47] I. B. B. Harter, M. Hoffmann, D. A. Schupke, and G. Carle. 2014. Scalable resilient virtual network design algo-
rithms for cloud services. In Proceedings of the 6th International Workshop on Reliable Networks Design and Modeling
(RNDM’14). 123–130. DOI:https://doi.org/10.1109/RNDM.2014.7014941

[48] I. B. B. Harter, D. A. Schupke, M. Hoffmann, and G. Carle. 2014. Network virtualization for disaster resilience of
cloud services. IEEE Commun. Mag. 52, 12 (Dec. 2014), 88–95. DOI:https://doi.org/10.1109/MCOM.2014.6979957

[49] T. Hecht, P. Smith, and M. Scholler. 2014. Critical services in the cloud: Understanding security and resilience risks.
In Proceedings of the 6th International Workshop on Reliable Networks Design and Modeling (RNDM’14). 131–137.
DOI:https://doi.org/10.1109/RNDM.2014.7014942

[50] A. Hussein, I. H. Elhajj, A. Chehab, and A. Kayssi. 2017. SDN VANETs in 5G: An architecture for resilient security
services. In Proceedings of the 4th International Conference on Software Defined Systems (SDS’17). 67–74. DOI:https:
//doi.org/10.1109/SDS.2017.7939143

ACM Computing Surveys, Vol. 53, No. 3, Article 59. Publication date: May 2020.

On Resilience in Cloud Computing: A Survey of Techniques across the Cloud Domain 59:33

[51] A. Imran, A. U. Gias, R. Rahman, A. Seal, T. Rahman, F. Ishraque, and K. Sakib. 2014. Cloud-Niagara: A high avail-
ability and low overhead fault tolerance middleware for the cloud. In Proceedings of the 16th International Conference
on Computer and Information Technology. 271–276. DOI:https://doi.org/10.1109/ICCITechn.2014.6997344

[52] Abdul Jabbar. 2010. A Framework to Quantify Network Resilience and Survivability. Ph.D. Dissertation. University of
Kansas.

[53] V. Jaiswal, A. Sen, and A. Verma. 2014. Integrated resiliency planning in storage clouds. IEEE Trans. Netw. Serv.
Manag. 11, 1 (Mar. 2014), 3–14. DOI:https://doi.org/10.1109/TNSM.2013.120713.120349

[54] Ravi Jhawar and Vincenzo Piuri. 2013. Fault tolerance and resilience in cloud computing environments. Computer
and Information Security Handbook. Morgan Kaufmann, 125–141.

[55] Xiaoen Ju, Livio Soares, Kang G. Shin, Kyung Dong Ryu, and Dilma Da Silva. 2013. On fault resilience of OpenStack.
In Proceedings of the 4th Symposium on Cloud Computing (SOCC’13). ACM, New York, NY. DOI:https://doi.org/10.
1145/2523616.2523622

[56] M. Kahla, M. Azab, and A. Mansour. 2018. Secure, resilient, and self-configuring fog architecture for untrustwor-
thy IoT environments. In Proceedings of the 17th IEEE International Conference on Trust, Security and Privacy in
Computing and Communications/12th IEEE International Conference on Big Data Science and Engineering (Trust-
Com/BigDataSE’18). 49–54. DOI:https://doi.org/10.1109/TrustCom/BigDataSE.2018.00018

[57] M. Kanter and S. Taylor. 2013. Diversity in cloud systems through runtime and compile-time relocation. In Pro-
ceedings of the IEEE International Conference on Technologies for Homeland Security (HST’13). 396–402. DOI:https:
//doi.org/10.1109/THS.2013.6699037

[58] A. D. Keromytis, R. Geambasu, S. Sethumadhavan, S. J. Stolfo, Junfeng Yang, A. Benameur, M. Dacier, M. Elder,
D. Kienzle, and A. Stavrou. 2012. The MEERKATS cloud security architecture. In Proceedings of the 32nd Interna-
tional Conference on Distributed Computing Systems Workshops (ICDCSW’12). 446–450. DOI:https://doi.org/10.1109/
ICDCSW.2012.42

[59] A. Khalifa, M. Azab, and M. Eltoweissy. 2014. Resilient hybrid mobile ad hoc cloud over collaborating heteroge-
neous nodes. In Proceedings of the International Conference on Collaborative Computing: Networking, Applications
and Worksharing (CollaborateCom’14). 134–143.

[60] C. Klein et al. 2014. Brownout: Building more robust cloud applications. In Proceedings of the 36th International
Conference on Software Engineering.

[61] C. Klein et al. 2014. Improving cloud service resilience using brownout-aware load-balancing. In Proceedings of the
IEEE 33rd International Symposium on Reliable Distributed Systems (SRDS’14). 31–40. DOI:https://doi.org/10.1109/
SRDS.2014.14

[62] J.-C. Laprie. 2005. Resilience for the scalability of dependability. In Proceedings of the 4th IEEE International Sympo-
sium on Network Computing and Applications. 5–6. DOI:https://doi.org/10.1109/NCA.2005.44

[63] M. Le, Z. Song, Y. Kwon, and E. Tilevich. 2017. Reliable and efficient mobile edge computing in highly dynamic
and volatile environments. In Proceedings of the 2nd International Conference on Fog and Mobile Edge Computing
(FMEC’17). 113–120. DOI:https://doi.org/10.1109/FMEC.2017.7946417

[64] X. Li, T. Gao, L. Zhang, Y. Tang, Y. Zhang, and S. Huang. 2018. Survivable K-node (edge) content connected virtual
optical network (KC-VON) embedding over elastic optical data center networks. IEEE Access 6 (2018), 38780–38793.
DOI:https://doi.org/10.1109/ACCESS.2018.2852814

[65] Qianhui Liang and Bu-Sung Lee. 2011. Delivering high resilience in designing platform-as-a-service clouds. In Pro-
ceedings of the IEEE International Conference on Cloud Computing (CLOUD’11). 676–683. DOI:https://doi.org/10.1109/
CLOUD.2011.72

[66] Hsien-Chun Liao and Chien-Fu Cheng. 2014. A malicious-resilient protocol for consistent scheduling problem in
the cloud computing environment. Comput. J. 58, 2 (04 2014), 315–330. DOI:https://doi.org/10.1093/comjnl/bxu028

[67] Guanglei Liu and Chuanyi Ji. 2009. Scalability of network-failure resilience: Analysis using multi-layer probabilistic
graphical models. IEEE/ACM Trans. Netw. 17, 1 (Feb. 2009), 319–331. DOI:https://doi.org/10.1109/TNET.2008.925944

[68] J. Liu and H. Shen. 2016. A low-cost multi-failure resilient replication scheme for high data availability in cloud
storage. In Proceedings of the IEEE 23rd International Conference on High Performance Computing (HiPC’16). 242–251.
DOI:https://doi.org/10.1109/HiPC.2016.036

[69] F. Lombardi, R. Di Pietro, and C. Soriente. 2010. CReW: Cloud resilience for windows guests through monitored
virtualization. In Proceedings of the 29th IEEE Symposium on Reliable Distributed Systems. 338–342. DOI:https://doi.
org/10.1109/SRDS.2010.48

[70] Thouraya Louati, Heithem Abbes, and Christophe Cérin. 2018. LXCloudFT: Towards high availability, fault tolerant
cloud system based Linux containers. J. Parallel Distrib. Comput. 122 (2018), 51–69. DOI:https://doi.org/10.1016/j.
jpdc.2018.07.015

[71] Bing Luo and W. Liu. 2011. The sustainability and survivabiltiy network design for next generation cloud net-
working. In Proceedings of the IEEE 9th International Conference on Dependable, Autonomic and Secure Computing
(DASC’11). 555–560. DOI:https://doi.org/10.1109/DASC.2011.103

ACM Computing Surveys, Vol. 53, No. 3, Article 59. Publication date: May 2020.

59:34 T. Welsh and E. Benkhelifa

[72] P. Mach and Z. Becvar. 2017. Mobile edge computing: A survey on architecture and computation offloading. IEEE
Commun. Surv. Tutor. 19, 3 (2017), 1628–1656. DOI:https://doi.org/10.1109/COMST.2017.2682318

[73] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief. 2017. A survey on mobile edge computing: The communi-
cation perspective. IEEE Commun. Surv. Tutor. 19, 4 (2017), 2322–2358. DOI:https://doi.org/10.1109/COMST.2017.
2745201

[74] David Marsh, Richard Tynan, Donal O’Kane, and Gregory M. P. O’Hare. 2004. Autonomic wireless sensor networks.
Eng. Applic. Artif. Intell. 17, 7 (2004), 741–748. DOI:https://doi.org/10.1016/j.engappai.2004.08.038

[75] David R. Matos, Miguel L. Pardal, Georg Carle, and Miguel Correia. 2018. RockFS: Cloud-backed file system resilience
to client-side attacks. In Proceedings of the 19th International Middleware Conference (Middleware’18). ACM, New
York, NY, 107–119. DOI:https://doi.org/10.1145/3274808.3274817

[76] Peter M. Mell and Timothy Grance. 2011. SP 800-145. The NIST Definition of Cloud Computing. Technical Report.
National Institute of Science and Technology.

[77] Madalin Mihailescu et al. 2011. Enhancing application robustness in cloud data centers. In Proceedings of the Con-
ference of the Center for Advanced Studies on Collaborative Research (CASCON’11). IBM Corp., 133–147.

[78] Bahareh Alami Milani and Nima Jafari Navimipour. 2016. A comprehensive review of the data replication techniques
in the cloud environments: Major trends and future directions. J. Netw. Comput. Applic. 64 (2016), 229–238. DOI:https:
//doi.org/10.1016/j.jnca.2016.02.005

[79] A. Modarresi, S. Gangadhar, and J. P. G. Sterbenz. 2017. A framework for improving network resilience using SDN
and fog nodes. In Proceedings of the 9th International Workshop on Resilient Networks Design and Modeling (RNDM’17).
1–7. DOI:https://doi.org/10.1109/RNDM.2017.8093036

[80] A. Modarresi and J. P. G. Sterbenz. 2017. Toward resilient networks with fog computing. In Proceedings of the 9th
International Workshop on Resilient Networks Design and Modeling (RNDM’17). 1–7. DOI:https://doi.org/10.1109/
RNDM.2017.8093032

[81] Yehia H. Khalil Mohamed. 2011. Data center resilience assessment: Storage, networking and security. PhD Thesis.
University of Louisville. http://ir.library.louisville.edu/cgi/viewcontent.cgi?article=1995&context=etd.

[82] C. Mouradian, D. Naboulsi, S. Yangui, R. H. Glitho, M. J. Morrow, and P. A. Polakos. 2018. A comprehensive survey on
fog computing: State-of-the-art and research challenges. IEEE Commun. Surv. Tutor. 20, 1 (2018), 416–464. DOI:https:
//doi.org/10.1109/COMST.2017.2771153

[83] Rekha Nachiappan, Bahman Javadi, Rodrigo N. Calheiros, and Kenan M. Matawie. 2017. Cloud storage reliability
for big data applications: A state-of-the-art survey. J. Netw. Comput. Applic. 97 (2017), 35–47. DOI:https://doi.org/
10.1016/j.jnca.2017.08.011

[84] W. Najjar and J.-L. Gaudiot. 1990. Network resilience: A measure of network fault tolerance. IEEE Trans. Comput.
39, 2 (Feb. 1990), 174–181. DOI:https://doi.org/10.1109/12.45203

[85] Toan Nguyen, J.-A. Desideri, and L. Trifan. 2012. Applications resilience on clouds. In Proceedings of the International
Conference on High Performance Computing and Simulation (HPCS’12). 60–66. DOI:https://doi.org/10.1109/HPCSim.
2012.6266891

[86] B. Nicolae and F. Cappello. 2011. BlobCR: Efficient checkpoint-restart for HPC applications on IaaS clouds using
virtual disk image snapshots. In Proceedings of the International Conference for High Performance Computing, Net-
working, Storage and Analysis (SC’11). 1–12. DOI:https://doi.org/10.1145/2063384.2063429

[87] Opeyemi Osanaiye, Kim-Kwang Raymond Choo, and Mqhele Dlodlo. 2016. Distributed denial of service (DDoS)
resilience in cloud: Review and conceptual cloud DDoS mitigation framework. J. Netw. Comput. Applic. 67 (2016),
147–165. DOI:https://doi.org/10.1016/j.jnca.2016.01.001

[88] Umar Ozeer, Xavier Etchevers, Loïc Letondeur, François-Gaël Ottogalli, Gwen Salaün, and Jean-Marc Vincent. 2018.
Resilience of stateful IoT applications in a dynamic fog environment. In Proceedings of the 15th EAI International
Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services (MobiQuitous’18). ACM, New
York, NY, 332–341. DOI:https://doi.org/10.1145/3286978.3287007

[89] Albert Pages, Rubén Serrano, Jordi Perelló, and Salvatore Spadaro. 2017. On the benefits of resource disaggregation
for virtual data centre provisioning in optical data centres. Comput. Commun. 107 (2017), 60–74.

[90] J. Pan and J. McElhannon. 2018. Future edge cloud and edge computing for Internet of Things applications. IEEE
Internet Things J. 5, 1 (Feb. 2018), 439–449. DOI:https://doi.org/10.1109/JIOT.2017.2767608

[91] Deepak Poola, Mohsen Amini Salehi, Kotagiri Ramamohanarao, and Rajkumar Buyya. 2017. A taxonomy and survey
of fault-tolerant workflow management systems in cloud and distributed computing environments. In Software
Architecture for Big Data and the Cloud, Ivan Mistrik, Rami Bahsoon, Nour Ali, Maritta Heisel, and Bruce Maxim
(Eds.). Morgan Kaufmann, Boston, MA, 285–320. DOI:https://doi.org/10.1016/B978-0-12-805467-3.00015-6

[92] Jesús M. T. Portocarrero, Flávia C. Delicato, Paulo F. Pires, Nadia Gámez, Lidia Fuentes, David Ludovino, and Paulo
Ferreira. 2014. Autonomic wireless sensor networks: A systematic literature review. J. Sensors 2014 (2014). https:
//www.hindawi.com/journals/js/2014/782789/.

ACM Computing Surveys, Vol. 53, No. 3, Article 59. Publication date: May 2020.

On Resilience in Cloud Computing: A Survey of Techniques across the Cloud Domain 59:35

[93] J. S. Preden, K. Tammemäe, A. Jantsch, M. Leier, A. Riid, and E. Calis. 2015. The benefits of self-awareness and
attention in fog and mist computing. Computer 48, 7 (July 2015), 37–45. DOI:https://doi.org/10.1109/MC.2015.207

[94] Y. Qu and N. Xiong. 2012. RFH: A resilient, fault-tolerant and high-efficient replication algorithm for distributed
cloud storage. In Proceedings of the 41st International Conference on Parallel Processing. 520–529. DOI:https://doi.org/
10.1109/ICPP.2012.3

[95] C. Queiroz, S. K. Garg, and Z. Tari. 2013. A probabilistic model for quantifying the resilience of networked systems.
IBM J. Res. Dev. 57, 5 (Sept. 2013), 3:1–3:9. DOI:https://doi.org/10.1147/JRD.2013.2259433

[96] H. P. Reiser and R. Kapitza. 2007. Hypervisor-based efficient proactive recovery. In Proceedings of the 26th IEEE
International Symposium on Reliable Distributed Systems (SRDS’07).. 83–92. DOI:https://doi.org/10.1109/SRDS.2007.
25

[97] R. Rios, R. Roman, J. A. Onieva, and J. Lopez. 2017. From SMOG to fog: A security perspective. In Proceedings of
the 2nd International Conference on Fog and Mobile Edge Computing (FMEC’17). 56–61. DOI:https://doi.org/10.1109/
FMEC.2017.7946408

[98] Rodrigo Roman, Javier Lopez, and Masahiro Mambo. 2018. Mobile edge computing, Fog et al.: A survey and analysis
of security threats and challenges. Fut. Gen. Comput. Syst. 78 (2018), 680–698. DOI:https://doi.org/10.1016/j.future.
2016.11.009

[99] V. Salapura, R. Harper, and M. Viswanathan. 2013. Resilient cloud computing. IBM J. Res. Dev. 57, 5 (Sept. 2013),
10:1–10:12. DOI:https://doi.org/10.1147/JRD.2013.2266972

[100] Arjuna Sathiaseelan, Mennan Selimi, Carlos Molina, Adisorn Lertsinsrubtavee, Leandro Navarro, Felix Freitag, Fer-
nando Ramos, and Roger Baig. 2017. Towards decentralised resilient community clouds. In Proceedings of the 2nd
Workshop on Middleware for Edge Clouds & Cloudlets (MECC’17). ACM, New York, NY. DOI:https://doi.org/10.1145/
3152360.3152363

[101] Daniel J. Scales, Mike Nelson, and Ganesh Venkitachalam. 2010. The design of a practical system for fault-tolerant
virtual machines. SIGOPS Oper. Syst. Rev. 44, 4 (Dec. 2010), 30–39. DOI:https://doi.org/10.1145/1899928.1899932

[102] Sibylle Schaller and Dave Hood. 2017. Software defined networking architecture standardization. Comput. Stand.
Interf. 54 (2017), 197–202. DOI:https://doi.org/10.1016/j.csi.2017.01.005 SI: Standardization SDN&NFV.

[103] M. Scholler et al. 2013. Resilient deployment of virtual network functions. In Proceedings of the 5th International
Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT’13). 208–214. DOI:https:
//doi.org/10.1109/ICUMT.2013.6798428

[104] M. Scholler, R. Bless, F. Pallas, J. Horneber, and P. Smith. 2013. An architectural model for deploying critical infras-
tructure services in the cloud. In Proceedings of the IEEE 5th International Conference on Cloud Computing Technology
and Science (CloudCom’13), Vol. 1. 458–466. DOI:https://doi.org/10.1109/CloudCom.2013.67

[105] S. Secci and S. Murugesan. 2014. Cloud networks: Enhancing performance and resiliency. Computer 47, 10 (Oct.
2014), 82–85. DOI:https://doi.org/10.1109/MC.2014.277

[106] Vibhu Saujanya Sharma and Aravindan Santharam. 2013. Implementing a resilient application architecture for state
management on a PaaS cloud. In Proceedings of the IEEE International Conference on Cloud Computing Technology
and Science (CLOUDCOM’13), Vol. 1. IEEE Computer Society, Washington, DC, 142–147.

[107] Noor-ul-hassan Shirazi, Steven Simpson, Simon Oechsner, Andreas Mauthe, and David Hutchison. 2015. A frame-
work for resilience management in the cloud. Elekt. Inf. 132, 2 (1 Mar. 2015), 122–132. DOI:https://doi.org/10.1007/
s00502-015-0290-9

[108] Bruno Sousa, Kostas Pentikousis, and Marilia Curado. 2014. MeTHODICAL: Towards the next generation of multi-
homed applications. Comput. Netw. 65 (2014), 21–40.

[109] B. Sousa, K. Pentikousis, and M. Curado. 2014. Optimizing quality of resilience in the cloud. In Proceedings of
the Global Communications Conference (GLOBECOM’14). 1133–1138. DOI:https://doi.org/10.1109/GLOCOM.2014.
7036961

[110] R. Souza Couto, S. Secci, M. Mitre Campista, and L. M. Kosmalski Costa. 2014. Network design requirements for
disaster resilience in IaaS clouds. IEEE Commun. Mag. 52, 10 (Oct. 2014), 52–58. DOI:https://doi.org/10.1109/MCOM.
2014.6917402

[111] J. P. G. Sterbenz and P. Kulkarni. 2013. Diverse infrastructure and architecture for datacenter and cloud resilience.
In Proceedings of the 22nd International Conference on Computer Communications and Networks (ICCCN’13). 1–7.
DOI:https://doi.org/10.1109/ICCCN.2013.6614125

[112] James P. G. Sterbenz, David Hutchison, Egemen K. Çetinkaya, Abdul Jabbar, Justin P. Rohrer, Marcus Schöller, and
Paul Smith. 2010. Resilience and survivability in communication networks: Strategies, principles, and survey of
disciplines. Comput. Netw. 54, 8 (June 2010), 1245–1265.

[113] G. Suciu, C. Cernat, G. Todoran, V. Suciu, V. Poenaru, T. Militaru, and S. Halunga. 2012. A solution for implementing
resilience in open source cloud platforms. In Proceedings of the 9th International Conference on Communications
(COMM’12). 335–338. DOI:https://doi.org/10.1109/ICComm.2012.6262565

ACM Computing Surveys, Vol. 53, No. 3, Article 59. Publication date: May 2020.

59:36 T. Welsh and E. Benkhelifa

[114] J. Suzuki, Y. Hidaka, J. Higuchi, Y. Hayashi, M. Kan, and T. Yoshikawa. 2016. Disaggregation and sharing of I/O
devices in cloud data centers. IEEE Trans. Comput. 65, 10 (Oct. 2016), 3013–3026. DOI:https://doi.org/10.1109/TC.
2015.2513759

[115] A. Tchana, L. Broto, and D. Hagimont. 2012. Approaches to cloud computing fault tolerance. In Proceedings of the
International Conference on Computer, Information and Telecommunication Systems (CITS’12). 1–6. DOI:https://doi.
org/10.1109/CITS.2012.6220386

[116] M. H. C. Torres and T. Holvoet. 2014. Self-adaptive resilient service composition. In Proceedings of the International
Conference on Cloud and Autonomic Computing (ICCAC’14). 141–150. DOI:https://doi.org/10.1109/ICCAC.2014.33

[117] Phuoc Nguyen Tran and Nadia Boukhatem. 2008. The distance to the ideal alternative (DiA) algorithm for interface
selection in heterogeneous wireless networks. In Proceedings of the 6th ACM International Symposium on Mobility
Management and Wireless Access (MobiWac’08). ACM, New York, NY, 61–68.

[118] Manghui Tu and Dianxiang Xu. 2013. System resilience modeling and enhancement for the cloud. In Proceedings
of the International Conference on Computing, Networking and Communications (ICNC’13). 1021–1025. DOI:https:
//doi.org/10.1109/ICCNC.2013.6504231

[119] D. Vasconcelos, V. Severino, J. Neuman, R. Andrade, and M. Maia. 2018. Bio-inspired model for data distribution in fog
and mist computing. In Proceedings of the IEEE 42nd Computer Software and Applications Conference (COMPSAC’18),
Vol. 02. 777–782. DOI:https://doi.org/10.1109/COMPSAC.2018.10336

[120] P. Verissimo, A. Bessani, and M. Pasin. 2012. The TClouds architecture: Open and resilient cloud-of-clouds comput-
ing. In Proceedings of the IEEE/IFIP 42nd International Conference on Dependable Systems and Networks Workshops
(DSN-W’12). 1–6. DOI:https://doi.org/10.1109/DSNW.2012.6264686

[121] Alexandre Viejo and David Sánchez. 2019. Secure and privacy-preserving orchestration and delivery of fog-enabled
IoT services. Ad Hoc Netw. 82 (2019), 113–125. DOI:https://doi.org/10.1016/j.adhoc.2018.08.002

[122] M. Villarreal-Vasquez, B. Bhargava, P. Angin, N. Ahmed, D. Goodwin, K. Brin, and J. Kobes. 2017. An MTD-based
self-adaptive resilience approach for cloud systems. In Proceedings of the IEEE 10th International Conference on Cloud
Computing (CLOUD’17). 723–726. DOI:https://doi.org/10.1109/CLOUD.2017.101

[123] C. Wang, Q. Wang, K. Ren, N. Cao, and W. Lou. 2012. Toward secure and dependable storage services in cloud
computing. IEEE Trans. Serv. Comput. 5, 2 (Apr. 2012), 220–232. DOI:https://doi.org/10.1109/TSC.2011.24

[124] S. Wang, X. Zhang, Y. Zhang, L. Wang, J. Yang, and W. Wang. 2017. A survey on mobile edge networks: Convergence
of computing, caching, and communications. IEEE Access 5 (2017), 6757–6779. DOI:https://doi.org/10.1109/ACCESS.
2017.2685434

[125] T. Welsh and E. Benkhelifa. 2017. Perspectives on resilience in cloud computing: Review and trends. In Proceedings of
the IEEE/ACS 14th International Conference on Computer Systems and Applications (AICCSA’17). 696–703. DOI:https:
//doi.org/10.1109/AICCSA.2017.221

[126] V. R. Westmark. 2004. A definition for information system survivability. In Proceedings of the 37th Hawaii Interna-
tional Conference on System Sciences. DOI:https://doi.org/10.1109/HICSS.2004.1265710

[127] Xin Xu and H. H. Huang. 2015. DualVisor: Redundant hypervisor execution for achieving hardware error resilience
in datacenters. In Proceedings of the 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGrid’15). 485–494. DOI:https://doi.org/10.1109/CCGrid.2015.30

[128] J. Yanez-Sierra, A. Diaz-Perez, V. Sosa-Sosa, and J. L. Gonzalez. 2015. Towards secure and dependable cloud storage
based on user-defined workflows. In Proceedings of the IEEE 2nd International Conference on Cyber Security and Cloud
Computing. 405–410. DOI:https://doi.org/10.1109/CSCloud.2015.28

[129] J. Yao, P. Lu, and Z. Zhu. 2014. Minimizing disaster backup window for geo-distributed multi-datacenter cloud
systems. In Proceedings of the IEEE International Conference on Communications (ICC’14). 3631–3635. DOI:https:
//doi.org/10.1109/ICC.2014.6883885

[130] Q. Zhang, Q. She, Y. Zhu, X. Wang, P. Palacharla, and M. Sekiya. 2013. Survivable resource orchestration for opti-
cally interconnected data center networks. In Proceedings of the 39th European Conference and Exhibition on Optical
Communication (ECOC’13). 1–3. DOI:https://doi.org/10.1049/cp.2013.1291

[131] W. Zhao, P. M. Melliar-Smith, and L. E. Moser. 2010. Fault tolerance middleware for cloud computing. In Proceedings
of the IEEE 3rd International Conference on Cloud Computing. 67–74. DOI:https://doi.org/10.1109/CLOUD.2010.26

[132] Z. Zheng, T. C. Zhou, M. R. Lyu, and I. King. 2010. FTCloud: A component ranking framework for fault-tolerant cloud
applications. In Proceedings of the IEEE 21st International Symposium on Software Reliability Engineering. 398–407.
DOI:https://doi.org/10.1109/ISSRE.2010.28

[133] Yun Zhou, Yuguang Fang, and Yanchao Zhang. 2008. Securing wireless sensor networks: A survey. IEEE Commun.
Surv. Tutor. 10, 3 (2008), 6–28.

Received September 2019; revised February 2020; accepted March 2020

ACM Computing Surveys, Vol. 53, No. 3, Article 59. Publication date: May 2020.

Embyronic Model for Highly Resilient PaaS
Thomas Welsh Elhadj Benkhelifa

Cloud Computing and Applications Research Lab
School of Computing and Digital Technologies, Staffordshire University, Stoke on Trent, UK

Email: thomas.welsh, e.benkhelifa @staffs.ac.uk

Abstract—The resilience of distributed information systems
has become a greater necessity as a support for both critical
infrastructure and everyday use. This work focuses on ensuring
the continued resilience of these systems through inspiration
from resilient biological processes. In particular, the embryonic
developmental processes are modelled and an architecture for
self-healing cloud computing PaaS is developed in its likeness.
This architecture is resilient through a purely distributed nature
and autonomic attributes of self-healing and self-organisation.

I. INTRODUCTION AND MOTIVATION

Cloud computing is concerned with providing information
system infrastructure on a service-driven basis. Society having
now transgressed from the industrial to the information age,
has driven information to become a vital utility alongside
those such as water, energy and sanitation. When citizens lose
access to these traditional utilities the result is detrimental
and even catastrophic to life. Whilst reduction of information
access (e.g. to the internet) may not always have a direct
effect upon physical well being, although given the mass
interconnectedness of society it may certainly have an effect
upon psychological well being. Further to this, information
processing and communication systems now underpin the vast
majority of these traditional utilities and even support critical
infrastructures, whose operation is deemed essential to the
stability of society. A large majority of information services
now operate upon cloud environments, therefore ensuring the
operational persistence of these information systems should be
considered vital.

Threats to the operation of cloud and general information
service systems having become more widespread, complex
and varied. Traditionally one might design systems to be
dependable in the face of hardware/software faults, e.g. failing
components or faulty software. Also, is the continued threat
of violent, varying and non-deterministic environmental con-
ditions such as earth quakes, storms, or solar activity. There
is also the threat of intentional/malicious cyber-attacks from
criminal activity or military adversaries.

The constant evolution of these threats necessitates that
research into their mitigation evolve alongside them. The in-
creased complexity of systems, being composed and operating
upon heterogeneous hardware/software platforms and multiple
component types causes the mitigations of these threats to
become more difficult . These subsets of threats tend to
be examined in an atomic manner. This lack of an holistic
approach can cause the solutions to these threats to become
disjoint and lacking in interoperability. As a solution, this work

focuses on developing systems that are resilient against a wide
number of threats. In particular the focus is upon general faults
within the system, as opposed to the threats which cause them.

Resilience in the context of computer systems and networks,
is known by a number of terms, often the exact description of
which differs depending on the context and who is defining
it. For some it is considered synonymous with, or a measure
of, fault-tolerance [1]. [2] gives two descriptions of resilience:
”the persistence of dependability when facing changes” and
”the persistence of service delivery that can justifiably be
trusted, when facing changes”. Both definitions describe the
persistence of dependability, although the second may be more
open to interpretation. They are in fact describing a number
of other desirable features of the system, as dependability
contains a number of sub fields, and is also often considered
a subset of trustworthiness. where they define ”changes” as
any ”failures, attacks or accidents”. The author in [3] explains
that this definition of resilience describes anything outside the
system boundary, whereas dependability metrics often describe
those within the boundary.A similar definition is given by the
authors in [4], where they describe resilience as ”the ability
of the network to provide and maintain an acceptable level of
service in the face of various faults and challenges to normal
operation”. Within this work we follow a combination of all of
these definitions, stating that resilience is: ”The persistence of
service delivery which can justifiably be trusted within the face
of internal and external changes which challenge its nominal
operation.”

Operating upon economies of scale, the infrastructures
used to support cloud environments are inherently complex,
dynamically linking heterogeneous components which may
scale to extreme ranges. In order to minimise the threat of poor
resilience within cloud and other distributed systems there
is an active drive to enable them to operate autonomously.
Proposed initially by IBM [5], autonomic computing is the
desirable trait of self-managing systems which may take upon
a variety of self-* states such as self-configuring, self-healing,
self-optimising and self-protection.

In particular, the focus of this work is upon developing
highly resilient cloud platforms which encompass autonomic
attributes of self-healing and self-organisation to enable them
to persist in their service delivery against these varied and
evolving threats. The concept is based upon the autonomic
nervous system within the animal body, which subconsciously
manages a variety of heterogeneous systems which aggregate
into the complex animal.

2018 Fifth International Conference on Software Defined Systems (SDS)

978-1-5386-5900-7/18/$31.00 ©2018 IEEE 197

Inspiration for the development of these highly resilient
systems is taken from biological processes and their archi-
tecture. Inherently, biological systems are also complex and
show considerable resilience whilst maintaining and operating
at a high level of complexity through autonomic processes.
Therefore, the study of biologically inspired systems seeks to
model and apply the successful characteristics of these systems
in order to engineer artificial ones in their likeness.

As such, the main contributions of this work is as follows:
• A high-level review of embryonic development character-

istics which enable the modelling of autonomic attributes.
• A model for a cloud PaaS which is developed through

a mapping of embryonic characteristics to cloud PaaS
features

The rest of this paper is structured as follows: section II
introduces embyronic systems and their development charac-
teristics. Section III models necessary autonomic features of
embryonic development relevant to resilience and provides an
architectural model for a cloud PaaS in its likeness. Finally
Section IV concludes the work.

II. EMBRYONIC SYSTEMS AND DEVELOPMENT
CHARACTERISTICS

Embryonics is the field of developing systems which are
based upon the characteristics of embryogensis [6]. Embryo-
gensis refers to the development of a biological being from
a mother cell, the zygote. This biological process provides a
high degree of resilience through redundancy and self-healing.
Embryonic inspired electronics have shown that resilience may
be achieved by modelling a system on these self-healing capa-
bilities [7], whilst embryonic software has shown similar self-
healing properties for distributed systems[8]. This section will
briefly discuss the basic process of embryonic development
and cellular self-repair so as to derive some features to enable
future modelling. This is a high-level abstraction and is by no
means comprehensive.

Embryogenesis is a process of iterative cellular-division,
whereby each cell will contain the information (DNA or
genome) to create additional cells. The cells begin as stem-
cells, which are pluri-potent, in that they can develop into
any cell. Whilst all cells in an organism will share the same
DNA, different cells will express different genes, which in
turns causes differing proteins to be made and in effect will
cause the cells to develop differently; also known as cellular
differentiation [9] (Table I). This process enables extremely
complex, multi-organ biological systems to develop from a
single cell and with the process of self-check and cell-division,
this organism has the ability to self-repair.

Cellular-differentiation may be instigated through a number
of means which may be either internal or external to the
cell. Internally the selection comes about through the presence
of transcription factors, which are proteins found within the
zygote. They are spatially-distributed according to the DNA
and as the cells divide, those that remain in the same location
denote the proteins which will be activated. This process

Fig. 1. Asymmetric Segregation of Protein Determinants

Fig. 2. Inductive Signalling

is knows as asymmetric segregation of protein determinants
(fig.1)[10] .

Externally, the cell can receive a prompt from other cells in
a process known as inductive signalling or induction. This
may occur in three forms: a) diffusion from a group of
cells b) direct contact with another cell c) via a gap-junction
between cells [10] (fig. 2). These cellular signalling methods
are analysed in further detail in the next section.

Once the organism has developed, it maintains the ability to
self-repair certain tissues through an application of stem-cells,
also known as somatic stem cells. Typically, these cells, which
are from an already developed animal, will be multipotent at
best and thus only able to differentiate into a subset of the
collection of possible cells. Pluri-potent stem-cells are less
common although may be induced through artificial means
[9]. Table 1 lists the coverage of different cell potencies.

TABLE I
CELL POTENCY COVERAGE

Potency Coverage
Tutipotent Embryonic
Pluripotent Any
Multipotent Multiple but similar
Oligopotent A few
Unipotent Self

Self-repair will occur due to cell-death, which in turn may
be instigated in number of forms. Programmed Cell Death
(PCD) or apoptosis which is cell-suicide and can occur due
to an intrinsic prompt e.g stresses to the cell causing chemical
changes, or damage to the DNA; or may be due to an
extrinsic prompt from proteins binding externally to the cell.

2018 Fifth International Conference on Software Defined Systems (SDS)

198

An alternative method is necrosis which is due to an external
prompt such as trauma or infection. Necrosis is considerably
more traumatic to the processes and other cells within the body
that apoptosis [11].

To summarise embryonic systems consist of the following
key characteristics:

• Genome - all cells contain the same genetic material. The
genes which are ”switched on” denote the proteins which
will be made and thus the function and form of the cell.

• Division - a cell may self-reproduce through division.
• Differentiation - cells becoming specialised to a number

of different functions and through different means.
• Self-repair - an organism can repair through the applica-

tion of stem-cells although the potency of each cell varies
the type in which they can reproduce.

The aggregation of these characteristics will be the basis for
the structure and architecture of the resilient cloud architecture.

A. Cellular Signalling

In addition to the development and self-repair functionality
detailed previously, it is also necessary to understand the
communication methods of multi-cellular systems, which is
particularly relevant for development and self-healing.

Cells must have the right receptor to receive message
(ligand) and thus not all cells will receive all messages.
Therefore signals are only acted upon by a cell if the cell
has the correct receptor and thus supports that signal type.
Therefore signals are received and processed according to their
purpose, as opposed to be directed towards a specific cell.

There are variety of different forms of cellular signalling.
Predominately they differ in the distance and recipient of the
message, although some usages and features vary. These are
autocrine where a cell communicates with itself or same type
of cell. Paracrine used for communication with cells within
the immediate vicinity. Endocrine which is used for long
distance/scale. Is based on hormones which provides global
control such as encouraging growth and physiology. Juxtacrine
which must be direct contact with an adjacent cell and could
operate through either: gap junctions or direct contact via bind
due to corresponding receptors [12]. A comparison of these
signalling methods is presented in table II.

III. HIGH-LEVEL ARCHITECTURE: PROPOSED MODEL

To accommodate the requirements given in the previous
section an architecture inspired by embryonics for a resilient
cloud PaaS is presented. To permit a high-level of resilience,
the cloud will be purely distributed and therefore the archi-
tecture consists of only one component: the cell; which will
form multi-cellular organisms in which the PaaS will operate
upon. The physiology (network structure) of the architecture
will self-organise and self-heal according to both external and
internal stresses.

The natural resilience of molecular systems is indubitable.
In order to correctly leverage these characteristics into a
resilient architecture, the appropriate features must be mapped
to the requirements of resilience and cloud features (table III).

TABLE II
CELLULAR SIGNALLING METHODS

Type Propagation Usage Message
Distance /
Scale

Autocrine Self / Same Development
(reinforcement)
/ Pain /
Infllamation /
Self-destruction

Low

Juxtacrine Gap
Junction

Local Differentiation /
State Info (coor-
dination)

Very Low

Juxtacrine Con-
tact

Local Differentiation
/ Immune (safe
non-safe)

Low

Paracrine Vicinity Differentiation /
Behaviour

Diverse but
Stream-
lined/Quick/
Degrades
Rapidly/ High
Concentration

Endocrine Long
Distance/Scale

Most common.
Hormonal
used for
global control.
Physiology and
Growth

Slow and Long
Lasting Low con-
centration

TABLE III
CELLULAR TO CLOUD FEATURE MAPPING

Requirement Represented as Implementation
Compute
Resources

Cell Network Node

Distributed
Architecture

Multi-Cellular Organism Multi-Nodes with overlay

Service
Redundancy

Cell Division / Differenti-
ation

Node/Network
Replication

Service Diversity Cell Division / Differenti-
ation

Node/Service Replication

Network Redun-
dancy/Diversity

Multi-Cellular Network Graph-based resilience
optimisations

Feature Selection Differentiation Software Libraries
Integrity Verifica-
tion

Autocrine DNA Check Cryptographic Node Hash

Self-healing Cell Division, Self-check,
Apoptsis and Necrosis

Cell SRA and Global Self-
organisation

Self-organisation Multi-Cellular Organism
Cellular Signalling

P2P Overlay Network

The primary purpose of the multi-cellular organism is to
execute applications it receives from its external environment
and to pass communications to these applications via any
external actors. The secondary purpose is to conduct this
delivery such that the service is executed in a highly resilient
manner i.e. that disruptions to the system will not prevent the
application to continue to be delivered, whilst permitting the
execution of features necessary for resilience.

The resilience is accomplished through: redundancy, the
ability to replicate the application and other nodes, diversity by
distributing the application across multiple nodes in multiple
locations and through selection of resilience enabling features.
Through the minimisation of architectural components, the
attack surface is reduced. Subversion is discovered through

2018 Fifth International Conference on Software Defined Systems (SDS)

199

Fig. 3. Application resilience through redundancy, diversity viav cell differ-
entiation. Applications are logically divided up according to functionality and
are distributed to cells who have differentiated to that specialist functionality.
Redundancy occurs via replication to additional cells which permit traffic to
be re-routed according to need.

integrity self-checking, which causes it to be removed and a
replacement created through division. Additionally the service
resilience is enabled via dynamic self-organisation and self-
healing within the network to adapt to challenges. Differentia-
tion between individual cells decrees that each sell specialises
in one or more particular functions. Therefore, logically each
application will be divided into functions and distributed to
cells which correspondingly specialise. Duplicates of functions
will be distributed to other nodes but left inactive such that
messages could be rerouted to this function in case an active
node was unavailable. Cells will also have secondary special-
isations in order to apply diversity and provide redundancy
when needed (fig. 3).

PaaS was chosen over the other service delivery models as
it more accurately aligns with the goals of resilience which are
required of the cloud platform. A PaaS provides a container-
based platform which enables service management, scheduling
and orchestration. The application isolation may take many
forms where the application may be executed at the OS level,
Virtual Programming level or container level. [13].

Due to requirements for diversity across all levels within
the system (including the underlying technology on which
it sits), a PaaS is most suitable due to the wider ranging
cross-compatibility across software and hardware. Due to the
multi-platform nature of the MC architecture the platform is
not constrained to just cloud architectures as its supporting
infrastructure and may execute on a wide variety of devices

Fig. 4. Example multi-cellular PaaS distributed across diversified hardware
and geographical locations.

and locations. In order to ensure maximum diversified re-
silience this is necessary. Figure 5 illustrates an example multi-
cellular PaaS distributed across multiple diverse hardware
configurations.

A. The Cell

The cell is the only architectural component (fig. 5). Cells
differentiate and are networked together to provide platforms
for the cloud architecture, so their computable functions vary,
but their basic architecture does not.

The components of the cell are as follows:
• Genome - Contains the interpreter and its functionality

that permits the cells code to function. Handles execu-
tion of application segments. It passes communication
between the applications and the node for transmission
to the organism.

• Cell Function - Functions are enabled through activating
genes in the genome. Activated function’s permit the cell
to perform different activities.

• Node - handles the control functionality of the network.
Receives, sends and forwards data to appropriate nodes,
the genom and the external API.

• Environmental Sensor - provides interface to actors
external to the system.

• Signalling pathways - logical communication paths be-
tween other cells.

1) Cell Functions: The cell consists of a number of con-
currently/independently processing components. Algorithm 1
illustrates the inception of a cell and its communication loop.

Node - Organism Functions The node will listen from
its peers for signals. If the signal received matches either an
organism or current function then it is processed. If forwards
messages to its vicinity according to the hop count or to
everyone if they are for the organism.

Node - External Functions The node will listen for
requests, and pass responses to, an external client interfacing

2018 Fifth International Conference on Software Defined Systems (SDS)

200

Fig. 5. Atomic cell architecture

with the organism API. These will be processed and be
forwarded to other cells or to the global organism.

Inception Upon being created the cell must communicate
with its neighbours. If not the first cell it will already have
the address of its mother node. This node is then stored as its
closest node and will use it to request further info. If it is the
first cell it will divide.

Algorithm 1: Cell Inception and Communication Loop
Cell Division Request;
Mother Spawns Cell;
Cell Subscribes to mother;
Mother subscribes to cell;
while !Cell Death do

if Genome Transmits Message then
Node Publishes Message;

end
if Node receives message then

if Is message global or match local hash then
Process;

else
if TTL > 0 then

Decrement TTL;
Forward;

else
Drop message;

end
end

end
end

Differentiation The differentiation process will occur at
either start-up, through a prompt from the organism, or self-
initiated due to spare capacity. The differentiation process will
inform the cell as to what functionality it should and shouldn’t
have. Appropriate genes will be toggled which will enable
the corresponding functionality. The cell will then respond to

requests for this functionality from the organism as well as
advertise when appropriate.

Application Segment Execution Application segments
which fit the functionality of the genome will be requested
for execution by the organism. If appropriate constraints are
met then the application segment will be loaded onto the
application and executed within its genome. Messages between
the application segments and application control information
will be passed between the node for the rest of the organism.

DNA Integrity Verification Periodically, or when
prompted, the cell will perform a hash-check on its internal
genome to verify its integrity. It will respond to challenges
from adjacent nodes. If this check fails then the node will be
cut off from the rest of the network or will self-destruct.

Reproduction Through a prompt from the organism the cell
will fork its application and notify the new cell of its heritage
to establish communication.

B. Multi-Cellular Organism

The multi-cellular organism is an autonomic network with
self-organising and self-healing properties. It is a composition
of an arbitrary and dynamic number of atomic cells with the
purpose of executing numerous, scalable applications simulta-
neously and in a resilient manner. Therefore it only consists
of one architectural component, the cell, yet maintains the
resilient service delivery provision through collective decision
making. Its functionality will be discussed below.

Communication As with biologically cell-based communi-
cation, cells will send message-oriented and not node-oriented
communications. Such approaches have been shown to be suc-
cessful in the past, as is the case with wireless sensor networks
[14]. Although other cellular-signalling inspired techniques
exist such as fraglet models [15], message-oriented networking
has been selecting for this system due to its likeness to cellular
signalling and the affinity of application to the logical division
of applications and nodes.

Upon receipt of a message, each cell will assess whether
it is relevant to them. If it is relevant only to their specific
application instance it will be forwarded to other nodes,
otherwise it will be transmitted on channels it was not received
from according to remaining hop count. An exception to this
is with juxtacrine messages which will be sent to only one
connected neighbour. Nodes will keep a log of the ”direction”
and hop-count of a received message so that they may respond
accordingly.

Similar to the different cellular signalling methods which
vary in their distance and intensity, the differing forms of
transmissions methods will vary in their propagation and hop-
count; which will decree how fair the message will propagate.
However the exact attributes and routing characteristics will be
derived later through experimentation due to the uncertainty
concerned with their stability with this particular use-case.

The proposed message categories include: Global, Function
Specific, Application Specific, Application-Segment Specific
or Application-Segment-Instance specific or local. Whilst the
global messages will be concerned with overall platform

2018 Fifth International Conference on Software Defined Systems (SDS)

201

activities such as self-healing, resource scaling and the system
diversity, the other message types will refer to specific data or
applications and thus be hashed values.

Certain messages, such as with some global messages, will
be transmitted but not read, until their final destination. This
is similar to endocrine messages which are transmitted long
distance to the next hormonal gland and then retransmit-
ted.Other messages will merely be to nodes in the vicinity,
and thus have only 1-hop count, other messages such as those
intended to request or respond, will have varying and dynamic
hop counts according to the exact service and request. These
will be similar to paracrine messages as they will be sent to
surrounding nodes.

TABLE IV

Message
Type

Description Examples Hops Cellular
Sig-
nalling

Global Organism wide
information

Gene enable re-
quests, State Re-
quests, Divide

Many Endocrine
then
Paracrine

Function Specific to any
node running that
function

Spare function
capacity request

Varied Endocrine
then
Paracrine

App To nodes running
that application

Request die, Re-
quest reroute

Varied Paracrine

App-
Segment

To Nodes run-
ning that specific
segment

Data, Keep alive, Varied Paracrine

App-
Segment-
Instance

To nodes running
a very specific in-
stance

Data, Keep-alive,
Request reroute

Varied Paracrine

Local to only nodes in
the vicinity

Integrity verify,
divide

1 Juxtracrine

1) Application Management: Application Request An ex-
ternal actor will communicate with the organism (via any cell)
and submit a request for their application to be loaded. The
request will consist of the quantity and type of functions, in
addition to any resource requirements such as storage etc.
Upon receipt, requests for available function space will be sent.
Capable nodes advertise reserved space. For all functions not
with any potentially reserved space, new cells will be cloned
and new functions enabled. The reserved space will need to
be at least 2x the needed for redundancy purposes.

Application Creation Once the network has confirmed
capacity the organism will request upload of the functions,
which will then be propagated to the appropriate nodes. Once
the functions have been successfully loaded, the given cells
will establish links between the other nodes (fig. 6) Additional
redundancy will occur through replication of functions across
alternative cells which will be located according to resilience
requirements.

Application Segment Communication Application seg-
ments will be identified by their application, segment and
particular instance (fig. 7). Each segment will know the rough
direction and hop count of the next segment for communica-
tion.

Application Destruction The application may end for a
number of reasons, such as a prompt external to the organism,

Fig. 6. Application Request Management

Fig. 7. Application Segment Identification

2018 Fifth International Conference on Software Defined Systems (SDS)

202

an internal prompt indicating the processing has completed, or
the organism deciding that continued execution is detrimental.
At this point the corresponding application will issue kill
requests to its continued nodes and other replicas.

Additionally, nodes which die and contain the appropriate
application will cause a break in the application path. At this
point, any other application segments which cannot commu-
nicate with their corresponding segments will send a request
for redundancy backups to initialise and will then re establish
communication with these nodes.

Application Scaling If a greater number of requests for the
application from an external source enter the network than
it is possible to execute. The application will be given the
command to duplicate. Likewise, if a predefined amount of
time has passed and the capacity is greater than the request
then the instances will be scaled down. This will be handled
globally after node state indicates no activity. The overall
process for application execution is given in fig. 8.

2) Self-Organisation: Differentiation Process As cells are
created, the decision of differentiation will occur according
to the current network need. Typically this will be concerned
with a new or duplicate application, therefore it will likely
be instigated by the dividing node, or nodes within the
vicinity who are created simultaneously. Thus it will follow
the paracrine or juxtacrine signal inducing methods. A node
will first differentiate according to the need and then autocrine
based self-check will be used until all nodes in the vicinity
have confirmed that the correct type and number of nodes have
been differentiated, at which point the application segments
will be loaded appropriately.

Alternatively, a global request my decree that certain nodes
are required to have an additional, secondary specialisation
for redundancy and diversity purposes. At the targeted node
types will use an autocrine based self-check until the relevant
diversity/redundancy requirements are met.

Self-heal Self-healing process will largely be instigated
globally, by the organism which will occur due to a lack of
resources. A resource deficit will occur through the division
and differentiation process as detailed previously. The resource
deficit occurs mostly due to Cell death which occur for many
reasons. A periodic internal hash check upon the genome
which fails will cause a self-destruct and will therefore die
cleanly, diving the applications and other cells time to re-
organise (apoptsis).

Alternatively the cell may die in an unclean manner (necro-
sis) which will be harder to clean up and cause disruption
to some applications. This may occur due to external reasons
such as loss of the cells hardware, or it may occur due to the
node misbehaving and thus being cut off from the network.

Application Distribution / Node Selection The method
of application distribution across nodes will be dynamic
according to the resilience requirements of redundancy and
diversity. Should occur due to the differentiation process caus-
ing diversity in surrounding nodes and thus should distribute
appropriately. This directly relates to service orchestration and
placement.

Fig. 8. Application Execution Process

2018 Fifth International Conference on Software Defined Systems (SDS)

203

3) Networking: The way in which nodes are networked
will have a direct effect upon the ability of the network to
scale,adapt,react, handle disruptions and its general commu-
nication performance. As mentioned previously, networking
will consist of a message-oriented communication and not
node/address oriented communications.

A careful selection of p2p network structures and rout-
ing methods will be necessary to select the most suitable
for the required resilience characteristics. Specifically it is
proposed that a hybrid communication method will likely
result from the different message types as previously mapped.
For example, global (organism-wide) messages which employ
endocrine or endocrine-paracrine are most easily modelled as
flooding or controlled flooding (multi-hop). Whereas instance
specific communication between an application’s segments
would likely be routed. The suitable solution will be derived
through investigation (variables to be investigated in table V)
to understand more about the effects of these forms of message
delivery upon the resilience and network requirements. One
point of note of this embryonic architecture in contrast to
other p2p networks is that due to the self-healing and division
process, nodes will be created from other nodes and will
therefore be placed by its mother node.

IV. CONCLUSION

This work presents a model for highly resilient cloud-
computing PaaS. It is based on abstracted characteristics
of embryonic development, in particular cellular differenti-
ation and division, which enable the autonomic aspect of
self-healing. Due to the architectures requirement for high-
resilience, it operates in a purely distributed manner to avoid
any single point-of-failure. Further research will involve inves-
tigating a variety of networking characteristics to find optimal
solutions to enable the architectures ability to self-organise.

TABLE V
NETWORKING INVESTIGATION VARIABLES

Attribute Category Possibilities
Routing Networking Flooding, Controlled

Flooding, Routed,
Hybrids

Structure Networking Structured / Unstructured
Packet TTL Communication Network-dependent vari-

able, Static, Dynamic
Message Size Communication Static, Dynamic
Retransmissions Communication None, Always, Variable
Keep-alives Applications Time, Distance, Traffic

Dependent
Retransmissions Applications Requested, Responsive
Time outs Applications Static, Dynamic, Variable
Service Placement Self-Organisation Meeting Certain Metrics

or Loose
Diversity Density Self-Organisation Forced, Loose Ratio of

genome types for differen-
tiation

Self-check period Self-Organisation Static, Random
Response Time outs Self-Organisation Static, Increasing, Net-

work Size Dependent

REFERENCES

[1] W. Najjar and J.-L. Gaudiot, “Network resilience: a measure of network
fault tolerance,” Computers, IEEE Transactions on, vol. 39, no. 2, pp.
174–181, Feb 1990.

[2] J.-C. Laprie, “Resilience for the scalability of dependability,” in Network
Computing and Applications, Fourth IEEE International Symposium on,
July 2005, pp. 5–6.

[3] K. Trivedi, D. S. Kim, and R. Ghosh, “Resilience in computer systems
and networks,” in Computer-Aided Design - Digest of Technical Papers,
2009. ICCAD 2009. IEEE/ACM International Conference on, Nov 2009,
pp. 74–77.

[4] J. P. G. Sterbenz, D. Hutchison, E. K. Çetinkaya, A. Jabbar, J. P. Rohrer,
M. Schöller, and P. Smith, “Resilience and survivability in communica-
tion networks: Strategies, principles, and survey of disciplines,” Comput.
Netw., vol. 54, no. 8, pp. 1245–1265, Jun. 2010.

[5] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, pp. 41–50, 2003.

[6] P. Marchal, P. Nussbaum, C. Piguet, S. Durand, D. Mange, E. Sanchez,
A. Stauffer, and G. Tempesti, “Embryonics: The birth of synthetic life,”
in Towards Evolvable Hardware, E. Sanchez and M. Tomassini, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1996, pp. 166–196.

[7] E. Benkhelifa, A. Pipe, and A. Tiwari, “Evolvable embryonics:
2-in-1 approach to self-healing systems,” Procedia CIRP,
vol. 11, pp. 394 – 399, 2013, 2nd International Through-
life Engineering Services Conference. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S2212827113005027

[8] D. Miorandi, D. Lowe, and L. Yamamoto, “Embryonic models for
self–healing distributed services,” in Bioinspired Models of Network,
Information, and Computing Systems, E. Altman, I. Carrera, R. El-
Azouzi, E. Hart, and Y. Hayel, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010, pp. 152–166.

[9] V. K. Singh, A. Saini, M. Kalsan, N. Kumar, and R. Chandra, “Describ-
ing the stem cell potency: The various methods of functional assessment
and in silico diagnostics,” Frontiers in Cell and Developmental Biology,
vol. 4, p. 134, 2016.

[10] D. Rudel and R. J. Sommer, “The evolution of de-
velopmental mechanisms,” Developmental Biology, vol. 264,
no. 1, pp. 15 – 37, 2003. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0012160603003531

[11] S. Y. Proskuryakov, A. G. Konoplyannikov, and V. L. Gabai, “Necrosis:
a specific form of programmed cell death?” Experimental Cell
Research, vol. 283, no. 1, pp. 1 – 16, 2003. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0014482702000277

[12] L. J. e. a. Alberts B, Johnson A, Molecular Biology of the Cell. 4th
edition. New York: Garland Science, 2002, ch. General Principles of
Cell Communication.

[13] L. Rodero-Merino, L. M. Vaquero, E. Caron, A. Muresan,
and F. Desprez, “Building safe paas clouds: A survey on
security in multitenant software platforms,” Computers Security,
vol. 31, no. 1, pp. 96 – 108, 2012. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167404811001313

[14] F. Dressler, I. Dietrich, R. German, and B. Krger, “A rule-
based system for programming self-organized sensor and actor
networks,” Computer Networks, vol. 53, no. 10, pp. 1737 – 1750,
2009, autonomic and Self-Organising Systems. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1389128608002958

[15] C. Tschudin, “Fraglets-a metabolistic execution model for communi-
cation protocols,” in Proc. 2nd Annual Symposium on Autonomous
Intelligent Networks and Systems (AINS), Menlo Park, USA, vol. 6, no. 3,
2003, pp. 1–3.

2018 Fifth International Conference on Software Defined Systems (SDS)

204

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Bio-Inspired Multi-agent Embryonic Architecture
for Resilient Edge Networks
Thomas Welsh and Elhadj Benkhelifa Staffordshire University

School of Computing and Digital Technologies
Stoke-on-Trent, ST4 2DE, UK

Email:{thomas.welsh | e.benkhelifa} @staffs.ac.uk

Abstract—With the pervasive introduction of IoE technologies,
use-cases are frequently being found operating within harsh en-
vironmental conditions. This decrees the need for solutions which
permit service delivery to operate in a highly-resilient manner.
This work presents an architecture for a novel cloud platform
designed for resilient service delivery. It supports networks where
poor communication links or high node failure will cause services
to be delivered in an non-resilient manner. This could be the
result of factors such as high-node mobility, poor environmental
conditions, unreliable infrastructure from environment disaster
or cyber-attack. This biologically inspired architecture uses a
purely distributed multi-agent approach to provide self-healing
and self-organising properties, modelled on the characteristics of
embryonic development and biological cell communication. To
permit high-levels of a node churn, this multi-agent approach
uses local-only communication. Probabilistic Cellular Automata
are used to simulate this architecture and evaluate the efficacy
of this approach.

Index Terms—IoE, Embryonic, Multi-agent, Resilience, Bio-
Inspired, Cloud, Edge, Artificial Life, Artificial Intelligence,
Cybersecurity, Cellular Automata.

I. INTRODUCTION

In common environments where networked devices are
frequently found and relied upon: the home, work-place,
public areas etc, persistent service delivery is taken for granted.
Minor breaks in service may subjectively appear poor but this
is largely due to their infrequence. Objectively, these networks
deliver their service persistently due to the high-determinism
of the environments they operate within.

We refer to the term resilience as a network’s ability to
persistently deliver it’s service within the face of various
internal and external changes [1]. If these commonly found
networks are not robust enough to continue operating during
changes in their internal or external environment then they do
not operate resiliently.

Conversely there are many types of networks which must
persist in their service delivery yet their underlying environ-
mental conditions are non-deterministic, resulting in Inter-
mittently Connected Networks. Examples of these include:
Mobile Ad-hoc networks such as with mobile devices or
vehicle communications, wireless sensor networks used for
environmental monitoring often in extreme conditions and
Exotic Media Networks in highly disruptive locations such as
space. Most solutions rely on employing delay or disruption
tolerant networking approaches such as store and forward,
parallel routing, error correction etc. [2].

A number of use-cases are highlighted within the appli-
cation of Industrial IoE where a large number of nodes
collect data on the edge [3]. Mining [4], transportation, crime
[5] and agriculture [6] are examples where large scale IoE
systems may operate in environments with changing and non-
determinstic environmental conditions in addition to device
mobility.

Networking solutions are not compatible with all types of
harsh environments. Some use-cases involve the destruction
of nodes such as adversarial attacks in warfare [7] or node
subversion during cyber-attack [8]. For these situations, novel
architectures are often sought to enhance the network’s envi-
ronment. These take the form of distributed over centralised
architectures, mass redundancy of resources, or diversity
across hardware and software and location [9]. When seeking
alternative architectures, a common source of inspiration lies
within biological systems due to their inherently scalable and
resilient nature. Hence this work contributes to the area of
biologically inspired resilient computing architectures through
the application of embyronics to the problem of IoE/ Fog
operating within harsh environments. To accomplish this, a
novel architecture which leverages the strong resilient charac-
teristics of embryonic development is simulated using cellular
automata in order to understand its autonomic characterstics.

The rest of this paper is as follows: Section 2 presents
related work, section 3 describes the proposed embryonic
platform as applied to fog networks, section 4 provides a de-
scription for the proposed Cellular Automata Model. Section 5
presents the simulation model with results. Section 6 presents
an analysis of the results whilst section 7 concludes the work.

II. RELATED WORK / MOTIVATION

This section presents the related work for this research in the
area of biologically inspired techniques for IoE/Fog resilience.
Levering Fog computing nodes as a data processing platform
for IoE is discussed in a number of places [10] with use-cases
such as energy management [11], smart-cities [12] benefiting
from simple data pre-processing on the edge nodes. However,
the platform proposed in this paper aims to provide a more
feature rich platform for data processing through the use of a
micro-services architecture.

To the best of the authors’ knowledge, the problems of
resiliency within these platforms as a consequence of node
mobility, hostile environments or threats to the architecture are

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

still open. A solution to this can be found within biological-
inspired techniques, which have been applied to a whole host
of problems within computer science, the Turing machine
which was based upon a human clerk is arguably the first.
In terms of resilient networks/systems, few works exist in the
area of FoE due to it’s novelty, however some can be seen
within similar domains. For example cellular signalling models
(which operate in a message and not node oriented fashion)
have also been applied within wireless ad-hoc networks for
resilient and efficient communication [13]. Whilst numerous
bio-inspired techniques for resilient cloud computing and other
distributed systems have been investigated [14]. These can
involve architectural models similar to this work using cell-
based models [15], networking approaches based upon the dis-
tributed processing capabilities of ant colonies [16], intrusion
detection methods [17] or service orchestration methods [18]
based upon artificial immune systems, alternatives to public
key infrastructure based upon family genetics [19] and many
more.

This work applies embryonics, the field of developing sys-
tems which are based upon the characteristics of embryogensis
[20]. Embryogensis refers to the development of a biological
being from a mother cell, the zygote. This biological process
provides a high degree of resilience through redundancy
and self-healing. Embryonic inspired electronics have shown
that resilience may be achieved by modelling a system on
these self-healing capabilities [21], whilst embryonic soft-
ware has shown similar self-healing properties for distributed
systems[22].

This work proposes an architecture which is deemed timely
as a platform for combined Fog and IoE networks, also
referred to as Fog-of-Everything (FoE) [10] [23]. Initially,
cloud computing was deemed the supporting platform for
IoE devices with it’s inherent on-demand provisioning and
elasticity for data storage, processing and UI, however a vast
number of IoE use-cases are latency-sensitive and therefore
long delays towards cloud providers are unsuitable. Medical
applications often consist of devices with short transmission
range and life-saving consequences [24][25] such as seizure
detection [26]. Smart-cities provide a host of different ap-
plications which require low-latency and suffer from high
device mobility, shared infrastructure/management [27] such
as traffic management, public safety, [5] and emergency re-
sponse. Industrial control Systems (as mentioned previously)
not only require low-latency but may also operate in hostile
environments[4], V2V etc. [27] [10].

This latency sensitivity has caused data processing to be
pushed to the edge of the network, closer to its production.
Fog computing is seen as combination of edge and cloud com-
puting, providing the benefits of lower bandwidth and energy
consumption whilst reducing greater QoS for IoE devices [27].
Fog is cited as a requirement for resilient IoE applications [28]
Unfortunately fog nodes also suffer from fault-sensitivity due
to their lack of scalable resources, typically wireless 1-hop
device-to-fog communication and IoE device mobility [27].
To mitigate these issues, this work provides a highly resilient
SaaS platform for fog networks, leveraging self-healing, self-
organising and distributed processing capabilities.

III. PROPOSED MULTI-CELLULAR EMBRYONIC FOG
PLATFORM

This section describes the proposed multi-cellular embry-
onic platform and it’s application to fog networks. This work
extends a previous work in [29], where a conceptual model of
an architecture based on the self-healing nature of embryonic
cellular development was proposed as a solution to requiring
a highly resilient architecture (figure 1) This architecture
is purely distributed, having only a single component, the
cell. The cell self-reproduces as needed which allows it to
scale with demand and also self-heal. Each cell differentiates
according to a particular software function and complex appli-
cations can be composed through passing messages between
different cells. The cells self-organise to provide a SaaS for
data processing which is considered the most suited platform
for IoE applications due to the devices’ constrained nature
[27] [30]. This permits constrained data processing which can
be offloaded to the cloud for more comprehensive processing
when needed. The purpose of the architecture is to provide
resilient service delivery within the face of external and inter-
nal changes, such as device mobility, loss of connection, long
delays. The self-organisation architecture enables services to
persist under varying conditions through software replication
and self-organisation. When required functionality to complete
an application is no longer available, the platform will self-
organise to provide it

After further analysis of the networking characteristics of
this architecture it was determined that too many communi-
cation aspects created a level of complexity which was not in
line with the resilience requirements. To summarise, the ability
to maintain any routing tables was incompatible with the high-
levels of churn expected from environments which require
high-resilience. Therefore a different, architectural approach
was taken which involved local-only communication using
multi-agent techniques inspired by embryonics. As a system
for modelling discrete dynamical systems which operate using
local-only communication, a Cellular Automata model was
used to simulate the approach.

To summarise, this work investigates the application of
embryonic techniques to a SaaS architecture. It aims to provide
a combined Fog and IoE platform for highly resilient service
delivery. Figure 2 illustrates the multicellular embryonic
platform a top of the fog environment.

IV. CELLULAR AUTOMATA MODEL SIMULATION
DESCRIPTION

This section describes the Cellular Automata (CA) based
model for the embryonic architecture including the indepen-
dent and dependent variables with motivations for their use.
CA are discrete models of dynamical and complex systems.
They are employed for modelling and simulating a variety of
discrete scenarios. Within this simulation a stochastic CA is
employed, due to having varying factors, such as the decision
to spawn, the function to spawn and the simulated failure rate
being dependent upon a random distribution. These stochastic
cellular automata are sometimes referred to as Probabilistic
Cellular Automata(PCA) and these characteristics makes them
suitable for simulation of the new model[31].

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

Fig. 1. The SaaS architecture inspired by animal embryonic development, composed of Multi-Cellular Platforms (MC). It provides resilient service delivery
in hostile environments through leveraging the concepts of self-healing, cell division and differentiation.

Fig. 2. The proposed Embryonic architecture situated within the Fog environment. MultiCellular platforms (MC) are distributed across the fog devices to
provide data processing SaaS for the sensing layer of the SMART applications. This data is then offloaded to full cloud environments as required. The
distinction between the cloud and fog layers is that the fog provides more constrained data processing. As the data is moved to the cloud, full applications
can be executed in a standard IaaS environment.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

A. Definitions

The following definitions should be considered within the
context of this model.

• Cell - the node of each network and the cell in the cellular
automata. Also represents the biological cell within the
model. It differentiates to a particular software function
and will execute code of that function. Or it will be dead
(state 0)

• Function - A logical software function e.g. cryptography,
web service

• Application - Composed of multiple functions to provide
a specific service. An application’s functions must be able
to reach each other in a consecutive manner.

• Update Function - Probabilistic function which de-
termines the state of each cell within the simulation.
Executed upon each cell. Updated Asynchronously and
randomly to account for similarities to real world net-
working.

• Multi-Cellular Organism (MC) - a collection of mul-
tiple cells which allows 1 or more applications to be
executed via functions distributed across the cells.

• Connectedness - the quantity of fully connected appli-
cations. I.e. those where all functions can be reached
consecutively in order to fully process the data.

B. Variables

The purpose of the simulation is to understand more about
the constrained model’s ability to resiliently deliver services.
The external or internal changes to the system will be repre-
sented by the failure of nodes, according to a given stochastic
variable. Whilst the resilience of the system will be measured
through the number of services that are fully connected at
any step within the simulation. This therefore will illustrate
to what degree the network is still able to deliver its service
under varying changes.

The following dependent variables (connectedness values)
will be used to measure this resilience.

• Connected0 - % of fully connected services with 0
networking hops allowed

• Connected1 - % of fully connected services with 1
networking hop allowed

Connectedness is calculated as follows: at each step in the
simulation, all starting nodes (state 1) are checked to see if
they can reach the next consecutive function (state 2) and so
on until the next function cannot be found, or if the final
function is found creating a fully connected application. The
quantity of fully connected networks is then recorded for that
step in the simulation. Figure 3 illustrates two sub networks
in a test network. One where the starting node can create a
fully connected network and the other where it cannot.

With connected1, the search for each function is increased
by one hop, as in figure 4. Neighbourhoods are von-neuman,
where r=1 is a neighbourhood size of 5 inclusive of the central
cell and r=2 is a neighbourhood size of 13, inclusive of the
central cell. Von-neuman neighbourhoods were chosen over
larger neighbourhood sizes, such as moore neighbourhoods,
as it essential to reduce the number of communications being

Fig. 3. The nodes in the red box are examples of a network which is not
fully connected within the connected0 tests. The two starting nodes (state 1)
can reach upto node 3 using local only communication but not to the final
required function (state 5). In contrast the networking with a starting node
highlighted in the green box can reach up to node 5.

Fig. 4. Connected0 and Connected1 modelled as von-neuman neighbourhoods
r=1 and r=2 respectfully. The red squares indicate the nodes in the central
squares neighbourhood, the nodes which will receive communications from
the central, black node.

broadcast to nodes due to the flooding routing present in the
network.

The following application related independent variables are
used within the simulation to understand more about the self-
healing characteristics:

• Spawn Rate (SR) - % chance a node will grow another
cell

• Death Rate (DR) - % change a node will fail
• Quantity of Functions (Q) - the variety of different

function types
• Neighbourhood Size (N) - quantity of adjacent nodes to

each cell.

The following independent variables are employed to under-
stand more about the complexity characteristics of the system
and their effect upon the resilience of the network.

• Starting Location - the starting location of the cellular
architecture in the grid. e.g. central, top-left, bottom-left
etc.

• Neighbour Start Size - the initial size of the neighbour-
hood.

The initial cell update function is as follows: first a random
variable will decree (according to a pre-set probability of
failure) if the node fails. If not the node checks its local
neighbourhood. If a node is found to contain the same function
as the current node, then the current node will differentiate
according to an under-represented function.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

TABLE I
SIMULATION PARAMETERS

Parameter Description Value
Time Steps The quantity of discrete increments

per test, chosen through experi-
mentation

500

Grid Size Discrete area of the simulation test. 10x10
Nodes Total number of possible network

nodes in each test.
100

Independent Variables The number of variables which are
varied

5

Test Runs Number of test runs per each vari-
able

10

Total runs Total number of tests which were
executed

27000

V. SIMULATION MODEL

This section presents the simulation of the CA-based model
presented in the previous section. Including implementation
characteristics, validation and results. The model was imple-
mented in pure python using test driven development and
executed on an i5 Linux system with 4GB of ram. The grid
of cells was represented as a 2D array, where the state of
each cell is in the range 0 to function quantity. At each step
in the simulation the cells were updated with the cell update
algorithm.

A. Validation

1) Graphical Validation: The simulation model was vali-
dated through a number of different yet complimentary means.

Two graphical representations were used to validate the
model simulation. The independent variables related to re-
silience could be adjusted prior to the simulation. The interface
would then permit stepping through the simulation (up to the
maximum 500 time steps) The graphical representations would
then enable stepping through varying configurations. This was
used to examine the system operating under varying levels of
strain. For example, operating under a maximum spawn rate
and zero death rate allowed easily validation that the software
was representing the model correctly. Conversely, using a
high failure rate and low spawn rate caused the system to be
completely inactive. Both of these cases illustrate validation
of the model through extreme condition testing.

2) Extreme Condition Validation (Quantitative): Within
the empirical experimentation dataset (presented in the next
section) unstressed networks (zero failure rate) were tested.
Verification occured by examining only those tests where the
DR == 0 and SR == 1, with the means of each quantity of
function being approximately Grid size / Function quantity.
Which illustrates that in a non hostile environment where
the software is aggressively reproducing the random selection
algorithm evenly distributes the function types. However as
there is no cell destruction this network will converge to a
solution with minimal dynamism and informs very little about
the selection process effect upon resilience.

3) Internal Validity: The empirical experimentation con-
sisted of 27000 simulation test. These consisted of 10 runs
of all independent variable permutations. The averages were
then taken and due to the low variability and large amount of

Fig. 5. ASCII Graphical interface. The grid is composed of a number of
cells which can be in states 0 to the number of functions. A fully connected
network is one in which the functions can be reached consecutively.

consistency (presented in the next section), these results seek
to validate the simulation model.

B. Results and Analysis

The purpose of the simulation was to verify that the con-
strained system with no real routing could remain resilient i.e.
continue to deliver services under varying network changes. As
the services (applications) will successfully execute when all
functions of each application are fully connected, the goal is to
examine the quantity of connected applications at each time
step. This connectedness of each network is then compared
against the independent variables (application and complexity
characteristics) mentioned in the previous section.

The groups of tests examined in this section are simulated
for a MC under stress, where DR > 0. We are seeking to
determine how well the applications can still communicate
using local only-interaction when under varying levels of net-
work stress (death rate) and application complexity (function
types 2-6). Variables such as spawnrate and cell differentiation
process were examined in order to optimise the performance
of the MC.

1) SpawnRate: During an initial analysis, it was shown
that through aggressive spawning a performance improvement
could be made. Conversely, reducing the spawnrate always
caused negative performance. Figures 6 and 7 show the
connected0 tests where SR == All and SR == 1, respectfully.
The smoother declines indicates that this small optimisation
can increase the ability for the applications to be connected,
where higher failure rates benefit more over lower failure rates.
This is due to the aggressive spawning increases the likelihood
of nodes filling gaps where previous nodes had failed (state 0)
i.e there is a greater number of functional nodes and a reduced

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

Fig. 6. Results of average connectedness of applications with 0 hop commu-
nication allowed.

Fig. 7. Results of average connectedness of applications with 0 hop commu-
nication allowed where spawnrate==1

number of failed nodes. At lower failure rates this has less of
an effect due to lower quantity of failed nodes.

2) Cell Update Function: Another method of performance
optimisation made within the CA is the update function, which
may choose to differentiate cells in order to optimise the MC.
Therefore this section presents the results of 2 different groups
of tests, each with different update functions. The update
functions are as follows:

• No Differentiation Optimisation (NoDif) - Cells do not
attempt to optimise the distribution of cells except to
remove redundancy. The cell firstly examines the states
of all adjacent cells. If it’s state is the same as an adjacent
cell and the quantity of functions is greater than the
neighourhood size, it will attempt to differentiate to to
an unseen state. The cell will still divide to a random
function when there is adjacent space (Algorithm 1).

• Differentiate according to weighting (Dif2) - As above
the cell first examines the adjacent node states and deter-
mines the least represented functions out of the global
set of functions. It will then differentiate to the least
represented function or if there are many of the same
weighting, a random function from this subset(Algorithm
3).

Algorithm 1: Cell Update - No differentiation Optimisa-
tion
Data: NeighbourhoodState, CellState, Functions
Result: CellState, DivideCellState
Check Neighbourhood States;
if Cell is alive then

if Cell does not die then
if CellState is in NeighbourhoodState and N > 4
then

CellState = random from Functions not in
NeighbourhoodState;

end
if Cell should divide then

Check Functions in NeighbourhoodState;
for Function in Functions do

if Function not in NeighbourhoodState
then

DivideCellState = Function;
else

DivideCellState = random from
Functions;

end
end
Divide with DivideCellState;

end
else

CellState = dead;
end

end

Figure 8 presents the results of network connectedness for
the connected0 tests. A clear trend can be seen that as the
quantity of functions increases the ability for the applica-
tions to remain connected decreases. This is caused by the
complexity of the application ensuring the likelihood of one
function being adjacent to another to reduce. In the currently
measured von-neumann neighbourhood where r=1, a cell will
be able to communicate with 4 other cells. Therefore if Q > 4
the chance of finding the next node is < 100. This explains
the considerable performance drop at functions 4 or greater.
Regarding the difference between NoDif and Dif2, the trend
illustrates dif2 providing increased connectivity over NoDif
where Q >= N . This performance increase appears to be
strong at medium DR of 0.2 and 0.3 but less favourable at
0.4. This evidences that attempting to optimise the distribution
of cells does increase performance but only to a certain failure
rate.

Figure 9 presents the results of network connectedness
for the connected1 tests. The same trend can be seen as in
connected0, however this time the decay is slower and the
decline is a lot smoother, there are no sudden jumps (such as
when Q > N). This would suggest that the issue of reduced
probability is mitigated as the size of the search space is
now increased. If it is assumed that the self-organisation of
the MC will force differentiation of under-represented cells
within the same time scale as the communication to next

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

Fig. 8. Average connectedness comparing differentiation methods for connected0 tests

Algorithm 2: Cell Update - Weighted Differentiation
Data: NeighbourhoodState, CellState, Functions
Result: CellState, DivideCellState
Check Neighbourhood States;
if Cell is alive then

if Cell does not die then
for Function in Functions do

Count Function in NeighbourhoodState;
end
minFunctions = Calculate min(Function in

NeighbourhoodSate);
CellState = random(minFunctions)
if Cell should divide then

Check Functions in NeighbourhoodState;
for Function in Functions do

if Function not in NeighbourhoodState
then

DivideCellState = Function;
else

DivideCellState = random from
Functions;

end
end
Divide with DivideCellState;

end
else

CellState = dead;
end

end

node, then the search space at each step will be N ∗ N ,
else it will be N ∗ (N − 1). A considerable increase over
simply N . The function distribution algorithm dif2 follows a
similar performance improvement trend as with connected0
and therefore highlights the efficacy of this approach. As with
the connected0 tests, high failure rates and tests where Q > N
still have poor performance.

C. Organism Start Size and Location

Starting location was examined for its relationship to com-
plex systems, in case it had an effect upon the resilience of
the MC. However due to a correlation of < 0.009 it was
determined to have no effect.

A characteristic of the MC which is internally adjustable
and is also concerned with complex systems is its starting
size, i.e. the number of starting cells. Test groups were run
with starting cells of 1, 5 and 9. For all tests, as start size
increases, as does the connectedness. Which is an intuitive
finding. At high failure rates, this can be quite a considerable
performance increase of 50%, where Q < N .

Figures 10 and 11 show the distribution of tests which ended
up with either an early failure or successfully survived, with
the corresponding connectedness. In figure 10, the results for a
starting MC of 1 show that a greater number of tests would fail
than succeed. However figure 11 shows the same distribution
but for a starting neighbourhood of 9 where only a small
number of tests failed. This illustrates the effect of starting
size upon success.

These graphs highlight some interesting aspects relating
to the efficacy of different intelligent dynamic differentiation
algorithms. At the higher start sizes the algorithms appear to
be almost on par. However where start size == 1, the results
don’t fit a clear trend. Closer examination of these groups

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

Fig. 9. Average connectedness comparing differentiation methods for connected1 tests

Fig. 10. 50 test runs with death rate 0.3, functions 3 and Neighbourhood
startsize 1. Showing just under 50% of tests were successful whilst the rest
were unsuccessful.

of tests indicates something interesting. That the test results
were polarised where they either tend to be highly connected,
(> 0.9%) or not at all which explains the poor performance
where DR = 0.3 in Dif1. This is a trend that is persistent
throughout the tests where those that did not fail had consistent
connectedness where the performance improvement could be
gained by increasing the start size.

Examining this at the highest failure rate of 0.4 illustrates
still good performance, however this only holds true where
N > 4. This strongly illustrates that the initial stages of an
MC are vital to its ongoing survival.

VI. ANALYSIS

This section presents an analysis of the results provided
in the previous section. The results of all tests have indi-
cated a number of points concerning factors which affect the

Fig. 11. 50 test runs with deathrate 0.3, functions 3 and Neighbourhood
startsize 9. Where the majority of tests were highly successful.

connectedness of applications, within the embryonic model.
All of which highlight methods to optimise the resilience of
the MC dependent upon its characteristics. The independent
factors (those variables which can be internally adjustable by
the MC) are: the application complexity (quantity of functions
per application), the level of division aggressiveness, starting
MC size and the algorithm to determine differentiation. All of
which are discussed in further detail below.

A. Application Complexity

The quantity of functions within an application undoubtedly
has a direct effect upon its connectedness. This is by the
inherent nature of needing to connect more cells within an
application, leaving more points for failure. However, dividing
application functionality is a prime characteristic of the MC ar-
chitecture and a requirement of resilience, in order to distribute

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

risk. Therefore any technique which increases connectivity
under increased application complexity is a positive benefit
to the resilience of the embryonic architecture. A clear point
is that adjusting the complexity of an application can enable
it to survive during periods of particular stress although at an
obvious reduction of functionality. This can pave the way for
networking algorithms that downgrade according to perceived
performance.

If if is not feasible to manage complexity through reduction
of functionality, applications could be divided into sub sec-
tions or ”organs” following the biological model. This would
cause the overall likelihood of the application to still execute
successfully albeit with a largely increased resource usage.

Whilst the application complexity would be reduced, com-
munication protocols and network management complexity
would increase due to the additional network overlay. There-
fore finding an appropriate balance would be necessary.

B. Aggressive Spawning

In the previous experiments it was quickly determined that
given the option, dividing to create a new cell increased
the connectedness within the MC. The performance increase
was considerable at higher failure rates but also decreased
proportionally to application complexity. This is intuitive as a
greater number of cells permits a higher chance of finding the
next required function. This is directly through the required
function being adjacent to the cell and indirectly through
enhanced communication. However, during practical testing,
the time period for spawning will need to be determined
appropriately so as to not delay execution of other components
with the cell, e.g. function execution.

C. Complex System Characteristics

Two characteristics of complex systems were also inves-
tigated for their effect upon connectedness, the cell’s initial
starting size and location. The start location showed little
benefit as varying it made no difference to the connectedness
results with a almost zero correlation. However the starting
size correlated with an increase in connectedness, particularly
at higher failure rates. The reason for this is the same as
the aggressive spawning point previously mentioned. This is a
strong finding considering this could give networks starting in
highly hostile conditions an increased chance of survival. As
it was noted that networks either survived entirely or failed
early on, this highlighted the necessity for ensuring strong
survival in early stages, where increased MC start size is a
strong enabling factor.

D. Increasing Search Space

Throughout all the results, a clear improvement can be seen
with the connected1 tests over the connected0. As explained
previously, this is due to increasing the potential search space
through the increased neighbourhood size, which can also
be understood as von-neuman networks where r=1 and r=2,
respectfully. If the quantity of functions is greater than the
neighbourhood size (which is decreased further by the failure

rate) then the probability of connectedness decreases and
therefore increasing this search space can mitigate this issue
and thus improve the connectedness of the service. How-
ever due to the application of flooding based routing, larger
sized neighbourhoods will have a detrimental affect upon
MC performance. Through permitting 1 hop communication,
the search space can be considerably increased and thus the
likelihood of remaining connected increases. Optimisations
will need be determined once more is known about the effect
of communication upon the MC in later stages of the research.

Therefore, we can deduce from the previous analysis that
the relationship between the neighbourhood size and function
quantity (service complexity) has a direct effect upon the
connectedness of that application. The probabilistic model
presented in section 4.1 indicates that during a best case
scenario, the most optimal selection for function quantity is
any which is less than the neighbourhood size. This can be
explained as follows:

If Q > N then the chance of the application to remaining
connected is < 100%, which reduces considerably with larger
service sizes. Therefore increasing the neighbourhood size,
and in particular ensuring it is larger than the application
size including failure rate DR, such that is N > Q or
N > (Q ∗ DR) will cause a considerably increased chance
for the application to remain connected.

E. Function spread through differentiation algorithms

Another point of optimisation is the method used by cells to
differentiate according to the needed functions. The probabilis-
tic model illustrates a best case scenario where function types
are evenly distributed. However, as a result of node failures
and possible differentiation methods the CA is incredibly
dynamic, causing cell state to be in a constant state of flux,
potentially changing at each time step. Therefore through
deriving intelligent mechanisms which differentiate to force a
given spread of functions, the connectedness can be improved.
This can be seen with the performance improvement between
the two differentiation algorithms, particularly where Q > N
and at higher failure rates. However this performance does not
reach that of the probabilistic model although it does help to
confirm its findings. This is largely due to the highly dynamic
nature of the CA which also lacks many features making it
less representative of the real-world system. The next stage
of this research will develop a prototype implementation to
permit investigation of the model with the currently lacking
communication and processing performance attributes.

VII. CONCLUSION

In the authors’ previous work [29], modelling of the
embryonic characteristics against the required functionality
highlighted a disparity between goals. Whilst the networking
functionality decreed an array of features such as routing
tables; the resilience and complexity characteristics were at
odds, due to the increase in attack surface. Therefore this paper
provided models and corresponding simulations to understand
the efficacy of the embryonic model yet with the negative
networking aspects removed: i.e. local-only communication.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

This enabled an investigation into the architecture structure of
the model without skewing the results with complexity of the
communication.

Overall the results of the CA simulations have highlighted
a number of key points relevant to the next (practical) stage
of the investigation: Structural characteristics can be varied
in order to increase resilience under varying levels of stress.
These will provide the baseline categories for the next stages
of tests. Increasing structural characteristics tend to be resource
intensive in all manners, so their usefulness in a practical
context will be quantified when using real-world systems.
Further methods of intelligent decision making relating to
optimising the function spread when choosing to differentiate
can be investigated in a greater manner, as the discrete nature
of the CA simulation prevented this but did highlight its
effectiveness.

REFERENCES

[1] J. P. G. Sterbenz, D. Hutchison, E. K. Çetinkaya, A. Jabbar, J. P.
Rohrer, M. Schöller, and P. Smith, “Resilience and survivability
in communication networks: Strategies, principles, and survey of
disciplines,” Comput. Netw., vol. 54, no. 8, pp. 1245–1265, Jun. 2010.
[Online]. Available: http://dx.doi.org/10.1016/j.comnet.2010.03.005

[2] M. J. Khabbaz, C. M. Assi, and W. F. Fawaz, “Disruption-tolerant net-
working: A comprehensive survey on recent developments and persisting
challenges,” IEEE Communications Surveys Tutorials, vol. 14, no. 2, pp.
607–640, Second 2012.

[3] M. Aazam, S. Zeadally, and K. A. Harras, “Deploying fog computing
in industrial internet of things and industry 4.0,” IEEE Transactions on
Industrial Informatics, vol. 14, no. 10, pp. 4674–4682, Oct 2018.

[4] A. Singh, U. K. Singh, and D. Kumar, “Iot in mining for sensing,
monitoring and prediction of underground mines roof support,” in
2018 4th International Conference on Recent Advances in Information
Technology (RAIT), March 2018, pp. 1–5.

[5] A. J. V. Neto, Z. Zhao, J. J. P. C. Rodrigues, H. B. Camboim,
and T. Braun, “Fog-based crime-assistance in smart iot transportation
system,” IEEE Access, vol. 6, pp. 11 101–11 111, 2018.

[6] S. Heble, A. Kumar, K. V. V. D. Prasad, S. Samirana, P. Rajalakshmi,
and U. B. Desai, “A low power iot network for smart agriculture,” in
2018 IEEE 4th World Forum on Internet of Things (WF-IoT), Feb 2018,
pp. 609–614.

[7] R. Amin, D. Ripplinger, D. Mehta, and B. Cheng, “Design consid-
erations in applying disruption tolerant networking to tactical edge
networks,” IEEE Communications Magazine, vol. 53, no. 10, pp. 32–38,
October 2015.

[8] I. Makhdoom, M. Abolhasan, J. Lipman, R. P. Liu, and W. Ni, “Anatomy
of threats to the internet of things,” IEEE Communications Surveys
Tutorials, pp. 1–1, 2018.

[9] T. Welsh and E. Benkhelifa, “Perspectives on resilience in cloud
computing: Review and trends,” in 2017 IEEE/ACS 14th International
Conference on Computer Systems and Applications (AICCSA), Oct 2017,
pp. 696–703.

[10] E. Baccarelli, P. G. V. Naranjo, M. Scarpiniti, M. Shojafar, and J. H.
Abawajy, “Fog of everything: Energy-efficient networked computing
architectures, research challenges, and a case study,” IEEE Access, vol. 5,
pp. 9882–9910, 2017.

[11] M. A. A. Faruque and K. Vatanparvar, “Energy management-as-a-service
over fog computing platform,” IEEE Internet of Things Journal, vol. 3,
no. 2, pp. 161–169, April 2016.

[12] L. Lyu, K. Nandakumar, B. Rubinstein, J. Jin, J. Bedo, and
M. Palaniswami, “Ppfa: Privacy preserving fog-enabled aggregation in
smart grid,” IEEE Transactions on Industrial Informatics, vol. 14, no. 8,
pp. 3733–3744, Aug 2018.

[13] F. Dressler and O. B. Akan, “A survey on bio-inspired
networking,” Computer Networks, vol. 54, no. 6, pp. 881
– 900, 2010, new Network Paradigms. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1389128610000241

[14] S. N. Mthunzi, E. BENKHELIFA, T. Bosakowski, and S. Hariri, “A bio-
inspired approach to cyber security,” in Computer and Cyber Security:
Principles, Algorithm, Applications, and Perspectives, November 2018.
[Online]. Available: http://eprints.staffs.ac.uk/5068/

[15] S. Hariri, M. Eltoweissy, and Y. Al-Nashif, “Biorac:
Biologically inspired resilient autonomic cloud,” in Proceedings
of the Seventh Annual Workshop on Cyber Security and
Information Intelligence Research, ser. CSIIRW ’11. New York,
NY, USA: ACM, 2011, pp. 80:1–80:1. [Online]. Available:
http://doi.acm.org/10.1145/2179298.2179389

[16] B. Baran and R. Sosa, “A new approach for antnet routing,” in Proceed-
ings Ninth International Conference on Computer Communications and
Networks (Cat.No.00EX440), Oct 2000, pp. 303–308.

[17] D. Wang, L. He, Y. Xue, and Y. Dong, “Exploiting artificial immune
systems to detect unknown dos attacks in real-time,” in 2012 IEEE 2nd
International Conference on Cloud Computing and Intelligence Systems,
vol. 02, Oct 2012, pp. 646–650.

[18] W. Ha, “Cloud service selection with fuzzy c-means artificial immune
network memory classifier,” in 2018 14th International Conference on
Computational Intelligence and Security (CIS), Nov 2018, pp. 264–268.

[19] T. Wang, B. Ye, Y. Li, and Y. Yang, “Family gene based cloud trust
model,” in 2010 International Conference on Educational and Network
Technology. IEEE, 2010, pp. 540–544.

[20] P. Marchal, P. Nussbaum, C. Piguet, S. Durand, D. Mange, E. Sanchez,
A. Stauffer, and G. Tempesti, “Embryonics: The birth of synthetic life,”
in Towards Evolvable Hardware, E. Sanchez and M. Tomassini, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1996, pp. 166–196.

[21] E. Benkhelifa, A. Pipe, and A. Tiwari, “Evolvable embryonics:
2-in-1 approach to self-healing systems,” Procedia CIRP,
vol. 11, pp. 394 – 399, 2013, 2nd International Through-
life Engineering Services Conference. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S2212827113005027

[22] D. Miorandi, D. Lowe, and L. Yamamoto, “Embryonic models for
self–healing distributed services,” in Bioinspired Models of Network,
Information, and Computing Systems, E. Altman, I. Carrera, R. El-
Azouzi, E. Hart, and Y. Hayel, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010, pp. 152–166.

[23] K. Velasquez, D. P. Abreu, M. R. M. Assis, C. Senna, D. F. Aranha,
L. F. Bittencourt, N. Laranjeiro, M. Curado, M. Vieira, E. Monteiro,
and E. Madeira, “Fog orchestration for the internet of everything:
state-of-the-art and research challenges,” Journal of Internet Services
and Applications, vol. 9, no. 1, p. 14, Jul 2018. [Online]. Available:
https://doi.org/10.1186/s13174-018-0086-3

[24] B. Farahani, F. Firouzi, V. Chang, M. Badaroglu, N. Constant, and
K. Mankodiya, “Towards fog-driven iot ehealth: Promises and challenges
of iot in medicine and healthcare,” Future Generation Computer Sys-
tems, vol. 78, pp. 659–676, 2018.

[25] F. A. Kraemer, A. E. Braten, N. Tamkittikhun, and D. Palma, “Fog
computing in healthcarea review and discussion,” IEEE Access, vol. 5,
pp. 9206–9222, 2017.

[26] M.-P. Hosseini, A. Hajisami, and D. Pompili, “Real-time epileptic
seizure detection from eeg signals via random subspace ensemble
learning,” in Autonomic Computing (ICAC), 2016 IEEE International
Conference on. IEEE, 2016, pp. 209–218.

[27] A. V. Dastjerdi and R. Buyya, “Fog computing: Helping the internet of
things realize its potential,” Computer, vol. 49, pp. 112–116, 2016.

[28] C. C. Byers and P. Wetterwald, “Fog computing distributing data
and intelligence for resiliency and scale necessary for iot: The
internet of things (ubiquity symposium),” Ubiquity, vol. 2015,
no. November, pp. 4:1–4:12, Nov. 2015. [Online]. Available:
http://doi.acm.org/10.1145/2822875

[29] T. Welsh and E. Benkhelifa”, “Embyronic model for highly resilient
paas,” in 2018 Fifth International Conference on Software Defined
Systems (SDS), April 2018, pp. 197–204.

[30] S. V. Vandebroek, “1.2 three pillars enabling the internet of everything:
Smart everyday objects, information-centric networks, and automated
real-time insights,” in 2016 IEEE International Solid-State Circuits
Conference (ISSCC), Jan 2016, pp. 14–20.

[31] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, pp. 41–50, Jan 2003.

Embyronic-Inspired Resilient Service Delivery at
the Hostile Mobile Edge

Thomas Welsh
Computer Science and Information Systems

University of Limerick
Limerick, Ireland

thomas.welsh@ul.ie

Elhadj Benkhelifa
School of Computing and Digital Technologies

Stafforshire University
Stoke-on-Trent, UK

e.ebenkhelifa@Staffs.ac.uk

Abstract—The rapid uptake of smart systems integrating with
the novel and emerging industry 4.0 ensures that Cyber Physical
Systems (CPS) are being found operating in hostile environmental
conditions. Conditions which may instigate considerable churn
due to the failure of nodes or partial failure due to link removal.
The industrial and time-critical usage of these systems ensures
that operational failure can result in costly and unsafe conditions.
This work presents a solution to this problem, inspired by the self-
healing processes inherent to animal embryonic development, a
platform for highly resilient service delivery at the hostile mobile
edge is presented and evaluated.

Index Terms—fog, edge, resilience, service, embryonic

I. INTRODUCTION

The rise of rich data processing at the edge is undoubted and
potentially unstoppable. Novel solutions to providing data pro-
cessing services in these constrained environments Whilst the
increase in use-cases integrated with Cyber Physical Systems
(CPS) ensures that breaks in service could be catastrophic,
with the potential for huge financial loss, or even loss of
life. This safety-critical motivation and complexity of security
issues has now driven a focus upon services to be delivered
resiliently. Where resilience can be defined as encompassing a
wide number of characteristics, including security, but focuses
strongly on the persistence of service delivery in the face of
internal and external challenges to the system. A number of
use-cases are highlighted within the application of Industrial
IoT where a large number of nodes collect data on the edge [1].
Mining [2], transportation, crime [3] and agriculture [4] are
examples where large scale IoT systems may operate in envi-
ronments with changing and non-deterministic environmental
conditions in addition to device mobility.

Networking solutions are not compatible with all types of
harsh environments. Some use-cases involve the destruction
of nodes such as adversarial attacks in warfare [5] or node
subversion during cyber-attack [6]. For these situations, novel
architectures are often sought to enhance the network’s envi-
ronment. These take the form of distributed over centralised
architectures, mass redundancy of resources, or diversity
across hardware and software and location [7]. When seeking
alternative architectures, a common source of inspiration lies
within biological systems due to their inherently scalable and
resilient nature.

A solution to this can be found within biological-inspired
techniques, which have been applied to a whole host of
problems within computer science, the Turing machine which
was based upon a human clerk is arguably the first. In
terms of resilient networks/systems, few works exist in the
area of FoE due to it’s novelty, however some can be seen
within similar domains. For example cellular signalling models
(which operate in a message and not node oriented fashion)
have also been applied within wireless ad-hoc networks for
resilient and efficient communication [8]. Whilst numerous
bio-inspired techniques for resilient cloud computing and other
distributed systems have been investigated [9]. These can
involve architectural models similar to this work using cell-
based models [10], networking approaches based upon the dis-
tributed processing capabilities of ant colonies [11], intrusion
detection methods [12] or service orchestration methods [13]
based upon artificial immune systems, alternatives to public
key infrastructure based upon family genetics [14] and many
more.

Levering Fog computing nodes as a data processing plat-
form for IoE is discussed in a number of places [15] with
use-cases such as energy management [16], smart-cities [17]
benefiting from data pre-processing on the edge nodes. How-
ever, the platform presented in this paper aims to provide a
more feature rich platform for data processing through the
use of a micro-services architecture. In our previous work
[18] an architectural solution to this problem was proposed.
We modelled the self-healing characteristics of embyronic de-
velopment to develop a self-healing, resilient data processing
platform. Through simulation we illustrated the success of this
approach. In this work we present and discuss a preliminary
implementation of this work.

The rest of this paper is as follows: Section 2 describes
the embryonic platform architecture, characteristics, and ap-
plication processing practicalities. Section 3 discusses the
implementation specifics and the methodology for analysing
application and resilience performance. Section IV presents
and discusses results of tests where there were no failures
induced. whilst section V discusses the performance of the
network under stress with induced failures. Finally, section VI
concludes this paper.

II. MULTI-CELLULAR EMBRYONIC PLATFORM

This section presents the conceptual architecture and design
of the Multi-Cellular Embyronic Platform (MC) which is a
multi-agent complex adaptive system. This architecture is the
practical realisation of the Cellular Automata-based model
which was simulated in our previous work [18] illustrating the
efficacy of the approach. The goal of the system is to provide
resilient service delivery upon edge nodes in a microservices-
like fashion. To achieve this, the system takes inspiration
from embryogensis. Embryogenesis inspired electronics (or
embryonics) have shown that resilience may be achieved by
modelling a system on these self-healing capabilities [19],
whilst embryonic software has shown similar self-healing
properties for distributed systems [20] and is therefore proven
in it’s application for the management of complexity for
resilience. In this application, the concepts of cellular differen-
tiation and cellular division of animal embryonic development
are employed to provide self-healing functionality in a multi-
agent system. The cells (which compose the system) employ
the MAPE-K loop to permit self-organising and adaptive
behaviour according to internal and external events with an
overall goal of enabling the execution of services in the
presence of partial or full node failures.

The MC architecture is purely P2P so that it suffers from
no signal point of failure which adheres to the characteristics
of a complex system and resilience. Therefore it consists of
only one component - the cell. In the likeness of embyronic
characteristics an arbitrary quantity of cells will autonomously
divide and differentiate according to both intrinsic information
incepted about the ideal environmental state and the current
state according to information from neighbourhood cells. For
these reasons, this architecture is said to be self-reproducing,
self-healing and self-organising. Additionally the local-only
communication (NF2 and NF4) ensures the properties of this
system are emergent.

A. The Cell

The Cell has two primary purposes. Firstly it should collabo-
ratively maintain the P2P overlay network with it’s neighbours.
This involves dividing (self-reproducing) as required in order
to self-heal the network and also differentiate to a function
type which is underrepresented locally. It accomplishes this
through continuously gossiping to it’s neighbours about its
known view of the network so that all cells have an accurate
local view and can differentiate accordingly.

The second purpose is to process data which it is intended
to. The chosen software function, which the cell has differ-
entiated to, denotes the messages it can process. Messages
it receives which contain its specific software function will
be processed and the result forwarded on to it’s neighbours.
An application is therefore executed through this process of
iterative data processing by individual cells.

The cell consists of the following sub-components which
are illustrated in figure 1. The description of each component
can be found below:

Fig. 1. Architectural model of the cell components

• Genome - will differentiate to a particular software
function, as required by the global network. It will only
process data of its function type, ignoring other messages.
Once the data has been processed it passes the output to
the node, for distribution to other cells or the end user.

• Node - uses the publisher/subscribe communication pat-
tern to pass messages between other cells. There are two
types of messages, data messages to be processed by the
corresponding function and organisational messages. Or-
ganisational messages involve broadcasting known local
node addresses, the current function types the cell can
see, and requests for differentiation.

• API - is a sub-component oif the node and exposed to the
end-user/devices. It is used to push data to be processed
onto the MC platform and also to return results.

The cell is firstly initialised as follows:

1) Thresholds and initial values are set, these include the
range of possible functions, the number of times the
cell should divide and numerous timeout thresholds to
control performance.

2) Next the cell instructs the genome to differentiate ac-
cording to a random function within the range allowed.

3) The network socket in which messages will be published
from is started.

4) A subscriber execution thread is started which loops a
pool of sockets listening for messages from neighbours
and then processes them as appropriate

5) An API loop is initiated which polls for messages from
end-users.

6) The cell will divide according to the number of times
given to it by it’s mother cell.

7) The cell subscribes to it’s mother cell and begins polling
for messages.

After initialisation the cell enters a main loop in a further
execution thread. The following activities are continuously
looped within the thread:

1) Keep alives are published to all known subscribers.
These consist of the cell’s current known state of the
neighbourhood. I.e. the set of all cell values it can see
and communicate with.

2) The cell publishes lists of known peers so that it’s
subscriber cells can

3) Last messages from all subscribed to nodes are checked
against timeout threshold. Those which exceed are re-
moved from the pool. If the cell removed was a child
cell it will divide.

4) The cell will check the current state of its neighbourhood
and differentiate to an underrepresented function in order
to ensure function distribution is even.

B. Self-organisation through optimal differentiation

In our previous work [18], it was shown that optimisa-
tion the differentiation could have a beneficial effect upon
application connectivity compared to a random baseline. The
algorithm used in these tests is only one of many examples
and was chosen after successful evaluation

Algorithm 1: Cell Update - Weighted Differentiation
Data: NeighbourhoodState, CellState, Functions
Result: CellState, DivideCellState
Check Neighbourhood States;
if Cell is alive then

if Cell does not die then
for Function in Functions do

Count Function in NeighbourhoodState;
end
minFunctions = Calculate min(Function in

NeighbourhoodState);
CellState = random(minFunctions)

else
end

C. Applications

Applications are composed of a stack of distinct software
functions and must be designed for the platform but operate
using traditional vitual machines (e.g. Python Interpreter).
The application data resides in the passing of messages and
therefore no crucial data persists on any cell, ensuring that
if either a full or partial failure occurs then the execution of
the application can persist. At each stage of the application,
the current function and data to be processed is propagated to
neighbourhoods of cells, if a particular cell has differentiated
to that particular function module then it will pop that function
from the application stack, process the data with the appropri-
ate function, and then propagate the resulting data with the rest
of the stack. Full execution will occur in micro-services like
fashion as messages are passed to loosely-coupled services.

This form of iterative data processing is designed to suit
edge environments which were shown to need rich data
processing functionality in a SaaS and PaaS manner yet are
currently too constrained to do so due to their constrained
nature [21] [22]. Therefore this method distributes the data
processing in a resilient manner across multiple nodes.

D. Communication and Message Registry

Messaging is a crucial component of the system. Nodes
broadcast messages as this operates without the requirement
for maintaining routing tables, a costly procedure for both
time and computation in networks with high degrees of node
churn. In order to minimise network contention, cells limit
their neighbourhood size (messages are not forwarded) and
therefore the size of their neighbourhood directly affects net-
work contention. Cells will broadcast two types of messages,
firstly they gossip about their local environment, which permits
the self-organisation of the system, secondly they broadcast
the result of any processed data to their peers for further
processing. The majority of functionality occurs within the
single keep alive message - OKA. This employs the concept
of local communication where nodes will continuously gossip
to their neighbours about their known information. Table I
presents the finalised messages implemented in this proof-of-
concept.

TABLE I
REGISTER OF MESSAGES

Type Code Function
Organism OKA Keep Alive -– also sends known state of local

nodes
Organism OPAR Advertise all known peers
Function FDPR Application function traffic in
Function FAOT Application function traffic out
API PAPP Push application to MC from an external user

III. IMPLEMENTATION AND EVALUATION

Following from the description of the architecture in the pre-
vious section, this section presents the implementation details
and the performance valuation of the architecture. The code
is heavily supported by the ZeroMQ (zero message queue)
library [23] which is an extremely fast and efficient high
speed, brokerless message passing library written in C. The
publish/subscribe communication model employed permits the
self-healing, apoptosis model of cellular death whereby nodes
will cease communication with misbehaving nodes through
simply unsubscribing.

The MC architecture can be modelled as a Finite State
Machine (FSM), figure 3 illustrates these distinct states. Where
the first cell will spawn with the ideal conditions incepted
into it. The network will then converge to its ideal network
structure by dividing according to its given environment. As
cells die it will divide to create more and therefore cycle
between degraded and acceptable delivery.

Fig. 2. This diagram illustrates the constrained application execution. The application starts as a tuple of data (D) and functionality F). The data is passed
to the top function of the list which is removed as the data is passed to the next cell. The current state of the application therefore resides in the message.

Fig. 3. The full MC architecture modelled as a Finite State Machine.

A. Methodology

All tests were run on a 64bit i7 quad core Laptop running
Debian Linux where all cells used localhost addresses and
randomised port numbers. All communication was conducted
over the operating system’s internal network stack and there-
fore was minimally affected by any external conditions. Ad-
ditionally, all activity on the computer including background
services was kept to the bare minimum to provide fair and
consistent test results.

Tests were autonomously executed in batches using a suite
of scripts to provide empirical consistency. Messages both sent
and received by all cells were pushed to the debug server as
per the setup in the previous chapter where they were stored
in a MYSQL database. The mother cell was spawned with the
configuration options for that test. A loop then iterates every
second up until the time limit of 5 minutes (300 seconds).
The events which occur during the loops typically consists of
pushing applications to be processed and instigating artificial
faults by killing nodes according to a pseudorandom threshold.
Post-test run, all of the messages would be retrieved from the
back end database and parsed to create a timeline of events.
When a change in the network structure occurs, a graph of
the network is constructed using the networkx python library.
A history of all graphs is then stored (with a corresponding
PNG image) for further analysis. This consists of a number
of different algorithms which examine the resilience of the
network at each stage. Statistics about the application pro-
cessing time and messages sent and received are also recorded.
Note: that graphs at this stage, particularly for those tests with
node failures, were pruned of isolates. Therefore the graphs
do not show all nodes that may be active, only those that
are connected to other nodes. This is to ensure more accurate

reporting of performance and resilience statistics.

B. Variables

1) Dependent Variables: These metrics are employed to
evaluate the performance of application processing upon the
architecture. They seek to determine whether the embryonic
architecture can successfully process the application in it’s
current state. For the purposes of this testing, the applications
used are only representative of what is considered to be a
real-world data processing task discussed previously. This is
accomplished as it permits the timeline of activity within
each test to be examined easily from an external viewpoint.
Determining if the application has been processed correctly
requires the same logic as processing it upon the collection
of cells. Moreover a simplistic data processing application
still permits investigation and evaluation of the success of the
platform as the focus is in connecting the distinct function
types together to form a complete application. Therefore the
example services consist of a simplistic function which merely
multiplies the data it receives by it’s function number and then
pushes it to the next function until the data cannot be processed
anymore due to all functions being exhausted. The application
values are generated according to a maximum value and cells
will differentiate according to their local information driven
self-organisation as detailed in Algorithm 1. Table II presents
an example data processing application for 5 functions and
input data of 2. As the data is received by each function it is
multiplied by that value and then pushed to the next. Although
simplistic, this method is chosen as it minimises any effects
upon the system performance that may result from more
complex applications. Additionally the ability for software
environments to execute arbitrary code is not in question and
therefore does not need to be evaluated. This test focuses
upon the networking architecture and self-organisation which
permits the passing of messages between arbitrary software
functions.

Applications are pushed to the architecture from the API
every 10 seconds to allow time for the other messages to clear
for more accurate reporting. The data is incremented each time
to ensure different results to allow for ease of measurement. As
the timeline is generated from processing the messages after
the experiment has concluded, performance related values are
recorded next to each application which are presented in table

2) Independent Variables: In order to evaluate the previ-
ously defined dependent variables whilst the system is under

TABLE II
EXAMPLE DATA PROCESSING APPLICATION MESSAGES FOR

PERFORMANCE TESTING

Parameter Data
Functions 5
Data 2
Stage 0 [[1,2,3,4,5], 2]
Stage 1 [[1,2,3,4], 10]
Stage 2 [[1,2,3], 40]
Stage 3 [[1,2], 120]
Stage 4 [[1],240]
Stage 5 [240]

TABLE III
VARIABLES RECORDED PER EACH TEST TO RECORD NETWORK

PERFORMANCE

Variable Description
Application Data (Data) The output of the processed data.
Total Process Time (TotalProc) The time in seconds from the first

message to the last.
Shortest Process Time (ShortProc) The time in seconds from the first

message to the first output mes-
sage.

Longest Receive Time (LongRecv) The time in seconds from the first
message to the last received mes-
sage.

Process Messages (Proc) The total number of data process-
ing messages

Output Messages (Out) The total number of data result
messages.

Receive Messages (Recv) The total number of messages re-
ceived by nodes.

different states a number of parameters were varied (table IV).
These are related to those which were previously investigated
within chapter 4 using CA although variations exist due to the
continuous nature of these tests contrasting with the discrete
nature of the CA simulations.

TABLE IV
INDEPENDENT VARIABLES CHOSEN FOR EXPERIMENTATION

Variable Description Range
Functions (Func) The quantity of possible function

types.
2 - 7

Division (Div) The extent to which nodes will
divide. This value is halved at each
division

2 – 6

Subscriptions (Sub) The maximum number of other
cells each cell can Subscribe to

2 – 8

IV. RESULTS - 0 FAILURE RATES

The first group of tests do not induce any artificial failures
within the nodes, therefore the failure rate of any node was
0%. Despite this they still permit self-organisation and may
self-heal if a timeout occurs. These tests were conducted for
two reasons: the first is to identify the lower and upper bounds
for application execution given different network parameters.
The second is to understand how the independent variables
affect the structure of the network with no failure rates.
This therefore provides baseline values for network size and
structure according to the different independent variables.

These tests examine the effect of the independent variables
upon the structure and size of the network. Insights are gained
from examining the quantitative network data and visually
inspecting graphs.

A. Application Performance
These tests evaluate the effectiveness of the platform to

deliver the applications. To provide context for the perfor-
mance, table V shows the correlation coefficients for applica-
tion performance versus the independent variables. Out could
be argued to be the most relevant as a greater number of
output messages means more successful data processing. The
strong negative correlation between Func and Out indicates
that as application complexity increases the probability of a
successful application decreases. Noting that this trend does
not stay true for the Proc and Recv indicates that in many
cases the applications are still being executed although just
not to completion. An increase in both Div and Sub coincide
with better application processing success overall.

Table VI shows the correlation coefficients again but only
for rows where Out > 0. These values show that for
successfully executed applications, those tests at lower success
rates were less strongly correlated with greater values of Sub.
Func is strongly correlated with Proc but this is likely due
to the increase in quantity of messages being sent rather than
any performance increase. Finally Div is positively correlated
with Out. This is both intuitive due to the increase in N
but also informative as it ensures that despite some network
structures being conventionally non-resilient (hierarchical) the
data is still processed successfully. Proc values also increase
with Div. With the shortest Proc increasing with Func but
not the total, whilst Proc does not increase with Sub. This is a
very informative point, as it means that greater values of Sub
can be used to enable resilience yet without the extra overhead
caused by increasing numbers of nodes as Div increases.

TABLE V
CORRELATION COEFFICIENTS FOR APPLICATION PERFORMANCE

– Div Func Sub
Proc 0.56 0.13 0.23
Out 0.30 -0.42 0.26
Recv 0.47 -0.10 0.37

TABLE VI
CORRELATION COEFFICIENTS FOR APPLICATION PERFORMANCE FOR

SUCCESSFUL APPLICATIONS

- Div Func Sub
Proc 0.65 0.47 0.23
Out 0.43 -0.22 0.21
Recv 0.59 0.18 0.39
ShortProc 0.27 0.46 0.12
LongRecv 0.39 0.00 0.00
TotalProc 0.43 0.09 0.09

B. Application Execution Success
Tests from all divisions where the division was highest and

subs > funcs executed the most successfully. Figure 4 shows

Fig. 4. D4 F2 S7 - Stable States

Fig. 5. D6 F4 S5 Output - Cyclic States

an example case of stable and successful execution output - a
baseline. Figure 5 shows an example where applications are
executed successfully but the performance cycles and presents
a glimpse of the system states.

Tests configurations where the division is close or equal to
the Subscription performed variably. The volatility in these
tests provide insight into the network due to the variability
in data which are discussed to provide insight into why
the performance varied. Figure 6 shows the output message
rate over time for a test where the system cycles between
processing well (acceptable) and processing poorly (degraded).
Neither of the other two test runs of this variant were as
successful. This illustrates the importance of initial starting
conditions.

The effect of starting conditions is highlighted in figure 7

Fig. 6. D4 F4 S3 illustrating performance cycling between acceptable and
degraded.

Fig. 7. 3 runs of the same test parameters D4 F5 S7 illustrating varying
network convergence and chaotic conditions.

where 3 runs produced two converged networks which did
not execute applications successfully and one which did. This
indicates the chaotic nature of this system. Due to the lack of
node failures, network wills remain in this structure.

C. Unsuccessful Applications

A number of parameter sets produced no outputs over all
test-cases. Particularly where sub = 3 or 4, and func = 5 or
6. Figures 8 and 9 shows the Proc curves for D4, F6 and S3
and test D6, F7, S3. Process messages have a greater chance
than output messages of varying in quantity during each peak

Fig. 8. Process Curve for D4 F6 S3 which had no successful application
output

Fig. 9. Process Curve for D6 F7 S3 which had no successful application
output

as they may be received by a different nodes depending upon
the network structure and cell self-organisation. However the
cycling nature of the peaks can still be seen in these graphs.
The constraining factor here is the divisions and predominately
the function size. A clear rule is that outputs will successfully
occur when the Subscription size is equal to or greater than
the function size.

V. RESULTS - FAILURE RATE TESTS

These tests follow from those conducted previously al-
though with a fundamental addition of an artificial failure rate.
At every 2 seconds, for every currently running child cell a
pseudorandom variable is produced. If the variable is less than
the given failure rate then the cell will be killed. The purpose

of the failure rates is to evaluate the performance of the system
under a high rate of churn. Therefore, these tests will evaluate
the self-healing capabilities of the system and the application
execution success alongside it.

The results in the previous section were concerned with
the independent variable effect upon the structure of the
network. Analysing the network from the perspective of it
being converged is not suitable in this instance as the failure
rates cause the network to be dynamic. Therefore the failure
rate was set at a specific level to further understand the
limits of the system under different parameters as a higher
failure rate causes a greater perturbation of the system. In this
instance, 0.01 was determined as a suitable value after manual
experimentation. During preliminary testing, a slightly lower
value of 0.001 causes the network to remain stable and high,
evidence of which is provided later in this section.

A. Application Performance

To evaluate the application performance whilst the system is
self-healing, tables VII and VIII present the correlation values
for the independent variables against application performance
variables for all tests and tests where the application was
successfully executed, respectfully. In the values of all tests,
the effect upon the quantity of messages processed performs
less well in across all values compared to the 0 failure rate
tests. In this instance as functions increase the quantity of
messages processed actually decrease slightly, whereas in
the 0 failure rate tests they increased ever so slightly. This
illustrates the stronger relationship for tests which include
failures between a high application complexity and the ability
of the services to remain connected. For both out and recv,
the performance is slightly worse than the 0 failure rate tests.
These results are intuitive overall as the network is under stress
in comparison to the 0 failure rates.

In terms of the successful applications, the relationships
between the independent variables and the application perfor-
mance on the whole follow the same trend as 0 failure rate
tests yet with worse performance. Some times the performance
degradation is to such a degree that the relationship is insignif-
icant such as with TotalProc and LongRecv with func. This
is interesting as it indicates that in this instance the time taken
to complete applications is unrelated to their complexity.

TABLE VII
CORRELATION COEFFICIENTS FOR APPLICATION PERFORMANCE IN THE

FAILURE TESTS

. Div Func Sub
Proc 0.43 -0.11 0.04
Out 0.23 -0.54 0.10
Recv 0.41 -0.25 0.14

Whilst a higher quantity of output messages generally
means the application has been executed successfully, it is
important to note that a network with a higher output relative
to another does not necessarily equate to better performance
overall. For example if the ratio of messages (recv : output)
is skewed towards Recv then this may not be operating at

TABLE VIII
CORRELATION COEFFICIENTS FOR APPLICATION PERFORMANCE IN THE

FAILURE TESTS FOR SUCCESSFUL APPLICATIONS

. Div Func Sub
Proc 0.47 0.48 0.09
Out 0.39 -0.27 0.09
Recv 0.48 0.22 0.21
ShortProc 0.07 0.21 -0.02
TotalProc 0.25 0.00 -0.08
LongRecv 0.23 0.00 -0.07

optimal performance, considering resource cost. Additionally,
the larger value of div which equates to a larger network
will use considerably more resources. In terms of temporal
performance, some interesting performance variations were
seen. Particularly at the lower output performing tests and
higher division rates. For example, D6 F5 S6 is 1.45 seconds
faster than D6 F6 S5. Whilst D6 F4 S5 is a whole second
slower again with 1 less function. This illustrates the potential
non-linear speed increases through reduction of application
complexity. These tests provide a comparison from the base-
line presented for the 0 failure rate tests. Comparing the
results there is a general trend across all values with worse
performance than the 0 failure rates. This serves to validate
the results as the failure rate is likely to worsen performance
overall. Unlike in the 0 failure tests, sub appears to have no
signification relationship with application performance. Out
increases with div, which is again intuitive due to the increase
in N . Finally the results of functions follow the same trend as
in the previous tests, which is intuitive. The results indicate
that application processing can still occur within the face of
node failures within the correct parameters.

VI. CONCLUSION

This work presented the design of the embryonic data
processing platform for resilient mobile edge networks. It then
presented results and analysis to evaluate its efficacy. It illus-
trated that applications could be successfully executed under
continued failures within the network. It also illustrated that
the system had cyclic states which related to it’s performance
delivery. This highlights future areas of work to determine a
metric to measure it’s state and resilience.

REFERENCES

[1] M. Aazam, S. Zeadally, and K. A. Harras, “Deploying fog computing
in industrial internet of things and industry 4.0,” IEEE Transactions on
Industrial Informatics, vol. 14, no. 10, pp. 4674–4682, Oct 2018.

[2] A. Singh, U. K. Singh, and D. Kumar, “Iot in mining for sensing,
monitoring and prediction of underground mines roof support,” in
2018 4th International Conference on Recent Advances in Information
Technology (RAIT), March 2018, pp. 1–5.

[3] A. J. V. Neto, Z. Zhao, J. J. P. C. Rodrigues, H. B. Camboim,
and T. Braun, “Fog-based crime-assistance in smart iot transportation
system,” IEEE Access, vol. 6, pp. 11 101–11 111, 2018.

[4] S. Heble, A. Kumar, K. V. V. D. Prasad, S. Samirana, P. Rajalakshmi,
and U. B. Desai, “A low power iot network for smart agriculture,” in
2018 IEEE 4th World Forum on Internet of Things (WF-IoT), Feb 2018,
pp. 609–614.

[5] R. Amin, D. Ripplinger, D. Mehta, and B. Cheng, “Design consid-
erations in applying disruption tolerant networking to tactical edge
networks,” IEEE Communications Magazine, vol. 53, no. 10, pp. 32–38,
October 2015.

[6] I. Makhdoom, M. Abolhasan, J. Lipman, R. P. Liu, and W. Ni, “Anatomy
of threats to the internet of things,” IEEE Communications Surveys
Tutorials, pp. 1–1, 2018.

[7] T. Welsh and E. Benkhelifa, “Perspectives on resilience in cloud
computing: Review and trends,” in 2017 IEEE/ACS 14th International
Conference on Computer Systems and Applications (AICCSA), Oct 2017,
pp. 696–703.

[8] F. Dressler and O. B. Akan, “A survey on bio-inspired
networking,” Computer Networks, vol. 54, no. 6, pp. 881
– 900, 2010, new Network Paradigms. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1389128610000241

[9] S. N. Mthunzi, E. BENKHELIFA, T. Bosakowski, and S. Hariri, “A bio-
inspired approach to cyber security,” in Computer and Cyber Security:
Principles, Algorithm, Applications, and Perspectives, November 2018.
[Online]. Available: http://eprints.staffs.ac.uk/5068/

[10] S. Hariri, M. Eltoweissy, and Y. Al-Nashif, “Biorac:
Biologically inspired resilient autonomic cloud,” in Proceedings
of the Seventh Annual Workshop on Cyber Security and
Information Intelligence Research, ser. CSIIRW ’11. New York,
NY, USA: ACM, 2011, pp. 80:1–80:1. [Online]. Available:
http://doi.acm.org/10.1145/2179298.2179389

[11] B. Baran and R. Sosa, “A new approach for antnet routing,” in Proceed-
ings Ninth International Conference on Computer Communications and
Networks (Cat.No.00EX440), Oct 2000, pp. 303–308.

[12] D. Wang, L. He, Y. Xue, and Y. Dong, “Exploiting artificial immune
systems to detect unknown dos attacks in real-time,” in 2012 IEEE 2nd
International Conference on Cloud Computing and Intelligence Systems,
vol. 02, Oct 2012, pp. 646–650.

[13] W. Ha, “Cloud service selection with fuzzy c-means artificial immune
network memory classifier,” in 2018 14th International Conference on
Computational Intelligence and Security (CIS), Nov 2018, pp. 264–268.

[14] T. Wang, B. Ye, Y. Li, and Y. Yang, “Family gene based cloud trust
model,” in 2010 International Conference on Educational and Network
Technology. IEEE, 2010, pp. 540–544.

[15] E. Baccarelli, P. G. V. Naranjo, M. Scarpiniti, M. Shojafar, and J. H.
Abawajy, “Fog of everything: Energy-efficient networked computing
architectures, research challenges, and a case study,” IEEE Access, vol. 5,
pp. 9882–9910, 2017.

[16] M. A. A. Faruque and K. Vatanparvar, “Energy management-as-a-service
over fog computing platform,” IEEE Internet of Things Journal, vol. 3,
no. 2, pp. 161–169, April 2016.

[17] L. Lyu, K. Nandakumar, B. Rubinstein, J. Jin, J. Bedo, and
M. Palaniswami, “Ppfa: Privacy preserving fog-enabled aggregation in
smart grid,” IEEE Transactions on Industrial Informatics, vol. 14, no. 8,
pp. 3733–3744, Aug 2018.

[18] T. Welsh and E. Benkhelifa, “Bio-inspired multi-agent embryonic ar-
chitecture for resilient edge networks,” IEEE Transactions on Industrial
Informatics, pp. 1–1, 2019.

[19] E. Benkhelifa, A. Pipe, and A. Tiwari, “Evolvable embryonics:
2-in-1 approach to self-healing systems,” Procedia CIRP,
vol. 11, pp. 394 – 399, 2013, 2nd International Through-
life Engineering Services Conference. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S2212827113005027

[20] D. Miorandi, D. Lowe, and L. Yamamoto, “Embryonic models for
self–healing distributed services,” in Bioinspired Models of Network,
Information, and Computing Systems, E. Altman, I. Carrera, R. El-
Azouzi, E. Hart, and Y. Hayel, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010, pp. 152–166.

[21] A. V. Dastjerdi and R. Buyya, “Fog computing: Helping the internet of
things realize its potential,” Computer, vol. 49, pp. 112–116, 2016.

[22] S. V. Vandebroek, “1.2 three pillars enabling the internet of everything:
Smart everyday objects, information-centric networks, and automated
real-time insights,” in 2016 IEEE International Solid-State Circuits
Conference (ISSCC), Jan 2016, pp. 14–20.

[23] P. Hintjens, ZeroMQ: messaging for many applications. ” O’Reilly
Media, Inc.”, 2013.

	Abstract
	Dedication
	Acknowledgements
	List of Publications
	Table of Contents
	List of Figures
	List of Tables
	Glossary
	Introduction
	Problem Definition
	Aim, Objectives and Research Methods
	Scope of the Thesis
	Resources and Tools
	Structure of the Thesis

	Literature Review
	Introduction
	The Internet of Things
	Enabling Technologies
	Applications
	Security and Resilience Challenges in IoT

	Cloud Service Delivery
	Decentralised Cloud Computing
	Applications for Resilient Decentralised Processing

	Resilient Techniques for Cloud Computing
	Redundancy
	Diversity
	Autonomic
	Comparison
	Survey of Resilience Techniques for Decentralised Cloud Computing
	Analysis of Decentralised Cloud Resilience

	Resilience Metrics and Evaluation

	Resilience for Decentralised Cloud Services
	The Requirement for Autonomic Service Management
	Embyronics for Resilient Decentralised Cloud Service Delivery

	Conclusion

	Embryonic Model for Resilient Cloud Service Delivery
	Introduction
	Resilient Cloud System Requirements
	Functional Cloud Requirements

	Embryonic Development Characteristics
	Cellular Signalling

	Embryogensis for Resilient Decentralised Cloud Computing - Feature Mapping
	The Cell
	Cell Functionality

	Multi-Cellular Organism
	Communication
	Application Management
	Self-organisation and Self-healing

	Use-Cases
	Smart Transport with VANETS
	Potential Application - Cooperative Vehicle Telemetry

	Adversarial Warfare
	Potential Application - Secure and Resilient Communications

	Industrial IoT in hostile environments
	Potential Application - Robotic Marine Data Processing

	Summary

	Cellular Automata Embryonic Simulation
	Introduction
	Cellular Automata Model Simulation Description
	Cellular Automata Model Simulation Description
	Definitions
	Variables

	Simulation Model
	Validation
	Graphical Validation
	Extreme Condition Validation
	Internal Validity

	Results and Analysis
	Stochastic Model of Best-Case Function Distribution
	CA Results
	SpawnRate
	Cell Update Function
	Organism Start Size and Location

	Discussion
	Application Complexity
	Aggressive Spawning
	Complex System Characteristics
	Increasing Search Space
	Function spread through differentiation algorithms
	System states

	Considerations for Practical Implementation
	Summary

	Proof-of-Concept Implementation
	Introduction
	Software Specification
	Software Requirements

	High-level Software Design
	Message Registry
	User-driven Variant
	Self-organised Variant

	Implementation Details
	Validation
	Experiment Test Bed

	User driven test-case
	Self-organising Test-Case
	Analysis and Comparison
	Summary

	Proof-of-Concept Testing and Evaluation
	Introduction
	Methodology
	Dependent Variables
	Application Performance measures
	Graph-based metrics

	Independent Variables
	Functions
	Division Rate
	Subscriptions

	Results and Analysis
	0 Failure Rates
	Division effect upon network structure
	Subscriptions effect upon network structure
	Application Performance
	Summary

	Failure Rates
	Application Performance
	Metric Investigation

	Discussion
	Application Performance
	Communication Complexity
	Temporal Performance

	Measuring Resilience
	Validating Assortativity Periodicity for State Change Measurement
	Proposed Method
	Further Comments

	Summary

	Conclusion
	Introduction
	Revisiting the hypothesis
	Challenges and Limitations
	Future Work
	Contributions to Knowledge

	Appendix A - Data
	Appendix B - Publications

