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Abstract 

The increasing popularity of computing devices with short-range wireless offers new com-

munication service opportunities. These devices are small and may be mobile or embedded 

in almost any type of object imaginable, including cars, tools, appliances, clothing and 

various consumer goods. The majority of them can store data and transmit it when a wire-

less, or wired, transmitting medium is available. The mobility of the individuals carrying 

such short-range wireless devices is important because varying distances creates connection 

opportunities and disconnections. It is likely that successful forwarding algorithms will be 

based, at least in part, on the patterns of mobility that are seen in real settings. For this 

reason, studying human mobility in different environments for extended periods of time 

is essential. Thus we need to use measurements from realistic settings to drive the devel-

opment and evaluation of appropriate forwarding algorithms. Recently, several significant 

efforts have been made to collect data reflecting human mobility. However, these traces are 

from specific scenarios and their validity is difficult to generalize. 

In this thesis we contribute to this effort by studying human mobility in shopping malls. 

We ran a field trial to collect real-world Bluetooth contact data from shop employees and 

clerks in a shopping mall over six days. This data will allow the informed design of for-

warding policies and algorithms for such settings and scenarios, and determine the effects 

of users' mobility patterns on the prevalence of networking opportunities. 

Using this data set we have analysed human mobility and interaction patterns in this 

shopping mall environment. We present evidence of distinct classes of mobility in this 

situation and characterize them in terms of power law coefficients which approximate inter-
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contact time distributions. These results are quite different from previous studies in other 

environments. 

We have developed a software tool which implements a mobility model for "structured" 

scenarios such as shopping malls, trade fairs, music festivals, stadiums and museums. In this 

thesis we define as structured environment, a scenario having definite and highly organised 

structure, where people are organised by characteristic patterns of relationship and mobility. 

We analysed the contact traces collected on the field to guide the design of this mobility 

model. We show that our synthetic mobility model produces ｩ ｮ ｴ ･ ｲ ｾ ｣ ｯ ｮ ｴ ｡ ｣ ｴ time and contact 

duration distributions which approximate well to those of the real traces. Our scenario 

generator also implements several random mobility models. 

We compared our Shopping Mall mobility model to three other random mobility models 

by comparing the performances of two benchmark delay tolerant routing protocols, ｅ ｰ ｩ ｾ

demic and Prophet, when simulated with movement traces from each model. Thus, we 

demonstrate that the choice of a mobility model is a significant consideration when ､ ･ ｳ ｩ ｧ ｮ ｾ

ing and evaluating ､ ･ ｬ ｡ ｹ ｾ ｴ ｯ ｬ ･ ｲ ｡ ｮ ｴ mobile ｡ ､ ｾ ｨ ｯ ｣ network protocols. 

Finally, we have also conducted an initial study to evaluate the effect of delivering 

messages in shopping mall environments by exclusively forwarding them to customers or 

sellers, each of which has distinctive mobility patterns. 
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Chapter 1 

Introduction 

A scientist in his laboratory is not a mere technician: 

he is also a child confronting natural phenomena that impress him 

as though they were fairy tales. 

Marie Curie 

This dissertation is concerned with human mobility as a fundamental factor for design-

ing appropriate routing algorithms for infrastructureless mobile ad-hoc and delay tolerant 

networks in shopping mall environments. We present real-world measurement results from 

the mobility of people in such environments. The key contribution of this thesis is a mobility 

model for shopping mall environments which takes into account their distinctive mobility 

characteristics. We also present a mobility model generation tool which generates struc-

tured movement traces as well as implementing some traditional random mobility models. 

We define as structured environment, a scenario having definite and highly organised struc-
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ture, where people are organised by characteristic patterns of relationship and mobility. A 

shopping mall is a good example of a structured environment as well as urban areas, built 

complexes, trade fairs, music festivals, stadiums, schools, airports, hospitals, etc.. This is 

a place where spatial and temporal aspects are well defined. A shopping mall is a collec-

tion of shops all adjoin a pedestrian area or an exclusive pedestrian street. It represents a 

relatively democratic space with all citizens enjoying access, with participatory entertain-

ment and opportunities for social mixing. The built environment forms a spatial system in 

which, through principles of separation and containment, spatial practices are routinized 

and social relations are reproduced. Such an environment explicitly assume daily repeated 

local practices of individuals and groups of people with different roles. Various groups 

with different responsibilities and relationships with the environment are considered. While 

individual retailers may pursue their own strategies for profit within limited bounds, the 

mall operates as a whole to maximize pedestrian traffic by attracting the target consumers 

and keeping them on the premises for as long as possible. The association of regions with 

particular group membership, activities, and dispositions allows the individual to orient to 

the context and infer the appropriate social role to play. In many cases, shopping malls 

are tens of thousands of square meters in area and crowded much of the time. Because 

of their nature, such environments offer all of the elements required to build large-scale 

people-centric network applications. 

In this chapter I outline the background issues that motivated this work, and state the 

research problems and contributions that are described in this dissertation. After that I 

give an overview of the contents of each chapter. 

1.1 Background 

Delay tolerant networking [3] is an approach to communication systems that seeks to address 

technical issues in heterogeneous networks, such as lack of continuous network connectivity 

mainly due to mobility and limited power, of wireless communication devices. 

The acronym "DTNs" has been often used to identify either Delay- or Disruption-, or 
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Disconnection-Tolerant Networks, sometimes referring to one or the other without distinc-

tion. The InterPlaNetary Internet Special Interest Group were the pioneers in facing issues 

concerning delay experienced in transferring data between different planets of our solar sys-

tem. The end-systems must have a free line of sight to be able to communicate since radio 

waves cannot pass through large solid objects such as planets and moons. In such an envi-

ronment network protocols and algOrithms, unlike the ones for terrestrial communications, 

have to support delay. Distance is a further problem in space communications since the 

intensity of electromagnetic radiation decreases according to ｾ Ｎ These issues yield high bit 

error rates in addition to long term interruption which give rise to the term" disruption". In 

this scenario interruptions are somewhat predictable compared to unexpected disturbances 

which might occur in terrestrial networks where disconnections can be caused by natural 

disasters such as earthquakes, seaquakes, fioodings, terrorist attacks, etc. 

DTNs [4] were conceived for networks in which patterns of connectivity are known or 

predictable, such as space communication systems (LEO satellite) [5,6, 7, 8], sparse mobile 

ad-hoc networks [9J, infostation-based systems [10J and carrier based data collection in 

sensor networks [11). However, they can also handle the unpredictable connectivity among 

mobile devices (e.g. PDAs) (12) and try to address most of the issues raised in the "network 

survivability" literature [13, 14) where networks lack continuous connectivity. 

Intermittent connectivity, long or variable delay, asymmetric data rates, high error rate, 

high mobility, unknown mobility patterns, energy and storage exhaustion comprise just a 

few of the potential issues that make end-to-end communication unstable and unlikely in 

such networks. In these types of networks any synchronous communication paradigm does 

not perform well. Basic synchronous systems rely on a connected path between sender and 

receiver, and they negotiate communication parameters (such as clocks) at the data link 

layer before communication begins. On the other hands, asynchronous systems may simply 

transmit with no negotiation with the receivers. This may be required when the parties are 

not in the same portion of network. In fact, networks may be partitioned because nodes 

may not be in range with one another due to their physical distance and/or because of their 
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mobility. 

DTNs overcome such issues by using store-and-forward message switching [15]. In Wire-

less Sensor Networks (WSN) [16, 17] small and inexpensive devices can be networked to-

gether to enable a variety of new applications that include environmental monitoring, seismic 

structural analysis, data collection in warehouses, traffic monitoring etc. Sensors can be 

uniformly distributed or heterogeneously spread as islands separated by large distances. In 

these networks [18J mobile agents called MULEs (Mobile Ubiquitous LAN Extensions [19]) 

can be used to collect sensor data. MULEs can pick up data from sensors when in close 

range, buffer it, and drop it off at specific sinks when in proximity. 

Mobile wireless sensor network systems have been proposed to gather and process in-

formation about wild animals across large regions with little communication infrastructure. 

The Princeton ZebraNet Project aims to track zebra migrations in Africa [20J [21]. Data 

collected by the sensors are forwarded from zebra to zebra using peer-to-peer protocols until 

it reaches a base station where it can be processed and analyzed. Notice that information 

are collected by researchers who are mobile and thus there is no fixed base station to which 

to send data. 

Pocket Switched Networks (PSN) [lJ, which are a type of Delay Tolerant Network, use 

contact opportunities to allow humans to communicate without network infrastructures. 

PSNs make use of human mobility and local forwarding in order to distribute data. Infor-

mation can be stored in the device and carried, taking advantage of the user's mobility, or 

forwarded over a wireless link when an appropriate contact is met. Such networks combine 

the fields of mobile ad-hoc networking and delay-tolerant networking. Examples of for-

warding algorithms designed for such networks are BUBBLE Rap [22J and its improvement 

BiBUBBLE [23] which exploit social information for making forwarding decisions. 

1.2 Research Problem and Thesis Contribution 

DTN nodes may consist of powerful computers as well as laptops, PDAs, smart phones , 

pocket PCs, tiny sensors and any kind of network device. Nowadays such devices have 
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become so wide spread that they can be considered pervasive in everyday life. They may 

be mobile, or embedded in almost any type of object imaginable, including cars, tools, 

appliances, clothing and various consumer goods. These may all communicate through 

increasingly interconnected networks. In these types of networks the fundamental assump-

tions used in mobile ad-hoc networking [24] [25] [26] and mesh networks [27] [28] cannot be 

adopted because an end-to-end path is never guaranteed. Instead, network devices must 

actively participate as part of an autonomic network, sharing wireless resources, provid-

ing local connectivity to other devices, and possibly offering local mobility management, 

persistent storage and forwarding services. They can provide connectivity based upon co-

operation incentives or rewards, individual mobility and social patterns. A key requirement 

for the growth and robustness of such networks is the willingness to cooperate. Sometimes 

autonomic networks can be a better solution than traditional infrastructure-based networks 

because the latter can be more expensive, involve installation issues, incur customer cost, 

have particular policy restrictions, and may be less appropriate for people-centric networks 

where services are established on the fly. 

The ultimate goal of this research area is to create a system that is pervasively and unob-

trusively embedded in the environment, smartly connected, intuitive, effortlessly portable, 

highly scalable, and constantly available. In this context mobility plays a key role in the 

forwarding of data as it is mobility which gives rise to local connection opportunities when 

access to network infrastructure is not available or appropriate. Different patterns of mobil-

ity may give rise to different opportunity for communication, and different protocols may be 

more effective in particular situations. For this reason studying human mobility in different 

environments for extended periods of time is essential. 

Recently, several significant efforts have been made to collect data reflecting human 

mobility. In this thesis we explore and characterize mobility in a shopping mall by gather-

ing and analyzing Bluetooth contact traces. We conducted a field trial in a shopping mall 

in which twenty-five shopkeepers and clerks carried smart phones able to detect and log 

Bluetooth contacts over six consecutive days. This deployment was enough to sense con-

5 



tinuously Bluetooth connectivity in more than half of the entire mall. Similar experiments 

have been done in different settings: a conference environment which involved conference 

attendees [2], in roller blade tours by exploiting skaters [29J, in an office environment in 

which participants were working on the same floor in a building [30J, in a research lab and 

university by involving researchers and students [1, 31, 32, 33, 34J. Following ethical princi-

ples, an anonymised version of our data is available to other research groups upon request. 

Several research groups have expressed interest on this data set which has already been 

made available to Dr Naranker Dulay from the Distributed Software Engineering Section 

of the Department of Computing at the Imperial College London, Shasha Zhou from the 

Hunan University in China and Soumaia Al Ayyat from the American University in Cairo. 

Understanding of user mobility patterns is becoming increasingly important as it can 

guide the design of network applications and routing protocols. Moreover, realistic user 

mobility models reproduce more lifelike simulation scenarios which consequently lead to 

more trustworthy outcomes. Our field trial allowed us to analyse the collected contact 

traces and characterize aspects of human mobility in their environment. 

In order to test routing protocols in shopping mall environments, we needed a model 

to represent human mobility in such places. The majority of existing mobility models, 

such as the Random Way Point mobility model [35J, generate purely random movements 

that are very different from those observed in the real world and can produces meaningless 

colo cation patterns [36, 31J. 

Several basic approaches have been proposed to design mobility models reproducing 

real world mobility patterns (see Section 3.2.1 for more details). Mobility models have been 

proposed based on social network theory by Musolesi et al. [37, 38], Venkateswaran et al. 

[39] and Herrmann [40). This approach is based on the assumption that mobile devices 

are commonly carried by humans, so the movement of such devices is necessarily based on 

human decisions and socialization behaviour. Rhee et al. [41J presented a mobility model 

which generates movement traces based on Levy Walks which approximates real world 

traces. Ekman et a1. [42] presented the Working Day movement model, a new movement 

6 



model for delay tolerant networks, which intuitively presents the everyday life of average 

people that go to their workplace in the morning, spend their day at work, and commute 

back to their homes at evenings. Minder et al. [43] used the same approach focusing on 

office environments. The Time-Variant mobility model presented by Hsu et al. [44] is 

similar. In this model, nodes move to different square at different times of day in a periodic 

manner. In a recent work Mei et al. [45, 46] presented a simple mobility model, SWIM 

(Small World In Motion). This model is based on the simple assumption that people go 

more often to places not very far from their home and where they can meet a lot of other 

people. 

The majority of the existing mobility models capture different mobility characteristics at 

a high level of abstraction. The mobility models proposed by Ekman et al. [421 and Minder 

et al. [43] tries to capture several mobility characteristics at a lower level than many other 

models. In this thesis we present a mobility model which is part of this effort. We have 

decided to narrow down the playground scenario to structure environments, with particular 

regard to shopping malls, and to focus on compelling applications in such environments. For 

this reason, we have designed a novel mobility model based on real traces [47, 48J. This relies 

on the simple observation that individuals follow relatively predictable trajectories within 

urban areas, shopping centres, malls, settlements and built complexes [49]. Architecture 

structures the system of space in which we live and move. In doing so, it has a direct relation 

to social life, since it provides the material preconditions for the patterns of movement, 

encounter and avoidance which are the material realization, or even the generator, of social 

relations [50, 511. 

Human societies use space as a key and necessary resource in organizing themselves. 

The process of configuring space turns it from continuous into a connected set of discrete 

units which allows the application of different labels to its individual parts. These parts 

of the space can identify distinguishable groups, communities, or activities, and be asso-

ciated with different rules of behaviour and conventions. An existent social structure can 

be mapped onto the configured space. The demarcation of boundaries allows particular 
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relationships of access or visibility to emerge among the component spaces, and this in turn 

generates probabilistic patterns of movement and encounter within the population [52]. 

The model generates movements that are based in part on the surrounding architectonic 

structure. From the collected contact traces we derived cumulative distribution functions 

describing the mobility behaviour of customers and sellers; these distributions are impor-

tant parameters for our Shopping Mall mobility model. Together with settings defining the 

environment, such as the shopping mall plan and number of sellers in each shop, they are 

submitted to our scenario generator to produce synthetic mobility traces using the Shop-

ping Mall model. We evaluate the realism of the generated movement traces by comparing 

derived characteristics, such as the contact duration and inter-contact times, with those 

derived from real traces and a derivative of the Random Way-Point mobility model. 

We also compared our generated movement traces with three other unstructured mo-

bility models by evaluating two benchmark delay tolerant routing protocols, Epidemic and 

Prophet, against each model. 

We concluded our work of thesis by analysing the possibility of delivering messages in 

such environments by only forwarding them either to customers or sellers to understand 

better the potential role of message carriers belonging to groups with different mobility 

patterns. For that, we employed two semi-Epidemic routing protocols. Figure 1.1 summaries 

the above steps and shows the stages we have followed to conduct the research project 

presented in this work of thesis. 

To summarise, the contributions of the thesis are the following: 

• A valuable data set for the research community comprising Bluetooth contact traces 

from a real-world human mobility experiment in a shopping mall. 

• A characterization of the properties of shopping mall environments extracted from 

this data set. We characterize mobility in shopping mall environments in terms of 

contact duration and inter-contact time, and study interactions among nodes. The 

extracted distributions show evident distinctions from those presented in previous 

studies in different environments. Moreover, we identify two distinct patterns of roo-
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bility related to two classes of individuals that we name customers and sellers, and 

present the technique we used to recognize them. While such classes of mobility may 

be intuitively obvious, we have presented objective evidence of their differences and 

some quantification of their nature. 

• A structured mobility model for shopping ｭ ｡ ｬ ｬ ｾ ｬ ｩ ｫ ･ scenarios which is founded on 

probability distributions derived from real traces and takes into account the plan of the 

environment. The extracted probability distributions drive the whole cyclic scenario 

in which sellers spend some time in and out of their working place, and customers 

spend time in different shops before leaving the mall. Both choose their destination 

with the assistance of shop "attraction levels" within the plan. This shopping mall 

mobility model has been validated by means of simulations and comparisons with real 

traces and a Random WayPoint-like mobility model. 

• A Java software tool to generate structured movement traces as well as movement 

traces from some traditional random mobility models. A class object represents each 

mobility model. In this way, further models can be easily plugged-in. The generated 

synthetic movement traces are designed for the Omnet++ simulator [53], one of the 

most popular discrete event network simulation frameworks in the mobile ad-hoc 

network research community. 

• An evaluation of two well-known routing protocols employed in Delay Tolerant Net-

works, Epidemic [18] and Prophet [54J, on four different mobility models, including 

a simple Random Walk mobility model and the Shopping Mall mobility model. By 

comparing the performance of such distinct routing protocols on different mobility 

models we give evidence that the choice of a mobility model is a critical considera-

tion in designing and evaluating of routing protocols for delay-tolerant mobile ah-hoc 

networks. We have also given evidence that traditional mobility models cannot be 

employed to adequately simulate "structured" scenarios. 

• A variation of the Epidemic protocol which distinguishes between customers and sell-
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ers, and forwards messages through either one or the other. This allows us to un-

derstand better the role of groups of message carriers expressing different mobility 

patterns. We discuss the results of the simulations used for testing their performance 

in a shopping mall scenario. We have found that under particular circumstances it 

can be preferable to forward messages to one group of carriers rather than another. 

1.3 Thesis Outline 

The work presented in this thesis progresses through four stages. Firstly, we study human 

mobility in a shopping mall environment in order to better understand its intrinsic charac-

teristics. Then, we exploit the peculiarities of this setting to design our mobility model for 

such an environment. This is validated by comparison with real-world traces. Finally, we 

test two delay tolerant routing protocols on four different mobility models. At the end of 

each chapter, we summarise its sections and discuss the novelty of our contribution. 

The remainder of this thesis is organised as follows: in Chapter 2 we describe the capture 

and analysis of the traces of Bluetooth contacts in a shopping mall. We present various 

mobility-related characteristics of the data including contact duration and inter-contact 

time, study interactions among nodes, and highlight considerable differences in contact 

patterns between sellers and customers. We present evidence of distinct classes of mobility 

within the shopping mall and quantify this in terms of power law coefficients which approx-

imate inter-contact time distributions. In Chapter 3 we present our shopping mall mobility 

model and a new mobility scenario generation tool which implements some traditional ran-

dom mobility models as well as the shopping mall model itself. We describe specifications, 

design and implementation of our generation tool and all of the models available so far. 

In Chapter 4 we validate our mobility model by comparing its contact duration and inter-

contact time distributions with those derived from real traces and the Random Way-Pointl 

mobility model. In Chapter 5 we test and compare the performance of two delay tolerant 

lIt is a derivative of the Random Way-Point as it also considers inter-arrival times for customers. 
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routing protocols, Epidemic and Prophet, on four different mobility models 2, one of which 

is our shopping mall mobility model. We show that the mobility model used impacts on 

the performance of the two routing protocols and therefore that traditional mobility models 

cannot be employed to accurately simulate "structured" scenarios. In order to better un-

derstand the potential roles of customers and sellers, as message carriers. We evaluate the 

performance of two semi-Epidemic routing protocols which deliver messages by forwarding 

them exclusively through sellers or customers, respectively. In Chapter 6 we summarise the 

contributions of this work, express critical reflections and suggest possible further research 

directions. 

ｾ All of them are supposed to represent shopping mall scenarios. The Random Walk and the Random 
Way-Point mobility models have been used in previous study to simulate mobility in different settings. 
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Chapter 2 

Characterization of Contact 

Opportunity in Shopping Mall 

Environments 

People today only know how to live in society, not in community. 

The soul of society is the law. 

The soul of the community is love. 

Roberto Rossellini (Europa '51) 

In this chapter we firstly describe the experimental setup that we conducted in a shop-

ping mall to collect Bluetooth contact data in order to measure human mobility patterns 

in this scenario. 

Such contact traces helped us to characterize mobility in shopping mall environments 
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in terms of contact duration and inter-contact time, and analyse interactions among nodes. 

Moreover, we identify two distinct patterns of mobility in shopping malls related to two 

classes of individuals that we name customers and sellers. Such characteristics introduce 

some implications for the design of both mobility models and forwarding algorithms for 

mobile ad-hoc delay tolerant network applications in environments such as this. In the next 

chapter we present our Shopping Mall mobility model based on statistical distributions 

derived from the captured contact traces. Ultimately, we evaluate our model by comparing 

its simulation traces with the collected real traces. 

2.1 Related Work 

Personal wireless devices are becoming increasingly popular. They are able to participate 

actively as part of an autonomic network, sharing wireless resources and providing local 

connectivity to other devices. It is thus becoming increasingly important to understand user 

mobility patterns. Such an understanding would guide the design of applications geared 

toward mobile environments (e.g., pervasive computing applications) and would help to 

improve simulation tools by providing more realistic user mobility models. The majority of 

work on delay-tolerant networks, mobile ad hoc networks and opportunistic networks relies 

on simulations, which, in turn, rely on realistic movement models for their credibility. 

In the past, many synthetic mobility models have been adopted (see [35] for a survey 

of them) to run simulations. However, synthetic movement models are not very reliable 

because they are based on random mechanisms which show properties (such as the duration 

of the contacts between the mobile nodes and the inter-contacts time) very different from 

those extracted from real scenarios. This analysis is confirmed by the examination of the 

available real traces. 

Even though real traces identifying user mobility would be preferable for evaluating 

the characteristics of mobile ad hoc network protocols, it is very difficult to trace nodes' 

movement in real large-scale mobile environments. Several studies have recently been per-

formed in different settings: a conference environment involving conference attendees at 
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Infocom 2005 [2], in research labs and universities in Cambridge [1, 31] and MIT [32] in-

volving researchers and students, during a Paris roller blading event [29], in a typical office 

environment [30, 43], from traces collected in the campuses Wi-Fi access network of Dart-

mouth College [33], UCSD [55], ETH Zurich [34], and from traces of a data set consisting 

of the mobility patterns recorded over a six-month period for 100,000 individuals selected 

randomly from a sample of more than 6 million anonymized mobile phone users [56]. Hsu 

et al. [57] propose a generic framework that capture preferences in choosing destinations to 

characterize pedestrian mobility patterns in a campus environment, and Tuduce et a1. [58] 

present a structured framework for extracting the mobility characteristics from a WLAN 

trace. But apart from these examples, real movement traces have rarely been used for eval-

uation and testing of protocols and systems for mobile networks. Moreover, these traces 

are limited in size and scope, and from specific scenarios which make their validity difficult 

to generalize. They also do not provide other key information such as the distribution of 

the speed or the density of the hosts. Currently, CRAWDAD (the Community Resource for 

Archiving Wireless Data At Dartmoutha [59]) is the leading repository of publicly available 

wireless traces for the research community. This archive has the capacity to store wire-

less trace data from many contributing locations and to develop better tools for collecting, 

anonymizing, and analyzing the data. 

Connection opportunities can be measured in terms of contacts by considering inter-

contact time and contact duration. This is related to the frequency with which packets can 

be transferred between networked devices (as defined by the authors in [1]). Inter-contact 

time is the elapsed time between two non-consecutive sightings of the same node. This 

is the parameter that has the most significant impact on the feasibility of opportunistic 

networking. It (with contact time) determines the frequency and the probability of being 

in contact with the recipient of a packet or a potential forwarder in a given time period. 

Contact time is the duration of a single set of consecutive sightings of the same node, i.e. a 

presumed period of continuous contact. These indicators are particularly relevant in mobile 

ad hoc networking and in particular in mobile ad-hoc delay tolerant networks [60, 61J. 
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The four data sets (from UCSD [55J, Dartmouth [33], Intel and Cambridge) analyzed 

by [lJ show surprising common statistical characteristics, such as the same distribution of 

the duration of the contacts and inter-contacts intervals. They show the same approximate 

power law, as evidenced by the straightness of the inter-contact time distribution on log-log 

scale plots. This is contrary to the exponential decay of many mobility models which means 

that the tail distribution function decreases faster. Out of this, networking algorithms 

in such environments, designed around exponential models such as random waypoint or 

random walk and all their derivatives, must be re-evaluated. [1] also describes how many 

existing forwarding algorithms perform badly in the presence of the power law mobility 

profile for inter-contact time, particularly for coefficients less than one. 

The characteristics of seven data sets explained below, along with ours, are shown in the 

Tables 2.1 and 2.2. These data sets include different user populations, using three different 

wireless technologies. The mobile phone and iMote experiments have the advantages that 

the logging takes place wherever the user is and not just when the users are near access 

points. The GSM cell tower and WiFi-based experiments have larger user populations and 

durations, and include all contacts accurring at the infrastructure locations. Features like 

duration and periodicity of the experiments also affect the quality of data sets. In particular, 

observation of short event lengths is limited by the granularity of measurement. Similarly, 

events lasting longer than the experiment cannot be observed. 

• Intel included seventeen researchers and interns working at Intel Research Cambridge. 

Because of real world factors which contributed to the malfunction of some of the 

iMotes, only eight of them yielded useful data. 

• In Cambridge eighteen iMotes were distributed to doctoral students and faculty com-

prising a research group at the University of Cambridge Computer Lab. Due to 

malfunctioning of some of the devices, the experiment resulted in data from twelve 

iMotes. 

• In Infocom, the devices were distributed to attendees of the Infocom student workshop. 
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Data Set 
Network User Geographical 

Device type Communities Environment Location 

Intel iMote Bluetooth 
Researchers, 

Daily User Activity Cambridge (UK) Interns 

Cambridge iMote Bluetooth 
Students, 

Daily User Activity Cambridge (UK) Faculty 

Infocom iMote Bluetooth Conferees Conference Miami (USA) 

UCSD PDA WiFi Fixed Nodes University Campus San Diego (USA) 

Dartmouth Laptop, PDA WiFi Fixed Nodes University Campus Dartmouth (USA) 

MIT Bt Cell Phone Bluetooth 
Students, 

Daily User Activity Cambridge (USA) Faculty 

MIT GSM Cell Phone GSM Cell Towers University Campus Cambridge (USA) 

Mixed 
Smart Phone Bluetooth 

Shop Keepers, 
Shopping Mall Lecce (Italy) Reality Lab Fixed Nodes 

Table 2.1: Comparison of data collected in eight experiments. 

Data set 
Network Duration Granularity Number Number Recorded Number of 
type (days) (seconds) of of Internal external external 

Devices contacts devices contacts 

Intel Bluetooth 3 120 8 1,091 92 1,173 

Cambridge Bluetooth 5 120 12 4,229 159 2,507 

Infocom Bluetooth 3 120 41 22,459 197 5,791 

UCSD WiFi 77 120 273 195,364 NjA NjA 
Dartmouth WiFi 114 300 6648 4,058,284 NjA NjA 
MITBt Bluetooth 246 300 100 54,667 NjA NjA 
MITGSM GSM 246 10 25 572,190 NjA NjA 
Mixed Reality Lab Bluetooth 6 120 25 284,492 749 60,223 

Table 2.2: Comparison of data collected in eight experiments. 
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Participants belongs to different social communities (depending on their country of 

origin, research topic, etc.). For four consecutive days they all attended the same 

event and most of them stayed in the same hotel. 

• UCSD and Dartmouth make use of WiFi networking, with the former including client-

based logs of the visibility of the access points, while the latter includes SNMP logs 

from the access points. In this case, assuming that mobile devices in sight of the 

access point would also be able to communicate directly (in ad hoc mode) introduces 

inaccuracies. It is overly optimistic, since two devices attached to the same access 

point may still be out of range of each other. However, two devices may pass together 

at a place where there is no instrumented access point and this contact would not be 

recorded. Despite these inaccuracies, the WiFi traces are a valuable source of data, 

since they span many months and include thousands of nodes. Another potential 

issue with these data sets is that the devices are not necessarily co-located with their 

owners at all times, i.e. they do not always characterise human mobility. 

• MIT Bt and MIT GSM are data sets from the Reality Mining project at MIT Media 

Lab and include traces of visible Bluetooth devices and GSM cell towers respectively. 

They were from 100 cellphones distributed to students and faculty on the campus 

during nine months. Also for the GSM data set, like for UCSD and Dartmouth, 

assuming that two mobile phones in sight of the same cell tower would be able to 

communicate directly introduces inaccuracies. They may still be out of range of each 

other. Furthermore, it hard to ensure that the phones are in fact co-located with their 

owner at all times. 

• Mixed Reality Lab is the data set that was used for the work of this thesis. Its features 

are described later in this chapter (see Sections 2.3 and 2.4). 
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2.2 Shopping Malls: Background 

Shopping is one of the most important contemporary social activity [49J. Despite increases 

in catalogue sales, shopping remains essentially a spatial activity and the shopping centre 

is its chosen place. The time spent in such shopping malls by people is second only to 

that spent at home and at work or school [62]. Shopping centres have already become 

tourist destinations, complete with tour guides and souvenirs, and some include hotels so 

that vacationers and conferees need not to leave the premises during their stay. Moreover, 

planned retail space is colonizing other privately owned public spaces such as hotels, railway 

stations, airports, office buildings and hospitals, as shopping has become the dominant mode 

of contemporary public life [49J. While individual retailers may pursue their own strategies 

for profit within limited bounds, the centre operates as a whole to maximize pedestrian 

traffic by attracting the target consumers and keeping them on the premises for as long as 

possible. 

The shopping centre represents a relatively democratic space with all citizens enjoying 

access, with participatory entertainment and opportunities for social mixing. The built 

environment forms a spatial system in which, through principles of separation and con-

tainment, spatial practices are routinized [63J and social relations are reproduced. The 

association of regions with particular group membership, activities, and dispositions allows 

the individual to orient to the context and infer the appropriate social role to play. Fiske 

et al. [64J describe an example of the vertical structuring of mall space according to the 

social status of the targeted consumers. The built environment is, therefore, socially and 

psychologically persuasive (65J. Excellent analysis of the contemporary shopping mall may 

be found in [49]. 

Because of their nature, such environments offer all of the elements required to build 

large-scale people-centric network applications. A mobile ad-hoc delay tolerant network is 

an autonomous system of mobile devices intermittently connected by wireless links forming 

an arbitrary graph. Because of the devices' intrinsic mobility the topology of the network 

is time varying. Such a network may operate in a standalone fashion, or may be connected 
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to the larger Internet. Mobility plays a key role in the forwarding of data as it is mobility 

which gives rise to local connection opportunities when access to network infrastructure is 

not available, expensive, involves installation issues, incurs customer cost, has particular 

policy restrictions, or may be a poor fit for services that are established on the fly. Note 

that connectivity to traditional networks is not always better than local connectivity; lo-

cal networking can be better if the corresponding party is nearby, either because one or 

both of the terminals do not have access to the network infrastructure, or because this is 

expensive. Ad-hoc networks are fully decentralized and can work in any place without any 

infrastructure. In fact, mobile nodes that are in radio range of each other can directly com-

municate, whereas others need the aid of intermediate nodes to route their packets. This 

property makes these networks flexible and robust. However, the dynamic nature of the 

network topology introduces problems for the design of ad-hoc networks. Mobility compro-

mises the communication between users, as forwarding paths may be unstable and receiver 

reachability may be very variable. 

We believe that different environments are characterized by different patterns of mobility 

and should be supported by suitable embedded routing protocols. Therefore collecting data 

reflecting human mobility is important to design suitable routing protocols for applications 

for mobile ad-hoc delay tolerant networks. We suggest that a number of environments 

are characterized by a similar of mobility structure to shopping malls including trade fair, 

music festival, automobile race track, stadium, etc. Stores and shops in shopping malls 

correspond to stands, kiosks, booths, tents, bars, pubs, and so on in these correlate settings. 

Customers, audience, partygoers and any attending individual are the main actors who 

might be supported. Unfortunately, to date little work has been done to measure human 

mobility in this kind of setting. A shopping mall is a place where a collection of shops all 

adjoin a pedestrian area or an exclusive pedestrian street. In many cases, shopping malls are 

tens of thousands of square meters in area and crowded much of the time. Developers have 

exploited a modernist nostalgia for authentic community and have promoted the conceit 

of the shopping centre as an alternative focus for modern community life. Shopping malls 
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look more and more like a world in microcosm. We could even spend the whole day there 

without necessarily doing shopping. 

2.3 Experimental Setup 

We have conducted an experiment to gather data about contacts between devices carried 

by humans in a shopping mall environment. Here we are focusing on human mobility in 

shopping mall environments. Ideally, a data set would cover a large user base over a large 

time period on connection opportunities. Setting up an experiment in such places is not 

easy: local regulations may prevent such an experiment, and even if permitted there are 

problems of privacy, security, mistrust, etc. 

In order to find a shopping mall where they would let me run the experiment I asked 

for permission from marketing managers and shop keepers, in both the United Kingdom 

and Italy. It has been an "Odyssey". Initially, I started looking for a shopping mall in 

the city of Nottingham. I visited three centres but I was refused permission in each. The 

first marketing manager in charge of the shopping mall administration I asked rejected my 

request immediately without any reason more specific than: "It is not allowedl". Given this 

outcome I decided not to ask permission from the manager at the second mall; instead, I 

only asked shop keepers and assistants who were willing to take part at the experiment. At 

first this strategy appeared to be successful until I got back to my office to a message from 

the manager stating that the trial was NOT allowed. At the last mall, the manager allowed 

me to run the trial upon agreement with the shop employees. Unfortunately, few employees 

wanted to participate in the experiment. One shop keeper's reason for not allowing me to 

run the experiment in his shop was: "Such devices can steal customers' credit card numbers 

when they pay!". I was about to give up, conscious that it would have been very hard or 

even impossible to find a shopping mall in which to run my experiment. I realised that 

such tight internal regulations were a reason for which there are few similar studies. I also 

went to ask for permission in some shopping centres in the city of Bologna but without 

success, mostly because of mistrust from the shop keepers. At last, I tried in a shopping 
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Figure 2.1: Plan of the shopping mall - 11 shops, 1 store, 1 bar and 18 mobile devices, 7 
fix ed devices involved in the experiment 
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mall in my hometown in Lecce where two friends of mine were working there as clerks. 

Using their contacts I managed to get enough shop keepers involved. By being a part of 

my friends', and therefore the shopkeepers' "community", I was able to gain their trust 

so as to make them feel comfortable to participate in the experiment. Finally, I made it! 

I informed the participants about the purpose of such an experiment, the procedure with 

which it was conducted, and provided them with the requested information following all 

the ethical principles. I did not force participants to get involved into the experiment. I 

received a conscious consent of the subjects involved in the experiment and also informed 

the manager of the whole shopping mall about the field trial. Furthermore, we also took 

into consideration all possible risks and obstructions that the participants of the experiment 

might face. 

We adopted the same method used by [lJ, [31J and [2J to collect data. For that, we 

provided some shop employees with smart phones running symbianOS and using Bluetooth 

technology. They carried out neighbour discovery approximately every 120 seconds. The 

Bluetooth 1.1 specification [66J states that an inquiry process for neighbor discovery should 

last about ten seconds. A twenty-four hour pilot deployment was performed in order to 

refine the deployment methodology and to consider possible inconveniences which might 

arise during the field trial. The experiment involved twenty-five mobile devices, eighteen 

of which were carried by shopkeepers and shop employees and seven of which were static, 

placed in fixed locations. Not all the employees in the shopping mall participated in the 

experiment but the ones who did were sufficient to obtain valuable results. Their deployment 

was enough to sense continuously Bluetooth connectivity in more than half of the entire 

mall. For six days these devices were given to the participants at around the same time, 

9:15 am, and collected at 8:45pm. They carried the devices throughout the working day 

(from 09:00am to 01:00pm and from 04:30pm to 09:00pm). The phones were deployed in 

one store, eleven shops and one bar, The floor plan in Figure 2.1 shows the shopping centre, 

which has a surface area of 10, 880m2 (without considering the parking area)1, 

lWe are very thankful to Dr. Mauro Lazzari and Dr. Gianluca Galati, the architects who provided us 
the plan of the shopping mall 
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Even though there is a range of useful data sets available (in the Tables 2.1 and 2.2 it 

is shown a summary of the features of our and seven more data sets), no one deals with 

shopping malls in particular. Therefore, to design a mobility model for such an environment 

we conducted an experiment for our data capture. The Mixed Reality Lab data set shown 

in the Tables 2.1 and 2.2 has been used for the work of this thesis. This includes Bluetooth 

contact traces recorded in a shopping mall which is a more defined structured environment 

with respect to the others listed in Table 2.1. Such traces have been collected by both 

mobile and fixed nodes. The former are some shop keepers during their working time while 

the latter are Bluetooth devices left still in some shops. This data set includes handheld 

Bluetooth devices employed in a smaller scale environment with short granularity for few 

days. The duration of the experiment, which is longer than some others, and the sufficient 

number of devices deployed make our data set comparable with the existing ones. It is 

interesting noticing the high number of contacts with a relatively smaller number of devices 

with respect to the other data sets. These values prove that this is a valuable data set 

and present shopping malls as appealing environments for delay tolerant mobile ad-hoc 

networks. 

2.4 Analysis of Shopping Mall Mobility Patterns 

We conducted our experiment in a shopping mall in order to provide base-line data to 

support the design of forwarding alg()rithms and the generation of a realistic mobility model 

for such scenarios. All of the twenty-five smart phones that we deployed in the shopping mall 

yielded useful data. Each one of our smart phones records in its log file the scanning time, 

that is, once every 120 seconds 2, its own MAC address and all detected MAC addresses: 

<time, own MAC address, [detected MAC address]> 

2They cyclically carried out neighbor discovery every 120 seconds after ,the end of the last scanning. 
The Bluetooth 1.1 specification states that an inquiry process for neighbor discovery should last about ten 
seconds. In our case, it lasts 14 seconds. 
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Figure 2.2: Time series of contacts seen by one Smart Phone of other trial Smart Phones 
over six working days. 
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Figure 2.3: Time seri es of contacts seen by one Smart Phone of all other devices over six 
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Figure 2.4: Time series of external contacts seen by all of our Smart Phones over six working 
days. 
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Figure 2,5: Time series of contacts seen by one Smart Phone of all other devices over the 
fourth day, 
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For example: 

32498 ********5d08 ********60b6 ********6e65 ********5dOe 

32632 ********5d08 ********60b6 ********Of01 ********5dOb ********6e65 

********5dOe 

32766 ********5d08 ********6e65 ********5dOe ********abc5 

32900 ********5d08 ********6e65 ********abc5 

33034 ********5d08 ********6e65 

Clock synchronization was checked manually. We processed the log files by means of 

shell scripts to skim data, extract useful information and conduct statistical analysis. We 

have also made extensive use of R [67J, a free software environment for statistical computing 

and graphics, to perform statistical analysis and produce the respective plots. Besides R, 

we used gnuplot [68J, a portable ｣ ｯ ｭ ｭ ｡ ｮ ､ ｾ ｬ ｩ ｮ ･ driven graphing utility, to generate further 

graphs. 

A typical log file is visualized in Figures 2.2 and 2.3 where the ｘ ｾ ｡ ｸ ｩ ｳ shows the time 

and the Y ｾ ｡ ｸ ｩ ｳ identifies unique Bluetooth MAC addresses seen. We label contacts between 

two of our smart phones as "internal" whilst all the other contacts are "external". Internal 

contacts are all the contacts between our smart phones. External contacts are much greater 

in number than internal contacts and represent a valuable source of data: they are the other 

Bluetooth devices seen in the vicinity of our smart phones, and allow us to estimate the 

deployment and movement of other Bluetooth devices in the mall. 

The smart phone taken into account for this analysis is the one whose MAC address 

ends with "c3a4" located in the shop highlighted in red in Figure 2.1 and used as fixed 

node. The plot in Figure 2.2 shows internal contacts, i.e. between" c3a4" and the other 

24 provided smart phones, while Figure 2.3 shows the external Bluetooth devices seen 

by "c3a4". Figure 2.4 shows the external Bluetooth devices seen by "c3a4" as seen by 

any of the ｴ ｷ ･ ｮ ｴ ｹ ｾ ｦ ｩ ｶ ･ smart phones (519 external devices), while the plot in Figure 2.5 
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zooms in to the fourth day of the experiment. These last two plots show that most of the 

external contacts spend less than two hours in the shopping mall. Our devices recorded 

60223 external contacts with 749 distinct devices and 284492 internal contacts between 

each other. There are significantly more external devices than internal ones, but they are 

seen less often. The maximum number of internal and external nodes seen by one of our 

devices at one time was respectively 18 and 11. Following ethical principals, an anonymised 

version of our data is available to other research groups on request (i.e. with MAC addresses 

mapped to synthetic IDs with only local relevance). 

2.4.1 Inter-Contact and Contact Time 

We analyze connection opportunities in terms of contacts by considering contact duration 

and inter-contact time. Our results are necessarily constrained by the duration and period-

icity of the experiments. In particular, observation of short event lengths is limited by the 

granularity of measurement (around 120 seconds). Similarly, events lasting longer than the 

experiment cannot be observed. In Figure 2.6 we plot the inter-contact time distributions of 

two smart phones (identified with the last four digits of their MAC address) with different 

subsets of devices for the six days of the trial. One of the two smart phones has been used 

as fixed node (i.e. c3a4) and left next to the cash register (in the Figures 2.6-2.7 labeled as 

FX) in the red shop in Figure 2.1. The second smart phone (Le. 7398) has been employed 

as a mobile node and carried by a seller (in the Figures 2.6 and 2.7 labeled as M) based in 

the same shop. 

In Figures 2.6 and 2.7 we show respectively inter-contact and contact times for the 

above mentioned smart phones. In each case four groups of devices are considered: external 

devices; all contacts; own 25 smart phones (Le. all shop employees participating in the ex-

periment and working in the shops highlighted in red, green and blue); and only neighboring 

smart phones (those highlighted in green in Figure 2.1). The figures also show that the fixed 

and mobile device have very similar distributions. This could be explained by employees 

being mainly located in the shop where they are during the working day and thus having 
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Figure 2.6: Tail Distribut ion FUnctions of the Inter-Contact Time over six days of the fi xed 
node" c3a4" (FX) and mobile node" 7398" (M) with: externals, all contacts, all 25 internal 
phones, and neighboring smart phones only. 
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the same contacts in sight. All of them exhibit a strong heavy tail property which can be 

observed as an approximate power law for the time scale [2min:1hourJ for the first three 

groups (Le. externals, all contacts and all internals) with power law coefficients respectively 

0.57, 0.76 and 0.92, and an approximate power law for the time scale [2min:30minJ for 

neighboring shopkeepers. Note that the distribution for neighboring shopkeepers in Figure 

2.6 shows a power law with coefficient 1.30. This may be significant because, using multi-

ple intermediate relays, this is sufficient for stateless forwarding algorithms to converge [lJ. 

After about one hour all of the graphs tend to plateau until the end of the working day. 

The shape of the distributions in Figure 2.6 shows us that inter-contact times tend either 

to be smaller than one hour or larger than twelve. This is most evident in the neighboring 

shopkeepers' distribution which is almost flat from around 60 minutes to 12 hours. This 

suggests that internals, namely, shopkeepers, sellers and shop assistants in the shopping 

mall, are in contact with each other most of the time allowing MANET-like connectivity. 

Longer inter-contact times are larger than twelve hours (the time between two consecutive 

working days). This implies that externals commonly spend up to an hour in anyone part 

of the shopping centre and some come back the next day. The distributions in Figure 2.6 

also suggest that a seller tends to meet subgroups of people from the same organization (i.e. 

neighboring internals) more often than people from a different organization (i.e. externals). 

This suggests a promising strategy to identify forwarders for message delivery. We imagine 

that the union of these clusters of neighboring internals, that is all the sellers, could form 

a reliable mobile ad-hoc network backbone in a shopping mall environment. This is backed 

up by Figure 2.7 which shows that the contact time distributions also approximate a power 

law distribution. Contact durations for externals are almost all smaller than 1 hour. It is 

worth noticing that a few external devices have very long contact durations which suggest 

that they could in fact be shop employees working close by rather than customers. This is 

backed up by the plot in Figure 2.8 showing any-contact durations of externals (externals' 

MAC addresses are numbered on the x-axis) with any of our smart phones. Hereby, we 

cannot assume a priori that externals devices are customers or individuals with no relation 
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with the centre. We consider this in more detail in Section 2.5. 

Notice that the order of the distributions in Figure 2.7 is reversed with respect to the 

order in Figure 2.6. The contrast between the distributions in Figures 2.6 and 2.7 and the 

corresponding distributions from previous experiments [1] and [2] suggest that the nature of 

the environment and the individuals has a significant impact (inter-contact time and contact 

duration distributions of previous field trials in campuses and conference environments are 

in Appendix A). We suggest that in campus and conference environments people have more 

freedom to move without particular constraints and boundaries, giving rise to longer inter-

contact time than the ones seen in the shopping mall, where individuals follow certain 

motions strictly related to the surrounding environment and their aims. Figures 2.6 and 2.7 

show that externals have a mobility pattern that is distinct from employees. In addition, 

externals tend to spend shorter periods in the shopping mall compared to people in campuses 

and conferences. Because of the purpose of their presence in the mall, externals, which are 

mainly customers, tend to stay close to sellers and the majority of them do not return on 

the same day. This behavior gives rise to shorter inter-contact times than in [1] and [2]. 

2.4.2 Inter-Any-Contact and Any-Contact Times 

In the previous section we have analyzed contacts between pairs of devices, in terms of the 

frequency and duration of the contact. In this section we study the frequency (inter-any-

contact time) and duration (any-contact time) of transfer opportunities between a subset 

of externals (those seen by the node 'c3a4') and our smart phones. We do not show the 

"inter-any-" and "any-"contact times for all smart phones because it appears that sellers 

are almost always in contact with neighboring sellers. 

Figure 2.10 shows the any-contact time distribution for all of the externals seen by 

'c3a4' with any internal node. As expected, any-contact times with externals are much 

longer than contact times but with the same distribution shape. It is also clear that some 

externals spend much more than one hour in the mall in total, even if they spend less than 

an hour near any single seller, which is an internal. Figure 2.9 shows inter-any-contact time 
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for the same externals with any internal node. Compared to Figure 2.6 the best fit power 

law coefficient increases from 0.57 to 1.16. This difference is quite relevant, in particular 

if compared to the results of [2J. As one might expect, a node willing to communicate 

with any member of a group of other nodes has much better forwarding possibilities. More 

generally, information about other groups of people could be exploited in application layer 

protocols. For example, a group of nodes subscribing to be "shop-members" might receive 

benefits in exchange for involvement in communication. 

2.5 Identifying Two Main Mobility Patterns 

In this section we seek to improve an understanding of the structure of human mobility in 

shopping malls [69J [70J by identifying different groups of mobility patterns to develop a 

corresponding mobility model. In previous studies, some mobility models have been based 

on the structure of the relationships among the people carrying the devices [37] [38] [71]. 

Human society can be divided in communities. Members of the same community may 

interact with each other preferentially. It has been argued that society is ruled by rules 

while community is ruled by love (see opening quote). 

In a shopping mall, people should also take into account some rules because of the 

intrinsic nature of the environment. In this microcosm everyone's movements are bounded 

by his/her own role and his/her purpose. In this environment we identify two main classes 

of individuals with different mobility patterns. First, shop employees in charge of particular 

tasks (Le. shopkeepers, sellers, clerks, shop assistants, etc.) are co-located in well defined 

locations whose mobility is defined by their duties. Second, customers who are free to move 

"wherever" they like and for their own specific purposes within the whole area. 

By following the same metric used in [71] we measure the relationship between two people 

in a shopping mall by how many times they meet and how long they are in contact with each 

other. Here we provide the methodology to identify devices carried by visitors/customers 

and devices carried by shopping mall related people based purely on contact duration, inter-

contact time and frequency. Namely, if an internal device, i.e. one of our smart phones, 
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spends a long time in contact with an external device or they see each other very often then 

we might assume that they are in "working relationship". As such they have specific duties 

and relatively predictable mobility. Here we explore further properties of the real scenario 

and present statistics concerning the contact duration for "internal" and "external" devices. 

We consider number of contacts and contact durations to characterize the mobility traces. 

We identify contacts between two of our smart phones as "internal" whilst all the other 

contacts are "external" . 

While we know that internal contacts are between sellers, we cannot assume that external 

contacts are between sellers and customers because they might be between" our" sellers and 

any other seller's device (e.g. a sellers' personal phone). Figure 2.11 plots the number of 

contacts against the longest cumulative contact duration of each device with our smart 

phones, day by day, distinguishing between internal and external devices. We can see two 

clusters of devices: externals on the left bottom and internals on the right bottom of the 

quadrant. We infer that people in the first cluster do not spend more than roughly two 

hours in the shopping mall. Thus, we can infer that all the nodes falling in to this cluster 

are likely to be customers. Only 9 external devices out of 752 have higher contact duration 

and number of contacts. The majority of the remaining devices fall in the second cluster 

which means that they tend to spend a long time "together" and meet each other more 

often. That is expected sellers' and shopping mall employees' behaviour since neighbouring 

sellers tend to be in contact for long time. Shop employees tend to go out of their working 

place some of the time, for several reasons, e.g. lunchbreak, work, personal needs or to 

meet other colleagues. The more distant the working places are the more contact durations 

might decrease. This is strengthened by the bell shape of the distribution in Figure 2.12 

which plots the number of contacts against contact duration for each device with all the 

internal devices. The "internal-like" nodes in Figure 2.12 are external devices behaving like 

internals. We conjecture that they are devices carried by other sellers in the mall which 

were not part of the experiment. 

Furthermore, we analyze the longest inter-contact time against the highest number of 

39 



f/) 

U 
.'9 c 
0 
u 
'0 
:i 

250 ｲ ｲ Ｎ Ｍ Ｍ Ｍ ｲ Ｍ Ｍ Ｍ Ｎ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｎ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｎ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ ｾ

200 

150 

100 

50 
°8 

Contact Duration 

External 
Internal 

Figure 2.11: Number of contacts versus the longest contact durations for internal and 
external devices 

40 



If) 

t3 
ｾ
c 
o 
Ll 
'0 
Z 

350 

300 

250 

200 

150 

100 

50 

' 00 

. . . 

I' •• 
" . '" . " .' . ｾ

fJ'b. 
ｾ

. 
<P' .. 

.. 
o • ｾ ｱ Ｌ 0 0 

. . . . 
o 0 0 0 00"0 0 

P .. ｾ 0 .. .' 

. .. 8 • 

.. . . 

• 

. 
8. . 

.. 

. . 
0 •• 

. . 
.. 
. . . .. 

Internal 
Internal-like 

External 

.0 . 
. . . . . . . 

q, .... 
• <9 

ocf o ｾ ｾ __ L-__ ｾ ________ ｾ ________________ ｾ __________________ ｾ

Contact Duration 

Figure 2.12: The number of contacts and contact durations of each device with all the 
internal devices 

41 



20 

18 External 0 

0 

16 0 

0 

14 0 

tl 12 

'" C 
0 10 () 0 

'0 000 0 0 
Z 8 0(11)0 0 

<IDOO 0 0 

6 0 t!IaIIIIIIB ax> 0 

0 .....:1D 00 0 0 

4 00 0 0 0 0 

_ 0 0 0 00 0 0 

2 - (II) 0 0 

0 0 0 

0 Ｏ ｾ Ｎ Ｎ ｾ Ｖ ｾ ｾ
0.:-", ｯ Ｎ Ｚ ｾ ｯ Ｎ Ｚ Ｍ ｾ 10 

ｾ

Inter-Contact Time 

Figure 2.13: Number of contacts versus the inter-contact times for external devices 

42 



contacts with each external device, day by day, to filter external devices. In this next step 

we are only considering external devices in the left cluster of Figure 2.11 as we believe that 

a device with a long maximum inter-contact time is probably related to the environment. 

People rarely go back to the same shopping mall twice in a day and even less as the day 

passes. Consequently, in our mobility model, we do not consider customers/visitors involved 

in distinct multiple "visits". In Figure 2.13 we can see that 22 external devices out of 743 

have a maximum inter-contact time longer than 3 hours (within a single day). The vast 

majority of these devices have inter-contact times lower than one hour. After three hours 

the frequency decreases drastically. We then classify external devices with inter-contact 

time smaller than three hours as likely to be carried by customers. 

2.6 Studying Contacts among Nodes 

The majority of work on ad hoc network research to date has been based on "unnatural" 

mobility models such as Random Walk Mobility Model and its derivatives [35J. Such mo-

bility models seem to be unrealistic for everyday scenarios, and do not exhibit the kind of 

characteristics found in [1] or here. Consequently, network research based on such models 

must be considered unproven for real-world situations. Other mobility models have been 

proposed based on social network theory [37]-[39], but the mobility models which most 

closely reflect real life are the ones founded on accurate real trace data, i.e. trace-driven 

mobility models. 

In this section we examine the data gathered to identify possible implications to consider 

in building forwarding algorithms as well as mobility models for network applications in 

shopping mall environments. The Figure 2.14 shows the distribution of the number of 

times each node was seen by one of the internal devices, distinguishing between internal 

and external nodes. Considering internal nodes, during the experiment, 14 of our smart 

phones were sighted between 340 and 1685 times, nine of our smart phones were sighted 

between 5 and 63 times, and one was sighted just once. These distributions suggest that 

different nodes have different contact relationships and that many of them (14 of the 25 
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smart phones) have good contact relationships. This might reflect an employees' mobility 

being mostly localized around the shop they work in, and sometimes moving away for 

scheduled and toilet breaks. The gap between the first and second group might suggest the 

difference between neighboring sellers and the rest of the sellers. Considering external nodes, 

the mode is 1 and the vast majority of external devices have less than 32 sightings, except 

for three of them which have between 169 and 224 sightings. But recall that "external" 

nodes could also be personal devices carried by sellers and/or shopping mall employees (Le. 

safety guards, sweepers, stewards, etc.). From these results we can see significant differences 

between customers and shop employees. From this, we can argue that mobility models in 

which all the nodes have the same mobility patterns cannot adequately represent shopping 

mall environment. 

The Figure 2.15 shows the number of times that pairs of (internal, internal) and (internal, 

external) nodes come in contact with each other. This distribution shows a considerable 

variability in the number of times pairs of smart phones saw each other. Unlike the results 

in [2], in our case pairs of internal nodes are uniformly spread along the number of contacts 

from 0 to the range {513-1024}. This strengthens our conjecture that sellers, who are 

positioned within the shopping mall according to its structure and following a certain order 

(Le. some are in charge of a specific area, others have particular tasks, etc.), have "duty-

bound" mobility that links them to the shop where they are employed. The Figure 2.15 also 

suggests that sometime sellers move away from their working place to satisfy their needs. In 

contrast, in conference environments [2] most or all of the nodes are "free" to move without 

any boundaries. The plot also shows that the majority of pairs with external nodes have less 

than 16 contacts. Unlike internal pairs, the pattern of visibility with external devices does 

seem to reflect that in [2], for example, the number of pairs that never come into contact 

with each other is almost half of them. These results could not be reproduced by mobility 

models that give all nodes the same probability of meeting each other. 

Figure 2.16 shows how many internal nodes saw a particular device over the whole six 

days (the plot does not tell us how many times the same device was seen). These two 
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distributions highlight the difference between internal and external nodes. Unlike the graph 

in [2J where iMotes carriers sawall but a few of the other iMotes and external devices 

were seen by only a couple of iMotes, here the majority of the customers meet more than 

half of the sellers, while almost all of the sellers meet at some point. We imagine that in 

a conference environment [2J the internal nodes are not always together; external devices 

could be seen by an internal device when distant from the conference and thus would be 

unlikely to be seen by any other internal device. But in shopping mall environments internal 

nodes are mainly duty-bound to the shop in which they are employed (during the day at 

least) moving away from time to time. Note also that six of the internal fixed nodes (out of 

seven) see between 20 and 24 other internal nodes. This suggests a possible role for fixed 

nodes to forward data contrary to the preference for mobile nodes in [72J (where the use 

of mobile nodes increases the capacity of the ad-hoc wireless networks). The analysis in 

[72J is based on the assumptions that all nodes are identical and uniformly visit the entire 

network area according to an ergodic mobility model based on independent and identically 

distributed trajectories. From our previous observations these assumptions do not hold 

for some real life scenarios such as shopping malls (in particular the assumption that the 

mobility of each node uniformly covers the entire space over time, making all nodes basically 

indistinguishable from each other). 

2.7 Influence of the Time of Day 

We now look briefly at distributions of contacts over the working day. Employees in the 

shopping mall where we ran the experiment work from 9am till 9pm. A few of them close 

the shop from 1pm till 3pm to take a break or tidy the merchandise. We split the working 

time into two intervals, from 9am to 3pm and from 3pm to 9pm, to see whether there were 

different contact distributions during the working day. Figure 2.17 shows the distributions 

of the inter-contact time for these six hour periods. It shows that the contact distribution 

has little or no visible time dependence during opening time of the shopping mall. As such, 

there is no evidence here for future forwarding algorithms for shopping mall environments 

48 



to take into account temporal patterns. 

2.8 Issues and Limitations 

Gathering such a data set also presents many practical issues: dealing with deployment 

of mobile devices to a certain number of shopkeepers, the battery life of the devices, and 

minimizing the inconvenience of carrying the devices so that they are willing to do so at 

all times. I have been checking every day our smart phones to make sure that they were 

working properly and eventually charge the batteries during the night. Besides, in our 

investigation in the shopping mall, I could not provide customers with our smart phones 

for several practical reasons among which dealing with logistics management of distribution 

and retrieval, more devices to distribute and higher risk of theft. Therefore, our data set 

lacks contact traces from customers' personal devices to directly analyse inter-customers 

contacts. 

There was nothing unusual in the shopping mall when I run this experiment, thus our 

smart phones have not recorded exceptional situations. This data capture took place in 

one shopping mall and during a regular week. Therefore, there is no guaranty that the 

results obtained from these traces are always reliable. In addition to that, our results are 

influenced by the granularity of the experiment, namely, for short event lengths, the data 

is affected by the granularity of measurement, that is 120 seconds. Bluetooth conflictions 

were taken into account as two or more devices in enquiry mode at the same time might 

not be able to answer to each other. Clock synchronization was also checked manually. All 

of the smart phones deployed in the shopping mall yielded useful logs and a valuable data 

set. 

2.9 Summary 

Bluetooth technology offers several opportunities, including interoperability, scalability, low 

cost, voice/data compatibility, the formation of ad-hoc networks and low power consump-

49 



0.1 

0.01 

...... ｾ ｾ Ａ Ｇ Ｎ Ｚ Ｍ Ｎ Ｎ Ｎ Ｎ Ｎ i : 

'. """"" ""', ..... .l. , ｰ ｾ ｲ Ｎ Ｎ Ｍ Ｎ ·-1· .-. . -. 

····t ... ":,. .. Ｎ ［ Ｎ Ｚ Ｌ Ｚ Ｚ Ｚ ﾱ Ｎ Ｎ . ....... j ••••••••••.••. ; ••••••••••••• ｾ ••.••••• ! ... ·.i· ... j 
.';-: ... Ｍ Ｚ Ｍ ｾ Ｍ Ｂ Ｂ Ｍ Ｎ Ｚ ＮＭ Ｍ Ｚ Ｎ Ｎ Ｎ Ｎ Ｎ Ｎ Ｎ Ｍ Ｍ Ｍ Ｍ Ｍ Ｎ ［ Ｍ Ｎ Ｎ Ｎ Ｎ Ｎ Ｌ

ﾷ ﾷ ﾷ ﾷ Ｚ Ｚ ｾ ... ·· .. L··· 
" . ｾ Ｂ

,;, .. .1 
j . 

">·L 
0.001 .......................... .. .... ｾ ...... .......... .... ..... ..... ...... .... .. .... . ...... ··i ...... ....... .:,. .. .... " ... Ｎ Ｎ ｾ Ｎ Ｎ ....... . .... i "l 

I 

Time 

-, , , , , , , , , , 
1 

Figure 2.17: Distributions of inter-contact times during two working times only (9am-3pm 
and 3pm-9pm). 

50 



tion. Communication services that rely on this technology (and others like it) will strongly 

depend on human mobility characteristics. 

In this chapter we have presented real-world measurement results from the mobility of 

people in a shopping mall environment. Although the distinction of classes of mobility in 

practical situations within shopping malls is somewhat obvious, we have presented evidence 

and some quantification of the ways in which they differ. These results are quite different 

from previous studies in a workplace [30], university campus [1, 31; 32, 33, 34] and conference 

scenarios [2], where power law coefficients approximate the inter-contact time distributions 

for longer periods of time. From our results, communication services might require specific 

networking protocols depending on the environment in which they are used. For a shopping 

mall network protocol we might seek to exploit the distinct mobility patterns of customers 

and shop employees. 

We have identified groups of people who exhibit higher power law coefficients but only 

for short time periods. The neighboring shopkeepers distribution, labeled as neighboring 

internals in Figure 2.6, reveals a PL with coefficient 1.30. This is significant in that us-

ing multiple intermediate relays may be sufficient for stateless forwarding algorithms to 

converge. Indeed, if the power law coefficient is located between 1 and 2 the algorithm in-

troduced by [72] would exhibit infinite delay. Nonetheless, [1] has shown that it is possible 

to build a forwarding algorithm that achieves a bounded delay, using a number of duplicate 

copies of the packet. 

Our results also show that inter-contact time between shopkeepers in a working day 

is typically small and contact durations are long which suggests that shopkeepers will be 

more reliable for forwarding data. The observed distributions suggest that forwarding to 

neighboring sellers and shop assistants might increase significantly the likelihood of timely 

contact. We believe that shopkeepers could form a mobile ad-hoc network backbone and 

the starting point from which to build wider networks in shopping mall environments. The 

identification of such groups of people could help greatly in forwarding data. 

We have also shown that people's motion is different according to their relationship 
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to the environment they are in. We provided a method based on contact duration, inter-

contact time and frequency to distinguish two groups of people, visitors/customers and 

shopping mall related people, with different mobility patterns. 

We have explored various characteristics of the collected data, from the sellers' point 

of view, which might be used to design improved forwarding algorithms. Firstly, when 

forwarding to neighboring shopkeepers the power law coefficient is more than 1; identify-

ing neighboring shopkeepers would be a great help in forwarding data between two shop 

employees. Secondly, we observed that nodes do not behave the same; for example, sellers 

and some "customers" are much more active and see each other more often than others. 

Thirdly, we observed that forwarding algorithms do not appear to need to take into account 

broad temporal patterns in this environment. In the next chapter we present our scenario 

generation tool and the shopping mall mobility model which aim to represent salient aspect 

of the observed human mobility patterns. Indeed, the measurements we have presented 

here are used in Chapter 4 to validate our mobility model. 
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Chapter 3 

A Mobility Scenario Generation 

Tool for "Structured" 

Environments 

Simplicity is prerequisite for reliability. 

Edsger Dijkstra 

In this chapter we present a new mobility model generation tool and propose a realistic 

mobility model for shopping mall environments based on measurements and statistical anal-

ysis of individuals' localization from real traces collected in such environments (as described 

in Chapter 2). Our mobility trace generator supports five mobility models: the Shopping 

Mall mobility model, the basic Random Walk mobility model, the Random Way-Point mo-

bility model and variations of these for shopping mall-like environments with inter-arrival 
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time. 

We present our shopping mall mobility model along with its distinct dynamics for cus-

tomers and sellers in Section 3.3. The new mobility model is implemented by our mobility 

model generation tool which is described in Section 3.4. Finally, the last section of this chap-

ter explains how we determined the cumulative distribution functions which are needed by 

our tool to simulate a mobility model. In Chapter 4 we evaluate and validate our mobility 

model with respect to real contact traces. 

3.1 Background 

Even though real traces identifying user mobility would be preferable for evaluating the 

characteristics of mobile ad hoc network protocols, it is very difficult to trace node movement 

in real large-scale mobile environments. Although random movement models generate traces 

that do not reflect real world observations (as discussed in Section 2.1), synthetic traces 

are very often used when simulating mobile networks. That is due to many reasons. First, 

even though there is a repository of public available wireless traces (CRAWDAD 1 [59]), the 

number of available real traces in the public domain is limited and covers a number of specific 

scenarios. Also, real traces do not provide information such as the distribution of the speed 

or the density of the hosts, which prevents sensitivity analysis. Moreover, sometimes it may 

be more useful to have a mathematical model that describes the movement of the nodes in 

a simulation in order to consider its impact on the design of protocols and applications. 

Furthermore, simulations allow us to model things that could not be captured in field 

trials. For example, in our investigation in the shopping mall (see Section 2.3) customers 

were not provided with devices for practical reasons (i.e. numbers of devices, logistics of 

distribution and retrieval, risk of theft). Thus, we could not log contacts from customers' 

perspective, in particular contacts between customers. Our shopping mall mobility model 

allows us to simulate the same field trial conducted in the real shopping mall and to calculate 

lCurrently (May 2009): 1645 users from 851 Institutions In 63 countries, 213 contributors, 55 data sets, 
20 tools, 237 papers. Mirror sites: http://uk.CRAWDAD.org (UK) and http://au.CRAWDAD.org (AU) 
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contact opportunities from the customer 's point of view. This reli es on approximating the 

customers' mobility from the observed data and modeling it. 

Designing reali stic mobility models is one of the most criti cal and diffi cult aspects of the 

simulation of protocols and applications in mobile environments. In general, an individual's 

mobility is characterized by a distinct mobility pattern and can be described by a distinct 

a lgorithm. People's mobility can be clustered based on several factors which are strongly 

related to the environment in which they are. In our mobility model we could have clustered 

individuals by distinguishing for example between adults and teenagers, or between males 

and females. For instance, it is widely held that the mobility patterns of men and women 

in shopping centres are distinct ; Figure 3.1 is self- explanatory. :-) From the analysis of 

our data set in Chapter 2 we have seen that people behave in different ways. However, we 

wanted to keep mobility pattern distinctions as simple as possible and chose to differentia te 

between two groups, customers and sell ers, which in turn, have different mobility patterns. 

Mission: Go to Gap, Buy a Pair of Pants 

Mm 
Tlme :·S min 
Cost: .33 

Female Male 

ｾ

Time: 3 Hrs 26 min 
Cos t: $876 

Figure 3.1: Men and Women: different mobility patterns (from the correspondence of a 
fri end... a woman! ;-) ) 

Based on this grouping we propose a mobility model based on measm ed mobility char-

acteristics. These characteristics are expressed as cumulative distribution functions which 
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capture the mobility characteristics of sellers and customers in a shopping mall. 

We conduct statistical analysis on our data set (described in Section 3.5). The data 

traces collected by our smart phones contain enough implicit location information to train 

a mobility model for network simulations. By exploiting fixed nodes (motionless smart 

phones left by the tills) in our experiment we were able to see when clerks and shop assistants 

were in their working place or somewhere else, and how much time customers spent in a 

shop and in the mall. For this, we considered seven out of the eight fixed phones because 

the Bluetooth connectivity range of these smart phones could cover the entire surface of 

the respective shop. The empirical distributions were thus fitted to theoretical probability 

distributions described in Section 3.5. 

3.2 Related Work 

3.2.1 Synthetic Mobility Models 

In the past, many synthetic mobility models have been adopted (see [35J for a survey of 

them) to run simulations. Among them, the Random Walk mobility model, equivalent to 

Brownian motion which represents pure random movements of the entities of a system [73], is 

the simplest model. A slight enhancement of this is the Random Way-Point mobility model 

in which pauses are introduced between changes in direction or speed. A large number 

of other artificial mobility models for ad hoc network research have been presented, for 

example assuming obstacles that restrict movement and signal propagation and focusing on 

particular scenarios such as pedestrians in urban areas [74, 75, 76, 77], vehicular traffic [78] 

and disaster areas [79J. However, synthetic movement models are not very reliable because 

they are based on random mechanisms which show properties (such as the duration of the 

contacts between the mobile nodes and the inter-contacts time) very different from those 

extracted from real scenarios. This analysis is confirmed by the examination of the available 

real traces [1, 2, 29, 30, 31, 32, 33, 34, 80]. 

Other mobility models have been proposed based on social network theory. In [40J 
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Herrmann introduced a social mobility model for mobile ad hoc networks to study the 

effects of social networking among mobile users, but it allows the definition of pairwise 

relationships only. Musolesi et a1. [37, 38J proposed a community based mobility model 

based on the needs of humans to socialize. Mobile devices are commonly carried by humans, 

so the movement of such devices is necessarily based on human decisions and socialization 

behaviour. This mobility model allows the definition of a complete "Interaction Matrix" 

between all of the people. But this approach is highly complex and it is not suitable to 

define groups of people expressing different mobility patterns. In this model the social 

attraction level is determinate by how many "friends" are in the same square. Actually, 

meeting people depends on the environment in which they are and the time of day. Besides, 

node movements in such a model are relatively homogeneous. Venkateswaran et a1. [39) 

provided a theoretical framework for a mobility model based on social network theory. They 

capture the preferences in choosing destinations of pedestrian mobility pattern in presence 

of obstacles on the basis of social factors. Contrary to Musolesi et al. [37,38], they do not 

consider a matrix to represent the interaction between two individuals but express it as a 

function of time, network parameters and social issues. Theoretical models have been also 

developed to reproduce the properties of these networks, such as the so-called small worlds 

model proposed by Watts and Strogatz [81J or various scale-free models [82, 83]. 

In the Time-Variant mobility model presented by Hsu et a1. (44) nodes move to different 

squares at different times of day in a periodic manner and their movement is homogeneous, 

that is every node follows the same instructions. 

Rhee et al. [41] presented a mobility model which generates movement traces based on 

Levy Walk2• They statistically establish that the mobility patterns of humans mobility at 

outdoor settings within a scale of less than 10 km strongly resemble Levy walks with power 

law distribution. This model produces inter-contact time and contact duration distributions 

similar to real world traces. However, in mobility models based on Levy Walks and entity 

mobility models [35J all of the nodes move independently all of the time. Therefore, such 

2The Levy Walk mobility model Is a derivative of the Random Walk mobility model in which the step-
lengths are distributed according to a heavy-tailed probability distribution. 
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models do not generate any social structure between the nodes. Movements in shopping 

mall environments have such an independent component, for example going to grocery 

shops rather than to the pharmacy, but many movements end up with meetings of friends 

( customers) or gatherings of people for example in cafes (customers and sellers). In such an 

environment, it is the shop with its merchandise and offered services that attracts people; 

some shops can have higher attraction to customers and sellers than others. Besides, sellers 

are most of the time duty bounded to their workplace. 

Pi6rkowski et a1. [84J proposed a macroscopic mobility model for clustered networks 

called Heterogeneous Random Walk. It offers an elegant balance between capturing mobility 

characteristics observed at macroscopic level in the real-life settings and the mathematical 

simplicity. They also provided a closed-form expression of the time-stationary distribution 

of node position. 

Lee et al. [85J presented a new mobility model called SLAW (Self-similar Least Action 

Walk) that captures the effect of human mobility patterns found in real human mobility 

traces. This mobility model can produce synthetic walk traces containing significant statis-

tical patterns of human mobility similar to those derived from real traces, namely truncated 

power-law distributions of flights, pause-times and inter-contact times, fractal way-points, 

and heterogeneously defined areas of individual mobility. 

In a recent work Mel et a1. [45, 46J presented a simple mobility model that generates 

small worlds, SWIM (Small World In Motion). This model is based on the simple assump-

tion that people go more often to places not very far from their home and where they can 

meet a lot of other people. Each node is assigned a randomly and uniformly chosen point 

over the network area, called home. Then, the node itself assigns to each possible destina-

tion a weight that grows with the popularity of the place and decreases with the distance 

from home. The weight represents the probability for the node to choose that place as its 

next destination. We believe that this approach is not always valid in shopping mall envi-

ronments. In such scenarios people mainly choose their destination driven by their needs, 

mostly related to their purchase. Our model allows shops with different attraction levels 
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for both customers and sellers. We believe that some shops attract more customers than 

others based on their merchandise. A different approach might be to consider the number 

of sellers of each shop as attraction level, as the number of sellers is somehow related to the 

number of customers that they assist. 

Little work has been made on indoor movement. Our mobility model and those proposed 

by Ekman et al. [42] and Minder et al. [43] are some of the models made on indoor 

movement. However, [42J combines indoor and outdoor movements. Nonetheless, [42], 

as well as [43J, supports only one class of individuals (common working people), while 

our model considers two classes of people, customers and sellers, with different mobility 

patterns, which take place at the same time. One of the biggest issues with most of the 

synthetic models is that they are not capturing heterogeneous behaviour of nodes. Instead, 

our Shopping Mall mobility model is heterogeneous in both time and space, and captures 

several different mobility characteristics at a lower level of abstraction than many other 

previous models. 

In [35J Camp et al. also describes group mobility models which focus on moving an 

entire group but not on the formation process of a group. Some previous mobility models 

[84, 42, 43J support group mobility and their formation. Our model does not support group 

mobility while the number of people gathering in shops varies widely. Additionally, the 

structure of organizations has to be considered in the model. Our model supports two 

groups of individuals with different mobility patterns. Sellers meet with each other and are 

in contact with neighbouring sellers longer than with customers. 

In [42] Ekman et al. presented a new movement model to be used in DTN simulations, 

called the Working Day Movement Model, which intuitively depicts the movement pattern 

of people. The model presents the everyday life of average people that go to their workplace 

in the morning, spend their day at work, and commute back to their homes at evenings. 

They combined different movement model elements (called submodels) together to build the 

whole scenario; each submodel describes a distinct activity. These submodules repeat every 

day. Their parametrisation and adding further submodels as needed allows fine-tuning the 
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model to meet the needs of the target scenarios. Their mobility model tries to capture 

several mobility characteristics at a lower level than many other models. The mobility 

model presented in this thesis is part of this effort. We have decided to narrow down the 

playground scenario to structure environments, with particular regard to shopping malls. 

Our shopping mall scenario might be a submodule of a bigger scenario. The approach of 

this model is similar to our Shopping Mall mobility model. In our model, parameterised 

submodels of two distinct groups of people result in periodic movements. 

In the Working Day movement model a temporal structure dictates the activities of 

individuals. They used some distribution functions, observed from earlier research in office 

environments [43J and from general movements inside buildings [41J, that assign time to all 

the activities. Similar work was conducted by Minder et a!. [43J who set up an experiment 

to record the movement and meeting patterns of employees in their department in order 

to derive information about the duration and composition of meetings. This data was 

used in the creation of a meeting-based movement model. The same approach is used 

for our Shopping Mall mobility model. We have conducted an experiment to gather data 

about contacts between devices carried by humans in a shopping mall in order to derive 

information about mobility characteristics in such an environment. Our model also considers 

the distributions for the customers' inter-arrival time and their staying in the mall which 

makes the number of nodes in the simulation area varying with time. 

Like in [42, 44, 43J also in our Shopping Mall mobility model communities and social 

relationships are formed when a set of nodes are doing the same activity in the same shop. 

For example, sellers within the same workplace are colleagues, while customers in the same 

shop or cafe might be friends or strangers with each other. 

3.2.2 Models Based on Pedestrian Shopping Behaviour 

Pedestrian movement is a significant subject to many domains of interest. Modelling of 

pedestrian destination choice has been dominantly based on disaggregate discrete choice 

models of increasing complexity [86, 87J. These models take a decision by considering a 
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potentially large set of influencing factors. However, the large variety of temporal, spatial 

and personal factors which exert influence over destination choice may make it impossible 

to capture the essence of choice under all circumstances. Therefore, the wisdom of choosing 

a particular approach can only be judged by reference to the specific purpose of the chosen 

model. 

In particular, pedestrian movement has been significant in considering placement of 

anchor stores [88] and the design of shopping environments [89]. Barnard [90] provides a 

review of basic multinomiallogit models of shopping destination choice and some of their 

extensions. Borgers et al. [91, 92] present a model to simulate individual route choice 

behaviour of pedestrians in downtown shopping areas whose scenarios might be similar to 

shopping malls. They assume that pedestrians enter the downtown shopping area at entry 

points; after that, they repeatedly choose one of the connecting links to move onwards; 

when the trip finishes they exit the downtown area from where they entered. The model 

employs an endogenous utility function to drive the choice of a link which is based on some 

variables describing characteristics like the supply of shops, distance, and history of the 

trip. The data to estimate the parameters of the model and evaluate it was collected for 

two days by interviewers positioned at the exit points of the downtown shopping areas of 

two Dutch cities, Eindhoven and Maastricht. 

Zhu et a1. [93J proposed a modelling framework for pedestrian shopping behaviour 

incorporating principles of bounded rationality. They extend the classical deterministic 

forms of disaggregate discrete choice models by incorporating threshold heterogeneity and 

derive probability forms. They also contend cyclical decisions to predict spatio-temporal 

pedestrian behaviour: go-home, which refers to a pedestrian deciding whether or not to 

end the shopping trip and leave the shopping area; direction choice decision, if he decides 

not to go-home and chooses a walking direction; rest decision, to make a rest when tired 

of walking or shopping; store patronage decision, if the pedestrian decides not to take a 

rest and to look for a shop to visit. The proposed models are implemented using data on 

pedestrian behaviour in Wang Fujing Street, the city centre of Beijing, China. 
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Kitazawa et al. [94] introduce a study of pedestrian behaviour modelling which in-

corporates ideas about agent-based systems and the traffic models based on the utility-

maximization theory. They implement a simulation model using the shortest-path model 

as one of the evaluation criteria of Genetic Algorithms to computationally emulate retail 

movements of shoppers in a shopping centre and to test the accuracy of the model by com-

parison between the routes estimated by the model and actual trajectories of shoppers. A 

two-day survey on retail behaviour of shoppers was undertaken at a large shopping centre in 

Tokyo, Japan. Besides, eighteen students were asked to shop for two hours and the routes 

they took were tracked and recorded. Digital video cameras were used as main sensors of 

the measurement systems in this study. Every 30 seconds, the individual who is closest to 

the camera's location was identified and video images and recorded. 

To some extent, the above-mentioned approaches are slightly similar to our Shopping 

Mall model. In fact, they all consider a simulation area, an entry and exit point, and shop-

pers cyclically repeat some steps before leaving (see Section 3.3). However, they all differ 

from our Shopping Mall mobility model because their shopper destination choice is based 

on utility functions while in our mobility model shoppers randomly choose a destination. 

Besides, they only model shopper movement, whereas in ours seller movement is also con-

sidered. Moreover, they collected data to implement and evaluate their models by means 

of personal interviews at certain locations of a shopping area. In their investigations they 

were collecting information about pedestrian shopping behaviour. Consequently, this will 

model shoppers' mobility. Instead, we collected just contact data between individuals by 

exploiting handheld wireless devices with the main purpose to capture people's mobility. 

Kitazawa et al. [94J tried to use technology by employing fixed cameras as sensors to detect 

people in sight. However, unlike wireless devices which can sense other in range wireless 

devices from all directions, cameras can only record people within a certain angle even 

though they do not carry any wireless device. 
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3.3 Shopping Mall Mobility Model 

A mobility model is a set of rules used to generate trajectories for mobile entities. In 

particular, mobility models used for network simulations generate network topology changes 

due to node movement. A network simulator must know the position of a mobile node at 

each moment. Using the exact node position the simulator can compute signal fading from 

one node to another and take actions based on the current network topology (e.g., determine 

the set of nodes that will receive a certain packet). 

Our mobility model has been designed to model the movement of individuals in a 

shopping mall, but it can be used to reproduce scenarios in other settings which can be 

described by a 2D plan, i.e. urban areas, megastructures, settlements, built complexes, 

museums, trade fairs, music festivals, stadiums, etc. This model considers the structure of 

the environment and some mobility characteristics which are intrinsic to the scenario taken 

into account, i.e. time of arrival to and departure from the" playground", permanence of 

premises, shops, walls, obstacles, etc. The internal structure is significant in that people in 

shopping malls, as well as in places like university campuses and conferences, often move by 

selecting a specific destination and following a well-defined path to reach their destination. 

The selection of the direction is influenced by both pathways and obstacles. In particular, 

in shopping malls individuals walk from one shop to any other, or from one location to 

another, following corridors, pathways, galleries, etc. A node's mobility is affected by the 

surrounding physical world, in particular, simulated humans must not walk trough walls. 

In Section 2.5, by analysing shopping mall mobility patterns we identified two distinct 

populations, that we label as customers and sellers, and that have two different mobility 

models. The number of sellers is initially defined by the user as an input to the model (see 

Section 3.4.3). The number of customers depends on the frequency with which they arrive 

at the mall. The customers interarrival time and their stay respectively in a shop and in 

the mall, and how long sellers use to stay in and out of their working place are all inputs 

to the model. 

In the next two sections we describe respectively customers' and sellers' dynamics. They 
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all move from one shop to another in the mall by choosing the shortest path. The entire 

shopping centre can be seen as a graph where the entrances, mall interceptions, shops and 

stores are the vertexes, and the corridors, streets and galleries are the edges. 

3.3.1 Customers'Dynamics 

The simulated population of customers arrives at the mall according to random sampling 

of an interarrival time distribution. 

Once in the mall, customers randomly choose a shop/store to go to and spend some 

time in. Inside the shop they follow a Random Way-Point model (95). This model is widely 

used [96, 97, 98, 99) and includes pause times between changes in direction and/or speed. 

The time spent in each shop and in the entire mall is derived from a random sampling of 

the corresponding cumulative distribution functions that are provided to the model (see 

Section 3.5). When the time they are allowed to spend in a shop expires they randomly 

choose a new shop to go to and cyclically repeat the above steps. 

Group relationships have not been considered; customers individually wander within 

the mall. When the time they are allowed to spend in the mall expires, they leave via the 

closest exit. 

Our scenario generator provides a some flexibility in the selection of the target shop by 

allowing a distinct attraction level for customers and sellers to be assigned to each location. 

For our scenario, we assume that all the shops have the same attraction level equal to 1, 

both for customers and sellers. Thus, customers may go back and forth within the shopping 

mall depending on successive random choices. This behaviour is acceptable for relatively 

small environments such as our shopping mall but it is probably not suitable for very large 

environments. 

3.3.2 Sellers' Dynamics 

Sellers are initially positioned in their "own" working place. Then, after a certain random 

time sampled from the relevant cumulative distribution function, they randomly choose 
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a place in the mall to go and spend some time again dictated by a specific probability 

distribution function (see Section 3.5). When the time assigned for staying out expires they 

go back to their working place by the shortest path and cyclically repeat the above steps. 

As mentioned above, the attraction level of each shop for sellers is 1. Thus, sellers have 

the same probability of choosing one shop rather than another during a "break". As for 

customers, this behaviour may not be suitable for large environments even though it may 

be acceptable for a small environment such as our shopping mall. 

Like customers, sellers follow a Random Way-Point model when inside a shop. Also 

group relationships are not modelled with each seller moving independently. 

3.4 Mobility Model Generation Tool 

We have developed a tool that implements the Shopping Mall mobility model and a number 

of other mobility models. Our mobility scenario generation tool is a Java application. For a 

supported mobility model it requires input parameters appropriate to the model and outputs 

a list of node trajectories. We begin by deSCribing the tool as a whole before describing in 

more detail each supported mobility model. 

To design a mobility model we have considered two components: a spatial component 

and a temporal component. The spatial component describes where the mobile entity is 

moving, and the temporal component describes when an entity is moving and at which 

speed. Details of the implementation of our software tool are in the Appendix C. 

3.4.1 Features Overview 

Our Java software tool provides certain features to the user to model and analyse mobility in 

structured environments. This mobility model generation tool is available to other research 

groups upon request. The main features of the software developed are the following: 

• It creates a shopping mall scenario and allows further mobility models to be easily 

hooked. 
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• The plan structure can be described without programming requirements (see Figure 

3.4). 

• Fine-grained movement traces for shopping mall scenarios as well as for other different 

structured environments can be generated. 

• The generated mobility traces are compatible with the Omnet++ simulator [53], one 

of the most popular discrete event network simulation framework in the mobile ad 

hoc network research community. 

• Mobility traces for some traditional random mobility models can also be produced. 

• Easy to use: starting the program without or with incomplete command line param-

eters prints a detailed help message (see Section 3.4.2). 

This software has been tested with Java 1.5.0_11 and 1.6.0_15. 

3.4.2 Requirements and Design 

The syntax of the command line and the design of our scenario generator roughly follow 

the structure of Bonnmotion [100], a tool developed within the Communication Systems 

group at the Institute of Computer Science 4 of the University of Bonn, in Germany, that 

creates and analyses mobility scenarios for the investigation of mobile ad hoc network 

characteristics. 

External Libraries 

Our mobility model generator also depends on 88J, a Java library for stochastic simulation 

developed in the Departement d'Informatique et de Recherche Operationnelle (DIRO), at 

the Universite de Montreal [lOlJ, and Apache Commons Mathematics, a library of mathe-

matics and statistics components [102J. 
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Usage 

Currently, five mobility models can be generated, the Shopping Mall mobility model, the 

typical Random Walk and Random Way-Point mobility models as well as their derivatives 

with interarrival time (they are introduced in Section 3.4.3). In this thesis we focus on 

a shopping mall scenario but mobility scenarios like university campus, trade fair, music 

festival, automobile race track, stadium, can also be reproduced in the same way. 

The application starts through the command "MM". The syntax is the following: 

MM <output file> <application> <plan> <application parameters> 

<application> identifies one of the three configurations we have implemented to gen-

erate our above-mentioned mobility models. The mobility model generator takes as input 

an svg file <plan>, which provides the entire shopping mall plan and the cumulative 

distribution functions. SVG (Scalable Vector Graphic [103]) is a language for describing 

two-dimensional graphics and graphical applications in XML. It also takes <application 

parameters> on the command line which define simulation time, speed range and pause 

time of the nodes involved. Important parameters which could be also used with all the 

models are the following: the random seed with -R, which can be optional as it can be 

automatically chosen, the maximum and minimum speed in metres per second respectively 

with -h and -1 and pause time with -p, the scenario duration (in seconds) with -d and 

the -1 parameter specifying how many additional seconds at the beginning of the scenario 

should be skipped. Initially, -i has a high default value (1 hour) as it has been observed 

that with the Random Waypoint model [104, 105J, nodes have a higher probability of being 

near the center of the simulation area, while they are initially uniformly distributed over 

the simulation area. In our scenario, the Random Waypoint model is used to simulate 

the mobility of sellers and customers in shops and stores. The movement traces must be 

saved into a file by means of the option "-f <output file>. The scenario is saved in two 
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files: one with the suffix" .params" containing the complete set of parameters used for the 

simulation, and the second with the suffix" .movements.gz" containing the movement data 

(gzipped). 

3.4.3 Supported Mobility Models 

As mentioned in the Section 3.3, to define the environment that we would like to reproduce, 

which is made of boundaries, obstacles, walls, paths, mall intersections and restrictions of 

the simulated world we have used an SVG application. SVG is a language for describing two-

dimensional graphics and graphical applications in XML. The SVG specification is an open 

standard that has been under development by the World Wide Web Consortium (W3C). 

SVG images can be created and edited with any text editor, but specialized SVG-based 

drawing programs are also available. We have used Inkscape [106], an open source SVG 

graphics editor released under the GNU GPL, to draw the scenarios for our simulations. 

In Figure 3.4 straight lines and polygons represent obstacles and shops while black and red 

dots respectively identify mobile and fixed nodes. 

In addition, our scenario generation tool requires more parameters to build the simulated 

world: the simulation time, the random seed, the higher and lower speed of the nodes, 

and pause between two successive movements. These parameter values are used by the 

mobility model generation tool to generate different mobility scenarios. Our tool provides 

three configurations, the SimplestRWP, the RandamWayPaint and the MallMatian, which 

are described in the next sections, to generate five mobility models. 

Configurations 

1. SimplestRWP: This configuration can generate the typical Random Way-Point as well 

as the Random Walk mobility model [35]. The Random Way-Point Model was first 

proposed by Johnson and Maltz [107]. Because of their simplicity, they became soon 

'benchmark' mobility models to evaluate MANET routing protocols. The Random 

Way-Point mobility model is a derivative of the Random Walk model. It is based on 
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random directions and speeds like the Random Walk, but it also includes pause times 

between changes in destination and speed. 

SimplestRWP reproduces these two traditional models within a certain area. The gen-

eration of a Random Walk rather than a Random Way-Point mobility model depends 

on the parameter -p, which indicates the maximum pause time. If -p .. 0 this will 

result in a Random Walk model. The following example command line generates 

a Random Walk mobility model (-p - 0). The mobility traces generated by this 

command line have been used for our simulation study as well. 

MM -f scenario SimplestRWP Simplest.svg -d 43200 -i 3600 -h 1.66 \ 

-1 1.66 -p 0 (3.1) 

The command line 3.1 creates Random Walk scenario lasting 12 hours, i.e. -d 43200 

(a working day), cutting off an initial phase of 3600 seconds. The -i parameter 

specifies, how many additional seconds at the beginning of the scenario should be 

skipped. Each node moves with a constant speed of 1.65m/8. The Simplest. svg 

used in the command line 3.1, which identifies the plan of the playground, is shown 

in Figure 3.2. 

As you can see in Figure 3.2, the SimplestRWP configuration does not require any 

probability distribution functions. In fact, the only nodes in play are the ones drawn 

on the svg plan, i.e. the black dots. This means that in this mobility model the 

number of nodes is constant. Black dots identify mobile nodes while red dots repro-

duce motionless nodes. The SimplestRWP class reference and UML diagram is in the 

Appendix D.5. 

2. RandomWayPoint: As above mentioned, the Random Way-Point is a simple mobility 

model b8Bed on random direction, speeds and pauses. The Random Way-Point model 
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is widely used in simulations of mobile networks [96, 97, 98, 99J. This configuration 

supports a variation of the classical Random Way-Point and Random Walk models 

in which nodes enter and leave the playground over time. Specifically, nodes arrive 

at specific points of the playground with a certain frequency; after that, they follow 

a Random Walk or Random Way-Point mobility model; and finally, when their time 

expires, they move to the closest exit and get out of the playground. In this way, the 

specific nodes involved in the scenario varies with the time although the number is 

reasonably constant over time. As for the previous models, the generation of a Random 

Walk mobility model rather than a Random Way-Point mobility model depends on 

the -p pause parameter. 

To generate the Random Walk and the Random Way-Point mobility models we need 

to provide the scenario generator with the following cumulative distribution functions: 

• the time spent by nodes in the playground, 

• and the nodes' inter-arrival time. 

These are provided to the generator by annotations of the drawing in the svg file. 

The nodes in play can move freely over the whole area of the playground as walls, 

corridors and obstacles are not taken into account. 

Figure 3.3 presents the plan and settings saved in svg format and handed to our sce-

nario generator. For our simulation study we consider as playground the same surface 

and external boundaries as the shopping maIl in Figure 3.4. The RandomWayPoint 

class reference and UML diagram is in the Appendix D.4. 

An example of command line, which is the one we used to generate a Random Walk 

mobility model with inter-arrival time for our simulation study, is 88 follows: 

MM -f scenario RandomWayPo1nt RWP.svg -d 43200 -1 3600 -h 1.66 \ 

-1 1.65 -p 0 (3.2) 
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The duration is 12 hours, i.e. -d 43200. RWP. svg, handing in plan of the playground 

and cumulative distribution functions to the scenario generator, is shown in Figure 

3.3. The maximum and minimum speed are the same which means that nodes will 

move with constant speed of 1.65 metres per second. The pause between changes of 

direction is O. 

The command line to generate a Random Way-Point mobility model with inter-arrival 

time is similar to the above example except for the minimum speed and the pause 

time. The following example of command line generates the scenario that we take 

into account for our simulation study: 

MM -f scenario RandomWayPoint RWP.svg -d 43200 -i 3600 -h 1.65 \ 

-1 1.15 -p 2 (3.3) 

In this mobility model, nodes can move with speed between 1.65 and 1.15 metres per 

second. The pause time between changes in direction and speed can be between 0 and 

2 seconds. The values assigned to the parameters on the command line are the same 

as those assigned for the MallMotion configuration in the following section 3. The 

playground and cumulative distribution functions are the same as for the Random 

Walk with inter-arrival time (see Figure 3.3). 

3. MallMotion: This configuration is able to model structured scenarios and in particular 

our mall motion model as introduced in Section 3.3. The configuration for this model 

consists of several components. The first component is the playground in which shapes 

and sizes of the structures, such as rooms, buildings, pathways or obstacles, are defined 

and sellers are placed (see Figure 3.4 and appendix E.l for the textual mode). The 

sellers are identified by black dots, initially positioned in their working place. The 

red squares dots identify fixed nodes. They are meant to correspond to the smart 
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phones that were placed in some shops in the mall study. Our model can handle any 

arbitrary shapes and positions of structures 3 which allow us to model a wide variety 

of real-world topographies. We were very precise in drawing the shopping mall as 

we have its original plan. We followed the same scale considered in the Figure 2.1 

which shows the architect's plan of the shopping mall where we run our experiment 

to collect Bluetooth contact data. 

The second component of our mobility model is the movement backbone which is 

a graph representing the pathways along which mobile nodes move to go from one 

place to the other. Mall common spaces, intersections and entrances are respectively 

identified by "V : [1..nJ" and" 1\". These guide nodes through the mall. We model 

people moving from one location to another in the mall by choosing the shortest path 

along this movement backbone. To accomplish this we used the Dijkstra's algorithm 

on a graph where the mall interceptions, shops and stores are the nodes, and the 

corridors, streets and galleries are the edges. 

The third component of the model is the destination selection. We assign customers 

and sellers' attraction levels (Le. ca: "customers attraction level" and sa: "sellers 

attraction level" followed by an integer number) to each room of the mall that would 

influence the choice of individuals in going to one shop rather than another; higher 

values being the more attractive. 

Finally, the fourth component is a set of cumulative distribution functions that dictate 

how nodes move within the shopping mall. These were introduced in Section 3.3. The 

model is stochastic: it determines each nodes' movement by the random sampling of 

the provided cumulative distributions. We feed our mobility model generator with 

the following cumulative distribution functions characterizing: 

• the time spent by sellers within and out of their working place; 

• the time spent by customers within shops and mall; 

30ur mobility model generator has been tested only with polygons 
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• and the customers' inter-arrival time 

The statement lines describing these processes are embedded in the svg file and parsed 

by our mobility generator. In Figure 3.4 these are at the bottom but they can be placed 

anywhere in the document. 

The statement lines 3.4 and 3.5 describe such cumulative distributions. They are 

composed of two parts: the right hand side, describing a cumulative distribution 

function, and the left hand side, describing the purpose of the formula. Their syntax 

is the following: 

J!:t : F (a, (3, ... ) 
ｾ --...-

inter-arrival cum. parameters of 
time distr. the distribution 

stay [ (sellers, [shop I !shop 1 ) I (customers, [mall I shop 1 ) 1 

(3.4) 

F (a, (3, ... ) 

ｾ Ｍ Ｍ Ｍ Ｍcum. parameters of 

dist. the distribution 

(3.5) 

Our mobility generator supports five cumulative distribution functions: exponential, 

gamma, lognormal, weibull and linear: 

• Exponential: exp(rate-... ) 

• Lognormal: lnorm (meanlog-. . .• sdlog-... ) 

• WeibullL: weibull (shape-. . .• scale· ... ) 

• Gamma: gamma(shape-...• scale-... ) 

• Linear: linear([ a<·y<.b. slope· ...• intercept· ... j ]) where a>·O and 

b<-1 

It is also possible to consider a system of linear distributions and contiguous codomains. 

The line 3.4 describes the inter-arrival time of customers to the mall which, in our 
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Figure 3.4: Plan and settings for the MallMotion configuration drawn using Inkscape (draw-
ing.svg) 
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data set analysis, results in a exponential cumulative distribution (see Figure 3.4 

and Section 3.5.2). The left hand side of line 3.5 tells the mobility model generator 

the purpose of the function alongside. As you can see on the bottom of Figure 3.4, 

MallMotion needs four statement lines following the syntax in 3.5 which mean: 

• stay(sellers, shop): how long sellers usually stay within their working place, 

i.e. a shop of the mall; 

• stay(sellers, ! shop): how long sellers usually stay out of their working place; 

• stay (customers, mall): how much time customers usually spend in malls; 

• stay (customers, shop): how much time customers usually spend in a shop of 

the mall. 

An example of command line, which is the one we use to generate our scenario, is as 

follows: 

MM -f scenario Ma11Motion drawing.svg -d 43200 -i 3600 -h 1.65 \ 

-1 1.15 -p 2 (3.6) 

The command line 3.6 creates a shopping mall scenario lasting 12 hours, i.e. -d 43200 

(a working day), cutting off an initial phase of 3600 seconds. Each node moves with 

a speed between 1.65 and 1.15 metres per second (values extracted from [108J [109J 

[110] where the walking speed of people in urban areas is analyzed) and a maximum 

pause time of 2 seconds before changing direction. The call graph and UML diagram 

of the class MallHotion is in the Appendix D.3. 
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3.5 Determining Parameters for the Shopping Mall Mobility 

Model 

To reproduce a mobility model involving random variables such as inter-arrival times or 

motion times we have to specify their cumulative distribution functions. The scenario 

proceeds through time by generating random values satisfying these distributions. 

In this section we present the process through which we determined the cumulative dis-

tribution functions needed for the mall mobility model. We initially extracted the empirical 

cumulative distributions from the study data describing these mobility characteristics: cus-

tomers' inter-arrival time, their stay in the centre, their stay within a shop, time spent by 

sellers within their working place and out of it. Then we identified the standard probability 

distribution functions that might be used to fit the observed distributions. Finally, we in-

ferred the best parameters to represent the closest fitting cumulative distribution functions 

by means of the Maximum-Likelihood Method and the Kolmogorov-Smirnov test. 

Apart from modeling the shopping mall in Section 3.3, the distributions derived in this 

case study can be used as a starting point for modeling new scenarios. In the following 

section we firstly introduce the mathematical fundamentals and principles that were used 

during the analysis. 

3.5.1 Mathematical fundamentals 

For the statistical analysis we took the empirical data and calculated: interarrival time of 

the customers at the mall and how long sellers are in and out of their shops as well as the 

time spent by the customers in shops and in the mall. 

The definition of interarrival time is as follows: 

Deftnition: Let Sl, S2, .'" sn{n E IN) be a sequence of starting times, S; < 8i+1{i E IN Al $ 

i $ n). The interarrival time is the time between 8i and 8i+1' 

iat = 8;+1 - 8; 
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Once the empirical distributions have been identified, we need to find the theoretical 

probability distributions (or Probability Density Function) that best fit the observations. 

After that, we can derive the corresponding cumulative distribution functions. A probability 

distribution f(x) of a random variable X describes the density of probability for this random 

variable to occur at a given point in the sample space. Namely, 

P(X E B) = L f(x)dx and i: f(x)dx = 1 

where B is any set of real numbers and f(x) is a nonnegative function. 

The Cumulative Distribution Functions F(x) completely describe the probability that 

a given value X drawn from a distribution will be less than or equal to some specified value 

x: 

Fx{x) = P(X S; x) for - 00 < x < +00 

where P(X S; x) means the probability associated with the event X ｾ x. The CDF of X 

can be defined in terms of the probability density function f(x) as follows: 

F(x) = i: f(t)dt 

A cumulative distribution function F(x) has the following properties: 

1. 0 ｾ F(x) ｾ 1 for all x 

2. F(x) is non decreasing [i.e. if Xl < X2, then F(xd ::; F(X2)] 

3. limx-too F( x) = 1 (since X takes on only finite values) 

At first we consider a set of theoretical distributions to be chosen based on a hypoth-

esis. To decide the theoretical probability distributions we first observe the coefficient of 

variation of the empirical data, which is larger than one. Only distributions that meet 

this requirement are considered. The coefficient of variation Cv is a normalized measure of 

dispersion of a probability distribution, defined as the ratio of the standard deviation (f of 

79 



a distribution to its arithmetic mean I-t (see Table 3.6): 

cr 
cv =-

I-t 

Based on Cv we have selected the following density functions to test: 

• Exponential Distribution 

• Gamma Distribution 

• Lognormal Distribution 

1 «(lg(t)_y)2 ) 
f(t) = l7Ce 20'2 ,t > 0 

tcrv21T 

• Weibull Distribution 

To infer the optimal parameters for the empirical distribution we used the Maximum-

Likelihood Method [111] for each of the above distributions. After that, the quality of fitting 

to the empirical data set has to be evaluated. The best-known goodness-of-fit test is the 

Chi-square test for goodness of fit [112J. The K-S test furnishes us with an alternative to the 

Chi-square test for goodness of fit [113J. The K-S test may be preferred over the Chi-square 

test for goodness of fit when the sample size is small [114J. Our data is continuous and the 

amount of measured data is quite small. Thus, we decided to use the K-S test. 

The Kolmogorov-Smirnov's statistic defines the distance D between the theoretical dis-
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tribution F(x) and the empirical distribution E(x) evaluated at x as 

D = MaxxIF(x) - E(x)1 

F(Xi) and E(Xi), evaluated at Xi, are defined as 

and 

E(xd = #X ::; Xi = !.. 
n n 

i = 1,2, ... , n 

The lower the value D is, the better the theoretical distribution fits to the empirical distri-

bution. The analysis that follows has been performed with the statistical computing tool R 

[67]. By loading the MASS (Modern Applied Statistics with S) package we could apply the 

Maximum-Likelihood Method via the fitdistr command and K-S test by means of ks.test. 

K-S test helps us to select the most fitting theoretical distribution. 

3.5.2 Data Set Analysis 

Our shopping mall mobility model distinguishes between sellers and customers dynamics. 

In this section we respectively describe sellers and customers dynamics and present the 

results of the analysis of customers' interarrival time and their staying in shops and in 

the mall as well as the analysis of the time spent by sellers in and out of their working 

place. As mentioned in Section 3.1 we were able to accomplish that by exploiting fixed 

nodes (motionless smart phones left by the tills) in the shopping centre where we run our 

experiment. 

Customers' Distributions 

To model customer's dynamics the mobility model generator needs to know the cumulative 

distributions describing their interarrival time and how much time they spend in shops and 

in the mall. After skimming our data set and identifying devices carried by customers (as 
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described in Section 2.5), we conducted statistical analysis on our data to extract such 

distributions. By exploiting fixed nodes in seven shops during our experiment we were able 

to see how long customers use to spend in a shop. We also extracted the customers' in-

terarrival time distribution at the mall by considering fixed nodes in the shops located by 

the entrance of the centre. Such nodes were no more than one metre from the entrances. 

The interarrival time distribution shows how frequently customers arrive at the mall. The 

cumulative distributions for the four chosen distributions along with the determined param-

eters are plotted against the empirical cumulative interarrival time distribution in Figure 

3.5. The figure shows the fitting of the four different theoretical distributions. 

The table 3.1 displays the results determined by the Maximum-Likelihood Method on 

the four chosen distributions to approximate the customers' interarrival time and their 

distances generated by the K-S test. The analysis shows that the exponential distribution 

is the best approximation for the interarrival time of customers at the shopping centre, 

although the wei bull distribution shows a very small difference. Based on these results, we 

use the exponential cumulative distribution function defined by its rate parameter f3 for the 

inter arrival time of customers at the mall. 

I Distribution I Parameters I K-S test distance I 
exponential f3 = 1.771467e - 03 D = 0.1144 

gamma Q = 5.949694e - 01 D = 0.2304 
,.\ = 2.000000e - 03 

lognormal JL = 4.6555679 D = 0.2944 
(J' = 3.7874265 

weibull Q = 0.54584038 D =0.1409 
f3 = 641.05022912 

Table 3.1: Results of Maximum-Likelihood Method and K-S test for customers' interarrival 
time at the mall. 

Additionally, we perform analysis on the time spent by customers respectively in the 

mall and in shops. We could collect such information because we left static nodes (our 

smart phones) in some shops, which could detect the presence of devices on the entire 
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Figure 3.5: Cumulative Distribution FUnctions of customers' interarrival time at the shop-
ping centre 
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surface of the shops we are taking into account. The parameters extracted by Maximum-

Likelihood Method and the fitting markers for the four theoretical distributions are shown 

in tables 3.2 and 3.3. The weibull distribution defined by its shape a and scale (3 expresses 

the best fit to the empirical distributions in both cases, even though there is only a small 

difference with the K-S distance of the exponential and weibull distributions. Once they 

have been identified, we can derive the cumulative distributions described by their respective 

parameters. Figures 3.6 and 3.7 confirm the K-S test results. 

I Distribution I Parameters I K-S test distance I 
exponential (3 = 3.75677ge - 04 D = 0.0647 

gamma a = 14.944169188 D = 0.3708 
A = 0.01 

lognormal I-l = 7.27566056 D = 0.1083 
(j = 1.21560108 

weibull Ct: = 9.357368e - 01 D = 0.0639 
(3 = 2.579708e + 03 

Table 3.2: Results of Maximum-Likelihood Method and K-S test to analyse the time spent 
by customers within the shopping mall. 

I Distribution I Parameters I K-S test distance! 
exponential (3 = 3.274162e - 03 D = 0.353 

gamma Ct: = 2.5463731229 D = 0.3922 
A = 0.0100000000 

lognormal I-l = 5.330815897 D =0.3663 
(1 = 0.690820187 

weibull a = 1.002896e + 00 D = 0.3519 
(3 = 3.059547e + 02 

Table 3.3: Results of Maximum-Likelihood Method and K-S test to analyse the time spent 
by customers within a single shop. 
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Sellers' Distributions 

In the same way, to model sellers' dynamics, the mobility model generator needs to know 

the cumulative distributions describing their motions. Therefore, we conducted a similar 

statistical analysis to determine how long sellers were in and out of their workplace. 

By exploiting fixed nodes (motionless smart phones left by the tills) in our experiment 

we were able to see when clerks and shop assistants (carrying our smart phones) were in 

their working place or somewhere else, e.g. lunchbreak, work, p'ersonal needs, etc. We 

assume sellers are out of their workplace if their phone does not reply to more than one 

periodic scan, i.e. more than 268 seconds interval time. In all of the shops except one, the 

Bluetooth connectivity range of our smart phones could cover the entire area of the shop. 

The candidate cumulative probability distributions with the determined parameters are 

plotted against the empirical data distribution in Figures 3.8 and 3.9. The Tables 3.4 and 

3.5 list the function parameters determined by the Maximum-Likelihood Method and the 

distances generated by the K-S test for sellers located within and out of their workplace. 

The analysis shows that the lognormal distribution is the best fit, even though the weibull 

and gamma distributions show a very small difference. Based on these results, we use the 

lognormal cumulative distribution functions defined by its parameters /-L and u for the time 

spent by sellers within and out of their working place. A summary of parameters (min and 

max value, 1st and 3rd quartiles, median and mean) describing our empirical distributions 

are given in Table 3.6 

3.6 Summary 

There are essentially two possible types of mobility patterns that can be used to evaluate 

delay tolerant and mobile ad hoc network protocols and applications: real and synthetic 

traces. Real traces are a useful method of empirical investigation, but they are usually 

unavailable in large numbers for many reasons: retrieving these information is extremely 

difficult and expensive, since this process implies that the movements of a representative 
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I Distribution I Parameters I K-S test distance I 
exponential (3 = 1.731800e - 04 D = 0.4242 

gamma a = 2.874416e + 00 D = 0.3651 
A = 2.000000e - 03 

lognormal J.L = 7.08653949 D = 0.1405 
u = 1.87655822 

weibull a = 0.5371302 D = 0.173 
f3 = 2930.4229547 

Table 3.4: Results of Maximum-Likelihood Method and K-S test to analyse time spent by 
sellers in their workplace. 

I Distribution I Parameters I K-S test distance I 
exponential f3 = 0.0012933264 D = 0.4047 

gamma a = 2.575417584 D = 0.2097 
A = 0.003138834 

lognormal J.L = 6.50409971 D = 0.1902 
u = 0.51007676 

weibull a = 1. 7302969 D = 0.2367 
f3 = 854.3538448 

Table 3.5: Results of Maximum-Likelihood Method and K-S test to analyse time spent by 
sellers out of their workplace. 
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Min. 1st Median Mean 3rd Max. St. 
Quartile (Jt) Quartile Dev. (0') 

Customers' 
Interarrival Time 0.001 133.500 313.000 564.5037 669.000 8318.000 873.2157 

Customers 
in the mall 134 739 1841 2662 3273 27800 3349.755 

Customers 
in shops 133 134 134 305.4 268 15800 618.452 

Sellers located 
in working place 133 268 670 5774 7330 42440 9878.209 

Sellers out 
of working place 401 402 602.5 773.2 970.5 2812 495.7557 

Table 3.6: Summaries of the results of the model fitting functions. 
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number of users are traced in large areas (indoor and outdoor). Moreover, the collection 

of mobility data is not possible in certain deployment scenarios such as dangerous environ-

ments. 

In the recent years, many mobility models have been proposed and many researchers 

have tried to refine existing models in order to make them more realistic. In this chapter 

we have presented a new mobility model for shopping mall environments that is based on 

empirical observations of the real traces and periodic mobility patterns. It is a structured 

mobility model, heterogeneous in both time and space, which captures several different 

mobility characteristics at a lower level of abstraction than many other previous models. 

This approach has been used to design previous mobility models [42, 44, 43]. 

We derived several cumulative distributions from real traces that approximate key as-

pects of observed behaviour in the shopping mall scenario and which form parameters of 

our mobility model. Such distributions might also be employed to model different kind of 

shopping mall-like environments. Measurements in public places and their statistical anal-

ysis help in characterizing realistic mobility models. However, different scenarios may show 

different characteristics. Consequently, the mobility model generator's parameters may be 

different for different settings. But we suggest that our observations provide a reasonable 

starting point for related scenarios. 

Furthermore, we introduced our mobility model generation tool which generates mobility 

traces for the Omnet++ simulator. 

In the next chapter we present simulation results using our mobility model, with the 

aim of reproducing the same scenario as in the real shopping mall, and compare the real 

and synthetic traces. 
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Chapter 4 

Validation of the Shopping Mall 

Mobility Model 

Measure what is measurable, 

and make measurable what is not so. 

Galileo Galilei 

In this chapter we validate the shopping mall mobility model presented in Chapter 3 

by comparing simulation results using our mobility model with real traces and the Random 

Way-Point model. Namely, the validation is based on the evaluation of the degree of corre-

spondence between stochastic and empirical distributions derived from mobility models and 

from our data sets. We show that our mobility model is consistent with the collected con-

tact traces within some bounds and that it produces realistic connection opportunities with 

a small error. In addition, we provide evidence that traditional random mobility models 
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express mobility patterns which are quite different from this real world setting. 

Using Omnet++ [53], a network simulator, we validate our mobility model by simu-

lating the field study described in Chapter 2 and show that the model reproduces contact 

opportunities comparable to those seen in real traces, as characterized by the distributions 

of the contact duration and inter-contact time. 

4.1 Background 

Simulations of mobile networks strongly rely on mobility models because they have a major 

influence on the performance of mobile systems [35, 115, 77]. Therefore, results obtained 

with an unrealistic model may not reflect the true performance of a system, be it protocol 

or application, in real environments. 

In the recent years, mobility models have been under active research. In the Chapter 

3.2.1 we have introduced several mobility models which are based on assumptions about 

the node's mobility. The problem with many of these mobility models [35J is that they 

have not been validated against real environments. It is evident by inspection that estab-

lished random mobility models do not simulate realistic human movements in any kind of 

environment. In fact, they show properties (such as the duration of the contacts between 

the mobile nodes and the inter-contacts time) that are quite different to those extracted 

from real scenarios (72, 116, 117, 118J. This analysis is confirmed by an earlier examination 

of the available real traces [37). Inter-contact and contact times are typical metrics for 

characterising mobility in DTNs. Usually, inter-contact and contact time distributions are 

used in comparisons (31, 42, 41, 46, 45, 85, 119] and they are used in the same way in this 

chapter. 

No synthetic mobility model is totally accurate because there is no way to completely 

model reality. However, some of the available mobility models are for specific scenarios 

[74,75,76,77,78,79] which make their validity difficult for different environments. Besides, 

many of the available models [38, 84, 41, 44, 45, 46, 42, 43] are homogeneous in both time and 

space and/or capture mobility at a high level of abstraction. Therefore, existing mobility 
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models cannot be employed to simulate more specific and heterogeneous environments such 

as shopping malls at a lower level of granularity. 

Furthermore, many "people counting" companies offer customer counting technologies 

to a wide range of clients. These technologies can count people at a specific location when 

they cross a straight line (usually no longer of 10 metres). They are also not able to 

distinguish between individuals, to record how long they are in the immediate vicinity, and 

might miscalculate the number of people when particularly crowded. Therefore, also these 

kind of counting technologies cannot be employed to validate our mobility model. 

Validating a mobility model is important to increase the confidence that simulations of 

future systems are meaningful. Evaluation of performance of applications and protocols in 

mobile ad-hoc delay tolerant networks is usually based on simulations. Validation of mo-

bility models is based on the evaluation of the degree of correspondence between stochastic 

and empirical distributions derived from mobility models and from our data sets. 

4.2 Simulation Tool 

There are a wide variety of network simulators for the evaluation of protocols in delay-

tolerant mobile ad-hoc networks, ranging from the very simple to the very complex. The 

best known simulators are the open source ns-2 [120], GloMoSim [121J and OMNet++ [53], 

and the commercial OpNet Modeler [122] and Qual Net [123]. 

Cavin et al. [124] compare the simulation results of a straightforward algorithm using 

OpNet Modeler, ns-2 and GloMoSim. They showed that there is significant divergence 

between the simulators. They argue that these differences can be explained partly by the 

mismatch in modelling approach of each simulator and also by the different levels of detail 

provided to implement and configure the simulated scenarios. They believe that a hybrid 

approach in which only the lowest layers (Le. MAC and Physical) and the mobility model 

are simulated and all the upper layers, namely from transport to application, are executed on 

dedicated hosts (e.g. cluster of machines) [125J would be a better solution than standalone 

simulations. 
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We have chosen OMNet++ [126, 127], an object-oriented modular discrete event1 net-

work simulator written in C++ and developed by Andras Varga [129]. The OMNeT++ 

simulation kernel is a class library, while models in OMNeT++ are independent of the sim-

ulation kernel. Components are written and interact with the OMNet++ simulation kernel 

by means of an API. The main reasons for choosing OMNet++ are that it has a generic 

and flexible architecture; it provides several frameworks and plug-ins for different uses, an 

Eclipse-based IDE, a graphical runtime environment, and a great number of other tools; 

it is free for academic and non-profit use, and it is a widely used platform in the global 

scientific community. 

To run our simulations we adopted Mixim [130, 131J, a simulation framework for wireless 

and mobile networks which uses the Omnet++ simulation engine. Figure 4.1 shows the Om-

net++ Eclipse-based IDE and the graphical runtime environment. Mixim supports mobile 

and wireless simulations and offers detailed models of radio wave propagation, interference 

estimation, radio transceiver power consumption and wireless MAC protocols. 

OMNeT++ can carry out large-scale simulations, only limited by the virtual memory 

capacity of the computer used. Because of the amount of data we processed and the num-

ber of simulations we performed, we made extensive use of the HPC (High Performance 

Computing) of the University of Nottingham [132J. The HPC is a cluster that comprises a 

mix of hardware from different procurements. The newer hardware comprises 600 compute 

nodes, containing either 2 quad-core processors (Intel Xeon E5472 3.00Hz) or 2 opteron 

processors, providing a total of 4,000 cores. All compute nodes are linked by a fast Infini-

Band network, suitable for running highly parallel scientific codes. The cluster is capable 

of running at over 12 teraflops (12 million million calculations per second). The compute 

nodes have either 2GB, 16GB, or 32GB memory available. Storage of over lOOTB, mostly 

high performance parallel storage, is shared over the entire facility. 

1 Discrete-event simulation concerns the modeling of a system as It evolves over time by a representation 
in which the state variables change Instantaneously at separate points in time. These points In time are 
the ones at which an event occurs, where an event Is defined as an Instantaneous occurrence that may 
change the state of the system. Although discrete-event simulation could conceptually be done by hand 
calculations, the amount of data that must be stored and manipulated for most real-world systems dictates 
that discrete-event Simulations be done on a digital computer (128J. 
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4.3 Simulation Settings 

We intend to determine whether the contact patterns observed in the real traces were 

reproduced by our Shopping Mall mobility model. Therefore, we tried to simulate a scenario 

as close as possible to the field trial experiment described in Chapter 2. The entire simulation 

area covers a surface of 1O,880m2, without considering the parking area. We were very 

precise in drawing the shopping mall, premises and corridors as we have its original plan. 

The scale of the simulation playground is 2:1 (Le. 2 pixels = 1 metre). We set the attraction 

level of each shop equal to 1 so that nodes have the same probability to move to any 

shop. These attraction level settings are acceptable for small scale environments like the 

shopping mall we are considering but it may not be suitable for large scale environments. 

We considered 25 nodes as internals (18 sellers and 7 fixed nodes); they were in the same 

virtual shops in which they were during the real experiment. The modelled mall can be seen 

in Figure 3.4. We tested the Random Way-Point model using the same number of sellers 

and fixed nodes, on the same floor area, with the only exception that nodes would move 

without taking into account the plan of the mall, i.e. walls, corridors, etc. (see Figure 3.3). 

The number of customers varied according to the cumulative inter-arrival time distribution. 

The speed of the nodes was randomly generated according to a uniform distribution between 

[1.65 - 1.15]m/s, based on [108J [109J [110J where the walking speed of people in urban areas 

is analyzed. The pause time of the nodes was drawn from a uniform distribution between 

[0 - 2]s. We simulated twelve hours each for six days to reproduce the experiment. 

We assumed that each device was equipped with an omnidirectional antenna with a 

transmission range of about 30m in a free space propagation model, based on the measured 

transmission range of our smart phones in open space. We set the devices in enquiry 

mode as for the real experiment. Neighbor discovery was performed at approximately 

120 seconds intervals plus 14 seconds for the inquiry process. We used the 802.11b MAC 

protocol provided by the Mixim framework and adjusted the parameters to reproduce the 

Bluetooth transmission range: maximum transmission power of 2.5mW, signal attenuation 

threshold -65dBm and carrier frequency 2.412e + 9Hz. We obtained these settings from 
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the Bluetooth technical specifications. In our simulations we adopted an Analogue Model 

for the physical layer with a path loss coefficient alpha equal to 2.2 (see table in Appendix 

B.1 from [133]) and a Decider based on a Signal-to-Noise Ratio of 10 and centre frequency 

2.412e + 9 to classify signals as noise or potential packet. Appendices F.1 and G.1 give 

the full parameters settings in the configuration files omnetpp.ini and config.xml, while the 

Appendices H.1 and H.2 present the structure of the simulation model described in the 

NED files of the Omnet++ simulation framework. Initial simulation of communication 

range verified that these parameters reproduce the observed Bluetooth transmission range. 

4.4 Results 

As previously observed, our shopping mall mobility model distinguishes between sellers' and 

customers'dynamics. In this section we present a comparison of the sellers' and customers' 

contact patterns generated by our mobility model with those generated by the Random 

Way-Point mobility model and the real traces. We also compare the contact patterns from 

the perspective of the two nodes considered in Section 2.4.1, for the same three cases. For 

this comparison the real traces were filtered using the method presented in Section 2.5 to 

identify customers and exclude individuals behaving like sellers. For this comparison we 

consider as sellers only people carrying smart phones that we provided for our experiment 

in the mall. We analyzed movement patterns in terms of inter-contact time and contact 

duration. 

4.4.1 Sellers' Synthetic and Real Traces 

The Figures 4.2 and 4.3 respectively compare inter-contact time and contact duration cumu-

lative distributions between sellers on a log-log scale. In both plots, the sellers' cumulative 

distributions generated by our mobility model approximate quite well those extracted from 

the real traces. In contrast, the inter-contact time cumulative distribution based on the 

Random Way-Point model shows a typical exponential distribution while the contact dura-

tion is biased by fixed nodes in range with each other. 
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Figure 4.2: Comparison between sell ers' synthet ic and real traces: cumulative distributions 
of inter-contact t ime 
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4.4.2 Customers' Synthetic and Real Traces 

As for sellers, Figures 4.4 and 4.5 respectively compare inter-contact time and contact dura-

tion cumulative distributions between sellers and customers on a log-log scale. Customers' 

inter-contact time distribution from our mobility model is a good approximation of the cus-

tomers' real traces. Perhaps surprisingly, all of them express an exponential distribution. 

With regard to the contact time distribution, we observe that the distribution from our 

mobility model resembles that of the real traces, though with a power law behaviour with 

a more limited range than for sellers plotted in Figure 4.3. In the real mall, as observed in 

the left part of the plot in the Figure 2.11, customers did not spend more than about two 

hours at a time. Although we do not have logs from customers' devices to directly analyze 

inter-customers contacts, these observations from the contact traces along with those in 

Chapter 2 support the validaty of the sellers' and customers' mobility models which implies 

that customers' movement is realistic and therefore that customer contact patterns should 

be realistic. 

4.4.3 As a Whole 

Finally, in this section, we present a comparison of the contact patterns of the whole system, 

without distinguishing between customers and sellers. In Figures 4.6 and 4.7 we show inter-

contact time and contact duration distributions between all individuals, generated by our 

mobility model against those extracted from the real traces and those produced by the 

Random Way-Point model. We observe that the inter-contact time distribution of our 

mobility model approximates the one from real traces. They both exhibit a heavy tailed 

distribution over a large range of values that can be approximated or lower bounded by 

the tail of a power law. We also observe a higher slope coefficient of the interpolating 

line compared to the the traces from Intel Research Cambridge, Cambridge Computer Lab, 

Dartmouth college and UCSD [lJ. This shows that data related to different scenarios may 

be characterized by different types of power law distribution. As expected, the Random 

Way-Point model shows a typical exponential distribution over a smaller range of values. 
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Figure 4.4: Comparison between customers' synthetic and real traces: cumulative distribu-
tions of inter-contact t ime 
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Figure 4.5: Compari son between customers' synthetic and real traces: cumulative d istribu-
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With respect to contact duration, our mobility model is still a good approximation of 

the real traces. As in Figure 4.3, the Random Way-Point model exhibits a contact time 

distribution which is affected by the fixed nodes which are in contact range for longer period 

of time. 

4.4.4 Synthetic and Real Traces from a Fixed Node's Perspective 

Inter-Contact Time 

In this section we consider inter-contact time distributions for the fixed node considered 

in Section 2.4.1 (Le. "c3a4"), which is located in the shop highlighted in red in Figure 

2.1. Figure 4.8 considers neighbouring sellers Figure 4.9 considers customers while Figure 

4.10 considers all the individuals together. We cannot distinguish neighbouring sellers in a 

Random WayPoint mobility model, as they move without boundaries within the mall, con-

sequently, this case is omitted from Figure 4.8. It is interesting to notice that customers in 

Figure 4.9 show a distribution with an exponential decay. This means that such behaviour 

can be reproduced by traditional mobility model such as Random Way-Point and its deriva-

tives [35]. In Figure 4.10 the Random Way-Point model shows still an exponential decay, 

while our mobility model produces a distribution that is close to the one seen in the traces. 

The distributions expressed by real traces and our mobility model in the Figures 4.8 and 

4.10 approximate a power law for the time scale [2min :'" 2houTS) and [2min :N 6houTSj 

respectively. 

Contact Time 

We now consider the contact time distributions for the same fixed node and its neighbouring 

sellers, customers and all the nodes in the shopping mall plotted in the Figures 4.11, 4.12 

and 4.13 respectively. Again our shopping mall mobility model gives rise to contact time 

distributions which are quite close to those extracted from the real traces and much closer 

than the Random Way-Point mobility model. 

The Random Way-Point model in Figure 4.13 produces a very few contacts duration 
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Figure 4.7: Comparison between synthetic and real t races: cumulative distributions of 
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Figure 4.8: Inter-Contact Time distributions over six days between the internal fix ed node 
"c3a4" and the neighboring sell ers resulting from real traces (data) and our shopping mall 
mobility model (MM). 
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Figure 4.9: Inter-Contact Time distributions over six days between the internal fixed node 
"c3a4" and customers resulting from real traces (data), our shopping mall mobility model 
(MM), and the Random Way-Point mobility model (RWP). 
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Figure 4.10: Inter-Contact Time distr ibutions over six days between the internal fix ed node 
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in the range [/'V 7min ;/'V llhours] but several contacts of about 12 hours. This is because 

of the 7 fixed nodes we have considered in the synthetic mobility models as well as in the 

real experiment conducted in the shopping mall; some of these were in range with each 

other most of the time. The duration of the contacts can also vary because of the values 

assigned to the parameters of the A nalogue Model and the Decider used for the simulation 

(see Section 4.3), and possibly due to collisions caused by the hidden station problem [134J. 

4.4.5 Synthetic and Real Traces from a Mobile Node's Perspective 

Inter-Contact Time 

As for the previous section we plot here inter-contact times of the mobile node taken into 

account in Section 2.4.1 (Le. "7398"). In the real experiment the mobile device is carried 

by a seller whose workplace is the same as above (see red highlighted shop in Figure 2.1). 

The Figures 4.14,4.15 and 4.16 plot the inter-contact time distributions between "7398" 

and neighboring sellers, customers, and all the nodes in play respectively. As for the fixed 

node in the section above, the inter-contact time distributions for the mobile node in our 

shopping mall synthetic model are close approximations of the real traces distributions. 

Furthermore, Figure 4.15 confirms an inter-contact time distribution with customers in the 

range [2min ;'" 2hoursj and following an exponential decay, as in Figure 4.9 for the fixed 

node. The distributions expressed by real traces and our mobility model in the Figures 

4.14 and 4.16 approximate a power law for the time scale respectively [2min ;/'V 1hourJ and 

[2min ;'" 6hours]. 

Contact Time 

This final section considers the contact duration distributions of this mobile node with 

respect to neighboring sellers in Figure 4.17, customers in Figure 4.18 and all the nodes in the 

mall in Figure 4.19. Again our shopping mall mobility model produces a fair approximation 

of the contact time distributions resulting from real data. The Random Way-Point model 

in both Figures 4.18 and 4.19 exhibits the same distribution in the range [2min:,.... 15minj, 
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F igure 4.14: Inter-Contact T ime distribut ions over six days between the internal mobil e 
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Figure 4.15: Inter-Contact Time distributions over six days between the internal mobile 
node " 7398" and customers resulting from real traces (data), our shopping mall mobilit y 
model (MM), and the Random Way-Point mobility model (RWP). 

116 



X 
1\ 
X 
ｾ

0.1 

0.01 

0.001 

0.0001 

1e-05 
<? 
ｾ Ｎ ［

oS 
ｾ Ｎ ［

70S 
ｾ Ｎ ［

..yo 
ｾ Ｎ ［

: : 

data --' 
MM -------

RWP ... .. .. . 

.................. __ ...................... --... ........................... . 

Ｗ ｾ Ｎ Ｎ ｹ ｾ Ｖ Ｇ ｾ ｾ
0",- 0" 0" ｾ ｯ

ｾ ｾ ｾ ｾ

Time 

7 
O''?t-

Figure 4.16: Inter-Contact Time distributions over six days between the internal mobile 
node " 7398" and all the individuals resulting from real traces (data), our shopping mall 
mobility model (MM) , and the Random Way-Point mobility model (RWP). 

117 



which is very different from the observed distribution. 

4.5 Limitations 

There are several limitations regarding the evaluation of the Shopping Mall mobility model 

presented in this thesis and I want to point them out here: 

• The mobility model has only been evaluate considering a particular scenario in a 

shopping mall, i.e. where the contact traces have been collected. Thus, we do not 

know to what extent our model can reproduce different scenarios. 

• It is also hard to see if such an evaluation applies with respect to different malls. 

Evaluations of this model over larger scale domains has not been conducted yet and 

will be an interesting topic for future study. It would be useful to collect contact 

traces in other malls and see the accuracy of the model. 

• The model has not been validated over different time scales. The size of our data set 

allows us to compare synthetic traces against six days real world contact traces. 

• This is a physical movement model and unfortunately we do not have contact data 

from the customer's point of view (see Section 2.8). Thus, it is not possible to know 

to what extent customers' movement is realistic. 

• Some of the data set features like duration and periodicity of the experiment also in-

fluence the validation of the mobility model at different degrees of confidence. Namely, 

short event lengths is limited by the granularity of measurement and similarly, events 

lasting longer than the experiment cannot be observed. 

4.6 Summary 

In this chapter we have sought to validate our shopping mall mobility model by comparing it 

with real traces and the Random Way-Point model. We simulated the same experiment and 
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situation from the real shopping mall and have shown that our mobility model consistently 

approximates the inter-contact time and contact duration distributions from the real traces, 

while the Random Way-Point model does not. 

Although we do not have logs from customers' devices in order to directly compare 

inter-customer contacts, the results from inter-seller and seller-to-contacts imply that the 

customers' movement is realistic. 

In the next chapter we compare the performance of two ､ ｩ ｦ ｦ ･ ｲ ･ ｾ ｴ delay tolerant routing 

protocols against four different mobility models, including our shopping mall model. This 

allow us to see how different mobility models affect the performance of routing protocols. 
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Chapter 5 

Testing and Evaluation of Different 

Routing Protocols 

Although nature commences with reason and ends in experience 

it is necessary for us to do the opposite, 

that is to commence with experience 

and from this to proceed to investigate the reason. 

Leonardo da. Vinci 

Evaluation of performance of network applications and protocols in mobile ad·hoc delay 

tolerant networks is usually based on simulations. Such simulations rely on mobility models 

because these have a major influence on the performance of routing protocols. 

In this chapter we explore how the delivery performance of two contrasting delay tolerant 

routing protocols differs with different mobility models. We evaluate Epidemic [18J and 
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Prophet [54] routing protocols in terms of large-scale performance. 

In our simulations we test the Epidemic and Prophet routing protocols with four dis-

tinct mobility models: Random Walk, Random Way-Point with inter-arrival time, Random 

Walk with with inter-arrival time and the Shopping Mall mobility model. All of these are 

described in the Chapter 3 and generated by our scenario generation tool with the three 

provided configurations, respectively SimplestRWP, RandomWayPoint and MallMotion. We 

include the Random Walk and Random Way-Point models with inter-arrival time to al-

low us to separate out the effects of a changing customer population from the additional 

structure of the Shopping Mall mobility model. 

In addition, we evaluate two semi-Epidemic routing protocols running on our Shopping 

Mall mobility model. These are identical to the Epidemic protocol except that they forward 

messages exclusively to customers or sellers at intermediate hops. This allows us to expose 

differences in forwarding data throughout customers versus sellers in such environments. 

We begin by briefly reviewing some established routing protocols for mobile ad-hoc and 

delay-tolerant networks. We then describe the simulation settings before discussing the 

results that we have obtained. 

5.1 Related Work 

In this section we present a description of the comparisons of various mobility models. All 

of them analyse the impact of different mobility models on the performance of some routing 

protocols. 

Camp et a1. 135J considered various synthetic mobility models and discussed the impor-

tance of choosing an appropriate mobility model for the performance evaluation of a given 

ad hoc network protocol. They compared the results of four different mobility models with 

DSR routing protocols [135]. They considered the data packet delivery ratio, the end-to-end 

delay, the average hop count, and the protocol overhead. 

Ravikiran et aI. [136J considered theree mobility models, Pursue, Column and Reference 

Point Group Mobility (they are described in 135]) and compared the effects of these mobility 
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models on the performance of three ad hoc routing protocols, AODV [137], DSDV [138] and 

DSR. In [139] McNeill et a1. compared the simulation results of AODV, DSR, and TORA 

[140] with the Random Way-Point, Random Walk and Pursue mobility models varying the 

mobility speed and the pause time. 

A comparison of the Random Way-Point and the Gauss-Markov mobility model is pre-

sented in [141] and the effects of three random mobility models, Random Way-Point, Ran-

dom Walk with Reflections and Random Walk with Wrapping, on the performance of AODV 

are in [142J. The results shows that performance of the routing protocol varies across dif-

ferent parameters like number of nodes, packet delivery ratio and end to end delay. An 

analysis of the effects of four mobility models, Random Wayward mobility, Group Mobility, 

Freeway and Manhattan mobility models, on the performance of two routing protocols, 

DSR and DSDV, is presented in [143J. 

Gowrishankar et a1. [144] studied the performance of various group mobility models like 

Community model, Group Force Mobility Model, Reference Point Group Mobility, a pseudo 

group mobility model like Manhattan model and a random mobility model like Random 

Waypoint-Steady State with AODV routing protocol. Here, various metries like packet 

delivery ratio, average network delay, network throughput, routing overhead and number 

of hops have been considered. 

The above mentioned works prove that the performance of an ad hoc network protocol 

can vary significantly with different mobility models. The performance of a delay tolerant 

network protocol or application should be evaluated with the mobility model that most 

closely matches the expected real-world scenario. The authors analysed the performance of 

several mobility models considering nodes' mobility. They compared the simulation results 

of various synthetic mobility models on the performance of some ad hoc routing protocols. 

Here, we have considered four mobility models with different nodes' mobility, Random Walk, 

Random Way-Point with inter-arrival time, Random Walk with with inter-arrival time and 

the Shopping Mall mobility model, and have compared the effects of these mobility models 

on the performance of two delay tolerant routing protocols, Epidemic and Prophet. 
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5.2 Metrics for Evaluating Forwarding Efficiency 

In this chapter we analyse the performance of benchmark delay tolerant routing protocols, 

Epidemic, Prophet, and a derivative of the former, with different mobility models. The 

aim of this evaluation approach is threefold. First, they will eventually provide evidence 

that traditional mobility models should not be employed to simulate "structured" scenarios. 

Second, the choice of a mobility model can be a critical consideration when designing and 

evaluating routing protocols for shopping mall environments. Finally, it will allow us to 

gain better understanding of the potential role of message carriers belonging to groups 

with different mobility patterns. We note that the performance of the Epidemic protocol is 

strictly correlated to the connectedness of end-to-end paths with hosts with infinite buffer 

capacity. 

In our simulations we tested routing protocols with four distinct mobility models going 

from a pure random-based to a more realistic Shopping Mall mobility model. The first 

three are Random Walk-based mobility models. We chose them as Random Walk-based 

because such a model is the most commonly used mobility model by the research community 

to simulate several scenarios for mobile networks (35, 135, 145, 146, 147J. They are all 

characterized by nodes' mobility with different degrees of freedom to move respect to time 

and space. Decreasing spatial mobility and speed, and increasing pause time reduces the 

degree of freedom of nodes. The first scenario represents a pure Random Walk. The second 

and third scenarios are a Random Way-Point and a Random Walk mobility model with 

inter-arrival time respectively. The first three mobility models describe scenarios without 

obstacles where aU of the nodes can move as they like within the shopping mall area. The 

fourth scenario is generated by our shopping mall mobility model. In the last three scenarios 

the number of nodes in the simulation area varies with the time because of their entering 

and leaving the shopping mall. Nonetheless, the number of nodes is reasonably constant 

over time. In the last two scenarios, nodes can move with lower speed and have pause time. 

Besides, the fourth scenario reproduces the plan of a shopping mall (the one in Figure 2.1) 

as playground with obstacles, shops and corridors where nodes can move. 
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In the majority of the work presented in Section 5.1, delivery ratio and average delay 

have been used as metrics to evaluate the network performance . 

• Delivery Ratio 

Excessive data traffic often impacts on the performance of routing protocols and on 

the data delivery when network link capacity is limited. Delivery ratio expresses the 

efficiency of routing protocols. It is given by the number of messages received over the 

total number of messages sent. Its value provides a theoretical delivery ratio upper 

bound when the buffer size is infinite as well as an estimation of the number of hosts 

in the same connected component of the resulting network path . 

• Average Delay 

Delay is the amount of time it takes for data to travel from one node to another across 

a network. Their statistical measures such as mean, variance, empirical distributions, 

are important and provide an assessment of effectiveness of a routing protocol. A v-

erage delay is calculated as the average time between the generation of the message 

and the delivery to the final recipient of the message. It is a characterising aspect of 

a protocol for delay tolerant mobile networks. 

In this thesis, I will limit my evaluation to delivery ratio and average delay for all the 

simulations conducted to compare forwarding efficiency and effectiveness in a network where 

all connectivity is short-range wireless. 

5.3 Routing Protocols 

In this thesis we are considering a large population of wireless computing devices in a specific 

environment wishing to communicate without exploiting fixed infrastructure. While tradi-

tional networks rely on infrastructure to provide connectivity to mobile wireless devices, in 

our context we focus on networks that use only a shared wireless medium. In these kind 

of networks an end-to-end communication cannot always be ensured and disconnections 

can occur due to host mobility in particular. Mobile ad-hoc networks assume an existing 
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end-to-end path between nodes wishing to communicate whereas in delay tolerant networks 

this is not always the case. Routing protocols in both networks might cope with challenges 

such as host mobility I dynamics, potentially very large number of hosts, and limited com-

munication resources (e.g. bandwidth, memory capacity and energy consumption). They 

may have to adapt quickly to frequent and often unpredictable topology changes and must 

be parsimonious of network resources. In such networks scalability can be important, and 

has been attracting increasing attention. 

Different network structures engender distinct approaches to scalability which conse-

quently affect the design and operation of routing protocols. In some application domains, 

scalability is achieved by designing a hierarchical architecture with physically distinct lay-

ers. While for infrastructure networks a hierarchical structure is assigned a priori, in delay 

tolerant and mobile ad hoc networks scalability must take into account a node's distinc-

tive characteristics, e.g. mobility pattern, energy consumption, processing power, buffer 

capacity. Achieving a highly scalable mobile network is difficult. Nonetheless, in the case 

of the shopping mall we have identified two classes of individuals with different mobility 

patterns which might contribute to the design of a suitable network structure for this kind 

of scenario (see Section 2.5). 

We now review some of the well-known routing protocols for mobile ad-hoc networks 

and delay tolerant networks. 

5.3.1 Mobile Ad-Hoc Networking 

The design of network protocols for mobile ad hoc networks is a complex issue [24]. Issues 

that the IETF (Internet Engineering Task Force) MANet working group [148] has considered 

[25] include: efficient routing of packets; methods to conserve energy at nodes; and mobility 

pattern of nodes are some. The routing protocols proposed to date are usually classified in 

three main classes: proactive, reactive and hybrid protocols. 

Routing protocols that periodically and continuously update routes in the network are 

named proactive. Typically, each node regularly floods the network with link information 

128 



about its neighbours. Because of this, packets can be forwarded immediately as the route to 

the destination is already known. Destination-Sequenced Distance Vector routing protocol 

(DSDV) [138], Wireless Routing Protocol (WRP) [149], Global State Routing (GSR) [150], 

Fisheye State Routing (FSR) [151], Fuzzy Sighted Link State (FSLS) [152], Optimized Link 

State Routing (OLSR) [153] and Topology Broadcast Based on Reverse Path Forwarding 

(TBRPF) [154, 155] are examples of proactive protocols. Unfortunately, in large scale mo-

bile networks, such protocols generate a higher routing control overhead which can overload 

the network and lead to consequent disruptions. 

Reactive protocols are routing algorithms that initiate a route discovery process only 

on-demand. If a source node requires a route to the destination then it floods the network 

with query packets in search of a path. The process ends when a route is found or all 

possible paths are searched. There are different approaches to route discovery in reactive 

protocols. Some of the well known on-demand protocols are Ad-hoc On-demand Distance 

Vector (AODV) [137], Associativity-Based Routing (ABR) [156], Dynamic Source Rout-

ing (DSR) [135], Lightweight Mobile Routing (LMR) [157], Signal Stability-based Routing 

(SSR) [158], and Temporally Ordered Routing Algorithms (TORA) [140]. Among the above-

mentioned reactive protocols, AODV and DSR have received major attention by researchers 

[159, 107, 160]. However, in mobile networks, reactive protocols generally suffer from slow 

route convergence and routing loops. 

Finally, hybrid protocols combine proactive and reactive routing strategies and can 

combine the benefits of both. Some hybrid routing protocols such as Zone Routing Protocol 

(ZRP) [161, 162, 163J, Landmark Ad Hoc Routing Protocol (LANMAR) [164, 165J, Location 

Aided Routing (LAR) [166J, and Distance Routing Effect Algorithm for Mobility (DREAM) 

[167J use landmarks, location and distance from nodes to reduce routing control overhead. 

Routing algorithms for mobile ad-hoc networks assume that there is always a connected 

path from source to destination. Thus, such protocols cannot be employed for partially 

connected ad hoc networks. 
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5.3.2 Delay Tolerant Networking 

With the advent of short-range wireless communication technologies such as IEEE 802.11 

[168], Bluetooth [169], and IEEE 802.15 [170J and the growing diversity of applications, 

mobile ah-hoc networking assumptions are not always valid in realistic scenarios. Several 

approaches have been proposed to enable communication in such intermittently connected 

networks. In [4J Fall proposes a Delay Tolerant Network architecture which aims to provide 

interoperable communications between a wide range of networks which may have excep-

tionally poor and disparate performance characteristics. Within this general architecture 

several different approaches can be used for routing, which are distinguished by what (if 

any) information they use to make forwarding decisions and the extent to which messages 

are duplicated within these networks. 

Flooding Based Approaches 

In [171J Jain et al. state that knowledge about the network helps in deciding the best next 

hop. If nodes do not have any knowledge of network resources they will all act as relays. 

This behaviour pattern is called Epidemic routing. The idea is to flood the network, like 

a virus spreading in an epidemic. This is the simplest way of enabling communication in 

intermittently connected networks, by replicating messages to all the nodes that do not 

have a copy of it already (or to a certain number of them in semi-epidemic algorithms) . 

Vahdat and Becker, inspired by the algorithms proposed by Demers et aI. [172J which 

attempt to guarantee data consistency after disconnections in distributed database systems, 

presented the Epidemic routing protocol [18J. It is a milestone for much of the work in this 

field, even though it does not consider issues such as overuse of buffer, bandwidth, and 

energy consumption which can seriously degrade the network performance [173J. 

Several approaches derived from Epidemic have been proposed with the intention of 

controlling flooding and saving resources. Some of them try to limit the number of copies in 

the network by means of the single-copy routing scheme [174, 72, 175]. One-hop or two-hop 

relay routing only permit data to be transmitted in one or two hops respectively [176, 177J, 
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and the Spray and Wait algorithm [178] is similarly limited. 

Though these approaches improve the delivery ratio, they do not take into account the 

buffer size. Therefore, further solutions suggest saving buffer space by limiting the life time 

of each message copy [179] or controlling some network parameters [180, 181, 182]. Other 

flooding technique conserve network resources by embedding additional information in the 

message to limit the number of copies in the network as a whole [183, 184, 185, 186]. 

History Based Approaches 

History based routing protocols take into account the history of encounters between nodes 

when forwarding messages. The main idea behind these approaches is that a node frequently 

in contact with the destination has a higher probability of encountering the destination 

again. Jain et al. [171J state that in situations where resources are limited (e.g. contact 

opportunities, bandwidth or storage) smarter algorithms may provide a significant benefit. 

They developed a framework for evaluating DTN routing algorithms, and suggested and 

evaluated several algorithms based on the Dijkstra's algorithm and on a partial or total 

knowledge of the time-varying network topology through an oracle. 

Lindgreen et al. [54J propose the PROPHET routing protocol, a PRObabilistic Protocol 

using History of Encounters and Transitivity. PROPHET considers knowledge about pre-

vious encounters between nodes in order to calculates a delivery probability for each node 

encountered and chooses as foster node the node that expresses higher probability. The 

delivery probability is decreased by means of an "estrangement" factor if two nodes have 

not encountered each other for a certain time period. Consequently, if node A encounters 

nodes B and C more frequently than they encounter each other, then A can be used as relay 

for the communication between Band C. 

The NECTAR [187] protocol creates a neighbourhood index, which is used to deter-

mine the most appropriate route, by means of contact history. Simulations performed with 

real data retrieved from mobile and wireless environments at Dartmouth College [188J, a 

scenarios where the occurrence of highly-partitioned networks is frequent, show that NEC-
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TAR is able to deliver more messages than Epidemic and PROPHET protocols with lower 

consumption of network resources. 

The MaxProp [189] is a routing protocol for vehicle-based disruption-tolerant networks. 

It prioritizes both the schedule of packets transmitted to other peers and the schedule 

of packets to be dropped. The priority policy is based on the path likelihoods to peers 

according to historical data and on several complementary mechanisms. 

The protocols introduced so far consider history of previous contacts to route data. Some 

other protocols use context information. CAR (Context-aware Adaptive Routing) [190] is 

an approach to delay-tolerant mobile ad hoc network routing that uses a Kalman Filter for 

prediction and multicriteria decision theory [191] to choose the best next hop (or carrier) to 

forward the message. Another protocol based on context information is MobySpace [192) 

[193J. It evaluates routing in a virtual space defined by the mobility patterns of nodes. 

ORWAR [194] is a resource-efficient protocol for opportunistic routing in delay-tolerant 

networks which exploits the context of mobile nodes, namely, speed, direction of movement 

and radio range, to estimate the size of a contact window and choose better forwarding 

decisions. EASE (Exponential Age SEarch) [195, 196) is a context-based routing protocol 

based on the assumption that in a model where N nodes perform independent random walks 

on a square lattice, the length of the routes computed by EASE are on the same order 8B 

the distance between the source and destination. 

5.3.3 Routing Protocols Used in the Simulations 

In order to show how mobility models impact on the performance of routing protocols we 

selected two well-known routing protocols, Epidemic and Prophet, on the mobility models 

mentioned in the previous section. We chose Epidemic and Prophet because they are often 

used as benchmark routing protocols in simulations carried out by the delay tolerant network 

research community. In addition, Epidemic provides a theoretical upper bound in terms of 

delivery ratio when the buffer size is infinite. 

Epidemic is a resource hungry protocol because it does not use any knowledge of the 
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system to forward messages. This is a flooding-based approach and is particularly ･ ｦ ｦ ｩ ｾ

dent if hosts' movement is purely random. But in realistic scenarios human mobility is 

rarely completely random. Prophet, in contrast, tries to exploit the ｮ ｯ ｮ ｾ ｲ ｡ ｮ ､ ｯ ｭ ｮ ･ ｳ ｳ of 

individuals' encounters by maintaining a list of delivery probabilities for known destina-

tions. This presume that human mobility is often goal-oriented and that encounters could 

be predictable. 

In addition, we conducted further analysis by evaluating the performance of two semi-

Epidemic protocols with our Shopping Mall mobility model. We refactored the Epidemic 

algorithm without modifying its main functional behaviour in order to build two semi-

Epidemic protocols. These are identical to the Epidemic protocol except that they forward 

messages exclusively to customers or sellers at the intermediate hops. The functionality 

that has been added to the semi-Epidemic protocols is the capacity to distinguish between 

customers and sellers by simply reading their identification number. They simply " flood" 

the network either through customers or through sellers. In our simulations, nodes with the 

identification number between 1 and 45 are shop employees. By comparing these simulation 

results we aim to expose differences in forwarding data through customers versus sellers in 

such environments. 

5.4 Simulation Scenarios 

We consider a shopping mall simulation scenario based on four different mobility models. 

The movement traces of the simulated hosts were generated using our mobility model gen-

eration tool presented in Chapter 3. All the scenarios have in common 45 sellers (the actual 

number of sellers in the mall) and a simulation area of 10, 880m2 (the size of the actual 

shopping mall). 

In our simulations we test such routing protocols with four distinct mobility models 

going from a pure random-based to a more realistic Shopping Mall mobility model. We 

chose Random Walk-based mobility models because they have been often employed by 

the research community to simulate several scenarios for mobile networks [35, 135, 145, 

133 



146, 147]. We employed four distinct mobility models characterized by different degrees 

of freedom for nodes to move respect to time and space. Decreasing spatial mobility and 

speed and increasing pause time reduces the degree of freedom of nodes. Fixed nodes are 

not considered for these simulations. 

In the first scenario, which represents a Random Walk mobility model, the same 225 

nodes were always present (see Figure 3.2). This is the sum of 45 sellers and the arithmetic 

mean calculated on a sample of one hundred recordings of the number of customers in the 

shopping centre after two hours I following the inter-arrival time cumulative distribution 

function (from Section 3.5.2) and a random number generator. Notice that this is the 

number of individuals carrying an active Bluetooth device; people might turn Bluetooth 

appliances off if not needed or to save battery power. The following command line (5.1) 

generates this first scenario with constant speed of 1.65mj 8 and duration equal to 12 hours. 

MM -f scenario Simp1estRWP Simp1e.svg -d 43200 -i 3600 -h 1.65 -1 1.65 -p 0 

(5.1) 

The other three scenarios make use of two cumulative distributions to describe the 

customers' inter-arrival time and their staying time in the mall. These distributions are 

the same for each scenario and were extracted from our real traces (see Section 3.5.2). The 

distribution functions and their parameters are (5.5) and (5.8) from the list below. Because 

these are random processes, the number of customers in the simulation is not constant, but 

varies according to the distributions. 

The second and third scenarios are a Random Walk and Random Way-Point mobility 

model respectively. The command lines that generate twelve hours of each scenario are the 

following: 

1 After two hours the system is in a steady state; the average number of customers in the mall falls within 
a certain range, namely the probablllty of customers leaving the mall is equal ,to their arrivals 

134 



MM -f scenario RandomWayPoint RWP.svg -d 43200 -i 3600 -h 1.65 -1 1.65 -p 0 

(5.2) 

MM -f scenario RandomWayPoint RWP.svg -d 43200 -i 3600 -h 1.65 -1 1.15 -p 2 

(5.3) 

The command line (5.2) generates a Random Walk with constant speed of 1.65m/s. 

A node's speed in this scenario is equal to the highest permitted speed in the previous 

one. The command line (5.3) uses a Random Way-Point model with speed in the range 

[1.65 - 1.15Jm/s and a maximum pause time of 2s as in Chapter 4 (see Section 4.3). The 

three mobility models introduced so far in this section describe scenarios without obstacles 

where all of the nodes can move as they like within the shopping mall area. 

The fourth scenario is generated by our Shopping Mall mobility model. This mobility 

model considers obstacles as well as shops, stores, rooms, walls, and paths (see Section 3.3 

and Figure 3.4). The command line to reproduce a shopping mall scenario is the following: 

MM -£ scenario Ma11Motion drawing.svg -d 43200 -i 3600 -h 1.66 -1 1.15 -p 2 

(5.4) 

The above line 5.4 generates twelve hours of simulation with nodes' speed in the range 

[1.65 - 1.15]m/s and a maximum pause time of 2s. These parameters are equal to those 

used in the third scenario (command line (5.3». 

Furthermore, as described in Section 3, our scenario generation tool needs three more 

cumulative distribution functions respect to the previous two models to generate this last 

scenario. Like the previous two, these distributions are extracted from our data set (see 
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Section 3.5). The distributions together with their respective parameters are the following: 

iat 

stay(sellers, shop) 

stay(sellers,!shop) 

stay (customers ,mall) 

stay (customers ,shop) 

exp(rate-1.771467e-03) (5.5) 

Inorm(meanlog=7.08653949,sdlog-1.87655822) (5.6) 

lnorm(meanlog=6.50409971,sdlog-0.51007676) (5.7) 

weibull (shape-9. 3573e-01, scale-2. 5797e+03) (5.8) 

weibull (shape-1. 0028e+00, scale-3. 0695e+02) (5.9) 

5.5 Simulation Tool and Setting 

The code of the Epidemic and Prophet protocols have been provided by Dr. Mirco Musolesi 

and Dr. Cecilia Mascolo. These protocols have been implemented for the work in [190] and 

follow respectively the descriptions presented in [18] and [54]. The values of the parameters 

of Prophet are those suggested by the authors in their paper [54]. We modified the code to 

work with our mobility models and simulation playgrounds. 

In contrast to Section 4.3, here we consider the mobile scenario at the network level and 

do not consider issues related to Physical and MAC layers such as packet loss, collision or 

signal fading and do not deal with retransmission of packets. Such issues are not discussed 

in this work of thesis since these are secondary aspects of our problem. Being in reach is the 

primary matter of our study in this chapter. We assume that two devices can simply trans-

mit messages when they are in radio range. Consequently, we do not model retransmission 

of packets. Unlike in Chapter 4 where we chose Physical and Link layer parameters as close 

as possible to the field trial settings, in this study we can neglect such a level of detail. 

Here, we provide a basic comparison of routing protocols with a reasonable approximation 

and slightly optimistic results. Nonetheless, this is Bufficient for the purpose of this initial 

study, apart from producing much faster simulations. 

All of the protocols being simulated rely on the assumption of pairwise connectivity, 

namely two nodes can communicate when they are within each other's radio range. They 
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use summary vectors that index the list of messages stored at each node to mutually find 

out which messages can be obtained from each other. Each message is identified by a unique 

message identifier. 

Table 5.1: Simulation parameters for all the scenarios 

Propagation model free space 
Antenna type omnidirectional 
Transmission range 30m 
Number of messages sent 1000 
Max number of hops 1000 
Message retransmission interval 1348 
Buffer size 100 

In our simulations, we use values for the parameters generally adopted in the literature2. 

Table 5.1 summarizes the simulation parameters used for all the scenarios. Such parameters 

are defined in the configuration file omnetpp. 1ni. It tells the simulation program which 

network will be simulated, and contains values for the parameters of the models employed 

and settings that control the simulation execution. We used the same configuration file for 

the Epidemic, Prophet and the two semi-Epidemic routing protocols. This is shown in the 

Appendix 1.1. 

With respect to the radio technology, we also assumed a free space propagation model 

with all the nodes having a transmission range of 30 metres and the use of omnidirectional 

antennas as in Section 4.3. The retransmission interval was 134 seconds. These settings are 

the same as those used by the Bluetooth appliances of our smart phones employed in the 

field trial to collect contact data in the shopping mall (see Section 2.3). 

2 Unfortunately, the choice of values for parameters of simulations for ad hoc networks research is ex-
tremely variable. In general, results published on mobile ad-hoc and delay tolerant network simulation 
studies lack credibility in terms of consistent scenarios to validate and to benchmark the different solutions. 
Kurkoswski et al. [197] have Identified several pitfalls throughout the simulation Ilfecycle, by analysing the 
performance evaluation of papers published at MoblHoc from 2000 to 2005, which take away from the goals 
of making the research repeatable, unbiased, rigorous, and statistically accurate. We would like to underline 
that in this work, we have tried to address the shortfalls that are usually pointed out by the members of 
the community, such as the problem of the repeatability of the experiments (the code of our simulations will 
be released for comparisons), the use of a reasonable number of runs of experiments to ensure statistical 
vaUdity to the results, the definition of confidence Intervals and a thorough sensitivity analysis, considering 
a large number of different mobility traces. 
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We assumed a buffer size equal to 100 slots, i.e. whose capacity is 10% of the number 

of messages sent in the network. We assume that each host is able to store one message 

per slot. No messages were sent for the first 7200 seconds, in order to allow the simulation 

scenario to converge to a steady state, for example, a typical number of customers in the 

mall. We evaluated the performance of each routing protocol by sending 1000 messages over 

a simulation time equal to 2400 seconds. The minimum interval between the generation 

of two subsequent messages is equal to 0.1 seconds, as long as the chosen recipient node is 

different from the sender. In other words, the generation of all the messages will take at 

least 100 seconds. In our network scenario, with the settings listed in Table 5.1, the gener-

ation of messages with such a frequency produces a certain network load which will stress 

the network itself and allows network protocols to show better the capability of network 

protocols in routing data. The sender and recipient of each message were randomly chosen 

among all of the nodes in the mall following a uniform distribution. Thus, it might happen 

that they are about to leave the mall and unable to deliver their messages. This choice may 

be unrealistic3, however, it is clearly less optimistic than assuming that communication 

happens only between people just arrived at the shopping mall. We run equal number of 

simulations with each combination of customers and sellers as senders and receivers: i.e. 

the number of runs was 50 for each combination of each scenario. This was sufficient to 

determine a 95% confidence interval using at-distribution. 

The structure of the simulation models for the above-mentioned routing protocols are 

described by the NED syntax through the epidemic. ned and prophet. ned. NED (NEtwork 

Description) is the network topology description language of Omnet++. The same NED 

structure has been used to run the Epidemic, Prophet and the two semi-Epidemic routing 

protocols. This is presented in the Appendix J.1. 

3The main problem In designing realistic traffic models for delay tolerant networks is the lack of real data 
for validating it, especially for shopping mall environments 
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5.6 Simulation Results 

In this section we present simulations results which show the impact of different mobility 

models on the performance of the above-mentioned routing protocols in the mall-based 

scenarios. We present these results in terms of message delivery ratio and average delivery 

delay. The former is given by the ratio between the number of messages received and 

the total number of messages sent. The average delay is the arithmetic mean of all times 

between the generation of the message and the delivery to the recipient of the message 

divided by the number of values. We have used boxplots to display the simulation results 

as they are valuable tools for explanatory data analysis. The boxplot is read as follows: 

• the upper and the lower edge of the box respectively identify the 75th and the 25th 

percentile, 

• the horizontal line in the box shows the median4 value of the data, 

• the vertical line links up the maximum and the minimum data values, 

• any point shown outside the box the vertical line are outliers. 

5.6.1 Impact of Mobility Models 

Here, we analyze the impact of different mobility models on the performance of the Epidemic 

and Prophet routing protocols. The mobility models, described in Section 5.4, are identified 

in the plots with the following order and with the respective labels: 

• rw: Random Walk, 

• irw: Random Walk with Inter-arrival time, 

• irwp: Random Way-Point with Inter-arrival time, 

• am: Shopping Mall. 

4If the median line within the box Is not equidistant from the upper and lower hedges, then the data 
distribution Is skewed 
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These are in order of decreasing degree of freedom of nodes: rw and irw use a constant 

(maximum) node speed without pauses, irwp uses speeds between an upper and lower bound 

and non-zero pause time while sm divides the simulation area in smaller spaces representing 

the shopping mall. In all cases, the maximum node speed is 1. 65m/ 8 while irwp and sm 

have a possible minimum speed of 1. 15m/ 8 and a random pause time of up to 28 after each 

movement (see Section 5.4). 

Initially we run simulations distinguishing between customers and sellers to be selected 

as sender and recipient, namely, from customer to customer, customer to seller, seller to 

customer and seller to seller. Their respective graphs are in the Appendices K.l, K.2, L.1 

and L.2. Here we unify these results and show them together in a single plot. 

The first two plots in Figure 5.1 and 5.2 show respectively the delivery ratio and the 

average delay using the Epidemic protocol. In Figure 5.1 we observe that the delivery ratio 

decreases with the decreasing degree of freedom of the scenarios. This is in accordance with 

Grossglauser and Tse [12] who claim that mobility increases the capacity of ad hoc wireless 

networks. Their results suggest that delay-tolerant applications can take advantage of node 

mobility to significantly increase the throughput of such networks. As regards the average 

delay of the message to reach the final destination, Epidemic has a slightly higher mean 

with the traditional Random Walk mobility model while the other three mobility models 

produce roughly the same mean but with large range of minimum delay. This is because in 

the Random Walk case all of the nodes are independent and identically distributed in the 

mall area and so have the same probability for their messages to reach any recipient with 

the same average delay. 

Like Epidemic, in Figure 5.3 Prophet also shows decreasing mean delivery ratio with 

scenario, with the exception of the Shopping MaIl mobility model, where it performs better 

than irw and irwp. This is explained by Prophet's exploitation of the non-randomness of 

individuals' encounters. Human mobility and encounters in structured environments like 

shopping malls is likely to be more predictable than in unconstrained scenarios. Recall that 

the rw model does not consider inter-arrival times which are likely to negatively impact the 
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Figure 5.1: Boxplot of the delivery ratio for the Epidemic routing protocol with the Random 
Walk (rw), Random Walk with inter-arrival time (irw), Random Way-Point with inter-
arrival time (irwp) and the Shopping Mall (sm) mobility model. 
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Figme 5.2: Boxplot of the average delay for the Epidemic routing protocol with the Random 
Walk (rw), Random Walk with inter-arrival time (irw), Random Way-Point with inter-
arrival time (irwp) and the Shopping Mall (sm) mobili ty model. 
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Figure 5.3: Boxplot of the delivery ratio for the Prophet routing protocol with the Random 
Walk (rw), Random Walk with inter-arrival t ime (irw), Random Way-Point with inter-
arrival time (irwp) and the Shopping Mall (sm) mobility model. 
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Figure 5.4: Boxplot of the average delay for the Prophet routing protocol with the Random 
Walk (rw), Random Walk with inter-arrival time (irw), Random Way-Point with inter-
arrival time (irwp) and the Shopping Mall (sm) mobility model. 
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outcome of the simulations. Figure 5.4 shows the average delay for delivering messages with 

Prophet. Here, 8m has the longest average delay. 

In Tables 5.2 and 5.3 we show the probabilities for messages to reach recipients by 

exploiting customers or sellers as intermediate carriers. Unlike Epidemic, Prophet tends to 

forward messages to customers as intermediate carriers. This may be because customers 

have a higher degree of freedom than sellers, and are also greater in number. Consequently, 

they may be in contact with more individuals and therefore more reliable as intermediate 

carriers of messages. This may contribute to the longer delays observed with the am model. 

Table 5.2: Percentage of intermediate carriers that are customers 

% rw irw irwp 8m 

Epidemic 56.6486 31.9982 28.3077 47.0818 
Prophet 64.6323 63.9315 62.0142 67.43 

Table 5.3: Percentage of intermediate carriers that are sellers 

% rw irw irwp 8m 

Epidemic 43.3514 68.0018 71.6923 52.9182 
Prophet 35.3677 36.0685 37.9858 32.57 

5.6.2 Semi-Epidemic Throughout Customers or Sellers 

In this section we evaluate the performance of the two ｳ ･ ｭ ｩ ｾ ｅ ｰ ｩ ､ ･ ｭ ｩ ｣ protocols described 

in Section 5.3.3 with our Shopping Mall mobility model. In the following plots we consider 

separately the four combinations of customers and sellers as sender and receiver for the two 

routing protocols. Combinations are identified in the figures using the following syntax: 

(C I S] ( [C I S] to [C I S] ) 

------ ------ ------semi· Epidemic sender receiver 
protocol 

145 

(5.10) 



where the first field identifies whether the semi-Epidemic protocol forwards messages through 

customers C or sellers S. The combinations are summarized in Table 5.4. 

Table 5.4: Summary of configurations for the semi-Epidemic routing protocol simulations 

I THROUGH I SENDER I RECEIVER I SYNTAX I 
Customers Customer Customer C(CtoC) 

Sellers Customer Customer S(CtoC) 
Customers Customer Seller C(CtoS) 

Sellers Customer Seller S(CtoS) 
Customers Seller Customer C(StoC) 

Sellers Seller Customer S(StoC) 
Customers Seller Seller C(StoS) 

Sellers Seller Seller S(StoS) 

The plots in Figures 5.5 and 5.6 show the performance of the semi-Epidemic routing 

protocols with two different buffer capacities. The white and the red boxes show the results 

when the buffer capacity of the nodes is 10% and 20%, respectively, of the number of the 

messages generated. As expected higher buffer capacities lead to high delivery ratios, and 

the impact of mobility model is similar in both buffer capacities. 

The delivery ratio in the left part of Figure 5.5, that is CtoC and CtoS, is slightly 

higher if messages are delivered through sellers. In contrast, in the right part of Figure 

5.5 messages routed through sellers result in lower delivery ratios. We conjecture that this 

is mainly because of the limited buffer capacity of each node and the different mobility 

pattern and relatively small number of sellers with respect to customers. Thus, the network 

becomes more overloaded when messages are generated by sellers and routed throughout 

them. This leads to buffer overflow and message loss. This is backed up by cases S(StoC) 

and S(StoS) where increasing buffer capacity has the biggest impact on the performance of 

the routing protocols. We believe that C(CtoC) and C(CtoS) show smaller delivery ratios 

than S(CtoC) and S(CtoS) because messages are generated by customers and forwarded 

to other customers who might be about to leave the shopping mall and not have time to 

forward them. On the other hand, sellers never leave the maIl during their working time. 
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Figure 5.5: Boxplot of the delivery ratio for the semi-Epidemic routing protocols with the 
Shopping Mall (sm) mobility model. 
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For the same sequence of cases the Figure 5.6 shows the average delay for delivering 

messages. Like delivery ratio in the previous figure this plot can be analysed in two parts. 

It seems that the average delay keep increasing following the combinations on the x-axis 

and as long as messages are generated by customers. These results are roughly the same for 

each buffer capacity. The average delay improves with bigger buffer capacity when senders 

and receivers are sellers. When messages are generated by sellers and received by customers, 

there is trade off between the type and number of intermediate carriers, customers or sellers, 

and their buffer capacity. 

5.7 Summary 

The main purposes of this chapter are threefold. First, we have shown that different mobility 

models impact on the performance of two benchmark delay tolerant routing protocols, 

Epidemic and Prophet, providing evidence that traditional mobility models should not be 

employed to simulate "structured" scenarios. Recall that the Epidemic protocol does not 

use any knowledge of the system to forward messages and is particularly efficient if hosts' 

movement is purely random. This is reflected in higher delivery ratios for mobility models 

with less structure and greater mobility. On the other hand Prophet tries to exploit the non-

randomness of individuals' encounters. This is reflected in a relatively high delivery ratio 

with the shopping mall model, where Prophet is presumably able to exploit the structure 

to offset the reduced mobility of nodes. 

Secondly, the same comparison shows that the choice of a mobility model can be a 

critical consideration when designing and evaluating routing protocols for delay-tolerant 

mobile ah-hoc networks. Here, for example, Prophet would have little apparent merit when 

tested with the first three (unstructured) mobility models. However, with the shopping 

mall model its merits begin to emerge. 

Empirical results of previous work illustrate that the performance of a routing protocol 

varies significantly across different mobility models. The performance of routing protocols 

and applications in delay tolerant mobile ad hoc networks is greatly affected by the mobility 
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model. Therefore, the performance of a delay tolerant network protocol or application 

should be evaluated with the mobility model that most closely matches the expected real-

world scenario. 

Third, we tested two semi-Epidemic routing protocols on our Shopping Mall mobility 

model, which forward data distinguishing between customers and sellers, to understand 

better the potential role of message carriers belonging to groups with different mobility 

patterns. As analysed in Chapter 2, sellers' mobility is mainly duty-bound to their shop, 

that is they have low degree of freedom, and are typically in contact with neighbouring 

sellers. These first simulation results show that forwarding messages through sellers rather 

than customers affects protocols performance. We conjecture that the choice of delivering 

data through customers rather than sellers depends on the resources available to hosts and 

when messages are generated. In particular, just considering buffer size, number of hosts 

and their mobility, if sellers had infinite buffer capacity, it might be better to route messages 

through sellers; otherwise customers could be preferable as they may be greater in number 

and more mobile. Thus, under particular circumstances it could be preferable forwarding 

messages to some carriers rather than others and thus information could be exploited in the 

design of routing protocols for delay-tolerant mobile ah-hoc networks in such environments. 

Ideally, in the future, further investigations should be carried out. In our simulations, 

the performance of Epidemic as well as Prophet suffer due to the limitations of buffer size. 

It would be useful to investigate in more detail the impact of buffer size with these and 

other delay tolerant and mobile ad-hoc routing protocols. It would also be useful to explore 

larger scenarios in terms of simulation area and number of hosts involved, which might 

show greater differences and other distinctive characteristics. Furthermore, in the future we 

would like to design and evaluate forwarding algorithms for different pervasive applications 

in this type of settings. 
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Chapter 6 

Conclusions 

I am turned into a sort of machine 

for observing facts and grinding out conclusions. 

Charles Darwin 

6.1 Summary of the Thesis 

In this thesis we have recorded and analysed human mobility patterns in a shopping mall 

environment through a field trial lasting six days in a real shopping mall. We provided 

twenty-five smart phones to shopkeepers and clerks to collect contact data from Bluetooth 

devices and they all yielded valuable results. Their deployment was enough to continuously 

sense Bluetooth connectivity in more than half of the entire mall. This allowed us to analyse 

the collected contact traces and characterize human mobility in such environments. 

We identified two main groups with different mobility patterns, customers and sellers, 
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from the contact traces. For these two groups, we have observed and quantified mobility 

characteristics which could be taken into account to design forwarding algorithms and trace-

based mobility models. Furthermore, out of such contact traces we extracted cumulative 

distribution functions describing the mobility behaviour of customers and sellers. Such 

distributions are important parameters for our Shopping Mall mobility model. 

Building on this, we have presented the design and implementation of a mobility model 

generation tool and our Shopping Mall mobility model. Our scenario generator tool can 

produce several mobility models including our Shopping Mall mobility model. Distributions 

derived from the field study along with settings defining the environment, such as shopping 

mall plan and number of sellers in each shop, are submitted to the scenario generator to 

produce synthetic mobility traces from the Shopping Mall model. 

We have evaluated the Shopping Mall mobility model by comparing its contact duration 

and inter-contact time distributions with those derived from real traces and the Random 

Way-Point mobility model. We reproduced and ran simulations of the shopping mall where 

we conducted the initial field trial. We observed that our Shopping Mall mobility model 

produces synthetic traces which approximate the real world traces. We also compared it 

with three other unstructured mobility models by evaluating two benchmark delay tolerant 

routing protocols, Epidemic and Prophet, against each model. 

We concluded our work of thesis by analysing the possibility of delivering messages in 

such environments just forwarding them either to customers or sellers by means of semi-

Epidemic routing protocols. 

6.2 Critical Reflections 

Much of the living beings' mobility within a specific scenario is to some extent goal-oriented 

and therefore potentially predictable. This is particularly true if there exists a "social" 

structure in which they live and which they are part of. For example, it has been shown 

that bees follow a goal-driven trajectory when flying out of their beehive looking for nectar 

and similarly for ants, wasps and insects in general. Almost any group of wild or domestic 
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animals has its own defined social structures which give each animal a specific position and 

which influence internal and external relationships of the group. The social position of each 

individual can change with time and place. In this context, we are actually talking about 

communities; in biological terms, a community is a group of interacting individuals sharing 

a common environment. 

This is also valid for human beings even though in this case the definition of community 

may be more complex [198J. Often, human beings belong to more than one community, and 

they may try to model the place in which they live so as to reflect their social structure. 

As an example I recall the traditional urban structure that places the church and the city 

council in front of the main square of the town. Human societies use space as a key and 

necessary resource in organizing themselves. Parts of the space can identify distinguishable 

groups, communities, or activities, and be associated with different rules of behaviour and 

conventions. However, since the advent of Internet, the concept of community no longer has 

geographical limitations, as people can virtually gather in an online community and share 

common interests regardless of physical location. 

In my research project I have been focusing on possible applications for delay tolerant 

mobile ad-hoc networks in shopping mall environments. We chose such a scenario because 

it offers all of the elements required to build large-scale people-centric network applications. 

A shopping mall is a "microcosm" where a collection of shops all adjoin a pedestrian area 

or an exclusive pedestrian street. In many cases, shopping malls are tens of thousands of 

square meters in area and crowded much of the time. It represents a relatively democratic 

space with all people enjoying access, with participatory entertainment and opportunities 

for social mixing. Such characteristics are also typical of other scenarios which can be 

described by a plan, such as urban areas, megastructures, settlements, built complexes, 

musemns, trade fairs, music festivals, stadiums, and so on. Besides, in such environments 

autonomic networks can sometimes be a better solution than traditional infrastructure-

based networks because the latter can be more expensive, involve installation issues, incur 

customer cost, have particular policy restrictions, and may be less appropriate for people-
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centric networks where services are established on the fly. 

By exploiting people's own computing devices, a delay tolerant mobile ad-hoc network 

may be built up in such a setting. In shopping mall environments shopkeepers might form 

a mobile ad-hoc network backbone and the starting point from which to build wider net-

works. The identification of such individuals of people could help greatly in forwarding 

data. Because of the devices' intrinsic mobility the topology of the network is time varying. 

Mobility compromises the communication between users, as forwarding paths may be un-

stable and receiver reachability may be highly variable. Understanding human mobility is 

important when designing routing protocols for applications for such mobile ad-hoc delay 

tolerant networks. Therefore, we decided to ground our work on the collection of real-world 

Bluetooth contact data from shop employees of a shopping mall. Because of practical rea-

sons (see the experiment setup in Section 2.3) only sellers were involved in our experiment 

in a shopping mall. Therefore, our data set lacks contact traces from customers' personal 

devices to directly analyze inter-customers contacts. However, the observations we made in 

Chapter 2 along with those in Section 4.4 support the validity of the sellers' and customers' 

mobility models which implies that customers' movement is realistic and therefore that cus-

tomer contact patterns should be realistic. In addition to that, our results are influenced 

by the granularity of the experiment. For short event lengths, the data is affected by the 

granularity of measurement, that is 120 seconds. 

FUrthermore, we cannot immediately distinguish between customers' and sellers' de-

vices from our contact traces. We cannot assume that external contacts are between our 

smart phones and customers because the latter might be any other sellers' personal de-

vice. Therefore, we present a method based on contact duration, inter-contact time and 

frequency to distinguish two groups of people, viSitors/customers and shopping mall related 

people, with different mobility patterns. Thus, this data allowed US to design and validate 

a novel mobility model which can be used by the research community to simulate such an 

environment. 

Many research groups have studied different real mobility traces and real contact pat· 
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terns to gain insight about the real mobile user behavior and to design realistic mobility 

models and more efficient routing protocols [181, 31, 193, 199]. One of the biggest issue 

with most of the synthetic models is that they are not capturing heterogeneous behaviour 

of nodes. Instead, our Shopping Mall mobility model is heterogeneous in both time and 

space, and captures several different mobility characteristics at a lower level of abstraction 

than many other previous models. 

Ekman et al. [42) presented their Working Day mobility model which tries to capture 

several mobility characteristics at a lower level than many other models. Similar work was 

conducted by Minder et al. [43) in office environments. The mobility model presented in 

this thesis is part of this effort. We have decided to narrow down the playground scenario to 

structure environments, with particular regard to shopping malls, and to focus on compelling 

applications in such environments. For this reason, we have designed a novel mobility model 

based on real traces [47, 48]. The approach of our Shopping Mall mobility model is similar to 

the mobility models presented by Ekman et al. [42J and Minder et al. [43J. All of them use 

parameterised submodels discribing distinct periodic activities (movement model elements) 

at a given time. However, the two previous models generate homogeneous movement, that 

is every node follows the same instructions, while our model considers submodels for two 

distinct groups of people, customers and sellers, with different mobility patterns taking 

place at the same time. Besides, they used some distribution functions that assign time 

to all of the activities. We used the same approach to design a temporal structure which 

dictates how nodes move with in the shopping mall. In addition, our model also considers 

the distributions for the customers' inter-arrival time and their staying in the mall which 

makes the number of nodes in the simulation area varying with time. Furthermore, our 

mobility model and those proposed by Ekman et al. [42] and Minder et al. [43] are some 

of the models reproducing indoor movement. 

In this thesis we have also shown that people's motion can be clustered based on sev-

eral factors which are strongly related to the environment in which they are. We could 

have clustered people by distinguishing between different classes of individuals, for example 
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between males and females. However, we decided to keep mobility pattern distinctions as 

simple as possible and chose to differentiate between two groups, customers and sellers, 

which in turn, have different mobility patterns. Therefore, we have characterized contact 

opportunity in shopping mall environments by analysing the mobility of people distinguish-

ing between customers and sellers. Different patterns of mobility may give rise to different 

opportunity for communication, and different protocols may be more effective in particular 

situations. Therefore, although the distinction of classes of mobility in practical situations 

within shopping malls is somewhat obvious, we have presented evidence and some quan-

tification of the ways in which they differ. These results are quite different from previous 

studies [1, 2, 29, 30, 31, 32, 33, 34, 80]. 

At this stage we have not analysed our data set in terms of community groups' mobil-

ity and mobility directions. In our current mobility model, customers wander individually 

within the shopping mall. The existence of groups or clusters of customers might be sig-

nificant when designing more specific routing algorithms and application services in such 

environments. Besides, we assume that all of the shops have the same attraction level equal 

to 1, both for customers and sellers. With these settings, customers can go forwards and 

backwards within the shopping mall at random. This behaviour is not realistic, it does not 

appear suitable for large scale environments, but may be acceptable for small scale envi-

ronments such as our shopping mall. In the future we would like to improve our mobility 

model by considering group relationships and people's directions in such an environment. 

As shown in Chapter 4 we evaluate our mobility model by performing a number of tests 

and comparing the resulting mobility patterns, in terms of inter-contact times and contact 

durations, with the real-world contact traces collected in "our" shopping mall. Usually, 

inter-contact and contact time distributions are used in comparisons [119]. The description 

of these measurement exercises are presented in [IJ. In that paper, the authors also compare 

their results with other publicly available data sets provided by McNett and Voelker from 

University of California at San Diego [55) and by Henderson et al. from Dartmouth College 

[33J showing evident similarities between the patterns movements collected by the three 
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different groups. In the same way, Musolesi and Mascolo from University College London 

validate their mobility model founded on social network theory by comparing their results 

with another available data set of real traces provided by Intel Research Laboratory in 

Cambridge!. Mei et al. [45, 46] also compared their simulation results with three available 

data sets of real traces from the Computer Laboratory at the University of Cambridge 

and a conference at Infocom 20052 to validate their mobility model based on a simple 

intuition of human mobility. For this reason, we decided to compare the traces obtained 

by using our mobility model only with the contact traces from our data set. However, 

we are also aware that intrinsic characteristics of dynamic wireless networks cannot be 

totally captured by taking into account only the inter-contact time and contact duration 

distributions. Fleury et al. [200J introduced and presented some coupled arguments from 

data mining, random processes and graph theory in order to extract knowledge on dynamic 

networks. Nonetheless, we still think that the comparisons that we presented are useful and 

show that our Shopping Mall mobility model is a much closer approximation to real traces 

than traditional random mobility models. Anyway, in future work we would like to look at 

such other characteristics and consider these to improve our mobility model. 

Finally, we showed the impact of different mobility models on the performance of two 

benchmark routing protocols, Epidemic and Prophet, in the mall-based scenarios. There-

fore, we compared the simulation results of four distinct mobility models having nodes' 

movements with different degree of freedom. These are, in order of decreasing degree of 

freedom, the Random Walk, the Random Way-Point with inter-arrival time, the Random 

Walk with with inter-arrival time and the Shopping Mall mobility model. 

FUrthermore, to understand better the role of groups of message carriers expressing dif-

ferent mobility patterns, we performed simulations of a derivative of the Epidemic protocol 

which distinguishes between customers and sellers, and entrusts messages through either 

one or the other. Such semi-Epidemic is a flooding-based protocol which does not use any 

knowledge of the system but distinguishing between customers and sellers to forward mes-

lSome features of the Intel Research Laboratory data set are shown In the Tables 2.1 and 2.2. 
2Some features of the Computer Laboratory and Infocom data sets are shown in the Tables 2.1 and 2.2 
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sages. In such way we have shown that under some circumstances it might be preferable 

forwarding messages to sellers rather than customers. Such information might be taken into 

account to design routing protocols for delay-tolerant mobile ah-hoc networks in structured 

scenarios. 

In previous study, Grossglauser and Tse [72] argued that" Mobility Increases the Capac-

ity of Ad Hoc Wireless Networks", considering issues related to Physical and MAC layers 

such as multi path fading, path loss via distance attenuation, shadowing by obstacles, and 

interference from other users. They simulated a two-hops routing protocol with an ad-hoc 

network consisting of n mobile nodes with infinite buffer to store relayed packets, all lying 

in the disk of unit area of radius 1/,;:;r which trajectories are independent and identically 

distributed. Their results suggest that delay-tolerant applications can take advantage of 

node mobility to significantly increase the throughput capacity of such networks. It would 

be interesting to study how much throughput can be achieved also considering Physical 

and MAC layers when nodes have less random mobility patterns. Maybe, in structured 

environments where nodes have mostly goal-oriented mobility what Grossglauser and Tse 

argued is not always true. Our structured mobility model can be used to perform such a 

study. 

6.3 Contributions 

Measurements in public places and their statistical analysis help in characterizing realistic 

mobility models. My first contribution offered to the research community is a valuable 

dataset of real-world Bluetooth contact traces collected in a shopping mall. For that, I 

programmed twenty-five smart phones, which run SymbianOS operating system, to log other 

Bluetooth devices within communication range. We have presented real-world measurement 

results from the mobility of people in shopping mall environments. 

Second, we performed extensive analysis of the collected contact traces. We analysed 

the contact time and inter-contact time distributions and confirmed as expected that the 

inter-contact time for each pair follows a heavy-tail distribution. These results are quite 
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different from previous studies in workplace [30J, university campus [1, 31, 32, 33, 34Jand 

conference scenarios [2], where power law coefficients approximate the inter-contact time 

distributions for longer periods of time. We have identified groups of people who exhibit 

higher power law coefficients but only for short time periods. This is significant in that 

using multiple intermediate relays may be sufficient for stateless forwarding algorithms to 

converge [1]. The observed distributions suggest that forwarding to neighboring sellers and 

shop assistants might increase the likelihood of timely contact. We believe that shopkeepers 

could form a mobile ad-hoc network backbone and the starting point from which to build 

wider networks in shopping mall environments. The identification of such groups of people 

could help greatly in forwarding data. We observed that forwarding algorithms do not 

appear to need to take into account broad temporal patterns in this environment. 

Third, we derived several cumulative distribution functions describing the mobility be-

haviour of customers and sellers. Such distributions are important parameters for our 

Shopping Mall mobility model and may be employed as a starting point to model different 

kinds of shopping mall-like environments. Although the identification of different classes 

of mobility within the shopping mall is somewhat obvious, we have presented evidence of 

this and some quantifications of their characteristics. For that, we developed a technique 

based on contact duration, inter-contact time and number of contacts to identify two groups 

of people, customers/visitors and sellers/shopping mall related people, performing differ-

ent mobility patterns. Such technique could also be employed to identify individuals in 

well-structured scenarios. 

Fourth, we propose a new mobility model for shopping mall environments based on real 

traces and the empirical understanding of human mobility. We also developed a mobility 

scenario generation tool, a Java application which generates mobility traces for this and 

also some standard mobility models. Our scenario generator allows new models to be 

easily plugged-in (see Section 3.4.2). Our shopping mall mobility model has been validated 

through large-scale simulations and comparisons with real tracefj and a Random WayPoint-

like mobility model. Our scenario generator and Shopping Mall mobility model are available 

159 



upon request to the research community. 

Fifth, as a proof of concept, we tested and evaluated Epidemic and Prophet, two well-

known routing protocols employed in Delay Tolerant Networks, with our Shopping Mall 

and three other mobility models. We showed that the choice of mobility model affects the 

performance of both routing protocols and thus that traditional mobility models should not 

be used to simulate "structured" scenarios. By comparing the performance of such different 

routing protocols on different mobility models we give evidence that the choice of mobility 

model can be a critical consideration in designing and evaluating of routing protocols for 

delay-tolerant mobile ah-hoc networks. 

Finally, we designed a derivative of the Epidemic protocol which distinguishes between 

customers and sellers, and entrusts messages through either one or the other. This allows 

us to understand better the role of groups of message carriers expressing different mobility 

patterns. We have shown that under some circumstances it might be preferable forwarding 

messages to some carriers rather than others. Such information can help in the design of 

routing protocols for delay-tolerant mobile ah-hoc networks in structured environments. 

6.4 Future Work 

We believe that different environments are characterized by different patterns of mobility 

and should be supported by suitable embedded routing protocols. Therefore collecting data 

reflecting human mobility is important when designing routing protocols for such mobile 

ad-hoc delay tolerant networks. 

In this thesis we have started with a particular shopping mall. However, we envision 

different scenarios each characterized by their mobility patterns and embedded routing algo-

rithm, all of which may be part of a large system which could interconnect each environment. 

In the future we would like to collect contact data in a number of other "structured" envi-

ronments such as trade fairs, music festivals, automobile race tracks, stadiums, museums, 

to analyse their mobility patterns and identify possible key characteristics to take into ac-

count when designing routing protocols and representative mobility models for more diverse 
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settings. 

We would also like to analyse larger scale scenarios and therefore we would need to 

consider a more complex modelling of movement within the mall. In our scenario, we 

assumed that all of the shops had the same attraction level equal to 1, both for customers 

and sellers. With these settings, customers can go forwards and backwards within the 

shopping mall at random. This behaviour may be acceptable for small scale environments 

such as our shopping mall but it does not appear suitable for large scale environments. 

Moreover, we would like to improve our mobility model by considering group relation-

ships. In our current model, customers wander individually within the shopping mall. The 

existence of groups or clusters of customers might be significant when designing more specific 

routing algorithms and application services in such environments. 

We would like to develop a simulation system where the simulated area is structured 

and composed of different interconnected subscenarios. Such a configuration of the space 

will change it from continuous into a connected set of discrete place units which allows the 

identification and application of different labels to its individual parts. These parts of the 

space can identify distinguishable groups, communities, or activities, and be associated with 

different rules of behaviour and conventions. An existent social structure can be mapped 

onto the configured space. The demarcation of boundaries allows particular relationships of 

access or visibility to emerge among the component spaces, and this in tum generates prob-

abilistic patterns of movement and encounter within the population. This representation of 

the whole scenario allows the user to understand better different types of environments by 

looking at the settings on a different scale. 

Finally, we would also like to design and test forwarding algorithms for structured 

environments that exploit the intrinsic characteristics of such scenarios. We envisage a 

broad range of structured scenarios, from urban areas to megastructures, from shopping 

malls to trade fairs, and from stadiums to museums, where any kind of network device is 

able to communicate through autonomic interconnected networks. 
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Appendix A 

Previous Experiments 

A.I Inter-contact tim e distributions for the Cambridge data 

sets 

Toll OIslribution Function 01 lho Inwr·con!OCIlilll(J, 

Time (s) 

Figure A.l: Inter-contact time distributions for the iMote A and iMote B data sets. Exper-
iment iMote A included nine researchers and interns working at Intel Research Cambridge, 
whil e iMote B involved twelve doctoral students and faculty comprising a research group 
at the University of Cambridge Computer Lab (Source [lD. 
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A.2 Inter-contact time distributions for the UCSD and Dart-

mouth data sets 

TDI1 Distribution Function 0' the Intor-conroct tfmo. 
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Figure A.2: Inter·contact time distributions for the UCSD and Dartmouth data sets. Both 
data sets from UCSD and Dartmouth make use of WiFi networking, with the former in-
cluding cli ent-based logs of the visibility of access points, while the latter includes SNMP 
logs from the access points (Source [1]). 
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A.3 Distribution of inter-contact times between iMotes 

Tall Disllibulion Function 01 the Intol -contact timo. 

Time (5) 

Figure A.3: Distribution of inter-contact times between iMotes. Experiment iMote A in-
cluded nine researchers and interns working at Intel Research Cambridge, while iMote B 
involved twelve doctoral students and faculty comprising a research group at the University 
of Cambridge Computer Lab (Source [lD. 
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A.4 Distribution of inter-contact times between iMotes and 

other Bluetooth devices 
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Figure A.4: Distribution of inter-contact times between iMotes and other Bluetooth devices. 
Experiment iMote A included nine researchers and interns working at Intel Research Cam-
bridge, whil e iMote B involved twelve doctoral students and faculty comprising a research 
group at the University of Cambridge Computer Lab (Source [1]). 
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A.5 Distribution of contact duration for iMotes data sets 

Tail Distribution Function of the Contact Duration. 
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Figure A.5: Distribution of contact duration for iMotes data sets. Experiment iMote A 
included nine researchers and interns working at Intel Research Cambridge, while iMote B 
involved twelve doctoral students and faculty comprising a research group at the University 
of Cambridge Computer Lab (Source [1]). 
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A.6 Distribution of contact duration for WiFi data sets 

Tail Distribution Function of the contact duration. 
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Figure A.6: Distribution of contact duration for WiFi data sets from UCSD and Dartmouth 
(Source [1]). 
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A.7 Inter-contact time distributions In Conference Environ-

m ents 
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F igure A.7: Distributions of inter-contact times for pairs of nodes (Source [2]). 
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A.8 Contact tim e distribution s In Confe rence Environm ents 
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Figure A,S: Distr ibutions of contact t imes for pairs of nodes (Source [2]) , 
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Appendix B 

Empirical Coefficient Values for 

Indoor Propagation 

B.1 

Empirical measurements of coefficients 'Y and a[dB] in dB have shown the following values 

for a number of indoor wave propagation cases [133J. 

Building Type Frequency of 'fransmission 'Y a [dB] 

Vacuum, infinite space 2.0 0 

Retail store 914 MHz 2.2 8.7 

Grocery store 914 MHz 1.8 5.2 

Office with hard partition 1.5 GHz 3.0 7 

Office with soft partition 900 MHz 2.4 9.6 

Office with soft partition 1.9 GHz 2.6 14.1 

Textile or chemical 1.3 GHz 2.0 3.0 

Textile or chemical 4GHz 2.1 7.0,9.7 

Metalworking 1.3 GHz 1.6 5.8 

Metalworking 1.3 GHz 3.3 6.8 
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Appendix C 

Details of the Implementation 

Our Java software tool produces traces mainly for the Omnet++ simulator [53], one of the 

most popular discrete event network simulation framework in the mobile ad hoc network 

research community. The software has been tested with Java 1.5.0_11 and 1.6.0_15. This 

mobility model generation tool is available to other research groups upon request. In this 

section we describe the main components and features of the software developed. 

• Our mobility model generator is composed of a class MM which is the starting point 

of the entire structure. MM looks in its list of implemented models and gets a class 

object which represents a mobility model. In this way, further models can be easily 

plugged-in. A public member function go determines the class to run which is the 

model specified on the command line and passes the parameters to the model itself. 

This method uses reflection to look in its list of implemented models. Reflection is 

useful when it is not convenient or possible to hard-code a given method call or field 

access into the code. A given class or method can be configured in a file or otherwise 

determined while the program is running. The call graphs for MM are in Appendix 

0.1. 

• I have implemented three classes which can reproduce several mobility models: MallMotion, 

RandomWayPoint and SimplestRWP (see UML diagram in Appendix 0.2). In Section 

3.4.3 we describe the five mobility models that can be generated with this tool. 
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• This software tool needs refactoring in order to improve code readability and reduce 

complexity of maintainability of the source code as well as to structure better the 

internal architecture so that to facilitate extensibility. At moment it is organized in 5 

packages: 

- mallmotion. run, where the class MM is located; 

- mallmotion.models contains the implementations of all the mobility models are 

placed; 

- mallmotion contains several classes which define nodes, the Dijkstra's algorithm 

and the structure of the playground; 

- math, an external Java library which includes mathematics and statistics compo-

nents addressing the most common problems not available in the Java program-

ming language [102J. 

- SSJ, an external Java library for stochastic simulation developed in the Departement 

d'Informatique et de Recherche Operationnelle (DIRO), at the Universite de 

Montreal [10 1]. 
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Appendix E 

SVG Textual Mode 

E.1 Shopping Mall Plan 

<?xml version-"t.O" encoding="UTF-B" standalone-"no"?> 

<!-- Created with Inkscape (http://www.inkscape.org/) --> 

<svg 
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xmlns:svg-''http://www.w3.org/2000/svg'' 

xmlns''''http://www.w3.org/2000/svg" 

xmlns:sodipodi .. ''http://sodipodi.sourceforge.net/DTD/sodipodi-O.dtd" 
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sodipodi:version .. IIO.32" 
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inkscape:version=10.46" 

sodipodi:docname=ldrawing5c061109-4-2a.svg" 

inkscape:output_extension="org.inkscape.output.svg.inkscape"> 

<defs 

id-"defs4"> 

<inkscape:perspective 

sodipodi:type="inkscape:persp3dtl 

inkscape:vp_x="0 526.18109: 1" 

inkscape:vp_y""O 1000: 0" 

inkscape:vp_z-"744.09448 : 526.18109 : 1" 

inkscape:persp3d-origin""372.04724 350.78739 1" 

id="perspectivel0" /> 

</defs> 

<sodipodi:namedview 

id-"base" 

pagecolor-"#ffffff" 

bordercolor-"#666666" 

borderopacity·"1.0" 

gridtolerance-"10000" 

guidetolerance-"10" 

objecttolerance-"10" 

inkscape:pageopacity·"O.O" 

inkscape:pageshadow-"2" 

inkBcape:zoom-"2.8284271" 

inkscape:cx-"188.94581" 

inkBcape:cy-II931.36966" 

inkBcape:document-units-"px" 

inkscape:current-layer-Il layerl" 
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showgrid="false" 

inkscape:window-width=11154" 

inkscape:window-height="884" 

inkscape:window-x="120" 

inkscape:window-y==180" 

showguides="true"> 

<inkscape:grid 

type="xygrid" 

id-"grid3275" /> 

</sodipodi:namedview> 

<metadata 

id=lmetadata7"> 

<rdf:RDF> 

<cc:Work 

rdf:about=""> 

<dc:format>image/svg+xml</dc:format> 

<dc:type 

rdf:resource-l http://purl.org/dc/dcmitype/StillImage" /> 

</cc:Work> 

</rdf:RDF> 

</metadata> 

<g 

inkscape:label-"Layer 1" 

inkscape:groupmode="layer" 

id-"1ayerl"> 

<path 

style-"fill:nonejfill-rule:evenoddjstroke:#OOOOOOjstroke-width: 

O.92304606istroke-linecap:buttistroke-linejoin:miteristroke-miterlimit: 
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4;stroke-dasharray:none;stroke-opacity:1" 

d="M 42.664105,58.879147 L 35.293687,58.879147 L 35.293687,0.85724238 

L 59.217338,0.85724238 L 59.217338,58.879147 L 49.672039,58.879147" 

id="path2381" 

sodipodi:nodetypes="cccccc" /> 

<text 

</g> 

</svg> 

sodipodi:linespacing="100%" 

id="text2775" 

y""58.551208" 

x="33.811153" 

style="font-size:3.69739366px;font-style:normal;font-variant:normal; 

font-weight:normal;font-stretch:normal;text-align:start;line-height: 

100%;writing-mode:lr-tb;text-anchor:start;fill:#OOOOOOjfill-opacity: 

1;stroke:none;stroke-width:1px;stroke-linecap:buttjstroke-linejoin: 

miter;stroke-opacity:1;font-family:Arial;-inkscape-font-specification: 

Arial" 

xml:space-"preserve" 

transform-"scale(0.9160027,1.0916999)"><tspan 

y-"58.551208" 

x" 1 33.811153" 

id-"tspan2777II 

sodipodi:role-l line">v:2</tspan></text> 
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Appendix F 

omnetpp.ini 

F.l 

[General] 

cmdenv-config-name - perf test 

cmdenv-express-mode - true 

cmdenv-performance-display - true 

cmdenv-status-frequency - 2s 

fname-append-host - true 

ned-path - .. / .. /basej .. / .. /modulesj .. / .. /examplesj 

network - sim 

#output-vector-file - n${resultdir}/${configname}-${runnumber}.vec" 

#output-scalar-file - n${resultdir}/${configname}-${runnumber}.sca" 

result-dir • results/mall 

sim-time-limit - 43200s 
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########################### 

# Simulation parameters # 

########################### 

record-event log = true 

tkenv-default-config = 

**.node[O-50] .module-eventlog-recording true 

**.scalar-recording = true 

**.vector-record-eventnumbers = true 

**.vector-recording = true 

sim.**.coreDebug = false 

sim.playgroundSizeX = 800m 

sim.playgroundSizeY = 500m 

sim.playgroundSizeZ = Om 

sim.numNodes = 179 

############################# 

# WorldUtility parameters # 

############################# 

sim.world.useTorus - false 

sim.world.use2D • true 

######################## 

# channel parameters # 

######################## 

sim.connectionManager.debug - false 

sim.connectionManager.radioRange - 85 
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sim.connectionManager.sendDirect 

# max transmission power [mW] 

sim.connectionManager.pMax = 2.5mW 

false 

# signal attenuation threshold [dBm] 

sim.connectionManager.sat = -65dBm 

# path loss coefficient alpha 

sim.connectionManager.alpha = 2.2 

# carrier frequency in hertz 

sim.connectionManager.carrierFrequency = 2.412e+9Hz 

################################## 

# Parameters for the Mac Layer # 

################################## 

# debug switch 

sim.node[*] .nic.mac.headerLength - 272 

sim.node[*].nic.mac.queueLength - 14 

sim.node[*].nic.mac.bitrate - 3E+6bps #2E+6bps# in bits/second #Bluetooth 

sim.node[*].nic.mac.defaultChannel • 0 

sim.node[*].nic.mac.autoBitrate - false 

### values if no fading is modelled, gives at most 1% packet error rate 

sim.node[*].nic.mac.snr2Mbit - 1.46dB # [dB] 

sim.node[*].nic.mac.snr5Mbit • 2.6dB # [dB] 

sim.node[*].nlc.mac.snrllMbit • 5.68dB # [dB] 
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sim.node[*] .nic.mac.rtsCtsThreshold = 400 

aim.node[*] .nic.mac.neighborhoodCacheSize = 300 #keeps information on neighbora 

sim.node[*].nic.mac.neighborhoodCacheMaxAge - 100a # [a] Mac80211: double 

#how long is a slot? [s] 

sim.node[*].nic.mac.alotDuration = 0.04s 

#maximum time between a packet and its ack [s] 

aim.node[*].nic.mac.difs = 0.0005s 

#maximum number of transmission attempts 

sim.node[*] .nic.mac.maxTxAttempts - 1000 

#contention window 

sim.node[*].nic.mac.contentionWindow - 20 

# transmission power [mW] 

sim.node[*].nic.mac.txPower - 100mW # [mW] 

############################ 

# Parameters for the Phy # 

############################ 

# debug switch 

**.playgroundSizeZ - 0 

**.net.stats • false 

**.mac.txPower • 110.11mW # [mW] 
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# neighborhoodCacheMaxAge Qunit(s) 

#"consider information in cache outdate 

#if older than (in seconds)" 



**.phy.usePropagationDelay = false 

**.phy.thermaINoise = -110dBm # [dBm] 

**.phy.analogueModels = xmldoc("config.xml") 

**.phy.decider = xmldoc("config.xml") 

**.phy.sensitivity = -61dBm # [dBm] 

**.phy.maxTXPower = 110.11mW 

**.phy.timeRXToTX = Os 

**.phy.timeRXToSleep = Os 

**.phy.timeTXToRX - Os 

**.phy.timeTXToSleep = Os 

**.phy.timeSleepToRX = Os 

**.phy.timeSleepToTX = Os 

**.phy.initialRadioState - 0 

**.mobility.z = 0 

sim.node[*].nic.phy.useThermaINoise - true 

############################# 

# NETW layer parameters # 

############################# 

sim.node[*].net.isSwitch - false 

sim.node[*].net.maxTtl - 3 

sim.node[*].net.boredTime - 0.5 

########################### 

# Mobility parameters # 

########################### 
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sim.node[*].mobility.x -1 

sim.node[*].mobility.y = -1 

sim.node[*] .mobility.z .. 0 

sim.node[*].applType" "BurstAppILayer" 

sim.node[*].mobType" "BonnMotionMobility" 

sim.node[*].netwType" "BaseNetwLayer" 

sim.node[*] .appl.debug .. false 

sim.node[*] .appl.headerLength ｾ 512bit 

sim.node[*] .net.debug .. false 

sim.node[*].net.stats - false 

sim.node[*] .net.headerLength = 32bit 

sim.node[*J.appl.burstSize" 1 

sim.node[*].mobility.traceFile • "scenario.movements" 

sim.node[*] .mobility.nodeld .. -1 

sim.node[*J.mobility.debug - false 

sim.node[*].mobility.speed - Omps 

sim.node[*] .mobility.updatelnterval - 0.6s 
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Appendix G 

config.xml 

G.! 

<?xml version-"l.O" encoding"'''UTF-8''?> 

< root> 

</root> 

< AnalogueModels> 

< AnalogueModel type-"SimplePathlossModel"> 

< parameter name-"alpha" type-"double" value-1 2.2"/> 

< parameter name-"carrierFrequency" type-"double" value-1 2.412e+9"/> 

</AnalogueModel> 

</AnalogueModels> 

< Decider type-"Decider80211"> 

<!-- SNR threshold [NOT dB] --> 

< parameter name-"threshold" type'" "double II value-llO"/> 

< 1-- The center frequency on whcih the phy listens--> 

< parameter name-lcenterFrequency" type .. lldouble" value-"2.4l2e9"/> 

</Decider> 
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Appendix H 

NED files 

H.t Network.ned 

package org.mixim.examples.mallnet80211i 

import org.mixim.base.connectionManager.ConnectionManageri 

import org.mixim.modules.connectionManager.UnitDiski 

import org.mixim.base.modules.BaseWorldUtilitYi 

module BaseNetwork 

{ 

parameters: 

double playgroundSizeX ｾ ｵ ｮ ｩ ｴ Ｈ ｭ Ｉ ｩ II x size of the area the nodes are in 

I I (in meters) 

double playgroundSizeY ｾ ｵ ｮ ｩ ｴ Ｈ ｭ Ｉ ｩ II y size of the area the nodes are in 

I I (in meters) 

double playgroundSizeZ ｾ ｵ ｮ ｩ ｴ Ｈ ｭ Ｉ ｩ 1/ z size of the area the nodes are in 
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} 

II (in meters) 

double numNodesj II total number of hosts in the network 

ｾ ､ ｩ ｳ ｰ ｬ ｡ ｹ Ｈ ｬ ｉ ｢ ｧ ｢ ］ Ｑ Ｒ Ｒ Ｌ Ｑ Ｖ Ｐ Ｌ ｷ ｨ ｩ ｴ ･ ｪ ｢ ｧ ｰ ］ ｏ Ｌ ｏ ｪ ｢ ｧ ｳ ］ Ｒ Ｌ ｭ ｪ ｢ ｧ ｩ ］ ｭ ｡ ｰ ｳ Ｏ ｭ ｡ Ｑ Ｑ Ｒ Ｔ Ｐ ｸ Ｑ Ｖ Ｐ Ｂ Ｉ ｪ

submodules: 

connectionManager: ConnectionManager { 

} 

parameters: 

ｾ ､ ｩ ｳ ｰ ｬ ｡ ｹ Ｈ ｬ ｉ ｰ ］ Ｓ Ｘ Ｑ Ｌ Ｓ Ｐ Ｒ ｪ ｢ ｡ Ｔ Ｒ Ｌ Ｔ Ｒ Ｌ ｲ ･ ｣ ｴ Ｌ ｧ ｲ ･ ･ ｮ ｪ ｩ Ｂ ｡ ｢ ｳ ｴ ｲ ｡ ｣ ｴ Ｏ ｭ ｵ ｬ ｴ ｩ ｣ ｡ ｳ ｴ Ｂ Ｉ ｪ

world: BaseWorldUtility { 

} 

parameters: 

playgroundSizeX = playgroundSizeXi 

playgroundSizeY = playgroundSizeYj 

playgroundSizeZ = playgroundSizeZj 

ｾ ､ ｩ ｳ ｰ ｬ ｡ ｹ Ｈ ｬ ｉ ｰ Ｂ Ｒ Ｗ Ｌ Ｓ Ｐ Ｒ ｪ ｩ ﾷ ｭ ｩ ｳ ｣ Ｏ ｧ ｬ ｯ ｢ ･ Ｂ Ｉ ｪ

node[numNodes]: BaseNode { 

} 

parameters: 

ｾ ､ ｩ ｳ ｰ ｬ ｡ ｹ Ｈ ｬ ｉ ｰ Ｍ Ｑ Ｗ Ｖ Ｌ Ｗ Ｘ ｪ ｩ Ｍ ､ ･ ｶ ｩ ｣ ･ Ｏ ｰ ｯ ｣ ｫ ･ ｴ ｰ ｣ ｟ ｭ ｩ ｮ ･ ｪ ｩ ｳ Ｍ ｶ ｳ Ｂ Ｉ ｪ

connections allowunconnected: 

network sim extends BaseNetwork 

{ 

parameters: 

} 
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H.2 Node.ned 

package org.mixim.examples.mallnet80211j 

import org.mixim.base.modules.*; 

import org.mixim.modules.nic.Nic80211j 

module BaseNode 

{ 

parameters: 

string applType; Iitype of the application layer 

string netwType; Iitype of the network layer 

string mobType; Iitype of the mobility module 

CDdisplay (lIbgb-, • whi te, • ") ; 

gates: 

input radioln; 1/ gate for sendDirect 

submodules: 

utility: BaseUtility { 

parameters: 

CDdisplay(lp-130.38,rect;b-24,24,.black,.")j 

} 

arp: BaseArp { 

parameters: 

CDdisplay("p-130.84,rect;b-24,24,.blue •• "); 

} 

mobility: < mobType> like IBaseMobility { 
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} 

parameters: 

«ldisplay(lIp=130,172ji=cogwheel2")j 

appl: < applType> like IBaseApplLayer { 

parameters: 

«ldisplay(lIp=60,50;i=appll); 

} 

net: < netwType> like IBaseNetwLayer { 

parameters: 

«ldisplay(lp"'60,108ji=protl"); 

} 

nic: Nic80211 { 

parameters: 

CDdisplay("p-60,166j i=iface") j 

} 

connections: 

nic.upperGateOut --> net.lowerGatelnj 

nic.upperGateln <-- net.lowerGateOutj 

nic.upperControlOut --> { <IIdisplay(lls-r ed;m=m,70,O,70,O"); } --> net.lowerControlInj 

nic.upperControlIn <-- { <IIdisplay(lls- red;m=m,70,O,70,O"); } <-- net.lowerControlOut; 

net.upperGateOut --> appl.lowerGateln: 

net.upperGateln <-- appl.lowerGateOutj 

net.upperControlOut --> { CDdisplay("1s=red:m-m,70,O,70,O")j } --) appl.lowerControlIn; 

net.upperControlIn <-- { «Idisplay(lls- redjm-m,70,O,70,O")j } <-- appl.lowerControlOut; 

radioln --> nic.radioln: 

} 
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H.3 Nic80211.ned 

package org.mixim.modules.nic; 

import org.mixim.modules.mac.Mac80211; 

import org.mixim.modules.phy.PhyLayer; 

II 

II This NIC implements an 802.11 network interface card. 

II 

II ｾ ｳ ･ ･ Mac80211, Decider80211 

II ｾ ｡ ｵ ｴ ｨ ｯ ｲ Marc Loebbers. Karl Wessel (port for MiXiM) 

II 

module Nic80211 

{ 

gates: 

input upperGateIn; II to upper layers 

output upperGateOut; II from upper layers 

output upperControlOut; II control information 

input upperControlln; II control information 

input radioIn; II radioIn gate for sendDirect 

submodules: 

mac: Mac80211 { 

ｾ ､ ｩ ｳ ｰ ｬ ｡ ｹ Ｈ ｬ ｉ ｰ Ｍ Ｙ Ｖ Ｌ Ｘ Ｗ ［ ｩ Ｍ ｢ ｬ ｯ ｣ ｫ Ｏ ｬ ｡ ｹ ･ ｲ Ｂ Ｉ ［
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} 

phy: PhyLayer { 

<Ddisplay(lp==106,157ji=block/process_s")j 

} 

connections: 

mac.upperGateOut --> { <Ddisplay(lls=blackjm=m,25,50,25,O")j } --> upperGateOutj 

mac.upperGateln <-- { <Ddisplay(lls-blackjm=m,15,50,15,O")j } <-- upperGatelnj 

mac.upperControlOut --> { <Ddisplay(lls-redjm=m,75,50,75,O")j } --> upperControlOutj 

mac.upperControlIn <-- { <Ddisplay(lls=redjm-m,85,O,85,O")j } <-- upperControlInj 

phy.upperGateOut --> { <Odisplay("ls=blackjm=m,25,50,25,O")j } --> mac.lowerGateln; 

phy.upperGateln <-- { ClIdisplay("ls"'black;m=m,15,50,15,O")j } <-- mac.lowerGateOutj 

phy.upperControlOut --> { <Odisplay("1s=red;m=m,75,50,75,O")j } --> mac.lowerControlInj 

phy.upperControlIn <-- { <Ddisplay("ls-redjm-m.85,O,86,O")j } <-- mac.lowerControlOutj 

radioln --> phy.radiolnj 

} 
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Appendix I 

omnetpp . ini for Epidemic, Prophet 

and semi-Epidemic Routing 

Protocols 

1.1 

[General] 

network - mobilityscenario 

sim-time-limit-18000 

ini-warnings - yes 

num-rngs-25 

[Parameters] 

mobilityscenario.numberOfHosts-908 
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mobilityscenario.msgBufSize=100 

mobilityscenario.maxHops=10 

mobilityscenario.retransmissionlnterval=134 

mobilityscenario.dataCollector.numBinsDelayStat=40 

mobilityscenario.dataCollector.maxRangeDelayStat=2400 

[Cmdenv] 

runs-to-execute=l 

module-messages = no 

verbose-simulation = no 

express-mode=yes 

performance-display= no 

[Tkenv] 

default-run=2 

animation-speed=16.0 

update-freq-fast-60 

update-freq-express-600 

animation-enabled-yes 
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Appendix J 

NED File for Epidemic, Prophet 

and semi-Epidemic Routing 

Protocols 

J.l 

simple Host 

gates: 

in: controllnput, inputs[]j 

out: outputs [] ; 

endsimple 

simple Engine 
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gates: 

in: ingatej 

out: outgatej 

endsimple 

simple SimController 

gates: 

in: ingatej 

out: outgatej 

endsimple 

simple DataCollector 

parameters: 

numBinsDelayStat:const, 

maxRangeDelayStat:constj 

gates: 

in: ingate; 

out: outgate; 

endsimple 

module Mobilityscenario 

parameters: 

numberOfHosts:const, 

msgBufSize: const , 

maxHops:const. 
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totalMaxHops:const, 

retransmissionlnterval:const; 

submodules: 

dataCollector: DataCollector; 

display: li=monitor;p=50,206;b=32,32"; 

Hosts: Host [numberOfHosts] 

gatesizes: 

inputs [numberOfHosts] , outputs [numberOf Hosts]; 

engine: Engine; 

display: li=cogwheel;p-50,50;b-40,24"; 

simController: SimController; 

display: "i=bwgen;p=50, 132 ;b=34,34"; 

connections nocheck: 

engine.outgate --) engine.ingate; 

display: "p-10,lO ;b=lOOO, 1000 ;o-#cfedfe"; 

endmodule 

network mobilityscenario 

endnetwork 

Mobilityscenario 
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Appendix K 

Epidemic 

K.l Delivery Ratio 

K.1.1 Customer to Customer 
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K.1.2 Customer to Sell er 
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K.1.3 Seller to Customer 
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K.1.4 Sell er to Sell er 
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K .2 Epidemic: Average D elay 

K.2 .1 Customer to Customer 

Customer to Customer 
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K.2.2 Customer to Seller 

Customers to Soller 
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K.2.3 Seller to Customer 

Seller to Cu stomer 
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K.2.4 Seller to Seller 

Seller to Soller 

0 

, 
'" ;I; 

, 
, 

0 

5 '<t 
N 

:f 
ｾ

'" Q .., 
" 

N 

'" 
ｾ ｾ

I!! , 

8 £ , 

0 

B .., 
N 

Q ｾ
ｾ

Ep(rwp) Ep(lrwp) Ep(lrw) Ep(mm) 

234 



Appendix L 

Prophet 

L.l Delivery Ratio 

L.1.l Customer to Customer 
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L.1.2 Customer to Sell er 

Cu stom er to Sell er 
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L.1.3 Seller to Customer 

Seller to Customer 
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L.1.4 Seller to Seller 

Sell er to Soller 
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L.2 Prophet: Average Delay 

L.2.1 Customer to Customer 

Cu stomer to Customer 
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L.2.2 Customer to Sell er 

Cu stom er to Sell er 
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L.2.3 Sell er to Customer 

Seller to Customer 
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L.2.4 Seller to Seller 
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Only two things are infinite, 

the universe and human stupidity, 

and I'm not sure about the former. 

Albert Einstein 
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