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ABSTRACT

INTERMITTENTLY CONNECTED DELAY-TOLERANT WIRELESS

SENSOR NETWORKS

by

Ying Li

University of New Hampshire, May 2015

Intermittently Connected Delay-Tolerant Wireless Sensor Networks (ICDT-WSNs), a branch

of Wireless Sensor Networks (WSNs), have features of WSNs and the intermittent connectivity of

Opportunistic Networks. The applications of ICDT-WSNs are increasing in recent years; however,

the communication protocols suitable for this category of networks often fall short. Most of the

existing communication protocols are designed for either WSNs or Opportunistic Networks with

sufficient resources and tend to be inadequate for direct use in ICDT-WSNs.

In this dissertation, we study ICDT-WSNs from the perspective of the characteristics, chal-

lenges and possible solutions. A high-level overview of ICDT-WSNs is given, followed by a study

of existing work and our solutions to address the problems of routing, flow control, error control,

and storage management. The proposed solutions utilize the utility level of nodes and the con-

nectedness of a network. In addition to the protocols for information transmissions to specific

destinations, we also propose efficient mechanisms for information dissemination to arbitrary des-

tinations. The study shows that our proposed solutions can achieve better performance than other

state of the art communication protocols without sacrificing energy efficiency.

xiii



Chapter 1

Introduction

Intermittently Connected Delay-Tolerant Wireless Sensor Networks (ICDT-WSNs) are a new

branch of Wireless Sensor Networks (WSNs), which have characteristics of WSNs and Oppor-

tunistic Networks. These characteristics include the limited resources, such as energy supply,

computation capability, storage space, bandwidth, communication range [2] and the intermittent

connectivity. Intermittent connectivity means that the end-to-end paths do not always exist in net-

works [13]. These difficulties make the design of communication protocols for ICDT-WSNs a

challenging task, although ICDT-WSNs have been commonly used in areas whose development

environments are unsafe or even impossible for human to access. Examples of use include wildlife

tracking [32], assisting submarine location estimation [90], solar-powered autonomous underwater

vehicle (SAUV) platform for underwater networks [6], coal mine structure surveillance [39] and

sandstorm forecast [78].

Most of the existing protocols cannot be directly employed in ICDT-WSNs, since they are ei-

ther designed for WSNs or DTNs that do not take all limitations of ICDT-WSNs into consideration.

Without reliable, robust and efficient communication protocols, the performance of ICDT-WSNs

is degraded resulting in shortened network life time, decreased propagation speed and increased

packet loss rate. As a consequence, the development of ICDT-WSN applications is constrained.

1



1.1 Background

1.1.1 Wireless Sensor Networks

Wireless Sensor Networks (WSNs) have been extensively studied and widely used in the

recent decade. A WSN can consist of one to several types of sensor nodes such as visual, thermal,

acoustic, infrared, radar, low sampling rate magnetic, and seismic [2]. WSNs are mission-oriented:

all sensor nodes of a WSN cooperate together to accomplish the mission of the network, such as

collecting environmental data from a designated area and tracking an object. According to the

environment the WSNs are developed for, WSNs can be categorized into terrestrial, underwater or

underground:

• Terrestrial WSNs are developed above ground, and are usually composed of hundreds to

thousands of low-cost sensor nodes [87]. The terrestrial WSNs can be used for environment

sensing and monitoring, industry monitoring [23] and surface exploration. Radio Frequency

(RF) communication is widely used in terrestrial WSNs. Energy efficiency is very important

for terrestrial WSNs, since the power of sensor nodes is very limited even with solar cells.

• Underwater WSNs consist of a variable number of sensors and vehicles that are sparsely de-

ployed under water for oceanographic data collection, pollution monitoring, offshore explo-

ration, disaster prevention, navigation assistance and tactical surveillance applications [3].

Instead of RF communication, acoustic communication is preferred in underwater WSNs,

because of the high attenuation of RF in aquatic environments [25]. Compared to the terres-

trial WSNs, underwater WSNs suffer more severe challenges: longer propagation delay, less

bandwidth, more severely impaired channels and non-rechargeable, limited power.

• Underground WSNs comprise of a number of sensor nodes buried underground or placed

in coal mines or caves, used to monitor a variety of underground conditions [39, 4]. RF

communication can be used in underground WSNs [39], but the underground environment

causes high attenuation of electromagnetic waves. Akyildiz [4] points out that Magnetic

2



Induction (MI) and seismic waves might be better for communication in underground WSNs.

In addition to the challenges of underwater WSNs, signal fade is unavoidable in underground

WSNs.

With the development of micro-electro-mechanical systems (MEMS) technology, sensor nodes

have become smaller, lighter, smarter and cheaper. In addition to the main categories of WSNs

mentioned above, WSNs are now being used in airplane surveillance [8] and body sensor net-

works [14, 57].

The network infrastructures, sensor nodes and communication protocols can be different from

one WSN to another. Because WSNs are mission oriented, the topology design and device selec-

tion for a WSN depends on the application for each WSN.

Generally, WSNs have little or no infrastructure. According to the manner of node deploy-

ment, WSNs can be divided into two groups: ad hoc WSNs and pre-planned WSNs. Ad hoc WSNs

have no infrastructure, the sensor nodes are deployed into a field randomly, possibly scattered from

an airplane and left unattended. In order to maintain connectivity and detect failures, the protocols

and algorithms for ad hoc WSNs should be able to self-organize. The ad hoc nature makes this cat-

egory of WSNs suitable for disaster relief and operations in inaccessible areas. Pre-planned WSNs,

on the contrary, are more structured networks, and can be grouped into wireless mesh networks.

Sensor nodes in pre-planned WSNs are placed at particular positions in a pre-planned manner, such

that topologies are well designed beforehand. For several examples of typical pre-planned WSNs

see underwater WSNs [3, 25] and underground WSNs [4, 39].

According to the mobility of sensor nodes, WSNs can be categorized into static WSNs and

mobile WSNs. WSNs that only consist of non-moving sensor nodes are static WSNs. WSNs

containing self propelled sensor nodes are mobile WSNs. Depending on the design of a network,

the movement of sensor nodes in a network can be controllable and predictable. This property not

only distinguishes mobile WSNs from mobile ad hoc networks (MANETs), but also provides an

advantage for communication protocol design.
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1.1.2 Opportunistic Networks

Opportunistic networks make no assumption regarding the existence of a complete path be-

tween a source and destination. Delay-Tolerant Networks (DTNs) [10] can be seen as a well-known

example of opportunistic networks. A DTN is an overlay on top of regional networks1, and pro-

vides interoperability between these networks [17]. DTNs are challenging networks, where the

architectures and communication protocols used in traditional networks may operate poorly. The

challenges associated with DTNs are intermittent connectivity, long or variable delay, asymmetric

data rates, and high error rates.

The Delay-Tolerant Networking Research Group (DTNRG) [15] discusses the bundle layer

as the overlay DTN architecture, which not only provides a transparent communication among

different regional networks, but also hides the disconnection and delay from the application layer.

The bundle layer sits between the application layer and the transport layer in the DTN protocol

stack. In the bundle layer, the application data is encapsulated into bundles with bundle headers and

passed to the transport layer. The bundle layer implements store-and-forward message switching

to overcome the network interruption, and provides end-to-end reliability across a DTN through

custody transfers. Nodes in DTNs have persistent storages to store bundles and support custody

transfers.

Custody transfers achieve end-to-end reliability by employing node-to-node retransmission

in the bundle layer to prevent data loss and corruption. If a node requires custody transfers, it starts

a time-to-acknowledge retransmission timer after sending a bundle to the next node. If the next

node accepts the custody, it returns an acknowledgement to the sender. If no acknowledgement is

received before the sender’s timer expires, the sender retransmits the bundle. If a node supports

custody transfers, it must store a bundle until another node accepts custody or the bundle’s time-to-

live expires. Otherwise a node only needs to store a bundle until the outbound links are available.

The node name in a DTN consists of two parts, the region ID and the entity ID. The bundle

layer provides transparent communication among different regional networks through the region

1A regional network is a network in which the communication characteristics are homogeneous.
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Attributes ZebraNet [32] CenWits [26] Sandstorm
fore-
cast [78]

Coalmine
structure
surveil-
lance [39]

Goal Wildlife tracking Search-and-
rescue system

Weather
forecast

Disaster moni-
toring

Connectivity Zebras carry
sensor nodes and
move

People ware
sensor nodes and
move

Sand cover
sensor
nodes
temporarily

Obstructions
block trans-
mission
temporarily

Nodes Limited energy &
storage

Limited storage
& processing
capability

Limit
energy

Limited en-
ergy & storage

Data Position, temper-
ature and speed

Position Environment
data

Position

Requirements
for reliability
and time limit

Y Y Y Y

Table 1.1: Instances of ICDT-WSNs

ID. The routing within a regional network is based on the entity IDs.

1.2 Intermittently Connected Delay-Tolerant WSNs

ICDT-WSNs are intended for networks where besides low cost, intermittently connectivity

and the lack of network infrastructure are the key characteristics. At the same time, ICDT-WSNs

are expected to deliver performance that meets the needs of the network users. As a result, ICDT-

WSNs can be applied in a range of scenarios (Table 1.1 gives several examples).

1.2.1 ICDT-WSN Characteristics

ICDT-WSNs are mission-oriented: as it is the case with WSNs, all nodes in an ICDT-WSN

cooperate together to accomplish the common mission of the network. This requires that they
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should provide high rate of data delivery with acceptable latency.

ICDT-WSNs emphasize local communication rather than focusing solely on the source-to-

sink traffic. A node collects information in the area it located at and typically communicates with

the nodes in its neighborhood. Furthermore, routing decisions are made locally without requiring

global network information.

ICDT-WSNs, as the name suggests, interconnect sensor nodes. Each node in an ICDT-WSN

performs sensing and collects information from the local area. The collected information is dis-

tributed as needed using wireless communication to serve the needs of the mission.

The constraints on the cost of nodes lead to the limitations on energy supply, storage space,

and the computational capacities. Sensor nodes are usually equipped with battery to supply energy.

Typically the amount of memory in one sensor node is less than 512 KB [55]. The storage capacity

and computation capability of a sensor node are far less than that of a computational node, such as

nodes in DTNs.

The intermittent connectivity of ICDT-WSNs can be caused by environment-driven transient

losses of connectivity between nodes or by the sparseness of a network combined with node mo-

bility:

• Environmental factors, such as interference or obstructions, may cause a loss of connectivity

on a temporal scale larger than the transmission time of a packet. Sandstorm forecasting is

one example of scenario where sand may cover sensor nodes from time to time due to the

wind and the connectivity is lost for a period of time. Another such example would be loss

of connectivity between nodes in an acoustic underwater network due to steep gradient of

salinity caused by shifting tidal currents [6, 28].

• Mobile nodes may come into contact only occasionally while operating at other times outside

of the communication range of each other. Node mobility can be random, uncontrollable,

controllable, or predictable. ZebraNet is an example of a network with random and uncon-

trollable node mobility — each zebra that carries a sensor node moves randomly. CenWits

is an example for predictable node mobility — visitors wearing sensor nodes walk along
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the predetermined trail. These sensor nodes collect the visitors’ positions and corresponding

time, and communicate locally in order to pass the information back to the control center.

1.2.2 Node Model

An ICDT-WSN node consists of a transceiver, a protocol processing unit, a transmission

queue, packet storage, energy manager, and an application controller. Figure 1.1 shows the node

model. The queue stores the packets waiting to be transmitted while the packet storage is used for

in-network caching of generated, received, or overheard packets with the goal of reducing energy

consumption and improving packet latency during loss recovery. The energy manager informs both

the protocol processing unit and the application manager about the available energy and controls

the energy distribution to each unit of a node. Application manager executes the mission of a node

and interfaces with the communication and energy subsystems.

Storage
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Radio

Processing

Application
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e
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Figure 1.1: Node model

1.2.3 Challenges

Routing, flow control and error control are three main problems addressed in ICDT-WSNs

communication protocols in layers above the routing layer. Due to the intermittent connectivity,
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the traditional end-to-end flow control and error control are less appropriate and hop-by-hop ap-

proaches are more common. Since a complete path from a source to a destination may not exist,

the routing algorithms must be capable to operate even in such cases. Limits on the resources

in IDCT-WSNs make efficient in-network storage management and energy efficiency critical to a

protocol design. The following general problems will be considered in the ICDT-WSN protocol

design proposed in this project:

Routing: Deliver data packets to destinations through store-and-forward to overcome the inter-

mittent connectivity.

Flow control: Avoid congestion and shorten the queue length.

Storage management: Maximize the utility of storage.

Error control: Loss recovery for packet loss happened during transmission and due to the over-

flow of storage or queue.

Energy efficiency: Reduce unnecessary transmissions.

To evaluate the performance of communication protocols for ICDT-WSNs, the following four

metrics are commonly used: packet delivery rate, packet latency, number of hops per packet and

energy consumption [77]. The definitions of these metrics are:

Packet delivery rate: The ratio between the number of distinct packets received by the sink and

the number of packets sent by all sources to this sink.

Packet latency: The time interval between the moment a packet generated by a source and the

time it is received by the sink.

Number of hops per packet: The number of times a packet was transmitted on its way from its

source to the sink. In case multiple copies of the packet are delivered to the destination, the

number of transmissions of the first delivered copy is considered.
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Energy consumption: The total energy consumption during a packet delivery will be the sum of

transmission and reception times of all nodes in the network participating in the delivery of

this packet.

These metrics have direct connections to the problems mentioned above. Table 1.2 lists out

the relationship between the problems and the four principal metrics.

Metric Improved by addressing

Packet delivery rate Flow control, storage management, error control

Packet latency Routing, flow control, storage management, error control

Number of hops per packet Routing

Energy consumption Energy efficiency

Table 1.2: Measures
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Chapter 2

Research Design and Methods

2.1 Importance of the Study

When a disaster strikes, the ability to communicate is of the utmost importance during the

search and rescue operations. Disasters may occur in locations without any communication infras-

tructure, or may cause the destruction or serious damage to the existing infrastructure. The need

for rapid response and limited resources may not permit a complete communication infrastructure

buildup or full repair. As a result, intermittent connectivity and the lack of network infrastructure

become the key characteristics that define the problem that the designers of communication so-

lutions face. Furthermore, while achieving global connectivity is desirable and the ultimate goal,

quick establishment of a limited local connectivity is of immediate value.

ICDT-WSNs are designed serve scenarios such as the ones outlined above. The characteristics

of ICDT-WSNs make them similar to Wireless Sensor Networks (WSNs) [2] and Opportunistic

Networks [53]. However, due to the differences in network node capabilities and the intermittent

connectivity, most of the existing protocols from these two fields cannot be directly employed

in ICDT-WSNs [41]. Without an appropriate protocol to provide reliable, robust, and efficient

communication, ICDT-WSNs suffer from inefficiencies and degraded performance.
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2.2 Research Approach

The research approach includes identifying the key problems, design of fundamental methods

to address these problems and experiments to evaluate the performance. The key problems and

measures in this area are discussed in Section 1.2. Figure 2.1 outlines the fundamental methods

that are proposed to be used to address the problems in this project. The proposed research focusses

on problems in the transport and network layers through a combination of end-to-end and hop-by-

hop mechanisms. The rest of this section outlines the proposed methods to address the problems

in the design of communication protocols for ICDT-WSNs.

Transport Layer

Network Layer

Virtual 

Retransmission

Hop Level 

Loss Recovery

Packet 
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Figure 2.1: Components of the proposed research

Error Control

Virtual retransmission and hop level loss recovery are loss recovery mechanisms for error

control. Hop level loss recovery guarantees there is no hop level packet loss between a sender and

a receiver. Virtual retransmission takes advantage of the packets saved in the intermediate nodes

to provide end-to-end reliability. As a consequence, the number of end-to-end retransmissions can

be reduced and the packet delivery rate and energy efficiency can be enhanced.
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Routing and Flow Control

Utility level of nodes and intimacy are used to improve routing and flow control. Utility level

of nodes is a quantitative measure of the health status of nodes, which includes the available energy,

storage space and current queue length in its calculation. It is used to make better routing decision,

forwarding data packets to senders’ neighbors with more available resources, such as more free

memory or energy. As a result, the congestion can be alleviated, and energy consumption and

packet latency, caused by overflow-triggered retransmissions, can be reduced. Intimacy is a metric

to measure the closeness of a node to a destination in order to help route packets to the nodes with

better chances to deliver packets to the destination. A sender uses the intimacy to decide whether

to send and where to send a data packet. This main objective is to deliver packets more quickly.

According to the mechanism to decide next hops, routing algorithms can be grouped into

single-copy and multi-copy. Algorithm 1 and 2 show the framework for single-copy routing algo-

rithms, and Algorithm 3 and 4 show the framework for multi-copy routing algorithms. The parts

with underlines are the works that will be explored; except in-network storage control specified in

the storage management section, the details for rest parts are listed as follows.

Balance between utility level and intimacy aims to find the best next hop according to the

health state and intimacy of a node. Nodes that are usually in the communication range of the des-

tination are less healthy and can deliver packet more successfully than other more healthy nodes,

while they are more likely to suffer network congestion and node failures. An in-depth study of

the relationship between these measures and metrics can lead to a better combination.

Better next hop is a mechanism to find a set of appropriate next hop nodes in the neighborhood

of a sender. The sender will forwards each appropriate next hop node a copy of data packet in order

to enhance the packet delivery rate without sacrificing packet latency and energy efficiency.

Storage Management

Storage management is addressed through three mechanisms: acknowledgement-assisted

storage management, room making, and in-network storage control. Acknowledgement-assisted
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Algorithm 1 Single-copy Sender
1: RQST : request, RRPLY : request reply, BH: best next hop
2: while nodei has packets to forward do
3: nodei broadcasts RQST
4: if nodei receives RRPLYs then
5: BH = {}
6: for all neighborj in the received RRPLYs do
7: BH = BALANCE BETWEEN UTILITY LEVEL AND INTIMACY
8: end for
9: if BH 6= {} then

10: forwards packets to neighborj
11: end if
12: end if
13: end while

Algorithm 2 Single-copy Receiver
1: DATA: data packet
2: if nodei receives DATA then
3: DUPLICATE CHECKING & IN-NETWORK STORAGE
4: caches DATA in the queue
5: end if
6: if nodei overhears DATA then
7: DUPLICATE CHECKING & IN-NETWORK STORAGE CONTROL
8: end if

Algorithm 3 Multi-copy Sender
1: RQST : request, RRPLY : request reply, IM : intimacy, UL: utility level
2: while nodei has packets to forward do
3: nodei broadcasts RQST
4: if nodei receives RRPLYs then
5: for all neighborj in the received RRPLYs do
6: if neighborj is a BETTER NEXT HOP then
7: forwards packets to neighborj
8: end if
9: end for

10: end if
11: end while

Algorithm 4 Multi-copy Receiver
1: DATA: data packet
2: if nodei receives DATA then
3: DUPLICATE CHECKING & IN-NETWORK STORAGE CONTROL
4: caches DATA in the queue
5: end if
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storage management improves the utility of nodes’ limited storage leading to quicker recovery

from packet loss and reduced energy spent on retransmissions. It includes packet elimination and

duplicate checking. Packet elimination is an end-to-end mechanism, which is to delete confirmed

packets from a node’s storage after receiving an end-to-end acknowledgement. Duplicate check-

ing is a hop-by-hop mechanism, which is to check whether there is a copy of the received packet

before saving the packet into a node’s storage.

Room making is to eliminate less important data packets even if these data packets are uncon-

firmed. This mechanism will be triggered when congestion is caused by heavy traffic. Algorithm 5

provides a framework for applying room making. The assumption for room making is that the

total amount of space of a node memory is fixed such that if more space is used for the storage,

less space is used for the queue. Room making will decide where to remove less important data

packets, from the storage or the queue, in order to let more important incoming data packets can be

proceeded. The purpose of room making is to improve packet latency without sacrificing packet

delivery rate and energy efficiency.

Algorithm 5 RQST Receiver
1: RQST : request, RRPLY : request reply
2: if nodei receives RQST then
3: if the memory is full then
4: ROOM MAKING
5: end if
6: transmits RRPLY back to the RQST sender
7: end if

In-network storage control is to save memory for more useful data packet while providing

sufficient copies of data packets in the intermediate nodes to support reliability. Since more copies

of data packets in the network can lead to an easier loss recovery when packet loss happens. How-

ever, redundancy can degrade the network performance especially if resources are limited. The

goal of in-network storage control is to find the threshold to cut unnecessary redundancy while

providing robust network without sacrificing energy efficiency.
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2.3 Research Tools

Simulation study is the main method applied in this project. Contiki [11] system the tool

used in most of the study. Contiki is an open source operating system for memory-constrained,

low-power devices, with a particular focus on wireless Internet of Things devices. In addition to

the uIP and uIPv6 mechanisms, Contiki provides the Rime stack for lightweight network protocol

design. This study utilizes the Rime stack to design the new communication protocols for ICDT-

WSNs. Contiki system includes a simulator, Cooja [50], to simulate a network of Contiki nodes.

The nodes can be emulated nodes that emulate the entire hardware. Cooja provides an option

to track the energy consumption of nodes. Cooja is also capable to simulate a dynamic network

by taking advantage of the nodes’ positions of a mobile scenario. In this study, Bonnmotion [1]

is used to generate mobile scenarios with respect to the desired mobility models, to imitate the

intermittently connected scenarios.

2.4 Contributions

The contributions of this dissertation consist of new energy-efficient solutions for the prob-

lems of routing, flow control, error control, and storage management in ICDT-WSNs.The proposed

methods for routing and in-network storage control can provide efficient data transmission for in-

termittently connected scenarios without significant in-network storage capacity requirements. As

a result, reliable local communication can be achieved in intermittently connected scenario without

a network infrastructure and a high cost. The ideas for storage management and energy efficiency

can also reduce latency and improve resource utilization in the scenarios without serious resource

limitations.
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Chapter 3

Related Work

3.1 Transport Protocols

Due to the characteristics of ICDT-WSNs, the traditional transport protocols that are widely

used in Internet (TCP, UDP) cannot be applied in ICDT-WSNs directly [29]. User Datagram

Protocol (UDP) would not be an appropriate option for ICDT-WSN applications that require reli-

able delivery, such as military surveillance. Transmission Control Protocol (TCP) is inefficient in

ICDT-WSNs, since TCP is designed for traditional networks where packet loss is mainly due to

traffic congestion [72]. But there are many reasons other than traffic congestion causing packet loss

in ICDT-WSNs, such as sensor nodes out of memory, signal attenuation and energy exhaustion.

Therefore, the congestion control mechanism in TCP fails to determine traffic problems correctly,

leading the protocol to perform poorly. Moreover, the end-to-end reliability of TCP has to be

managed by source nodes, which can make the limited energy of sensor nodes drain quickly.

Different applications may require different levels of reliability. As a result, transport proto-

cols that can provide multiple levels of loss recovery are more flexible to meet the various require-

ments for the diversity of applications in ICDT-WSNs. Because of the multi-hop transmission in

ICDT-WSNs, congestion is more likely to happen at sensor nodes that are geographically closer to

the sink or have a higher probability of moving into the sink’s communication range. Therefore,
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effective congestion control is required to reduce packet loss, save energy, extend network lifetime

and enhance throughput.

There are two approaches for loss recovery and congestion control in ICDT-WSNs: end-to-

end and hop-by-hop. End-to-end approaches can be thought of as centralized methods. The sink

node is usually the end that manages reliability and executes congestion control. The benefits of

end-to-end approaches are: 1) the sink node usually has plenty of energy; 2) the sink node can

have a more complete view of traffic in the whole network than a single sensor node. Hop-by-

hop approaches can be thought of as decentralized methods. Every node in the network has the

responsibility to provide hop level loss recovery and congestion control. Compared to the end-to-

end approaches, hop-by-hop congestion control can react faster when a problem is detected and

the retransmission distance of hop-by-hop loss recovery is shorter. But hop-by-hop approaches

are less flexible than the end-to-end approaches in providing variable reliability levels. Due to the

intermittent connectivity, hop-by-hop approaches are more efficient than end-to-end approaches in

ICDT-WSNs.

Most of the existing transport protocols are designed for either WSNs or DTNs and cannot

meet all the requirements of ICDT-WSNs. These transport protocols provide either end-to-end reli-

ability or congestion control. To the best of our knowledge, no literature points out that combining

protocols together can achieve better performance than applying a single protocol that provides

both services. In the rest of this subsection, we focus our study on transport protocols that provide

both end-to-end reliability and congestion control. The outlined transport protocols have been pro-

posed in recent years and have some features than can be used to design transport protocols for

ICDT-WSNs.

Hop: Hop [37] provides end-to-end reliability and congestion control in a hop-by-hop man-

ner for wireless mesh network. It uses blocks as the transmission unit and disables the link layer

acknowledgement. A block consists of a number of packets. A node Ni transmits a BSYN mes-

sage to a node Ni+1 when finished forwarding a block of packets to Ni+1 to indicate the end of the

block. After Ni+1 receives the BSYN message, a BACK message is sent by Ni+1 to Ni to indicate
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the lost packets in that block. WhenNi receives the BACK message, it retransmits any lost packets

indicated by the BACK message to Ni+1. The procedure continues until the block has been com-

pletely received by Ni+1. Then Ni+1 forwards the block to its next hop Ni+2. In this manner, Hop

not only guarantees hop level reliability, but also reduces the per-packet based acknowledgements

by employing per-block based acknowledgements.

Hop applies virtual retransmission and in-network storage to decreases the number of end-

to-end retransmissions when provides end-to-end reliability. Hop assumes that when transmitting

a block along a path P , the nodes near P might overhear parts of the block. Nodes in Hop cache

the received and overheard packets. If a node A on P fails, another node B in the neighborhood

of A’s upstream node C is selected as the new relay node. Instead of retransmitting the complete

block to C, virtual retransmission allows B to only send the missing packets of the block to C.

Hop uses backpressure to provide hop-by-hop congestion control. In Hop, each node keeps

a threshold H, which is the difference between the number of blocks the node receives and the

number of blocks it transmits to the next node. After completely receiving H blocks, a node does

not respond to the arriving BSYN messages from upstream nodes until it transmits more blocks to

its downstream nodes. The next hop to forward blocks is chosen through backpressure to avoid the

heavy traffic directions.

Rate-Controlled Reliable Transport (RCRT): RCRT [51, 52] is an end-to-end reliable trans-

port protocol for WSNs, which provides centralized congestion control at the sink node and sup-

ports concurrent flows. In RCRT, the sink node maintains two lists for each flow. One is the list

of missing packets, and the other is the list of out-of-order packets. RTRC takes advantage of a

NACK-based end-to-end recovery scheme that entries in the missing packet lists are sent back to

the sources through Negative Acknowledgements (NACKs).

There are three distinct logical components in the congestion control mechanism of RCRT:

congestion detection, rate adaption and rate allocation. The intuition of the congestion detection

is that if the lost packets are recovered quickly enough, the network is not congested. The way

to measure the loss recovery time is the lengths of the out-of-order packet lists. Let ri be the
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transmission rate of source i, RRTi be the round trip time of source i, and Li be the length of the

out-of-order packet list for source i at an observation time. The number of rounds for recovering

the lost packets of source i at the observation time is measured:

Lnorm,i =
Li

riRRTi
. (3.1)

If Lnorm,i of any list is higher than the higher threshold, the network is congested. If Lnorm,i of

every list is lower than the lower threshold, the network is declared uncongested.

The rate adaptation of RCRT uses Additive increase/multiplicative decrease (AIMD) on the

aggregate rate of all flows observed at the sink. Whenever RCRT detects the network is congested,

it decreases the rate:

R(t+ 1) = R(t)M(t) (3.2)

where R(t) is the sum of currently assigned rates ri(t) for all flows i, M(t) is the multiplicative

decrease factor (Equation 3.3), and pi(t) is the current delivery ratio of the congested flow from

source i.

M(t) =
pi(t)

2− pi(t)
(3.3)

If the network is uncongested, RCRT increases the rate:

R(t+ 1) = R(t) + A (3.4)

where A is the additive increase factor, a positive constant.

After adapting the overall rate, the rate allocation component of RCRT assigns rates ri(t) to

each flow, with the sum of all ri(t) equal to R(t). The prototype of RCRT provides three rate

allocation rules: demand-proportional, demand-limited and fair, which makes RCRT flexible in

rate allocation. Demand-proportional is set so that each flow i has desired rate di, and the assigned

rate is calculated as follows:

ri(t) = diρi(t) (3.5)
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ρi(t) =
R(t)

D
(3.6)

where ρi(t) is the allocation ratio, and D is the sum of desired rates of all flows. Demand-limited

is defined such that R(t) is divided equally among all flows as long as the assigned rate ri is less

than or equal to the desired rate di. Fair is defined such that R(t) is divided equally among all

flows regardless of desired rate.

Unlike RCRT, Retiring Replicants [71] utilizes AIMD to provide a hop-by-hop congestion

control. Retiring Replicants dynamically controls the amount of replicants in a networks by let-

ting each node maintains the drop and replication counters. According to these numbers, nodes

decide to increase or decrease the replicants locally. Retiring Replicants enhances the network

performance when the underlying routing protocols are flooding based protocols. However, since

Retiring Replicants does not provide reliability, the delivery rate cannot be improved significantly.

Sensor Transmission Control Protocol (STCP): STCP [29] supports end-to-end reliability for

multiple flows and has the ability to provide multiple levels of reliability. Initially, source nodes

send session initiation packets to inform the sink of what flows they will send, such as the number

of flows, flow type, transmission rate and reliability level. After source nodes receive ACK packets

for their initiation packets, they can start to transmit data.

If a flow is a continuous flow, the sink will know the expected arrival time of the next packet

in the flow through the transmission rate sent in the initiation packet. If the sink does not receive a

packet within the expected time frame, it transmits a NACK packet with the sequence number of

the missing packet in the flow. When the sink receives the next packet, it transmits an ACK packet.

The sink keeps a list of transmitted NACK packets to deal with NACK packet loss by periodically

checking the list and resending NACK packets until all missing packets have been received. When

a missing packet is received, its entry is removed from the NACK packet list. The source nodes

retransmit missing packets after receiving NACK packets.

Each source node keeps a buffer timer to prevent buffer overflow. The buffer timer depends

on the transmission rate of packets and the network conditions. When a source node’s buffer timer
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expires, the node’s buffer is cleaned.

If a flow is an event-driven flow, the sink sends an ACK after receiving each packet. Source

nodes cache packets until corresponding ACKs are received, and then remove confirmed packets

from their buffers. Each source node keeps a retransmission timer. When the retransmission timer

of a source node expires, packets in the node’s buffer are retransmitted.

STCP treats multi-level reliability for continuous flows and event-driven flows differently.

For continuous flows, the sink measures the reliability level by the fraction of the packets received

successfully. The sink sends NACKs for retransmission only when the reliability level goes below

the required level. But for event-driven flows, source nodes calculate the reliability before trans-

mitting packets. Packets are cached at the source nodes if the reliability goes below the required

level.

Congestion control in STCP is through the binary congestion notification bit in the packet

header. Each sensor node maintains two thresholds for its buffer tlower and thigher. When the buffer

size reaches tlower, the sensor node sets the congestion notification bit in the packets it forwards

with a certain probability. When the buffer size reaches thigher, the sensor node sets the congestion

notification bit in every packets it forwards. When receiving a packet with congestion bit set, the

sink sets the congestion bit in the ACK packet. After receiving an ACK packet with congestion

bit set, the source node either adjusts the transmission rate or routes the successive packets along a

different path.

Flush: Flush [33] provides end-to-end reliability and hop-by-hop congestion control for one

flow in a network at a time. Data is divided into packets and sent in a pipelined scheme by Flush.

The end-to-end reliability is guaranteed through selective negative acknowledgement (NACK).

The sink initializes the transmission by sending a request to a target node. A source node sends

packets after receiving a request. The sink keeps track of received packets, and after an estimated

round-trip-time the sink sends a NACK packet with the sequence numbers of the first three missing

packets. This procedure continues until the sink receives all required packets.

Flush uses a hop-by-hop rate control mechanism to avoid congestion. The algorithm follows
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two policies: 1) a node transmits only when its successor is free from interference; 2) the sending

rate of a node cannot exceed the sending rate of its successor. So the sending interval at node i is

the maximum value of either the minimum delay di or the sending interval of its successor node

Di−1. The minimum delay is the sum of δi the time node i takes to transmit a packet, δi−1 the time

node i − 1 transmits the packet and fi−1 the time the packet moves out of the interference range

of node i − 1. When a node’s queue length exceeds a threshold, the node temporarily doubles its

transmission time δ to increase the delay.

Burst Forwarding: Burst forwarding [16] alone does not provide end-to-end reliability and

congestion control, but it provides a way to employ TCP in WSNs. Burst forwarding is a pipelined

forwarding protocol over TCP that can provide high throughput and low energy consumption.

Burst forwarding supports single flow transmission, and applies multi-channel operation to achieve

high throughput.

Burst forwarding performs clear channel assessments (CCA) before starting transfer a burst.

If a sender tests the channel is idle, it starts to transfer a burst. If a receiver tests the channel is

not idle, it starts to listen. Packets are forwarded in burst. When a receiver receives a packet, it

sends an acknowledgement back to the sender. After received an acknowledgement, a sender keeps

forwarding the following packets. If no acknowledgement received by a sender after forwarded a

packet, the sender retransmits the packet.

Burst forwarding provides two-level retransmissions: link-layer retransmission and MAC-

layer retransmission, which can reduce the number of end-to-end retransmissions of TCP. Link-

layer retransmissions reduce the number of data transfers between the link and transport layers

since the messages can be stored in the radio transceiver. Instead of retransmitting a lost packet,

the MAC-layer retransmission transmits the lost packet with the new packets in burst after a back-

off time.

Asymmetric and reliable transport (ART) mechanism: ART [70] provides different levels of

reliability for two different types of flows. Flows in a network are classified into upstream flows,

which are from sensors to the sink, and downstream flows, which are from the sink to sensors. ART
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assumes these two types of flows have different loads and require different levels of reliability. A

downstream flow has lighter load but requires higher reliability that all packets of this flow should

be received by the sensors. An upstream flow, on the contrary, has heavier load but requires lower

reliability that the sink does not have to receive every packet as long as it acquires the event.

ART also assumes that congestion seldom happens in downstream flows but frequently occurs in

upstream flows.

ART proposes a centralized, energy-aware sensor classification algorithm to elect a minimal

set of nodes that have higher energy levels and covers the whole target area. The nodes in this set

are called essential nodes (E-nodes), and all the other nodes in the network are called non-essential

nodes (N-nodes). This algorithm is executed periodically in order to prolong the network lifetime.

ART provides reliability by using asymmetric acknowledgement (ACK) and negative ac-

knowledgement (NACK) between E-nodes and sink. In a downstream transfer, the sink sends a

set of queries to an E-node. Each query has a sequence number. If the query is the last one in the

set, the sink sets the Poll/Final (P/F) bit. When an E-node receives the queries, it checks sequence

numbers to detect query loss. When a gap in sequence numbers is detected, E-node sends a NACK

with the sequence numbers of the lost queries back to the sink. The sink retransmits the lost queries

after receiving a NACK. When an E-node successfully receives all queries, it checks the P/F bit in

received queries. If the P/F bit is set, the E-node sends a ACK to sink. The sink periodically sends

message with P/F bit set until the ACK is received.

For upstream reliability, ART proposes a low overhead ACK mechanism. When a new sens-

ing value is obtained, an E-node decides whether the value is an event-alarm. If it is an event-alarm,

the E-node sets the Event Notification (EN) bit in a new message and saves it into the buffer until

the message gets confirmed. Otherwise, the E-node sends a new message to the sink and removes

it from the buffer. The sink only sends ACKs to messages with the EN bit set. If an E-node does

not receive an ACK for an event-alarm after a timeout, it retransmits the event-alarm message.
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ART provides congestion control only for upstream flows. The congestion control is handled

by E-nodes in a distributed manner. When an event-alarm is sent, the E-node triggers a congestion

timeout (CTO). CTO is dynamically determined through the round trip time (RTT). If an ACK

is not received after the CTO, the E-node broadcasts a congestion alarm (CA) message to its

neighboring N-nodes. After receiving a CA message, N-nodes will temporarily stop sending their

sensing messages. If the E-node still does not receive the ACK after another CTO period, it will

increase the broadcast hop-count. If the ACK is received, a congestion-safe message is announced

by the E-nodes to resume normal operation on the network.

Table 3.1 gives the comparison of the previously discussed transport protocols (Retiring

Replicants [71] and Burst Forwarding [33] are not included in the table, since Retiring Replicants

does not provide reliability and Burst Forwarding needs to work with TCP to provide end-to-end

reliability and congestion control). Except Hop, all the other transport protocols rely on end-to-end

mechanisms to provide end-to-end reliability and congestion control. Hence they are less suitable

to ICDT-WSNs. In addition, energy efficiency and buffer management are seldom taken into con-

sideration. Without effective energy efficiency methods and buffer management, the limitation on

the sensor node energy and storage can degrade the performance of these protocols in ICDT-WSNs.

Therefore, transport protocols for ICDT-WSNs have improvement space in disconnection-oriented

design, energy efficiency and buffer management in the future.

3.2 Routing Protocols

Routing is a challenging topic in ICDT-WSNs, since traditional routing protocols may not be

applicable due to the large requirement of memory for complete link-state information. Existing

network protocols can be divided into three categories: single-copy [69] (or forwarding), multiple-

copy [69] (or flooding) and hybrid. Single-copy protocols transmit only one copy of a message

along a carefully selected path to the destination. Multiple-copy protocols transmit several copies

of a message to sensor nodes within a network, and expect that at least one copy will reach the
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destination. [48, 44] point out that multiple-copy protocols, such as epidemic based protocols [22],

can improve the delivery capacity. However, Xu and Wang [84, 80] have proved that in scenarios

where the network connectivity is highly unstable, the buffer occupancy increases as the network

size grows. The trade-offs between single-copy and multiple-copy are: 1) multiple-copy protocols

can operate with minimal network information, while single-copy protocols need to know more

network information to calculate a good path; 2) multiple-copy protocols may cause unnecessary

redundancy, but single-copy protocols have to employ expensive packet recovery due to packet

loss.

Network protocols can be grouped into proactive or reactive protocols, depending on when

they calculate the routing path. In proactive network protocols, all routes are computed and main-

tained before they are needed. Reactive network protocols calculate routes only when needed. To

find a good path from a source to a destination is comparatively easier for proactive network pro-

tocols, because sensor nodes have a complete view of the network connectivities. But proactive

network protocols consume more sensor resources to compute and maintain the routing tables, es-

pecially when network topologies change frequently. In reactive protocols, sensor nodes can easily

compute and maintain routing tables, since the sizes of routing tables are smaller. However extra

delay will be introduced due to the path computation before sending a message. Hybrid network

protocols combine both approaches.

In ICDT-WSNs, there are times when a complete path from a source to a destination does

not exist. As a result, the network protocols that assume the existence of a complete path from

a source to a destination can perform poorly. Because of the limitations on energy and storage

of sensor nodes, the network protocols that are not energy efficient and storage friendly are less

appropriate for ICDT-WSNs. Zhang gave a comprehensive survey for routing in intermittently

connected networks in [89] from the perspective of mobile ad hoc networks (MANET) and DTNs.

In the rest of this subsection, we outline several recently proposed network protocols for intermit-

tently connected scenarios, and evaluate their network characteristics, node attributes and protocol

properties from the perspective of ICDT-WSNs.
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H + 1 hop: H + 1 hop [22] is a multiple-copy epidemic routing protocol for DTNs. It

proposes an approach to reduce the network overhead without sacrificing the delivery speed and

delivery rate. H + 1 hop introduces a threshold called equilibrium point, and divides the forwarding

process into two sub-processes according to this threshold. The equilibrium point is the number

of duplicate copies of a packet in a network. In epidemic routing it is critical that the amount

of infective nodes grows quickly when the number of copies of a packet is low, conversely, the

number of infective nodes should decrease as the number of copies of a packet grows. In the first

sub-process, H + 1 hop lets nodes distribute the packet to non-infective nodes in the transmission

range. After the number of duplicate copies of the packet reaches to the equilibrium point, H +

1 hop enters into the second sub-process, in which nodes that carry a copy of the packet do not

distribute to nodes other than the destination.

Convergent Hybrid-replication Approach to Routing in Opportunistic Networks (CHARON):

CHARON [63, 64] aims to provide a simple but efficient solution to address the routing problem in

highly mobile, sparse sensor networks where the future topologies of networks are unpredictable.

It minimizes the number of messages exchanged and provides a way for urgent messages to be

delivered quickly.

CHARON uses estimated delivery delay (EDD) as the main routing metric. It forwards mes-

sages from nodes with higher EDD to nodes with lower EDD. The EDD of a node nj is the smallest

sum of the EDDni
and ICTni

among its neighbors (Equation 3.7), where EDDni
is the EDD of

its neighbor ni, ICTni
is the inter-contact time between nj and ni and K is the set of neighbors of

nj .

EDDnj
= min{EDDni

+ ICTni
},∀ni ∈ K (3.7)

CHARON is an energy and buffer space aware protocol. Other than EDD, CHARON employs

a customizable multi-variable utility function to calculate routing scores, which includes battery

level, free buffer space and other application-specific ones combined in any number of ways. In

order to save energy and reduce the opportunity of a routing loop, messages are forwarded to nodes
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with lower EDDs and higher utility scores than the one holding the message.

CHARON is a hybrid network protocol. Nodes forward non-critical messages while keeping

a local copy of the messages. The local copies are called Zombies, which cost no extra energy,

but do utilize node memory, and can only be directly delivered to the sink. Whenever a regular

message is received by the sink, its corresponding zombie is removed. With urgent messages, a

flooding mode similar to PROPHET [47] is used to make messages arrive at the sink quickly. With

high-priority messages, EDD is the only metric used in path calculation in order to minimize the

latency. With low-priority messages, both EDD and the utility score are used in order to extend the

network lifetime.

Replication-Based Efficient Data Delivery Scheme (RED) and Message Fault Tolerance-

Based Adaptive Data Delivery Scheme (FAD): [81] provides two data delivery schemes for delay/fault-

tolerant mobile sensor networks (DFT-MSN). Both schemes provide data transmission and buffer

management mechanisms.

Data transmission in RED is based on nodal delivery probability, which indicates the likeli-

hood that a node can deliver a data message to the sink. Let ξi denote the delivery probability of

node i, which is initialized to 0. Each sensor node maintains a timer ∆ to calculate its ξ. If node

i could not transmit any data message during ∆, ξi is reduced. If node i transmits a data message

to another node k, ξi is updated according to ξk. Data messages are stored in a FIFO queue at

each node. When node i has a message to send and moves into the communication range of a

set of nodes, it earns the delivery probability and available buffer space of each node via simple

handshake messages. Then node i transmits the message to neighbor j with available buffer space,

the highest delivery probability in the set of neighbor which is also higher than the node’s own

delivery probability, ξj > ξi.

Message management in RED uses an erasure-coding approach to address the trade-off be-

tween delivery ratio/delay and overhead. The table of delivery probability p and corresponding

optimal number of blocks b and minimum replication overhead S is stored in each source node.

Whenever a source node generates a message, it checks the table to find the optimal b for its current
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delivery probability ξ (ξ = p), and encodes the data messages into S × b data blocks, which are

then put into the queue for transmission.

FAD is an advanced version of RED that avoids the inaccuracy of the erasure-coding ap-

proach used in RED. It takes advantage of both the nodal delivery probability introduced in RED

and the message fault tolerance that indicates the redundancy of a message in the network as well

as message priority. Unlike RED, nodes that employ FAD keep a copy of the message after trans-

mitting it to another node, which leads to multiple copies of the message and redundancy in the

network. FAD assumes that each message carries a field to keep its fault tolerant value, which is

defined as the probability that at least one copy of the message is delivered to the sink by other

nodes in the network. Let F j
i denote the fault tolerant value of message j in the queue of node

i. F j
i is initialized to zero when a message is generated. After a node i broadcasts a message j

to its neighbor nodes, there are Z + 1 copies of message j in the network, where Z is the set of

neighbor nodes of node i. The fault tolerance value of the message transmitted to neighbor node

ψz is updated according to Equation 3.8.

F j
ψz

= 1− (1− [F j
i ])(1− ξi)

Z∏
m=1,m6=z

(1− ξψm). (3.8)

The fault tolerance value of the message at node i is updated according to Equation 3.9.

F j
i = 1− (1− [F j

i ])
Z∏

m=1

(1− ξψm). (3.9)

In Equation 3.8 and Equation 3.9, [F j
i ] is the fault tolerance of the message j in the queue of node

i before being transmitted.

Fault tolerance value is used to manage storage. The higher the fault tolerance value is, the

less important the message is, since more copies of the message are in the network. To decide

whether to store an arriving message M at a node follows two rules: 1) if the queue of a node is

full and the fault tolerance of the message at the end of the queue is larger than the fault tolerance

of M , M is dropped. Otherwise, the message at the end of the queue is dropped, and M is inserted
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into an appropriate position in the queue according to its fault tolerance; 2) If the fault tolerance of

M exceeds a threshold, M is dropped even if the queue is not full.

Data transmission in FAD is based on the delivery probability introduced in RED. When

node i has a message j at the front of its queue ready to transmit, and is within the communication

range of a set of nodes Z, node i multicasts message j to all nodes in Z that have higher delivery

probabilities than node i and available buffer space. Meanwhile, node i sets the fault tolerance of

message j to just below the threshold in order to reduce unnecessary transmission overhead.

Shortest path routing protocol: [31] proposes a shortest path network protocol for DTNs,

which is basically a link-state protocol in which each node has a complete view of the network

topology. It assumes that the packet loss is mainly due to buffer overflow, and the waiting time

for connections is the main factor of end-to-end delay. Shortest path routing protocol is based on

traditional network routing, such as OSPF, but modifies the decision making strategy for a delay-

tolerant environment.

The shortest path routing protocol uses per-contact routing, which re-computes routing tables

when a contact arrives. In order to improve performance, it reduces the time for waiting for a better

connection by using short circuiting. Short circuiting temporarily assigns an available contact a

cost of zero in nodes’ local routing tables whenever a contact becomes available. This temporary

value is only used to compute the shortest route, but not propagated to other nodes. The combina-

tion of per-contact and short circuiting guarantees routing decisions are made with the most recent

information and employs serendipitous contact. When making a new connection, nodes exchange

summary vectors that list link-state tables received by nodes. Each link-state table has a sequence

number, so that nodes can identify the most recent table. After exchanging missing updates, nodes

re-compute routing tables and forward messages to other nodes. The Minimum Estimated Expected

Delay (MEED), as shown in Equation 3.10, is the metric used in this protocol to assign a cost to
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each contact.

MEED =

n∑
i=1

d2
i

2t
, (3.10)

where n is the total number of disconnected periods, di is the duration of a given disconnected

period, and t is the total time interval to observe these disconnections.

Spray and Focus: Spray and Focus [68] is a hybrid network protocol for intermittent con-

nected networks. The protocol follows the basic idea of Spray and Wait [66] but improves the

Wait phase by letting each relay forward its copy further. It assumes that nodes move slowly and

periodically transmit beacons to recognize each other’s presence. Each node maintains a summary

vector, a set of timers and a set of utility values. A summary vector lists message IDs a node has

stored and relayed. A timer records the time since two nodes last saw each other. A utility value

indicates the possibility a node can deliver a message to another node.

In Spray phase, the source node creates L forwarding tokens for a message it generates. When

two nodes meet, they exchange their summary vectors and check for common messages. If a node

A carrying a message copy with forwarding tokens n > 1 encounters a node B with no copy of

this message, A spawns and forwards a copy of the message with bn/2c tokens to B, and reduces

the tokens of its own copy to dn/2e. Initially, n = L. But if a node has a message copy with only

one token, it switches to Focus phase.

In Focus phase, the forwarding decision is according to the node’s utility. A node A forwards

to node B a message destined for node D, if and only if Equation 3.11 is true.

UB(D) > UA(D) + Uth, (3.11)

where UB(D) is the utility value of B for D, UA(D) is the utility value of A for D, and Uth is a

utility threshold. The timer is one possible utility metric. Let τi(j) denote the timer of node i for
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node j in the network. Initially, set the timer according to Equation 3.12.

∀i, j : τi(i) = 0, τi(j) = ∞ (3.12)

Whenever i encounters j, update the timer according to Equation 3.13.

τi(j) = τj(i) = 0 (3.13)

At every clock tick, the timer is increased by one (Equation 3.14).

τi(j) = τi(j) + 1, τj(i) = τj(i) + 1. (3.14)

According to the forwarding rule in the focus phase, when node A encounters node B at

distance dAB, it can decide whether B is the next node to forward a message copy according to

Equation 3.15,

∀j 6= B : τB(j) < τA(j)− tm(dAB), (3.15)

where tm(dAB) denotes the expected time node A takes to move to node B under a given mobility

model m.

Each message carries a time-to-live value. If the value expires, the message is removed from

the node buffer and its record is also deleted from the node’s summary vector.

TTL-based routing (TBR): TBR [56] aims at maximizing the delivery ratio with minimum

network overhead in mobile opportunistic networks through a hybrid scheme. The time-to-live

(TTL) of a message is used to manage a node buffer and indicates the delivery priority of messages.
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In TBR, each message has a replication count field (Lk), a TTL field and a list of previously

visited nodes (LVN). The replication count field indicates how many copies of this message a

node can spray. The Lk is set to a user-defined algorithm parameter L initially, and updated after

each successful message transmission. The TTL field specifies the valid time (in minutes) of the

message in the network. The LVN is used to avoid routing loop. A message is only forwarded to

neighbors that are not in the message’s LVN.

Each node maintains a forward list, a delete list and an acknowledged message list. The

forward list stores the forwarding priorities of messages. When a contact becomes available, the

message on the top of the list will be delivered first. Let Pkf
denotes the forwarding priority of the

message mk (Equation 3.16),

Pkf
=

1

Hk × TTLk × sk
, (3.16)

where TTLk is the TTL of mk, Hk is the hop count of mk and sk is the size of mk. The delete

list stores the a prioritized list of messages to be deleted. If a node buffer is full when it receives

another message with higher priority, the message at the end of the list will be deleted from the

buffer. Let Pkd
denote the deleting priority of the message mk (Equation 3.17),

Pkd
=
Lk
sk
, (3.17)

where Lk is the replication count field value of mk, and sk is the size of mk. The acknowledged

message list records the messages that have been delivered successfully.

When two nodes encounter each other, they first exchange their acknowledged message lists.

If nodes have messages in their buffer that are in the acknowledged message lists, the messages

are removed. If a node has some messages destined to the other node, it transmits those messages.

If a node has forwarding messages, it picks the messages from the top of the forward list as long

as the messages meet the conditions Lk > 1, sk < Smax and the other node is not in the messages’

LVNs. Smax is the maximum transmittable message size of a contact. TBR calculates it every time

when a new contact is available. The Lk of each message is divided by 2 before forwarding a copy
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to the other node. When Lk = 1, a message can only be delivered to the destination directly or

dropped from the buffer when its TTL expires.

Considerations on energy efficiency, buffer management and computation complexity are

necessary and important to network protocols in ICDT-WSNs. Table 3.2 gives a comparison of the

protocols mentioned in this subsection according to these considerations. As can be seen, none of

these network protocols meets all requirements of ICDT-WSNs. The reason is that these network

protocols are designed for DTNs, opportunistic networks, MANETs and DDTMs [12], but not for

ICDT-WSNs. Hence, energy efficient network protocols for ICDT-WSNs with buffer management

and low computation complexity are a future research direction.

3.2.1 Information Dissemination

To disseminate information to nodes in the region of interest (ROI) has been extensively

studied in mobile networks. Due to the uncertainty of the information destinations, the protocols

used to disseminate information are usually operate without knowledge of the destinations. In

vehicular ad hoc networks (VANETs), broadcast is a wildly applied technique to disseminate in-

formation [73, 9, 61, 88]. In order to provide efficient information dissemination, much of existing

work in VANETs aims to mitigate the broadcast storm [74, 82].

Although broadcast storm mitigation can enhance the protocol efficiency, the amount of en-

ergy spent on duplicate information transmissions is significant. Especially in intermittently con-

nected mobile wireless sensor networks where the nodes are with strict power limitations, those

broadcast mechanisms can drain energy quickly. Epidemic routing [75] is a flooding based pro-

tocol for intermittently connected mobile wireless sensor networks. It utilizes summary vector

exchange to eliminate the transmissions of duplicate information. However, Epidemic routing

aims to deliver information to every node in a network, therefore, amount of energy is consumed

by the transmissions to the nodes outside of the ROI that are not interested in the information.

Many flooding based protocols try to enhance the efficiency of Epidemic routing by reducing

unnecessary transmissions. However, most of them reduce unnecessary transmissions by using the
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knowledge of the destination information. Therefore, these mechanisms cannot provide efficiency

in regional information dissemination scenarios, since the destination information is uncertain in

such scenarios. Copy-control is a mechanism to reduce unnecessary transmissions [67, 68, 49, 56].

The number of allowed copies of a packet is calculated through the estimated delay to deliver a

packet to the destination. When the destinations are uncertain, the estimated delay is hard to

predict. Another approach is to calculate the probability to meet with nodes in a network, and

rely on the calculated probabilities to route packets to nodes that are more likely to deliver the

packets to the destinations [47, 21]. These methods can eliminate unnecessary transmissions to the

nodes that are less likely to meet with the destinations. However, they are infeasible in the regional

information dissemination scenarios where the destinations are unknown. H + 1 hop [22] takes

advantage of the SIR model of Epidemic Theory to reduce unnecessary transmission. It is difficult

to apply SIR model in the ROI of a target where the nodes in the ROI are highly unstable.

Other recent papers [79, 46] discuss information dissemination from different perspectives: a

study of the dissemination properties under Levy Mobility is given in [79], a study of dissemination

in static energy-harvesting wireless sensor network is given in [46].

3.3 Link Layer

The communication media of ICDT-WSNs is a wireless channel whose nature is broadcast.

This feature makes the medium access and data transmission over the common medium compli-

cated. Moreover, restrictions on nodes’ energy, storage and computation capability, asymmetric

links, dynamic topology, and the large number of nodes of a network make media access control

(MAC) protocols for WSNs distinct from the protocols for traditional networks.

Due to the power limitation of sensor nodes, energy efficiency is a primary goal in MAC

protocol design. The scalability of the network size, topology and node density is a further goal.

Because all nodes in a WSN cooperate together to accomplish a mission, the requirements on

fairness, latency, throughput and bandwidth utilization are less strict than in traditional networks.
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There are four factors that can drain energy quickly without effective management: collisions,

overhearing, overhead and idle listening. Much work on addressing these four issues has been

done over the past decades, which can be divided into four groups: scheduled protocols, protocols

with common active periods, preamble sampling protocols and hybrid protocols that combine the

techniques used in the former three groups [5].

In scheduled protocols, all nodes in the network follow a well-designed schedule to commu-

nicate. Time division multiple access (TDMA) is a canonical module. A well-designed schedule

can avoid collisions and overhearing, and can minimize idle listening. However, to design such a

schedule for a large WSN is overly complex. Additionally, the scalability and flexibility of sched-

uled protocols are limited in scheduled protocols.

In common active period protocols, sensor nodes have common active periods to commu-

nicate. So synchronization is required in this category of protocols. These protocols reduce the

energy spent in idle listening, but bring up the problem on the suitable length of active slots and

the problem of sleep delay. Even though sleep delay is not a significant problem in ICDT-WSNs,

the length of the active slot is tightly relevant to energy efficiency.

Preamble sampling protocols reduce the energy spent on synchronization by using long

preambles, but the energy consumption is transferred from receivers to transmitters. Receivers

only need to wake up for a short period of time to sense the channel, but transmitters need to spend

more energy transmitting long preambles. This is acceptable when the traffic is light; otherwise,

long preamble transmitting will consume too much energy. Moreover, if collisions happen, the en-

ergy spent on long preambles becomes increasingly problematic. The duty cycle is also limited in

this type of MAC protocols, since the length of preamble is relevant to the channel check interval

of nodes.

Most of the MAC protocols for WSNs are suitable for ICDT-WSNs when the propagation

delay in networks is normal (e.g., RF communication in terrestrial environment). However in the

scenario where the propagation delay is very long (e.g., acoustic communication in underwater

environment), propagation-delay tolerant MAC protocols are required [45, 85]. In this subsection,
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we focus our study on MAC protocols designed for the scenarios where propagation delay is not a

significant problem. We outline several protocols that are well known or recently designed in each

category, and study their advantages and disadvantages.

Traffic-adaptive medium access protocol (TRAMA): TRAMA [58] assumes there is a single,

time-slotted channel for both signaling and data transmission, and adequate synchronization is

attained. Time is organized as signaling slots and transmission slots. Signaling slots are random-

access, and transmission slots are scheduled-access. TRAMA consists of three components: the

Neighbor Protocol (NP), the Schedule Exchange Protocol (SEP) and the Adaptive Election Algo-

rithm (AEA). TRAMA starts in signaling slots in which nodes use NP to obtain two-hop neigh-

borhood information. Then during transmission slots, nodes use SEP to build and maintain traffic-

based schedules for the one-hop neighbors before deciding their state (transmit, receive or sleep)

by AEA. AEA selects collision-free transmitters and receivers based on the information from NP

and SEP. In this way, nodes sleep until they need to transmit or receive in the transmission slots.

Multi-Channel Lightweight Medium Access Control (MC-LMAC): MC-LMAC [27] is a multi-

channel access scheduled MAC protocol, which aims at improving the achievable throughput in

WSNs rather than energy efficiency. In MC-LMAC, each node chooses one time slot from a

channel in a distributed way, which guarantees that the same slot/channel pair is not used by more

than one node which avoids conflicting transmissions.

Nodes in MC-LMAC transit between five states: initialization, synchronization, discovery,

time-slotted channel selection, and medium access. When nodes join the network, they begin in

the initialization state in which nodes sample the medium for incoming packets to synchronize

with the network. If such packets are received, nodes move into the synchronization state and

synchronize with the network by the current time slot information and frame number carried in

the packets. Then, nodes follow the schedule to receive packets in the upcoming slots. If nodes

have data to send, they pick up a random wake-up frame in channels. Before the wake-up frames,

nodes enter the discovery state. In this state, each node gets a list of free time-slots and channels

in neighborhood. In the list, each entry represents one channel, which is a string of 1s or 0s that
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indicates whether the slot is used or free with the length of the string equaling the number of time-

slots in that channel. After the discovery state, nodes come into the time-slotted channel selection

state. In this state, every node executes bitwise OR operation against the list to pick a free time-

slot channel pair that is not used by the node’s one-hop neighbors. If a node successfully chooses

an empty time-slot, the node proceeds into the media access state, otherwise, it goes back to the

synchronization state. In the media access state, nodes can transmit data in their selected time slots

of the selected channels. During other slots, nodes detect potential incoming packets. If collisions

are detected, the nodes go back to the synchronization state. If a synchronization error happens,

the nodes go back to the initialization state.

S-MAC: S-MAC [86] assumes that applications have long idle periods, and can tolerate some

latency. S-MAC reduces idle listening by letting nodes sleep for a fixed period and then wake up

for the same duration to listen for any node that wants to talk to it. In order to reduce control

overhead, neighboring nodes need to synchronize to have the same listen/sleep schedule. In this

way, each node maintains a schedule table, which stores the schedules of all its neighbors. In the

beginning, nodes need to build the schedule tables. First, every node listens for a period of time. If

no schedule is received during this time, it randomly chooses a time to go to sleep and broadcasts

a SYNC message with its schedule to inform that it will go to sleep after t seconds. If a schedule

is detected before the node chooses its own schedule, the node sets its schedule to the received

schedule, and rebroadcasts the schedule after a random delay td to inform that it will go to sleep

after t − td seconds. If a node receives a different schedule after it has set and broadcasted its

own schedule, it adopts both schedules. The listening duration is divided into two parts. The first

part is for nodes to synchronize to have the same listen/sleep schedule through SYNC packets.

Nodes that receive SYNC packets adjust their timers right away. The second part is for receiving

RTS (request to send) packets. Both parts are divided into several time slots for senders to detect

collisions (carrier sense).

In order to avoid collisions, S-MAC sets a duration field in each transmitted packet to indicate

how long the remaining transmission will be. If a node receives a packet that is not destined for
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it, the node records the duration field value called network allocation vector (NAV) and sets a

timer. NAV indicates how long the receiving node should keep silent. Once the timer starts, the

NAV value is decreased until it reaches to zero. When a node has data to send, it first checks the

current NAV value. If the NAV value is zero, the node performs carrier sense. Broadcast packets

are sent without using RTS/CTS (clear to send) packets. Unicast packets are sent after exchanging

RTS/CTS. After a receiver receives a unicast packet, it sends ACK back to the sender. If a node

fails to acquire access to the medium, it goes back to sleep until the receiver is free and listens

again.

To avoid overhearing, S-MAC let nodes that hear the RTS or CTS packets sleep until the

current transmission is over. When a node receives a packet destined for other nodes, it updates its

NAV by the duration field in the packet.

S-MAC reduces the resources spent on retransmitting a long data packet by divided the packet

into many small fragments and transmits them in a burst. A sender waits for ACK from its receivers

for each fragment. If an ACK is not received, the sender extends the reserved transmission time

for one more fragment, and retransmits the packet.

Timeout-MAC (T-MAC): T-MAC [76] follows the basic idea of S-MAC with the active/sleep

schedule and the way nodes decide their schedules. However, instead of using the fixed duty cycle

in S-MAC, T-MAC introduces an adaptive duty cycle to improve energy efficiency. In T-MAC,

nodes periodically wake up to communicate with their neighbors, and then go back to sleep until

the next frame. During the sleep time, new generated messages are queued. The communication

between nodes follows the sequence of RTS/CTS/DATA/ACK similarly to S-MAC. In the active

period, nodes keep listening and potentially transmit. When the active period ends, nodes go back

to sleep. If no active event occurs for a time TA, the active period ends, which is called the

adaptive duty cycle. In order to optimize the sleep period, T-MAC moves all communication to

the beginning of the active time in a burst. The minimum length of TA should be larger than the

maximum contention duration and the time to exchange RTS and CTS. The length of TA is a key

factor in energy consumption. The longer TA is, the more energy is consumed. By reducing the
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active duration, T-MAC can achieve better energy efficiency.

The adaptive duty cycle can cause an early sleep problem in which a node goes to sleep when

its neighbor still has data to send to it. To solve this problem, T-MAC uses the future-request-to-

send (FRTS) packet, which indicates how long a node needs to be awake. A FRTS packet is sent

right after a node overhears a CTS message destined for another node. When a node receives a

FRTS, it will stay active for the time indicated by the FRTS rather than going back to sleep. Then

its neighbor can send data to it after the channel is clear. This feature increases the throughput of

T-MAC by introducing additional overhead.

B-MAC: B-MAC [54] is a preamble sampling protocol that searches for outliers during chan-

nel arbitration. If there exists an outlier from the received signals during the sampling period,

B-MAC declares the channel is clear. If five samples are taken and no outlier is detected, the

channel is busy. So a good estimation of noise floor is important in this procedure. In B-MAC,

each node takes signal strength samples at a time when the channel is assumed to be clear, such as

immediately after transmitting a packet. The average value of the samples is used as a simple low

pass filter for the noise floor estimate.

During the low power listening (LPL) state, a node wakes up and turns on its radio to check

activity. If no activity is detected, the node is forced back to sleep after a timeout. If activity is

detected, the node turns power on and stays awake for the time required to finish receiving the

incoming packet. After reception, the node goes back to sleep. The length of preamble should be

at least the interval that the channel is in LPL state.

X-MAC: X-MAC [7] ameliorates the overhearing problem by dividing one long preamble into

a series of short preamble packets with a small gap between every two packets, during which the

transmitter pauses transmitting. Each preamble packet contains the ID of the target node. When a

node wakes up and receives a preamble packet, it looks up the target ID in the packet. If the node

is not the target, it goes back to sleep immediately. If it is the target, it sends an acknowledgement

to the transmitter during the gap between the preamble packets. After the transmitter receives an

acknowledgement, it stops transmitting preamble and starts sending the data packet. Similar to
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B-MAC, the length of the preamble sequence must be greater than the maximum sleep period of

receivers.

When multiple transmitters want to send packets to the same node, there is no need to send

preambles to the node that is already awake. X-MAC addresses this problem by letting the re-

ceiver keep awake for a short period of time after receiving a data packet. During this period, if

a transmitter hears the acknowledgement from its target node while waiting for a clear channel, it

waits for a random back-off time and then transmits without sending any preamble. The back-off

time should be long enough to allow the on-going transmission to finish, and the active time of the

receiver after receiving a data packet should be equal to the longest back-off time.

Zebra MAC (Z-MAC): In Z-MAC [59], carrier sense multiple access (CSMA) is used inside

a large time division multiple access (TDMA) slot, such that Z-MAC can utilize CSMA when

the traffic is light and switch to TDMA if the traffic becomes heavy. Initially, each node runs

the DRAND [60] algorithm to be assigned a time slot that is unique within the node’s two-hop

neighborhood. In low contention level (LCL), a node can compete for any time slot. However, in

high contention level (HCL), a node can compete for a slot only when it is the owner of the slot or

a one-hop neighbor of the owner of a slot. When a node has data to transmit, it always performs

carrier sense first and transmits after the channel is clear. If the node is the owner of a slot, it has

the highest priority to send. Otherwise, it needs to wait a random back-off time, after which the

node can transmit in that slot if the slot is still unused. The back-off time needs to be long enough

in order to allow the owner access to the slot.

A node is in the HCL when it receives an explicit contention notification (ECN) message

from a two-hop neighbor within the last tECN period. Otherwise, it is in LCL. ECN messages are

sent by a transmitter when it detects the channel is in high contention by measure the noise level

of the channel. When a node receives an ECN message, it sets a local HCL flag. The HCL flag is

automatically reset unless the node receives another ECN message within tECN . The system sets

the refresh time tECN .
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As we can see from table 3.3, each link-layer protocol has its own benefits and drawbacks.

Most of the protocols are either suitable for light contention scenarios or heavy contention sce-

narios. While those protocols suitable for both scenarios have high computation complexity. For

applications whose traffic is predictable, most existing protocols can be applied. However, for

those unpredictable situations, protocols that are without high computational complexity and can

handle different scenarios and are preferable.

3.4 Open Problems and Research Directions

In Table 3.4, we check the communication protocols mentioned in the previous section against

the requirements of ICDT-WSNs. From the table, we can see that seldom protocols meet all

requirements, since the existing communication protocols are not designed for ICDT-WSNs. As

a result, there is a lot of space for further research. In this section, we outline some of the open

problems in ICDT-WSNs and suggest the research directions in addressing these problems.

3.4.1 Open Problems and Research Directions in Transport Protocols

In Section 3.1, we discuss the existing transport protocols, and compare several protocols

designed in recent years from reliability, congestion control, energy efficiency and buffer manage-

ment in Table 3.1. Due to the intermittent connection of ICDT-WSNs, the hop-by-hop transport

protocols that provide end-to-end reliability and congestion control through hop-by-hop manner

are more appropriate. However, existing hop-by-hop transport protocols do not take energy effi-

ciency and buffer management into account. As a result, energy efficiency and buffer management

become the open problems in transport protocols.

In order to be energy efficient and storage friendly, an effective buffer management mecha-

nism in a transport protocol can save space for more important messages, and can reduce energy

consumption in unnecessary retransmissions. Better-designed transport protocols can take better

advantage of the information from the control messages to improve reliability, congestion con-

44



trol and buffer management. As a result, the energy consumption can be reduced by reducing the

volume of the control message traffic.

Recently proposed hop-by-hop transport protocol [42], Acksis, providing both reliability and

congestion control, addressed the buffer management problem by taking advantage of the per-block

based acknowledgement. Through this mechanism, Acksis can enhance the network delivery rate

by employing in-network storage regardless of the traffic situations of ICDT-WSNs.

3.4.2 Open Problems and Research Directions in Network Protocols

Section 3.2 introduces the categories of existing network protocols. Table 3.2 gives the com-

parison for several network protocols designed in recent years from network characteristics, node

attributes and protocol properties. Reactive protocols are more suitable for ICDT-WSNs due to

the intermittent connectivity. Reactive protocols for ICDT-WSNs should also consider the energy

efficiency, buffer management and computation complexity. There are several reactive/ protocols

with simple computation complexity, however, only a few of them take energy efficiency and buffer

management into consideration. Hence, energy efficiency coupled with buffer management is also

an open problem in network layer protocols.

We argues that hop-by-hop transport protocols are more appropriate to ICDT-WSNs, hence,

the cross-layer protocols that combine reactive network protocols with hop-by-hop transport pro-

tocols is an approach for the open problems of transport and network layers. Employing such a

cross-layer protocol can introduce less overhead than employing a transport protocol and a network

protocol. As a result, this type of cross-layer protocols can be more energy efficient. In addition,

the storage management mechanism of this type of cross-layer protocol can address the insufficient

storage problem in both transport layer and network layer.

Recently proposed scheme SMITE [24] addressed the storage limitation of nodes by apply-

ing Bloom filter. Bloom filter can improve the storage capability of nodes with low computation

complexity. However, it introduces the complexity to higher layer when providing reliability and

integrity. Diff-Max [62], another recent work, proposed a new framework to separate routing and
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Table 3.4: Comparison of communication protocols with ICDT-WSN requirements

Protocol Disconnection-
oriented

Energy Effi-
ciency

Storage
Friendly

Computation
Simplicity

Hop X X × X

RCRT × × × X

STCP × × X X

Flush × × × X

ART × X × ×

H + 1 hop X × × X

CHARON X X × X

RED X × X ×

FAD X × × X

Shortest Path Routing
Protocol

X × × ×

Spray and Focus X × × X

TBR X × X X

TRAMA N/A X N/A ×

MC-LMAC N/A × N/A X

S-MAC N/A X N/A X

T-MAC N/A X N/A X

B-MAC N/A X N/A X

X-MAC N/A X N/A X

Z-MAC N/A X N/A ×
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scheduling in backpressure algorithm for better throughput, easier implementation and flexibility.

Meanwhile, Ji at al. [30] have explored the inefficiencies of backpressure. As a result, the back-

pressure algorithm can lead to energy inefficiency. These recently proposed works address the

open problems in network protocols in ICDT-WSNs through either introducing new schemes or

optimizing the existing mechanisms to be more energy efficient or storage friendly. However, these

approaches do not fully address the open problems and leave space open for future research.

3.4.3 Open Problems and Research Directions in MAC Protocols

The MAC protocols are discussed in Section 3.3. Most of the existing MAC protocols are

traffic-dependent efficient. The protocols that are efficient in both heavy and light traffic are with

high computation complexity. Accordingly, the protocols with low computation complexity that

are traffic-independent efficient is an open problem to further research.

Preamble based protocols can save energy spent on synchronization when traffic is light,

while common active period protocols can save energy spent on preamble sending when traffic

is heavy. Both categories have better scalability and less computation complexity than scheduled

protocols. Thus, the combination of common active period protocols and preamble based pro-

tocols with low computational complexity is a way to handle the scenarios where the traffic is

unpredictable.
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Chapter 4

Acknowledgement-assisted Storage

Management Transport Protocol

Hop-by-hop transport and in-network storage are mechanisms suitable for ICDT-WSNs. Hop-

by-hop congestion control can react rapidly after congestion is detected. In-network storage can

significantly reduce the number of end-to-end recoveries under the condition that the storage is

plentiful. In WSNs, this assumption is not appropriate, since the storage capability of nodes is

very limited. Typically the amount of the storage in one node is less than 512 KB. Table 4.1 lists

the storage capability of several nodes available today [55]. From the table, we can see that storage

management is necessary for hop-by-hop transfer and in-network storage in WSNs. Moreover,

because of the requirement for low cost nodes, to add extra storages to nodes is not an optimal

solution. Hence, storage limitations must be taken into consideration for in-network storage in

WSNs. Otherwise, the network could be overloaded, and its performance will be degraded.

Transport Protocol with Acknowledgement-assisted Storage Management (Acksis) [42] is a

communication protocol designed for ICDT-WSNs. Acksis implements end-to-end reliability and

congestion control in a hop-by-hop manner. It employs overhearing and in-network storage to

reduce end-to-end retransmissions when packet loss happens. It also takes advantage of backpres-

sure and acknowledgement messages to achieve congestion control and to manage node storage in
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Table 4.1: Node’s extra nonvolatile storage size

Node Storage size(KB)

WeC 32

Renè 32

Renè2 32

Dot 32

Mica 512

Mica2Dot 512

Mica2 512

Telos 128

order to minimize storage overflow and increase delivery rate without sacrificing delivery speed.

4.1 Protocol Overview

In Acksis, packets are grouped into blocks to send. The block size is pre-calculated through

the number of nodes in a network and the minimum storage size of nodes in the network, which

will be explained in Subsection 4.3. An example of Acksis communication is shown in Figure 4.1.

Figure 4.2 is the state diagram of storage management of Acksis.

There are four acknowledgement messages in Acksis:

FIN: sent by a block B’s sender to B’s receiver after the last packet of B is sent, to indicate the

end of the block to the receiver.

RPLY: sent by B’s receiver to B’s sender after the receiver receives the FIN of B to guarantee

hop-by-hop reliability. If there is packet loss, indicate the lost packet number in the message.

E2ERPLY: sent by B’s destination to B’s source after B has been received completely to notify

that B has been received by the destination successfully. Nodes execute storage manage-
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Figure 4.1: One example of Acksis communication

Figure 4.2: State diagram of storage management of Acksis
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ment when they receive or overhear an E2ERPLY message, which will be interpreted in

Subsection 4.4.

RFIN: sent by B’s source if it does not receive E2ERPLY of B after a certain period of time to

guarantee end-to-end reliability.

Figure 4.1 shows an example packet exchange between nodes using Acksis. During this com-

munication process, nodes execute storage management when they receive or overhear a packet or

E2ERPLY message according to the state machine in Figure 4.2. In the rest of this section, we

outline how Acksis works.

Initially, a sender sends a block B to a receiver followed by a FIN message. The receiver

stores packets of B that have not been cached in its storage while increasing its backlog value by

one per packet. Any node that overhears the transmission will store overheard packets that are not

already stored. After receiving the FIN message of B, the receiver checks for lost packets in B

before sending an RPLY message to the sender. When the sender receives the RPLY message, it

retransmits any lost packets. This process continues until the receiver completely receives B. If

there are no lost packets, the sender decreases its backlog value by the block size.

If several nodes send FIN messages to the same receiver simultaneously, then the receiver

serves the first arriving FIN message. A node does not acknowledge more FIN messages until it

forwards one more block to a downstream node. If there is no RPLY message received before

timeout, the sender resends the FIN message. The sender cannot send more blocks if the current

one has not been completely received by the receiver.

When B reaches its destination, the destination sends out an E2ERPLY message to B’s

source. When an intermediate node receives the E2ERPLY message, it deletes the cached B

from its storage, and forwards the E2ERPLY message to the next hop. If the E2ERPLY mes-

sage reaches B’s source before timeout, the source deletes B from its storage and is ready to send

the next block. Otherwise, the source sends an RFIN message. Nodes that overhear the E2ERPLY

message remove B from their storage, but do not forwarded the E2ERPLY message further.

When a node receives the RFIN message for B, it searches the storage to see whether all
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packets within B are cached. If there are missing packets, the node sends an RPLY message to

the sender of the RFIN message to ask for a retransmission. The process continues until the node

receives the whole block B. It then forwards the RFIN message to the next hop. If there are

no missing packets, the RFIN message is forwarded to the next node directly. If the node is the

destination, an E2ERPLY message for B will be sent out.

The main differences between Acksis and Hop [37]:

• In Acksis, the block size is pre-calculated through the number of nodes in a network and the

minimum storage size of nodes in the network, which will be illustrated in Subsection 4.3.

• In Acksis, nodes take advantage of the received and overheard E2ERPLY message to manage

the storage.

4.2 Congestion Control and Flow Control

Acksis employs three mechanisms to provide congestion control in a hop-by-hop manner.

1. Backpressure. Each node maintains a backlog table of its neighbors’ queue lengths, and

periodically sends its queue length to its neighbors to update their backlog tables. When a

node receives one uncached packet, its queue length is increased by one. After completely

forwarding a block to the next hop, its queue length is decreased by the size of the block.

The next hop is the neighbor with the shortest queue length.

2. RPLY block. A node cannot send more blocks if the current one has not been completely

received by the receiver.

3. FIN constrain. A node replies to one FIN message in a first come first serve manner if it

receives more than one simultaneously.

Backpressure is a method to signal the congestion level. The longer a neighbor’s queue

length is, the more congested the neighbor is. Leveraging of backpressure can alleviate the con-

gestion by directing traffic to the paths with lighter traffic load. Moreover, by picking routing paths
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through backpressure, a node can react to the congestion rapidly, which is more appropriate to in-

termittently connected networks. The RPLY block and FIN constrain can alleviate the congestion

by withholding sending blocks until the congestion is relieved.

In Acksis, the flow control is achieved through E2ERPLY lock ensuring that a source cannot

inject more blocks into the network until it receives the E2ERPLY message for the block it just sent.

There are two reasons leading to the source failing to receive the E2ERPLY before the timeout:

network congestion and signal attenuation. Both are valid reasons not to inject new blocks into the

network. Waiting for an E2ERPLY message before injecting new blocks can help to relieve the

overall network congestion.

4.3 Block Size Calculation

In this study, we assume that the network is a pre-planned WSN, in which the number of

nodes in the network is known, and node C is out of node A’s communication range if both note

A and note C are in note B’s communication range. The block size in Acksis is determined on

the basis of the number of nodes in the network and the minimum storage size of nodes. The

size is pre-calculated and shipped with nodes when the network is deployed initially. The block

size equals the floor of the minimum storage size of nodes divided by the number of nodes in the

network:

BlockSize =
⌊Min(StorageSize(i))

count(S)

⌋
,∀i ∈ S (4.1)

where S is the set of nodes in the network, and i is an individual node.

The idea of the block size calculation is based on a worst case consideration in this study for

simplicity, but do not exclude other methods in future work. A node can only receive or overhear

transmissions from one-hop neighbors, since only two nodes can be in the same communication

range in this pre-planned network. Due to E2ERPLY lock, each source can inject one block into the

network before it receives an E2ERPLY for the block it sent. The worst case is that a node needs
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to cache all blocks from the rest of nodes in the network. If there is not enough space available,

the storage of the node will overflow causing unnecessary retransmissions. Equation 1 reduces the

probability of overflow by letting each node reserve space for the transmissions from other nodes

in the network.

4.4 Storage Management

The goal of Acksis storage management is to save storage space for valuable packets without

causing unnecessary retransmissions, and control storage size to minimize overflow. Simply saving

every packet a node received or overheard may cause the storage overflow resulting in packet

loss. Simply dropping the oldest packets can also cause unnecessary retransmissions. Without

storage size control, blindly transmitting packets to nodes without sufficient available space causes

overflow and wasted energy. All of these negatively affect the network performance.

Acksis solves the storage management problem through three mechanisms:

1. Block size calculation. This is explained in Subsection 4.3.

2. Duplicate checking. Checking the storage before caching a packet. If the packet has not

been cached yet, it is cached. Otherwise, it is dropped.

3. Buffer cleaning. Checking the storage after receiving or overhearing an E2ERPLY message.

If there are packets in the block indicated by the E2ERPLY message cached in the storage,

they are deleted.

Mechanism 1 avoids transmitting packets to nodes without sufficient free storage in a worst

case scenario, which is elaborated in detail in the Subsection 4.3. Mechanism 2 saves space by

avoiding repeatedly caching packets, which greatly reduces the opportunity of storage overflow.

Mechanism 3 deletes the packets that already arrive at the destination from storage in order to

save spaces for valuable packets. Together these mechanisms significantly reduce the packet loss

caused by storage overflow.
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4.5 Simulation and Experiments

4.5.1 Simulator and Experiment Setup

TinyOS [34] is a popular operation system designed for low-power wireless devices such as

nodes used in WSNs. TOSSIM [35] is a discrete event simulator for TinyOS sensor networks.

TOSSIM models the network in a weighted, directed graph, G = {V,A}. Weights of A specify

the receive signal power between two nodes.

In this study, we implement the Acksis protocol and Hop protocol on TinyOS. The Hop

protocol is designed for a regular mesh wireless network where the storage is not extremely limited.

So it stores every packet nodes receive or overhear. In order to investigate the performance of

acknowledgement-assisted storage management of Acksis, we implement a modified Hop allowing

nodes to check their storage before caching packets and store the packets that have not been cached

yet. This eliminates the performance improvements by using duplicate checking and allows us

to focus on the improvements due to the buffer cleaning of Acksis protocol. We also want to

compare Acksis with protocols designed for WSN, so we chose Collection Tree Protocol (CTP) as

an example, which is a common WSN communication protocol. All four protocols are tested in

TOSSIM. In the following experiment analysis, Hop is the original Hop protocol that nodes store

everything they receive or overhear without duplicate checking. Modified Hop has the duplicate

checking, storing packets that are not already cached by the nodes. CTP sends sequential packets

without interval. CTP(2s) has two seconds sending interval between two consequent packets.

When comparing Acksis, Hop and Modified Hop, these protocols use the same block size and

same beacon timer for nodes to exchange backlog tables with neighbors, in order to focus on the

performance of storage management.

We ran the experiments on a 7×7 grid with the receive signal power over each edge of −60.0

dBm which is a typical value for wireless networks. Since node storage is limited and we want to

investigate the performance of the acknowledgement-assisted storage management of Acksis, we

set the data packet queue size of each node to 50.
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Figure 4.3: Delivery rate and delivery speed comparison in a low contention and collision scenario

We use two metrics to evaluate the performance: delivery rate and delivery speed. Delivery

rate is the number of received distinct packets at the destination divided by the total number of

packets sent by the sources. Delivery speed is the number of packets sent by sources divided by

the time to receive all of them at the destination. If there are packet losses, the time is the sum of

the actual time to receive the last received packet and the estimation time to receive the rest of the

packets. The higher the loss rate is, the longer the estimation time is. Unlike throughput, delivery

speed is not the overall transmission capability of the network, but the speed to deliver a certain

amount of data. Since TOSSIM does not consider energy consumption, we will inspect this metric

in Chapter 5. Each data point used for plotting is the average value of 100 runs of the experiment,

with a 95% confidence interval.

4.5.2 Experiment Results and Performance Evaluation

4.5.2.1 Single source

In the single source experiment, the protocols are tested in light contention and collisions

scenario. In this experiment we set the source to be the top left node of the grid and the destination

to be the right bottom node of the grid. The block size of Acksis is one, which is calculated

through Equation 4.1. Hop and Modified Hop use the same block size. The source sends out
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a flow of packets. The runtime of each run is 30 minutes simulator time. Figure 4.3 shows the

delivery rates and delivery speeds of the protocols.

In Figure 4.3 (a), the delivery rate of Acksis and Modified Hop are very close and high, and

decrease slowly as the flow length increases. However, the delivery rate of Hop is much lower

than the other two, and decreases quickly with the flow length increasing. The reason for the quick

decrease in the delivery rate of Hop is that the longer flows need more rounds to get delivered

completely. Therefore the probability of retransmission also increases, which leads to the waste

of node storage for the duplicate packets. The longer the queue is, the higher the probability of

storage overflow, which results in the delivery rate of Hop decreasing quickly. Collection Tree

Protocol is designed for light traffic scenarios, and has no end-to-end reliability guarantee. So it

can reach 100 percent delivery rate when it has two seconds sending interval. But when it has no

sending interval, its delivery rate decreases quickly with the flow length increase.

In Figure 4.3 (b), the delivery speed of Acksis, Hop and Modified Hop decrease with flow

length increasing. However Acksis has higher delivery speed than the other two. This is because

Acksis deletes useless packets to save space, which keeps the queue length comparatively shorter

than Hop and Modified Hop. So the queue time of packets in Acksis is comparatively less than the

other two. CTP has good delivery speed initially, but due to its high loss rate the delivery speed

decreases quickly. CTP(2s) has a fairly low delivery speed because of the two seconds sending

interval.

4.5.2.2 Multiple sources

In the multiple sources experiment, the protocols are tested in a high contention and collision

scenario. In this experiment, we increase the number of sources from left to right diagonally.

Figure 4.4 shows how the sources increase in this experiment. Initially, only the top left green

node transmits, which accounts for 1% of all nodes. Next, the three green nodes on the left of the

3(6%) diagonal start transmitting. The sources continue to increase until all the green nodes in the

grid start transmitting, which accounts for 57% of all nodes. All sources send simultaneously. The
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Figure 4.4: Network layout for the experiment with multiple sources
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Figure 4.5: Delivery rate and delivery speed comparison in a high contention and collision scenario

runtime of each run is 30 minute simulator time. The block size for Acksis, Hop and Modified is

one. Each source sends a single packet. So in this experiment, contention and collision increase as

the percentage of sources increase. Figure 4.5 shows the delivery rates and delivery speeds of the

protocols under the multiple sources scenario.

In Figure 4.5 (a), the delivery rate of Acksis is higher than Hop and Modified Hop. This is

because Acksis has comparatively higher delivery speed than the other two, which is shown in

Figure 4.5 (b). The higher the delivery speed, the more packets can be delivered during a certain

period. As discussed in the previous experiment, the queue lengths of nodes implementing Acksis
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Figure 4.6: Delivery rates and delivery speeds of different block sizes

are comparatively shorter than that of the nodes implementing Hop and Modified Hop. As a result,

the queue time of packets in Acksis is shorter than Hop and Modified Hop, and the delivery speed of

Acksis is higher than the other two protocols. When the number of sources increases, the delivery

rates of Acksis and Modified Hop get close, since the delivery speed of the two protocols also

gets close. The reason for this change is the flow control mechanism. When there are more nodes

injecting packets into the network, the E2ERPLY buffer cleaning will not change the queue length

much. Hence, the difference in node queue length in these two protocols is insignificant, so that

the delivery speeds of the two protocols are getting closer as the number of sources increase. The

delivery rate and delivery speed of Hop decreases quickly when more than 40% of the nodes are

sources. In Hop, nodes store every packet received or overheard which causes storage overflows

that degrades the performance. Due to a lack of end-to-end reliability and the capability to deal

with heavy traffic, both CTP and CTP(2s) have the lowest delivery rates and delivery speeds.

4.5.2.3 Different block sizes

The block size does affect the performance of Acksis. In the different block sizes experiment,

Acksis with different block sizes is tested under a high contention and collision scenario. In this

experiment, the sources are selected in the same fashion as in multiple sources experiment. But,

instead of each source sending a single packet, a flow of five packets needs to be sent by each
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source. Acksis with block size 5 sends one flow at one time, while Acksis with block size one

needs five rounds to send one flow. The runtime of the experiment is 60 minute simulator time.

Figure 4.6 shows the delivery rates and delivery speeds of each condition.

In Figure 4.6 (a), the delivery rates of Acksis with both sizes decrease as the number of

sources increase. When more than 40% of nodes are sources, Acksis with block size one has a

better delivery rate than Acksis with block size five, since storages overflow happens when the

block size is five.

In Figure 4.6 (b), Acksis with block size five has higher delivery speeds than Acksis with

block size one. Because when sending the same flow, Acksis with block size five needs fewer

rounds than Acksis with block size one.

This experiment exposes the weakness of the block size calculation in Acksis: the network

resources are not sufficiently utilized when the traffic load is light. We are starting to address this

problem by implementing an optimal block size calculation and will evaluate it in Chapter 5.

4.6 Discussions

Acksis can provide a higher delivery rate and delivery speed even in a high contention and col-

lision scenario than other hop-by-hop transport protocols with in-network storage that do not em-

ploy sufficient storage management. This is achieved by the storage management mechanisms of

Acksis: block size calculation, checking duplicates before caching a packet and removing cached

packets that have been confirmed by their destinations.

There are opportunities to improve Acksis. In order to avoid overflow, the block size of

Acksis is pre-calculated with respect to the high traffic load scenarios, which leads to storage

underutilization in low traffic load situations. Because the small block size needs more rounds to

completely deliver a flow, the delivery speed is reduced. We optimize block size decision making

to improve the network resource utilization in Chapter 5. This optimization can also improve the

scalability of Acksis, and help to ameliorate congestion control by allowing more blocks from a
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single source in flight. It is hard to model the intermittent connectivity in TOSSIM. We evaluate

the performance of Acksis on a delay-tolerant simulator in Chapter 5.
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Chapter 5

Dynamic Acknowledgement-assisted

Storage Management Transport Protocol

5.1 Protocol Overview

Dynamic Acknowledgement-assisted Storage Management Transport Protocol (Dacksis) [43]

is a significant extension to Acksis [42]. The main purpose of Dacksis is to provide an energy

efficient transport protocol for ICDT-WSNs that provide both congestion control and end-to-end

reliability. Based on this goal, Dacksis transmits on a block basis, and forgoes the link-layer

per-packet acknowledgements to reduce the energy consumption spent on overhead. The main

extension of Dacksis over Acksis is that the block size in Dacksis is dynamically decided before

every block transmission in order to sufficiently utilize node storage. In addition, Dacksis employs

hop-by-hop transport and in-network storage to reduce the number of end-to-end loss recovery.

Dacksis also provides node storage management without introducing new overhead, so energy

spent on confirmed and duplicate packets is also reduced. In order to provide a quick response to

detected congestions, Dacksis applies backpressure to provide hop-by-hop congestion control.

Dacksis employs six control messages:

RQST: a message broadcasted by a node that has packets to send to request the backpressure of
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its neighbors.

RRPLY: a message containing backpressure of a node. It is sent by a RQST receiver back to the

RQST sender.

FIN: a message containing the sequence number of the packets in a block. It is sent by a block

sender to indicate the end of the block.

RPLY: a message containing the sequence number of the lost packets in a block. It is sent by a

FIN receiver to a FIN sender to provide hop-by-hop reliability.

E2ERPLY: a message generated by a sink after all packets in a block have been received by the

sink. It is used to confirm packets and clean node storage.

RFIN: a message generated by a source node after the source node transmitted a block. It contains

the sequence number of the packets in the block. RFIN is used in virtual retransmission [38]

to provide end-to-end reliability.

Figure 5.1 gives an overview of Dacksis. Nodes stay in Idle state until an event triggers an

action. In Figure 5.1, red actions belongs to the congestion control mechanism, yellow actions are

in the storage management mechanism, and cyan actions are parts of the reliability mechanism.

These mechanisms will be explained in detail in the rest of this section.

5.2 Congestion Control

Dacksis provides congestion control through a reactive hop-by-hop mechanism:

Reactive next hop decision: a node that has packets to forward broadcasts RQST to get the back-

pressure of its neighbors. If there are RRPLYs received by the node, the node picks the

neighbor with the shortest queue length as the next hop.
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Figure 5.1: Dacksis overview.

Through the reactive next hop selection, Dacksis makes a local decision to forward packets

to the direction with less traffic. In order to reduce the energy spent on per-packet acknowledge-

ments, Dacksis transmits packets in blocks. The block size is dynamically decided as discussed in

Subsection 5.3. Once the block size is decided, the node forwards a block of packets in burst to

the next hop. After the node completes forwarding the block of packets, it generates a FIN with

the sequence number of the packets in the block and forwards the FIN to the next hop to indicate

the end of a block transmission. Meanwhile, the node starts a timer for the FIN. If the node is the

source node of the packets it just sent, it generates a RFIN for these packets and starts a timer for

the RFIN.
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Unlike Acksis, Hop, and CTP, which use periodic beacons to acquire neighbor information,

Dacksis broadcasts RQSTs when needed and collects RRPLYs to get the information. The reactive

requests acquire more up to date neighbor information at the cost of an increase in the delay

resulting from the neighbor information collection. Additionally, the reactive requests reduce the

traffic load and energy consumption from the overhead when the data transmission requests in a

network are less frequent. However, it can also increase the traffic load and energy consumption

through heavy RQSTs and RRPLYs transmissions when data transmission requests are frequent.

The option of using cached neighbor information is a to address this issue. A way to reduce

unnecessary transmission for neighbor information is discussed in Chapter 7.

To support the dynamic block size calculation and reactive next hop decision, after a node

receives a RQST, it sends a RRPLY with its current queue length and available buffer size back

to the RQST sender and starts a timer for the RRPLY. It is possible that a node receives several

RQSTs from its neighbors. In order to prevent the buffer overflow caused by multiple senders

competing for the same next hop, a node sends a RRPLY to only one RQST sender at a time in a

first come first serve manner. Then the node can reply to other RQSTs in the following three cases:

• If the node is the next hop of the RQST sender, the node can reply to other RQSTs after the

block transmission between it and the RQST sender is complete.

• If the node is not the next hop of the RQST sender, the node can reply to other RQSTs after

it overhears transmission from the RQST sender.

• If the node does not overhear the transmission from the RQST sender, it can reply to other

RQSTs after the timer set for the RRPLY expired.

5.3 Block Size Calculation

Dacksis employs a dynamic block size calculation that a sender calculates the block size

through Equation 5.1 after the sender chooses the next hop. Let BD be the block size, A be the
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available buffer size of the next hop, and W be the number of packets to be forwarded by the

sender. The block size equals to the number of packets to be sent if the available buffer size of the

next hop is larger than the number of packets to be sent. Otherwise, the block size equals to the

available buffer size of the next hop.

BD =


A, A ≤ W

W, A > W

(5.1)

Dynamic decision on the block size is more efficient than the worst case consideration block

size [42]. There are three major reasons supporting this argument. First, the worst case consider-

ation block size allows only one block per source node in flight, which increases the waiting time

to forward a flow when the number of packets in a flow is larger than the block size. This problem

can get worse in intermittently connected scenarios where the future topology of a networks is

unpredictable. Second, the worst case consideration block size underutilizes node storage when

traffic load is light. Finally, the worst case block size consideration is less energy efficient, since

more energy is spent on overhead for the reliability guarantee.

5.4 Storage Management

Storage management of Dacksis utilizes two mechanisms:

Duplication checking: a node checks the received packet against the buffer first. If the packet is

already in its buffer, the node drops the packet; otherwise, the node saves it.

Buffer cleaning: a node checks the received E2ERPLY against the buffer. If there are packets in

its buffer indicated by the E2ERPLY, remove these packets from the buffer.

When a node receives a packet, it applies the duplication checking to decide whether to save

the received packet or not. In this way, Dacksis can shorten the queue length and reduce the energy

spent on transmitting duplicate packets.
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When a node receives an E2ERPLY, it applies the buffer cleaning first to eliminate confirmed

packets. In this way, Dacksis can save node space for more unconfirmed packets and reduce the

energy spent on transmitting confirmed packets. After the buffer cleaning, the node disseminates

the E2ERPLY if there are new confirmed packets listed in the E2ERPLY.

5.5 Reliability

The reliability mechanism of Dacksis is composed of two levels: hop-by-hop and end-to-

end. Hop-by-hop reliability is guaranteed by FIN and RPLY, and end-to-end reliability is provided

through virtual retransmission [38]. Hop-by-hop reliability combined with in-network storage

can reduce the number of end-to-end retransmission when using virtual retransmission to provide

end-to-end reliability, since lost packets can be retransmitted by intermediate nodes.

When a node receives a FIN, it checks the packets indicated by the FIN against the buffer

for packet losses. If there are packets that are not saved in the node’s buffer, the sequence number

of these packets are included in the RPLY forwarded back to the FIN sender. If the FIN sender

does not receive a RPLY before the FIN timer expires, the sender will retransmit the FIN. After

the FIN sender receives a RPLY, it checks whether there are sequence numbers of lost packets in

the RPLY. If there are no lost packets, the node goes back to idle state. If there are lost packets, the

FIN sender retransmits lost packets followed by an updated FIN with the sequence number of the

retransmitted packets. This process continues until there is no packet loss. The completion of the

process indicates that a complete block of packets has been stored in the RPLY sender.

After the timer for a RFIN expires, the node checks whether there are packets indicated by

the RFIN stored in its buffer. If no packet indicated by the RFIN exists in the node’s buffer,

after removing the RFIN and stopping the timer for the RFIN, the node goes back to idle state.

Otherwise, a virtual retransmission is triggered. The node broadcasts a RQST for the RFIN, picks

the next node from the RPLY senders and forwards the RFIN to the next node. If there is no RPLY

received by the node after a certain period of time, the node will rebroadcast the RQST. After a
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node received a RFIN, it will check the RFIN against the buffer to see whether all packets indicated

by the RFIN are stored in its buffer. If the node has all packets indicated by the RFIN, it forwards

the RFIN to the next node by broadcast a RQST first. If there are some packets indicated by the

RFIN not stored in the node’s buffer, the node sends a RPLY with the sequence number of these

missed packets back to the RFIN sender for retransmission.

5.6 Theoretical Analysis

As a protocol for intermittently connected wireless sensor networks, Dacksis retains the bene-

ficial features of Acksis, such as storage management and reliability. However, in order to be more

efficient, Dacksis extends the block size calculation mechanism of Acksis. The main differences

between Dacksis and Acksis are:

• In Acksis, the block size is fixed and pre-calculated according to Equation 5.2

BA =

⌊
min
i∈N

(Si)

N

⌋
(5.2)

where BA is the block size, N is the number of nodes in a network, i is an individual node,

and Si is the storage size of a node i [42]. While in Dacksis, the block size is dynamically

calculated per transmission according to Equation 5.1.

• In Acksis, a node cannot transmit a block until the node receives the acknowledgement for

the previous block from the destination. While in Dacksis, a node can transmit a block as

long as the next hop is available and the previous block was successfully forwarded.

Due to these differences, Dacksis takes better advantage of nodes’ storage space than Acksis.

In this section, we show that Dacksis can achieve better performance than Acksis. Table 5.1

summarizes the terminology and notation used in the rest of this section.
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Table 5.1: Notation and terminology

Variable Definition

B The number of packets in a block

CA The number of blocks per flow of packets in Acksis

CD The number of blocks per flow of packets in Dacksis

F The number of packets in a flow

H The average number of hops for a packet to be delivered to the
destination

I The wait time to receive the acknowledgement from the next hop
(the idle time of a sender)

M The expected number of neighbors of a node

N The number of nodes in a network

pd The probability that one of node’s neighbors is the destination

pm The probability of a node meeting with another node

pt The probability of successful transmision of a packet to the next
hop

S The storage size of a node (measured as the number of packets)

T The time to deliver a block to the next hop

τ The transmission time of a packet

T FA The time to deliver a flow of packets to the destination by using
Acksis

T FD The time to deliver a flow of packets to the destination by using
Dacksis
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Let B be the block size, τ be the transmission time of a packet, I be the node’s idle time,

waiting for acknowledgement from the next hop, and pt be the probability of successfully trans-

mitting packets to the next hop. The time to transmit a block of packets to the next hop at step n

is:

Tn =
n∑
t=1

(
Bτ

t−1∑
k=0

(1− pt)
k + tI

)
(1− pt)

t−1pt. (5.3)

As n approaches infinity, the expected time to deliver a block to the next hop, T , is:

T = Bτpt

∞∑
t=1

(1− pt)
t−1

t−1∑
k=0

(1− pt)
k + Ipt

∞∑
t=1

t(1− pt)
t−1. (5.4)

Equation 5.4 can be further simplified to:

T =
Bτ

2pt − p2
t

+
I

pt
. (5.5)

In the situation without any packet loss, the time to deliver a block of packets to the next hop

is T = Bτ + I . With the probability of successful transmission decreasing, the time to deliver a

block of packets to the next hop increases.

Let N be the number of nodes in a network, one of them is the destination. Nodes move

randomly, with the probability pm to meet with another node. The expected number of neighbors

of a node, M , is:

M =
N∑
i=0

i

(
N

i

)
pim(1− pm)N−i

= Npm.

(5.6)
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Let m be the number of neighbors of a node, the probability pd that one of the m nodes is the

destination is:

pd =

(
N−1
m−1

)(
N
m

) =
m

N
(5.7)

Packets are delivered to the destination if the destination is in the sender’s neighborhood.

According to Equation 5.7, the probability that packets are delivered to the destination successfully

at step k is (1 − pd)
k−1pd. Therefore, the average number of hops for a packet to be delivered to

the destination is:

H =
∞∑
k=1

k(1− pd)
k−1pd

=
1

pd
.

(5.8)

Since H = 1
pd

, and pd = m
N

, we can get H = 1
pm

when m = M = Npm.

The average time to deliver one block to the destination is T ·H . Let F be the length of a flow

of packets. We assume that every node has the same storage space S. The number of blocks per

flow in Acksis, CA, and the number of blocks per flow in Dacksis CD are shown as Equations 5.9

and 5.10.

CA =
F

b S
N
c

=
⌈NF
S

⌉ (5.9)

CD =


1, if S ≥ F ,

dF
S
e, if S < F.

(5.10)
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Figure 5.2: Plots for T FA and T FD . In both plots, we set τ = I = 1 time unit, N = 10, S = 10
packets size (each packet has equal size) and pm = 0.2. In (a), we vary F from 1 to 20 packets and
Pt from 0 to 1. In (b), we set F = 20 packets and vary Pt from 0 to 1.

Let’s consider a simple case that there is only one source in the network. The time to deliver

a flow of packets with length F to the destination by using Acksis is T FA and the time by using

Dacksis is T FD :

T FA =
⌈NF
S

⌉( S
N
τ

2pt − p2
t

+
I

pt

)
·H

=
( Fτ

2pt − p2
t

+
⌈NF
S

⌉
· I
pt

)
·H,

(5.11)

T FD =


( Fτ

2pt − p2
t

+
I

pt

)
·H, if S ≥ F ,( Fτ

2pt − p2
t

+
⌈F
S

⌉
· I
pt

)
·H, if S < F.

(5.12)

By comparing Equation 5.11 with 5.12, we confirm that Acksis consumes more time to deliver

a flow of packets than Dacksis. More specifically, Acksis needs more idle time than Dacksis to

deliver a flow of packets to the destination. We plot Equations 5.11 and 5.12 with fixed N,S, τ, I

and pm and varying F and pt (Figure 5.2), in order to inspect the performance of Acksis and

Dacksis under scenarios with different flow length and probability to successfully deliver packets
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Table 5.2: Attribute comparison of competed protocols in Section 5.7

Protocols Block Size
Storage End-to-end

Management Reliability

Hop Static No Yes

Modified Hop Dynamic No Yes

CTP N/A N/A No

Acksis Static Yes Yes

Dacksis Dynamic Yes Yes

to the next hop. We will use a simulation study to analyze the performance under more complicated

scenarios in the next section.

5.7 Simulation Study

5.7.1 Simulator and Experiment Setup

Contiki [11] and Cooja [50] were used to study the energy consumption and to simulate in-

termittently connected scenarios. Contiki is an operating system designed for small low-power

devices, such as sensor nodes. Cooja is a tool simulating networks of devices running Contiki

operating system. Cooja provides features that many real testbeds do not, such as energy measure-

ment, node transmission range control and mobility support. Bonnmotion [1] was used to generate

node motion patterns that can be loaded into Cooja to simulate intermittently connected scenarios.

We compare Dacksis with Hop [38], Modified Hop, CTP [19], and Acksis [42]. All these

protocols are implemented on Contiki. Table 5.2 lists out the key attributes of these protocols.

Hop refers to the original protocol that transmits packets in fixed block size without storage man-

agement. Hop was designed for wireless mesh networks and it does not provide a block size

calculation that fits for wireless sensor networks. We set the block size of Hop the same as the

block size of Acksis. Acksis calculates the block size as Equation 5.2. The comparison among
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Dacksis, Acksis and Hop highlights the performance impact of the dynamic block size mecha-

nism. Modified Hop, introduced here to facilitate more fair comparison, is our version of Hop

protocol that utilizes the same dynamic block size calculation as Dacksis but has no storage man-

agement mechanism. The comparison between Dacksis and Modified Hop shows the effect from

the storage management to the system performance under different traffic loads. CTP is a well

known forwarding protocol for WSNs, and does not provide end-to-end reliability. By comparing

with CTP, we study the effect of end-to-end reliability to the system performance under different

scenarios.

In this study, we evaluate the performance of these protocols through four metrics: packet

delivery rate, packet latency, number of hops per packet and energy consumption. Packet delivery

rate is the ratio between the number of distinct packets delivered to the sink and the total number

of packets sent by all source nodes within a certain period of time. Packet latency is the mea-

sure of time elapsed between a packet being sent by the source node and it is arrival at the sink.

Number of hops per packet is the count of nodes a packet goes through before it arrives at the

sink. Energy consumption is measured through the average transmission time and receiving time

spent on delivering one packet to the sink in a network with N nodes (Equation 5.13). Let E be

energy consumption, Ti be the total transmission time during the experiment time of a node i, Ri

be the total receiving time during the experiment time of a node i, and count(pkt) be the number

of distinct packets arrived at the sinks,

E =

N∑
i=1

Ti +
N∑
i=1

Ri

count(pkt)
. (5.13)

We designed four sets of simulation experiments using Cooja: light traffic scenarios, heavy

traffic scenarios, varying node densities and varying transmission ranges. The network area is 100

× 100 meters for all experiments. Nodes move in the network area with the Random Waypoint

model and 4 m/s speed. Nodes do not run out of energy or fail during the experiments, and have

reliable communication if in transmission range. The buffer size of each node is set to 10 packets.

74



Every source sends a flow of packets in burst. All sources in the network transmit simultaneously.

The experiment time of each run is 30 minutes, and the data used in plots are the average values

out of 50 runs, with a 95% confidence interval.

5.7.2 Experiment Results and Performance Evaluation

5.7.2.1 Light Traffic

This experiment tests the protocols under light traffic scenarios. In the experiment, there are

10 nodes in the network area, one of the nodes is the source node, and one of the rest nodes is the

sink. According to Equation 5.2, the block size of Acksis and Hop is one packet. The source node

transmits a flow of packets, and the flow length varies from one to 10 packets. The transmission

range of each node is set to 10 meters, so that the network is sparse and intermittently connected.

Figure 5.3 shows the results of this experiment.

Figure 5.3(a) shows the delivery rate of these protocols. Dacksis and Modified Hop have

higher delivery rates than Acksis and Hop, due to the different block size calculations with these

protocols. Acksis and Hop utilize fixed block size, while Dacksis and Modified Hop employ

dynamic block size. Let BFix be the block size of Acksis and Hop, BDynamic be the block size

of Dacksis and Modified Hop. Acksis and Hop need Ci
F ix blocks to deliver a flow i. Dacksis and

Modified Hop need Ci
Dynamic blocks to deliver a flow i. Fi be the length of a flow i. Hence,

Ci
F ix =

Fi
BFix

, (5.14)

Ci
Dynamic =

Fi
BDynamic

. (5.15)

Since BFix = 1 in this study, BFix ≤ BDynamic, so that Ci
F ix ≥ Ci

Dynamic. Moreover, different

from Acksis and Hop, Dacksis and Modified Hop allow multiple blocks in flight per source node.

75



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10

D
el

iv
er

y 
ra

te

Number of packets per flow

Hop
Modified Hop

CTP

Acksis
Dacksis

 0

 10

 20

 30

 40

 50

 60

0 1 2 3 4 5 6 7 8 9 10

To
ta

l T
x 

an
d 

R
x 

tim
e 

(s
ec

on
ds

/p
kt

)

Number of packets per flow

Hop
Modified Hop

CTP
Acksis

Dacksis

(a) Packet delivery rate (b) Energy consumption

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

0 1 2 3 4 5 6 7 8 9 10

H
op

s

Number of packets per flow

Hop
Modified Hop

CTP

Acksis
Dacksis

 0
 100
 200
 300
 400
 500
 600
 700

0 1 2 3 4 5 6 7 8 9 10

La
te

nc
y 

(s
ec

on
d)

Number of packets per flow

Hop
Modified Hop

CTP

Acksis
Dacksis

(c) Number of hops per packet (d) Packet latency

Figure 5.3: Ten nodes in a 100 × 100 m area with transmission range 10 m, one of the nodes is the
source node, and one of the rest nodes is the sink, the source node transmits a flow of packets, and
the flow length varies from one to 10 packets.

As a result, Dacksis and Modified Hop deliver more packets than Acksis and Hop within a certain

period of time. Dacksis has a higher delivery rate than Modified Hop. This is because of the storage

management mechanism with Dacksis, which shortens the queue length by eliminating duplicate

packets and confirmed packets. Therefore, Dacksis can deliver more distinct packets than Modified

Hop within a certain period of time. Acksis and Hop have similar delivery rates since they use the

same fixed block size. The fixed block size allows only one block in flight per source node, so

Acksis and Hop need longer time to deliver a flow. CTP has the lowest delivery rate since it does

not provide end-to-end reliability.

Figure 5.3(b) shows the energy consumption of these protocols. Dacksis and Modified Hop

have the lowest energy consumptions, followed by Acksis and Hop. CTP has the highest energy

consumption. Dacksis and Modified Hop need less number of rounds to deliver a flow than Acksis

and Hop, as a result, Dacksis and Modified Hop consume less energy on overhead. Due to CTP’s
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low deliver rate, its energy consumption is higher than other protocols.

CTP has similar number of hops per packet as the other protocols (Figure 5.3(c)), but has a

much lower packet latency than the others (Figure 5.3(d)). This is because CTP forwards packets

based on the link state that directs packets along the best path to the sink if the path exists, while

other protocols forward packets based on the backpressure that alleviates the network congestion

but does not guarantee the shortest route to the sink.

5.7.2.2 Heavy Traffic

This experiment investigates the performance of these protocols under heavy traffic scenarios.

In this experiment, there are 10 nodes in the network area, one node is the sink, and the rest are

the source nodes. According to Equation 5.2, the block size of Acksis and Hop is one packet.

Each source node transmits one flow, and the flow length varies from one to 10 packets. All source

nodes transmit simultaneously. The transmission range of each node is set to 10 meter to simulate

a sparse and intermittently connected environment. Figure 5.4 shows the results of this experiment.

Figure 5.4(a) shows that Dacksis and Modified Hop have the comparatively higher delivery

rates, followed by Acksis and Hop, and CTP has the lowest delivery rate. This is because Dacksis

and Modified Hop adopt the dynamic block size calculation, Acksis and Hop employee the fixed

block size calculation, and CTP does not provide end-to-end reliability. The detail discussion is

given in Subsection 5.7.2.1. With the flow length increasing, the delivery rate of Dacksis increases.

This is due to Dacksis relying on backpressure to direct packets in order to alleviate network con-

gestion. Backpressure can route packets more efficiently when the traffic in the network is enough.

Modified Hop has a higher delivery rate than Dacksis initially, but its delivery rate shrinks com-

pared to Dacksis’s when the flow length is larger. The reason is Modified Hop does not provide

storage management. When the traffic load is heavy, the lack of storage management leads Modi-

fied Hop to transmit more duplicate and confirmed packets, which in turn decreases the number of

distinct packets delivered at the sink within a certain period of time.
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Figure 5.4: Ten nodes in a 100 × 100 m area with transmission range 10 m, one node is the sink,
the rest are the source nodes, each source node transmits one flow, the flow length varies from one
to 10 packets, and all source nodes transmit simultaneously.

Similar to the light traffic scenarios, Dacksis has lower energy consumption (Figure 5.4(b)).

This is because Dacksis utilizes the dynamic block size calculation, and consumes less energy on

transmission duplicate and confirmed packets. In Figures 5.4(c) and (d), the number of hops and

packet latency of Dacksis decrease when the traffic is getting heavier. This is because there is

enough traffic in the network for backpressure to forward packets along better paths. However, the

backpressure does not help significantly for Acksis and Hop in the packet delivery rate, number of

hops and packet latency when the flow length is large. Because the fixed block size mechanism

leads these two protocols underutilize node storage. As shown in Figure 5.4(c), Dacksis has a

higher number of hops than Modified Hop, since its storage management lets nodes have more

available storage spaces to forward packets. But Acksis does not have a higher number of hops

than Hop, because of its static block size calculation allowing only one block in flight per source

node. In Figure 5.4(d), Dacksis and Modified Hop have a lower packet latency than Acksis and
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Hop, because the dynamic block size calculation reduces the packet queuing time.

5.7.2.3 Node Density

This experiment varies the node densities in the network area to evaluate protocols under

mostly disconnected and mostly connected scenarios. The number of nodes in the network area

changes from 10 to 30 nodes, and each node’s transmission range is set to 10 meters. One of

these nodes is the sink, all the other nodes are source nodes. Each source node transmits a flow of

packets, and the flow length is 10 packets. All source nodes transmit simultaneously. Since varying

the buffer size of nodes is unlikely to occur in practice, the buffer size of nodes is unchanged in this

experiment. As a result, the block size calculation of Acksis is not applicable when the number of

nodes are more than 10. In this experiment, we set the block size of Acksis and Hop to one packet

and independent of the node density. In this and the next set of experiments, we have not evaluated

the performance of Modified Hop, since the main purpose of these two sets of experiments is to

inspect the impact from the network connectivity instead of traffic load. Figure 5.5 shows the

results of this experiment.

Figure 5.5(a) shows the delivery rates of these protocols: Dacksis still has the highest delivery

rate, but the delivery rate decreases while increasing the node density. This is because the number

of packets need to be delivered grows when the node density increased. As a result, within a

certain period of time, the packets waiting to be delivered increases. Due to the dynamic block

size calculation and storage management, Dacksis still has the lower energy consumption than

Acksis and Hop regardless of the node density (Figure 5.5(b)). The number of hops and packet

latency increase with the node density growing for all protocols (Figures 5.5(c), (d)). Since there

are more intermediate nodes between a source and the sink when the network is dense, delivering

packets to the sink takes more time.
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Figure 5.5: The number of nodes in the network area changes from 10 to 30, nodes’ transmission
range is 10 m, one of these nodes is the sink, all the other nodes are source nodes, each source
node transmits a flow of packets, the flow length is 10 packets, and all source nodes transmit
simultaneously.

5.7.2.4 Transmission Range

This experiment varies the nodes’ transmission ranges to test the performance of these pro-

tocols under intermittently connected scenarios and connected scenarios. There are 10 nodes in

the network area in this experiments, the transmission range of every node varies from 10 to 40

meters. The block size of Acksis and Hop is one packet according to Equation 5.2. One of these

nodes is the sink, the rest are source nodes. Each source node transmits a flow of packets, and the

flow length is 10 packets. All source nodes transmit simultaneously. Figure 5.6 shows the results

of this experiment.

Figure 5.6(a) shows that CTP delivery rate increases with the node transmission range in-

creasing. When the node transmission range is larger than 30 meters, CTP has a higher delivery
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Figure 5.6: Ten nodes in the 100 × 100 m area, the transmission range of every node varies from
10 to 40 m, one of these nodes is the sink, the rest are source nodes, each source node transmits a
flow of packets, the flow length is 10 packets, and all source nodes transmit simultaneously.

rate than Dacksis. Since CTP was designed for connected networks, it forwards packets based on

the link state and does not provide end-to-end reliability. As a result, when the transmission range

of nodes is large enough to form a connected network, CTP can take advantage of its link state

forwarding method to deliver packets through the best path, and the impact from lack of end-to-

end reliability is minimized. While the delivery rate of Dacksis, Acksis and Hop does not vary

much with the node transmission range change. Dacksis, Acksis and Hop forward packets based

on backpressure that can be affected by the traffic load, but changes on the transmission range of

nodes have no significant impacts on the traffic load. The energy consumption of CTP also de-

creases with the transmission range increasing, due to the increasing delivery rate of CTP. As with

the delivery rate, the number of hops of Dacksis, Acksis and Hop does not fluctuate much with

the transmission range increasing (Figure 5.6(c)), since the forwarding method of these protocols,

backpressure, is not affected by the transmission range. However, the packet latency of Dacksis,
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Table 5.3: Contributions of protocol mechanisms to the performance.

Performance Storage Dynamic End-to-end

Metrics Management Block Size Reliability

Delivery rate Increase Increase
Increase (intermittently
connected)

Energy con-
sumption Reduce No impact Increase (connected)

Number
of hops Increase No impact No impact

Packet latency No impact Reduce No impact

Acksis and Hop decreases (Figure 5.6 (d)) when the transmission range is large. This is because

the time spent on waiting for connection is reduced when the transmission range increases.

5.8 Contributions of Protocol Mechanisms

Table 5.3 lists out the contributions of the protocol mechanisms to the performance of the

protocols. Storage management increases the delivery rate and the number of hops per packet,

and reduces the energy consumption. Storage management shortens the queue length of a node by

eliminating duplicate and confirmed packets. As a result, the queuing time of a packet and energy

spent on transmissions of duplicate/confirmed packets are reduced. Furthermore, the nodes can

have more available buffer space to accept packets for routing. Therefore, Dacksis has on average

higher delivery rate, lower energy consumption even thought it exhibits larger number of hops per

packet than Modified Hop.

The dynamic block size calculation increases the delivery rate, and reduces the energy con-

sumption and packet latency. Since the dynamic block size calculation more efficiently utilizes

the available buffer space of nodes, a source node can inject more than one block into the network

without waiting for the confirmation of the previous block. Therefore, packets can be delivered to

the sink more quickly. As a result, Dacksis has on average higher delivery rate and lower packet
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latency than Acksis and Hop.

End-to-end reliability increases the delivery rate but also consumes more energy. This is be-

cause end-to-end reliability spends energy in retransmission and confirmation. To provide a high

delivery rate, retransmission and confirmation are necessary in intermittently connected scenarios,

but are less critical in connected scenarios. Hence, we observed Dacksis has higher delivery rate

under intermittently connected scenarios and higher energy consumption under connected scenar-

ios than CTP.

5.9 Discussions

Dacksis supplies end-to-end reliability, congestion control and storage management. It pro-

vides a higher packet delivery rate and lower energy consumption independent of the traffic sit-

uations and node density than other hop-by-hop transport protocols adopting in-network storage

and blocks as the transmission unit. This is achieved by the storage management and the dynamic

block size calculation of Dacksis. The storage management saves node storage for unconfirmed

packets and reduces energy spent on transmission duplicate and confirmed packets. The dynamic

block size calculation efficiently utilize the free storage space of nodes to deliver packets to the

sink more quickly, which is also the main improvement of Dacksis over Acksis.

There exist opportunities to improve Dacksis. Dacksis utilizes backpressure to alleviate con-

gestion, which may introduce long propagation delay because of tossing packets back and forth.

This problem can be addressed by using the delivery probability coupled with the the available

storage space of nodes. The delivery probability measures the closeness of a node to the destina-

tion. Through delivery probability and the available storage space of nodes, traffic can be directed

toward the destination on the paths with less congestion. As a result, the propagation delay of data

packets can be reduced. This method is discussed in Chapter 6.
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Chapter 6

Reactive Store-and-Forward Protocol

Cross-layer design, the joint design of networking layers, can improve the energy efficiency

of wireless sensor network. In intermittently connection scenarios, reactive mechanism is easier

to acquire and maintain routing information than proactive mechanism. Hop-by-hop transport

can react to the detected network problems more quickly, and in-network storage can reduce the

number of end-to-end retransmission when packet loss happens.

The reactive store-and-forward protocol (ReSaF) [40] is a cross-layer protocol that discover

route by a reactive conditional-forwarding routing algorithm, and provides end-to-end reliability,

congestion control and storage management through hop-by-hop transport, in-network storage. It

can provide high delivery rate in an energy efficient way.

6.1 Protocol Overview

The basic idea of the reactive store-and-forward protocol (ReSaF) is that a node broadcasts

requests when it has packets to forward, the node then picks the next hop from the replies of neigh-

bors. If there is no appropriate next hop, the node backs off and rebroadcasts until an appropriate

next node (a node with a higher delivery probability, more available buffer space and energy than

the sender) becomes available. If a node does not receive confirmations for the packets it generated

and sent after a certain period of time, a virtual retransmission will be triggered, as explained in
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Section 6.5.

Figure 6.1: ReSaF state diagram.

Figure 6.1 gives an overview of the ReSaF protocol. A node is in the idle state until there is

an event triggers the node to transit to another state. After finishing the tasks in the new state, the

node goes back to the idle state. ReSaF utilizes six types of control messages described in Table

6.1.

Figure 6.2: Data forwarding

6.2 Data Forwarding

When a node has packets to send, it enters into the data forwarding state detailed in Figure 6.2.

In this state, the node broadcasts a RQST, and waits for RRPLYs. If the node does no receive any

RRPLYs within a certain amount time, the node will rebroadcast the RQST later. If the node
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Table 6.1: Control Messages of ReSaF

Control Msg Description

RQST Broadcasted when a node has packets or RFIN to forward.
It contains the delivery probability of the node.

RRPLY A reply message to a Request. It contains the updated de-
livery probability, available energy and buffer, and queue
length. It is sent back from the Request receiver to the Re-
quest sender.

FIN Sent after a node finishes forwarding a block of packets to
indicate the end of block sending. It contains the sequence
number of the packets in the block the node just sent.

RPLY After a node receives a FIN, it will check the FIN against its
buffer for packet loss. If there are lost packets, the sequence
number of the lost packets will be recorded in a RPLY. The
node then sends the RPLY back to the sender of the FIN.

E2ERPLY When a block reaches at the destination, and there is no
packet loss in the block, the destination will disseminate an
E2ERPLY to confirm the packets in the block.

RFIN This control message is used for virtual retransmission. Af-
ter a source forwards a block of packets, a RFIN will be
generated for the block. If there is a block whose packets
are not confirmed totally before a timeout, the RFIN for that
block will be forwarded for loss recovery.

receives RRPLYs, it picks an appropriate neighbor as the next hop according to the Algorithm 6

described in Subsection 6.3. If there is no appropriate neighbor, the node will rebroadcast RQST

later. If there is an appropriate neighbor, the node forwards a block of packets to the neighbor. The

block size selection is explained in Subsection 6.4. When finished forwarding the block, the node

generates a FIN, starts a timer for the FIN, and forwards the FIN to the next hop. If the node is the

source of the packets in this block, it creates a RFIN for those packets generated by it, and starts a

timer for the RFIN.
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6.3 Conditional-forwarding Routing Algorithm and Congestion

Control

A node enters into the RQST replying state, after it receives a RQST. The goal of this state

is to send the routing information of a node back to a RQST sender. The routing information of

a node includes: Available energy (the amount of available energy), Queue length (the number

of packets waiting to be forwarded), Available buffer (the size of the available buffer space), and

Delivery probability (the probability of successful delivery of packets to the sink).

Initially, all nodes except the sink have zero delivery probability. The sink has the delivery

probability, one. If a sink node receives a RQST, it sends a RRPLY back to the RQST sender with

delivery probability, one. If a regular node receives a RQST, it updates its delivery probability

according to Equation 6.1, where DPi is the delivery probability of the RQST sender, DPj is the

delivery probability of the node, and DP ′
j is the node’s updated delivery probability. Then the

regular node sends a RRPLY back to the RQST sender with the updated delivery probability DP ′
j

and the remaining routing information.

DP
′

j =
DPi +DPj

2
(6.1)

In order to avoid buffer overflow caused by multiple senders competing for the same next

hop, a node can only reply to one RQST at a time. After a node sends a RRPLY to a RQST sender,

the node cannot reply to other RQSTs until one of the three conditions is true:

• The block transmission between the node and the RQST sender completes, if the node is the

next hop of the RQST sender.

• The node overhears packet transmission from the RQST sender, if the node is not the next

hop of the RQST sender.

• A timeout set for the RRPLY sent to the RQST sender expires, if no packets transmission

from the RQST sender is overheard by the node.
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Algorithm 6 Conditional-forwarding Routing Algorithm
1: BS: best score, S: score, DP : delivery probability
2: QL: queue length, AE: available energy, NH: next hop
3: while nodei has packets to forward do
4: nodei broadcasts RQST
5: if nodei receives RRPLYs then
6: BS = AEi/QLi
7: NH = NULL
8: for all neighborj in the received RRPLYs do
9: Sj = AEj/QLj

10: if DPj > DPi and Sj > BS then
11: NH = neighborj
12: BS = Sj
13: end if
14: end for
15: if NH 6= NULL then
16: DPi = DPNH
17: forward packets to neighborj
18: else
19: rebroadcast RQST later
20: end if
21: else
22: rebroadcast RQST later
23: end if
24: end while

After a RQST sender receives RRPLYs from its neighbors, it picks the next hop from these

neighbors according to the conditional-forwarding routing algorithm (see Algorithm 6). This al-

gorithm employs two routing metrics: delivery probability DP and a routing score S defined as

the ratio between the available energy and the current queue length of a node. A larger value of S

indicates more available energy and a shorter queue. The next hop is chosen to be the one in the

set of nodes with higher delivery than the current node and the best routing score in the set. The

conditional-forwarding directs packets on a path with higher delivery probability, less congestion

and more available energy.
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6.4 Block Size Calculation

In ReSaF, per-packet link-layer acknowledgement is disabled, data packets are grouped in to

blocks to forward in order to reduce energy consumption. The size of a block is decided dynami-

cally according to Equation 6.2 after a node decides the next hop. Let the available buffer size of

the next hop be AS, the number of packets to deliver be PS, and the block size be BS. The block

size equals the available buffer size of the next hop if there is not enough space for all packets to

be sent, otherwise, the block size equals to the number of packets to be sent.

BS =


AS, AS ≤ PS

PS, AS > PS

(6.2)

6.5 Reliability and Storage Management

ReSaF guarantees hop-by-hop reliability through FIN and RPLY, and provides end-to-end

reliability through virtual retransmission. ReSaF adopts duplicate checking in the data saving

state and packet elimination in the buffer cleaning state to manage in-node storage.

When a node receives data packets, it enters into the data saving state. In this state, the node

executes the first part of storage management, duplicate checking before saving packets. If the

packets that are already in the buffer, the node drops the received duplicate packets.

After a node receives a FIN, it enters into the packet loss checking state. In this state, a node

checks its buffer to see whether all packets indicated by the FIN are in its buffer. If there are lost

packets, the node sends a RPLY with the sequence numbers of the lost packets back to the sender

of the FIN. If there is no packet loss and the node is the sink, the node sends an E2ERPLY back to

the FIN sender. If there is no packet loss and the node is not the sink, the node sends a RPLY back

to the sender of the FIN without any sequence number indicating no packet loss.

If a node receives a RPLY, it enters into the lost packet retransmission state. In this state,

the node starts hop-by-hop retransmission by checking packet loss first. If there is no packet loss,
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the node removes the corresponding FIN and stops the timer for the FIN. If this retransmission

process is for a RFIN, the node forwards the RFIN to the next hop. Otherwise, the node goes back

to the idle state. If there are sequence numbers in the RPLY, the node retransmits the lost packets

back to the sender of the RPLY, and updates the sequence numbers of the corresponding FIN to the

retransmitted packets’ sequence numbers. Then, the node transmits the updated FIN to the RPLY

sender after finishing retransmitting lost packets, and reset the timer for the FIN. When the timer

of a FIN expires, the node retransmits the FIN.

Once a node receives an E2ERPLY, it enters into the buffer cleaning state. In this state, the

node executes another part of storage management, packet elimination, by removing the confirmed

packets indicated by the E2ERPLY from the buffer. If there are packets being removed, the node

disseminates the E2ERPLY. Otherwise, the node goes back to the idle state.

Figure 6.3: Virtual retransmission

When a timer of a RFIN expires or a node receives a RFIN, the node enters into the virtual

retransmission state. Figure 6.3 shows the virtual retransmission process. When a timer of a RFIN

is up, the node checks whether all packets indicated by the RFIN are confirmed. If all packets

are confirmed, the node removes the RFIN and stops the timer for the RFIN. Otherwise, the node

forwards the RFIN with unconfirmed packets’ sequence numbers to the next hop. To forward a

RFIN, a node first broadcasts RQST. If there is no RRPLY received, the node will rebroadcast

later. If there are RRPLYs received, the node picks the next hop according to Algorithm 6. If there

is an appropriate next hop, the node forwards the RFIN to the next hop. Otherwise, the node will
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rebroadcast later. When a node receives a RFIN, it checks the buffer to see whether all packets

indicated by the RFIN are saved. If the node has all packets, it forwards the RFIN to the next hop.

If there are missed packets, the node sends a RPLY with sequence numbers of the missed packets

back to the RFIN sender.

6.6 Simulation and Experiments

6.6.1 Simulator and Experiment Setup

ReSaF has been implemented on Contiki [11] and evaluated on Cooja [50]. Bonnmotion [1]

is used to generate intermittently connected scenarios. We compare ReSaF with Hop and Collect

Tree Protocol (CTP). Since Hop does not provide storage management, in order to investigate the

performance of the conditional-forwarding routing algorithm and backpressure routing, we modify

Hop to include the same storage management mechanisms as ReSaF that does not cache duplicate

packets and eliminates confirmed packets. CTP is a common WSN protocol for connected sce-

narios. Comparing with CTP allows us to study the tradeoff between a protocol for intermittently

connected WSNs and a protocol for connected WSNs.

We set up three experiments under light traffic scenarios, heavy traffic scenarios and different

node densities. Nodes have the transmission range 10 meters and speed 4 m/s. Nodes move

according to the random waypoint model. The buffer space of a node is set to 10 packets. The

network area is 100 × 100 m. The simulation time for each experiment is 10 minutes. Every set

of experiments has 50 runs, and the results are the average values out of the 50 runs, with a 95%

confidence interval. The entire network is mostly disconnected in the experiments for light traffic

scenarios and heavy traffic scenarios. In the experiment for different node densities, the entire

network varies from mostly disconnected to mostly connected. Therefore, the scalability of the

protocols is also investigated through the experiments.

We use four metrics to evaluate the performance: packet loss rate, number of hops per packet,

packet latency, and energy consumption. The packet loss rate is the ratio between the number of
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Figure 6.4: Packet loss rate under different scenarios

distinct packets received at the sink and the number of packets sent by all sources. The number of

hops per packet is the hop count of a packet from its source to the sink. The packet latency is the

time between the moment the packet generated by a source to the time it is received by the sink.

The energy consumption is measured as the sum of transmission and reception times of all nodes

in the network.

6.6.2 Experiment Results and Performance Evaluation

6.6.2.1 Light traffic load scenarios

In this experiment we generate 10 nodes in the network area, and one of them is the sink. The

number of sources varies from one to nine. Each source sends one packet, all sources transmit si-

multaneously. This experiment investigate the performance of the protocols in uncongested sparse

networks.
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Figure 6.5: Average number of hops per packet under different scenarios

Figure 6.4 (a) shows that ReSaF has the lowest loss rate, followed by Hop, and CTP has

the highest loss rate. The high loss rate of Hop is a result of its reliance on backpressure to route

packets that performs poorly when there is not enough traffic. Since CTP does not provide effective

end-to-end loss recovery, it is less reliable in intermittently connected situations where the packet

loss is high.

ReSaF has the smallest number of hops per packet of all three protocols (Figure 6.5 (a)).

Because of the conditional-forwarding routing algorithm of ReSaF, the next hop can only be the

one with higher delivery probability, more available energy and shorter queue length than s sender,

which reduces the forwarding times of packets. Hop forwards packets to the nodes with more

available buffer regardless of the delivery probability and available energy, resulting in a larger

average number of hops per packet than ReSaF. The routing metric of CTP is the estimated link

state, which causes CTP to have the largest number of hops of the three protocols.

CTP has a lower packet latency than ReSaF and Hop (Figure 6.7 (a)). The reason is that
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Figure 6.6: Energy consumption (measured as the total transmission and receiving time) under
different scenarios

ReSaF needs to wait for the appropriate next hop, while Hop may direct packets along a less

optimal path.

Due to the differences in routing mechanisms, ReSaF uses less energy than Hop (Figure 6.6

(a)). Deliver packets in Hop may need more intermediate nodes, which leads to more energy

consumption than ReSaF. CTP has fairly constant energy consumption regardless of the number

of source, since CTP drops the packets after a certain number of retransmission.

6.6.2.2 Heavy traffic load scenarios

In this experiment we generate 10 nodes in the network area, one of them is the sink. All

nodes except the sink are sources, and each source sends one flow. Each flow is sent in burst, and

all sources start transmitting at the same time. The flow length is varied from one to 10 packets.

This experiment investigates the performance of the protocols in congested sparse networks.
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Figure 6.7: Packet latency under different scenarios

From Figure 6.4 (b), we can see that CTP still has the highest packet loss rate. The packet loss

rate of Hop decrease with the flow length increasing, while the packet loss rate of ReSaF increase

with the flow length increasing. The packet loss rate of Hop demonstrates that Hop performs well

when there is sufficient traffic in the network. The packet loss rate of ReSaF shows that ReSaF

can deal with light traffic load scenarios better than Hop. When the traffic load is heavy, packets

in ReSaF need to wait longer to find an appropriate next hop. This can be explained by Figure 6.5

(b), the number of hops of ReSaF decreases as the flow length increases. The number of hops

per packets with Hop is higher than that of ReSaF when traffic is heavy, allowing Hop to deliver

packets to the sink more quickly. Similar to light traffic load scenarios, Figure 6.7 (b) shows that

Hop and ReSaF have a higher packet latency than CTP. As shown in Figure 6.6 (b), ReSaF has less

energy consumption than Hop when flow length is short, and the energy consumption of ReSaF

approaches the level of Hop as the flow length increases. This is because when traffic load is high,

Hop can get enough pressure to route packets more efficiently, reducing the amount of energy
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spent.

6.6.2.3 Different node densities

In this experiment we vary the node density of the network from 10 to 30 while keeping the

network area constant. One node is the sink, all the remaining nodes are sources. Every source

sends one packet, all sources send at the same time. This experiments tests the scalability of the

protocols as the network density increases.

Figure 6.4 (c) shows that ReSaF has lower packet loss rate than Hop and CTP independent of

the node density. Same as the first two experiments, ReSaF has the smallest number of hops per

packet of the three protocols (Figure 6.5 (c)). As shown in Figure 6.7 (c), ReSaF and Hop have

higher packet latency than CTP regardless of the network size. However, Figure 6.6 (c) shows that

the energy consumption of CTP increase with the node density growing, this is because CTP needs

to spend more energy on routing information maintenance. The energy consumption of Hop and

ReSaF increases when the network size growing too, but ReSaF still has less energy consumption

than Hop, due to the routing mechanism of ReSaF.

6.7 Discussions

ReSaF provides end-to-end reliability, congestion control, storage management, and conditional-

forwarding routing algorithm. It can provide a lower loss rate, smaller number of hops per packet

and less energy consumption regardless of the traffic load in networks than other hop-by-hop pro-

tocols employing in-network storage and backpressure to direct packets. This is achieved by the

conditional-forwarding routing mechanism of ReSaF that a node forwards packets only if there is

an appropriate next hop that has has the best delivery probability, available buffer and energy in

the neighborhood and has higher delivery probability and more available buffer and energy than

the sender.

The routing decisions are made based on the delivery probability in ReSaF. The accuracy
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of the delivery probability can effect the performance of the protocol. Therefore, a study of the

delivery probability is necessary (given in Chapter 7). During our study, we found that the con-

nectedness of a mobile network is not static and uniform. The connectedness of a network may

vary from time to time, and the number of clusters and the sizes of these clusters may also change.

Therefore, a way to optimized the protocol is to make routing decisions with respect to the cur-

rent network status locally. The proposed method, connectedness-aware copy-adaptive routing

protocol, is introduced in Chapter 7.
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Chapter 7

Connectedness-Aware Copy-Adaptive

Routing Protocol

Single-copy and multiple-copy are two well-known schemes used in intermittently connected

networks [69, 65]. Comparing with multiple-copy schemes, single-copy [19, 83] schemes can

reduce the resources spent on forwarding duplicate copies, but are less robust to packet loss caused

by transmission or node failures. Multiple-copy schemes [75, 47, 21] are more robust to packet

loss, but simply flooding packets in a network can lead to resource exhaustions and degrade the

network performance. Hence, copy-control is critical especially in resource limited networks.

Many of the existing solutions provide copy-control through setting a threshold L. These

schemes spray L copies of a packet into a network, then stop injecting more copies and let the

nodes that carry those copies to either forward these copies to other nodes [68, 56] or wait for a

meeting with a destination [67, 22]. Even though applying a user-defined threshold L to control the

number of copies of a packet in networks can help in limiting congestion and resource consumption

caused by flooding, it is less flexible to handle possible variations in node density or network

connectedness.

This work, Connectedness-Aware Copy-Adaptive Routing Protocol (CACAR), aims to achieve

a high delivery rate independent of the node density without sacrificing the energy efficiency and
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the assistant from GPS.

7.1 Protocol Overview

Based on the previous exposition, the desirable design goals of the proposed multiple-copy

routing scheme for ICDT-WSNs can be summarized as follows:

• Have a better delivery rate that is higher than the existing multiple-copy routing schemes,

independent of the network connectedness and node density.

• Achieve lower delivery latency than multiple-copy routing schemes with/without copy-control,

which means an effective copy-control and the appropriate routing decisions are important

to an efficient routing scheme.

• Be energy efficient that is spending a small amount of transmission and reception time to

deliver a packet under all conditions, which also indicates to perform fewer transmissions on

duplicate copies to deliver a packet.

• Be highly scalable that is easily to adapt to variations on network connectedness and node

density without complicate recalculation and reconfiguration.

According to the above goals, the novel routing scheme, (CACAR), is able to route packets to

the appropriate next hops with adaptive copy-control mechanism. As a result, this proposed scheme

could achieve high delivery rate and low delivery latency without sacrificing energy efficiency. The

notation used in this chapter is summarized in Table 7.1.

CACAR is composed of two parts:

• Neighbor discovery: in WSNs, nodes usually generate beacons periodically to announce

their current status to the neighbors, which can be utilized to update routing information. We

take advantage of the beacons to maintain the intimacy (defined by Definition 7.1.1) of nodes

in CACAR. The pseudo code of the intimacy updating algorithm is shown in Algorithm 7.
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Table 7.1: Notation Summarization

Variable Definition

I the intimacy

Id the intimacy of the destination

Imax the maximum intimacy in a neighborhood

Imin the minimum intimacy in a neighborhood

IMAX the maximum intimacy in a network

IMIN the minimum intimacy in a network

d the destination

C the average maximum cluster size

N a network N

|N | the number of nodes in a network

cN the normalized maximum cluster size

F the scale of the intimacy range

• Packet forwarding: nodes in CACAR make forwarding decisions locally based on the net-

work connectedness (the details about connectedness are described in Section 7.2). If nodei

estimates the network is connected, it forwards packets to the best node (defined by Defini-

tion 7.1.2) in the neighborhood. Otherwise, nodei forwards packets to all the better nodes

(defined by Definition 7.1.3) in the neighborhood. The pseudo code for the packet forward-

ing algorithm is shown in Algorithm 8).

Definition 7.1.1. (Intimacy). An intimacy is a metric to measure the closeness of a node to the

destination.

We utilize the idea of Erdős number in this work to measure the closeness. The destination

has the lowest intimacy value, Id = IMIN = 0, and Id is a constant. The initial intimacy values of

all the rest regular nodes equal to IMAX = ∞. The intimacy values of the regular nodes decay per
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time unit according to Equation 7.1, and get updated according to Algorithm 7.

I
′

i = Ii + 1. (7.1)

A low intimacy value indicates that a node is close to the destination. The intimacy is dis-

cussed in detail in Section 7.2.

Definition 7.1.2. (Best Node). The best node of nodei is a neighbor of nodei whose intimacy value

is the lowest in nodei’s neighborhood and is also lower than Ii.

Definition 7.1.3. (Better Node). A better node of nodei is a neighbor of nodei whose intimacy

value is lower than Ii.

The set of better nodes of nodei includes the best node of nodei.

Algorithm 7 CACAR: Intimacy Updating
1: Imin = Ii
2: for all nodej in nodei’s neighborhood do
3: if Ij < Imin then
4: Imin = Ij
5: end if
6: end for
7: if Imin 6= Ii then
8: Ii = Imin + 1
9: end if

7.1.1 Adaptability of Neighbor Discovery

The length of beaconing interval for neighbor discovery is a tradeoff between the accuracy of

neighbor information and the energy efficiency [18]. A small interval consumes more energy than

a large interval, while provides more up-to-date network information. Therefore, CACAR uses an

adaptive beaconing to save energy while trying to get the latest information from neighborhood by

extending the Trickle algorithm [36].

Trickle transmits the version number of nodes’ information based on a randomized timer.

The basic idea of Trickle is that a node suppresses its announcement after the interval expires by
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Algorithm 8 CACAR: Packet Forwarding
1: for all packets in nodei do
2: if nodei estimates the network is connected then
3: best node = nodei
4: for all nodej in nodei’s neighborhood do
5: if Ij < Ibest node then
6: best node = nodej
7: end if
8: end for
9: if best node 6= nodei then

10: forward the packet to the best node
11: end if
12: else
13: for all nodej in nodei’s neighborhood do
14: if Ij < Ii then
15: forward a copy to nodej
16: end if
17: end for
18: end if
19: end for

doubling the interval up to a maximum value τh if it hears the same version number from another

node, and shrinks its interval to a small value τl if it hears a new version number. If all nodes have

the same version number, their interval increases exponentially up to τh.

CACAR applies Trickle in such a way that the version number gets updated when a node’s

intimacy gets updated. Therefore, the information that nodes are getting closer to the destination is

announced quickly, and energy spent on announcing information for nodes are drifting away from

the destination is significantly reduced.

7.1.2 Adaptability of Packet Forwarding

CACAR takes advantage of the goodness of multiple-copy coupled with a delivery probabil-

ity scheme that packets can be delivered more quickly by being forwarded to nodes with higher

delivery probabilities. Instead of using delivery probability, CACAR employs the intimacy as a

metric to measure the network connectedness and to decide the appropriate next hops. Unlike

other multiple-copy schemes that forward copies to all nodes with higher delivery probabilities,
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CACAR adopts a copy-control mechanism that is different from much of the existing work pre-

setting the allowed number of copies. The copy-control mechanism of CACAR is based on the

network connectedness in a way such that nodes forward packets to the neighbor that is closest to

the destination in the neighborhood if the network is estimated as connected, or generate copies to

all nodes that are closer to the destination if the network is measured as disconnected. The connect-

edness is estimated by nodes locally, and is adaptable to the changes on network connectedness or

node density.

The hop-level reliability of CACAR is achieved through hop-level acknowledgement. After

receiving a data packet, the receiver sends an acknowledgement to the packet sender. If the received

packet is a duplicate packet, the receiver sets the duplicate packet flag in the acknowledgement

to indicate dropping the packet. If the data packet is from a node with lower intimacy value,

the receiver sets the routing loop flag in the acknowledgement to indicate recalculating intimacy

values. After receiving such an acknowledgement, the sender broadcasts a neighbor discovery

message with its latest intimacy value for intimacy update. If the receiver has no available space

for the incoming packet, it sets the drop flag in the acknowledgement. After receiving such an

acknowledgement, the sender broadcasts a neighbor discovery message with its current intimacy

value later to find another next hop. If no acknowledgment received by the packet sender before a

timeout (nodes set a timer for acknowledgement after sending a data packet), the sender retransmits

the data packet. After a certain number of retransmissions, the sender drops the packet. Each

packet has a time to live (TTL) field. Once the TTL is larger than the maximum value, the packet

is dropped.

The above discussion about CACAR leaves an issue on how to estimate the connectedness of

a network locally, which is detailed in the following section.
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7.2 Connectedness Measurement

Due to the high node failures and transmission errors in ICDT-WSNs, multiple-copy rout-

ing mechanism is more efficient and robust than single-copy mechanisms. However, too many

duplicate copies of packets in a network will lead to unnecessary packet transmissions, energy

inefficiency and longer queuing delay. It is difficult to decide the appropriate number of copies of

packets for multiple-copy mechanism in intermittently connected scenarios, therefore, we propose

a copy-adaptive routing mechanism letting nodes locally decide the number of copies and next

hops at each forwarding step according to the connectedness measured by nodes. In the rest of this

section, we will introduce the method to measure the connectedness.

A B C D E

 B

C

D

E

Communication range of a node

 A

Figure 7.1: In a network with five nodes, A can talk to B and C, B can talk to A and C, C and talk
to A and B, D and E and talk to each other.

It is necessary to define a meaningful metric to measure the connectedness before we get into

the details. Since there is no agreement on the metric for connectedness in such intermittently

connected scenarios, we define the average maximum cluster size as a meaningful metric in our

study.

Definition 7.2.1. (Average Maximum Cluster Size). Average maximum cluster size is the average

number of nodes each node can communicate with. This includes the nodes that in the immediate

neighborhood and the nodes that can be reached through multi-hop communication. Let |N | be

the number of nodes in a network N and Ni be the number of nodes nodei can communicate with.
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The average maximum cluster size C is expressed as:

C =

∑
i∈N

Ni

|N |
. (7.2)

In the example shown in Figure 7.1, the average maximum cluster size of this network is 2+2+2+1+1
5

=

1.6.

To measure the connectedness independent of the network size, we introduce the normalized

maximum cluster size.

Definition 7.2.2. (Normalized Maximum Cluster Size). Normalized maximum cluster size of a

network is the value of average maximum cluster size of the network divided by the number of

nodes in the network subtracted by one. Let cN be the normalized maximum cluster size:

cN =
C

|N | − 1
. (7.3)

The normalized maximum cluster size of the network shown in Figure 7.1 is 1.6
4

= 0.4.
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Figure 7.2: Normalized Connectedness

The cN of a network has such features: In a network with a constant number of nodes, larger

communication range leads to higher cN (Figure 7.2 (a)); In a network composed of nodes with a

fixed communication range, larger number of nodes lead to a higher cN (Figure 7.2 (b)).
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We term the connectedness of a network as:

• If cN = 1, the network is a connected network. In this case, every node can communicate

with all the rest nodes via the single-hop or multi-hop manner.

• If cN < 1, the network is an intermittently connected network. In this case, some nodes are

isolated from other nodes.

Determining the global network connectedness is difficult in intermittently connected wire-

less sensor networks. We propose a novel method to estimate the connectedness by using local

observations.

Before we proceed, we discuss about the intimacy. We’ve defined intimacy and introduced

how to update and decay the intimacy value of nodes in Section 7.1. Intimacy is used to measure

the closeness of a node to the destination, and a low intimacy value means a node is close to the

destination. The minimum intimacy value in a network is the intimacy value of the destination,

since no one other than the destination is closer to itself. The maximum intimacy value in a

network is the initial values of regular nodes. Since nodes could move toward to or drift away from

the destination in ICDT-WSNs due to the node mobility, it is necessary to increase the intimacy for

the nodes that move away from the destination. We increase the intimacy values of these drifting

away nodes by one. As described in Definition 7.1.1, the intimacy value decays per time unit,

and updates every time a node discovers another one with lower intimacy value. Therefore, the

intimacy value of a node keeps growing if the node does not meet with any nodes with lower

intimacy values than its own intimacy value during a certain period of time. IMAX and IMIN are

shipped with the scheme when nodes are initially launched.

In a connected network where cN = 1, every node can communicate with the destination

directly or through the single-hop/multi-hop manner. Therefore, the nodes can be constructed into

a tree structure with respect to their intimacy values. The destination is the root of the tree, the

nodes that are in the communication range of the root are the children at the first layer of the tree,

the nodes that are single-hop away from the destination are the children at the second layer of the

106



0 20 40 60 80 100 120 1400

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Distance between the destination and a node (m)

In
tim

ac
y

(a) The intimacy distribution of 150 mobile nodes
with communication range 20 m in a 100× 100 m

area (cN of the network is 1)

0 20 40 60 80 100 120 1400

5

10

15

20

25

30

Distance between the destination and a node (m)

In
tim

ac
y

(b) The intimacy distribution of 150 mobile nodes
with communication range 5 m in a 100× 100 m

area (cN of the network is 0.024)

Figure 7.3: Intimacy distribution in scenarios with different normalized connectedness

tree, and the nodes that are more hops away from the destination are at lower layers of the tree.

The value of intimacy increases per layer in a manner that:

IM = M − 1, (7.4)

where IM is the intimacy of nodes at layer M or M hops away from the destination. For children

at layer M , their intimacy values fall in to the range (M − 2,M).

Theorem 7.2.1. In connected scenarios, the intimacy values of nodes that are M hops away from

the destination fall in to the range (M − 2,M) when applying CACAR.

Proof. In connected scenarios, the nodes can be constructed into a tree structure with respect to

their intimacy values. According to Algorithm 7, the nodes in the communication range of the

destination have the intimacy value Id+1 = 1, and the nodes in one hop away from the destination

have the intimacy value Id+2 = 2. Therefore, nodes that areM hops from the destination are with

the intimacy value Id+M −1 = M −1, nodes that are one hop further are with the intimacy value

Id +M = M , and nodes that are one hop closer are with the intimacy value Id +M − 2 = M − 2.

As a result, the intimacy values of nodes in M hops from the destination fall in to the range

(M − 2,M).
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The purpose of introducing Theorem 7.2.1 is not to study the connected scenarios, but use it

to estimate the connectedness of network. Since Theorem 7.2.1 holds only when cN = 1, when a

network is intermittently connected where cN < 1, Theorem 7.2.1 does not hold. Therefore, the

range can be used to estimate the connectedness of a network.

Let us use an example to show how well the intimacy range can be held under connected

and intermittently connected scenarios. We use the Random Waypoint model in this example. All

nodes in a network have the same communication range. The intimacy of nodes grows as the

distance between nodes and the destination increases, as shown in Figure 7.3 (a). The number

of hops can be transfer to the distant between a node to the destination by applying H =
⌈
D
R

⌉
,

where H is the number of hops, D is the normalized distance converts the geographic distance to

the minimum number of hops required to traverse the distance, and R is the communication range

of nodes. From this figure, an observation can be made that intimacy values of nodes at M hops

from the destination fall into the range (M − 2,M). In an intermittently connected network, this

property does not hold, as shown in Figure 7.3 (b).

The scale of the intimacy range (M − 2,M) is a constant, F = 2. To determine the connect-

edness of a network, we let nodes estimate the connectedness by observing the range of intimacy

values of nodes in their neighborhood. Let Imax be the maximum intimacy in nodei’s neighbor-

hood, Imin be the minimum intimacy in nodei’s neighborhood, and ∆i be the scale of the intimacy

range measured by nodei:

∆i = Imax − Imin. (7.5)

By comparing ∆i with F , nodei can determine whether the network is connected or inter-

mittently connected. Cases where ∆i ≤ F are interpreted as an indication that the network is

connected. This is because in a connected network the range of the intimacy values of nodes in

the neighborhood is (M − 2,M). Correspondingly, if ∆i > F , we conclude that the network is

intermittently connected.

The goodness of this connectedness mechanism is that there is no pre-set threshold needed.
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Therefore, when the changes on communication range and node density happen, there is no need

to reconfigure or recalculate.

Moreover, such connectedness estimation can help to reduce unnecessary copies. As de-

scribed in Section 7.1, nodes forward packets to the best node if the network is estimated as con-

nected (∆i ≤ F ), which means neighbors are all with high intimacy values or are all with low

intimacy values. If all neighbors are close to the destination (all with low intimacy values), packets

have a higher possibility to get delivered, hence, forwarding to one next hop can reduce unneces-

sary traffic. If all neighbors are far from the destination (all with high intimacy values), there is no

need to forward packets to equally bad next hops.

7.3 Simulation and Experiments

7.3.1 Simulation Experiment Setup

CACAR has been implemented on Contiki [11] and evaluated on Cooja [50]. Bonnmotion [1]

is used to generate the motion patterns. We compare CACAR with Epidemic routing [75] and the

state-of-art routing protocol for wireless sensor network, Collect Tree Protocol (CTP) [20]. CTP

is a single-copy protocol but can provide high end-to-end reliability with low energy consumption

when a route exists. Comparing with CTP allows us to study the tradeoff between a protocol for

intermittently connected WSNs and a protocol for connected WSNs. Epidemic routing protocol

is a basic multiple-copy protocol for intermittently connected networks under the assumption that

nodes are equipped with infinite buffers. By comparing with Epidemic routing protocol, we can

evaluate the advantage of the adaptive copy-control mechanism of CACAR.

We set up two experiments: varying the communication range of nodes and varying the num-

ber of nodes in a network. The network area is 100× 100 m. Nodes in this area move according to

the Random Waypoint model with speed 4 m/s, and the buffer size is set to 12 packets. One of the

nodes is the destination. All the remaining nodes are source nodes transmitting a packet every 30

seconds. The simulation time for each experiment is 10 minutes. Source nodes start transmitting
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packets at two minutes after the initiation, and keep transmitting for five minutes. Every set of

experiments has 30 runs, and the results are the average values out of the 30 runs, with a 90%

confidence interval. The purpose is to study the end-to-end reliability and energy efficiency of

CACAR, therefore, we do not investigate the throughput of the protocol.

We use four metrics to evaluate the performance:

Delivery rate : the ratio between the number of distinct packets received at the sink and the

number of packets sent by all sources

Number of hops per packet : the hop count of a packet from its source to the sink

Packet latency : the time between the moment the packet generated by a source to the time it is

received by the sink

Energy consumption : it is measured as the sum of the number of transmission and the number

of receptions per delivered packet

7.3.2 Experiment Results and Performance Evaluation

7.3.2.1 Variable communication range

This experiment investigates the performance of these protocols under scenarios with differ-

ent connectedness. In this experiment we generate 10 nodes in a 100 × 100 m area and vary the

communication range of nodes from 10 m to 50 m while keeping the network area fixed. The cN

of the network varies from 0.042 to 0.978.

Figure 7.4 (a) shows that the delivery rate of CACAR is higher than CTP and Epidemic

in most time. The delivery rate of CACAR is lower than CTP at the communication range of

10 m, since the network is too sparse. Under this scenario, nodes do not get enough contacts

to maintain the intimacy and to transmit packets. With the growth of the communication range,

nodes can contact more frequently, and the intimacy can be better maintained. According to the

routing mechanism of CACAR, the number of nodes forwarding packets to more than one next
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Figure 7.4: Ten mobile nodes in a 100× 100 m area, with the communication range varying from
10 m to 50 m.

hops grows as the connectedness decreases. Therefore, CACAR is more robust than CTP when

the communication range is small. The delivery rate of Epidemic increases with the growth of

the connectedness. However, Epidemic’s delivery rate is still lower than the other two protocols.

This is because Epidemic routing assumes that the nodes have infinite buffers. Nodes in WSNs

typically have limited storage space, hence, the multiple-copy mechanisms like Epidemic result in

a significant packet loss due to buffer overflow.

In CACAR, nodes only forward packets to the neighbors with better intimacy values than

themselves. Comparing with the route metric of CTP, intimacy is less sensitive and changes less

frequently. If there are no appropriate next hops to forward, the senders will hold the packets till

the appropriate next hops become available. Hence, the packet latency of CACAR is larger than

the latency of CTP. Epidemic has a higher latency than CACAR, since nodes in Epidemic have the

average longer sending queue than nodes in CACAR (Figure 7.4 (b)).
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Figure 7.5: Mobile nodes with communication range 20 m in a 100 × 100 m area, varying the
number of nodes in the network from 5 to 30.

The routing metric in CTP is more sensitive than intimacy in CACAR. Once a node’s routing

metric gets updated in CTP, all the nodes relying on this node need to update their routing metrics.

Therefore, a series of messages will be sent out for routing metric maintenance. As a result, CTP

needs larger numbers of transmissions and receptions than CACAR to maintain routing metric un-

der the scenarios where the network topology changes frequently. Moreover, CACAR has more

packets delivered than CTP during the same period of time. Hence, CACAR spends less transmis-

sion and reception time per packet than CTP (Figure 7.4 (c)). CACAR consumes less energy than

Epidemic, since CACAR transits less number of duplicate copies of a packet than Epidemic.

Epidemic transmits a packet to every nodes that are without a copy of the packet, regardless

of the nodes’ delivery probabilities. Conversely, CTP transmits a packet to the next hop with the

highest probability to deliver the packet. As a result, CTP has the lower number of hops per packet

than Epidemic. The transmission strategy of CACAR is in between of Epidemic and CTP. If the
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connectedness of a network is measured as intermittently connected, the nodes in CACAR transmit

a copy of a packet to every nodes with better intimacy values in the neighborhood. Therefore, the

number of hops per packet of CACAR is also in between of Epidemic and CTP, as shown in

Figure 7.4 (d).

7.3.2.2 Variable node density

The experiment investigates the performance of these protocols under different densities and

different traffic loads. In this experiment we vary the number of nodes in a constant network area

from 5 to 30, while keeping the communication range of 20 m. The cN of the network varies from

0.1666 to 0.709, and the number of source nodes varies from 4 to 29 accordingly.

Figure 7.5 (a) shows that the delivery rates of CACAR, CTP and Epidemic decrease with

the growth of the number of nodes. This is because the traffic load increases with the growth of

the number of nodes. However, CACAR still has a higher delivery rate than CTP and Epidemic

due to the different routing mechanisms they employ. The routing mechanism of CACAR is more

robust than CTP, and more efficient than Epidemic in intermittently connected scenarios (detailed

in Subsection 7.3.2.1).

The packet latencies of CACAR, CTP and Epidemic also increase with the growth of number

of nodes (Figure 7.5 (b)), since the average routing paths are getting longer in networks with more

nodes. Because of the same reason explained in Subsection 7.3.2.1, CACAR has longer packet

latency than CTP, and shorter latency than Epidemic.

As shown in Figure 7.5 (c), CACAR consumes less energy per packet than CTP and Epidemic

independently of the number of nodes in a network. The reason is explained in Subsection 7.3.2.1.

The energy consumption of these protocols increases with the growth of number of nodes. How-

ever, the increasing of CACAR is slower than CTP and Epidemic. This is because CTP needs more

transmission and reception to maintain routing tables in dense networks. While for Epidemic, the

growth of number of nodes leads to a significant increasing in the number of copies to transmit.

Therefore, its energy consumption also increases significantly.
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The number of hops per packet of the three protocols increases with the growth of the node

density, as shown in Figure 7.5 (b). This is because the average path length grows with the node

density increasing.

7.4 Discussions

CACAR, a copy-adaptive routing protocol, can provide higher delivery rate without scarify-

ing energy efficiency in intermittently connected scenarios regardless of the traffic load. This is

achieved by the connectedness-aware copy-adaptive routing mechanism of CACAR that a node

forwards one copy of a packet to the neighbor with the best intimacy value in the neighborhood

if the node estimate the network is connected; otherwise, the node forwards a copy of a packet to

each neighbor with better intimacy value than the node itself. CACAR allows nodes to perform

copy-control and to make routing decision locally based on their local estimation.
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Chapter 8

Regional Information Dissemination

Protocol

The previous work targets at the transmissions between the source nodes and destinations, in

which case the source nodes know which nodes are the destinations. However, there are scenarios

where the destinations are unknown to the source nodes when they are trying to send packets. The

information sent by the source nodes is only interested to nodes in the region of interest (ROI). Due

to the mobility of nodes, the nodes in the ROI are highly unstable.

In this chapter, we first propose the network model of regional information dissemination

networks. To better describe the mechanisms used in this type of networks for efficient dissemi-

nation, the basic epidemic flooding is introduced first, and then we propose several flooding-based

mechanisms reducing unnecessary transmissions.

8.1 Network Model

Regional information dissemination networks are mission-oriented networks, where all nodes

in a network cooperator together to achieve a common task assigned to the network. Hence, the

efficiency goal of this type of networks is to reduce the energy consumption from the network

perspective instead of from a node perspective.

115



The regional information dissemination networks operate in a fixed area, where a set of static

targets are randomly distributed. A set of mobile nodes move in the area according to a mobility

model, detect targets and communicate locally when necessary. Once a node detects a target, it

informs other nodes in the ROI of the target. Nodes that receive a target information act as relay

nodes to inform other nodes in the ROI of the target via local communication. A ROI of a target

is a circle area centering at the target. The target information is only necessary to the nodes in the

ROI of the target, not critical to the nodes outside of the ROI. We assume that nodes are aware of

their locations, the network area is significant larger than the ROI, and the radius of ROI is larger

than the communication range of a node. Consequently, multi-hop relay is necessary to inform

nodes in the ROI of a target.

Due to the node mobility, the network is intermittently connected: the contemporaneous path

from a node detecting a target to a node in the ROI does not always exist. Even if it exists, the path

is highly unstable that may break while being discovered. The mobile nodes can enter and exit the

ROI anytime. As a result, the destinations of the target information are uncertain to the nodes that

detect the targets. The dissemination mechanism should not rely on the designated information

destinations, and should be designed from the perspective of arbitrary destinations.

8.2 Epidemic Flooding

Epidemic flooding [75] lets nodes transmit a copy of a target information to every node that

does not have a copy of the target information, after the nodes detect the target or receive a copy

of the target information (shown in Algorithm 9).

Algorithm 9 Epidemic Flooding
1: if nodei has a copy of a target information TIm then
2: for all nodej in nodei’s neighborhood do
3: if nodej does not have a copy of TIm then
4: nodei forward a copy of TIm to nodej
5: end if
6: end for
7: end if
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In Epidemic flooding, there is not need to know the destination information, a node with a

copy of the target information simply forward a copy to other nodes without a copy of the target

information in its communication range. Eventually, all nodes in the network will be aware of the

target information.

8.3 Region Restricted Flooding

Although the epidemic flooding can let the nodes in the ROI of a target be aware of the

existence of the target, it generates a significant amount of unnecessary transmissions to inform

the nodes outside of the ROI that are not interested in the information. This amount of unnecessary

transmission increases with the growth of the network density. Therefore, reducing this amount of

unnecessary transmissions is critical to an efficient dissemination protocol.

Region restricted flooding lets the nodes in the restricted region (see Definition 8.3.1) of a

target execute epidemic flooding; The nodes outside of the restricted region are not allowed to

transmit the target information (shown in Algorithm 10).

Algorithm 10 Region Restricted Flooding
1: if nodei has a copy of a target information TIm and nodei is in the restricted region then
2: for all nodej in nodei’s neighborhood do
3: if nodej does not have a copy of TIm then
4: nodei forward a copy of TIm to nodej
5: end if
6: end for
7: end if

Definition 8.3.1. (Restricted Region). The restricted region of a target is a circle area centered at

the target, which can be seen as an enlarged or shrunk ROI of the target. The radius of the restricted

region, Rα, is calculated as:

Rα = αR, (8.1)
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where R is the radius of the ROI, and α ∼ 1. The lower bound of α, αmin, is calculated as:

αmin = 1− rt
R
, (8.2)

where rt is the communication range of nodes.

Therefore, when α = αmin, the nodes located at the border of the restricted region, nodea,

can still provide transmissions to the nodes in the ROI but outside of the restricted region of the

target. nodeb, as shown in Figure 8.1.

R

Rα
rt

target node

nodea

nodeb

Figure 8.1: Lower bound of the restricted region

The restricted region can be controlled by varying the value of α. As shown in Figure 8.2,

when α = 1.0, the restricted region equals to the ROI.

R

0.8 R1.2 R

Figure 8.2: Restricted regions for varying α
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8.4 Probability Based Flooding

Probability based flooding is a flooding-based protocol that lets a node with a copy of a

target information transmit the information to other nodes that are not aware of the target with a

probability, p ∈ (0, 1] (shown in Algorithm 11). When p = 1, the probability based flooding turns

to the epidemic flooding.

Algorithm 11 Probability Based Flooding
1: if nodei has a copy of a target information TIm then
2: for all nodej in nodei’s neighborhood do
3: if nodej does not have a copy of TIm then
4: generate a random number, rand ∈ (0, 1)
5: if rand < p then
6: nodei forward a copy of TIm to nodej
7: end if
8: end if
9: end for

10: end if

Probability based flooding reduces the transmissions via the control of the growth rate of the

total number of transmissions in a network. Although it can reduce the number of transmissions to

inform nodes in the ROI of a target, probability based flooding lets all nodes in a network be aware

of the target information eventually. The transmissions that happen outside of the ROI of a target

are not eliminated in probability based flooding.

8.5 Region Restricted Probability Based Flooding

Region restricted probability based flooding is a hybrid protocol of the region restricted flood-

ing and probability based flooding. In region restricted probability based flooding, the nodes in the

restricted region of a target transmit the target information to other nodes that are not aware of the

information with a probability, p ∈ (0, 1] (shown in Algorithm 12).

When p = 1, the region restricted probability based flooding turns to the region restricted

flooding. In another word, we can consider the region restricted flooding as a special case of the
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Algorithm 12 Region Restricted Probability Based Flooding
1: if nodei has a copy of a target information TIm and nodei is in the restricted region then
2: for all nodej in nodei’s neighborhood do
3: if nodej does not have a copy of TIm then
4: generate a random number, rand ∈ (0, 1)
5: if rand < p then
6: nodei forward a copy of TIm to nodej
7: end if
8: end if
9: end for

10: end if

region restricted probability based flooding.

In addition to control the growth rate of the number of transmissions, unlike probability based

flooding, region restricted probability based flooding reduces the unnecessary transmissions out-

side of the ROI of a target by applying the restricted region. As a result, in region restricted

probability based flooding, transmissions only happen in the restricted region with a certain prob-

ability.

8.6 Simulation and Experiments

8.6.1 Simulator and Experiment Setup

The epidemic flooding (F), region restricted flooding (R), probability based flooding (P) and

region restricted probability based flooding (RP) have been implemented on Contiki OS [11] and

evaluated on Cooja [50]. Bonnmotion [1] is used to generate intermittently connected mobile

scenarios.

In this study, we set one target at the center of a 100× 100m network. The radius of the ROI

of the target is set to R = 25 m. Nodes in the network moves according to the Random Waypoint

model, and the transmission range and sensing range of nodes are set to 10 m. To inspect the

effect from the parameters to the performance of protocols, we vary the values of α and p in region

restricted flooding, probability based flooding and region restricted probability based flooding.
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The value of α in region restricted flooding varies from 0.6 (calculated via Equation 8.2), to 1.2.

The value of p in probability based flooding varies from 0.125 to 0.5. For the region restricted

probability based flooding, we vary p from 0.125 to 0.5 while keeping α equals to 1, and inspect

the performance when p equals to 0.125 and α equals to 0.6. In order to study the scalability of

the protocols, we vary the network density from 5 to 40 nodes. The network varies from mostly

disconnected to partially connected. For each density, we set 50 runs, each run is 10 minutes, and

the results are the average values out of the 50 runs, with a 95% confidence interval.

In the investigation of the fixed network density, we use three metrics to evaluate the proto-

cols:

Informed Ratio : the percentage of nodes in the ROI that are informed (shown in Equation 8.3)

Total Cost : the total number of transmissions of all node in a network

Cost : the rate between the total cost and the number of informed nodes in the ROI (shown in

Equation 8.4)

Informed Ratio =
num. of informed nodes in the ROI

num. of nodes in the ROI
× 100% (8.3)

Cost =
Total Cost

num. of informed nodes in the ROI
(8.4)

In the investigation of the varied network density, we take two steps: evaluate the performance

at time 60 seconds, and evaluate the performance when the informed ratio reaches at 80%. We use

the relative cost instead of the total cost in this investigation for a comparison to show the trends

as the network scales. In the second step, we use the dissemination latency instead of the informed

ratio to inspect the dissemination speed. The relative cost and dissemination latency are defined

as:

Relative Cost : the average number of transmissions per node (shown in Equation 8.5)
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Dissemination Latency : the time needed to inform 80% of nodes in the ROI

Relative Cost =
Total Cost

num. of nodes in a network
(8.5)

8.6.2 Experiment Results and Performance Evaluation

8.6.2.1 Fixed Network Density

In this experiment, we set the network density to 10 nodes, and investigate the performance

every 10 seconds for 150 seconds since the target has been detected by the first node.

As shown in Figure 8.3, the informed ratio, cost and total cost increase with the time goes

by, independent of the values of p and α. The epidemic flooding has the highest informed ratio,

cost and total cost than others, followed by the region restricted flooding. Larger α leads to higher

informed ratio, higher cost and more transmissions. When α in [0.8, 1.2], restricted region flooding

has very close informed ratio to the epidemic flooding, while the cost of restricted region flooding

is much lower than the epidemic flooding. This is because region restricted flooding reduces the

unnecessary transmissions outside of the ROI, which can be observed from Figure 8.3 (c) that the

region restricted flooding has a smaller number of transmissions than the epidemic flooding.

We can also observe from Figure 8.3 that the probability based flooding and region restricted

probability based flooding have smaller total cost than the epidemic flooding and region restricted

flooding. Smaller p leads to less number of transmissions. With the same p value, region restricted

probability based flooding generates less transmissions than the probability based flooding. With

the same p value, the differences on the total cost of region restricted probability based flood-

ing with different α values are very small. Therefore, in the region restricted probability based

flooding, p is the more impactful parameter.
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Figure 8.3: Evolution of information propagation and costs from 0 to 150 seconds for a network
with 10 nodes and an area of 100× 100 m

123



8.6.2.2 Varied Network Density - Step I

In this experiment, we vary the network density from 5 to 40 nodes, and investigate the

performance at time 60 seconds since the target has been detected by the first node.

As shown in Figure 8.4 (a), region restricted flooding has higher informed ratio than probabil-

ity based flooding. In the region restricted probability based flooding, those with higher p values

can inform more nodes in the ROI of the target at 60 seconds. This is because more frequent

transmissions can disseminate the information into a network more quickly.

Figure 8.4 (b) shows that the differences between the costs of region restricted flooding, prob-

ability based flooding and region restrict probability based flooding and the cost of the epidemic

flooding increase with the growth of the network density. This is because the unnecessary trans-

missions of the epidemic flooding grow significantly with the increase of the network density.

From Figure 8.4 (c), we can observe that probability based flooding can better control the

growth rate of the number of transmissions than the epidemic flooding. However, the unnecessary

transmissions outside of the ROI of the target still increases with the growth of the network density,

which is especially prominent when p equals to 0.5. The region restricted flooding can control the

unnecessary transmissions better than probability based flooding, since the number of transmis-

sions of region restricted flooding does not keep growing with the increase of the network density.

The region restricted probability based flooding still consumes the least transmissions independent

of the network density.

8.6.2.3 Varied Network Density - Step II

In this experiment, we vary the network density from 5 to 40 nodes. We investigate the

informed ratio per 10 seconds, and record the dissemination latency, cost and relative cost when

the informed ratio first reaches at 80%.

Figure 8.5 (a) shows that the dissemination latency of those flooding based protocol decreases

with the network density increase, and after 20 nodes, the dissemination latency starts to increase.

This is because, when the network density is low, the opportunity to meet and communicate with
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Figure 8.4: Information propagation and costs at time 60 seconds for a network with 5 – 40 nodes
and an area of 100× 100 m
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Figure 8.5: Information propagation and costs when 80% of nodes in the ROI were informed for a
network with 5 – 40 nodes and an area of 100× 100 m
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other nodes is small, therefore, to disseminate information to the nodes in the ROI needs more

time. While with the growth of the network density, the number of nodes in the ROI of a target

increases too. As a result, the time to inform the nodes in the ROI of a target increases. For

the probability based flooding and region restricted probability based flooding, the opportunity to

communicate with other nodes is much smaller than the epidemic flooding and region restricted

flooding. Consequently, the dissemination latency of these two protocols is longer than epidemic

flooding and region restricted flooding.

As shown in Figure 8.5 (b) and (c), the epidemic flooding has the highest cost, since it gen-

erates more transmissions to disseminate information to the nodes in the ROI of a target. The cost

of region restricted flooding increases slightly with the growth of the network density. The region

restricted flooding can provide the competitive dissemination latency as the epidemic flooding with

much less cost. The region restricted probability based flooding can achieve a informed ratio with

the lowest cost.

Moreover, the low α value does not always lower the cost. Higher p leads to higher cost.

Depending on the value of p, the probability based flooding is not always better than the region

restricted flooding. For the region restricted probability based flooding with the same p, it is not

always the case that smaller α leads to lower cost. These observations reflect that the value of p

and α should adapt to the network density to achieve the optimum performance, which is currently

under investigation.

8.7 Discussions

Region restricted probability based flooding employs region restriction and probability based

flooding to disseminate the information to the nodes in the ROI. It can provide quick dissemination

speed to inform nodes in the ROI with lesser cost by varying the parameter p and α. This is

achieved by the restricted region mechanism to reduce the unnecessary transmissions to inform

nodes outside of the ROI that are not interested in the disseminated information. The relationship
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between the value of p and α and the network density is left to be explored.
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Chapter 9

Conclusions

In this dissertation, we in-depth study the routing, flow-control, error-control and storage

management in ICDT-WSNs. Specifically, we develop new energy efficient approaches to solve

these problems without a request on large storage space.

9.1 Routing

In our study, routing has been divided into two groups: information transmissions with known

destinations and information dissemination with arbitrary destinations. To transmit information

with known destinations, the performance can be improved by taking advantage of the utility lev-

els of nodes, such as intimacy, queue length, free storage space and available energy level. The

study [40] shows that the solution, ReSaF, which employs the utility levels of nodes can achieve

higher delivery rate and smaller number of hops per packet than other hop-by-hop protocols that

take advantage of the the in-network storage and backpressure to direct packets.

Moreover, we notice that the connectedness of a network varies with the communication

range of nodes and the number of nodes in a network. Duplicate packet transmissions are neces-

sary in disconnected networks, but can degrade the performance and energy efficiency in connected

networks. It is important to let communication protocol be adaptive to the network connectedness

with respect to the number of duplicate transmissions. Our study shows that copy-adaptive routing
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protocol, CACAR, can provide higher delivery rate without scarifying energy efficiency in inter-

mittently connected scenarios regardless of the traffic load. This is achieved by the connectedness-

aware copy-adaptive routing mechanism, which allows nodes to perform copy-control and to make

routing decisions locally based on the measured connectedness.

The second group, information dissemination, aims to disseminate the information to the

nodes in the ROI. The information is not critical to the nodes outside of the ROI. Due to the node

mobility, nodes in the ROI are highly unstable. In this dissertation, we concentrate on the scenario

that the ROI is a circle area with a static target as the center. Our study indicates that region

restricted probability based flooding can provide quick dissemination speed to inform nodes in the

ROI with smaller number of transmissions than other flooding based schemes. This is achieved by

reducing the unnecessary transmissions to inform nodes outside of the ROI that are not interested

in the disseminated information.

9.2 Flow-control

Flow-control in ICDT-WSNs is via hop-by-hop manners. Nodes with packets to forward

measure or estimate congestion and make forwarding decisions locally. As a result, flow-control

in ICDT-WSNs is usually coupled with routing.

We investigate two flow-control methods: backpressure and the utility level of nodes. Back-

pressure directs packets only based on the available space of the neighbors. Taking advantage

of the utility level of nodes, packets are forwarded mainly based on the intimacy values, but the

available space of neighbors is also take into consideration. The study [40] indicates that using

the utility level of nodes can achieve higher delivery rate, shorter packet latency and less energy

consumption.
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9.3 Error-control

In our study, error-control mainly focuses on the loss recovery for packet loss happened dur-

ing transmission and due to the overflow of storage or queue. Error-control has two levels: hop

level loss recovery and end-to-end level loss recovery. Hop level loss recovery is achieved by hop-

level acknowledgement, and end-to-end level loss recovery is achieved vi in-network storage and

virtual retransmission.

According to our study [42, 43], communication protocols with error-control can provide

higher delivery rate than those without error-control in ICDT-WSNs.

9.4 Storage management

The purpose of storage management in this dissertation is to maximize the utility of stor-

age. Therefore, we aim to save space for more important packets by removing unnecessary ones.

Our work focuses on duplicate checking and unnecessary packet elimination. Nodes execute in-

network storage only when the received packets are not in the storage. For those packets that are

already confirmed by the destinations, nodes eliminate them from the storage.

We investigate these storage management mechanisms in [42, 43], the results show that the

protocols that employ in-network storage with the storage management perform significantly better

than those without storage management.
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