
Constructing Provenance-Aware Distributed

Systems with Data Propagation

by

Ian Campbell Jacobi

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2010

c© Massachusetts Institute of Technology 2010. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 18, 2010

Certified by. .
Gerald Jay Sussman

Professor of Electrical Engineering
Thesis Supervisor

Accepted by .
Professor Terry P. Orlando

Chair, Department Committee on Graduate Students

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/4424469?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Constructing Provenance-Aware Distributed Systems with

Data Propagation

by

Ian Campbell Jacobi

Submitted to the Department of Electrical Engineering and Computer Science
on May 18, 2010, in partial fulfillment of the

requirements for the degree of
Master of Science in Computer Science and Engineering

Abstract

Is it possible to construct a heterogeneous distributed computing architecture capa-
ble of solving interesting complex problems? Can we easily use this architecture to
maintain a detailed history or provenance of the data processed by it? Most existing
distributed architectures can perform only one operation at a time. While they are
capable of tracing possession of data, these architectures do not always track the
network of operations used to synthesize new data.

This thesis presents a distributed implementation of data propagation, a com-
putational model that provides for concurrent processing that is not constrained to
a single distributed operation. This system is capable of distributing computation
across a heterogeneous network. It allows for the division of multiple simultaneous
operations in a single distributed system. I also identify four constraints that may be
placed on general-purpose data propagation to allow for deterministic computation
in such a distributed propagation network.

This thesis also presents an application of distributed propagation by illustrating
how a generic transformation may be applied to existing propagator networks to
allow for the maintenance of data provenance. I show that the modular structure of
data propagation permits the simple modification of a propagator network design to
maintain the histories of data.

Thesis Supervisor: Gerald Jay Sussman
Title: Professor of Electrical Engineering

3

Acknowledgments

I would like to acknowledge and thank the following individuals for their assistance
throughout the development of the work presented in this paper:

My thesis supervisor, Gerry Sussman, for having introduced me to Alexey Radul’s
work on propagator networks and advising me throughout the past two years as I have
developed this work.

Alexey Radul for developing the concept of propagator networks and offering
significant assistance and criticism of my proposed distributed propagator mechanism.

My advisor, Hal Abelson, for providing feedback during the early stages of this
work and helping me to refine its goals.

Mike Speciner for helping to proofread the paper and finding several mathematical
issues with my description of provenance.

Tim Berners-Lee for his criticisms of my use and implementation of REST within
distributed propagation.

Joe Pato of HP Labs for contributing to my understanding of computational
provenance and its use-cases.

Lalana Kagal for her continued assistance and support of my work, and helping
to place it within the context of accountability and reasoning.

My lab-mates and other members of the Decentralized Information Group not
named above for offering their assistance, criticisms, feedback, and proofreading skills
as this project has slowly developed over the past two years.

Finally, I would like to acknowledge that funding for this work was provided by the
National Science Foundation Cybertrust Grant award number 04281 and by IARPA
Grant FA8750-07-2-0031.

4

Contents

1 Introduction 13

1.1 Heterogeneous Distributed Systems 14

1.2 Retrofitting Provenance . 16

1.3 Introducing Distributed Propagation 17

1.4 Thesis Overview . 18

2 Background 21

2.1 Data Propagation . 21

2.2 Representational State Transfer . 24

3 A Design for Distributed Propagation 29

3.1 Constraining the Merge Operation . 30

3.2 Choosing a Distribution Application Model 32

3.3 Resource Representations . 34

3.4 Naming Cells . 35

3.5 Maintaining the Network . 38

3.6 Cell Initialization . 39

3.7 Cell Updates . 41

3.8 Failure Recovery Through Re-synchronization 42

4 Provenance-Aware Propagation 45

4.1 Provenance . 46

4.2 Data Structures on a Distributed Propagator Network 48

5

4.3 Modifying Existing Propagator Networks for Provenance 50

4.3.1 Provenance-Aware Cells . 52

4.3.2 Provenance-Aware Propagators 54

5 Security and Stability 55

5.1 Distributing Propagators . 55

5.1.1 Merging and Race Conditions 55

5.1.2 On Connection Failure . 57

5.2 Securing Distributed Cells . 58

5.3 Auditing Provenance Traces . 60

6 Related Work 63

6.1 Distributed Cells and Replicated Databases 63

6.2 Decentralized REST . 65

6.3 Distributed Provenance . 65

7 Summary 69

7.1 Contributions . 69

7.2 Challenges and Future Work . 70

7.2.1 Propagator Networks & Garbage Collection 70

7.2.2 Data Structures and Propagators 71

7.2.3 Redundancy of Distributed Operations 71

7.2.4 Scalability and Practicality Issues 72

7.2.5 Security . 73

7.2.6 Representational State Refinement 73

7.2.7 Which HTTP Method? POST vs. PUT vs. PATCH 74

7.3 Conclusion . 75

A DProp: Distributed Propagation in Practice 77

A.1 The Architecture of DProp . 78

A.2 The DProp Daemon . 82

A.2.1 Serving Cells . 83

6

A.2.2 Fetching Cells . 84

A.3 PyDProp . 85

A.3.1 The LocalCell and RemoteCell Classes 87

A.3.2 Provenance-Aware Cells . 87

A.3.3 Propagators . 88

A.4 DProp and JSON . 89

7

8

List of Figures

2-1 A cell applying a merge operation to merge two temperature readings. 22

2-2 Data propagation at work: a temperature converter. 23

3-1 Distributing propagator networks by dividing shared cells. 36

3-2 Creating a distributed propagator cell. 39

3-3 Updating a distributed propagator cell. 41

4-1 A possible provenance graph for a temperature range in Celsius. . . . 47

4-2 Making a simple propagator network provenance-aware. 50

5-1 A clique of cells is temporarily broken when a new cell joins. 56

A-1 Example communications between a DProp client and server via DBus. 81

A-2 Class hierarchy of PyDProp. 86

9

10

List of Tables

2.1 The four CRUD operations and corresponding HTTP methods. . . . 26

3.1 The URL structure used by DProp. 35

7.1 The four constraints on the merge operation and their benefits. . . . 70

A.1 DBus remote methods available on a DPropMan object. 79

A.2 DBus remote methods available on a Cell object. 79

A.3 DBus signals sent by a Cell object. 79

A.4 Methods available on a Cell object in PyDProp. 86

A.5 Methods available on a ProvenanceAwareCell object in PyDProp. . . 88

A.6 Types of JSON objects used in PyDProp’s provenance-aware cells . . 90

11

12

Chapter 1

Introduction

By harnessing the power of tens, hundreds, or even thousands of individual comput-

ers, it is possible to solve many problems that might not be tractable on a single

system. Such distributed systems are a compelling application of large networks.

These systems usually work on a heterogeneous network by design; large networks

rarely consist of computers that all share the same configuration of hardware and

software. To effectively scale a distributed system, it is usually necessary for the

system to perform the same computation on many different host configurations. By

partitioning data across the nodes in the network, it is possible to improve the perfor-

mance of many algorithms. Some algorithms, such as those that feature a high level

of interdependency within the data they process, are not amenable to such division

of labor. For these algorithms, another approach to their distribution is required.

Distributed systems often maintain only a basic level of history for the data they

process. This may include simply logging the particular node to which a piece of

data was delegated for processing. Complex data histories may be constructed in

distributed systems, but this often requires careful consideration of the role and need

for this “data provenance” at design-time. It would be more efficient from a software

design perspective if a system was able to handle such provenance without significant

modification of existing code.

13

1.1 Heterogeneous Distributed Systems

As the archetypal large network, the Internet has enabled the construction of many

distributed computing efforts. Architectures like SETI@home [3], the related BOINC

platform [2], or even Google’s internal usage of MapReduce [13] demonstrate the value

that the Internet has added to distributed systems. By allowing the many machines

connected to the Internet to work together, many otherwise intractable problems may

be solved.

Whether on the Internet, as in the case of the former two systems, or in private

data centers, as in Google’s case, these distributed systems all operate on heteroge-

neous networks. There is typically little standardization of the hardware and software

configurations of nodes on these networks. Even systems that are superficially sim-

ilar may differ greatly in their actual specifications. The ability to adapt to these

differences is a major requirement of a viable distributed architecture.

Distributed systems usually rely on partitioning input data so it may be processed

identically on a number of nodes. This data is then distributed across the network

for processing. Once this is complete, results are sent to a central server that merges

them to produce a meaningful result. Usually, the same algorithm is applied on all

nodes in the network. Due to the heterogeneous nature of distributed systems, this

may result in compiling as many implementations of the same code as are necessary

for it to run on most hardware and software in the network.

Partitioning data is not a practical solution for all problems we might wish to

distribute. Highly interdependent data with a high degree of dimensionality is rela-

tively difficult to partition, due to Bellman’s classic Curse of Dimensionality [5, 31].

General-purpose reasoning is one such example of a problem that can suffer from

the Curse due to sparsity of knowledge and potentially complex interactions of rules.

Although small-scale reasoning has been distributed with some success [42], larger,

more complex rule-sets may not be distributed so easily. In applying a particular rule,

a general-purpose reasoner may depend on a number of logical statements to conclude

a result. Any particular partitioning of input data must respect these interdependen-

14

cies; partitioning data to account for this may be a costly operation. Furthermore,

these interdependent facts must be able to fit into a single data partition.

One of the best-known algorithms for forward-chaining reasoning, the Rete algo-

rithm [15, 19], suggests a possible solution to the data partitioning problem. In the

Rete algorithm, each sub-pattern of a rule is matched against the knowledge base

separate from every other sub-pattern. The results of a particular pattern-match are

then merged with other results in a manner that unifies bound variables, and a rule

may be applied.

In practice, the process of pattern-matching is treated as an entirely separate

operation from that of merging the results of these pattern-matches. Unlike tradi-

tional distributed computing approaches, the Rete algorithm effectively divides the

algorithm into smaller, more tractable parts, rather than the data. By applying this

concept to distributed systems we may resolve the data partitioning problem by by-

passing the problem altogether! Instead of partitioning data across a network of hosts

running an identical algorithm, we might try to partition the algorithm itself across

the nodes.

We must be careful not to blindly apply such an approach on an existing dis-

tributed architecture as this might prove to be impossible. Existing distributed sys-

tems have usually assumed a strong client-server relationship. Although they may

have been built with the weak-connectivity of the Internet in mind, systems like

BOINC and MapReduce still require an algorithmic client to communicate with a

central server upon starting or completing a particular subtask. This is usually a

desirable feature, as these systems were constructed with data partitioning in mind.

By separating the data into tractable chunks, only the initial data and final results

need to be communicated between a client and a server, making such a system quite

feasible.

This client-server relationship is not so desirable when we try to partition an al-

gorithm instead. Algorithm partitioning requires communication between nodes per-

forming the different parts of a given algorithm. In order to implement a distributed

system that distributes the algorithm rather than the data, we must be careful to use

15

a decentralized model for intra-node communication rather than a centralized one.

Different parts of the algorithm may need to receive or send results to each other.

Relying on a central server to relay such communications may be infeasible for large

networks.

1.2 Retrofitting Provenance

As data partitions are assigned to different nodes in a traditional distributed system,

it is important to track how that data was generated and manipulated. Distributed

systems must usually be constructed with redundancy in mind; nodes performing

a distributed computation may perform an incorrect calculation or fail completely.

Thus, most systems, including SETI@home [3], BOINC [2] and MapReduce [13],

all maintain at least a minimal level of the history of how data was generated and

manipulated, also known as provenance.

This minimal level of data provenance is generally collected to build redundancy

and resilience into a distributed system. To defend against nodes that return results

for data that they did not actually process, it is necessary to keep track of what data

has been assigned to each node. Similarly, it is necessary to know when the data was

assigned to a node, so that the server may be able to double check the results from a

node or account for a node that may have failed to return its results.

Unfortunately, this provenance may be insufficient for many more complex tasks,

as we may only be tracking which node was given what data. Although such basic

provenance could be used to derive a more complete history of data in the system,

the quality and detail may be unsuitable for more complex provenance use cases.

Complex, non-linear provenance has been integrated into workflow-management

software for grid computing [36], but these systems have often been designed by

including provenance handling as a major software design requirement. Handling of

complex provenance is generally more difficult to add to systems after they have been

initially designed. Integrating provenance into the system design may also lead to

a less-flexible product, and extensive retrofitting may be needed to add support for

16

data provenance to applications running on distributed systems that were not built

to explicitly handle provenance.

A distributed system should ideally require minimal code redesign to retrofit

provenance into any application that uses the system. Minimizing the cost of adding

provenance would allow end-users and developers to more easily integrate provenance

in their systems, especially if provenance handling may be deferred to the system it-

self. By transparently managing provenance on the programmer’s behalf, we may be

able to reduce the complexity of applications designed to use the distributed system

as well as the number of software bugs encountered when using provenance.

1.3 Introducing Distributed Propagation

One programming model for concurrent systems, data propagation [33], offers a solu-

tion to both of these problems. Data propagation is a modular, implicitly concurrent

computational architecture that connects state-bearing “cells” with monotonic com-

putational “propagators” that do not discard accumulated state. By distributing the

same computational propagator across the various nodes of a network, it is possible to

perform traditional distributed computation, where the same operation is performed

on all nodes. Unlike traditional distributed systems, propagator networks also enable

more complex division of processing, as there are no restrictions on the structure of

propagator networks.

Propagation does not depend on centralized coordination of computational re-

sources; it is easy to decentralize a propagator network and perform computation

without any further involvement of the host that started computation. Application

of several constraints on propagator networks facilitate decentralized synchronization

of data across a network. Although the initial presentation of propagator networks

assumes a tightly-linked computational network [32, 33], the set of constraints I pro-

pose frees us from this assumption. Instead, we need only assume reliable broadcast

and knowledge-convergence on a weakly-connected network. This has already been

proven by Awerbuch [4] and Demers [14].

17

Propagators may also facilitate the addition of provenance into existing software

designs. Propagator networks are easily extended and may be modified algorithmi-

cally due to their strong modularity. We need only add several cells and propagators

to handle data provenance within an existing propagator network. There is no need to

integrate any additional primitives within propagator networks to handle provenance,

nor is it necessary to fundamentally redesign existing software to add provenance to

a distributed propagator network. This results in obtaining provenance support “for

free” with existing software codebases.

I have constructed an architecture that maintains and executes distributed prop-

agator networks, named DProp.1 Along with this architecture, I have also built an

accompanying library, PyDProp, that may be used to easily add provenance to ex-

isting software making use of DProp. Together, DProp and PyDProp may be used

to construct any number of interesting distributed propagator networks. I am able

to demonstrate its viability not only for distributed processing, but also in adding

provenance to existing distributed applications that use DProp.

My protocol for distributed propagation has been designed to build on the network

architectural model known as Representational State Transfer, or REST. By basing

the protocol design on REST, my protocol for distributed propagation achieves a

flexibility that might not be possible in other implementations of such a protocol.

Several constraints of a REST-based model not only map nicely onto the model of data

propagation, but also lend themselves to the efficient implementation of distributed

propagation that I describe.

1.4 Thesis Overview

In this thesis, I describe my proposed distributed propagation and provenance system

as follows:

Chapter 2 introduces the concepts of data propagation and the Representational

State Transfer architectural design.

1DProp is currently available in a Mercurial repository at http://dig.csail.mit.edu/hg/dprop/.

18

Chapter 3 details the design choices that influenced my implementation of dis-

tributed propagation.

Chapter 4 discusses how we may to extend existing propagator networks to handle

provenance.

Chapter 5 offers a discussion of some potential issues with distributed propagation

and provenance in the system I have described. I also discuss how I resolve these

issues.

Chapter 6 relates this work to other work relating to data synchronization and

distributed provenance.

Chapter 7 provides a summary of the contributions of this work, as well as po-

tential future work that may be used to expand the distributed propagation system

proposed here.

Finally, Appendix A offers a more detailed description of my implementation of

distributed propagation and provenance, DProp.

19

20

Chapter 2

Background

2.1 Data Propagation

Data propagation is a concurrent programming paradigm proposed by Alexey Radul

[32, 33]. Based on the principles of message-passing concurrency, data propagation re-

lies on messages sent over networks of monotonic computational blocks, called “prop-

agators”, and state-bearing “cells”. Propagator networks perform computation when

an update of a cell’s state triggers the execution of the propagators that are connected

to it. These propagators may then update the state of other cells, causing further

propagation.

Although the state of a cell may change, its value may only be assigned once.

This may seem to be a contradiction at first glance, but the value assigned to a cell

may be a partial value, rather than one that has been fully-specified. This allows

for continued modification of its state. When we discuss “changing” a cell’s state, or

“updating” its contents, what we really mean is that the partial value of a cell has

been updated with additional data.

Cells are initially created with an “empty” partial value. This special partial

value represents a complete absence of knowledge of a cell’s contents and provides

no constraints on the value of the cell. A cell with an empty partial value closely

resembles an unassigned variable, except that it can be easily identified as such during

execution.

21

Thermometer 1

Thermometer 2

Thermometer 1

Thermometer 2

(b)

(a)

20−30C

20−30C

20−30C

25−30C

25−35C

Figure 2-1: A cell applying a merge operation to merge two temperature readings.

Partial values stored in a cell need not be objects with partially defined fields,

such as a cons pair in Lisp with a cdr that has been marked for delayed evaluation

[20]. Partial values in a propagator network may, in fact, be any value, including sets

and ranges that may be refined through appropriate mathematical operations.

The process of refining the partial value of a cell is dependent on a user-defined

merge operation. This merge operation unifies an existing partial value with addi-

tional information provided in an “update” message sent to the cell. While the merge

operation may be simple assignment when a cell is empty, merge operations are more

interesting when they operate on cells that are not empty.

For example, a cell might contain a range of temperature values that represents

the current air temperature recorded by a thermometer, including its measurement

error. If a second thermometer is connected to the cell and sends its own measurement

as an update, the merge operation of the cell may take the intersection of the two

temperature ranges to obtain a more precise estimate of the current air temperature

than either thermometer gives on its own. The cell may then take the intersection as

its new partial value, as depicted in Figure 2-1.

A merge operation may be arbitrarily complex. If a cell is capable of performing

logical deductions to construct its complete contents, we might be able to employ a

merge operation that removes redundant facts for more efficient storage. For example,

such a cell might contain two facts: “Socrates is a man” and “Socrates is mortal”. If

the cell were to receive an update stating that “All men are mortal”, it could employ

22

temp−converter temp−converter temp−converter temp−converter

(a) (b) (c) (d)

77−86F

20−30C

68−86F 68−86F

25−30C 25−30C

68−86F

25−30C

Figure 2-2: Data propagation at work: a temperature converter.

a logically-consistent merge operation that would not only add the fact “All men are

mortal” to the cell, but also remove “Socrates is mortal”, as it may be concluded

from the other two facts. Despite the fact that the facts stored in the cell are not

strictly increasing (i.e. the cell is not strictly monotonic), if the cell can still conclude

“Socrates is mortal”, the actual knowledge that the cell contains is still monotonically

increasing.

Once a cell has merged an update and its partial value has changed, propagators

connected to the cell wake up and perform computation. These propagators will

use the newly updated partial value where they originally used the cell’s previous

contents. During computation, these propagators may generate updates for additional

cells. For example, in Figure 2-2 above, an update to the top cell at time (b) causes

the temp-converter propagator to fire at time (c). Upon receiving these updates,

these cells will apply their own merge operations to update their partial data, starting

another merge-and-compute cycle. This can be seen above when the propagator at

time (c) causes an update to the bottom cell at time (d). These repeated cycles of

merging and propagation of data drive computation within a propagator network.

No constraints are placed on the structure of propagator networks. For example,

cycles may be used in propagator networks to create standard looping control-flow

structures. By allowing a propagator to update a cell that indirectly contributed to

23

its being fired, the propagator may ensure that it fires again to include additional in-

formation. Other propagators may prevent the forwarding of updates when the input

cells meet some criteria. Such propagators would halt propagator loops, allowing for

switch-like control-flow structures and finite loops.

We may also perform recursive computation with propagator networks. As prop-

agators are opaque computational units, and networks of propagators also perform

computation, we may define a class of propagators called “compound propagators”.

These compound propagators may construct a propagator network when they are

first triggered. This new propagator network may then act as a part of the origi-

nal network, and may perform computation based on the original input cells of the

compound propagator by mapping those input cells appropriately to the newly con-

structed propagator.

Constructing such networks on demand permits recursive computation; a com-

pound propagator need only include itself as one of the propagators in its constructed

sub-network to do so. Propagation of data may cause as many recursive expansions

of the propagator as necessary simply by repeatedly waking each recursive copy of

the compound propagator in turn.

Ordering of propagation events is undefined, outside of the implicit cause-effect

chain caused by the propagate-and-merge cycle. Furthermore, propagator networks

feature a strong modularity of computation that is enforced by strictly separating cell

state from propagator computations. Together, these properties make data propaga-

tion a reasonable candidate for parallel processing and distributed computation.

2.2 Representational State Transfer

Representational State Transfer, or REST, is an architectural style for network-based

software architectures based on the principles of hypertext and the HyperText Trans-

fer Protocol (HTTP) and developed by Roy Fielding [18]. Architectures that make

use of Representational State Transfer, also called “RESTful architectures”, are de-

signed to store and maintain opaque data objects, called “resources”, that represent

24

an abstract concept or another, more concrete, data object. Resources generally have

four operations that may be performed on them: creation, retrieval, update, and

deletion. Together, these four operations are known as CRUD operations.

Since an abstract concept associated with a resource may not be easily serialized,

RESTful architectures are designed to be platform- and content-agnostic through the

use of resource “representations”. For example, a data set of hourly temperatures

may have an image representation in the form of a graph in GIF format, as well

as a tabular representation in plain-text. The four fundamental CRUD operations

may be performed in a RESTful architecture by using any number of these resource

representations to specify the relevant aspects of that resource.

More complex operations on resources, such as those often implemented as re-

mote procedure calls, may be modelled in a RESTful architecture by applying the

fundamental resource operations with appropriate representations. By restricting the

number of fundamental operations and allowing the use of different resource represen-

tations, a RESTful architecture reduces the complexity of software implementations

that use it. Software uses of a RESTful architecture need only be able to perform the

basic operations with representations they are prepared to handle; there is no need

to support all representations of a resource, only those relevant to the application.

In the doctoral thesis that first laid out the principles of REST, Fielding defines

an architectural style as “a coordinated set of architectural constraints that restricts

the roles/features of architectural elements and the allowed relationships among those

elements within any architecture that conforms to this style.” In accordance with this

principle, a proper RESTful architecture adheres to five constraints:

1. REST assumes a client-server model of communication. This separates the

resources on the server from the software that modifies them. It also determines

how data may be stored; only the server must find a suitable intermediate format

for storage. Clients may use any representations they find appropriate.

2. RESTful designs are stateless. Information transmitted between the client and

server of a RESTful architecture should be sufficient to perform the desired

25

CRUD Operation HTTP Method RESTful Meaning
Creation PUT Create a new resource based on the

representation presented.
Retrieval GET Fetch the desired representation of

an existing resource.
Update POST Modify an existing resource based on

a given (partial) representation.
Deletion DELETE Delete an existing resource.

Table 2.1: The four CRUD operations and corresponding HTTP methods.

operation without maintaining any additional state (such as session variables)

on the server or client.

3. Representations of resources transmitted as part of an operation should be

cache-able. This constraint is particularly useful in terms of the retrieval opera-

tion. By caching information that has been previously retrieved, future requests

may be optimized by referring to a nearby cache, rather than waiting on the

central server. It also reduces the burden on the server, as many requests may

be serviced by a cache instead.

4. RESTful designs should employ a uniform interface. By standardizing the in-

terface by which resource operations are performed, many different client and

server implementations may be deployed in an inter-operable way. A uniform

interface also reduces client and server complexity.

5. Finally, RESTful architectures are layered architectures. This allows for the

separation of network administration from the application itself, providing in-

creased scalability. Caches, back-ends, and proxies may be implemented on the

network layer without restricting the functionality of the application itself.

Most REST-based applications use the Hypertext Transfer Protocol (HTTP) as

the underlying network protocol of their RESTful architecture. HTTP handles data

transfers as a series of requests for data and responses to those requests. Each request

may be made for a resource identified by its Uniform Resource Locator (URL). These

26

requests are also associated with the HTTP method corresponding to the operation

desired. Four HTTP methods are usually used to implement REST design: PUT,

GET, POST, and DELETE. These methods are aligned with the CRUD operations

of creation, retrieval, updating, and deletion, as outlined in Table 2.1. The PATCH

method [16] may also be used in place of the POST method to perform updates.

I have chosen to implement a propagator network by employing RESTful tech-

niques for several reasons:

1. Propagator networks need minimal modification to adhere to the five constraints

of REST. The stateless constraint in REST is stricter than the computational

monotonicity of propagators in propagator networks. This means that it is

possible to model RESTful communication as a propagator in a propagator

network. Furthermore, the implicit atomicity of update messages sent to cells

makes these messages well-suited to being representations of resources in our

implementation.

2. If we assume that update messages are the representations being transferred, it

seems possible to consider cells to be the resources within the design. Just as

cells are the only state-bearing objects within propagator networks, resources

are the only state-bearing objects in a RESTful architecture.

3. Enforcing uniformity of interface in an implementation of a distributed propa-

gator network creates an extensible system. My implementation of distributed

propagation, DProp, is built using Python and has been tested for use on

GNU/Linux systems. By requiring that DProp use standard HTTP for cell

synchronization, it is possible to construct a heterogeneous propagator network

that has nodes that run various different operating systems and propagator im-

plementations. This makes DProp a suitable platform for distributed systems,

which already assume a heterogeneous network.

Together, these points make Representational State Transfer a desirable architec-

tural design on which to build our system for distributed propagation.

27

28

Chapter 3

A Design for Distributed

Propagation

There are several different ways we may construct a distributed propagator network,

based on where one draws the boundary between each node on the physical network.

For example, we may draw boundaries between cells and the propagators that depend

on them, which would imply that cells would notify propagators on other hosts. We

could also draw boundaries between propagators and the cells they update, which

would imply that propagators would send update messages to other hosts.

Regardless of how the propagator network is divided, propagators and cells must

reside on the nodes of the network, and not in the network itself. The physical

infrastructure of a network is incapable of performing computation or storing content;

it may only serve as a web of links across which data may be transferred. As a result,

only the edges between propagators and cells may be placed on the physical network.

Although we cannot place propagators in the network, we may still construct

propagators that contain a network link within them. This network “bridging” may be

derived from our understanding of compound propagators. Just as a single compound

propagator “contains” a new network of propagators and cells, we could easily think

of the inverse, in which a collection of propagators and cells is turned into a compound

propagator. Since the edges that connect propagators and cells may be placed across

a physical network, we may construct a compound propagator that includes such an

29

edge, effectively “bridging” the network. As a result of this, we may also assume

that any propagator may cross the network, as compound-propagators are normally

opaque.

My approach to constructing distributed propagation framework builds on this

basic concept of propagators that bridge the network. I treat HTTP communication

as part of a network-spanning propagator designed to maintain identical copies of a

cell on multiple hosts. I do this by intercepting update messages sent to a local cell

as part of its merge operation and broadcasting the intercepted messages to all other

hosts with a copy of that cell. I then may ensure convergence of this mechanism by

occasionally attempting to re-synchronize all remote copies of a cell to ensure that

no updates were lost on the network.

3.1 Constraining the Merge Operation

Before we may consider our specific implementation of this approach to distributed

propagation, we must first determine exactly what costs are incurred by simply copy-

ing the update messages and sending them across a network. Implementing propa-

gation over a network introduces uncertainty in the order of updates and lacks guar-

anteed message reception. Unfortunately, propagator networks may have issues with

messages that are in the wrong order, and the behavior of these networks assumes

that messaging is reliable. As a result, propagation-based computation may not be

deterministic over a computer network without ensuring that certain properties are

present in the data propagation model. In order to remedy these issues and ensure

deterministic computation, we must enforce four properties on the merge operations

used by cells that receive messages from other hosts:

1. Idempotence: If we already know a fact and are told it again, we do not know

anything new. Thus, a cell’s contents should appear the same no matter how

many times a particular update is received, provided that it has been received

at least once.

30

2. Monotonicity: A cell never forgets. This means that a cell may never “un-

merge” an update. A cell may be able to mark the results of an update as

“contradictory” or “disproven”, as both changes would refine the content of the

cell, but it should not be able to undo the original update.

3. Commutativity: A cell’s contents should be independent of the order of the

updates that were merged to create them. If we are told “it’s a warm day” and

“it’s a sunny day”, we will know both of these facts regardless of the order in

which we are told.

4. Associativity: A cell that merges two messages should have the same contents

as a cell that merges a single message that is the “sensible merge” of the two

messages. For example, a cell that is told “T > 40◦F” and “T > 50◦F” should

appear the same as if it had only been told the latter, as the potential values

of T implied by T > 50◦F are a subset of the values of T implied by T > 40◦.

These constraints do not impose any restriction on the number of effective merge

operations that may be implemented; merge operations that do not adhere to one of

these constraints may be modified so that they do so. For example, a non-idempotent

operation may be “retrofitted” to become idempotent by adding a unique identifier

as part of each update. If this unique identifier is stored with the data following the

merge, a propagator reading the cell may modify its “perception” of a cell’s contents

based on the number of distinct identifiers of the otherwise duplicate updates.

Operations lacking the other constraints may be modified similarly. Extensive

research in the fields of computer networking and distributed databases has attempted

to meet the need for serialization of communications (implying non-commutativity

and, indirectly, non-monotonicity) despite the lack of guaranteed message reception

offered by Internet protocols.[10, 7, 39, 37] Packets on the Internet may be received

out of order or even not at all. Any application desiring serialization of messages, such

as distributed databases, must be able to deal with the commutativity of messages

on the Internet. We may apply the results of this research in a more general fashion

to enforce commutativity constraints on non-commutative functions.

31

3.2 Choosing a Distribution Application Model

Like many other network applications, distributed propagators could be implemented

using one of two primary distributed application models:

1. Cells could be managed using a client-server model. In such a model, a par-

ticular cell would be maintained by a single host, the server. All other hosts

interested in the cell would be clients of the server.

As the maintainer of the cell, the server would be the only host to decide

whether or not an update is accepted. It would also be responsible for merging

all data into the canonical version of the cell that it stores and would update all

interested clients when the contents of the cell changed. As clients would not

have local copies of the cell, any client that needed to read the cell’s contents

would need to request the server’s canonical version. Although clients are able

to cache the contents of the cell, these caches may only contain static content;

they may not be modified, as only the server controls what is merged into the

cell.

Implementing a client-server model is easy when compared to the complexity

of the peer-to-peer model described below, but it is highly reliant on a single

server to perform merges and to service other requests. Failure of the server

could potentially cause a cascading halt to all computation in the propagator

network, as propagators would no longer be able to modify the contents of the

cell, and, without a cache, no propagator would be able to read the contents of

the cell either.

2. Cells could alternately be managed using a peer-to-peer model. Every cell would

be duplicated across all hosts interested in the cell, called the peers of the cell.

Unlike the client-server model, no single host would have special status. Rather

than allowing one server to handle updates and merge the cell, each peer does

so for its own copy of the cell. As long as all peers implement the same merge

operation on the cell and may reliably forward any update messages generated

32

by local propagators to remote peers, an update should eventually reach all

hosts and the cell’s contents should converge across the network.

A peer-to-peer model requires a more complex implementation than the client-

server model; there are no explicit constraints on the network topology of a peer-

to-peer system. In contrast, a client-server model enforces a star-like topology

on the network. In exchange for this additional complexity, peer-to-peer systems

have a robustness that is not present in a client-server model. In a peer-to-peer

model, a node failure need not halt all computation. As each peer is in charge

of maintaining its own copy of the cell, the peer may continue updating and

referring to that copy even if that peer is completely isolated from the remainder

of the network by a node or network failure.

Choosing a peer-to-peer architecture does not mean that we must abandon

a RESTful design for our application. Although REST assumes a client-server

model, a peer-to-peer distributed propagator network may be viewed as a virtual

network that operates above traditional RESTful communications. Rather than

abandoning the client-server restriction of REST, each peer effectively runs

separate client and server applications that happen to share the same stored

resource, but do not interact at all in any other respect. This is not all that

different from how a representation of a resource in existing RESTful systems

may be generated in part by fetching an external resource.

It is important to note that neither model requires timely communication in a

distributed propagator implementation. The commutativity constraint on the cell

merge operation, as described in Section 3.1, ensures that the contents of the cell will

be the same, regardless of the order in which messages are received.

This lack of a timeliness constraint may seem strange because it allows global

inconsistencies between the cells being synchronized. Propagator networks admit

such inconsistencies by design. Progress can still be made on a partitioned problem

with only local consistency, and each individual global inconsistency will eventually

be resolved. Ensuring ultimate convergence is up to the programmer.

33

Rather than ensuring timeliness, we need only guarantee that any update will

eventually arrive at every other cell in the network. That said, some timeliness

guarantees may be appropriate in practice to ensure that results are generated in a

reasonable time-frame.

The choice between a client-server model and a peer-to-peer model is ultimately

a tradeoff between system complexity and fault tolerance. As we seek to build an

architecture that is comparable to existing distributed systems, we must consider that,

as the number of nodes in a network increases, so do the chances that at least one

node will fail. This means that fault tolerance is likely to be of greater benefit than

simplicity of the system’s design. As a result, I have chosen to implement distributed

propagation using a peer-to-peer model, rather than a client-server model.

3.3 Resource Representations

Now that I have established the basic distributed application model to be used for

distributed propagation, we must now examine propagation with respect to the ar-

chitectural model of REST. As resources and their representations are the central

focus of a RESTful design, it is important to identify the types of resources and

representations used in the system. As mentioned previously, there are two primary

components of the propagator paradigm that may be candidate resources in a REST-

ful implementation: cells and propagators. One additional construct of propagation,

that of “update messages”, may be a third possible resource type. Finally, as a peer-

to-peer system must be able to keep track of the neighboring peers of a node, we may

also consider this collection of peers to be a fourth potential resource type. I examine

each of these potential classes of resources in turn.

Propagators are the class of object least suited to being turned into a resource.

Although we may be able to represent a propagator using a basic description of a

propagator, this seems to be of limited use within distributed propagation. Outside

of enabling introspection of the propagator network, there is not much need to actually

manipulate propagators themselves. As propagators are opaque computational blocks

34

Relative URL Description
/Cells The collection of all distributed cells on the server.
/Cells/{UUID} The distributed cell identified by UUID.
/Cells/{UUID}/Peers The collection of peers of the cell identified by UUID.

Table 3.1: The URL structure used by DProp.

rather than entities that may be directly manipulated, it seems more appropriate to

not include them as resources within the system.

Cells seem to be a far more appropriate class of resources in a RESTful distributed

propagator design. Not only do they bear state, as resources do, but they are the

primary source of state in a propagator network. Cells are also more closely linked

with communication of data than propagators are, as they are refined by way of

updates that are sent to them. Together, these facts suggest that we should represent

cells as resources. Cell updates, on the other hand, are tied to a specific cell and

have no modifiable state. Although we could model updates as a resource associated

with the cell itself, it seems more appropriate to consider them to be a “partial”

representation of a cell, due to their use in actually modifying the cell’s state.

Peers also appear to be an appropriate class of resources in our system. In order

to maintain a peer-to-peer network, it is necessary to have as much redundancy of

communication as possible to route around temporary network failures. This means

there must be a mechanism for node discovery. I do not address the issue of discovery

of the initial node and treat it as out of the scope of this thesis. Instead, when I refer

to node discovery, I mean the discovery of additional nodes already present on the

peer-to-peer network. To enable such discovery mechanisms, we must have a way of

representing the peers in a network, and we thus consider peers to be another set of

resources in our system.

3.4 Naming Cells

The issue of cell naming in our peer-to-peer RESTful model is not a simple one. A

RESTful architecture identifies resources using some globally-unique identifier. In

35

Host C

Host A
Host B

foo

bar

quux

baz

a

b

c

d

a
C

a
A

b
C

b
B

Host C

Host A
Host B

foo

bar

quux

baz

c

d

b
A

Figure 3-1: Distributing propagator networks by dividing shared cells.

36

implementations that use HTTP, this identifier comes in the form of a URL, or

Uniform Resource Locator.[6] URLs provide for such identifiers by concatenating a

globally unique server name with a unique name of the resource local to the server

itself. URLs allow us to construct a hierarchical ordering of resources, as they are

built on the concept of “paths” on a server. We use such a hierarchical structure to

associate the collection of a cell’s peers with that cell, as described in Table 3.1.

A complication arises when we need a way to identify multiple copies of the

same resource, such as when we wish to identify all copies of a cell that has been

copied to multiple peers. When I discuss distributing a propagator design, like that

depicted at the top of Figure 3-1, we end up creating copies of cells for each host, and

synchronizing them, as at the bottom.1 In practice, the URLs for each copy of a cell

identify the specific copy of a cell (e.g. aA or bC); they do not identify which original

cell (e.g. a or b) a cell copy is associated with.

A näıve solution that resolves this problem relies on having, a priori, a globally

unique identifier for the collection of cells as a whole. Although we could use a URL

for this identifier, we may not have a server name prior to constructing the cell; we

may be creating the cell on a host that is temporarily disconnected from the network.

Instead of using URLs then, I choose to use universally unique identifiers, or UUIDs

[23], to identify each collection of cells. These UUIDs are meant to be globally unique,

like URLs, but they do not require a namespace to be associated with them.

We integrate these UUIDs into the URLs we construct to identify each copy of a

cell. Although this is not strictly necessary, as we could construct a mapping from

URLs to UUIDs, this eases the task of uniquely identifying cells within the server

namespace. It also allows for the easy derivation of the UUID of a cell from the URL

of a copy of a cell. We use this approach when initializing a cell.

1In Figure 3-1, synchronized cell copies are depicted by clusters of cells connected by dotted lines.

37

3.5 Maintaining the Network

As mentioned in Section 3.3, we consider peers to be resources in a RESTful architec-

ture, so that we may maintain the peer-to-peer network using HTTP. By tracking the

peers that a particular cell has been copied to, a particular peer will know which other

peers hold copies of a cell that it must forward updates to. Making the collection of

known copies of a cell available via HTTP also allows new peers to easily connect to

an existing network by simply adding their copy to the set of known cell copies on an

existing peer with a simple POST or PUT request. They may also bootstrap their

knowledge of copies of the cell by requesting the set of copies from the existing peer.

The set of peers that hold copies of a cell may be independent of those holding

any other cell in the propagator network it belongs to. This means that the set of

peers is only dependent on the cell itself. We may model the collection of peers as a

single resource named “Peers” associated with each cell. In fact, as long as we do not

need to modify each peer itself, and only need to know their URLs, we may model

the collection of cell copies as a single resource, merely updating the list of cell copies

that make up that resource as needed.

Each peer is responsible for maintaining its own list of other copies of a cell; it

may choose to keep track of any number of copies of the cell. Thus, the topology of

the peer-to-peer network of cell copies may take any shape. Some topologies may be

more preferable than others. Topologies that are eventually connected are required to

ensure the convergence of cell contents and that all propagators will fire; cell contents

may not globally converge if update messages cannot propagate to all peers sharing

a cell. Increasing the number of peers visible from a single node is also preferable:

network diameter will decrease, and update messages will be more timely. It will

also increase fault tolerance, as there is added redundancy of the update messages

sent out. For this reason, I choose to maintain a clique in my model of distributed

propagation.

By assuming that all peers are connected in a clique, we gain several benefits. As

we may assume that every node is a distance of 1 from every other node, we may

38

New Peer Known Peer Other Peers

Create Cell {Peer}

UUID {New−URL}

200 OK

POST /Cells/UUID/Peers

GET /Cells/UUID

200 OK {Cell Content}

Merge Content

GET /Cells/UUID/Peers

200 OK {Peers List}

Merge Peers

POST /Cells/UUID/Peers {New−URL}

200 OK

Wake Local Propagators...

Figure 3-2: Creating a distributed propagator cell.

avoid implementing message routing mechanisms in our network. In a clique, sending

a message to all neighboring nodes means that we have forwarded an update message

to all nodes. However, even if temporary network fluctuations result in a network

topology that is not a clique, I also implement a synchronization mechanism that will

still ensure global convergence. If a clique is not used with the algorithms I use for

distributed propagation, it is not possible to guarantee timeliness of message arrival

for nodes that are farther than distance 1 from the original node.

3.6 Cell Initialization

Now that I have established the basic architectural guidelines for distributed propa-

gation, how can we actually construct a cell and initialize it? Initialization of the cell

is actually quite simple, and is outlined in Figure 3-2.

39

Cell creation begins much as it would in a local propagator network; storage is

allocated for the cell and the cell is associated with the appropriate merge operation.

Once this is complete, we must associate the cell with its appropriate distributed

network, creating it if necessary.

If the cell is a completely new cell for which no network exists, we must generate

a new UUID for the particular collection of cells, if we are not given one. We then

associate this UUID with the cell. Finally, we make the cell available as an HTTP

resource by assigning it an appropriate URL, derived from the cell’s server-based

namespace, appending its UUID as in Table 3.1. Local updates may be merged as

soon as the cell is initialized, before its UUID is assigned. Remote connections are

only possible once the URL and the UUID have been associated with the cell.

If we are instead joining an existing collection of cells, we must provide the URL

of at least one of the existing cell copies in that collection. Creation of a cell from a

remote copy resembles the process of creating a local cell, except that the UUID is

specified as part of the URL provided as an argument. Once the cell has been made

available to remote hosts, we then submit an HTTP POST request to the “Peers”

collection of the cell initially passed to the constructor. This POST request contains

the newly minted URL of the new peer. It effectively adds the peer to the network

so that it may receive updates from the remote cell copy.

We then submit an HTTP GET request for the cell resource itself. In requesting

the cell, we desire a representation of the cell’s contents as if it was an update message.

This allows us to merge the content of the remote cell copy with any content present

in the newly created cell. Once this merge is complete, local propagators may fire

and begin computation, as with any other merge operation.

We finish the initialization process by initializing the list of cell copies. We submit

an HTTP GET request for the “Peers” collection of the initial remote cell and then

set the contents of the local “Peers” collection to the contents of the remote cell. This

makes the local cell aware of all other cells in the network (assuming that the network

is currently a clique). Finally, to ensure that the network is fully repaired to a clique

again, the cell submits HTTP POST requests to each peer in the newly initialized

40

Remote Peers

Update Cell {Update}

POST /Cells/UUID {Update}

202 Accepted

Merge Content

Wake Local Propagators...

Merge Content

Wake Local Propagators...

Local Peer

Figure 3-3: Updating a distributed propagator cell.

set of “Peers”, adding its own URL to the collection of peers of that copy of the cell.

At the end of initialization, the new peer is aware of all peers in the network, and all

peers in the network are now aware of the new peer.

Due to the associativity and idempotency constraints that we have placed on the

merge operation of the cell, we need not “lock” the cell before we have merged the

contents of the remote cell or learned its set of peers. We may begin processing

without any data whatsoever and update the cell before synchronization with the

initial remote cell has taken place, as the contents of the cell are guaranteed to be

monotonically increasing as well! As the merge from the “initialization” will still

cause local propagators to fire, we need not preclude computation before the cell

becomes non-empty. There is one benefit to allowing the cell to synchronize as soon

as possible, because any updates merged before the cell has fully connected to all

peers will not propagate over the network in a timely fashion.

3.7 Cell Updates

The process of updating a distributed cell is superficially similar to the process of up-

dating a cell on a non-distributed propagator network. The cell has a merge operation

that takes the particular update and determines the new contents of the cell. In a

distributed cell, an unmodified merge operation that would have been applied to a cell

41

on a non-distributed propagator network is used to complete a generic stub method

which will serve as the actual merge operation of the cell. This generic stub copies

the received update and forwards it to all other copies of the cell by sending a POST

request to all other copies present in the local “Peers” collection. In effect, the merge

operation intercepts the update before performing the local merge. By forwarding

the update to all other peers, we may delegate the merge to each peer, rather than

assuming that the local copy of the cell controls which updates are globally merged.

This may be seen in Figure 3-3.

A remote peer that receives an update in a POST request also performs a merge,

but uses a different stub method. Instead of forwarding the update to all other cells,

this stub method prevents rogue updates by confirming that the sender is actually

a peer before merging the update. Aside from this action, the stub method behaves

much as the non-distributed merge would: it wakes up local propagators to perform

computation, just as if the update had been received from another local propagator.

Some of the previously mentioned constraints on the cell merge operation prove

useful here. If we ensure that the basic cell merge operation is the same for all

copies of a cell, we need only forward the update, rather than the new contents of

the cell. This may reduce the amount of bandwidth used by a cell update operation.

Furthermore, the commutativity constraint relaxes the need for timely updates or a

strict global ordering of operations. Instead, we may receive two remote updates in

any order and not be concerned that we will lose synchronization with any other peer.

3.8 Failure Recovery Through Re-synchronization

Although the proposed system appears to be relatively robust, we must define one

more operation to ensure that the architecture is truly fault tolerant. As described

thus far, distributed propagation may suffer from the loss of a link between two copies

of a cell as this may lead to a loss of synchronization when messages sent by one copy

are not received by the other. If the system uses HTTP over TCP as its underlying

communication protocol, we may gain the benefits of the fault tolerance mechanisms

42

of TCP and reduce the chances of such de-synchronization. Unfortunately, simply

introducing TCP is not enough to ensure that network failures do not impact the

integrity of the content of a cell, and it may not guarantee global consistency.

Instead, we achieve these goals by implementing a recurring operation to re-

synchronize the contents of the local cell with remote copies of that cell. This op-

eration sends a GET request to each remote cell, requesting a representation of the

cell as if it was an update. It then applies the response to the local cell as if it was

an update from the remote cell. Because of the idempotency and associativity con-

straints on the merge operation, we do not need to concern ourselves with the fact

that the representation of the cell as an update may include the effects of updates

that have already been merged into the local copy of the cell. Similarly, we need not

worry that the update representation might not explicitly include updates that had

no substantive effect on the cell’s contents.

We may also re-synchronize the list of peers in the network in the same way; this

ensures the maintenance of the clique. As the list of peers is not a cell, care must be

taken to correctly merge the list of peers. We merge the contents of the remote “Peers”

collection into the local collection by taking the union of the two collections. This

ensures that the list of peers is monotonically increasing. Unfortunately, this means

that this system is unable to remove peers from the collection. This is not currently

a significant issue; propagator networks do not currently permit the destruction of

existing parts of the propagator network.

Performing these occasional re-synchronization operations may consume more

bandwidth than is necessary, especially if there are no global inconsistencies. As

we transfer the entire contents of the cell as an update, if a cell is rather large, we

may transfer a significant amount of data, even if the update results in no change

to the local copy of the cell. We may resolve this problem by making use of the

cacheability constraint of RESTful architectures. HTTP offers several methods to

control client-side caching; these methods may be controlled through manipulation

of the headers of HTTP messages, collections of meta-data that are sent with each

HTTP request and response.

43

Each HTTP response to a GET request may include an appropriate entity-tag, or

ETag. These ETags uniquely identify a particular state of a resource, much as a hash

of its contents does. This ETag may then be supplied back to the server in subsequent

GET requests by using the If-None-Match header. If the ETag of the current state

of the resource on the server matches the one provided in the If-None-Match header,

the server need only respond with a simple “304 Not Modified” response that has no

other content. This implies that any cached copy of the resource bearing the ETag

provided in the If-None-Match header is still valid. If the ETag does not match, or

the If-None-Match header is not included, then the server will return the full content

of the resource and a “200 OK” response.

We use the ETag and If-None-Match headers to reduce bandwidth usage during

re-synchronization. Each peer maintains a hash of the current cell state, being the

entity tag for that cell. When a cell performs re-synchronization, it assumes that

both copies are already equal to each other and provides its local ETag in the If-

None-Match header. The receiving cell may then return a 304 response if the ETag

matches, or the full contents of the cell if it does not.

This re-synchronization mechanism allows for processing to continue when cells

have become temporarily disconnected. If a link to a particular peer fails and no

updates are received by a cell, both the remainder of the network and the disconnected

peer may continue to compute, as each cell is managed and updated locally. Once

the cell is able to reconnect to the network, the re-synchronization mechanism will

eventually reconcile any global inconsistencies that arise due to the failure of a link.

If a node fails outright, we may simply treat this as a special case of link failure,

in which the node performs no further computation or modification of its local cell

state, and may choose to simply reinitialize with the network.

44

Chapter 4

Provenance-Aware Propagation

Distributed propagation allows the distribution of a number of algorithms that would

not otherwise be possible within a traditional distributed system. However, in dis-

tributing computation, we lose the ability to determine how a particular result is

derived. As distributed computing is inherently concurrent, there is no explicit se-

quence of operations that we may follow backwards in an attempt to determine the

cause of an error. Furthermore, there is no way to easily identify any host that may

be returning incorrect results. Distributed systems usually implement some sort of

rudimentary mechanism to track the history of data for this reason.

These data histories, or provenance, provide an interesting use case for distributed

propagator networks; due to the modularity of propagator networks, support for

maintaining provenance may be done independently of how the networks themselves

are implemented. The method of provenance handling I describe in this chapter may

be applied not only to the distributed propagator networks described in Chapter 3,

but, with appropriate modifications, non-distributed propagator networks as well.

We may construct these “provenance-aware propagator networks”, capable of con-

structing and maintaining the provenance of data within them, simply by transform-

ing the structure of the original propagator network. We need only add cells and

propagators that are designed to explicitly handle the provenance of the data in the

network. However, before I outline this transformation, we first must understand

what is meant by the term provenance.

45

4.1 Provenance

For the purposes of constructing a “provenance-aware propagator network”, we define

provenance to be a collection of records that details the history and derivation of all

data that contributes to our understanding of a specific resource. We distinguish this

concept of provenance from what we call a justification, which is the minimal subset

of this provenance from which we may derive the current state of a resource.

An example illustrates this distinction: Suppose we have a fact that states that

the temperature, T , is greater than 40◦F. We may then combine this fact with another

which states that T is greater than 50◦F. The combination of these two bounds now

means we have a new bound on T , as it must be greater than 50◦F, rather than 40◦F.

When we combine these two bounds, our new knowledge of the bounds only takes

into account the second fact. We need not know the first fact (T > 40◦F) at all in

order to account for our knowledge of T . We thus say that the justification of the

value of T is the statement “T > 50◦F”. The first fact, T > 40◦F, which corroborates

our knowledge, is a part of the provenance of T , along with T > 50◦F, but it is not

part of the justification.

This dichotomy between the provenance and justification of a resource is very sim-

ilar to the distinction between “why- and where-provenance” outlined by Buneman,

et al.[9] However, Buneman distinguishes between why- and where-provenance within

the context of structured data. Why-provenance corresponds to the provenance of the

data structure itself, while where-provenance corresponds to the data in the structure.

In contrast, provenance and justification must be able to detail the history of con-

ceptual resources rather than actual concrete data structures. Provenance concerns

itself with the history of the resource as a whole, effectively mirroring Buneman’s

why-provenance; justification provides the support for the fields of the current state

of the resource, mirroring Buneman’s where-provenance.

We treat the provenance of a fact to be a collection of “records” having a partial

order that either indicate where and how a piece of data was stored (“possession

records”) or where and how a piece of data was modified or derived (“derivation

46

my−thermometer

my−thermometer−in−c

temp−converternoaa−temperature

temperature−range−in−f

temp−converter

my−celsius−temperature

Figure 4-1: A possible provenance graph for a temperature range in Celsius.

records”). These record types are depicted in Figure 4-1 by rounded and unrounded

rectangles, respectively. Each record includes an identifier of the record, as well as any

additional meta-data, such as authenticity tokens, the algorithm or application used,

or the current date and time, that might prove useful when auditing the provenance.

Knowledge that we hold may depend on several pieces of data from which it is

derived, as in Figure 4-1. This collection of provenance may be considered a directed

acyclic graph, where exactly one node, the seed, has an in-degree of 0. I refer to this

collection of records as a provenance graph. The seed of the graph is the most recent

provenance record; the parents of each node (the nodes to which each node points)

are records of the data from which the data corresponding to that node was derived.

We may define an “additive-union” operation over two provenance graphs so that

we may join them in a meaningful manner. This additive-union operation serves as

the basis for our cell merge operation for provenance-aware cells. Throughout this

thesis, when we refer to taking the union of, or adding two provenance graphs, we

refer to this operation.

The additive-union operation may be defined mathematically. We define a prove-

nance graph P to be the tuple (N, A(n), s), where N is the set of all nodes in the

47

graph, the relation A(n) gives the set of parents of a given node n, and s is the seed

of N . We may then define a new graph, P ′ to be the additive-union of two other

graphs, P1] P2, which has the same seed, s1, as P1. This may be defined as follows:

P1] P2 = (N1 ∪N2, A
′(n), s1) (4.1)

Here, we define A′(n) to be:

A′(n) =

A1(n) if n ∈ N1 −N2 − {s1}

A2(n) if n ∈ N2 −N1

A1(n) ∪ A2(n) if n ∈ N1 ∩N2

A1(r1) ∪ {s2} if (n = s1) ∧ s1 6= s2

A1(r1) if (n = s1) ∧ s1 = s2

∅ if n /∈ N1 ∪N2

(4.2)

Note that, in order to maintain the acyclic nature of the provenance graph, the

ancestors of a node in the graph P1, A+
1 (n), must not contain any of the descendents

of that node in P2. That is, the following must hold:

∀n ∈ (N1 ∩N2) {n′|n ∈ A+
1 (n′)} ∩ A+

2 (n) = ∅

∀n ∈ (N1 ∩N2) {n′|n ∈ A+
2 (n′)} ∩ A+

1 (n) = ∅

s1 /∈ N2 ∨ s1 = s2

4.2 Data Structures on a Distributed Propagator

Network

How can we actually store provenance in a propagator network? Although some

näıve methods may seem obvious, they may not actually be the best choice overall.

In order to better understand this, we must first examine how we may represent

48

data structures in a distributed propagator network, as the association of data with

provenance relies on having a data structure that relates the two.

Although distributed propagator networks are well-suited to handle synchronizing

small amounts of data, larger amounts of structured data are more difficult to process

in a distributed propagator network. Memory pointers, a traditional tool used to

construct large and complex data structures, are not feasible in a distributed system.

Pointers usually have meaning only when they are expressed in relation to a specific

memory address space. A pointer within one program rarely has any meaning in

another program, as virtual memory usually ensures that the address space of each

program is independent of all others. Similarly, a pointer on one machine has no

meaning on another machine, as they usually do not share any memory, and may not

even share the same computer architecture.

Even though we may not simply share a memory pointer with another computer

and expect the other computer to do computation on that data, the design of dis-

tributed propagator networks offers a näıve solution: as there may exist copies of

the same cell that are synchronized between two hosts in a distributed propagator

network, it is possible to use memory pointers that are relative to the address space

of the cell itself, as this address space may be synchronized.

Unfortunately, this approach to sharing memory pointers is unfeasible, as all data

would need to be stored in the same cell for the pointers to have any context; the

address space that would be used for pointers is unique to that cell alone. If any global

inconsistency arose between copies of the cell, it would be necessary to transfer the

entire contents of the cell as the contents of an update during a re-synchronization.

This may result in excessive bandwidth consumption if the amount of data stored in

a cell is large.

The use of UUIDs to identify cells in a distributed propagator network suggests

an alternative approach that may serve us better. Rather than relying on memory

pointers relative to a single cell, we might be able to use UUIDs to point to other cells

containing additional data. We would only need to replace traditional pointers with

URL pointers to construct useful data structures in a distributed propagator network.

49

32

temp−converter

temp−converter 0

32

[UUID] [UUID]

0

[UUID] [UUID]

NOAA

[Remote]
NOAA

(b)

(a)
(c)

(d)

Figure 4-2: Making a simple propagator network provenance-aware.

Allocated memory normally identified by distinct pointers would be replaced with

distinct cells identified by appropriate UUIDs.

We gain a number of benefits by adopting this approach to pointers in distributed

data structures. As mentioned above, this approach facilitates the synchronization of

large data structures by dividing them into smaller, more tractable chunks. We also

may reduce the number of propagators that must be notified when a data structure

changes; we only need to attach propagators to the parts of the data structure they

may be interested in. For example, if a propagator is only interested in the first

element of a linked list, it need not be notified to perform computation when any

of the other elements of the linked list change. By separating the linked list into

separate cells, the propagator will only need to be a neighbor of the cell containing

the first element of that list.

4.3 Modifying Existing Propagator Networks for

Provenance

As mentioned previously, the process of adding support for provenance in propa-

gator networks, making them “provenance-aware”, requires a simple transformation

50

of existing propagator networks. In practice, we add provenance by simply intro-

ducing “another level of indirection”. We combine basic propagators and cells to

construct more complex compound-propagators and cell-clusters that will be our new

“provenance-aware” propagators and cells. Figure 4-2 illustrates this transformation

from a “simple” propagator network at top to the corresponding provenance-aware

version at the bottom.

A näıve approach often used to associate provenance with data is to simply wrap

the data together with the provenance in a single object. The wrapper object may

cryptographically seal the data to the provenance so that the provenance may not

be removed. It may also be unwrapped as needed to allow access to the underlying

data so that it may be handled by operations that are unable to handle provenance.

Although we could simply store provenance-wrapped data in our cells instead of the

data itself, this is inefficient. Data and provenance may need to be separated to allow

for independent modification of the data and provenance. Such independent modifi-

cation is particularly needed within propagator networks, where additional sources of

evidence may corroborate data (adding to the provenance) without actually changing

the data itself.

As an example, suppose we constructed a cell that contained the maximum and

minimum temperatures ever observed in Boston. It is not very likely that an update

containing today’s temperatures will actually change the contents of the cell, as these

temperatures are unlikely to be that far from the mean. Even so, it is necessary to

include the provenance of today’s temperatures in the provenance of the maximum

and minimum temperatures, so that an audit would be able to confirm that the

maximum and minimum temperatures were selected from a dataset that included

today’s temperatures.1

The separation of provenance and data also allows us to treat their security sep-

arately as well. In some cases, such as when dealing with classified data, it may

be necessary to restrict access to the data itself, while permitting auditor access to

1Note that we again differentiate our provenance of these temperatures from the justification
of these temperatures, which would presumably come from the actual temperature readings that
provided the maximum and minimum.

51

its provenance. Other use cases may require the opposite behavior, such as when

an organization wishes to protect a whistle-blower’s identity. [8] If we were to treat

provenance and data as distinct entities, it is possible to set up separate access control

mechanisms for the data and the provenance.

4.3.1 Provenance-Aware Cells

To maintain this separation of data and provenance, I introduce the concept of

“provenance-aware cells”, which are a transformation of the cells in the traditional

propagator network. Instead of using a single cell to represent data, a provenance-

aware cell is actually a group of three cells, the master, data, and provenance “sub-

cells.” These three sub-cells work together to associate data and provenance by

maintaining UUID pointers between the sub-cells. However, separating these cells in

this manner still allows them to change independently from one another. In prac-

tice, we treat a provenance-aware cell as a distributed data structure, as described in

Section 4.2.

The UUID of the master sub-cell ((a) in Figure 4-2) provides a general identifier

for the collection of the three sub-cells as a whole. This cell contains pointers to

the data and provenance sub-cells. It may also contain additional meta-data that

might apply to the entire provenance-aware cell. Although a complete discussion of

how such meta-data would be used is outside the scope of this thesis, such meta-data

might assist with use cases that require authentication of the provenance by providing

a pointer to the public key of the cell’s owner.

Depending on the meta-data stored, the master sub-cell usually will not need a

proper merge operation, as its contents normally will not change. Since we are likely

to know the meta-data of the provenance-aware cell when it is being created, we may

use simple assignment as a merge operation when the contents of the cell are empty.

Otherwise the merge operation may be a simple null operation.

The data sub-cell ((b) in Figure 4-2) contains the data of the provenance-aware

cell in a simple wrapper that adds a pointer back to the master sub-cell. The merge

operation on this sub-cell would be constructed from the original merge operation

52

of the non-provenance-aware cell and a stub operation that would add the wrapper

containing the pointer to the master sub-cell. This would ensure that the actual data

of the sub-cell was the only data in the sub-cell that changed.

The provenance sub-cell ((c) in Figure 4-2) is similar to the data sub-cell: its data

would consist of the provenance of the provenance-aware cell wrapped together with a

pointer to the master sub-cell. The merge operation of the provenance sub-cell would

be similar to that of the data sub-cell. It combines the basic merge operation used

for the format of provenance that is stored in the cell with a stub that would add the

pointer to the master sub-cell.

In practice, I implement a basic provenance merge operation that constructs the

model of provenance described in Section 4.1 by taking the union or addition of the

provenance as needed, depending on the form of the update. For example, if the

cell was modified by a provenance-aware propagator, the associated update to the

provenance sub-cell will contain the entire provenance of the source cell, which will

be added to the local provenance. During re-synchronization, however, the update

will contain a copy of the local provenance. In this case, we would take the union of

the two provenance structures.

Unlike normal cells in a propagator network, the three sub-cells of a provenance-

aware cell are not initially in a true empty state. Instead, they are initialized such

that the contents of the provenance-aware cell as a whole may be considered to be

empty. By this, I mean that the data and provenance cells are effectively empty.

Although the pointer back to the master cell is specified, the actual data wrapped

with them would be treated as an empty cell by the merge operation.

Separating provenance and data in this way gains us an additional benefit in

a propagator network: we may construct and maintain provenance only at those

points in the propagator network where we desire it. We would effectively treat the

propagator network between such cells as a single compound-propagator which has

then been augmented to be provenance-aware.

For example, a number of basic arithmetic propagators may be used to convert

a temperature between the Fahrenheit and Celsius temperature scales. Although we

53

could track the provenance of the values through each arithmetic operation, there is

little knowledge gained from doing so. Useful knowledge is only obtained following

complete conversion between the two scales. Instead of adding a provenance-aware

propagator and cell for each operation, we need only use a simple propagator network

between the two data cells and forward the provenance directly to the provenance-

aware cell at the other end of the propagator network. This effectively “bypasses”

the computational operations where we do not need to maintain provenance.

4.3.2 Provenance-Aware Propagators

Modification of a propagator to become provenance-aware requires the addition of a

simple propagator that will read the contents of a input’s provenance sub-cell and

then forward its contents as an update to the output’s provenance sub-cell for merging

((d) in Figure 4-2). This propagator would also modify the input provenance to add

a record for the particular propagator (and possibly one for the output cell as well, if

its merge operation does not add one already).

This propagator is only triggered when an update has been sent to the output’s

data sub-cell by the primary propagator. The added propagator effectively becomes

a switch, allowing provenance updates to be forwarded only after the primary prop-

agator has sent an update. As propagators may have multiple inputs and outputs,

there must be one provenance switch-propagator for each pair of input and output

cells in the original propagator. This ensures that the provenance of all input cells

will only be forwarded to output cells that have actually received an update.

54

Chapter 5

Security and Stability

The distribution of propagation and provenance across a network introduces several

issues that must be addressed to ensure that any such system is useful in constructing

large systems. Some of these issues, such as garbage collecting unused copies of cells,

are not immediately harmful if left unresolved; I consider such issues to be future

work in this area. Other issues, such as data security and loss of stability due to race

conditions, are more directly harmful to distributed propagation. If left unresolved,

these issues offer significant hurdles to the consideration of data propagation as a

viable computational platform. I address these issues in more detail in this chapter.

5.1 Distributing Propagators

5.1.1 Merging and Race Conditions

Although the periodic re-synchronization operation described in Section 3.8 helps to

alleviate many causes of de-synchronization in propagator networks, we must also

consider potential race conditions in a distributed propagator network. Race con-

ditions naturally arise within distributed and concurrent systems as a form of non-

deterministic behavior that may be caused by a reordering concurrent events. [30, 29]

Such race conditions may lead to de-synchronization of copies of a cell in which data

is lost in a distributed propagator system.

55

A A

D DB B

C C E

A

D B

C E

Figure 5-1: A clique of cells is temporarily broken when a new cell joins.

It is usually possible to generate a race condition in any concurrent, general-

purpose computing system. With proper adherence to the protocol, however, dis-

tributed propagation reduces the chance of accidentally inducing a race condition.

The idempotency and commutativity constraints placed on the cell merge operation,

described in Section 3.1, limit the chances of developing many race conditions. Merges

must behave identically regardless of the order or number of updates received. This

implies that the contents of the cell will not usually depend on the timeliness or or-

dering of update messages. While it is still possible to construct applications with

race conditions (e.g. a non-commutative operation retrofitted to be commutative

may still result in race conditions), these problems are clearly the responsibility of

the application layer, rather than caused by the propagation mechanism itself.

Other race conditions in distributed propagators are induced by the implicit con-

currency of cell initialization. It is possible to construct a scenario in which update

messages from an initializing cell copy (E in Figure 5-1) are dropped at existing peers

between the time that the initializing cell copy learns the set of all peers and the time

that the new cell has notified these peers of its existence. Similarly, the remote cell

copy (B) may receive an update after the initializing cell copy has read the existing

peer, but before it has learned all other remote peers in the network. In this case, the

update is dropped at the new cell.

Both of these race conditions are byproducts of the fact that the network is not

a complete clique during the initialization process. Although the network may begin

as a clique (left side of Figure 5-1), the clique is broken when a new cell adds itself to

56

the remote peer’s “Peers” collection; this adds a single edge between that cell and the

cell from which it is initializing (center of Figure 5-1). The network only returns to

being a clique when the new cell has added itself to every known peer; this adds the

final edge that restores the clique (right side of Figure 5-1). During the time that the

network topology is not a clique, timeliness guarantees about updates do not hold.

The re-synchronization operation resolves this. Once the new cell is being ini-

tialized, the entire network may no longer be a clique, but it remains eventually

connected. Updates made by the initializing cell will always be propagated to the re-

mote cell, and from there, the re-synchronization mechanism will suffice to eventually

diffuse those updates to the remainder of the network. Similarly, any updates that are

not directly received by the initializing cell will be received by the remote cell, which

may then propagate the message to the initializing cell through its re-synchronization

operation.

5.1.2 On Connection Failure

Similar issues arise due to the need to connect to a pre-existing distributed cell,

although these are not strictly race conditions. How may we handle temporary un-

availability of a remote cell without blocking local computation? If the remote cell

isn’t available at initialization time, we still permit local computation; we may merge

local data into the cell any time after it has been created, even if it hasn’t been initial-

ized from a remote cell. That said, the cell must be able to reconnect to the network

when possible in order to ensure that its updates are propagated to the currently

unavailable remote cell. We must be able to guarantee eventual connectedness of the

network, or the contents of the cell will not converge.

There are several ways to approach this issue, including the näıve approach of

simply retrying the connection. We may also allow for several backup URLs to be

provided at initialization time. If the primary URL is unavailable, the cell would then

be able to fall back on an alternate URL for another copy of the same cell. Regardless

of the approach taken, recovering from an initialization failure caused by a lack of

network connectivity requires the cell to continue trying to initialize. A failure to

57

initialize may not compromise the ability of the distributed propagator system to

perform local computation, but it may prevent local computation from obtaining

useful results.

5.2 Securing Distributed Cells

Applications that use distributed propagation may require securing the data trans-

ferred over the distributed propagator network. Although a cell that contains facts

about meteorological temperatures may seem to be a trifle, unworthy of any security

whatsoever, there are no constraints on the data a cell contains; cells may contain any-

thing from benign personal data to highly classified government information. Thus,

security of data within a propagator network may be necessary to ensure wide accep-

tance of distributed propagation.

There are several methods that may be used to secure propagation. For example,

existing methods used to secure otherwise unencrypted channels may be useful on a

distributed propagator network without any security. Unfortunately, this is not nec-

essarily a safe practice; even unsecured distributed propagation will reveal the hosts

who have copies of a specific cell, identified by its UUID. It will also reveal infor-

mation about the frequency and source of updates and re-synchronization attempts.

By mapping this network structure to the structure of networks for which the data

is known, it may be possible to derive knowledge about the otherwise secured net-

work. This general approach to deriving network structure has already been used to

deanonymize social networks [28], and it would be reasonable to assume that this class

of attacks could be used to deduce some useful knowledge of a propagator network

as well.

A more secure approach to securing propagation would be to secure the underlying

protocol itself. Although the flows of data would still be traceable, meta-data about

the requests, such as the identity of the cell, would be more difficult to determine

without a detailed traffic analysis, if possible at all. As my proposal for distributed

propagation uses HTTP as a substrate for distributed propagation, we may utilize

58

SSL to secure the HTTP protocol so that communications are completely opaque to

eavesdroppers.

By using SSL to encrypt the underlying HTTP communications, we are not only

able to defend communications against man-in-the-middle attacks, but we also pro-

vide a method of non-interactive authentication by using certificates to identify client

and server. Unfortunately, näıve use of SSL is insufficient for encrypting propagation;

SSL assumes that connections need only be secured between two physical hosts, rather

than between two users on those hosts. This may be unacceptable on an implemen-

tation that hosts cells for a number of different individuals. These individuals may

desire their own point-to-point encryption that is not possible with SSL; SSL allows a

server to offer only a single server-wide certificate, rather than allowing the certificate

to vary according to the URL requested.1 The following scenario demonstrates this

issue more clearly:

Assume that Alice wishes to connect to an intermittently available cell operated by

Bob. Bob’s cell is hosted on a DProp peer that he shares with Eve. If Eve was aware

of the times when Bob’s cell was unavailable, she could create a cell with the same

URL as Bob’s and wait for updates from Alice. Alice would be unable to distinguish

whether the cell had been created by Bob or by Eve, as the only mechanism for

authenticating the DProp peer is a server-wide certificate. This means that the same

certificate is provided to Alice to identify the cell’s creator, regardless of who actually

created it.

Several näıve solutions to this issue exist. Permanent reservation of cell URLs is

one such solution, as it would effectively prevent an eavesdropper from registering

a cell that was previously used by another person. We could also use a secondary

identifier or key that would directly identify the owner of the cell.

A better mechanism would be to encrypt the contents of the cells themselves. If

Bob shared knowledge about the cell’s encryption with Alice, Alice would be able to

1SSL’s most recent incarnation, TLS, allows for certificates to be presented based on the hostname
rather than the server’s IP address. This allows the server some flexibility in selecting its certificate
to present to the client, but even TLS is required to offer the server’s certificate before the full HTTP
URL being requested is made available to the server.

59

decrypt the cell and its corresponding updates. She would be safe in the knowledge

that the cell had not been modified, as only Alice and Bob had the information

necessary to encrypt the cell in the first place. This approach is problematic, however,

as it requires double-encryption of the contents. This adds complexity to the code

and effectively double the computational power needed to propagate data, as every

new propagation would require encryption twice.

One other possible solution may resolve this issue; instead of double-encryption

or abandoning SSL, we may be able to use the SSL protocol’s existing renegotiation

mechanism. SSL renegotiation allows either the server or client to force the other

party to re-authenticate in the middle of SSL communications. This also allows the

client or server to change its set of encryption and decryption keys. Thus, we may

use this approach in distributed propagation to allow the server to change its keys to

match those used to identify the requested cell while keeping all parts of the HTTP

communications secure. This requires the client to know the set of server-wide keys

that will be presented initially, and assumes that the server would renegotiate the set

of keys upon receiving the request for the cell. If this was not done, the client could

simply opt to not send any updates or requests to a cell which did not renegotiate to

the expected keys.

5.3 Auditing Provenance Traces

When constructing a provenance structure like those described in Section 4.1, it may

be necessary to audit the structure to ensure that data and provenance were not

tampered with. Traditional methods of provenance verification may prove to be a

useful basis to implementing provenance auditing mechanisms within our system.

Much work in securing provenance against tampering has assumed that prove-

nance takes the form of a linear chain of modification or possession records, rather

than the directed acyclic graph we assume in this thesis. [35] Linear provenance may

be sufficient for some use cases; provenance-aware file systems, for example, define

provenance through the operations performed on a single file, so there is no need

60

to trace multiple inputs and outputs. [34] Propagators do not simply have singu-

lar inputs and outputs; this is why we assume that our provenance has a graph-like

structure. This also means that we must be able to secure this graph-like structure

against modification.

We may be able to use a method of signing chains of provenance recently proposed

by Hasan, et al [21] as the basis for securing provenance graphs. Hasan proposes that

each record in a provenance chain should include a cryptographic signature of that

record. This signature would consist of a hash of a set of meta-data in the record

combined with the signature of the previous record in the provenance chain. This

hash would then be signed with the private key of the individual responsible for that

particular record of the provenance. This would assign provable authorship of the

record to a specific individual.

This provenance may then be verified by processing each record of the chain in

order. The verification algorithm calculates the expected value of the hash from

the signature of the previous record and the current meta-data and validates the

calculated hash against the signature of the current record using the record owner’s

public key. If the signature cannot be validated, then the provenance or data has

been tampered with. The provenance algorithm then processes the next record in the

chain.

Although Hasan’s proposal assumes that provenance is a linear chain, the algo-

rithm may be easily modified to verify a graph-like provenance structure. Rather

than signing a hash that uses the single most recent record checksum, we may sign a

hash that uses all of the parents of a provenance record. The verification algorithm

would be modified to include the signatures of all parent records when constructing

the hash. Instead of traversing a linear structure, the verification would move from

the ancestors of the graph towards the seed using a depth-first traversal of the graph

from the seed. In this sense, Hasan’s original proposal is simply a degenerate case in

which the number of parents of a record is restricted to one.

To ensure integrity of provenance within distributed propagator networks, we

would include this variant of Hasan’s signature as part of each record stored in the

61

provenance sub-cell. In the stub method forming the basis of the merge operation of

the provenance sub-cell, we would also add a subroutine to automatically calculate

the new signature for the root provenance record given the signatures of the most

immediate parents of that record and include this signature as part of the record

structure itself.

62

Chapter 6

Related Work

6.1 Distributed Cells and Replicated Databases

The work on distributed propagation described in Chapter 3 builds upon a signif-

icant amount of work in the field of replicated databases. Although cells are not

as complex as databases, the replication and propagation of updates are analogous

to the replication and propagation of queries in a synchronized, replicated database.

Replicated database systems adhere to a different set of constraints than distributed

propagator networks; these may include requiring the serialization of operations and

support for non-monotonic operations, such as row deletion. Nevertheless, database

update propagation mechanisms provide a useful baseline against which this system

may be compared.

Grapevine [7] offers a mechanism for database replication that relies on message

forwarding, much like distributed propagator networks. Although this system is sim-

ilar to that of distributed propagation, Grapevine treats messaging and databases as

two distinct subsystems of its architecture. Both messaging and distributed databases

depend on each other to carry out their duties. Unlike distributed propagation,

Grapevine assumes that the network on which it is operating is strongly-connected

and that all nodes are always reachable. Distributed propagation’s re-synchronization

operation ensures that cells will globally converge even if a peer is temporarily dis-

connected from the network, which Grapevine is unable to do.

63

Just as distributed propagation forwards updates to copies of a cell, Grapevine

propagates database changes to clones of that database. This propagation mecha-

nism does not provide any guarantees about timely convergence. Although my mech-

anism for distributed propagation also provides no timeliness guarantees, it explicitly

maintains a clique to attempt to provide timeliness; Grapevine makes no attempt to

provide anything beyond eventual convergence. Grapevine also does not specify a re-

synchronization process following a node failure or failed message reception. Although

the authors describe a “nightly” cloning operation designed to resolve inconsistencies,

the operation is not clearly defined and does not explicitly make use of caching or

other structures.

The Bayou system [39] stands in contrast to Grapevine, and adheres to a constraint

of weak-connectivity in the network, much as distributed propagation does. Unlike

distributed propagation, Bayou constrains itself to the use of a strict client-server

model when controlling information; only one host controls a canonical version of

the database. This design choice is enforced by Bayou so as to guarantee eventual

serializability of updates made to a database.

These “canonical” representations of a database are not compatible with the de-

centralization of distributed propagator networks. In contrast to the decentralized,

peer-to-peer model used for distributed propagation, Bayou implements a centralized

system that makes reorderable “soft” writes to a database before “locking” them

into a canonical order. In addition, Bayou, like Grapevine, offers a method to delete

information from the database, and thus attempts to satisfy a constraint of non-

monotonicity. Distributed propagation instead uses monotonicity as a constraint and

does not need to implement this feature of Bayou or Grapevine.

The update propagation algorithm proposed by Singhal [37] also resembles the

method of distributed data propagation described in Section 3.8. Singhal does not

assume the existence of a weakly-connected network, however. This renders Singhal’s

approach unsuitable for the weakly-connected distributed computing applications we

desire to create using distributed propagation. Singhal’s approach also resembles

Bayou in that it attempts to enforce a serialization constraint on the operations

64

performed, which is not necessary for propagation due to propagation’s explicit asso-

ciativity and commutativity constraints.

6.2 Decentralized REST

As mentioned in Section 3.2, DProp utilizes REST in a decentralized manner. Rather

than strictly adhering to a client-server architecture, DProp attempts to apply a

peer-to-peer network overlay on top of traditional client-server communications. The

work of Khare and Taylor in developing their ARRESTED architecture provides a

useful comparison to our approach of constructing peer-to-peer communications with

RESTful constraints. [22]

Although many of the principles of ARRESTED are similar to the principles

behind my proposal for distributed propagation, ARRESTED also suggests several

features that have been designed to adhere to constraints that distributed propaga-

tion does not have. ARRESTED explicitly includes estimation, locking, and routing

in their decentralized REST architecture. These operations are unnecessary for dis-

tributed propagation due to its monotonicity constraint.

Furthermore, there is no need to ensure reception of a message in a distributed

propagator network, as the cell re-synchronization mechanism, combined with the ex-

isting constraints of associativity and commutativity ensure that a repeated attempt

to merge an update will not change the final contents of the cell. Similarly, propa-

gator networks do not have a particular need to estimate the current contents of the

cell based on previous updates. Although such a mechanism could be constructed

with propagators, there is no implicit need to estimate, as timeliness is not a virtue

in distributed propagator networks. We need only guarantee eventuality.

6.3 Distributed Provenance

There are a number of different approaches to the integration of provenance in a

system. Many of these approaches are domain-specific, such as for file systems [34] or

65

web services [38]. Our approach is a more holistic one, demonstrating the viability of

provenance collection and maintenance in a general-purpose computing architecture

and the easy modification of existing software to add support for provenance. There

are many similarities between my proposed system and more general approaches to

the inclusion of provenance in service-oriented architectures, such as those proposed

by Moreau, et al. [26]

In Moreau, et al’s work, an architecture for provenance handling is proposed

with the aim of achieving many of the same goals of provenance-aware propagators.

This includes the automatic documentation of processes with what Moreau calls p-

assertions, which are functionally similar to the possession and modification records

we use in our provenance model in Chapter 4. Moreau addresses the problem of

querying constructed provenance, instead of focusing on the construction and main-

tenance of provenance, with which we are concerned. Furthermore, Moreau assumes

that general-purpose provenance, such as the purpose of an action, may be collected

within their system. While this is certainly possible within provenance-aware prop-

agator networks, we make no explicit claims about how such potentially subjective

provenance traces are handled.

The Matrioshka system proposed by da Cruz, et al. [12] also attempts to pro-

vide provenance in distributed workflows much as provenance-aware propagation does.

Unlike the provenance system described here, Matrioshka relies on a centralized prove-

nance store rather than distributing the provenance with the data to which it applies.

The system also assumes that logging functionality already exists in a distributed ap-

plication. This makes Matrioshka more brittle than provenance-aware propagation;

provenance-aware propagation does not require any intermediate steps to generate

logs or store provenance, as provenance is generated and stored along with the data

it pertains to. Provenance-aware propagation also allows for existing applications to

be retrofitted as provenance-aware applications, which da Cruz does not demonstrate

with Matrioshka.

The work of Altintas, et al [1] in extending the Kepler Scientific Workflow System

is perhaps the most similar effort to integrate provenance in existing distributed

66

systems. Altintas makes use of the underlying flexibility of Kepler to add a provenance

framework, much as I do with distributed propagation. This framework simply acts

as part of the Kepler system, constructing and tracing the provenance of events that

operate within it, and it may be easily added to existing programs that use Kepler.

This system does not port itself well to the propagation paradigm, due to prop-

agation’s inherent decentralization. Kepler appears to rely instead on a client-server

model of computation. This allows the server to additionally track provenance. Al-

though we could create a provenance host that would trace the activity of all cells

in a manner similar to that of Kepler, this is not scalable. A large enough propa-

gator network would effectively drown any host listening to all updates while trying

to construct the provenance of data within the network. This defeats the purpose of

adopting distributed computation.

In many respects, provenance-aware propagator networks complement Munroe, et

al’s PrIMe system [27]. Rather than providing an explicit mechanism for the inclusion

of provenance in existing systems, PrIMe is a software design methodology that may

be used to construct provenance-aware applications by taking provenance into account

during the design process. As a software design methodology, PrIMe differs greatly

from my proposal, being a more concrete implementation of a provenance-aware pro-

cessing system. PrIMe does not specify a particular implementation of provenance,

but merely helps developers consider implementing provenance in systems that re-

quire it. Provenance-aware propagation may offer an opportunity to facilitate design

processes that use PrIMe by reducing the work necessary to retrofit existing systems

with provenance capabilities.

As mentioned in Section 5.3, it is possible to extend provenance in a provenance-

aware propagator network to include provenance integrity mechanisms by building

on the approach set forth by Hasan, et al. [21] Hasan applies a provenance integrity

mechanism to construct a provenance-aware file system. In contrast, provenance-

aware propagation is a more general mechanism for provenance construction that can

be used to construct distributed file systems, as well as many other applications. I

thus expand on Hasan’s approach to general purpose computation.

67

68

Chapter 7

Summary

7.1 Contributions

I have discussed and implemented a distributed system based on the computational

paradigm of data propagation in an attempt to provide distributed solutions to prob-

lems with high dimensionality. This architecture, which I call “distributed propa-

gation”, achieves useful computation within a weakly-connected network, making it

comparable to existing distributed computing approaches that also assume such. I

designed this system with the principles of Representational State Transfer, or REST,

in mind, resulting in a system that is both robust to failure and simple enough to be

easily implemented on multiple platforms.

The development of distributed propagation has also led me to outline and imple-

ment a provenance mechanism for distributed propagator systems. This mechanism

takes advantage of the explicit modularity of propagator networks and provides for

the simple modification of existing networks to add support for provenance. I have

implemented a library to support the creation of distributed propagator networks

which demonstrates this by implementing fundamentally identical APIs to construct

both traditional and provenance-aware distributed propagator networks.

I have also outlined several constraints on the merge operations used in data prop-

agation; these constraints reduce the complexity of distributed propagator networks

and allow for meaningful distributed computation. The four constraints and their

69

Constraint Benefit
Idempotence (with associativity) no locking during cell initialization

no filtering for duplicate updates during re-synchronization
Associativity (with idempotence) no locking during cell initialization

don’t need to save all updates for re-synchronization
Commutativity removes need for global synchronization (timestamps)

removes timeliness constraint on communications
Monotonicity removes complexity caused by deletion operations

allows computation of results with partial knowledge

Table 7.1: The four constraints on the merge operation and their benefits.

corresponding benefits are outlined in Table 7.1. Finally, I have also developed a

loose guideline for how data structures may be represented in propagator networks,

either by including data structures in the cells themselves, or by treating cell URLs

as de-facto memory pointers.

7.2 Challenges and Future Work

7.2.1 Propagator Networks & Garbage Collection

In this thesis, I have assumed that the collection of all cells in a propagator network

is monotonically increasing. There is no explicit “deletion” or “unregistration” mech-

anism for a distributed cell. Once a cell has been created, it may not be deleted, nor

may a host disclaim any continuing interest in it. There is no mechanism for garbage

collection in a distributed propagator network; this results in an intractably large

propagator network as time progresses.

In practical systems that use distributed propagator networks, it may be necessary

to support non-monotonic actions, such as the deletion or unregistration of a cell from

a given network. In doing so, we may allow for more efficient allocation of the resources

on a host. Rather than spending effort to re-synchronize or maintain a copy of a cell

that will never be re-used, a host may allocate resources to more useful computation.

There is a similar need for a mechanism to allow propagator networks to eventu-

ally prune unreachable peers. This would allow networks to eventually stop making

70

efforts to synchronize a node that no longer exists. A implementation of garbage

collection within propagator networks in general will be needed before distributed

garbage collection may be considered.

7.2.2 Data Structures and Propagators

It is not entirely clear that the URL-based distributed data structure design that I

propose in Section 4.2 is useful for more general computation in propagator networks.

It may be difficult to merge two data structures for which only pointers are known.

If two pointers are assigned at the same time to different (shared) cells, there is no

way to determine how to merge these otherwise opaque pointers. A sensible merge

algorithm may need to look at the contents of each pointer to unify cells that may

have been assigned different UUIDs.

The provenance-aware cells proposed in Section 4.3.1 are not affected by the issue

raised above. When a provenance-aware cell is created, all pointers are allocated to

appropriate sub-cells automatically. This means that any merge operation on the

sub-cells of a provenance-aware cell should never have to merge two distinct pointer

values that are assigned to the same field; the merge operation may safely ignore the

contents of the pointer field other than ensuring that it remains assigned.

7.2.3 Redundancy of Distributed Operations

One advantage of distributing propagation is that we may duplicate a host as many

times as we like and have all duplicates perform the same computation in parallel.

This would allow for error-correction and fault-tolerance, as a failure to produce

correct results would be ameliorated by the ability of other hosts to generate the

correct values.

At this point, all such duplication would have to be designed into the application.

This may be problematic, as the number of duplicate clients may not be known at run

time. Resolving this issue and allowing dynamic allocation of redundant computation

will require the resolution of the compound propagator issue described below.

71

7.2.4 Scalability and Practicality Issues

Although I have tested distributed propagation successfully across a network, these

tests have been limited in scope to only two or three peers. I have not yet tested

larger distributed propagator networks, and it is unknown whether propagator net-

works will scale practically; the amount of re-synchronization communications is likely

to result in flooding the network as the propagator network grows large. As each cell

re-synchronizes with every other cell that it knows about, and my distributed prop-

agation model assumes the existence of a clique, the number of re-synchronization

messages per unit time will grow according to the square of the number of peers.

Cell Discovery

Although this thesis has considered discovery of an initial cell copy to be orthogonal

to the problem of distributing propagator networks, a scalable distributed propagator

network will need to be able to determine what cells exist and where copies are located.

A number of mechanisms may be helpful in moving beyond the assumption of a priori

knowledge passed to the API, which I have assumed in this thesis. Other mechanisms

may include name servers like DNS [24, 25] or service-discovery protocols such as DNS-

SD [11] or SSDP (part of the universal plug-and-play architecture (UPnP) proposed

by the UPnP Forum [40, 41]).

Compound Propagators in Distributed Propagator Networks

As distributed cells must be assigned a UUID identity before they may be connected

to propagators or remote cell copies, there is no mechanism to create a cell on a

remote host and spawn a given propagator attached to it. This makes it difficult to

dynamically negotiate or delegate tasks in a distributed application. This also makes

it impossible to create distributed compound propagators, one of the more compelling

elements of propagator networks. Although we may instantiate local propagators

when a cell receives data, we may not dynamically assign tasks to remote hosts by

providing a propagator and cell.

72

It may be possible to create such dynamic propagator networks by treating prop-

agators as first-class objects that may be stored in a cell. We might then be able

to distribute propagator and cell descriptions to remote nodes so that they may

be instantiated for further processing. Allowing arbitrary code execution does raise

security concerns, so any mechanism for compound propagation within distributed

propagator networks will need to be carefully crafted to eliminate issues that arise

due to allowing the dynamic construction of distributed propagator networks.

7.2.5 Security

I have outlined several approaches to security in Sections 5.2 and 5.3. However,

my implementation, DProp, and its accompanying library, PyDProp, currently do

not implement them. As such, the security implementations proposed in this paper

should be studied to ensure that data remains secure and that effective access con-

trol is possible in this system. Improved encryption may be had by implementing

propagation with a new protocol that allows for cell-based security mechanisms.

SSL may also suffer scalability issues. As my proposed SSL implementation of

security depends on knowledge of certificates, the number of certificates that must

be “known” by a user of distributed propagation may be high in a large distributed

system. Unified authentication systems such as Kerberos may be more appropriate

within larger networks than SSL, allowing greater scalability and larger propagator

networks.

7.2.6 Representational State Refinement

Strictly speaking, the combination of propagation and REST I have set out in Chap-

ter 3 does not strictly adhere to several of the underlying principles of REST. Al-

though it nominally adheres to the five primary constraints of REST, distributed

propagation does not follow some of the underlying tenets of hypertextuality and

resource management that a true RESTful architecture provides. In particular, dis-

tributed propagation does not generally concern itself with the creation or deletion

73

of resources; most, if not all, actions on cells are done solely through the GET and

POST operations.

Nevertheless, it seems inappropriate to simply abandon a RESTful model for

distributed computation. Distributed propagation does make effective use of resource

retrieval and update, and actually places a more meaningful constraint on the meaning

of “update” implied by the POST operation. Updates within a distributed propagator

network may only be used to “refine” a resource, rather than allowing any arbitrary

modification.

As completely disposing of REST would be inappropriate, I propose that the

work presented here is not so much that of “Representational State Transfer” but

of “Representational State Refinement”, or RESTAR. This architectural style es-

sentially synthesizes the principles of propagation and resource management into a

single model. Rather than simply providing for the underlying CRUD operations

of creation, reading, updating, and deletion, RESTAR supposes the replacement of

the nondescript update operation with a “refinement” operation which selectively

updates the resource by refining partial knowledge of the resource.

7.2.7 Which HTTP Method? POST vs. PUT vs. PATCH

One critical aspect of constraining ourselves to a new REST-based model is the correct

choice of HTTP method for conveying updates to remote cell copies. Although I have

modeled propagation of updates through the use of the POST method, we must be

careful that this is the correct HTTP method to use. The effective semantics of

a POST are vague; POST is stated to be a non-idempotent method that is to be

used to effectively create a new “subordinate” of the resource to which the POST

request is sent. [17] However, this is commonly interpreted in practice to allow for

the modification of the resource itself, and this is how I use it in this paper.

Unlike POST, PUT is specified to be idempotent. Although this might seem to be

preferable, PUT is much more strongly associated with the semantics of “creating” or

“replacing” an object at the URL provided in the request. As distributed propagation

never actually creates cells, and updates cannot simply “replace” the old content of

74

the cell without abandoning the monotonicity constraint on the merge operation,

PUT may not be used for distributed propagation.

The PATCH method of HTTP [16] carries more appropriate semantics, in that it

allows a set of changes to be applied to the resource to which a PATCH request is sent.

However, PATCH is still specified to be non-idempotent. Distributed propagation

explicitly requires idempotency, so this would require an implicit additional restriction

on the PATCH operation.

Unfortunately, while the PATCH method would thus be the most appropriate

method to implement distributed propagation, some HTTP implementations may

not be able to support this relatively new method. The Twisted library and Python’s

httplib module, which I have used to construct my implementation, DProp (See

Appendix A), do allow the PATCH method, and I plan to revise DProp to support

the PATCH method in a future release.

7.3 Conclusion

Distributed propagation provides a useful alternate mechanism for distributed com-

putation that does not rely on simply distributing the data across the system for

identical processing. This will provide for a larger number of computations that may

be distributed, and perhaps allow for a greater number of applications for distributed

computing. As the power of individual computers begins to reach a plateau without

making use of concurrent processing, it will become ever more important to construct

systems to make use of a larger number of hosts and processors and to move away

from sequential processing.

By providing a mechanism for the distributed refinement of resources, distributed

propagation and related applications may provide a means to develop more push-

based, data-driven algorithms over a network and on the world wide web. As interest

in other push-driven web application technologies like Comet and Web Sockets grows,

distributed propagation may provide a meaningful development model for those ap-

plications that do not wish to abandon the resource-based architecture style of REST.

75

76

Appendix A

DProp: Distributed Propagation in

Practice

In developing the system for distributed propagation described in Chapter 3, I have

constructed a working implementation of the protocol, called DProp. DProp makes

use of Twisted, a Python-based, event-driven networking framework to provide the

HTTP server functionality needed for distributed propagation. The Twisted library

may be used to easily construct an HTTP-based server application with optional

SSL encryption. Together with Python’s built-in httplib module, used to implement

HTTP requests, I am able to construct a useful mechanism for distributed propagation

I have also constructed a library to accompany DProp, named PyDProp. This

library simplifies the construction of cells shared via DProp by offering a simple API

for cell creation. This library may also be used to construct provenance-aware cells,

which share the same basic API used for non-provenance-aware propagation. By

sharing the API for creating both provenance-aware and non-provenance-aware cells,

I am able to demonstrate the ease with which provenance may be added to existing

applications that use distributed propagation.

77

A.1 The Architecture of DProp

Although I have outlined a basic protocol for distributed propagation in Chapter 3,

that outline simply lays out the architectural requirements of the protocol itself; there

are no provisions made for the architectural design of applications that implement the

protocol correctly. As long as a program adheres to the protocol, its implementation

may be integrated into the application, or made to be reused by many programs.

DProp has a more flexible architecture that allows it to be reused by many existing

programs.

As described above, DProp uses the Twisted networking stack to implement the

actual HTTP communications. Although it would be possible to construct a separate

propagation stack for each program that utilized propagation, I have instead chosen

to implement DProp using a client-server architecture. Local client applications may

create cells on the DProp server that may be made available to the network at large.

This design choice separates propagation functionality from the applications that use

it; they do not need to actually implement distributed propagation and may rely on

the DProp daemon to handle propagation for them. Client applications would then

only be contacted for cell-specific operations, such as cell merges and updates.

A client application need only be able to communicate with the DProp daemon

through the DBus messaging library, an open-source inter-process messaging library.

Programs may use a common API enforced by DBus to create cells. By relying on

a single daemon for all propagation, we reduce the number of distinct propagator

implementations, and reduce the number of bugs in propagator networks that may

be caused by an incorrect implementation of the propagation protocol.

More importantly, this client-server architecture also allows propagators on the

same host to run as separate processes, provided that they can both communicate

with the same DBus messaging bus. The DProp daemon can manage the sharing

of a single cell across multiple processes simply by using the same APIs in different

processes. By using these APIs to merge and update the same cell, two processes

may effectively share a cell as they might share memory.

78

escapePath(path) Escape part of a path to a cell for use with DBus.
useSSL() Returns True if the daemon is hosting using SSL,

False otherwise.
port() Returns the port number the DProp daemon is

hosting on.
registerCell(uuid) Creates a new cell identified by uuid() if it doesn’t

exist and returns the UUID.
registerRemoteCell(url) Creates a new uninitialized local copy of the cell

at url if it doesn’t exist and returns its UUID.
cellExists(uuid) Returns True if a cell with the given UUID already

exists, False otherwise.

Table A.1: DBus remote methods available on a DPropMan object.

escapePath(path) Escape part of a path to a cell for use with DBus.
changeCell(data) Change the contents of the cell to data (which should be

encoded as a JSON string) and notify local propagators.
updateCell(data) Send a JSON-encoded update message, data, to the

merge operation associated with the cell and forward
the message to all remote peers.

data() Return the data of the cell encoded as a JSON string.
data() effectively returns the argument of the previous
call to changeCell(data).

url() Returns the URL of the cell.
connectToRemote(url) Actually connect to the cell at the remote peer, specified

by url, and set it to synchronize with the cell.

Table A.2: DBus remote methods available on a Cell object.

UpdateSignal(message, peer) Sent by the cell when a (local or remote) update
has been received by the cell from peer.

NotifyPropagatorsSignal() Sent by the cell to wake up any connected prop-
agators.

Table A.3: DBus signals sent by a Cell object.

79

DBus is an object-oriented messaging system. This means that messages in DBus

are associated with particular data objects. These data objects are usually created

by one application, but may be sent messages from many other client applications.

Shared data objects in DBus reveal remote methods defined specifically for the type

of object being shared.

The applications that have created data objects on DBus may also communicate

back to client applications through a number of DBus “signals”. Signals are special

methods associated with a data object that result in firing call-back methods that

may have been registered to receive the signal in various client applications.

DProp shares two types of objects on DBus: a single DPropMan object, and a

collection of Cell objects. The DPropMan object represents the state of the DProp

daemon itself. It has methods that test whether a cell exists, as well as some that

create new Cell objects. These methods are outlined in Table A.1.

A Cell object represents a single cell copy in a distributed propagator network,

shared with the world at large. Many of the methods made available on a Cell object

relate to updating and merging the contents of the cell. These methods are listed in

Table A.2. Cells also expose several DBus signals to client applications. The signals

associated with each Cell are used to notify client applications of updates received

by the cell and completed merges. A complete list of signals is given in Table A.3.

A simple example of cell creation and updating using DProp is depicted in Fig-

ure A-1. When an application first requests that a cell be made, the server will

permanently instantiate a cell with the provided UUID if one does not already exist.

This cell may then be used as the recipient of further remote method calls over DBus.

Once the cell has been created, a client may register appropriate local functions to

handle the signals generated by a particular cell. These include UpdateSignals gen-

erated whenever a local or remote update message is received.

Locally generated updates may be sent to the cell by using the updateCell

method. When an update is sent locally, the server will distribute the update to

remote cells, as outlined in Section 3.7, and then signal any locally registered merge

operations by generating an UpdateSignal.

80

DProp Client DProp Server

Cell(uuid)

connect_to_signal(UpdateSignal)

registerCell(uuid)

uuid

updateCell(data)

Forward update to peers
UpdateSignal(data)

mergeFunction(data)

changeCell(mergeData)

Change cell contents

connected to that signal)

(to local functions that have

NotifyPropagatorsSignal()

Figure A-1: Example communications between a DProp client and server via DBus.

81

When an UpdateSignal has been generated by the DProp daemon, all local merge

functions that have been registered to the Cell’s UpdateSignal will be invoked.

These merge functions may then perform computation based on the current cell state,

which may be obtained from the cell using the data method on the Cell object. They

may then properly set the contents of the cell to the newly merged state by using the

changeCell method.

This second method actually changes the contents of the cell that are returned by

the data method via DBus or a remote GET request over HTTP. The changeCell

method also wakes any local propagators associated with the cell by generating the

DBus signal NotifyPropagatorsSignal. Local propagators interested in the cell

should be registered to receive this signal and perform any computation; this may

include further calls to updateCell to send updates to additional cells.

A.2 The DProp Daemon

The DProp daemon handles the synchronization of local cell copies, as well as han-

dling requests from other copies. It implements both the HTTP server and client

mechanisms necessary to perform the distributed propagation protocol outlined in

Chapter 3.

When the DProp daemon starts, it will instantiate an HTTP server on port 37767

and connect to DBus. The DProp daemon creates a DPropMan object at runtime

and associates it with the DBus path /DPropMan. The remote methods of this ob-

ject may then be called by any client; clients need only reference the name of the

bus that the object is hosted on, ‘edu.mit.csail.dig.DPropMan’, and the path of the

object, /DPropMan. Any of the methods described in Table A.1 may be called on the

DPropMan object.

When a cell copy is created using the registerCell or registerRemoteCell

method, the cell object gets created at the path /Cells/{UUID}, where it may be

called upon to update or register signals. This cell is also made available on the

HTTP server by assigning it a URL that is named with reference to the host’s name:

82

‘http[s]://{host}:{port}/Cells/{UUID}’. The collection of the peers of the cell is also

created below this URL.

Regardless whether a cell is created with registerCell or registerRemoteCell,

the cell that is created is initially empty. To finish the initial synchronization process

with a cell created by registerRemoteCell, the connectToRemote method must be

called on the cell. We separate cell creation from initialization of the cell as no merge

function is registered with the cell immediately following the registerRemoteCell

call. A client must register a call-back function with the UpdateSignal signal of

the cell before we may actually perform any merges or synchronizations; if this is

not done, the contents of the remote cell will not be properly merged when they are

fetched. Likewise, call-backs to NotifyPropagatorsSignal must be added to ensure

that propagators fire.

This separation of cell creation and initialization also helps users initialize against

a remote cell without blocking execution; if this was not done, a thread might hang

while it waits to connect to a non-existent remote cell. Finally, it allows the DProp

client application to finely control connection to a remote cell. This allows a client

application to provide fall-back mechanisms should a cell fail to connect. For example,

it may be able to try alternate remote URLs or initialize the contents of the cell based

on some local saved state.

A.2.1 Serving Cells

The DProp daemon uses the Twisted framework to serve HTTP resources. The built-

in twisted.web module allows for the creation of resources simply by sub-classing the

twisted.web.Resource class. We then provide a top-level resource when the HTTP

server is instantiated. We use a DPropManTopLevel object to represent the top-

level resource containing the /Cells collection. Similarly, a DPropManCells object

represents the collection of cells, a DPropManCell object represents a single cell, and

a DPropManCellPeers object represents the collection of a cell’s peers.

Each HTTP resource may respond to any number of HTTP methods simply by

defining instance functions on their Python objects with names having the form

83

render METHOD(self, request). For example, an HTTP GET method on a cell

resource will result in calling the render GET(self, request) method on the corre-

sponding DPropManCell object. The render GET method has been implemented to

check whether an If-None-Match HTTP header has been provided. If it has, and the

value of the header matches the ETag of the cell’s contents, the resource will return

an empty response along with the “304 Not Modified” response code to imply that

any caches with that ETag are still valid. Otherwise, the cell will return the current

contents of the cell along with a “200 OK” response code and a new ETag.

When a cell receives a POST request and the render POST method is called, the

Python object will confirm that the HTTP Referer header field has been specified

and that the content of this field is the URL of a cell that is already present in the

cell’s peers collection. If the Referer is unrecognized, the cell will return a “403

Forbidden” response code to signify that the POST was not allowed. Otherwise, the

cell will forward the update to any interested cell merge operations by calling the

UpdateSignal associated with the cell. The cell returns a “203 Accepted” response

to denote that the submitted POST was accepted for merging into the cell, even

though it may not actually change its contents.

We may similarly accept a POST on the Peers collection. The render POST

method on the corresponding DPropManCellPeers object does not check the Referer

however. It simply adds the URL of the peer provided in the contents of the POST

to the peers collection without doing any validation or verification of the new peer

named in the Referer.

A.2.2 Fetching Cells

The DProp daemon is also in charge of handling the re-synchronization protocol

described in Section 3.8. This is performed automatically by running a method to

perform this re-synchronization, startSyncThunk, repeatedly on a timer. When this

method fires, the daemon will attempt to simultaneously re-synchronize the local

cell with each cell copy in the Peers collection. This is done in a concurrent, multi-

threaded manner.

84

This multi-threaded behavior is necessary to prevent deadlocks that might be

caused when two peers attempt to re-synchronize with each other at the same time.

If the HTTP server handles requests on the same thread as the HTTP client makes

them, responses to any requests made to the server will not be generated while DProp

waits on a response from the remote server.

Once an HTTP request has been made for a cell, the response may be treated

according to the rules outlined in Section 3.8. The cell will fire a local update if there

was a loss of synchronization or do nothing if no re-synchronization is needed.

Updates to a Cell, regardless of whether they were received from a remote cell

copy or a local call to updateCell, ultimately call the Cell’s doUpdate method. This

method, not publicly visible via DBus, is called by both the render POST method of

the HTTP server and updateCell method of the DBus Cell to send an UpdateSignal

to any local merge functions that have been registered to receive it. It also calls the

updatePeers method if the update was sent locally. This method is used to forward

the update to remote peers.

As mentioned previously, the connectToRemote method may be called to properly

connect the cell to a network of synchronized cells. Like startSyncThunk, this method

spawns a thread to initialize the cell from the remote copy. It will fetch the contents

of the remote cell with an HTTP GET request and call doUpdate to pass the contents

of that cell to the local update function. The method then proceeds to merge the

peers known to the remote cell into the local Peers collection and informs these peers

of the existence of the new cell copy.

A.3 PyDProp

The DProp daemon is accompanied by a separate Python library, called PyDProp,

which is designed to interface with the daemon through DBus. This Python module

may be used with any Python code to create and synchronize remote cells without

writing any low-level DBus code. PyDProp also includes classes that implement the

provenance-aware cell model described in Chapter 4.

85

ProvenanceAwareLocalCell ProvenanceAwareRemoteCell

ProvenanceAwareCell

RemoteCellLocalCell

Cell

ProvenanceAwarePropagator

Propagator

Figure A-2: Class hierarchy of PyDProp.

addNeighbor(propagator) Registers the function method of the provided prop-
agator object with the NotifyPropagatorsSignal

signal of the cell so that it is called when the cell
updates.

update(data) Updates the cell with the JSON-encoded update pro-
vided in data. Wraps the updateCell method.

set(data) Sets the cell to the JSON-encoded update provided
in data. Wraps the changeCell method.

data() Returns the JSON-encoded data stored in the cell.
url() Returns the URL of the cell.

Table A.4: Methods available on a Cell object in PyDProp.

86

PyDProp provides four concrete classes, including LocalCell, RemoteCell, and

the provenance-aware versions of these classes, ProvenanceAwareLocalCell, and

ProvenanceAwareRemoteCell. These four classes are sub-classed from one of two ab-

stract classes Cell and ProvenanceAwareCell, as illustrated by the class-hierarchy in

Figure A-2. The LocalCell classes are used to represent a locally-created cell which

will not be initialized from a remote cell copy. The RemoteCell classes, in contrast,

may be initialized from a copy of a cell at another URL. All of these classes inherit

methods from the abstract Cell class and share the five basic methods of that class,

listed in Table A.4. These five methods may be used to perform basic cell-related

tasks, such as retrieving the cell’s contents and updating a cell, without needing to

directly invoke methods exposed through DBus.

A.3.1 The LocalCell and RemoteCell Classes

The LocalCell and RemoteCell classes are subclasses of the Cell class that differ

only in how they are initialized. Both are initialized with two arguments. The first

argument is the UUID, if the cell is a LocalCell, or the URL, if a RemoteCell. The

second argument of both constructors is a merge function that takes three arguments:

the Cell object itself, the update data encoded in JSON, and the peer that sent the

update.

The LocalCell object simply registers the cell with the DProp daemon using the

registerCell method of the DPropMan object on DBus. It then registers the provided

merge function with the UpdateSignal of the Cell created by registerCell. Instead

of calling registerCell, RemoteCell uses the registerRemoteCell method. It also

calls the connectToRemote method after the merge function has been registered with

the UpdateSignal.

A.3.2 Provenance-Aware Cells

ProvenanceAwareLocalCell and ProvenanceAwareRemoteCell, the other two sub-

classes of Cell, are based on the abstract ProvenanceAwareCell. Like LocalCell

87

mainCellMerge Performs the default merge (replacement) operation for
the main cell.

provCellMerge A wrapper for the provenance merge function given as
the first argument provMergeFunction and performs
the merge on the provenance cell.

dataCellMerge Like the provCellMerge function, this function wraps
the first argument mergeFunction and handles merging
of data.

defaultProvCellMerge The default provenance merge function.
updateProvenance Like update on the original Cell class, but specifically

updates the provenance cell.
setProvenance Like set on the original Cell class, but specifically sets

the provenance cell.
provenanceData Like data on the original Cell class, but specifically

fetches the data of the provenance cell.

Table A.5: Methods available on a ProvenanceAwareCell object in PyDProp.

and RemoteCell, these provenance-aware subclasses differ only in the arguments they

take, although both now take an optional provenance merge function as their last ar-

gument. Furthermore, ProvenanceAwareLocalCell now requires three UUIDs, one

for each sub-cell, rather than one UUID for the entire cell.

The parent class of these classes, ProvenanceAwareCell, adds several additional

functions to the basic functions provided by the Cell class. These additional functions

are listed in Table A.5. Several wrapper methods and default merge functions are

provided to help with merging the individual sub-cells of provenance-aware cells.

ProvenanceAwareCell also overrides some of the methods of the Cell type to account

for the differences between the structure of a basic Cell and a ProvenanceAwareCell.

Despite these differences, sub-classing Cell still allows us to easily reuse existing code

written to use non-provenance-aware cells, as the basic five functions of Cell remain

functionally the same.

A.3.3 Propagators

Propagators in PyDProp are first-level objects. These objects are all members of

a class that wraps propagator functions, named Propagator. The constructor of a

88

Propagator object takes three arguments: an identifier for the propagator, a list of

neighboring cells that will wake the propagator when their content changes, and the

propagator function itself. The constructor automatically registers the propagator

function with the NotifyPropagatorsSignal of each neighboring cell so that the

propagator will wake up when one of the neighboring cells changes. The Propagator

object also wraps the propagator function through its instance method function().

Provenance-aware propagators are constructed similarly to non-provenance aware

propagators. Rather than using the Propagator class, provenance-aware propaga-

tors use the class ProvenanceAwarePropagator, which takes an additional argument

following the list of neighbors. This argument contains the list of output cells of the

propagator. This ensures that the provenance sub-cells of each provenance-aware cell

that has had its data sub-cell updated will be updated as well. It also takes an op-

tional provenance-propagation function to allow for custom structures of provenance

rather than the one described in Section 4.1. Otherwise the propagator will provide

one of its own to create the provenance structure described in that section.

A.4 DProp and JSON

As may be noted in Tables A.2 and A.4, the arguments to the methods of a Cell

object in both DBus or PyDProp are objects encoded as strings using JSON, a data

interchange format based on JavaScript syntax. This choice is primarily driven by

the static typing of functions exposed through DBus. As it would be impossible to

store an arbitrary data type in a Cell and retrieve it using DBus without knowing

which of the static types is stored in the cell, I chose to use a neutral data interchange

format, JSON, to represent the data stored in a cell.

To handle conversion between arbitrary data and JSON, it is necessary to map

arbitrary objects to a JavaScript “object” bearing key-value pairs that map a string

to a string, number, array, or other object. Encoding and decoding the data of a cell

in JSON may be handled by existing JSON code libraries. However, several special

objects used in distributed propagation and provenance require special handling. This

89

Type Description
dpropMainCell Data stored in the main sub-cell of a provenance-aware

cell, including pointers to the provenance and data sub-
cells.

dpropDataCell Data stored in the data sub-cell of a provenance-aware
cell, including a pointer to the main sub-cell.

dpropProvCell Data stored in the provenance sub-cell of a provenance-
aware cell, including a pointer to the main sub-cell.

dpropProvenance Provenance data pushed by a provenance-aware propa-
gator.

Table A.6: Types of JSON objects used in PyDProp’s provenance-aware cells

is why I use a special DProp-specific Python JSON library, DPropJSON, for both the

DProp daemon and the PyDProp library.

DPropJSON operates like the json module provided by Python 2.6, which exposes

two methods, dumps and loads, to encode and decode JSON respectively. DPropJ-

SON depends on either the internal json module, if present, or the python-json library

(also known as json-py) for versions of Python earlier than 2.6.

DPropJSON supports two additional data types in JSON. These data types, URI

and Nothing are encoded as specifically formatted objects in JSON output. The

URI type may be identified by the special key-value pair uri =True. It also has a

key-value pair which specifies the value of the URI, uri=value . This type may be

used to represent URLs.

The Nothing type, on the other hand, is simply identified by the key-value pair

nothing =True. The Nothing type represents the empty value of a Cell before

it has merged any updates; all Cell objects are initially set to contain a Nothing

object.

Provenance-aware cells require several additional “special” types of objects. Al-

though DPropJSON does not handle these objects, the provenance-aware PyDProp

classes automatically work with these objects in the default merge functions for prove-

nance sub-cells. Four additional object types are required for provenance-aware cells,

which are specified in Table A.6. Each of these object types may be identified by a

JSON object that has a key-value pair type=typename .

90

The dpropMainCell type has two additional key-value pairs, named dataCell

and provCell. These two key-value pairs take values that correspond to the UUIDs

of the data and provenance sub-cells of the provenance-aware cell respectively.

The types dpropProvCell and dpropDataCell also have two additional key-value

pairs, mainCell and data. mainCell is a UUID pointer to the main sub-cell of the

provenance-aware cell. data, in contrast, is assigned the actual wrapped value of the

cell.

One additional class, dpropProvenance, is used to transmit provenance through

provenance-aware propagators and differentiate a dpropProvCell from the prove-

nance stored in the cell. This class has only one key-value pair, data. This key

corresponds to the provenance data being forwarded to the destination provenance

sub-cell.

91

92

Bibliography

[1] Ilkay Altintas, Oscar Barney, and Efrat Jaeger-Frank. Provenance collection sup-
port in the kepler scientific workflow system. In Provenance and Annotation of
Data: International Provenance and Annotation Workshop, IPAW 2006, volume
4145/2006 of Lecture Notes in Computer Science, pages 118–132, Chicago, IL,
USA, May 2006. Springer.

[2] David P. Anderson. BOINC: A system for public-resource computing and stor-
age. In Proceedings of the 5th IEEE/ACM International Workshop on Grid
Computing, pages 4–10. IEEE Computer Society, 2004.

[3] David P. Anderson, Jeff Cobb, Eric Korpela, Matt Lebofsky, and Dan Werthimer.
SETI@home: An experiment in public-resource computing. Communications of
the ACM, 45(11):56–61, November 2002.

[4] Baruch Awerbuch and Shimon Even. Efficient and reliable broadcast is achievable
in an eventually connected network. In Proceedings of the Third Annual ACM
Symposium on Principles of Distributed Computing, pages 278–281. ACM, 1984.

[5] Richard E. Bellman. Adaptive Control Processes: A Guided Tour. Princeton
University Press, Princeton, NJ, USA, 1961.

[6] T. Berners-Lee, L. Masinter, and M. McCahill. RFC 1738: Uniform Resource
Locators (URL), December 1994.

[7] Andrew D. Birrell, Roy Levin, Roger M. Needham, and Michael D. Schroeder.
Grapevine: An exercise in distributed computing. Communications of the ACM,
25(4):260–274, April 1982.

[8] Uri Braun and Avi Shinnar. A security model for provenance. Technical Report
TR-04-06, Computer Science Group, Harvard University, 2006.

[9] Peter Buneman, Sanjeev Khanna, and Wang-Chiew Tan. Why and where: A
characterization of data provenance. In ICDT ’01: Proceedings of the 8th In-
ternational Conference on Database Theory, volume 1973 of Lecture Notes in
Computer Science, pages 316–330, London, UK, 2001. Springer.

[10] Vinton G. Cerf and Robert E. Kahn. A protocol for packet network intercom-
munication. IEEE Transactions on Communications, 22(5):637–648, May 1974.

93

[11] Stuart Cheshire and Marc Krochmal. DNS-based service discovery, March 2010.

[12] Sérgio Manuel Serra da Cruz, Patŕıcia M. Barros, Paulo M. Bisch, Maria
Luiza Machado Campos, and Marta Mattoso. Provenance services for distributed
workflows. In Proceedings of the 2008 Eighth IEEE International Symposium on
Cluster Computing and the Grid, pages 526–533. IEEE Computer Society, 2008.

[13] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data processing on
large clusters. In Proceedings of the 6th Symposium on Operating System Design
and Implementation (OSDI 2004). USENIX Association, 2004.

[14] Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott Shenker,
Howard Sturgis, Dan Swinehart, and Doug Terry. Epidemic algorithms for repli-
cated database maintenance. In Proceedings of the Sixth Annual ACM Sympo-
sium on Principles of Distributed Computing, pages 1–12. ACM, 1987.

[15] Robert B. Doorenbos. Production Matching for Large Learning Systems. PhD
thesis, Carnegie Mellon University, Pittsburgh, PA, USA, January 1995.

[16] L. Dusseault. RFC 5789: Patch Method for HTTP, March 2010.

[17] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee. RFC 2616: Hypertext transfer protocol – HTTP/1.1, June
1999.

[18] Roy Thomas Fielding. Architectural Styles and the Design of Network-based
Software Architectures. PhD thesis, University of California, Irvine, Irvine, CA,
USA, 2000.

[19] Charles Lanny Forgy. On the Efficient Implementation of Production Systems.
PhD thesis, Carnegie Mellon University, Pittsburgh, PA, USA, February 1979.

[20] Daniel P. Friedman and David S. Wise. Cons should not evaluate its arguments.
In S. Michaelson and R. Milner, editors, Automata, Languages and Programming,
pages 257–284, Edinburgh, UK, 1976. Edinburgh University Press.

[21] Ragib Hasan, Radu Sion, and Marianne Winslett. The case of the fake Picasso:
Preventing history forgery with secure provenance. In Proceedings of the 7th
USENIX Conference on File and Storage Technologies (FAST 2009). USENIX
Association, 2009.

[22] Rohit Khare and Richard N. Taylor. Extending the representational state trans-
fer (REST) architectural style for distributed systems. In Proceedings of the
26th International Conference on Software Engineering, pages 428–437. IEEE
Computer Society, 2004.

[23] P. Leach, M. Mealling, and R. Salz. RFC 4122: A Universally Unique IDentifier
(UUID) URN namespace, July 2005.

94

[24] P. Mockapetris. RFC 1034: Domain names - concepts and facilities, November
1987.

[25] P. Mockapetris. RFC 1035: Domain names - implementation and specification,
November 1987.

[26] Luc Moreau, Paul Groth, Simon Miles, Javier Vazquez-Salceda, John Ibbotson,
Sheng Jiang, Steve Munroe, Omer Rana, Andreas Schreiber, Victor Tan, and
Laszlo Varga. The provenance of electronic data. Communications of the ACM,
51(4):52–58, March 2008.

[27] Steve Munroe, Simon Miles, Luc Moreau, and Javier Vásquez-Salceda. PrIMe: a
software engineering methodology for developing provenance-aware applications.
In SEM ’06: Proceedings of the 6th International Workshop on Software En-
gineering and Middleware, pages 39–46, Portland, OR, USA, September 2006.
ACM.

[28] Arvind Narayanan and Vitaly Shmatikov. De-anonymizing social networks. In
30th IEEE Symposium on Security and Privacy, pages 173–187, Oakland, CA,
USA, 2009. IEEE Computer Society.

[29] Robert H. B. Netzer, Timothy W. Brennan, and Suresh K. Damodaran-Kamal.
Debugging race conditions in message-passing programs. In Proceedings of
the SIGMETRICS Symposium on Parallel and Distributed Tools, pages 31–40,
Philadelphia, PA, USA, 1996. ACM.

[30] Robert H. B. Netzer and Barton P. Miller. What are race conditions?: Some
issues and formalizations. ACM Letters on Programming Languages and Systems,
1(1):74–88, March 1992.

[31] Lance Parsons, Ehtesham Haque, and Huan Liu. Subspace clustering for high
dimensional data: A review. ACM SIGKDD Explorations Newsletter, 6(1):90–
105, 2004.

[32] Alexey Radul. Propagation Networks: A Flexible and Expressive Substrate for
Computation. PhD thesis, Massachusetts Institute of Technology, 2009.

[33] Alexey Radul and Gerald Jay Sussman. The art of the propagator. Technical
Report MIT-CSAIL-TR-2009-002, MIT Computer Science and Artificial Intelli-
gence Laboratory, January 2009.

[34] Can Sar and Pei Cao. Lineage file system. Department of Computer Science,
Stanford University. http://crypto.stanford.edu/˜cao/lineage.html, 2005.

[35] Bruce Schneier and John Kelsey. Secure audit logs to support computer forensics.
ACM Transactions on Information and System Security, 2(2):159–176, 1999.

[36] Yogesh L. Simmhan, Beth Plale, and Dennis Gannon. A survey of data prove-
nance in e-science. ACM SIGMOD Record, 34(3):31–36, September 2005.

95

[37] Mukesh Singhal. Update transport: A new technique for update synchronization
in replicated database systems. IEEE Transactions on Software Engineering,
16(12):1325–1336, December 1990.

[38] Martin Szomszor and Luc Moreau. Recording and reasoning over data prove-
nance in web and grid services. In On the Move to Meaningful Internet Systems
2003: CoopIS, DOA, and ODBASE, volume 2888/2003 of Lecture Notes in Com-
puter Science, pages 603–620. Springer, 2003.

[39] Douglas B. Terry, Marvin M. Theimer, Karin Petersen, Alan J. Demers, Mike J.
Spreitzer, and Carl H. Hauser. Managing update conflicts in bayou, a weakly
connected replicated storage system. In Proceedings of the Fifteenth ACM Sym-
posium on Operating Systems Principles, pages 172–182, Copper Mountain, CO,
USA, 1995. ACM.

[40] UPnP Forum. UPnP device architecture 1.0, April 2008.

[41] UPnP Forum. UPnP device architecture 1.1, October 2008.

[42] Jacopo Urbani, Spyros Kotoulas, Eyal Oren, and Frank van Harmelen. Scalable
distributed reasoning using MapReduce. In Proceedings of the ISWC ’09, volume
5823 of Lecture Notes in Computer Science. Springer, 2009.

96

