10 research outputs found

    Fast Mojette Transform for Discrete Tomography

    Full text link
    A new algorithm for reconstructing a two dimensional object from a set of one dimensional projected views is presented that is both computationally exact and experimentally practical. The algorithm has a computational complexity of O(n log2 n) with n = N^2 for an NxN image, is robust in the presence of noise and produces no artefacts in the reconstruction process, as is the case with conventional tomographic methods. The reconstruction process is approximation free because the object is assumed to be discrete and utilizes fully discrete Radon transforms. Noise in the projection data can be suppressed further by introducing redundancy in the reconstruction. The number of projections required for exact reconstruction and the response to noise can be controlled without comprising the digital nature of the algorithm. The digital projections are those of the Mojette Transform, a form of discrete linogram. A simple analytical mapping is developed that compacts these projections exactly into symmetric periodic slices within the Discrete Fourier Transform. A new digital angle set is constructed that allows the periodic slices to completely fill all of the objects Discrete Fourier space. Techniques are proposed to acquire these digital projections experimentally to enable fast and robust two dimensional reconstructions.Comment: 22 pages, 13 figures, Submitted to Elsevier Signal Processin

    The Discrete radon transform: A more efficient approach to image reconstruction

    Get PDF
    The Radon transform and its inversion are the mathematical keys that enable tomography. Radon transforms are defined for continuous objects with continuous projections at all angles in [0,π). In practice, however, we pre-filter discrete projections take

    Redundant Image Representation via Multi-Scale Digital Radon Projection

    Get PDF
    International audienceA novel ordering of digital Radon projections co-efficients is presented here that enables progressive image reconstruc- tion from low resolution to full resolution. The digital Radon transform applied here is the Mojette transform first defined by Guedon et al. in [1]. The Mojette transform is a natural way to generate redundancy to any specified degree and has been demonstrated to be useful for redundant representation for robust data storage and transmission. Combining this with the wavelet transform facilitates compression, i.e., joint source-channel coding, along with the additional property of scalability

    Recovering missing slices of the discrete fourier transform using ghosts

    Get PDF
    The discrete Fourier transform (DFT) underpins the solution to many inverse problems commonly possessing missing or unmeasured frequency information. This incomplete coverage of the Fourier space always produces systematic artifacts called Ghosts. In this paper, a fast and exact method for deconvolving cyclic artifacts caused by missing slices of the DFT using redundant image regions is presented. The slices discussed here originate from the exact partitioning of the Discrete Fourier Transform (DFT) space, under the projective Discrete Radon Transform, called the discrete Fourier slice theorem. The method has a computational complexity of O(n\log-{2}n) (for an n=N\times N image) and is constructed from a new cyclic theory of Ghosts. This theory is also shown to unify several aspects of work done on Ghosts over the past three decades. This paper concludes with an application to fast, exact, non-iterative image reconstruction from a highly asymmetric set of rational angle projections that give rise to sets of sparse slices within the DFT

    Tomographie et géométrie discrètes avec la transformée Mojette

    Get PDF
    We explore through this thesis the insights of discrete tomography over classical tomography in continuous space. We use the Mojette transform, a discrete and exact form of the Radon transform, as a link between classical tomography and discrete tomography. We focus especially on the study of the discrete space induced by the Mojette transform operator through four research axis.Axis 1 focuses on the Mojette space properties in regards to discrete affine transforms of digital images. We provide tools to achieve affine transforms directly from the projections of a digital object, without preliminary tomographic reconstruction. This property is well-known for the continuous Radon transform but non-trivial for its sampled versions.Axis 2 seeks for some links between continuous-sampled projections related to medical imaging acquisition modalities and discrete projections derived by the Mojette transform. We implement interpolation schemes to estimate discrete projections from the continuous ones — on either synthetic or real data — and their reconstruction.In axis 3, we provide an algebraic framework for the description and inversion of the Mojette transform. The input data, the projections as well as the operators are modeled as polynomials. Within this framework, the Mojette projection operator advantageously reduce to a Vandermonde matrix.This thesis has been realized at both IRCCyN Lab and Keosys company within the Quanticardi FUI project. Axis 4 focuses on the design and the implementation of a clinical software for the absolute quantification of myocardial perfusion with positron emission tomography.Dans cette thèse, nous explorons les voies offertes par la tomographie discrète par rapport à la tomographie classique en milieu continu. Nous utilisons la transformée Mojette, version discrète et exacte de la transformée de Radon, que nous présentons comme un lien entre la tomographie classique et la tomographie discrète. Nous nous attachons à l’étude de l’espace sous-jacent à l’opérateur de transformée Mojette. Ce travail se décline suivant quatre axes de recherche.L’axe 1 est consacré au comportement de l’espace Mojette pour les transformations affines discrètes de l’image. Nous montrons qu’il est possible de réaliser certaines transformations affines directement à partir des projections discrètes d’un objet, sans reconstruction préalable.L’axe 2 consiste à examiner les liens entre les projections continues issues de modalités d’acquisitions en imagerie médicale et celles obtenues par transformée Mojette. Nous présentons différentes méthodes d’estimation des projections discrètes à partir de projections continues — réelles ou simulées — et leur reconstruction.L’axe 3 a pour objet l’inversion algébrique de la transformée Mojette. Les données d’entrée, les projections et les opérateurs sont modélisés par des polynômes. Ce formalisme, relevant de la tomographie discrète, permet d’exprimer la matrice de transformation Mojette sous forme Vandermonde.Cette thèse a été réalisée conjointement à l’IRCCyN et à Keosys dans le cadre du projet FUI Quanticardi. L’axe 4 est dédié à la conception et au développement d’un logiciel de quantification absolue de la perfusion myocardique en tomographie par émission de positons

    Projections et distances discrètes

    Get PDF
    Le travail se situe dans le domaine de la géométrie discrète. La tomographie discrète sera abordée sous l'angle de ses liens avec la théorie de l'information, illustrés par l'application de la transformation Mojette et de la "Finite Radon Transform" au codage redondant d'information pour la transmission et le stockage distribué. Les distances discrètes seront exposées selon les points de vue théorique (avec une nouvelle classe de distances construites par des chemins à poids variables) et algorithmique (transformation en distance, axe médian, granulométrie) en particulier par des méthodes en un balayage d'image (en "streaming"). Le lien avec les séquences d'entiers non-décroissantes et l'inverse de Lambek-Moser sera mis en avant

    Protocole de routage à chemins multiples pour des réseaux ad hoc

    Get PDF
    Ad hoc networks consist of a collection of wireless mobile nodes which dynamically exchange data without reliance on any fixed based station or a wired backbone network. They are by definition self-organized. The frequent topological changes make multi-hops routing a crucial issue for these networks. In this PhD thesis, we propose a multipath routing protocol named Multipath Optimized Link State Routing (MP-OLSR). It is a multipath extension of OLSR, and can be regarded as a hybrid routing scheme because it combines the proactive nature of topology sensing and reactive nature of multipath computation. The auxiliary functions as route recovery and loop detection are introduced to improve the performance of the network. The usage of queue length metric for link quality criteria is studied and the compatibility between single path and multipath routing is discussed to facilitate the deployment of the protocol. The simulations based on NS2 and Qualnet softwares are performed in different scenarios. A testbed is also set up in the campus of Polytech’Nantes. The results from the simulator and testbed reveal that MP-OLSR is particularly suitable for mobile, large and dense networks with heavy network load thanks to its ability to distribute the traffic into different paths and effective auxiliary functions. The H.264/SVC video service is applied to ad hoc networks with MP-OLSR. By exploiting the scalable characteristic of H.264/SVC, we propose to use Priority Forward Error Correction coding based on Finite Radon Transform (FRT) to improve the received video quality. An evaluation framework called SVCEval is built to simulate the SVC video transmission over different kinds of networks in Qualnet. This second study highlights the interest of multiple path routing to improve quality of experience over self-organized networks.Les réseaux ad hoc sont constitués d’un ensemble de nœuds mobiles qui échangent des données sans infrastructure de type point d’accès ou artère filaire. Ils sont par définition auto-organisés. Les changements fréquents de topologie des réseaux ad hoc rendent le routage multi-sauts très problématique. Dans cette thèse, nous proposons un protocole de routage à chemins multiples appelé Multipath Optimized Link State Routing (MP-OLSR). C’est une extension d’OLSR à chemins multiples qui peut être considérée comme une méthode de routage hybride. En effet, MP-OLSR combine la caractéristique proactive de la détection de topologie et la caractéristique réactive du calcul de chemins multiples qui est effectué à la demande. Les fonctions auxiliaires comme la récupération de routes ou la détection de boucles sont introduites pour améliorer la performance du réseau. L’utilisation de la longueur des files d’attente des nœuds intermédiaires comme critère de qualité de lien est étudiée et la compatibilité entre routage à chemins multiples et chemin unique est discutée pour faciliter le déploiement du protocole. Les simulations basées sur les logiciels NS2 et Qualnet sont effectuées pour tester le routage MP-OLSR dans des scénarios variés. Une mise en œuvre a également été réalisée au cours de cette thèse avec une expérimentation sur le campus de Polytech’Nantes. Les résultats de la simulation et de l’expérimentation révèlent que MP-OLSR est particulièrement adapté pour les réseaux mobiles et denses avec des trafics élevés grâce à sa capacité à distribuer le trafic dans des chemins différents et à des fonctions auxiliaires efficaces. Au niveau application, le service vidéo H.264/SVC est appliqué à des réseaux ad hoc MP-OLSR. En exploitant la hiérarchie naturelle délivrée par le format H.264/SVC, nous proposons d’utiliser un codage à protection inégale (PFEC) basé sur la Transformation de Radon Finie (FRT) pour améliorer la qualité de la vidéo à la réception. Un outil appelé SVCEval est développé pour simuler la transmission de vidéo SVC sur différents types de réseaux dans le logiciel Qualnet. Cette deuxième étude témoigne de l’intérêt du codage à protection inégale dans un routage à chemins multiples pour améliorer une qualité d’usage sur des réseaux auto-organisés

    Reconstruction statistique 3D à partir d’un faible nombre de projections : application : coronarographie RX rotationnelle

    Get PDF
    The problematic of this thesis concerns the statistical iterative 3D reconstruction of coronary tree from a very few number of coronary angiograms (5 images). During RX rotational angiographic exam, only projections corresponding to the same cardiac phase are selected in order to check the condition of space and time non-variability of the object to reconstruct (static reconstruction). The limited number of projections complicates the reconstruction, considered then as an illness inverse problem. The answer to a similar problem needs a regularization process. To do so, we choose baysian formalism considering the reconstruction as a random field maximizing the posterior probability (MAP), composed by quadratic likelihood terms (attached to data) and Gibbs prior (prior markovian based on a partial interpretation of the object to reconstruct). The MAP maximizing allowed us using a numerical optimization algorithm, to introduce a smoothing constraint and preserve the edges on the reconstruction while choosing wisely the potential functions associated to prior energy. In this paper, we have discussed in details the three components of efficient statistical reconstruction MAP, which are : 1- the construction of precise physical model of acquisition process; 2- the selection of an appropriate prior model; and 3- the definition of an efficient iterative optimization algorithm. This discussion lead us to propose two iterative algorithms MAP, MAP-MNR and MAP-ARTUR-GC, which we have tested and evaluated on realistic simulated data (Patient data from 64-slice CT).La problématique de cette thèse concerne la reconstruction statistique itérative 3D de l'arbre coronaire, à partir d'un nombre très réduit d'angiogrammes coronariens (5 images). Pendant un examen rotationnel d'angiographie RX, seules les projections correspondant à la même phase cardiaque sont sélectionnées afin de vérifier la condition de non variabilité spatio-temporelle de l'objet à reconstruire (reconstruction statique). Le nombre restreint de projections complique cette reconstruction, considérée alors comme un problème inverse mal posé. La résolution d'un tel problème nécessite une procédure de régularisation. Pour ce faire, nous avons opté pour le formalisme bayésien en considérant la reconstruction comme le champ aléatoire maximisant la probabilité a posteriori (MAP), composée d'un terme quadratique de vraisemblance (attache aux données) et un a priori de Gibbs (à priori markovien basé sur une interprétation partielle de l'objet à reconstruire). La maximisation MAP adoptant un algorithme d'optimisation numérique nous a permis d'introduire une contrainte de lissage avec préservation de contours des reconstructions en choisissant adéquatement les fonctions de potentiel associées à l'énergie à priori. Dans ce manuscrit, nous avons discuté en détail des trois principales composantes d'une reconstruction statistique MAP performante, à savoir (1) l'élaboration d'un modèle physique précis du processus d'acquisition, (2) l'adoption d'un modèle à priori approprié et (3) la définition d'un algorithme d'optimisation itératif efficace. Cette discussion nous a conduit à proposer deux algorithmes itératifs MAP, MAP-MNR et MAP-ARTUR-GC, que nous avons testés et évalués sur des données simulées réalistes (données patient issues d'une acquisition CT- 64 multi-barrettes)

    Recent Advances in Signal Processing

    Get PDF
    The signal processing task is a very critical issue in the majority of new technological inventions and challenges in a variety of applications in both science and engineering fields. Classical signal processing techniques have largely worked with mathematical models that are linear, local, stationary, and Gaussian. They have always favored closed-form tractability over real-world accuracy. These constraints were imposed by the lack of powerful computing tools. During the last few decades, signal processing theories, developments, and applications have matured rapidly and now include tools from many areas of mathematics, computer science, physics, and engineering. This book is targeted primarily toward both students and researchers who want to be exposed to a wide variety of signal processing techniques and algorithms. It includes 27 chapters that can be categorized into five different areas depending on the application at hand. These five categories are ordered to address image processing, speech processing, communication systems, time-series analysis, and educational packages respectively. The book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity

    Conjugate gradient Mojette reconstruction

    No full text
    International audienceIterative methods are now recognized as powerful tools to solve inverse problems such as tomographic reconstruction. In this paper, the main goal is to present a new reconstruction algorithm made from two components. An iterative algorithm, namely the Conjugate Gradient (CG) method, is used to solve the tomographic problem in the least square (LS) sense for our specific discrete Mojette geometry. The results are compared (with the same geometry) to the corresponding Mojette Filtered Back Projection (FBP) method. In the fist part of the paper, we recall the discrete geometry used to define the projection M and backprojection M* operators. In the second part, the CG algorithm is presented within the context of the Mojette geometry. Noise is then added onto these Mojette projections with respect to the sampling and reconstructions are performed. Finally the Toeplitz block Toeplitz (TBT) character of M*M is demonstrated
    corecore