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ABSTRACT

The Radon transform and its inversion are the mathematical keys that enable tomography. Radon transforms
are defined for continuous objects with continuous projections at all angles in [0, π). In practice, however,
we pre-filter discrete projections taken at a discrete set of angles and reconstruct a discrete object. Since we
are approximating a continuous transform, it would seem that acquiring more projections at finer projection
resolutions is the path to providing better reconstructions. Alternatively, a discrete Radon transform (DRT) and
its inversion can be implemented. Then the angle set and the projection resolution are discrete having been pre-
defined by the required resolution of the tomogram. DRT projections are not necessarily evenly spaced in [0, π),
but are concentrated in directions which require more information due to the discrete square [or cubic] grid of
the reconstruction space. A DRT, by design, removes the need for interpolation, speeding up the reconstruction
process and gives the minimum number of projections required, reducing the acquisition time and minimizing
the required radiation dose. This paper reviews the concept of a DRT and demonstrates how they can be used
to reconstruct objects from X-ray projections more efficiently in terms of the number of projections and to
enable speedier reconstruction. This idea has been studied as early as 1977 by Myron Katz. The work begun by
Katz has continued and many methods using different DRT versions have been proposed for tomographic image
reconstruction. Here, results using several of the prominent DRT formalisms are included to demonstrate the
different techniques involved. The quality and artifact structure of the reconstructed images are compared and
contrasted with that obtained using standard filtered back projection.
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1. INTRODUCTION

The Radon transform (RT) and its inversion are the mathematical keys that enable tomography. The acquisition
of X-ray projections of an object is effectively the RT of the density function for that object. The recovery of
this density function is achieved by applying some form of inverse RT to the projection data.

It was Austrian mathematician Johann Radon who, in 1917∗, first discovered that a continuous function,
f(x, y), can be recovered from its infinite set of projections, pf (ρ, θ), θ ∈ [0, π) as:

f(x, y) = R†KRf(x, y) = R†Kpf (ρ, θ), (1)

where R denotes the Radon projection operator defined as

Rf(x, y) =
∫ ∞

−∞

∫ ∞

−∞
f(x, y)δ(ρ − x sin θ + y cos θ)dxdy = pf (ρ, θ), (2)
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K denotes the ramp filter convolution operator defined as

Kpf (ρ, θ) = F−1
1D {|ω|} ∗ pf (ρ, θ) =

∫ ∞

−∞
|ω|p̂f (ω, θ) exp[i2πρω]dω = p̃f (ρ, θ), (3)

where p̂f (ω, θ) is the 1D Fourier transform of pf (ρ, θ), i.e., p̂f (ω, θ) = F+1
1Dpf (ρ, θ) =

∫ ∞
−∞ pf (ρ, θ) exp[−i2πωρ]dρ,

and R† denotes the dual of the projection operator (known as the back-projection operator) defined as

R†p̃f (ρ, θ) =
∫ π

0

p̃f (ρ, θ)dθ = f(x, y). (4)

For the continuous case, the inverse RT is ill-posed and a unique solution only exists if the set of projections
is infinite. In practice, however, only a finite approximation of f at some given resolution is required. Therefore,
a finite set of discretely sampled projections is sufficient for reconstruction using a discretisation Radon’s filtered
back-projection (FBP) formula. FBP has become the standard inversion technique, as it is regarded to be less
sensitive to interpolation errors than techniques based in the frequency domain, i.e., Fourier inversion (FI). FBP
has been used relatively unaltered for the last 40 years, with limited attention to the area of filter design.

The standard data acquisition procedure, i.e., to obtain a set of projections equi-spaced in angle, gives a
discrete sampling of the RT of the continuous object/function in the form of a polar tiling (in both Radon
and Fourier space) which has no straight-forward inversion to a discrete square [or cubic] image array. This
leads to arbitrary filtering and/or interpolation in the reconstruction process, which, in turn, produces image
reconstruction artifacts.

This paper seeks to review and explore methods to improve both the implementation and results of recon-
struction by taking into account that the solution required is not f but the digital image of f . Beylkin2 in his
original DRT paper showed that for an exactly invertible discrete reconstruction, the inversion, whilst similar
to a discretisation of Radon’s filtered back-projection (FBP) formula, cannot be directly derived from this. Dis-
cretising the projections and filter according to the image grid, as proposed by Guédon and Bizais3 and Horbelt
et al ,4 can improve the quality of reconstructed images significantly and reduce the total number of projections
required. They showed that when a square pixel model is assumed, the appropriate discrete filter varies for each
projection angle. Another aspect that has been relatively unexplored is the projection angle set. If the filter is
not symmetrical for a square grid then surely the projection angle density required also varies with angle. Katz5

has investigated this idea with some interesting results.

The work of Horbelt et al was notable for showing that the use of discrete grid-related filters (e.g. B–
splines) dramatically improves the quality of the reconstructions in the least squares sense and reduces the level
of image artifacts. This approach enabled the same quality reconstructions to be obtained using either fewer
interpolations, or using a smaller number of projection angles.

Many DRT formalisms exist2,6–9 which are fast and exactly invertible mappings from/to a square image
array. If the projection data can be acquired to map onto one of these tilings of Radon space, or can be easily
arrived at from a polar tiling with minimal interpolation, then the process of inversion from this point is trivial.
Each DRT formalism has the potential to be a more efficient tool for reconstruction in one or more of several
ways:

1 – It should be faster, since, by design, it requires trivial or no interpolation once the projection data has
been mapped to the required format. Also, since mapping from projection to image space is lossless and fast,
iterative improvements (such as the removal of beam hardening artifacts) should be simple and fast operations.

2 – It should produce tomograms of equivalent quality from fewer projections compared with standard FBP,
since its projection set should (in the process of defining the DRT) be optimised for a square grid. For example
Katz5 achieved this by assuming a digital algebraic reconstruction and determining the maximum sized image
space that allowed a unique reconstruction. These discrete projections are not usually equi-spaced in angle.
Since only a digital image of f is desired, the number of reconstructed levels (i.e., the grey-scale resolution) in
the image can also often be pre-determined, which can further reduce the number of projections required.
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3 – It should be more accurate, since no arbitrary filtering is required and interpolation of the data can be
minimised.

The paper is organised as follows: Section 2 gives a broad overview of some of the DRT formalisms developed
to date. The three following sections discuss how DRT formalisms can fine-tune reconstructions, as mentioned
above: Section 3 – minimising angle sets, Section 4 – minimising interpolation, and Section 5 – minimising
computation time. Apart from outlining some DRT definitions, a study of angle selection by M. Katz5 is
outlined, along with an improved method to discretise the projections and the filter for FBP, as developed by
Guédon and Bizais.3 Finally the performance of each method is compared and contrasted in Section 6, before
making some concluding remarks in Section 7.

2. DISCRETE RADON TRANSFORM FORMALISMS

The are several desirable properties that a DRT formalism should include: it should provide an exactly invertible
mapping from image space to projection space, this mapping should be fast. If possible, the Fourier slice theorem
and hence the convolution property [which are both properties of the continuous RT] should hold. This section
outlines several DRT formalisms that satisfy all of the above properties. A comprehensive review of DRT
formalisms is given in.10 As the DRT has no 1D analogue, it cannot be derived as a trivial extension from 1D,
as is the case for the discrete Fourier transform (DFT). The essential difference between each DRT approach lies
in the detailed description of how to define a line on a square image grid.

2.1 Finite Radon transform (FRT) and Mojette transform

The first type defines a discrete line as the set of pixels (not necessarily connected) centered on a “rational”
line. Here rational implies the slope, m, can be found as the inverse tangent of an irreducible rational fraction
[also known as a Farey fraction], see Fig. 6–right. Line integrals are simply the sum of the values of all pixels
taken along line trajectories in the set. This assumes the Dirac pixel model, i.e., that each pixel occupies an
infinitely small point in the image space. Other models that include projected contributions from adjacent pixels
are exemplified by the Haar pixel model. Higher order Haar models can be achieved by simply convolving the
Dirac model projections with the projection of the pixel model at the desired order.

There are two main methods using this line definition; the FRT6 and Mojette transform,7 both transforms are
similar. The principal differences are that the FRT assumes the image is periodic in both the x and y directions,
(i.e., toroidal, as for the DFT), and is defined over p × p arrays where p is prime. A review of FRT properties
and applications is given in.10 The angle sets of both DRTs belong to the set of Farey angles, θ = tan−1(a/b)
where gcd(a, b) = 1 and the projection sampling rate varies as

√
a2 + b2.

The FRT has a pre-defined set of p+1 projections as depicted in Fig. 1 for p = 5. Computation of its inverse
is very similar to the projection process and is well-conditioned. Both projection and reconstruction can also be
performed in the frequency domain.

Figure 1. The six FRT discrete lines through the origin of a 5 × 5 grid.

The Mojette transform has an arbitrary set of rational projection angles (some examples of Mojette lines are
given in Fig. 2) and is uniquely reconstructible provided the Katz5 criterion is satisfied. Various reconstruction
methods have been developed, ranging from fast, exact, but ill-conditioned methods,7 to robust iterative algebraic
solutions.11
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Figure 2. Some Mojette discrete lines through the origin of a 4 × 4 grid with slopes, m ∈ [0, 1].

2.2 Linogram or fast slant stack (FSS)

A second type divides Radon space into two categories, vertical lines (−1 ≤ −1/m < 1) and horizontal lines (−1 ≤
m < 1). Vertical lines sample each image row once, however may not have an integer column value [and like-wise
for horizontal lines]. Vertical [resp. horizontal] line integrals are found as the sum of the trigonometrically
interpolated values of adjacent pixels in each row [resp. columns], see Fig. 3. The interpolation is performed in
the frequency domain using the 1D Chirp-Z transform. The angle set is comprised of equi-spaced slopes with
m = 2l/N for l ∈ [−N/2, N/2 − 1] for an N × N image (see Fig. 6–center) and produces a discrete sampling
of Radon space in the form of concentric squares [termed pseudo-polar], see Fig. 7–center. A fast and exact
iterative inverse was developed by Averbuch et al ,8 where the inversion is performed in the frequency domain.

Figure 3. The four equi-spaced slope discrete lines through the origin of a 4 × 4 grid with slopes m ∈ [0, 1]. Note that
intermediate grey pixels are found through 1D trigonometric interpolation.

2.3 Approximate discrete Radon transform (ADRT)

This third type can be considered similar to the FSS but “snaps” to whole pixels in each row for vertical lines
(or column for horizontal lines), generating sets of 8-connected pixels that closely approximate continuous lines,
see Fig. 4. These connected sets (or discrete lines) are termed d–lines. This approach was developed by Götz
and Drückmuller12 and later, independently, by Brady.13 The set of pixels belonging to a line are not selected
as those closest to the line, but as those that enable a fast, O(N2 log N) for an N ×N image, projection using a
method similar to that in the fast DFT (FFT). An upper limit to the distance from a continuous line a pixel lies
is 0.5(log N −1).13 The angle set is also equi-spaced in slope as for the FSS. A fast and exact, multi-resolutional,
iterative inverse was developed by Press,9 the complexity of which is also O(N2 log N).

Figure 4. The four 8-connected discrete lines (d–lines) through the origin of a 4 × 4 grid with average slopes m ∈ [0, 1].

3. MINIMISING THE NUMBER OF PROJECTIONS

Guédon and Bizais3 and Horbelt et al4 have developed a more appropriate method to discretise filtered back
projection. This approach gives higher quality reconstructions and ultimately requires fewer projections than
standard filtered back-projection. Since a square pixel (assuming the Haar model as described below) is not
radially symmetric, the contribution each pixel value makes to a projection varies with the projection angle. A
discrete filter that accommodates this variation with angle is to be prefered over uniform filters.
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In practice, the function required to be reconstructed is not f(x, y), but a discretised version of f which can
be found as the 2D convolution of f with a pixel intensity distribution model, b(x, y), i.e., F [k, l] = b(x, y) ∗
∗f(x, y)|x=k,y=l. The convolution property gives R{b(x, y) ∗ ∗f(x, y)} = pb(ρ, θ) ∗ pf (ρ, θ) so Eq. (1) becomes:

b(x, y) ∗ ∗f(x, y) = R†K{pb(ρ, θ) ∗ pf (ρ, θ)} = R†{kb(ρ, θ) ∗ pf (ρ, θ)}, (5)

where kb(ρ, θ) = F−1
1D {|ω|p̂b(ω, θ)}. A useful pixel model that is commensurate with discrete display devices is

the separable Haar basis defined as:

s(x − k, y − l) = s(x − k)s(y − l), where s(z) =

⎧⎨
⎩

1, |z| < 1
2

1
2 , |z| = 1

2
0, |z| > 1

2

. (6)

Figure 5 gives a depiction of the Haar pixel model and the the variation in projection contribution depending
on angle.

Figure 5. The Haar pixel model with three projections at the “rational” or Farey angles, tan−1(−2/1), tan−1(1/1), and
tan−1(0/1).

Guédon and Bizais3 give analytical solutions to the Haar filter functions ks(ρ, θ) which vary with projection
angle θ and incorporate an oversampling rate r for r > 1. They compared the result obtained from standard
FBP with that of this Haar-FBP with r = 4. They showed that using the angle varying Haar filter suppresses
the line artifacts that are evident using the standard FBP and in fact showed that the only artifacts were those
arising from the limited frequency bandwidth. Horbelt et al4 provide a similar result using spline convolutions.
They find that better quality reconstructions (in terms of PSNR) arise by doubling the sampling rate in the
projections rather than by doubling the number of projection angles.

Another method to minimise the number of projections required is to select projection angles that maximise
the information according to the pixel model of the reconstruction. This was explored in depth by Katz5 in the
1970s. He assumes inversion using the algebraic reconstruction technique (ART) and shows that the optimal
angles to use, assuming the Haar pixel model, are the “rational” or “Farey” angles found as the inverse tangent
of irreducibe fractions, i.e., θ = tan−1(a/b) where gcd(a, b) = 1, see Fig. 6–right. The projections at these angles
minimise the “mixing” of pixel contributions, thus minimising the required resolution of the projections. The
use of Farey angles enables the construction of discrete ghost functions. These are functions that exist in image
space but project to zero at the specified projection angle set. The finest resolution of a reconstruction, M ×N ,
that cannot contain a ghost function (i.e., the support of the discrete ghost function is larger than M × N) is
the finest reconstruction resolution that gives a unique solution.

Katz gives an example in5 assuming 36 projections. Standard FBP with equi-spaced projection angles, using
basic sampling theory N = 2P/π = 72/π ≈ 23, a 23 × 23 image can be reconstructed. Katz selects 36 Farey
fractions that all lie within 1.5◦ of the 36 equi-spaced projection angles and the smallest discrete ghost function
has support of 94×94 pixels, thus a 93×93 image can be reconstructed uniquely, at approximately 4 times finer
resolution than using standard FBP.

The Katz angle selection method, based on ART, would benefit further by Haar filtering the projections, i.e.,
performing a convolution with ps(ρ, θ). This idea has been investigated by Servieres et al11 using the Mojette
transform with ART inversion using the conjugate gradient method (CGM).
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Figure 6. Three types of angle distributions used: left: equi-spaced in angle, center: equi-spaced in slope, right: “rational”
or Farey angles.

A further possibilty to minimise the number of projections is to employ the FRT. This is not an algebraic
approach, but by design is a well-conditioned back projection method that requires no filtering. Of all the DRT
formalisms this is the only non-redundant version and so must be optimal. For a p× p image [where p is prime],
only p + 1 projections with p samples are required. Svalbe et al in14–16 have developed many methods to map
sampled continuous projection data to the discrete projections of the FRT; this is the only step in the inversion
process where errors are introduced. The incorporation of the Haar filter to pre-condition the real projection
data values3,4 is an avenue which has not yet been fully explored.

A final method which may be employed to minimise the number of projections for an object comprised of 1 or
more regions of uniform material is to make use of discretised intensity levels. For example, an object consisting
of a single material, e.g., an aluminium foam, only requires a binary reconstruction with 0 indicating air and 1
indicating a pixel containing the object. This drastically reduces the amount of information required.17,18 In
fact for certain classes of shapes, e.g., hv-convex, only 2 projections [row and column sums] are required for a
unique reconstruction.19

4. MINIMISING INTERPOLATION

All Radon inversion methods require some form of interpolation. The Fourier inversion (FI) technique requires
interpolation from the polar grid (Fig. 7–left) of collected data to a square grid (Fig. 7–right) in the frequency
domain. The filtered back-projection (FBP) technique requires interpolation for every pixel in the image for
every projection, i.e., PN2 interpolations. This interpolation in the spatial domain appears to be much less
sensitive than in the frequency domain as used for FI.

The FSS and ADRT both use equi-spaced slope projections, forming a set of concentric squares [termed
pseudo-polar], as shown in Fig. 7–center. The projection data from these transforms have a much smaller
interpolation distance from the standard polar projection data than directly to a square grid as for FI, and
is performed in the projection domain [Radon space]. It serves as an intermediate step in mapping from the
polar grid of projection data to the square image grid. As with FI, after this initial interpolation, no further
interpolation is required. The projections could be purposefully acquired at equi-spaced slopes to further reduce
the need for data interpolation (only 1D in this case).

Figure 7. Three types of discrete grids used: left: polar (concentric circles), center: pseudo-polar (concentric squares),
right: square.
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Mojette and FRT back-projection use no interpolation, owing to the use of Farey angles and the Dirac pixel
model. Assuming the Haar pixel model, interpolation is required in the projections, performed as a convolution
with the projection of a Haar pixel. Since all pixels centered on a line at angle θ each have the same interpolation
values, this is done just once in the projection as back projection requires no interpolation.

5. MINIMISING COMPUTATION TIME

By design, DRT formalisms are very efficient methods for projection and reconstruction on a discrete square
grid. Standard FBP of an N × N image with a number of projections, P ≈ πN/2, requires O(N3) operations
[or O(N4) for 3D reconstructions].

The Linogram or FSS is computed via the frequency domain using a series 1D Chirp-Z and 1D FFT operations
and can be computed in O(N2 log N) operations [or O(N3 log N) for 3D reconstructions]. For a 20483 image,
reconstruction via FSS should be approximately 200 times faster.

In the set of digital lines defined for the ADRT, pixels are not selected as the nearest grid points to continuous
lines, which would minimise discretisation error, but those that can be computed efficiently in O(N2 log N)
operations. This is not a fast DFT (FFT) method, but exploits a similar concept [i.e., butterfly operations]
applied directly to sub-image sums. How well these d–lines approximate continuous lines is analysed by finding
an upper limit to the distance perpendicular to the line from a given pixel belonging to the d–line. Götz and
Drückmuller show that this is O(log N), while Brady further refines this to 0.5(log N − 1).

The FRT can be computed exactly by both direct back-projection (BP) in O(p3) operations and FI in
O(p2 log p) operations. However, BP requires no interpolation and can be computed extremely efficiently using
a block copy and add routine and is in fact faster than FI for p < 800.

To date the Mojette transform has no fast well-conditioned inversion. The search for a pre-conditioner
continues and a multi-scale Mojette transform has been developed20 which may enable fast reconstruction using
a multi-grid method similar to that developed by Press for the ADRT.

6. TOMOGRAPHIC RECONSTRUCTION VIA DISCRETE RADON TRANSFORMS

This section is included to demonstrate the tomographic reconstruction performance of several of the DRT
formalisms as compared with standard Ram-Lak filtered back-projection.

6.1 Results

Figure 8 depicts four 512×512 reconstructions of the slice of a rock core each using a different inversion technique.
The sinogram (which has 180 projections equi-spaced in angle each with 682 ray-sums) has been interpolated from
a fan beam sinogram. This is purposely insufficient information in order to emphasize the artifacts introduced
by each method. Figure 8a is the result of FBP which should require over projections, 8b is the results using
FRT (as outlined in16) which should require at least 522 projections (nearest prime is 521), 8c is the result
using FSS which should require 1024 projections, and 8d is the result using ADRT which should require 2048
projections. A 100× 100 zoomed window of each reconstruction is provided in Fig. 9 to compare image quality.
No manipulation of data or reconstructed images was performed (except scaling grey levels), the required DRT
projection data was simply interpolated to the required angle sets and inserted directly into the DRT projections
for inversion.

6.2 Discussion

It can be seen from the results that FBP has given possibly the sharpest image but despite the angle set being
ideally suited for FBP, it is the noisiest and has the most prominent artifacts. The DRT methods have given far
smoother data with much less significant artifacts. The FRT, FSS, and ADRT require an increasing number of
projections respectively and use very different inversion methods but have all produced comparable images. The
images appear sharp towards the center but increasingly blurry towards the extremities. This is possibly since
interpolation from fan beam to parallel beam is accurate around origin and increasingly blurred with radius (as the
fan beams deviation from parallel increases with the square of the distance from the origin). The reconstructions
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(a) (b)

(c) (d)

Figure 8. 512 × 512 reconstructions from a 683 × 180 sinogram using: a) FBP, b) FRT, c) FSS, d) ADRT.

using FSS ad ADRT appear very similar. This is most likely since they both utilise the same angle distribution.
The artifact structures are slightly different owing to the different inversion procedures ( “streaking” for the
back-projecting FSS and “blockiness” for the multi-scale ADRT) but otherwise the reconstructed images have
very similar properties. The FRT has its own unique artifacts: “blotchiness”. This could be due to the angular
interpolation required to map to the p + 1 Farey angles which are not necessarily equally spaced. There may
be densely sampled angular regions from the FRT in which all projection data is interpolated from a common
pair of nearest angle acquired projections. Ideally, projections acquired to match the DRT angle set of each
reconstruction method would be give a better comparison.
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(a) (b) (c) (d)

Figure 9. 100 × 100 zoomed region of the reconstructions in Fig. 8: a) FBP, b) FRT, c) FSS, d) ADRT.

7. CONCLUSIONS

The purpose of the paper is to expose the X-ray tomography community to the concept of discrete Radon
transforms and the idea of concentrating on reconstructing a digital image of f (as opposed to f itself). With
this in mind the sampled continuous projections of f should be filtered according to the pixel model being used
for the reconstructed image, commonly the Haar pixel model. This removes image reconstruction artifacts. The
projection angle set should not necessarily be equi-spaced in angle but vary according to digital orientation
of x, y, z–axes and the reconstruction method/DRT used. DRT formalisms, by design, are better suited to
reconstructing digital images. They provide faster reconstruction with less/no interpolation and no arbitrary
filtering. Mapping acquired projection data to the form required by the DRT projections is the only step where
errors are introduced. Projections acquired to best match these forms, (as equi-spaced angle sets best suits
FBP), is the ideal situation.
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