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ABSTRACT

A novel ordering of digital Radon projections co-efficients

is presented here that enables progressive image reconstruc-

tion from low resolution to full resolution. The digital Radon

transform applied here is the Mojette transform first defined

by Guedon et al. in [1]. The Mojette transform is a natu-

ral way to generate redundancy to any specified degree and

has been demonstrated to be useful for redundant representa-

tion for robust data storage and transmission. Combining this

with the wavelet transform facilitates compression, i.e., joint

source-channel coding, along with the additional property of

scalability.

Index Terms— Radon Transforms, image representation,

image coding, image communication, distibuted source cod-

ing

1. INTRODUCTION

Scalable image representation is very powerful in communi-

cation. It enables the cohabitation of different displays with

a range of screen resolutions, progressive image transmission

refinement from low to full resolution, efficient browsing of

image databases, and establishes a hierarchy that prepares the

image for compression. However image coding streams are

non resilient over noisy channels. A natural way to overcome

this is to introduce some form of redundancy to protect the

streams from losses. This work presents a scheme to combine

the power of scalability with the robustness of redundancy us-

ing a digital Radon transform.

The Radon transform (RT) is an invertible mapping from a

continuous 2D function to a set of 1D continuous projections

at all angles θ ∈ [0, π). A projection at angle, θ, is obtained

as the linear integration of the function over all parallel lines

with gradient tan θ. The RT is utilised in areas ranging from
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medical tomography (CT, MRI, ultrasound) to astronomy and

seismology.

A digital Radon transform (DRT) is an ideal way to

achieve distribution as the image is spread over many projec-

tions. The Finite Radon Transform (FRT) [2] is a well known,

mathematically elegent, digitisation of the RT that preserves

the major RT properties. It is restricted to p×p arrays, (where

p is prime), mapped to a torus. However, by definition FRT

is not a redundant transform. A particularly useful DRT for

this purpose is the Mojette transform since the number of

projections and degree of redundancy is completely tunable.

The Mojette transform is very similar to the FRT but re-

moves the periodic boundary conditions. It is an entirely dis-

crete, exactly invertible mapping between an image and pro-

jections which requires only the addition operation. Like the

FRT, it retains the major properties of the RT, however, it also

introduces the property of redundancy. It was first proposed

by Guédon et al in 1995 [1] in the context of psychovisual

image coding. It has since been applied in many aspects of

image processing such as image analysis, image watermark-

ing, image encryption, and tomographic reconstruction from

projections. The unique properties of the transform have also

made it a useful channel coding tool with applications in ro-

bust data transmission and distributed data storage. A sum-

mary of the evolution and applications of the Mojette trans-

form to date can be found in [3].

Mojette projections are a natural way to achieve redun-

dant distibution of images (or any data). This paper presents

a method to obtain multi-scale projections which can achieve

joint source-channel coding AND add the power of scal-

ablitly. Firstly, the Mojette transform is outlined in section

2. The method to achieve redundant representation is then

described in section 3, and demonstrated with a small exam-

ple. Finally the concept of a multi-scale representation of

the projections is presented in section 4, again with a small

example. Some concluding remarks and the future directions

of this research are given in section 5.



2. THE MOJETTE TRANSFORM

2.1. Mojette projection

The Mojette transform is an exact, discrete form of the classi-

cal Radon transform defined for specific “rational” projection

angles. Like the RT, the Mojette transform represents the im-

age as a set of projections, however in contrast, the Mojette

transform has an exact inverse from a finite number of dis-

crete projections (as few as 1 depending on the angle set).

The rational projection angles, θi, are defined by a set of vec-

tors (pi, qi) as θi = tan−1(qi/pi), as depicted in Fig. 1a for

(pi, qi) = (2, 1). These vectors must respect the condition

that pi and qi are coprime (i.e., gcd(pi, qi) = 1) and, since

tan is π–periodic, qi is restricted to be positive except for the

case (pi, qi) = (1, 0). The transform domain of an image

is a set of projections where each element or “bin”, b, corre-

sponds to the sum of the pixels centred on the line of projec-

tion, b = lpi − kqi., as depicted in Fig. 1a. This is a linear

transform defined for each projection angle by the operator:

projpi,qi
(b) =

∞
∑

k=−∞

∞
∑

l=−∞

f (k, l) ∆ (b + kqi − lpi) , (1)

where (k, l) defines the position of an image pixel and ∆(b) is

the Kronecker delta function which is 1 when b = 0 and zero

otherwise. Invertible projections can be obtained not only

with addition but using any linear operation; Other practically

useful operations include modulo 256 addition and bitwise

XOR. The Mojette transform, MIf(k, l), corresponds to the

set of I projections as MIf (k, l) =
{

projpi,qi
, i ∈ [1...I]

}

.
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Fig. 1. (a) A depiction of (pi, qi), θi, and the method of pro-

jection. (b) An invertible Mojette transform of a 3×3 example

image using direction vectors {(1, 0), (1, 1), (−1, 1)}

The principle difference from the classical Radon trans-

form is this variable sampling rate on each projection, which

depends on the chosen angle as
√

p2

i + q2

i . This can be

seen for the different projections in Fig. 1b which demon-

strates the Mojette transform for the directions set S =
{(1, 0) (−1, 1) and (1, 1)}. The number of bins, Bi, for each

projection depends on the chosen direction vector (pi, qi),
and for a P × Q image is found as

Bi = (Q − 1)|pi| + (P − 1)qi + 1. (2)

The algorithmic complexity of the Mojette transform for a

P × Q image with I projections is O(PQI).

2.2. Criteria for reconstructibility

Since the set of projection directions is selected arbitrarily, a

criterion is required to determine if a set of projections is suf-

ficient to uniquely reconstruct the data. Katz [4] developed

a test for data with rectangular support in a very similar con-

text. He showed that if the following criterion is satisfied, any

P × Q dataset can be uniquely reconstructed:

P ≤

I
∑

i=1

|pi| or Q ≤

I
∑

i=1

qi, (3)

This result has been extended in an independent manner

by Normand and Guédon [5] to apply to data with compact

support of any shape.

2.3. Reconstruction from projections

The standard inverse Mojette transform is a fast and simple

algorithm [5]. Searching for and updating 1-1 pixel-bin cor-

respondence enables a simple iterative procedure to recover

the image. The bin value is back-projected into the pixel and

subtracted from the corresponding bins in all other projec-

tions. The number of pixels belonging to the corresponding

bins is also decremented. The algorithmic complexity of the

inverse Mojette transform for a P × Q image with I projec-

tions is O(PQI) [5]. Figure 2 shows one possibility of the

first three steps of the inverse Mojette transform of the exam-

ple projections given in Fig. 1.
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Fig. 2. Three first possible steps of the inverse Mojette trans-

form of the projections obtained in Fig. 1.

This “accounting” inverse has been improved by Nor-

mand et al in [6] where the need to search for 1-1 pixel-bin

correspondence was replaced by a structured reconstruction

sequence that can be quickly calculated for any set of pro-

jection angles. A slow but stable algebraic solution using the

conjugate gradient method can be used for the case of noisy

projections [7]; The search for a preconditioner continues.



3. REDUNDANT IMAGE REPRESENTATION

Redundancy is necessary in communication since channels

are noisy and introduce errors. When a message is not cor-

rectly received, it is repeated or can be recovered if sent in

a form which enables correction. Most channel coding tech-

niques utilise Forward Error Correcting (FEC) codes where

the error rate of the channel is predicted from statistics and

a rate of redundancy is adjoined to the message for possible

error detection and correction at the receiver. The range of

redundancy allocation is very large, it can in principle be in-

finite as for rateless codes, (e.g., Luby transform code [8]),

where codewords continue to be sent until the receiver sig-

nals that decoding is complete. For the case of Joint Source

Channel (JSC) coding [9], the rate must be tunable in order to

satisfy both the source priorities and channel statistics. Lin-

ear algebra is commonly used in this framework but rarely

discrete geometry, (as for the Mojette transform), which pro-

vides simple linear complexity and deterministic decoding.

Since projections sets can be selected arbitrarily for the

Mojette transform, it is a natural mechanism to redundantly

represent data. Simply utilise a projection set with more pro-

jections than that required by Katz criterion (3). The num-

ber of extra projections is determined by the degree of redun-

dancy required. Then if some projections are corrupted or

lost, in either storage or transmission, the image can still be

reconstructed from the remaining projections. Each projec-

tion contains the entire image and thus have the same sum;

This property can be used for error detection.

For example, take a 48 × 48 pixel image which requires

a redundancy of 33%. If it is projected with four direction

vectors: (±15, 2), (±21, 2). Then Katz criterion is certainly

satisfied (
∑

i |pi| = 72 ≥ 48) and in fact it is satisfied by tak-

ing any 3 of the 4 projections. So storing these projections on

4 separate nodes, or transmitting them over 4 separate chan-

nels, implies any one of these can fail and the image can still

be recovered.

Adding redundacy does of course increase the amount of

information, so introducing some form of compression to the

projections is desirable. The following section describes one

method to achieve this and also incorporate multi-resolutional

capabilities by applying the Wavelet transform.

4. MULTI-SCALE REDUNDANT IMAGE

REPRESENTATION

The Discrete Wavelet Transform (DWT) is comprised of two

operators, a scaling operator Φ, and a wavelet operator Ψ,

which can both be reduced to a convolution followed by a

downsampling, D. Let W denote either (and in some cases

both) of these operators in the following.

A property of the Radon transform known as the convo-

lution property also applies to the Mojette transform; The

2D convolution of images can be performed as a set of 1D

convolutions over the images projections. Provided the Mo-

jette direction vectors, (pi, qi), are consistent with downsam-

pling, the Mojette transform is compatible with the DWT.

That is the Mojette projection of the DWT applied to the im-

age, i.e., M(W(f)), is equivalent to the Mojette projection

of the DWT applied to the Mojette projection of the image,

i.e., M(W)(M(f)).
What does it mean to have Mojette projection direction

vectors that are consistent with the downsampling? Essen-

tially it is required that the pixels intersected by a common

line after downsampling are the only pixels this line intersects

in the original image. For a downsampling (sk, sl), where the

image is downsampled by sk in the k–direction and by sl in

the l–direction, this occurs when the Mojette direction vector,

(p, q), can be formed with (sk, sl) as one Hadamard product,

i.e., gcd(sk, p) = sk ∧ gcd(sl, q) = sl . For example the

direction vector (15,2) can be downsampled by (1,2), (3,1),

or (3,2). A downsampling by (3,2) has been depicted in Fig.

3, note that the direction vector (15,2), which can be written

as the Hadamard product (3, 2) • (5, 1), becomes (5,1) in the

downsampled image.

Fig. 3. Lines with the direction vectors (15,2) [dot-dash] and

(21,2) [dash] in the original image are consistent with a down-

sampling of (3,2).

Return to the example from the previous section, a 48 ×
48 image with four projections. Note that the image and all

projections can be downsampled by (3,2) to result in a 16×24
image with projection direction vectors (±5, 1), and (±7, 1).
Therefore we can apply M(W) with this downsampling to

the projections and apply some entropy coding to the result to

achieve compression. This example has been depicted in Fig.

4. Here the 1D projections have been presented as 2D images

of width pi, this is possible since Mojette projections retain

the 2D image auto-correlation.

These projections maintain the redundant representation

as any 1 of these projections can be lost without losing re-



Fig. 4. Take the four projections with direction vectors

(±15, 2), and (±21, 2) and apply M(W) (Haar like in this

case) with a downsampling of (3,2).

constructibility, they are compressed, and the image can be

reconstructed from the projections at a low resolution and

then a higher resolution. Taking 3 of the four projections,

there are two reconstruction schemes as depicted in Fig. 5.

The first is simply to apply M(W)−1 to the projections and

then apply the inverse Mojette, M−1. The second, more use-

ful, path is to take the low resolution components of each

projection, M(f)L, and reconstruct a low resolution image,

M−1(M(f)L), and upsample, D−1, then to reconstruct the

detail image, M−1(M(f)H), and combine to reconstruct the

full resolution image.

Fig. 5. The two possible reconstruction paths for multi-scale

mojette projections.

5. CONCLUSIONS AND FUTURE WORK

This preliminary study has presented a novel technique to

achieve a scalable image representation with redundancy. It

is based on a digital version of the Radon transform, known

as the Mojette transform, which has very useful distribution

properties with a tunable redundancy.

The RT convolution property also applies to Mojette pro-

jections. This implies that the discrete Wavelet transform is

compatible with Mojette projections provided the downsam-

pling is consistent with the projection direction vectors. An

example demonstrating the scalable projections was given.

The multi-scale nature enables progressive image reconstruc-

tion from low to full resolution.

We are currently developing the theory of this technique

to enable dyadic downsampling and attempting to use the

multi-scale approach to speed up algebraic reconstruction by

the conjugate gradient method which is very robust to noise.

This could then enable lossy compression.
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