38 research outputs found

    Directive words of episturmian words: equivalences and normalization

    Get PDF
    Episturmian morphisms constitute a powerful tool to study episturmian words. Indeed, any episturmian word can be infinitely decomposed over the set of pure episturmian morphisms. Thus, an episturmian word can be defined by one of its morphic decompositions or, equivalently, by a certain directive word. Here we characterize pairs of words directing a common episturmian word. We also propose a way to uniquely define any episturmian word through a normalization of its directive words. As a consequence of these results, we characterize episturmian words having a unique directive word.Comment: 15 page

    Characterizations of finite and infinite episturmian words via lexicographic orderings

    Get PDF
    In this paper, we characterize by lexicographic order all finite Sturmian and episturmian words, i.e., all (finite) factors of such infinite words. Consequently, we obtain a characterization of infinite episturmian words in a "wide sense" (episturmian and episkew infinite words). That is, we characterize the set of all infinite words whose factors are (finite) episturmian. Similarly, we characterize by lexicographic order all balanced infinite words over a 2-letter alphabet; in other words, all Sturmian and skew infinite words, the factors of which are (finite) Sturmian.Comment: 18 pages; to appear in the European Journal of Combinatoric

    A characterization of fine words over a finite alphabet

    Get PDF
    To any infinite word w over a finite alphabet A we can associate two infinite words min(w) and max(w) such that any prefix of min(w) (resp. max(w)) is the lexicographically smallest (resp. greatest) amongst the factors of w of the same length. We say that an infinite word w over A is "fine" if there exists an infinite word u such that, for any lexicographic order, min(w) = au where a = min(A). In this paper, we characterize fine words; specifically, we prove that an infinite word w is fine if and only if w is either a "strict episturmian word" or a strict "skew episturmian word''. This characterization generalizes a recent result of G. Pirillo, who proved that a fine word over a 2-letter alphabet is either an (aperiodic) Sturmian word, or an ultimately periodic (but not periodic) infinite word, all of whose factors are (finite) Sturmian.Comment: 16 pages; presented at the conference on "Combinatorics, Automata and Number Theory", Liege, Belgium, May 8-19, 2006 (to appear in a special issue of Theoretical Computer Science

    Episturmian words: a survey

    Get PDF
    In this paper, we survey the rich theory of infinite episturmian words which generalize to any finite alphabet, in a rather resembling way, the well-known family of Sturmian words on two letters. After recalling definitions and basic properties, we consider episturmian morphisms that allow for a deeper study of these words. Some properties of factors are described, including factor complexity, palindromes, fractional powers, frequencies, and return words. We also consider lexicographical properties of episturmian words, as well as their connection to the balance property, and related notions such as finite episturmian words, Arnoux-Rauzy sequences, and "episkew words" that generalize the skew words of Morse and Hedlund.Comment: 36 pages; major revision: improvements + new material + more reference

    Quasiperiodic and Lyndon episturmian words

    Get PDF
    Recently the second two authors characterized quasiperiodic Sturmian words, proving that a Sturmian word is non-quasiperiodic if and only if it is an infinite Lyndon word. Here we extend this study to episturmian words (a natural generalization of Sturmian words) by describing all the quasiperiods of an episturmian word, which yields a characterization of quasiperiodic episturmian words in terms of their "directive words". Even further, we establish a complete characterization of all episturmian words that are Lyndon words. Our main results show that, unlike the Sturmian case, there is a much wider class of episturmian words that are non-quasiperiodic, besides those that are infinite Lyndon words. Our key tools are morphisms and directive words, in particular "normalized" directive words, which we introduced in an earlier paper. Also of importance is the use of "return words" to characterize quasiperiodic episturmian words, since such a method could be useful in other contexts.Comment: 33 pages; minor change

    Clustering and Arnoux-Rauzy words

    Full text link
    We characterize the clustering of a word under the Burrows-Wheeler transform in terms of the resolution of a bounded number of bispecial factors belonging to the language generated by all its powers. We use this criterion to compute, in every given Arnoux-Rauzy language on three letters, an explicit bound KK such that each word of length at least KK is not clustering; this bound is sharp for a set of Arnoux-Rauzy languages including the Tribonacci one. In the other direction, we characterize all standard Arnoux-Rauzy clustering words, and all perfectly clustering Arnoux-Rauzy words. We extend some results to episturmian languages, characterizing those which produce infinitely many clustering words, and to larger alphabets

    Characterization of infinite LSP words and endomorphisms preserving the LSP property

    Full text link
    Answering a question of G. Fici, we give an SS-adic characterization of thefamily of infinite LSP words, that is, the family of infinite words having all their left special factors as prefixes.More precisely we provide a finite set of morphisms SS and an automaton A{\cal A} such that an infinite word is LSP if and only if it is SS-adic and one of its directive words is recognizable by A{\cal A}.Then we characterize the endomorphisms that preserve the property of being LSP for infinite words.This allows us to prove that there exists no set SS' of endomorphisms for which the set of infinite LSP words corresponds to the set of SS'-adic words. This implies that an automaton is required no matter which set of morphisms is used.Comment: arXiv admin note: text overlap with arXiv:1705.0578

    Powers in a class of A-strict standard episturmian words

    Get PDF
    This paper concerns a specific class of strict standard episturmian words whose directive words resemble those of characteristic Sturmian words. In particular, we explicitly determine all integer powers occurring in such infinite words, extending recent results of Damanik and Lenz (2003), who studied powers in Sturmian words. The key tools in our analysis are canonical decompositions and a generalization of singular words, which were originally defined for the ubiquitous Fibonacci word. Our main results are demonstrated via some examples, including the kk-bonacci word: a generalization of the Fibonacci word to a kk-letter alphabet (k2k\geq2).Comment: 26 pages; extended version of a paper presented at the 5th International Conference on Words, Montreal, Canada, September 13-17, 200
    corecore