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Powers in a class of A-strict standard

episturmian words
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LaCIM, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville,

Montréal, Québec, CANADA, H3C 3P8

Abstract

This paper concerns a specific class of strict standard episturmian words whose
directive words resemble those of characteristic Sturmian words. In particular, we
explicitly determine all integer powers occurring in such infinite words, extending
recent results of Damanik and Lenz (2003), who studied powers in Sturmian words.
The key tools in our analysis are canonical decompositions and a generalization of
singular words, which were originally defined for the ubiquitous Fibonacci word. Our
main results are demonstrated via some examples, including the k-bonacci word, a
generalization of the Fibonacci word to a k-letter alphabet (k ≥ 2).

Key words: episturmian word; Sturmian word; Arnoux-Rauzy sequence; k-bonacci
word; singular word; index; powers
2000 MSC: 68R15

1 Introduction

Introduced by Droubay, Justin and Pirillo [8], episturmian words are an interesting nat-
ural generalization of the well-known family of Sturmian words (aperiodic infinite words
of minimal complexity) to an arbitrary finite alphabet. Episturmian words share many
properties with Sturmian words and include the well-known Arnoux-Rauzy sequences, the
study of which began in [1] (also see [16,21] for example).

In this paper, the study of episturmian words is continued in more detail. In particular,
for a specific class of episturmian words (a typical element of which we shall denote by
s), we will explicitly determine all of the integer powers of words occurring in it. This has
recently been done in [6] for Sturmian words, which are exactly the aperiodic episturmian
words over a 2-letter alphabet.
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A finite word w is said to have a (non-trivial) integer power in an infinite word x if
wp = ww · · ·w (p times) is a factor of x for some integer p ≥ 2. Here, our analysis of
powers occurring in episturmian words s hinges on canonical decompositions in terms of
their ‘building blocks’. Another key tool is a generalization of singular words, which were
first defined in [23] for the ubiquitous Fibonacci word, and later extended to Sturmian
words in [19] and the Tribonacci sequence in [22]. Our generalized singular words will
prove to be useful in the study of factors of episturmian words, just as they have been for
Sturmian words.

This paper is organized as follows. After some preliminaries (Section 2), we define, in
Section 3, a restricted class of episturmian words upon which we will focus for the rest
of the paper. A typical element of this class will be denoted by s. In Section 4, we prove
some simple results, which lead us to a generalization of singular words for episturmian
words of the form s. The index (i.e., maximal fractional power) of the building blocks
of s is then studied in Section 5. Finally, in Section 6, we determine all squares (and
subsequently higher powers) occurring in s. Our main results are demonstrated via some
examples, including the k-bonacci word, a generalization of the Fibonacci word to a k-
letter alphabet (k ≥ 2).

2 Definitions and notations

2.1 Words

Let A denote a finite alphabet. A (finite) word is an element of the free monoid A∗

generated by A, in the sense of concatenation. The identity ε of A∗ is called the empty
word, and the free semigroup, denoted by A+, is defined by A+ := A∗\{ε}. An infinite word
(or simply sequence) x is a sequence indexed by N with values in A, i.e., x = x0x1x2 · · · ,
where each xi ∈ A. The set of all infinite words over A is denoted by Aω, and we define
A∞ := A∗ ∪ Aω. If u is a non-empty finite word, then uω denotes the purely periodic
infinite word uuu · · · .

If w = x1x2 · · ·xm ∈ A+, each xi ∈ A, the length of w is |w| = m and we denote by
|w|a the number of occurrences of a letter a in w. (Note that |ε| = 0.) The reversal of w
is w̃ = xmxm−1 · · ·x1, and if w = w̃, then w is called a palindrome.

A finite word w is a factor of z ∈ A∞ if z = uwv for some u ∈ A∗, v ∈ A∞, and we
write w ≺ z. Further, w is called a prefix (resp. suffix ) of z if u = ε (resp. v = ε), and we
write w ≺p z (resp. w ≺s z).

An infinite word x ∈ Aω is called a suffix of z ∈ Aω if there exists a word w ∈ A+ such
that z = wx. A factor w of a word z ∈ A∞ is right (resp. left) special if wa, wb (resp. aw,
bw) are factors of z for some letters a, b ∈ A, a 6= b.

For any word w ∈ A∞, Ω(w) denotes the set of all its factors, and Ωn(w) denotes the set
of all factors of w of length n ∈ N, i.e., Ωn(w) := Ω(w) ∩An (where |w| ≥ n for w finite).
Moreover, the alphabet of w is Alph(w) := Ω(w) ∩ A and, if w is infinite, we denote by

2



Ult(w) the set of all letters occurring infinitely often in w. Two infinite words x, y ∈ Aω

are said to be equivalent if Ω(x) = Ω(y), i.e., if x and y have the same set of factors.

Recall that a finite word w is said to have a (non-trivial) integer power in an infinite
word x = x0x1x2x3 · · · if wp = ww · · ·w (p times) is a factor of x (i.e., there exists an
integer i ≥ 0 such that wp = xixi+1 · · ·xi+p|w|−1) for some integer p ≥ 2.

Let w = x1x2 · · ·xm ∈ A∗, each xi ∈ A, and let j ∈ N with 0 ≤ j ≤ m − 1. The j-th
conjugate of w is the word Cj(w) := xj+1xj+2 · · ·xmx1x2 · · ·xj , and we denote by C(w)
the conjugacy class of w, i.e., C(w) := {Cj(w) : 0 ≤ j ≤ |w| − 1}. Observe that if w is
primitive (i.e., not a power of a shorter word), then w has exactly |w| distinct conjugates.

The inverse of w ∈ A∗, written w−1, is defined by ww−1 = w−1w = ε. It must be
emphasized that this is merely formal notation, i.e., for u, v, w ∈ A∗, the words u−1w and
wv−1 are defined only if u (resp. v) is a prefix (resp. suffix) of w.

A morphism on A is a map ψ : A∗ → A∗ such that ψ(uv) = ψ(u)ψ(v) for all u, v ∈ A∗.
It is uniquely determined by its image on the alphabet A.

2.2 Episturmian words

An infinite word t ∈ Aω is episturmian if Ω(t) is closed under reversal and t has at
most one right (or equivalently left) special factor of each length. Moreover, an episturmian
word is standard if all of its left special factors are prefixes of it.

Standard episturmian words are characterized in [8] using the concept of the palindromic
right-closure w(+) of a finite word w, which is the (unique) shortest palindrome having w
as a prefix (see [7]). Specifically, an infinite word t ∈ Aω is standard episturmian if and
only if there exists an infinite word ∆(t) = x1x2x3 . . ., each xi ∈ A, called the directive
word of t, such that the infinite sequence of palindromic prefixes u1 = ε, u2, u3, . . . of t

(which exists by results in [8]) is given by

un+1 = (unxn)(+), n ∈ N+. (1)

Note. For any w ∈ A+, w(+) = wv−1w̃ where v is the longest palindromic suffix of w.

An important point is that a standard episturmian word t can be constructed as a limit
of an infinite sequence of its palindromic prefixes, i.e., t = limn→∞ un.

Let a ∈ A and denote by Ψa the morphism on A defined by

Ψa :





a 7→ a

x 7→ ax for all x ∈ A \ {a}.

Another useful characterization of standard episturmian words is the following (see [15]).
An infinite word t ∈ Aω is standard episturmian with directive word ∆(t) = x1x2x3 · · ·
(xi ∈ A) if and only if there exists an infinite sequence of infinite words t(0) = t, t(1), t(2),
. . . such that t(i−1) = Ψxi

(t(i)) for all i ∈ N+. Moreover, each t(i) is a standard episturmian
word with directive word ∆(t(i)) = xi+1xi+2xi+3 · · · , the i-th shift of ∆(t).
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To the prefixes of the directive word ∆(t) = x1x2 · · · , we associate the morphisms

µ0 := Id, µn := Ψx1
Ψx2

· · ·Ψxn
, n ∈ N+,

and define the words

hn := µn(xn+1), n ∈ N,

which are clearly prefixes of t. We have the following useful formula [15]

un+1 = hn−1un;

and whence, for n > 1 and 0 < p < n,

un = hn−2hn−3 · · ·h1h0 = hn−2hn−3 · · ·hp−1up. (2)

Some useful properties of the words hn and un are given by the following lemma.

Lemma 2.1 [15] For all n ∈ N,

(i) hn is a primitive word;
(ii) hn = hn−1 if and only if xn+1 = xn;
(iii) if xn+1 6= xn, then un is a proper prefix of hn. 2

Two functions can be defined with regard to positions of letters in a given directive
word. For n ∈ N+, let P (n) = sup{p < n : xp = xn} if this integer exists, P (n) undefined
otherwise. Also, let S(n) = inf{p > n : xp = xn} if this integer exists, S(n) undefined
otherwise. By the definitions of palindromic closure and the words un, it follows that
un+1 = unxnun (whence hn−1 = unxn) if xn does not occur in un, and un+1 = unu

−1
P (n)un

(whence hn−1uP (n) = un) if xn occurs in un. Thus, if P (n) exists, then

hn−1 = hn−2hn−3 · · ·hP (n)−1, n ≥ 1. (3)

2.2.1 Strict episturmian words

A standard episturmian word t ∈ Aω, or any equivalent (episturmian) word, is said to
be B-strict (or k-strict if |B| = k, or strict if B is understood) if Alph(∆(t)) = Ult(∆(t)) =
B ⊆ A. In particular, a standard episturmian word over A is A-strict if every letter in
A occurs infinitely many times in its directive word. The k-strict episturmian words have
complexity (k − 1)n + 1 for each n ∈ N (i.e., (k − 1)n+ 1 distinct factors of length n for
each n ∈ N). Such words are exactly the k-letter Arnoux-Rauzy sequences.

2.2.2 Return words

Let x ∈ Aω be recurrent, i.e., any factor w of x occurs infinitely often in x. A return
word of w ∈ Ω(x) is a factor of x that begins at an occurrence of w in x and ends exactly
before the next occurrence of w in x. Thus, a return word of w is a non-empty factor u
of x such that w is a prefix of uw and uw contains two distinct occurrences of w. This
notion was introduced independently by Durand [9], and Holton and Zamboni [14].
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Episturmian words are recurrent and, according to [17, Corollary 4.5], each factor of an
A-strict episturmian word has exactly |A| return words.

3 A class of strict standard episturmian words

Given any infinite sequence ∆ = x1x2x3 · · · over a finite alphabet A, we can define
a standard episturmian word having ∆ as its directive word (using (1)). In this paper,
however, we shall only consider a specific family of A-strict standard episturmian words.

Let Ak denote a k-letter alphabet, say Ak = {a1, a2, . . . , ak}, and suppose t is a standard
episturmian word over Ak. Then the directive word of t can be expressed as:

∆(t) = ad1

1 a
d2

2 · · ·adk

k a
dk+1

1 a
dk+2

2 · · ·ad2k

k a
d2k+1

1 · · · ,

where the di are non-negative integers. In what follows, we will restrict our attention
to the case when all di > 0; that is, we shall only study the class of k-strict standard
episturmian words s ∈ Aω

k with directive words of the form:

∆ = ad1

1 a
d2

2 · · ·adk

k a
dk+1

1 a
dk+2

2 · · ·ad2k

k a
d2k+1

1 · · · , where all di > 0. (4)

This definition of s will be kept throughout the rest of this paper.

Let us define an infinite sequence (sn)n≥1−k of finite words associated with s as follows:

s1−k = a2, s2−k = a3, . . . , s−1 = ak, s0 = a1,

sn = sdn

n−1s
dn−1

n−2 · · · sd1

0 an+1, 1 ≤ n ≤ k − 1, (5)

sn = sdn

n−1s
dn−1

n−2 · · · s
dn−k+2

n−k+1 sn−k, n ≥ k.

Clearly, sn is a prefix of sn+1 for all n ≥ 0 (and hence (|sn|)n≥0 is a strictly increasing
sequence of positive integers).

Example 3.1 It is well-known that the standard (or characteristic) Sturmian word cα of
irrational slope α = [0; 1 + d1, d2, d3, . . .], d1 ≥ 1, (see [3] for a definition) is the standard
episturmian word over A = {a, b} with directive word ∆(cα) = ad1bd2ad3bd4ad5 · · · . We
have cα = limn→∞ sn, where (sn)n≥−1 is the standard sequence associated with cα, defined
by

s−1 = b, s0 = a, sn = sdn

n−1sn−2, n ≥ 1.

This coincides with our definition (5) above when k = 2. Observe that, for all n ≥ 0,
|sn| = qn, where qn is the denominator of the n-th convergent to [0; 1 + d1, d2, d3, . . .].

For all m ≥ 1, let Lm := d1 +d2 + · · ·+dm. Then, writing ∆(cα) = x1x2x3 · · · with each
xi ∈ A, we have xn+1 6= xn if and only if n is equal to some Lm. One easily deduces that
S(Lm) = Lm+1 + 1 and P (Lm+1 + 1) = Lm, and it can also be shown that the hLm

satisfy
the same recurrence relation as the qm. Hence, |hLm

| = qm, and clearly we have hLm
= sm

(see Proposition 3.2 below).
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Notice that s has directive word resembling ∆(cα). In fact, as in the 2-letter case, s can
be constructed as the limit, as n tends to infinity, of the sequence (sn)n≥1 given by (5), as
shown below.

Notation: Hereafter, let Ln := d1 + d2 + · · ·+ dn for each n ≥ 1.

Proposition 3.2 For any n ≥ 1, sn = hLn
. Moreover, s = limn→∞ sn.

PROOF. The directive word of s is given by

∆ = ad1

1 a
d2

2 · · ·adk

k a
dk+1

1 a
dk+2

2 · · ·ad2k

k a
d2k+1

1 · · · = x1x2x3x4 · · · , xi ∈ Ak.

For n ≥ 1, we have xn+1 6= xn (and hence hn 6= hn−1) if and only if n is equal to some
Lm. In particular, for any m ≥ 1,

hLm
= hLm+1−r, 1 ≤ r ≤ dm+1. (6)

Furthermore, it is clear that, for all n ≥ k,

P (Ln + 1) = Ln−k+1, (7)

and P (Ln + 1) is undefined for 1 ≤ n ≤ k − 1.

First we show that sn = hLn
for 1 ≤ n ≤ k. Observe that, for 1 ≤ n ≤ k − 1,

hLn
= Ψd1

a1
Ψd2

a2
· · ·Ψdn

an
(an+1),

= Ψd1

a1
Ψd2

a2
· · ·Ψdn−1

an−1
(adn

n an+1)

= hdn

Ln−1
Ψd1

a1
Ψd2

a2
· · ·Ψdn

an
(an+1)

= hdn

Ln−1
h

dn−1

Ln−2
· · ·hd2

L1
Ψd1

a1
(an+1)

= hdn

Ln−1
h

dn−1

Ln−2
· · ·hd2

L1
a1

d1an+1

= hdn

Ln−1
h

dn−1

Ln−2
· · ·hd2

L1
hd1

0 an+1.

Similarly, since hLk
= Ψd1

a1
Ψd2

a2
· · ·Ψdk

ak
(a1), one finds that

hLk
= hdk

Lk−1
h

dk−1

Lk−2
· · ·hd2

L1
a1.

Thus, we see that the sn satisfy the same recurrence relation as the hLn
for 1 ≤ n ≤ k.

Therefore, since h0 = µ0(a1) = a1 = s0, we have

sn = hLn
for all n, 1 ≤ n ≤ k. (8)

Now take n ≥ k + 1. Then, by (3) and (7), we have

hLn
= hLn−1hLn−2 · · ·hLn−k+1

hLn−k+1−1,

and therefore it follows from (6) that

hLn
= hdn

Ln−1
h

dn−2

Ln−2
· · ·h

dn−k+2

Ln−k+1
hLn−k

. (9)
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Whence, since sn = hLn
for 1 ≤ n ≤ k, (9) shows that the sn satisfy the same recurrence

relation as the hLn
for n ≥ k + 1. Thus, by virtue of this fact and (8), we have

sn = hLn
for all n ≥ 1,

as required.

The second assertion follows immediately from the first since s = lim
m→∞

hm [15]. 2

Accordingly, the words (sn)n≥1 can be viewed as ‘building blocks’ of s.

Example 3.3 The Tribonacci sequence (or Rauzy word [20]) is the standard episturmian
word over {a, b, c} directed by (abc)ω. Since all di = 1, we have Ln = n, and hence
hn = sn = sn−1sn−2sn−3 for all n ≥ 1.

3.1 Two special integer sequences

Set Qn := |sn| for all n ≥ 0. Then the integer sequence (Qn)n≥0 is given by:

Q0 = 1, Qn = dnQn−1 + dn−1Qn−2 + · · ·+ d1Q0 + 1, 1 ≤ n ≤ k − 1,

Qn = dnQn−1 + dn−1Qn−2 + · · · + dn+2−kQn+1−k +Qn−k, n ≥ k.

Now, define the integer sequence (Pn)n≥0 by:

P0 = 0, Pn = dnPn−1 + dn−1Pn−2 + · · ·+ d1P0 + 1, 1 ≤ n ≤ k − 1,

Pn = dnPn−1 + dn−1Pn−2 + · · ·+ dn+2−kPn+1−k + Pn−k, n ≥ k.

For k = 2, observe that Pn/Qn is the n-th convergent to the continued fraction expansion
[0; 1 + d1, d2, d3, d4, . . .].

Proposition 3.4 For all n ≥ 0, |sn|a1
= Qn − Pn.

PROOF. Induction on n. 2

4 Generalized singular words

Recall the standard Sturmian word cα of slope α = [0; 1+d1, d2, d3, . . .], d1 ≥ 1. Melançon
[19] (also see [4]) introduced the singular words (wn)n≥1 of cα defined by

wn =




asnb

−1 if n is odd,

bsna
−1 if n is even,

with the convention w−2 = ε, w−1 = a, w0 = b. It is easy to show that the set of factors
of cα of length |sn| is given by

Ω|sn|(cα) = C(sn) ∪ {wn}.
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(See [19,4,12] for instance.) Also note that in this 2-letter case sn = uLn
ab (resp. sn =

uLn
ba) if n is odd (resp. even).

Singular words are profoundly useful in studying properties of factors of cα (e.g.,
[4,12,11,18,19,23]). It is for this very reason that we now generalize these words for the
standard episturmian word s. Firstly, however, we prove some basic results concerning the
words sn and uLn

, as detailed in the next section.

4.1 Useful results

For each n ≥ 0, set Dn := uLn+1
. Observe that, for any m ≥ 1,

|Dm| = (dm+1 − 1)|sm| +
m−1∑

j=0

dj+1|sj|. (10)

Indeed, using (2) and (6), one finds that

Dm = uLm+1
= hLm+1−2hLm+1−3 · · ·h1h0

= h
dm+1−1
Lm

hdm

Lm−1
h

dm−1

Lm−2
· · ·hd2

L1
hd1

0

= sdm+1−1
m sdm

m−1s
dm−1

m−2 · · · sd2

1 s
d1

0 . (11)

Also note that D0 = ad1−1
1 since D0 = ud1

= hd1−2hd1−3 · · ·h1h0 = hd1−1
0 . For technical

reasons, we shall set D−j := a−1
k+1−j and |D−j | = −1 for 1 ≤ j ≤ k.

Proposition 4.1 Let 1 ≤ i ≤ k. For all n ≥ 1 − k, ai is the last letter of sn if n ≡ i− 1
(mod k).

PROOF. Since we have s1−k = a2, s2−k = a3, . . . , s−1 = ak, s0 = a1, the result follows
immediately from the definition of the words sn (see (5)). 2

Proposition 4.2 For all n ≥ 0, sn+1Dn−k+1 = snDn, and hence |Dn| − |Dn−k+1| =
|sn+1| − |sn|.

PROOF. The claim holds for 0 ≤ n ≤ k − 2 since sn+1Dn−k+1 = sdn+1

n · · · sd1

0 an+2a
−1
n+2 =

snDn, and for n ≥ k − 1, sn+1Dn−k+1 = sdn+1

n sdn

n−1 · · · s
dn−k+2

n−k+1 · · · s
d2

1 s
d1

0 = snDn. 2

Proposition 4.3 For all n ≥ 1, |sn| > |Dn−1|.

PROOF. We proceed by induction on n. The result is clearly true for n = 1 since
|s1| = |ad1

1 a2| = |D0a1a2| = |D0| + 2. Now assume the result holds for some n ≥ 2. Then,
using Proposition 4.2,

|sn+1| = |sn| + |Dn| − |Dn−k+1| > |Dn−1| + |Dn| − |Dn−k+1| ≥ |Dn|,

since |Dn−k+1| ≤ |Dn−1|. 2

Recall that the words Dn and sn are prefixes of s for all n ∈ N. Thus, according
to Proposition 4.3, the palindromes D0, D1, . . . , Dn−1 are prefixes of sn. In fact, the
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maximal index i such that Di is a proper prefix of sn is i = n− 1, which is evident from
the following result.

Proposition 4.4 For all n ≥ 0, Dn = sdn+1

n Dn−k.

PROOF. Firstly, D0 = ad1−1
1 = sd1

0 a
−1
1 = sd1

0 D−k and, for 1 ≤ n ≤ k − 1, we have

Dn = sdn+1−1
n sdn

n−1 · · · s
d1

0

= sdn+1−1
n sna

−1
n+1 (using (5))

= sdn+1

n a−1
n+1 = sdn+1

n Dn−k.

Now take n ≥ k. Then

Dn = sdn+1−1
n sdn

n−1 · · · s
dn−k+2

n−k+1sn−kDn−k = sdn+1−1
n snDn−k = sdn+1

n Dn−k. 2

Proposition 4.5 For all n ≥ 0, sn = Dn−ks̃nD
−1
n−k.

PROOF. We proceed by induction on n. For n = 0, D−ks̃0D
−1
−k = a−1

1 a1a1 = a1 = s0.
Assume the result holds for some n ≥ 1. Then, using Proposition 4.2,

sn+1 = snDnD
−1
n−k+1 = Dn−ks̃nD

−1
n−kDnD

−1
n−k+1.

Therefore, invoking Proposition 4.4 and (5), for 1 ≤ n ≤ k − 2, we have

sn+1 = Dn−ks̃n(s̃n)dn+1D−1
n−k+1

= Dn−k+1an+2a
−1
n+1an+1(s̃0)

d1 · · · (s̃n−1)
dn(s̃n)dn+1D−1

n−k+1

= Dn−k+1an+2a
−1
n+2s̃n+1D

−1
n−k+1

= Dn−k+1s̃n+1D
−1
n−k+1.

And, for n ≥ k − 1,

sn+1 = Dn−ks̃n(s̃n)dn+1D−1
n−k+1

= Dn−k[s̃n−k(s̃n−k+1)
dn−k+2−1s̃n−k+1(s̃n−k+2)

dn−k+3 · · · (s̃n−1)
dn ](s̃n)dn+1D−1

n−k+1

= Dn−k+1s̃n+1D
−1
n−k+1,

as required. 2

Remark 4.6 This result shows, in particular, that s̃n = D−1
n−ksnDn−k, i.e., s̃n is the

|Dn−k|-th conjugate of sn for each n ≥ k. (For 0 ≤ n ≤ k − 1, s̃n is the (|sn| − 1)-st
conjugate of sn since s̃n = an+1sna

−1
n+1.) The following two corollaries are direct results of

the above proposition.

Corollary 4.7 For any n ≥ 0, the word s̃nD
−1
n−k is a palindrome. In particular, let Un =

Dn−k and Vn = s̃nD
−1
n−k. Then sn = UnVn is the unique factorization of sn as a product of

two palindromes.

PROOF. From Proposition 4.5, we have sn = Dn−ks̃nD
−1
n−k = UnVn, and whence

D−1
n−ksn = s̃nD

−1
n−k. It is therefore clear that s̃nD

−1
n−k is a palindrome. The uniqueness

9



of the factorization sn = UnVn is immediate from the primitivity of sn, which follows from
Lemma 2.1(i), together with Proposition 3.2. (Recall that since sn is primitive, there are
exactly |sn| different conjugates of sn.) 2

Corollary 4.8 For all n ≥ 0, sn = Dns̃nD
−1
n .

PROOF. Propositions 4.4 and 4.5. 2

Notation: Now, for each n ∈ N, we define the words Gn,r by

sn = Dn−rGn,r, 1 ≤ r ≤ k − 1.

Example 4.9 In the case of Sturmian words cα, r = 1 and sn = Dn−1Gn,1 = uLn
Gn,1 for

all n ≥ 1, where Gn,1 = ab or ba, according to n odd or even, respectively.

Example 4.10 Recall that when all di = 1, s is the Tribonacci sequence over
{a1, a2, a3} ≡ {a, b, c}. For n = 4, we have sn = s4 = abacabaabacab, D2 = aba,
D3 = abacaba, and hence

G4,1 = abacab and G4,2 = cabaabacab.

Note. Since Dn−r = a−1
k+1+n−r for 0 ≤ n < r, we also set

Gn,r = ak+1+n−rsn for 0 ≤ n < r. (12)

Proposition 4.11 For all n ≥ 1, snsn−1G
−1
n−1,k−1 = sn−1snG

−1
n,1.

PROOF. It is easily checked that the result holds for 1 ≤ n ≤ k − 1, since

snsn−1G
−1
n−1,k−1 = snDn−k = sna

−1
n+1,

and
sn−1snG

−1
n,1 = sn−1Dn−1 = sdn

n−1 · · · s
d1

0 = sna
−1
n+1.

Now take n ≥ k. Then, using (11), we have

snsn−1G
−1
n−1,k−1 = snDn−k

= (sdn

n−1s
dn−1

n−2 · · · s
dn−k+2

n−k+1 sn−k)s
dn−k+1−1
n−k s

dn−k

n−k−1 · · · s
d2

1 s
d1

0

= sn−1(s
dn−1
n−1 s

dn−1

n−2 · · · s
dn−k+2

n−k+1s
dn−k+1

n−k s
dn−k

n−k−1 · · · s
d2

1 s
d1

0 )

= sn−1Dn−1

= sn−1snG
−1
n,1. 2

Remark 4.12 Recall Example 3.1. For cα with α = [0; 1 + d1, d2, d3 . . .], it is well-known
that, for all n ≥ 2, snsn−1(xy)

−1 = sn−1sn(yx)−1, where x, y ∈ {a, b}, x 6= y, and xy ≺s

sn−1. This is known as the Near-Commutative Property of the words sn and sn−1. Because
snsn−1(xy)

−1 = snDn−2 and sn−1sn(yx)−1 = sn−1Dn−1, Proposition 4.11 is merely an
extension of this property to standard episturmian words s. It is also worthwhile noting
that Proposition 4.11 shows that sn is a prefix of sn−1sn.

10



Hereafter, we set d−j = 0 for j ≥ 0.

Proposition 4.2 implies that |sn+1| − |Dn| = |sn| − |Dn−k+1|, and hence |Gn+1,1| =
|Gn,k−1|. In fact, we have the following:

Proposition 4.13 For all n ≥ 1, Gn,1 = G̃n−1,k−1.

PROOF. One can write

Gn,1 = D−1
n−1sn = D−1

n−1s
dn

n−1s
dn−1

n−2 · · · s
dn−k+2

n−k+1 sn−k

= D−1
n−1sn−1s

dn−1
n−1 s

dn−1

n−2 · · · s
dn−k+2

n−k+1 sn−k

= D−1
n−1sn−1Dn−1D

−1
n−k.

Whence, it follows from Corollary 4.8 that Gn,1 = s̃n−1D
−1
n−k = G̃n−1,k−1 since s̃n−1 =

G̃n−1,k−1Dn−k. 2

Proposition 4.14 Let 1 ≤ i ≤ k and 1 ≤ r ≤ k − 1. For all n ≥ 0,

(i) ai is the first letter of Gn,r if n ≡ i+ r − 1 (mod k);
(ii) ai is the last letter of Gn,r if n ≡ i− 1 (mod k).

PROOF. (i) The assertion is trivially true for 0 ≤ n < r since, by (12), we have Gn,r =
ak+1+n−rsn. Now take n ≥ r. By definition,

Gn,r = D−1
n−rsn = D−1

n−rsn−r+1s
−1
n−r+1sn

where sn−r+1 is a prefix of sn. Hence, one can write

Gn,r = Gn−r+1,1s
−1
n−r+1sn = G̃n−r,k−1s

−1
n−r+1sn (13)

by applying Proposition 4.13.

Now, one easily deduces from Proposition 4.1 that am ≺p s̃n−r if n ≡ m+r−1 (mod k),
and thus am ≺p G̃n−r,k−1 ≺p s̃n−r if n ≡ m+ r − 1 (mod k).

(ii) For 0 ≤ n < r, Gn,r = ak+1+n−rsn and, for each n ≥ r, we have Gn,r ≺s sn. Hence,
am ≺s Gn,r if n ≡ m− 1 (mod k), by Proposition 4.1. 2

4.2 Singular n-words of the r-th kind

By definition of the words (sn)n≥1−k (see (5)) and the fact that s = limn→∞ sn, one
deduces that, for any n ≥ 0, s can be written as a concatenation of blocks of the form sn,
sn−1, . . . , sn−k+1, i.e.,

s = [((sdn+1

n sdn

n−1 · · · s
dn−k+3

n−k+2 sn−k+1)
dn+2sdn+1

n · · · s
dn−k+4

n−k+3 sn−k+2)
dn+3

(sdn+1

n sdn

n−1 · · · s
dn−k+3

n−k+2 sn−k+1)
dn+2sdn+1

n · · · s
dn−k+5

n−k+4 sn−k+3]
dn+4 · · · . (14)

We shall call this unique decomposition the n-partition of s. This will be a useful tool in
our subsequent analysis of powers of words occurring in s (Section 6, to follow).
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Note. Uniqueness of the factorization (14) is proved inductively. The initial case n = 0
is trivial. For n ≥ 1, the factorization of sn in terms of the sn−i given by (5) is unique
because the sn−i end with different letters (by Proposition 4.1). So it is clear that every
(n+ 1)-partition of s gives rise to an n-partition, in which the positions of sn−k+1 blocks
uniquely determine the positions of sn+1 blocks in the original (n + 1)-partition (since

sn+1 = sdn+1

n sdn

n−1 · · · s
dn−k+3

n−k+2 sn−k+1). Accordingly, uniqueness of the n-partition implies
uniqueness of the (n+ 1)-partition.

Remark 4.15 Since each factor of s has exactly k different return words (see Section
2.2.2), two consecutive sn+1−i blocks (1 ≤ i ≤ k) of the n-partition are separated by a
word V , of which there are k different possibilities. From now on, it is advisable to keep
this observation in mind.

Lemma 4.16 Let 1 ≤ r ≤ k − 1. For any n ∈ N+, a factor u of length |sn| of s is a
factor of at least one of the following words:

• Cj(sn), 0 ≤ j ≤ |sn| − 1;

• s
dn−r+1−1
n−r · · · s

dn−k+2

n−k+1 sn−ks
dn

n−1 · · · s
dn−r+2

n−r+1 sn−rsn if n ≥ r;
• an+1sna

−1
n+1an−r+k+1sn if n < r.

Note. The word s
dn−r+1−1
n−r · · · s

dn−k+2

n−k+1 sn−ks
dn

n−1 · · · s
dn−r+2

n−r+1 sn−r (1 ≤ r ≤ k − 1) has length
|sn|.

PROOF. In the n-partition of s, one observes that two consecutive sn blocks make the
following k different appearances:

snsn and sns
dn

n−1 · · · s
dn−r+2

n−r+1 sn−rsn︸ ︷︷ ︸
(∗)

, 1 ≤ r ≤ k − 1.

Evidently, any factor of length |sn| of s is a factor of one of the above k different words.

Now, factors of length |sn| of snsn are simply conjugates of sn. Furthermore, for n ≥ r,

the first |sdn

n−1 · · · s
dn−r+2

n−r+1 sn−r| factors of length |sn| of (∗) are again just conjugates of sn.
The remaining factors of length |sn| of (∗) are factors of

s
dn−r+1−1
n−r · · · s

dn−k+2

n−k+1 sn−ks
dn

n−1 · · · s
dn−r+2

n−r+1 sn−rsn.

For n < r, one can write (∗) as sns
dn

n−1 · · · s
d1

0 an−r+k+1sn = snsna
−1
n+1an−r+k+1sn, of which

the first |sn| − 1 factors of length |sn| are conjugates of sn, and the other factors of length
|sn| are factors of an+1sna

−1
n+1an−r+k+1sn. 2

Lemma 4.17 For any n ≥ 1,
∑k−1

j=1 |Dn−j| = |sn| − k.

PROOF. Induction on n and Proposition 4.2. 2

Lemma 4.18 Let 1 ≤ r ≤ k − 1. For any n ≥ r, we have

s
dn−r+1−1
n−r · · · s

dn−k+2

n−k+1 sn−ks
dn

n−1 · · · s
dn−r+2

n−r+1 sn−r = Dn−rG̃n,r,

and for 1 ≤ n < r, an+1sna
−1
n+1an−r+k+1 = G̃n,r.

12



PROOF. For 1 ≤ n < r, one can write G̃n,r = s̃nan−r+k+1 = an+1sna
−1
n+1an−r+k+1, by

Remark 4.6. Now take n ≥ r. Then, using Corollary 4.8 and Proposition 4.4,

Dn−rG̃n,r = Dn−rs̃nD
−1
n−r

= Dn−rD
−1
n snDnD

−1
n−r

= Dn−rD
−1
n sdn+1

n sdn

n−1 · · · s
dn−r+2

n−r+1 sn−r

= Dn−rD
−1
n−ks

dn

n−1 · · · s
dn−r+2

n−r+1 sn−r

= s
dn−r+1−1
n−r · · · s

dn−k+2

n−k+1 sn−ks
dn

n−1 · · · s
dn−r+2

n−r+1 sn−r. 2

Whence, it is now plain to see that each word G̃n,rsn = G̃n,rDn−rGn,r is a factor of s.
We will now partition the set of factors of length |sn| of s into k disjoint classes.

Theorem 4.19 Let 1 ≤ r ≤ k − 1. For any n ∈ N+, the set of factors of length |sn| of s

can be partitioned into the following k disjoint classes:

• Ω0
n := C(sn) = {Cj(sn) : 0 ≤ j ≤ |sn| − 1};

• Ωr
n := {w ∈ A∗

k : |w| = |sn| and w ≺ x−1G̃n,rDn−rGn,rx
−1}, where x is the last letter

of Gn,r.

That is, Ω|sn|(s) = Ω0
n

�

∪ Ω1
n

�

∪ · · ·
�

∪ Ωk−1
n .

PROOF. First observe that Lemma 2.1(i), coupled with Proposition 3.2, implies that
each sn is primitive, and hence |Ω0

n| = |sn|. Also note that Ω̃0
n := {w̃ : w ∈ Ω0

n} = Ω0
n,

i.e., Ω0
n is closed under reversal, which is deduced from Corollary 4.7.

We shall use Lemma 4.16 to partition Ω|sn|(s) into k disjoint classes; the first being
Ω0

n = C(sn). Now consider the factors of length |sn| of the words

s
dn−r+1−1
n−r · · · s

dn−k+2

n−k+1 sn−ks
dn

n−1 · · · s
dn−r+2

n−r+1 sn−rsn (n ≥ r). (15)

Since (15) can be written as Dn−rG̃n,rDn−rGn,r (by Lemma 4.18), the first |Dn−r| + 1
factors of length |sn| = |Dn−rGn,r| are conjugates of s̃n (and hence of sn) and the last factor
is just sn. Hence, all other factors of length |sn| of (15) are factors of x−1G̃n,rDn−rGn,rx

−1,
where x is the last letter of Gn,r. Moreover, Dn−r appears exactly once (and at a different
position) in each word in

Ωr
n := {w ∈ A∗

k : |w| = |sn| and w ≺ x−1G̃n,rDn−rGn,rx
−1};

whence |Ωr
n| = |Gn,r| − 1. Since the letter just before Dn−r (equivalently, the last letter

of G̃n,r) in the word x−1G̃n,rDn−rGn,rx
−1 is different for each r ∈ [1, k − 1], it is evident

that Ω0
n, Ω1

n, . . . , Ωk−1
n are pairwise disjoint.

Now, for 1 ≤ n < r, other than words in the sets Ω0
n, Ω1

n, . . . , Ωn
n, the remaining factors

of length |sn| of s are factors of

an+1sna
−1
n+1an−r+k+1sn = s̃nan−r+k+1sn (16)

(see Lemma 4.16). The first factor of length |sn| of the word (16) is s̃n (i.e., the (|sn|−1)-st
conjugate of sn) and the last is just sn. All other factors of length |sn| of (16) are factors
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of
a−1

n+1s̃nan−r+k+1sna
−1
n+1 = a−1

n+1G̃n,rDn−rGn,ra
−1
n+1.

Defining Ωr
n := {w ∈ A∗

k : |w| = |sn| and w ≺ a−1
n+1G̃n,rDn−rGn,ra

−1
n+1}, one can check

that |Ωr
n| = |Gn,r| − 1 and Ω0

n, Ω1
n, . . . , Ωk−1

n are pairwise disjoint.

It remains to show
⋃k−1

j=0 Ωj
n = Ω|sn|(s) for all n ≥ 1. Indeed, |Ω|sn|(s)| = (k − 1)|sn| + 1

(from the complexity function for k-strict standard episturmian words), and we have

k−1∑

j=0

|Ωj
n| = |sn| +

k−1∑

j=1

(|Gn,j| − 1) = |sn| +
k−1∑

j=1

(|sn| − |Dn−j| − 1)

= k|sn| − k + 1 −
k−1∑

j=1

|Dn−j|

= k|sn| − k + 1 − (|sn| − k) (by Lemma 4.17)

= (k − 1)|sn| + 1. 2

Let us remark that the sets Ωr
n are closed under reversal since x−1G̃n,rDn−rGn,rx

−1 is a
palindrome; that is Ω̃r

n := {w̃ : w ∈ Ωr
n} = Ωr

n. We shall call the factors of s in Ωr
n the

singular n-words of the r-th kind. Such words will play a key role in our study of powers
of words occurring in s.

Evidently, for Sturmian words cα, Ω1
n = {wn} and we have Ω|sn|(cα) = C(sn) ∪ {wn}, as

before.

5 Index

A word of the form w = (uv)nu is written as w = zr, where z = uv and r := n+ |u|/|z|.
The rational number r is called the exponent of z, and w is said to be a fractional power.

Now suppose x is an infinite word. For any w ≺ x, the index of w in x is given by the
number

ind(w) = sup{r ∈ Q : wr ≺ x},

if such a number exists; otherwise, w is said to have infinite index in x. Furthermore,
the greatest number r such that wr is a prefix of x is called the prefix index of w in x.
Obviously, the prefix index is zero if the first letter of w differs from that of x, and it is
infinite if and only if x is purely periodic.

For all n ≥ 0, define the words

tn := Dn−k+1Gn+1,k−1 and rn := sn−1Dn−1 = sdn

n−1s
dn−1

n−2 · · · sd2

1 s
d1

0 .

Note. By convention, r0 = aka
−1
k = ε, and tn = a−1

n+2an+3sn+1 for 0 ≤ n ≤ k − 2.

The next two results extend those of Berstel [2].

Lemma 5.1 For all n ≥ 1, the word rn+1 is the greatest fractional power of sn that is a
prefix of s, and the prefix index of sn in s is 1 + dn+1 + |Dn−k|/|sn|.
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PROOF. First we take n ≥ k. Observe that the longest common prefix shared by the
words sn and tn is

Dn−k+1 = s
dn−k+2−1
n−k+1 rn−k+1,

since

sn = Dn−k+1Gn,k−1 and tn = Dn−k+1Gn+1,k−1 = Dn−k+1G̃n+2,1 (17)

where Gn,k−1 andGn+1,k−1 do not share a common first letter, by Proposition 4.14. Clearly,
sn+1sn ≺p s, and we have

sn+1sn = sdn+1

n sdn

n−1 · · · s
dn−k+3

n−k+2 sn−k+1sn

= sdn+1+1
n (s

dn−k+2−1
n−k+1 sn−k)

−1Dn−k+1Gn,k−1

= sdn+1+1
n (s

dn−k+1−1
n−k sn−k−1 · · · s

d2

1 s
d1

0 )Gn,k−1 (by (11))

= sdn+1+1
n Dn−kGn,k−1

= sdn+1+1
n tn−1. (18)

Hence, sdn+1+1
n is a prefix of s. Also observe that the longest common prefix of tn−1 and

sn is Dn−k since

tn−1 = Dn−kGn,k−1 and sn = Dn−kGn,k

where Gn,k−1 and Gn,k have different first letters, by Proposition 4.14. Further, from (18)
and Proposition 4.4, we have

sn+1sn = sdn+1+1
n tn−1 = sdn+1+1

n Dn−kGn,k−1 = snDnGn,k−1 = rn+1Gn,k−1.

Thus, the greatest fractional power of sn that is a prefix of s is rn+1 with

|rn+1| = |snDn| = |sdn+1+1
n Dn−k| = (dn+1 + 1)|sn| + |Dn−k|;

whence the prefix index of sn in s is 1 + dn+1 + |Dn−k|/|sn|.

Similarly, for 1 ≤ n ≤ k − 1, we have

sn+1sn = sdn+1

n sdn

n−1 · · · s
d1

0 an+2sn

= sdn+1+1
n a−1

n+1an+2sn

= sdn+1+1
n Dn−kGn,k−1

= rn+1Gn,k−1.

Therefore, the greatest fractional power of sn (= Dn−kGn−1,k−1) that is a prefix of
sn+1sn ≺p s is rn+1, where |rn+1| = (dn+1 + 1)|sn| + |Dn−k| = (dn+1 + 1)|sn| − 1. That is,
the prefix index of sn in s is 1 + dn+1 − 1/|sn| for 1 ≤ n ≤ k − 1. 2

Lemma 5.2 For all n ≥ 1, the index of sn as a factor of s is at least 2+dn+1+|Dn−k|/|sn|,
and hence s contains cubes.

We will show later that the index of sn is exactly 2 + dn+1 + |Dn−k|/|sn|.

15



PROOF. Setting e = 1 + dn+1 + |Dn−k|/|sn|, we will show that sn+k+2 contains a power
of sn of exponent 1 + e. Certainly, using Proposition 4.11, one can write

sn+k+2 = s
dn+k+2−1
n+k+1 sn+k+1sn+kDn+kD

−1
n+2

= s
dn+k+2−1
n+k+1 sn+ksn+k+1G

−1
n+k+1,1Gn+k,k−1Dn+kD

−1
n+2

= s
dn+k+2−1
n+k+1 sn+kDn+kGn+k,k−1Dn+kD

−1
n+2.

The suffix sn+kDn+kGn+k,k−1Dn+kD
−1
n+2 contains the exponent 1+ e of sn. More precisely,

sn+k ends with sn, and Dn+kGn+k,k−1 shares a prefix of length |Dn+k| with sn+k+1. Thus,
since rn+1 is a prefix of s of length

|rn+1| = |sn| + |Dn| < |Dn+k|,

we have snrn+1 ≺ sn+kDn+k ≺ sn+k+2. 2

6 Powers occurring in s

For each m, l ∈ N with l ≥ 2, let us define the following set of words:

P(m; l) := {w ∈ A∗
k : |w| = m, wl ≺ s},

where s is the k-strict standard episturmian word over Ak = {a1, a2, . . . , ak} with directive
word ∆ given by (4). Also, let p(m; l) := |P(m; l)|.

The next theorem is a generalization of Theorem 1 in [6]. It gives all the lengths m
such that there is a non-trivial power of a word of length m in s. Firstly, let us define the
following k sets of lengths for fixed n ∈ N+:

D1(n) := {r|sn| : 1 ≤ r ≤ dn+1},

Di(n) := {|sr
ns

dn

n−1 · · · s
dn+3−i

n+2−i sn+1−i| : 1 ≤ r ≤ dn+1}, 2 ≤ i ≤ k − 1,

Dk(n) := {|sr
ns

dn

n−1 · · · s
dn+3−k

n+2−k sn+1−k| : 1 ≤ r ≤ dn+1 − 1}.

Theorem 6.1 Let m, n ∈ N+ be such that |sn| ≤ m < |sn+1| and supposem 6∈
⋃k

i=1 Di(n).
Then p(m; l) = 0 for all l ≥ 2.

Remark 6.2 Put simply, the above theorem states that if a word w has a non-trivial
integer power in s, then |w| ∈

⋃k
i=1 Di(n) for some n. For instance, if k = 3, we have

3⋃

i=1

Di(n) = {|sr
n|, |s

r
nsn−1| : 1 ≤ r ≤ dn+1} ∪ {|sr

ns
dn

n−1sn−2| : 1 ≤ r ≤ dn+1 − 1}.

In the particular case of the Tribonacci sequence, Theorem 6.1 implies that if wl is a factor,
then |w| ∈ {|sn|, |sn| + |sn−1|} for some n, where the lengths (|si|)i≥0 are the Tribonacci
numbers: T0 = 1, T1 = 2, T2 = 4, Ti = Ti−1 + Ti−2 + Ti−3, i ≥ 3.
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The proof of Theorem 6.1 requires several lemmas. Let us first observe that in the n-
partition of s (see (14)) to the left of each sn block, there is an sn+1−j block for some
j ∈ [1, k]. Also note that each sn+1−j is a prefix of sn. Furthermore, to the left of each
sn+1−i block is another sn+1−i block or an sn+2−i block, for each i ∈ [2, k].

Lemma 6.3 Let n ∈ N+. Consider a word w ≺ s of the form w = usnv for some words
u, v ∈ A∗

k, u 6= ε.

(i) If w = u1u2, where u1 ≺s sn+1−i for some i ∈ [1, k] and u2 ≺p sn, then u1 = u.
(ii) If w = u1sn+1−iu2 for some i ∈ [2, k], where u1 ≺s sn+2−i and u2 ≺p sn, then u1 = u

or u1sn+1−i = u.
(iii) If w = u1sn+1−iu2 for some i ∈ [2, k − 1], where u1 ≺s sn+1−i and u2 ≺p sn, then

u1 = u or u1sn+1−i = u.

PROOF. (i) Other than the case when u1 = u, u2 = sn and v = ε, the only other
possibility is: u u2w = sn vu1

(Note that u1 ≺s sn+1−i for some i ∈ [1, k], and therefore |u1| ≤ |sn+1−i| ≤ |sn|.)

In this case, using the figure, we write u1 = uu′, sn = u′v′, u2 = v′v for some u′, v′

(u′ 6= ε). As v′ is a prefix of sn, we have sn = v′v′′ for some v′′, thus u′ and v′′ are conjugate.
So there exist e, f and non-negative integers p, q such that v′ = (ef)pe, u′ = (ef)q, and
v′′ = (fe)q with ef primitive. Hence sn = (ef)p+qe. As u′ is a suffix of sn+1−i which is a
prefix of sn, we must have, by primitivity of ef , sn+1−i = (ef)r, and then r = 1. But u′ is
non-empty, so u′ = ef = sn+1−i, and it follows that u = ε; a contradiction.

(ii) Let i ∈ [2, k] be a fixed integer. Since u1 ≺s sn+2−i and u2 ≺p sn, we have |u1| ≤
|sn+2−i| ≤ |sn| and |u2| ≤ |sn|. Accordingly, there exist only three possibilities (other than
u1 = u or u1sn+1−i = u), and these are:uw = sn vu2u1 sn+1�i

or uw = sn vu2u1 sn+1�i
or uw = sn vu2u1 sn+1�i
In the first instance, usnv = u1sn+1−iu2 = uu′sn+1−iv

′v, where u2 = v′v with v′ ≺s sn

and u1 = uu′ with u′ ≺p sn. That is, sn = u′sn+1−iv
′, where u′ ≺p sn and v′ ≺s sn, and

u1 = uu′ ≺s sn+2−i. Therefore, u′ ≺s sn+2−i, and hence the word sn+1−i must be preceded
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by the last letter of sn+2−i. However, since u′ is also a prefix of sn = sdn

n−1 · · · s
dn+2−k

n+1−k sn−k,
where sn−1, . . . , sn+1−k, sn−k do not share a common last letter (by Proposition 4.1),

one is forced to presume that u′ = sdn

n−1s
dn−1

n−2 · · · s
dn+3−i

n+2−i (resp. u′ = ε) when i ∈ [3, k]
(resp. i = 2). This contradicts the fact that 1 ≤ |u′| < |sn+2−i|.

In the second instance, we have usnv = u1sn+1−iu2 = uu′sn+1−iu2, where u1 = uu′

with u′ ≺p sn and u2 ≺p sn. Consider the word w′ := wu2
−1 = usnvu2

−1 = usnv
′,

i.e., w′ = usnv
′ = u1sn+1−i, where v′ ≺p v and v′ ≺s sn+1−i. Since u1 ≺s sn+2−i and

sn+1−i ≺p sn, it follows from assertion (i) that u1 = u and hence sn+1−i = snv
′, which is

absurd unless i = 1 and v′ = ε. But i > 1, so this situation is impossible.

Lastly, usnv = u1sn+1−iu2 = u1sn+1−iv
′v, where u2 = v′v ≺p sn with v′ ≺s sn. Consider

the word w′ := u−1
1 w = u−1

1 usnv = u′snv, i.e., w′ = u′snv = sn+1−iu2, where u′ ≺s u and
u′ ≺p sn+1−i. Since u2 ≺p sn, one obtains, as an immediate consequence of claim (i), u′ =
sn+1−i, u2 = sn, v = ε, and hence u = u1sn+1−i; a contradiction since |u1sn+1−i| > |u1|.

One can prove assertion (iii) in a similar manner. 2

Lemma 6.4 Let c ∈ Ak and n ∈ N be fixed. Consider an occurrence of csn in s. Then
the letter c is the last letter of a block sn+1−i of the n-partition of s, for some i ∈ [1, k],
and the integer i (equiv. the block sn+1−i) is uniquely determined by c. In particular, in
every occurrence of sn+1−isn in s, the word sn+1−i is a block in the n-partition of s.

That is, occurrences of words w containing csn (c ∈ Ak) must be aligned to the n-partition
of s.

PROOF. This assertion follows from Lemma 6.3. The case n = 0 is trivial, and for
n ≥ 1, observe from Lemma 6.3 that the given sn is either an sn block in the n-partition
of s or has an sn+1−j block of the n-partition as a prefix, for some j ∈ [2, k]. In the first
case, to the left of sn there is an sn+1−l block, for some l ∈ [1, k]. Whereas, in the second
case, there is an sn+1−j or sn+2−j block (of the n-partition) to the left of sn. That is, sn

is preceded by an sn+1−i block of the n-partition for some i ∈ [1, k]. Since the last letters
of sn, sn−1, . . . , sn+1−k are mutually distinct (by Proposition 4.1), it is clear that i (and
hence sn+1−i) is uniquely determined by the letter c. 2

We can now determine the exact index of sn in s.

Lemma 6.5 For any n ≥ 1, the word of maximal length that is a factor of both s and the
infinite sequence (sn)

ω := snsnsn · · · is sdn+1+2
n Dn−k, i.e., ind(sn) = 2+dn+1+|Dn−k|/|sn|.

PROOF. According to Lemma 6.4, any occurrence of sp
n (p ≥ 2) must be aligned to the

n-partition of s. By inspection of the n-partition of s (see (14)), it is not hard to see that
between two successive sn+1−k blocks there is a word possessing one of the following k
forms:

sq
ns

dn+1

n sdn

n−1 · · · s
dn+3−k

n+2−k , q ∈ {0, 1},

or

sdn+1

n sdn

n−1 · · · s
dn+3−i

n+2−i sn+1−is
dn+1

n sdn

n−1 · · · s
dn+3−k

n+2−k , i ∈ [2, k − 1].
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Thus, the alignment property implies that an occurrence of sp
n (p ≥ 2) is either a prefix of

sdn+1+r
n sdn

n−1 · · · s
dn+3−k

n+2−k sn+1−kz1 (19)

for some integer r ≤ 1 and suitable z1, or a prefix of

sr
ns

dn

n−1 · · · s
dn+3−i

n+2−i sn+1−is
dn+1

n sdn

n−1 · · · s
dn+3−k

n+2−k sn+1−kz2 (20)

for some i ∈ [2, k − 1], r ≤ dn+1 and suitable z2.

Now, suppose sp
n is a prefix of the word (19). Since sdn

n−1 · · · s
dn+3−k

n+2−k sn+1−ksn is not a

prefix of snsn (in fact, it is the word sn(s
dn+2−k−1
n+1−k sn−k)

−1sn = sntn−1), s
p
n must also be a

prefix of
sdn+1+r

n sdn

n−1 · · · s
dn+3−k

n+2−k sn+1−ksn = sdn+1+r+1
n tn−1. (21)

As in the proof of Lemma 5.1, one can show that the prefix index of sn in the word (21) is
dn+1+r+1+|Dn−k|/|sn|, which is at most dn+1+2+|Dn−k|/|sn|. Furthermore, in the word

(20), it is clear that the prefix index of sn is less than for (19) (since sdn

n−1 · · · s
dn+3−i

n+2−i sn+1−isn

has length less than the word sdn

n−1 · · · s
dn+3−k

n+2−k sn+1−ksn and is not a prefix of snsn). Whence,
it has been shown that ind(sn) ≤ dn+1 + 2 + |Dn−k|/|sn|, and so the result is now an easy
consequence of Lemma 5.2 (which gives ind(sn) ≥ dn+1 + 2 + |Dn−k|/|sn|). 2

The following analogue of Lemma 3.5 in [5] is required in order to prove Theorem 6.1.

Lemma 6.6 Let n ∈ N+ and suppose u ≺ s with |sn| ≤ |u| < |sn+1|. Then the following
assertions hold.

(1) For all i ∈ [1, k], if u starts at position l in some sn+1−i block in the n-partition of s

and also starts at position m in some factor sn+1−i of s, then l = m.
(2) For all i ∈ [1, k − 1], if u can start at position l in sn+1−i and at position m in sn−i,

then l = m.

PROOF. By inspection of the n-partition of s, notice that, for 1 ≤ i ≤ k − 1, an sn+1−i

block is followed by either an sn+1−i block, an sn block, or an sn−i block. Furthermore,
an sn+1−k block is always followed by an sn block.

Let un+1−i be the prefix of u of length |sn+1−i|.

(1) Let 1 ≤ i ≤ k and consider an occurrence of u that starts in an sn+1−i block of the n-
partition of s. If this sn+1−i block is followed by an sn+1−i block, then un+1−i is a conjugate
of sn+1−i as un+1−i ≺ sn+1−isn+1−i and |un+1−i| = |sn+1−i|. Similarly, if this sn+1−i block
is followed by an sn block, then un+1−i is a conjugate of sn+1−i since sn+1−i ≺p sn. And, if
this sn+1−i block is followed by an sn−i block, then again un+1−i is a conjugate of sn+1−i.
Indeed, in the (n + k − i)-partition of s, sn+1−i is always followed by an sn+k−i block,
which has sn+1−i as a prefix; whence un+1−i ≺ sn+1−isn+1−i. So, in any case, un+1−i is a
conjugate of sn+1−i, and the result follows from the fact that the conjugates of sn+1−i are
distinct.

(2) Let 1 ≤ i ≤ k − 1. Suppose the word u has occurrences starting in sn+1−i blocks as
well as sn−i blocks in the n-partition of s. (Note that this implies n ≥ i.) First consider
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an occurrence of u beginning in a block of the form sn−i of the n-partition. As an sn−i

block is always followed by an sn+k−i−1 block in the (n + k − i − 1)-partition of s and
sn+1−i ≺p sn+k−i−1, we have

un+1−i ≺ sn−isn+1−i = sn−is
dn−i+1

n−i · · · s
dn+3−i−k

n+2−i−ksn+1−i−k.

Thus, in light of Lemma 6.4, we have the following fact:

csn−i 6≺ un+1−i where c ∈ Ak and c ≺s sn+1−i−k. (22)

Consider an occurrence of u starting in an sn+1−i block of the n-partition, which can be
factorized as

sn+1−i = s
dn−i+1

n−i s
dn−i

n−i−1 · · · s
dn+3−i−k

n+2−i−ksn+1−i−k. (23)

We distinguish two cases, below.

Case 1: The word u begins in the left-most sn−i block in (23) when dn−i+1 ≥ 2. In this
case, un−i is a conjugate of sn−i and hence, as deduced in (1), the starting position of u
in this sn−i block must coincide with its starting position in any occurrence of sn−i in the
n-partition of s.

Case 2: The word u does not start in the left-most sn−i block in (23). The block to the
right of sn+1−i in the n-partition is either another sn+1−i, or an sn−i, or an sn. In any
case, sn−i is a prefix of this block to the right of sn+1−i, which implies un+1−i contains an
occurrence of sn+1−i−ksn−i. This contradicts (22). 2

Proof of Theorem 6.1 Clearly, p(m; l1) ≥ p(m; l2) if l1 ≤ l2. Thus, it suffices to show
that for m 6∈

⋃k
i=1 Di(n), we have

p(m; 2) = 0, (24)

i.e., there are no squares of words of length m in s.

Suppose (24) does not hold for some m satisfying

m 6∈
k⋃

i=1

Di(n), (25)

and let u be a word of length m with |sn| ≤ m < |sn+1| such that u2 ≺ s. For convenience,
we shall write u2 = u(1)u(2) to allow us to refer to the two separate occurrences of u.
Let 1 ≤ i, j ≤ k. Obviously, u(1) starts at position q, say, in some sn+1−i block of the
n-partition of s. Further, by Lemma 6.6, u(2) also starts in some sn+1−j block of the n-
partition of s at position q. From the proof of Lemma 6.5, recall that two consecutive
sn+1−k blocks in the n-partition of s are separated by a word of one of the following k
forms:

sr
ns

dn+1

n sdn

n−1 · · · s
dn+3−k

n+2−k , r ∈ {0, 1},

or

sdn+1

n sdn

n−1 · · · s
dn+3−i

n+2−i sn+1−is
dn+1

n sdn

n−1 · · · s
dn+3−k

n+2−k , i ∈ [2, k − 1].
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If we also keep in mind that |sn| ≤ |u| < |sn+1|, then using Lemma 6.6 we see that the
possible lengths |u| of u are:

|sr
n| and |sr

ns
dn

n−1 · · · s
dn−i+2

n−i+1 sn−i|

where 1 ≤ i ≤ k − 1 and 1 ≤ r ≤ dn+1 (with r 6= dn+1 if i = k − 1 as |u| < |sn+1|).
Therefore, m does not satisfy (25); a contradiction. 2

The next five propositions, which have some interest in themselves, are needed in the
next two sections where we shall prove our main results concerning squares, cubes, and
higher powers in s.

Notation: Given l ∈ N and w ∈ A∗
k, denote by Prefl(w) the prefix of w of length l if

|w| ≥ l, w otherwise. Likewise, denote by Suffl(w) the suffix of w of length l if |w| ≥ l, w
otherwise.

Recall that Ωr
n denotes the set of singular n-words of the r-th kind (1 ≤ r ≤ k − 1), as

defined in Theorem 4.19.

Proposition 6.7 Let n ∈ N+. Suppose w ∈ Ω1
n+1−i for some i ∈ [1, k − 1] and let v =

Prefl(w) where 1 ≤ l ≤ |Gn+1−i,1| − 1. Then the word vsn+1−i occurs at position p in s if
and only if the n-partition of s contains an sn starting at position p+ l and an sn−i ending
at position p+ l−1. In particular, w occurs at exactly those positions where vsn+1−i occurs
in s.

PROOF. Let i ∈ [1, k − 1] be fixed and let 1 ≤ l ≤ |Gn+1−i,1| − 1.

First note that |w| = |sn+1−i| and w ≺ x−1G̃n+1−i,1Dn−iGn+1−i,1x
−1 where x ∈ Ak, by

definition of Ω1
n+1−i. Since |Dn−iGn+1−i,1| = |sn+1−i|, the word v = Prefl(w) is a suffix of

x−1G̃n+1−i,1 which, in turn, is a suffix of sn−i as G̃n+1−i,1 = Gn−i,k−1.

Now, by Lemma 6.6, the word sn+1−i can only occur at the starting positions of blocks
(in the n-partition) of the form sn, sn−1, . . . , sn+1−k, all of which have different last
letters (by Proposition 4.1). In particular, each sn−j block (0 ≤ j ≤ k − 1, j 6= i) of
the n-partition of s has a different last letter to sn−i (and hence v). One should note,
however, that an sn−i block of the n-partition is never followed by an sn+1−i block (except
if i = 1, in which case we do have certain sn blocks preceded by sn−1 blocks). Also observe
that if z = Suffl(sn+1−i), then an sn−i block of the n-partition is only ever followed by
sn+1−iz

−1 = Dn−iGn+1−i,1z
−1 if it is followed by an sn block of the n-partition. Taking

all of this into account, one deduces that the word vsn+1−i occurs only at positions in s

where an sn−i block of the n-partition is followed by an sn block, which has sn+1−i as a
prefix. This completes the proof of the first assertion.

As for the second assertion, recall that w begins with the word v which is a non-
empty suffix of x−1G̃n+1−i,1 = x−1Gn−i,k−1 ≺s sn−i. Consequently, w occurs at every
(|sn−i| − l+ 1)-position of an sn−i block that is followed by an sn block in the n-partition
of s, i.e., w occurs where the prefix vsn+1−i of vsn occurs in s. By Lemma 6.6, the only
other position where w may occur (besides where vsn+1−i occurs) is in the (|sn−i|− l+1)-
position of an sn block that is preceded by an sn−i block. Now, to the right of this type

21



of sn block (in the n-partition) there appears another sn block or an sn−1 block. The fact
that sn+1−isn−i ≺p snsn−1 ≺p snsn implies that w ends with the prefix of sn−i of length
|sn−i| − l. More precisely, w ends with the word

Dn+1−i−kz1

where z1 is a non-empty prefix of G̃n+1−i,1 of length |z1| = |Gn+1−i,1| − l. On the other
hand, by definition of w, we have that w ends with

Dn−iz2

where z2 is a non-empty prefix of Gn+1−i,1 of length |z2| = |Gn+1−i,1| − l. It is impossible
for both situations to occur, so we conclude that w occurs at exactly those positions where
vsn+1−i occurs. 2

Notation: For n ≥ 1, denote by Pn the set of all formal positions of sdn+1−1
n sn−1 in the

(n− 1)-partition of s.

Proposition 6.8 For any n ∈ N+, the set of all positions of Dn in s is Pn.

PROOF. We proceed by induction on n. For n = 1, Dn = D1 = sd2−1
1 sd1

0 , and hence D1

occurs at exactly those places in s where sd2−1
1 s0 = (ad1

1 a2)
d2−1a1 occurs in the 0-partition

of s. We claim that there is a one-to-one correspondence from the set of all positions of
Dn in the (n − 1)-partition of s to the set of all positions of Dn+1 in the n-partition of
s (see (14)). Assume that Pn gives all of the occurrences of Dn in the (n − 1)-partition

of s. Since Dn+1 = s
dn+2−1
n+1 snDn = Dns̃n(s̃n+1)

dn+2−1, Dn+1 occurs at any place in Pn+1.
Conversely, since each occurrence of Dn+1 in (14) naturally gives rise to an occurrence of
Dn in the (n − 1)-partition of s, the word Dn+1 must occur in s at exactly those places
given by Pn+1. 2

Consider two distinct occurrences of a factor w in s, say

s = uwv = u′wv′, |u′| > |u|,

where v, v′ ∈ Aω
k . These two occurrences of w in s are said to be positively separated (or

disjoint) if |u′| > |uw|, in which case u′ = uwz for some z ∈ A+
k , and hence s = uwzwv′.

Proposition 6.9 For any n ∈ N+, successive occurrences of a singular word w ∈
⋃k−1

j=1 Ωj
n

in s are positively separated.

PROOF. Let 1 ≤ r ≤ k − 1. For 1 ≤ n ≤ r, observe that

Ωr
n = {w ∈ A∗

k : |w| = |sn| and w ≺ sn−1Dn−1D
−1
n−rsn−1Dn−1},

where D−1
n−r = an−r+k+1 for 1 ≤ n < r. It is left to the reader to verify that consecutive

occurrences of a word w ∈ Ωr
n (1 ≤ n ≤ r) are positively separated in s.

Now take n ≥ r + 1 and suppose w ∈ Ωr
n. Then Dn−r will occur in w. By Proposition

6.8, the word Dn−r occurs at exactly those places where s
dn−r+1−1
n−r sn−r−1 occurs in the
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(n− r− 1)-partition of s. First note that the letter just before Dn−r in w is the last letter
of G̃n,r, which is the first letter Gn,r, and hence the last letter of sn−r−k (by Propositions
4.1 and 4.14). On the other hand, in the word w, the letter just after Dn−r is the first

letter of Gn,r. Since there are k different return words of s
dn−r+1

n−r sn−r−1 in s, there exist

k different possibilities for occurrences of s
dn−r+1

n−r sn−r−1 in the (n − r − 1)-partition of s;
namely:

(1)

(s
dn−r+1−1
n−r sn−r−1)s

dn−r−1
n−r−1 s

dn−r−1

n−r−2 · · · s
dn−r−k+2

n−r−k+1sn−r−k(s
dn−r+1−1
n−r sn−r−1)

= Dn−rD
−1
n−r−kDn−rD

−1
n−r−1

= Dn−r(s̃n−r)
dn−r+1D−1

n−r−1

= Dn−r(s̃n−r)
dn−r+1−1G̃n−r,1;

(2)

(s
dn−r+1−1
n−r sn−r−1)s

dn−r−1
n−r−1 s

dn−r−1

n−r−2 · · · s
dn−r−l+2

n−r−l+1sn−r−l(s
dn−r+1−1
n−r sn−r−1)

= Dn−rD
−1
n−r−l(s

dn−r+1−1
n−r sn−r−1)

=





Dn−rGn−r,ls

dn−r+1−2
n−r sn−r−1 if dn−r+1 ≥ 2,

Dn−rGn−r−1,l−1 if dn−r+1 = 1,

where 2 ≤ l ≤ k − 1;
(3)

(s
dn−r+1−1
n−r sn−r−1)(s

dn−r+1−1
n−r sn−r−1)s

dn−r−1
n−r−1 s

dn−r−1

n−r−2 · · · s
dn−r−k+3

n−r−k+2sn−r−k+1

=




Dn−rs̃n−r−1(s̃n−r)

dn−r+1−2G̃n−r,k−1 if dn−r+1 ≥ 2,

Dn−rG̃n−r−1,k−2 if dn−r+1 = 1.

Thus, if dn−r+1 ≥ 2, the word Dn−r is followed by either s̃n−r, Gn−r,l, or s̃n−r−1, of which
only s̃n−r has the same first letter as Gn,r. Similarly, if dn−r+1 = 1, the word Dn−r is
followed by either G̃n−r,1, Gn−r−1,l−1, or G̃n−r−1,k−2, of which only G̃n−r,1 has the same
first letter as Gn,r. Therefore, only in case (1) will we have Dn−r followed by the first letter
of Gn,r. Accordingly, one deduces that any occurrence of w in s corresponds to a formal
occurrence of the word

sn−r−k(s
dn−r+1−1
n−r sn−r−1)s

dn−r−1
n−r−1 s

dn−r−1

n−r−2 · · · s
dn−r−k+2

n−r−k+1sn−r−k(s
dn−r+1−1
n−r sn−r−1)

in the (n− r − 1)-partition of s. Hence, we conclude that occurrences of w are positively
separated in s since a word of the above form is positively separated in the (n− r − 1)-
partition. 2

The next proposition follows from Lemma 6.5, and Propositions 6.7 and 6.9.
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Proposition 6.10 Let n ∈ N+ and suppose u ≺ s with |u| = |sn|. Then u2 ≺ s if and
only if u ∈ C(sn). In particular, if u is a singular word of any kind of s, then u2 ⊀ s.
Moreover, for any n ≥ k − 1, if u2 ≺ s with |sn| ≤ |u| < |sn+1|, then u does not contain
a singular word from the set Ω1

n+2−k.

PROOF. As sdn+1+2
n Dn−k ≺ s (see Lemma 6.5), the square of any conjugate of sn is a

factor of s. (Note that sdn+1+2
n Dn−k = sdn+1+2

n a−1
n+1 for 1 ≤ n ≤ k − 1.) Now recall that

the set of all factors of s of length |sn| is the disjoint union of the sets C(sn) and
⋃k−1

j=1 Ωj
n.

Consequently, the first two assertions are deduced from Proposition 6.9.

For the last statement, let n ≥ k − 1 and suppose u2 = u(1)u(2) is an occurrence of u2

in s, where |sn| ≤ |u| < |sn+1|. Also assume w ∈ Ω1
n+2−k and w ≺ u. Clearly, w occurs

in both u(1) and u(2) at the same position. By Proposition 6.7 (with i = k − 1), different
occurrences of w correspond to different occurrences of sn+1−k blocks in the n-partition of
s (as an sn+1−k block is always followed by an sn block). Between two consecutive sn+1−k

blocks in the n-partition, there is a word taking one of the following k forms:

sr
ns

dn+1

n sdn

n−1 · · · s
dn+3−k

n+2−k , r ∈ {0, 1},

or

sdn+1

n sdn

n−1 · · · s
dn+3−i

n+2−i sn+1−is
dn+1

n sdn

n−1 · · · s
dn+3−k

n+2−k , i ∈ [2, k − 1].

Therefore, the distance between consecutive occurrences of sn+1−k blocks in the n-partition
of s is

|sn+1| (r = 0), |sn+1| + |sn| (r = 1), or |sn+1| − (|Dn+1−i| − |Dn+1−k|) + |sn+1|,

and all of these distances are at least |sn+1|, which implies |u| ≥ |sn+1|; a contradiction. 2

More generally, we have the following proposition.

Proposition 6.11 Let n ∈ N+ and suppose u2 ≺ s with |sn| ≤ |u| < |sn+1|. Then u does
not contain a singular word from the set Ω1

n+1−i for any i ∈ [1, k − 1].

PROOF. The case when i = k−1 is proved in Proposition 6.10, so take i ∈ [1, k−2]. Let
u2 = u(1)u(2) be an occurrence of u2 in s, where |sn| ≤ |u| < |sn+1|. Assume w ∈ Ω1

n+1−i

for some i ∈ [1, k − 2], and w ≺ u. Clearly, w occurs in both u(1) and u(2) at the same
position. By Proposition 6.7, different occurrences of w correspond to different occurrences
of sn−i blocks that are followed by sn blocks in the n-partition of s. By inspection of the
n-partition (see (14)), the word of minimal length that separates two such sn−i blocks is

sdn+1

n sdn

n−1 · · · s
dn+3−k

n+2−k sn+1−ks
dn+1

n sdn

n−1 · · · s
dn+2−i

n+1−i .

That is, the minimal distance between two consecutive occurrences of an sn−i block (with
each appearance followed by an sn block) is |sn+1| + |sn| + |Dn| − |Dn−i| > |sn+1| + |sn|,
which implies |u| > |sn+1| + |sn|; a contradiction. 2
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6.1 Squares

The next two main theorems concern squares of factors of s of length m < d1 + 1 = |s1|
and length m ≥ |s1|, respectively.

A letter a in a finite or infinite word w is said to be separating for w if any factor
of length 2 of w contains the letter a. For example, a is separating for the infinite word
(aaba)ω. If a is separating for an infinite word x, then it is clearly separating for any factor
of x. According to [8, Lemma 4], since the standard episturmian word s begins with a1,
the letter a1 is separating for s and its factors.

Theorem 6.12 For 1 ≤ r ≤ d1, we have

p(r; 2) =





1 if r ≤ (d1 + 1)/2,

0 if r > (d1 + 1)/2.

In particular, P(r; 2) = {(ar
1)

2} for r ≤ (d1 + 1)/2, and P(r; 2) = ∅ for r > (d1 + 1)/2.

PROOF. Consider a factor u of s with |u| = r ≤ d1. As a1 is separating for s and a1

occurs in runs of length d1 or d1 +1 (inspect the 0-partition of s), we have that u is either
ar

1 or a conjugate of ar−1
1 aj for some j, 1 < j ≤ k. Further, it is evident that there are no

squares of words conjugate to ar−1
1 aj , 1 < j ≤ k. And, using the same reasoning for words

u of the form ar
1, one determines that s contains the square of u if and only if 2r ≤ d1 +1,

in which case there exists exactly one square of each such factor of length r of s; namely
(ar

1)
2. 2

Let w be a factor of s with |w| ∈
⋃k

i=1 Di(n) for some n. Roughly speaking, the next
theorem shows that if w2 is a factor of s, then w is a conjugate of a finite product of blocks
from the set {sn, sn+1, . . . , sn+1−k}, depending on |w| and dn+1. For example, if |w| = r|sn|
for some r with 1 ≤ r < 1 + dn+1/2, then w2 ≺ s if and only if w is one of the first |sn|
conjugates of sr

n.

Theorem 6.13 Let n, r ∈ N+.

(i) For 1 ≤ r ≤ dn+1,

p(|sr
n|; 2) =






|sn| if 1 ≤ r < 1 + dn+1/2,

|Dn−k| + 1 if dn+1 is even and r = 1 + dn+1/2,

0 if 1 + dn+1/2 < r ≤ dn+1.

(26)

In particular,

P(|sr
n|; 2) =






{Cj(s
r
n) : 0 ≤ j ≤ |sn| − 1} if 1 ≤ r < 1 + dn+1/2,

{Cj(s
r
n) : 0 ≤ j ≤ |Dn−k|} if dn+1 is even and r = 1 + dn+1/2,

∅ if 1 + dn+1/2 < r ≤ dn+1.

(27)
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(ii) For 1 ≤ r ≤ dn+1 and i ∈ [2, k] (with r 6= dn+1 if i = k), we have

p(|sr
ns

dn

n−1 · · · s
dn+3−i

n+2−i sn+1−i|; 2) = |Dn+1−i| + 1. (28)

In particular,

P(|sr
ns

dn

n−1 · · · s
dn+3−i

n+2−i sn+1−i|; 2) = {Cj(s
r
ns

dn

n−1 · · · s
dn+3−i

n+2−i sn+1−i) : 0 ≤ j ≤ |Dn+1−i|}.
(29)

Remark 6.14 For standard Sturmian words cα, we have sn = Dn−1xy, where x, y ∈
{a, b} (x 6= y), and hence |Dn−1| = qn −2 for all n ≥ 1. Accordingly, Theorem 6.13 agrees
with Theorem 3 in [6] for the case of a 2-letter alphabet.

The proof of Theorem 6.13 requires the following three lemmas.

Lemma 6.15 Let n ∈ N+ and set ui := sr
ns

dn

n−1 · · · s
dn+3−i

n+2−i sn+1−i for each i ∈ [2, k] and
1 ≤ r ≤ dn+1 − 1. Then, for all i ∈ [2, k], we have

(sdn+1

n sdn

n−1 · · · s
dn+3−i

n+2−i sn+1−i)
2Dn+1−i ≺ s, (30)

and
u2

iDn+1−i ≺ (sdn+1

n sdn

n−1 · · · s
dn+3−i

n+2−i sn+1−i)
2. (31)

PROOF. Let us first note that, for i = k, (sdn+1

n sdn

n−1 · · · s
dn+3−k

n+2−k sn+1−k)
2Dn+1−k =

s2
n+1Dn+1−k is a factor of s (by Lemma 5.1). Now, for i ∈ [2, k − 1], by inspection of

the n-partition of s, the word

sdn+1

n sdn

n−1 · · · s
dn+3−i

n+2−i sn+1−is
dn+1

n sdn

n−1 · · · s
dn+3−k

n+2−k sn+1−ks
dn+1

n

= (sdn+1

n sdn

n−1 · · · s
dn+3−i

n+2−i sn+1−i)
2s

dn+2−i−1
n+1−i s

dn−i+1

n−i · · · sn+1−ks
dn+1

n

= (sdn+1

n sdn

n−1 · · · s
dn+3−i

n+2−i sn+1−i)
2Dn+1−iD

−1
n+1−ks

dn+1

n

is a factor of s (where Dn+1−k is a prefix of sn for n ≥ k − 1, and D−1
n+1−k = an+2 for

1 ≤ n ≤ k − 2). Thus, assertion (30) is proved.

As for the second assertion (31), one can write

(sdn+1

n sdn

n−1 · · · s
dn+3−i

n+2−i sn+1−i)
2

= sdn+1−r
n uis

r
ns

dn+1−r
n sdn

n−1 · · · s
dn+3−i

n+2−i sn+1−i

= sdn+1−r
n u2

i s
dn+2−i−1
n+1−i s

dn+1−i

n−i · · · sn−ks
dn+1−r−1
n sdn

n−1 · · · s
dn+3−i

n+2−i sn+1−i

= sdn+1−r
n u2

iDn+1−iD
−1
n−ks

dn+1−r−1
n sdn

n−1 · · · s
dn+3−i

n+2−i sn+1−i,

which yields the result since Dn−k is a prefix of sn and sn−1 for n ≥ k, and D−1
n−k = an+1

for 1 ≤ n ≤ k − 1. 2
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Lemma 6.16 Let n ∈ N+ and let u2 = u(1)u(2) be an occurrence of u2 in s, where
|sn| ≤ |u| < |sn+1|.

(i) For all n ≥ 1, if |u| = |sr
n| with 1 ≤ r ≤ dn+1, then u(1) begins in an sn block of

the n-partition of s. Moreover, u2 is a factor of sdn+1+2
n snv

−1 = sdn+1+2
n Dn−k, where

|v| = |sn| − |Dn−k|.

(ii) Let i ∈ [2, k − 1]. For all n ≥ i − 1, if |u| = |sr
ns

dn

n−1 · · · s
dn+3−i

n+2−i sn+1−i| with
1 ≤ r ≤ dn+1, then u(1) starts in an sn block and contains an sn+1−i block that
is followed by an sn block in the n-partition of s. Moreover, u2 is a factor of
(sr

ns
dn

n−1 · · · s
dn+3−i

n+2−i sn+1−i)
2Dn+1−i, which is a factor of

(sdn+1

n sdn

n−1 · · · s
dn+3−i

n+2−i sn+1−i)
2Dn+1−i.

(iii) For all n ≥ k− 1, if |u| = |sr
ns

dn

n−1 · · · s
dn+3−k

n+2−k sn+1−k| with 1 ≤ r ≤ dn+1 − 1, then u(1)

starts in an sn block and contains an sn+1−k block of the n-partition of s. Moreover,

u2 is a factor of (sr
ns

dn

n−1 · · · s
dn+3−k

n+2−k sn+1−k)
2Dn+1−k, which is a factor of

s2
n+1 = (sdn+1

n sdn

n−1 · · · s
dn+3−k

n+2−k sn+1−k)
2.

PROOF. (i) By similar arguments to those used in the proof of Theorem 6.1, the first
claim is obtained from the fact that |u| = r|sn| with 1 ≤ r ≤ dn+1, together with Lemma
6.6. For the second claim, one uses the fact that an sn block in which u(1) starts is followed
by the word sp

ns
dn

n−1 · · · s
dn+3−i

n+2−i sn+1−isn, for some i ∈ [2, k] and 0 ≤ p ≤ dn+1. Hence, we
have

sdn

n−1 · · · s
dn+3−i

n+2−i sn+1−isnG
−1
n,i−1 = sn(s

dn+2−i−1
n+1−i s

dn+1−i

n−i · · · s
dn+2−k

n+1−k sn−k)
−1snG

−1
n,i−1

= sn(Dn+1−iD
−1
n−k)

−1Dn+1−i

= snDn−k

= snsn−1G
−1
n−1,k−1

= sn−1snG
−1
n,1 (by Proposition 4.11)

= snsnv
−1,

where |v| = |sn| − |Dn−k|. Therefore, the assertion holds provided u(2) does not con-
tain the word sn−1sn(w−1Gn,1)

−1 for some non-empty proper prefix w of Gn,1. Indeed, if
sn−1sn(w−1Gn,1)

−1 ≺ u(2), then sn−1Dn−1w = Dn−kG̃n,1Dn−1w is a factor of u(2), where
w ≺p Gn,1. But this situation is absurd (by Proposition 6.11) since this word contains a
singular n-word of the first kind.

(ii) From Lemma 6.6, we can argue (as in the proof of Theorem 6.1) that u(1) begins
in an sn+1−i block that is followed by an sn block in the n-partition, or contains an
sn+1−i block that is followed by an sn block. However, in the first case, we see that
u would contain a singular word from the set Ω1

n+2−i, since u would contain sn+1−isn,
which has sn+1−isn+2−i as a prefix (see Proposition 6.7). This contradicts Proposition
6.11, and so only the second case can occur. By reasoning as above and using the fact
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that |u| = |sr
ns

dn

n−1 · · · s
dn+3−i

n+2−i sn+1−i|, u
(1) must start in the left-most sn block in the word

sr
ns

dn

n−1 · · · s
dn+3−i

n+2−i sn+1−isn,

which appears in the n-partition of s. Since Dn+1−i ≺p sn+2−i ≺p sn, u(1) ends within the
first |Dn+1−i| letters of the sn block to the right of the sn+1−i block. Otherwise, u would
contain a singular word w ∈ Ω1

n+2−i which contradicts Proposition 6.11. To the left of the

sn+1−i block, there is the word sdn+1

n sdn

n−1 · · · s
dn+3−k

n+2−k sn+1−k and, in view of the fact that

|u| = |sr
ns

dn

n−1 · · · s
dn+3−i

n+2−i sn+1−i| with 1 ≤ r ≤ dn+1, one deduces that there exists a p ∈ N

with 0 ≤ p ≤ |Dn+1−i| such that u(1) starts at position p in sr
ns

dn

n−1 · · · s
dn+3−i

n+2−i sn+1−isn.

This implies u2 ≺ v2Dn+1−i where v := sr
ns

dn

n−1 · · · s
dn+3−i

n+2−i sn+1−i. It remains to show that
v2Dn+1−i is contained in

(sdn+1

n sdn

n−1 · · · s
dn+3−i

n+2−i sn+1−i)
2Dn+1−i

which, in turn, is a factor of s. Indeed, this fact is easily deduced from Lemma 6.15.

(iii) The proof of this assertion is similar to that of (ii), but with i = k and 1 ≤ r ≤
dn+1 − 1. The details are left to the reader. 2

Lemma 6.17 For all n, r ∈ N+ and i ∈ [2, k], the word v := sr
ns

dn

n−1 · · · s
dn+3−i

n+2−i sn+1−i is
primitive.

PROOF. Suppose on the contrary that the given word v is not primitive, i.e., suppose
v = up for some non-empty word u and integer p ≥ 2. Then |v|aj

= p|u|aj
for each letter

aj ∈ Ak, i.e., p divides |v|aj
for each aj ∈ Ak. In particular, p divides

|v|a1
= r(Qn − Pn) + dn(Qn−1 − Pn−1) + · · ·+ (Qn+1−i − Pn+1−i)

= |v| − (rPn + dnPn−1 + · · ·+ dn+3−iPn+2−i + Pn+1−i),

by Proposition 3.4. Thus, p must also divide rPn + dnPn−1 + · · ·+ dn+3−iPn+2−i +Pn+1−i.
But gcd(|v|, rPn+dnPn−1+ · · ·+dn+3−iPn+2−i +Pn+1−i) = 1, which yields a contradiction;
whence p = 1, and therefore v is primitive. 2

Proof of Theorem 6.13 We simply prove that (27) and (29) hold as the elements of
the respective sets are mutually distinct (by Lemma 6.17), which implies (26) and (28).

(i) As shown previously, for each i ∈ [2, k], v := sdn+1

n sdn

n−1 · · · s
dn+3−i

n+2−i sn+1−isnG
−1
n,i−1 =

sdn+1+2
n Dn−k is a factor of s. Thus, by Lemma 6.16(i), it suffices to find all of the squares

of words u with |u| = r|sn| (1 ≤ r ≤ dn+1) that occur in the word v. In fact, one need only
consider occurrences of u2 starting in the left-most sn block of v, and the result easily
follows.

(ii) Let i ∈ [2, k − 1]. By Lemma 6.15, the word (sdn+1

n sdn

n−1 · · · s
dn+3−i

n+2−i sn+1−i)
2 is a factor

of s and it contains the word

v := (sr
ns

dn

n−1 · · · s
dn+3−i

n+2−i sn+1−i)
2Dn+1−i,
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for any r with 1 ≤ r ≤ dn+1. Therefore, u2 is a factor of s for each word u given by

u := Cj(s
r
ns

dn

n−1 · · · s
dn+3−i

n+2−i sn+1−i), 0 ≤ j ≤ |Dn+1−i|.

Conversely, if u2 ≺ s with |u| = |sr
ns

dn

n−1 · · · s
dn+3−i

n+2−i sn+1−i| for some 1 ≤ r ≤ dn+1,
then u2 ≺ v, by Lemma 6.16(ii). And, since |v| = 2|u| + |Dn+1−i|, we must have

u = Cj(s
r
ns

dn

n−1 · · · s
dn+3−i

n+2−i sn+1−i) for some j with 0 ≤ j ≤ |Dn+1−i|.

The case i = k is proved similarly, using Lemma 6.16(iii). 2

6.2 Cubes and higher powers

Our subsequent analysis of cubes and higher powers occurring in s is now an easy task
due to the above consideration of squares. Extending Theorem 6.13 (see Theorem 6.19
below), only requires the following lemma, together with arguments used in the proof of
Theorem 6.13.

Lemma 6.18 Let n ∈ N+ and suppose u3 ≺ s with |sn| ≤ |u| < |sn+1|. Then u3 does not
contain a singular word from the set Ω1

n+1−i for any i ∈ [1, k − 1].

PROOF. Suppose on the contrary that u3 = u(1)u(2)u(3) contains a singular word w ∈
Ω1

n+1−i for some i ∈ [1, k− 1]. By Proposition 6.11, w is not a factor of u(3), and therefore
every occurrence of w must begin in u(1) or u(2), both of which are followed by u again.
Accordingly, there exists a p ∈ N such that w starts at position p in both u(1) and
u(2). Reasoning, as in the proofs of Propositions 6.10 and 6.11, yields the contradiction
|u| ≥ |sn+1|. 2

Theorem 6.19 Let n, r, l ∈ N+, l ≥ 3.

(i) For 1 ≤ r ≤ dn+1,

p(|sr
n|; l) =





|sn| if 1 ≤ r < (dn+1 + 2)/l,

|Dn−k| + 1 if r = (dn+1 + 2)/l,

0 if (dn+1 + 2)/l < r ≤ dn+1.

(32)

In particular,

P(|sr
n|; l) =





{Cj(s
r
n) : 0 ≤ j ≤ |sn| − 1} if 1 ≤ r < (dn+1 + 2)/l,

{Cj(s
r
n) : 0 ≤ j ≤ |Dn−k|} if r = (dn+1 + 2)/l,

∅ if (dn+1 + 2)/l < r ≤ dn+1.

(33)

(ii) For 1 ≤ r ≤ dn+1 and i ∈ [2, k] (with r 6= dn+1 if i = k), we have

p(|sr
ns

dn

n−1 · · · s
dn+3−i

n+2−i sn+1−i|; l) = 0. (34)

PROOF. (i) Suppose u ≺ s with |u| = r|sn| for some r, 1 ≤ r ≤ dn+1, and consider an
occurrence of ul = u(1)u(2) · · ·u(l) in s, l ≥ 3. By Lemma 6.16(i), u(1)u(2) begins in an sn
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block of the n-partition of s, and by Lemma 6.18, ul does not contain a singular n-word of
the first kind. So, as in the proof of Theorem 6.13(i), one infers that ul is contained in the
word v := sdn+1+2

n Dn−k ≺ s, and the rest of the proof follows in much the same fashion.

(ii) In this case, assume u3 = u(1)u(2)u(3) occurs in s. By (ii) and (iii) of Lemma 6.16,
u(1) begins in an sn block and contains an sn+1−i block that is followed by an sn block
in the n-partition of s. Accordingly, u3 contains the word sn+1−isn, and hence contains a
singular word w ∈ Ω1

n+2−i, which contradicts Lemma 6.18. 2

6.3 Examples

Example 6.20 Let us demonstrate Theorems 6.13 and 6.19 with an explicit example.
Consider the standard episturmian word s over A3 = {a1, a2, a3} ≡ {a, b, c} with periodic
directive word (abcca)ω. We have (dn)n≥1 = (1, 1, 2, 2, 1, 2), and hence

s1 = ab, |s1| = 2;

s2 = abac, |s2| = 4;

s3 = abacabacaba, |s3| = 11;

s4 = abacabacabaabacabacabaabacabacab, |s4| = 32;

s5 = abacabacabaabacabacabaabacabacababacabacabaabacabacabaabac, |s5| = 58.

Also, D0 = ε, D1 = a, D2 = abacaba, and D3 = abacabacabaabacabacaba.

We shall simply consider squares and cubes of words of length m occurring in s with
|s3| ≤ m < |s6|. By Theorem 6.1, we need only consider lengths m in the set

S := {|s3|, 2|s3|, |s4|, |s5|, 2|s5|, |s3s2|, |s
2
3s2|, |s3s

2
2s1|, |s4s3|, |s5s4|, |s

2
5s4|, |s5s4s3|}.

According to Theorem 6.13(i), for 3 ≤ n ≤ 5, we have

p(|s3|; 2) = |s3| = 11,

p(2|s3|; 2) = |D0| + 1 = 1,

p(|s4|; 2) = |s4| = 32,

p(|s5|; 2) = |s5| = 58,

p(2|s5|; 2) = |D2| + 1 = 8.

Also, part (ii) of Theorem 6.13 gives

p(|s3s2|; 2) = |D2| + 1 = 8,

p(|s2
3s2|; 2) = |D2| + 1 = 8,

p(|s3s
2
2s1|; 2) = |D1| + 1 = 2,

p(|s4s3|; 2) = |D3| + 1 = 23,

p(|s5s4|; 2) = |D4| + 1 = 34,

p(|s2
5s4|; 2) = |D4| + 1 = 34,

p(|s5s4s3|; 2) = |D3| + 1 = 23.
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Furthermore, from Theorem 6.19, one has

p(|s3|; 3) = |s3| = 11,

p(2|s3|; 3) = 0,

p(|s4|; 3) = |D1| + 1 = 2,

p(|s5|; 3) = |s5| = 58,

p(2|s5|; 3) = 0,

and p(m; 3) = 0 for all other lengths m ∈ S.

For instance, the sole factor of s of length 2|s3| = 22 that has a square in s is

s2
3 = abacabacabaabacabacaba,

and the eight squares of length 2|s3s2| = 30 are the squares of the first eight conjugates of
s3s2 = abacabacabaabac; namely

(abacabacabaabac)2, (bacabacabaabaca)2, . . . , (cabaabacabacaba)2.

The only factors of length |s4| = 32 that have a cube in s are the first two conjugates of
s4, i.e.,

s3
4 ≺ s and (C1(s4))

3 = (a−1s4a)
3 ≺ s.

Example 6.21 The k-bonacci word is the standard episturmian word ηk ∈ Aω
k with

directive word (a1a2 · · ·ak)
ω. Since all di = 1, we have sn = sn−1sn−2 · · · sn−k for all n ≥ 1

(and the lengths |sn| are the k-bonacci numbers). Thus, for fixed n ∈ N+ and l ≥ 2, if
wl ≺ ηk with |sn| ≤ |w| < |sn+1|, then we necessarily have |w| = |sn|+|sn−1|+· · ·+|sn+1−i|
for some i ∈ [1, k − 1] (by Theorem 6.1). The preceding main theorems reveal that

P(1; 2) = {a1}, P(|sn|; 2) = C(sn) = Ω0
n and P(|sn|; 3) = {Cj(sn) : 0 ≤ j ≤ |Dn−k|}.

Furthermore, for each i ∈ [2, k − 1], we have

P(|snsn−1 · · · sn+1−i|; 2) = {Cj(snsn−1 · · · sn+1−i) : 0 ≤ j ≤ |Dn+1−i|}.

All other P(|w|; l) = ∅, l ≥ 2. In particular, k-bonacci words are 4-power free.

7 Concluding remarks

Using the results of Section 6, it is possible to determine the exact number of distinct
squares in each building block sn, which extends Fraenkel and Simpson’s result [10] con-
cerning squares in the finite Fibonacci words. Such work forms part of the present author’s
PhD thesis [13, Chapters 6 and 7].

Theorems 6.12, 6.13 and 6.19 also suffice to describe all integer powers occurring in any
(episturmian) word t ∈ Aω

k that is equivalent to s. (See [15, Theorem 3.10] for a definition
of such t.) The problem of determining all integer powers occurring in general standard
episturmian words (with not all di necessarily positive) remains open.
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