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∗
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Abstract

In this paper, we survey the rich theory of infinite episturmian words which generalize to
any finite alphabet, in a rather resembling way, the well-known family of Sturmian words on
two letters. After recalling definitions and basic properties, we consider episturmian mor-
phisms that allow for a deeper study of these words. Some properties of factors are described,
including factor complexity, palindromes, fractional powers, frequencies, and return words.
We also consider lexicographical properties of episturmian words, as well as their connection
to the balance property, and related notions such as finite episturmian words, Arnoux-Rauzy
sequences, and “episkew words” that generalize the skew words of Morse and Hedlund.

Keywords: combinatorics on words; episturmian words; Arnoux-Rauzy sequences; Sturmian
words; episturmian morphisms.

MSC (2000): 68R15.

1 Introduction

1.1 From Sturmian to episturmian

Most renowned amongst the branches of combinatorics on words is the theory of infinite binary
sequences called Sturmian words, which are fascinating in many respects, having been studied from
combinatorial, algebraic, and geometric points of view. Their beautiful properties are related
to many fields such as Number Theory, Geometry, Symbolic Dynamical Systems, Theoretical
Physics, and Theoretical Computer Science (see [7, 83, 96] for recent surveys).

Since the seminal works of Morse and Hedlund [91], Sturmian words have been shown to
admit numerous equivalent definitions and characterizations. For instance, it is well known that
an infinite word w over {a, b} is Sturmian if and only if w is aperiodic and balanced: for any two
factors u, v of w of the same length, the number of a’s in each of u and v differs by at most
1. Sturmian words are also characterized by their factor complexity function (which counts the
number of distinct factors of each length): they have exactly n + 1 distinct factors of length n
for each n. In this sense, Sturmian words are precisely the aperiodic infinite words of minimal
factor complexity since, as is well known, an infinite word is ultimately periodic if and only if
it has less than n + 1 factors of length n for some n (see [37]). Many interesting properties of
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Sturmian words can be attributed to their low complexity, which induces certain regularities in
such words without, however, making them periodic. Sturmian words can also be geometrically
realized as cutting sequences by considering the sequence of ‘cuts’ in an integer grid made by a
line of irrational slope (see for instance [38, 13]). They also provide a symbolic coding of the orbit
of a point on a circle with respect to a rotation by an irrational number (see [91, 4]).

All of the above characteristic properties of Sturmian words lead to natural generalizations
on arbitrary finite alphabets. In one direction, the balance property naturally extends to an
alphabet with more than two letters (e.g., see [68, 110, 115]) as does the following generalized
balance property that also characterizes Sturmian words (see [49, 1]): the difference between the
number of occurrences of a word u in any pair of factors of the same length is at most 1. In another
direction, we could consider relaxing the minimality condition for the factor complexity p(n). For
example, quasi-Sturmian words are infinite words for which there exist two positive integers N
and c such that n+1 ≤ p(n) ≤ n+c for all n ≥ N . This generalization was introduced in [5] when
studying the transcendence of certain continued fraction expansions. See also [31, 36, 66, 105] for
similar extensions of Sturmian words with respect to factor complexity. From the geometric point
of view, cutting sequences naturally generalize to trajectories in the hypercube billiard (e.g., see
[25]), and codings of rotational orbits carry over to codings of interval exchange transformations
(e.g., see [18]).

Two other very interesting natural generalizations of Sturmian words are Arnoux-Rauzy se-
quences [12, 97] and episturmian words [43, 73], which we will now define.

From the factor complexity of Sturmian words, it immediately follows that any Sturmian word
is over a 2-letter alphabet and has exactly one left special factor of each length. A factor u of a
finite or infinite word w is said to be left special (resp. right special) in w if there exists at least
two distinct letters a, b such that au and bu (resp. ua, ub) are factors of w. Extending the left
special property of Sturmian words, a recurrent infinite word w over a finite alphabet A is said
to be an Arnoux-Rauzy sequence (or a strict episturmian word) if it has exactly one left special
factor and one right special factor of each length, and for every left (resp. right) special factor u
of w, xu (resp. ux) is a factor of w for all letters x ∈ A. A noteable property that is shared by
Sturmian words and Arnouxy-Rauzy sequences is their closure under reversal, i.e., if u is a factor
of such a word, then its reversal is also a factor. This nice property inspired Droubay, Justin, and
Pirillo’s generalization of Sturmian words in [43]: an infinite word is episturmian if it is closed
under reversal and has at most one left special factor of each length. Sturmian, Arnoux-Rauzy,
and episturmian words all have standard (or characteristic) elements, which are those having all
of their left special factors as prefixes. Within these families of words, standard words are good
representatives in the sense that an infinite word belongs to one such family if and only if it has
the same set of factors as some standard word in that family.

From the definitions, it is clear that the family of Arnoux-Rauzy sequences is a particular
subclass of the family of episturmian words. More precisely, episturmian words are composed of
the Arnoux-Rauzy sequences, images of the Arnoux-Rauzy sequences by episturmian morphisms,
and certain periodic infinite words (see Section 5). In the 2-letter case, Arnoux-Rauzy sequences
are exactly the Sturmian words whereas episturmian words include all recurrent balanced words,
i.e., periodic balanced words and Sturmian words.

The study of episturmian words and Arnoux-Rauzy sequences has enjoyed a great deal of
popularity in recent times, owing mostly to the many properties that they share with Sturmian
words. In this paper we survey the purely combinatorial work on episturmian words, beginning
with their definition and basic properties in Section 2. Then, in Section 3, we recall episturmian
morphisms which allow for a deeper study of episturmian words. In particular, any episturmian
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word is the image of another episturmian word by some so-called pure episturmian morphism.
Even more, any episturmian word can be infinitely decomposed over the set of pure episturmian
morphisms. This last property allows an episturmian word to be defined by one of its morphic
decompositions or, equivalently, by a certain directive word, which is an infinite sequence of rules
for decomposing the given episturmian word by morphisms. In Section 4 we consider notions
such as shifts, spins, and block-equivalence in connection with directive words, which allow us
to study when two different spinned infinite words direct the same episturmian word. We also
consider periodic and purely morphic episturmian words. In Section 5, our discussion briefly turns
to Arnoux-Rauzy sequences and finite episturmian words. Following this, we study in Section 6
some properties of factors of episturmian words (and Arnoux-Rauzy sequences), including factor
complexity, palindromes, fractional powers, frequencies, and return words. Lastly, we consider
more recent work involving lexicographic order and the balance property (including Fraenkel’s
conjecture).

1.2 Notation & terminology

We assume the reader is familiar with combinatorics on words and morphisms (e.g., see [82, 83]).
In this section, we recall some basic definitions and properties relating to episturmian words which
are needed throughout the paper. For the most part, we follow the notation and terminology of
[43, 73, 75, 62].

Let A denote a finite alphabet, i.e., a non-empty finite set of symbols called letters. A finite
word over A is a finite sequence of letters from A. The empty word ε is the empty sequence. Under
the operation of concatenation, the set A∗ of all finite words over A is a free monoid with identity
element ε and set of generators A. The set of non-empty words over A is the free semigroup
A+ := A∗ \ {ε}.

A right-infinite (resp. left-infinite, bi-infinite) word over A is a sequence indexed by N+

(resp. Z \ N
+, Z) with values in A. For instance, a left-infinite word is represented by u =

· · · b−2b−1b0 and a right-infinite word by v = b1b2b3 · · · where bi ∈ A. The concatenation of u

and v gives the bi-infinite word u.v = · · · b−2b−1b0.b1b2b3 · · · with a dot written between b0 and
b1 to avoid ambiguity. For easier reading, infinite words are hereafter typically typed in boldface
to distinguish them from finite words.

The shift map T is defined for bi-infinite words b = (bi)i∈Z by T(b) = (bi+1)i∈Z and its k-th
iteration is denoted by Tk. This extends to right-infinite words for k ≥ 0 and left-infinite words
for k ≤ 0. For finite words w ∈ A∗, the shift map T acts circularly, i.e., if w = xv where x ∈ A,
then T(w) = vx.

The set of all right-infinite words over A is denoted by Aω, and we define A∞ := A∗ ∪ Aω.
An ultimately periodic right-infinite word can be written as uvω = uvvv · · · , for some u, v ∈ A∗,
v 6= ε. If u = ε, then such a word is periodic. A right-infinite word that is not ultimately periodic
is said to be aperiodic.

Given a finite word w = x1x2 · · · xm ∈ A∗ with each xi ∈ A, the length of w, denoted by |w|,
is equal to m. By convention, the empty word ε is the unique word of length 0. The number
of occurrences of a letter a in w is denoted by |w|a. If |w|a = 0, then w is said to be a-free.
The reversal w̃ of w is its mirror image: w̃ = xmxm−1 · · · x1, and if w = w̃, then w is called a
palindrome. The reversal operator naturally extends to bi-infinite words; that is, the reversal of
the bi-infinite word b = l.r, with l left-infinite and r right-infinite, is given by b̃ = r̃.̃l.

A finite word w is a factor of a finite or infinite word z if z = uwv for some words u, v (which
are finite or infinite depending on z). In the special case u = ε (resp. v = ε), we call w a prefix
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(resp. suffix ) of z. We use the notation p−1w (resp. ws−1) to indicate the removal of a prefix p
(resp. suffix s) of a finite word w. Note that a prefix or suffix u of a finite word w is said to be
proper if u 6= w. A factor u of a finite or infinite word w is right (resp. left) special if ua, ub
(resp. au, bu) are factors of w for some letters a, b ∈ A, a 6= b.

For any finite or infinite word w, F (w) denotes the set of all its factors. Moreover, the alphabet
of w is Alph(w) := F (w)∩A and, if w is infinite, we denote by Ult(w) the set of all letters occurring
infinitely often in w. Any two infinite words x, y are said to be factor-equivalent if F (x) = F (y),
i.e., if x and y have the same set of factors.

A factor of an infinite word x is recurrent in x if it occurs infinitely often in x, and x itself is
said to be recurrent if all of its factors are recurrent in it. For a bi-infinite word to be recurrent,
any factor must occur infinitely often to the left and to the right. An infinite word is said to be
uniformly recurrent if any factor occurs infinitely many times in it with bounded gaps [37].

A morphism ϕ on A is a map from A∗ to A∗ such that ϕ(uv) = ϕ(u)ϕ(v) for any words u,
v over A. A morphism on A is entirely defined by the images of letters in A. All morphisms
considered in this paper will be non-erasing: the image of any non-empty word is never empty.
Hence the action of a morphism ϕ on A∗ can be naturally extended to infinite words; that is, if
x = x1x2x3 · · · ∈ Aω, then f(x) = f(x1)f(x2)f(x3) · · · . An infinite word x can therefore be a
fixed point of a morphism ϕ, i.e., ϕ(x) = x. If ϕ is a (non-erasing) morphism such that ϕ(a) = aw
for some letter a ∈ A and w ∈ A+, then ϕn(a) is a proper prefix of the word ϕn+1(a) for each
n ∈ N, and the limit of the sequence (ϕn(a))n≥0 is the unique infinite word:

w = lim
n→∞

ϕn(a) = ϕω(a) (= awϕ(w)ϕ2(w)ϕ3(w) · · · ).

Clearly, w is a fixed point of ϕ and we say that w is generated by ϕ. Furthermore, an infinite
word generated by a morphism is said to be purely morphic.

In what follows, we will denote the composition of morphisms by juxtaposition as for concate-
nation of words.

2 Definitions & basic properties

In the initiating paper [43], episturmian words were defined as an extension of standard epis-
turmian words, which were first introduced as a generalization of standard (or characteristic)
Sturmian words using iterated palindromic closure (a construction due to de Luca [41]). Here
we choose instead to begin with the following definition for deriving the main basic properties of
episturmian words.

Definition 2.1. [43] An infinite word t ∈ Aω is episturmian if F (t) is closed under reversal and
t has at most one left special factor (or equivalently, right special factor) of each length. Moreover,
an episturmian word is standard if all of its left special factors are prefixes of it.

Note. We can equivalently consider left or right special factors in the first part of the above
definition since, by closure under reversal, a factor is left (resp. right) special if and only if its
reversal is right (resp. left) special.

Remark 2.2. When |A| = 2, Definition 2.1 gives the (aperiodic) Sturmian words, as well as the
periodic balanced infinite words (also known as the periodic Sturmian words). See for instance [62]
or Section 7.1.
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The following theorem collects together some useful characteristic properties of standard epis-
turmian words. Before stating it, let us first recall the some definitions.

Given two palindromes p, q, we say that q is a central factor of p if p = wqw̃ for some w ∈ A∗.
The palindromic right-closure w(+) of a finite word w is the (unique) shortest palindrome having
w as a prefix (see [41]). That is, w(+) = wv−1w̃ where v is the longest palindromic suffix of w.
For example, (race)(+) = race car. The iterated palindromic closure function [71], denoted by
Pal, is defined recursively as follows. Set Pal(ε) = ε and, for any word w and letter x, define
Pal(wx) = (Pal(w)x)(+). For instance, Pal(abc) = (Pal(ab)c)(+) = (abac)(+) = abacaba. (See
Sections 4.1 and 6.2.1 for further insight about palindromic closure.)

Theorem 2.3. For an infinite word s ∈ Aω, the following properties are equivalent.

i) s is standard episturmian.

ii) Any first occurrence of a palindrome in s is a central factor of some palindromic prefix of s

(property Pi).

iii) If w is a prefix of s, then w(+) is also a prefix of s (property Al).

iv) There exists an infinite word ∆ = x1x2 · · · (xi ∈ A), called the directive word of s, such
that s = limn→∞ Pal(x1 · · · xn).

Remark 2.4. The palindromes Pal(x1 · · · xn) are very often denoted by un+1 in the literature
(and we will sometimes use the latter notation when convenient). By construction, these palin-
dromes are exactly the palindromic prefixes of s. Moreover, s is uniquely determined by the
directive word ∆.

Proof of Theorem 2.3. i) ⇒ ii): Let s = upt, u ∈ A∗, t ∈ Aω showing the first occurrence of
some palindrome p in s. Suppose p is not the central factor of a palindromic prefix. Then we have
s = vxwpw̃yt′, x 6= y ∈ A. By the reversal property, ywpw̃x ∈ F (s), thus wpw̃ is left special,
hence is a prefix of s. Thus p has another occurrence strictly on the left of the considered one, a
contradiction.

i) ⇒ iii): If iii) is false, let w = ux, with u ∈ A∗ and x ∈ A, be the shortest prefix of s such
that w(+) is not a prefix of s . Thus u(+) is a prefix of s. If u were not a palindrome then w would
be a prefix of u(+); whence w(+) = u(+), a contradiction. Thus u is a palindrome. Now let q be the
longest palindromic suffix of w. Then w(+) = w1qw̃1 = ww̃1 where w = w1q, and w(+) = w1qfyg
and w1qfz is a prefix of s for some y 6= z ∈ A, f , g ∈ A∗. Hence yf̃q ∈ F (w̃) ⊂ F (s) and
zf̃q ∈ F (s). Therefore f̃ q is a left special prefix of s. As qf is a prefix of w̃ = xu, x−1qf is a
prefix of u, hence x−1qfα is a prefix of u for some letter α. So we have x−1qfα = f̃ q, whence
α = x and qfx = xf̃q. This word is a palindrome and, as it is a suffix of w, this contradicts the
minimality of |q|.

iii) ⇒ iv): Trivial.
At this stage, we have proved that standard episturmian words satisfy ii), iii), iv). The equiv-

alence of these three properties is proved in [43, Theorem 1]. Finally, if s satisfies them, then
F (s) is closed under reversal and by [43, Proposition 5] all of its left special factors are prefixes
of it, thus s is standard episturmian. ⊔⊓

Remark 2.5. Hereafter, we adopt “epistandard” as a shortcut for “standard episturmian”, as in
[64, 99, 101]. Also, unless stated otherwise, the notation ∆ = x1x2x3 · · · (xi ∈ A) will remain for
the directive word of an epistandard word s.
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Example 2.6. The epistandard word directed by ∆ = (abc)ω is known as the Tribonacci word
(or Rauzy word [97]); it begins in the following way:

r = abacabaabacababacabaabacabacabaabaca · · · ,

where each palindromic prefix Pal(x1 · · · xn) is followed by an underlined letter xn. More generally,
for k ≥ 2, the k-bonacci word is the epistandard word over {a1, . . . , ak} directed by (a1a2 · · · ak)

ω

(e.g., see [59]).

Note. For recent studies of the properties of Tribonacci word, see for instance [57, 107] and the
chapter by Allouche and Berthé in [84].

2.1 Equivalence classes

In [43], an infinite word t ∈ Aω was said to be episturmian if F (t) = F (s) for some epistandard
word s. This definition is equivalent to Definition 2.1 by Theorem 5 in [43]. Moreover, it was
proved in [43] that episturmian words are uniformly recurrent, by showing that this nice property
is implied by iv) of Theorem 2.3. Thus, ultimately periodic episturmian words are (purely)
periodic. The aperiodic episturmian words are exactly those episturmian words with exactly one
left special factor of each length.

In each equivalence class of episturmian words (i.e., same set of factors), there is one epistan-
dard word in the aperiodic case and two in the periodic case, except if this word is aω with a
a letter. For example, s1 = (abac)ω has directive word ∆1 = abcω and s2 = (acab)ω is directed
by ∆2 = acbω. Both s1 and s2 are standard with the same factors. Theorem 4.8 in Section 4.3
demonstrates why this is true in general (see also Remark 4.10).

2.2 Bi-infinite episturmian words

Definition 2.1 can be extended to bi-infinite words, in which case we must assume they are recur-
rent. (As is well known, recurrence follows automatically from closure under reversal in the case of
right-infinite words; see for instance [29] for a proof of this fact.) Bi-infinite words are sometimes
more natural because in particular they can be shifted in both directions, allowing for simpler
formulations. More specifically, a (right-infinite) episturmian word t can be prolonged infinitely
to the left with the same set of factors, i.e., remaining in the same equivalence class. There are
several or one such prolongation according to whether or not t = Ti(s), with s epistandard and
i ≥ 0 (see [73, 75]).

Note. Hereafter, ‘infinite word’ should be taken to mean a right-infinite word, whereas left-infinite
and bi-infinite words will be explicitly referred to as such.

2.3 Strict episturmian words

An epistandard word s ∈ Aω, or any factor-equivalent (episturmian) word t, is said to be B-strict
(or k-strict if |B| = k, or strict if B is understood) if Alph(∆) = Ult(∆) = B ⊆ A. That is,
an episturmian word is strict if every letter in its alphabet occurs infinitely often in its directive
word.

The k-strict episturmian words are precisely the episturmian words t having exactly one left
special factor of each length and for which any left special factor u in t has k = |A| different
left extensions in t (i.e., xu is a factor of t for all letters x in the k-letter alphabet A). As
a consequence, k-strict episturmian words have factor complexity (k − 1)n + 1 for each n ∈ N
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(see [43, Theorem 7]); such words are exactly the k-letter Arnoux-Rauzy sequences, the study of
which began in [12] (see also [74, 105] for example). In particular, the 2-strict episturmian words
correspond to the (aperiodic) Sturmian words. Arnoux-Rauzy sequences will be discussed further
in Section 5.

Remark 2.7. A noteworthy fact is that an episturmian word is periodic if and only if |Ult(∆)| = 1
(see [73, Proposition 2.9]). The exact form of a periodic episturmian word is given by Theorem 4.15
in Section 4.4. We first need to consider episturmian morphisms.

3 Episturmian morphisms

From Lemma 4 in [43], if s is epistandard with first letter a = x1, then a is separating for s and
its factors, i.e., any factor of s of length 2 contains the letter a. Any episturmian word t that is
factor-equivalent to s also has separating letter a, and hence can be factorized with a code:

{
{a} ∪ a(A \ {a}) if t begins with a,

{a} ∪ (A \ {a})a otherwise.

This leads to episturmian morphisms, which were introduced by Justin and Pirillo [73] in order
to study deeper properties of episturmian words. As we shall see in Section 3.2, episturmian mor-
phisms on an alphabet consisting of at least two letters are precisely the morphisms that preserve
the set of aperiodic episturmian words (i.e., the morphisms that map aperiodic episturmian words
onto aperiodic episturmian words). Such morphisms naturally generalize to any finite alphabet
the Sturmian morphisms on two letters. A morphism ϕ is said to be Sturmian if ϕ(s) is Sturmian
for any Sturmian word s. The set of Sturmian morphisms over {a, b} is closed under composition,
and consequently it is a submonoid of the endomorphisms of {a, b}∗. Moreover, it is well known
that the monoid of Sturmian morphisms is generated by the three morphisms: (a 7→ ab, b 7→ a),
(a 7→ ba.b 7→ a), (a 7→ b, b 7→ a) and that Sturmian morphisms are precisely the morphisms that
map Sturmian words onto Sturmian words (see [16, 87]).

3.1 Generators & monoids

By definition (see [43, 73]), the monoid of all episturmian morphisms E is generated, under
composition, by all the morphisms:

• ψa: ψa(a) = a, ψa(x) = ax for any letter x 6= a;

• ψ̄a: ψ̄a(a) = a, ψ̄a(x) = xa for any letter x 6= a;

• θab: exchange of letters a and b.

Note. This system of generators is far from minimal, e.g., ψa = θabψbθab, but gives simpler
formulae.

Moreover, the monoid of so-called epistandard morphisms S is generated by all the ψa and the
θab, and the monoid of pure episturmian morphisms Ep (resp. pure epistandard morphisms Sp) is
generated by the ψa and ψ̄a only (resp. the ψa only). The monoid P of the permutation morphisms
(i.e., the morphisms ϕ such that ϕ(A) = A) is generated by all the θab. The importance of the
monoid of pure episturmian morphisms will become clearer in the next section where we shall see
that such morphisms are strongly linked to spinned directive words of episturmian words, which
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can be viewed as infinite sequences of rules for decomposing episturmian words by morphisms
(see Theorems 3.1 and 3.3, to follow). In particular, any episturmian word is the image of another
episturmian word by some pure episturmian morphism.

The following diagram illustrates the inclusions between the monoids defined above.

{Id}

Sp

P

Ep

S

E

Semidirect products: S = Sp ⋊ P, E = Ep ⋊ P

We note in particular that the monoid E is a semidirect product of the submonoids of its
pure morphisms and of its permutations. Consequently, any episturmian morphism ϕ ∈ E can be
expressed in a unique way as ϕ = πµ = µ′π, where µ, µ′ are pure episturmian morphisms and π
is a permutation.

Note. The episturmian morphisms are exactly the Sturmian morphisms when |A| = 2.

Clearly, all episturmian morphisms on A can be viewed as automorphisms of the free group
generated by A (e.g., see [57, 65, 99, 116]) and it follows that they are injective and that the
monoids E and S are left cancellative (see [99, Lemma 7.2]) which means that for any episturmian
morphisms f, g, h, if fg = fh then g = h. Other fundamental properties of episturmian morphisms
will be discussed in the next section and in Section 4. For an in-depth study of some further
properties of these morphisms, the interested reader is referred to Richomme’s paper [99], in which
he considers invertibility, presentation, cancellativity, unitarity, characterization by conjugacy, and
so on. Most of the results in [99] naturally generalize those already known for Sturmian morphisms,
but some new ones are also proved, such as a characterization of episturmian morphisms that
preserve palindromes. In [100, 103], Richomme also characterized the episturmian morphisms
that preserve finite and infinite Lyndon words and those that preserve a lexicographic order on
words.

3.2 Relation with episturmian words

We now state two insightful characterizations of epistandard and episturmian words, which show
that any episturmian word can be infinitely decomposed over the set of pure episturmian mor-
phisms.

In the ‘standard’ case:

Theorem 3.1. [73, Corollary 2.7] An infinite word s ∈ Aω is epistandard if and only if there
exists an infinite word ∆ = x1x2 · · · over A and a sequence (s(i))i≥0 of recurrent infinite words
such that s(0) = s and s(i−1) = ψxi

(s(i)) for i > 0. ⊔⊓

8



In [73], Justin and Pirillo showed that the infinite word ∆ appearing in the above theorem
is exactly the directive word of s that arises from the equivalent definition of epistandard words
given in Theorem 2.3. In the binary case, the directive word ∆ is related to the continued fraction
expansion of the slope of the straight line represented by a standard word (see Chapter 2 in [83]).

Example 3.2. Recall the Tribonacci word r, which has directive word ∆ = (abc)ω. We have
r = ψa(r

(1)), where r(1) is directed by T(∆) = (bca)ω . Notice that r(1) = π(r) with π = (abc); a
very particular case.

More generally, the following result (Theorem 3.3) extends the notion of a directive word to
all episturmian words. Before stating the theorem, we need to introduce some more notation.
First we define a new alphabet, Ā := {x̄ | x ∈ A}. A letter x̄ ∈ Ā is considered to be x with
spin 1, whilst x itself has spin 0. The notion of a spin provides a convenient way to call upon
the elementary pure episturmian morphisms ψx and ψ̄x. Moreover, as well shall see in Section 4,
it allows us to derive many properties of episturmian words from episturmian morphisms (as a
consequence of the next theorem). This approach is used for instance in [23, 60, 81, 101, 102, 105]
and of course in the papers of Justin et al.

A finite or infinite word over A ∪ Ā is said to be a spinned word. Given a finite or infinite
word w = x1x2 · · · over A, we sometimes denote by w̆ = x̆1x̆2 · · · any spinned word such that
x̆i = xi if xi has spin 0 and x̆i = x̄i if xi has spin 1. Such a word w̆ is called a spinned version
of w.

Theorem 3.3. [73, Theorem 3.10] An infinite word t ∈ Aω is episturmian if and only if there
exists a spinned infinite word ∆̆ = x̆1x̆2x̆3 · · · over A ∪ Ā and an infinite sequence (t(i))i≥0 of
recurrent infinite words such that

t(0) = t and t(i−1) = ψxi
(t(i)) or t(i−1) = ψ̄xi

(t(i)) for all i > 0,

according to the spin 0 or 1 of x̆i, respectively.

For any epistandard word (resp. episturmian word) t and infinite word ∆ (resp. spinned infinite
word ∆̆) satisfying the conditions of the Theorem 3.1 (resp. Theorem 3.3), we say that ∆ (resp. ∆̆)
is a directive word (resp. a (spinned) directive word) for t or t is directed by ∆ (resp. ∆̆).

Remark 3.4. It follows immediately from Theorem 3.3 that if t is an episturmian word directed
by a spinned infinite word ∆̆, then each t(n) (as defined in the theorem) is an episturmian word
directed by Tn(∆̆) = x̆n+1x̆n+2x̆n+3 · · · .

The following important fact links Theorems 3.1 and 3.3.

Remark 3.5. [73] If t is an episturmian word directed by a spinned version ∆̆ of an infinite word
∆ over A, then t is factor-equivalent to the (unique) epistandard word s directed by ∆.

Moreover, with the same notation as in the above remark, the episturmian word t is periodic
if and only if the epistandard word s is periodic, and this holds if and only if |Ult(∆)| = 1 (see
Remark 2.7 or Theorem 4.15 later).

Example 3.6. Consider the episturmian word m = baabacabab · · · directed by ∆̆ = ābc̄(abc)ω .
Observe that m is factor-equivalent to the Tribonacci word r, and we have

m = ψ̄a(m
(1)) = ψ̄aψb(m

(2)) = ψ̄aψbψ̄c(m
(3)),

where m(3) is directed by T3(∆̆) = (abc)ω, i.e., m(3) = r.
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Example 3.7. We now consider an example where the condition that the t(i) in Theorem 3.3
are recurrent is not satisfied. Let t = dr = dabacabaabacaba · · · where r is the Tribonacci word
and d is a letter different from a, b, c. Then t = ψ̄a(t

(1)), t(1) = ψ̄b(t
(2)), t(2) = ψ̄c(t

(3)), and
so on; however, these t(i) are not recurrent (and t is not episturmian). The infinite word t = dr
is actually an example of an episkew word, i.e., a non-recurrent infinite word having episturmian
factors. Such words are discussed in more detail in Section 7.2.

Remark 3.8. Let us point out that the construction of epistandard words by palindromic closure
(given in Theorem 2.3) extends to all episturmian words: when x̆n = x̄n write xn on the left and
use palindromic left-closure. Here m (from the above example) appears step by step on the right:

a ·
a · ba

abaca · ba
abaca · baabacaba

When an episturmian word is aperiodic, we have the following fundamental link between the
words (t(n))n≥0 and the spinned infinite word ∆̆ occurring in Theorem 3.3: if an is the first
letter of t(n), then µx̆1···x̆n

(an) is a prefix of t and the sequence (µx̆1···x̆n
(an))n≥1 is not ultimately

constant (since ∆̆ is not ultimately constant), then t = limn→∞ µx̆1···x̆n
(an). This fact is a slight

generalization of a result of Risley and Zamboni [105, Prop. III.7] on S-adic representations for
standard Arnoux-Rauzy sequences. See also the recent paper [23] for S-adic representations of
Sturmian words. Note that S-adic dynamical systems were introduced by Ferenczi [50] as minimal
dynamical systems (e.g., see [96]) generated by a finite number of substitutions. In the case of
episturmian words, the notion itself is actually a reformulation of the well-known Rauzy rules, as
studied in [98]. In fact, it is well known that the subshift of an aperiodic episturmian word t (i.e.,
the topological closure of the shift orbit of t) is a minimal dynamical system, i.e., it consists of
all the episturmian words with the same set of factors as t.

It is not hard to see that when |A| ≥ 2 a morphism on A is episturmian (resp. epistandard)
if and only if it preserves the set of aperiodic episturmian (resp. epistandard) words (see [73]).
Even more:

Theorem 3.9. [73, Theorem 3.13] When |A| ≥ 2, a morphism ϕ on A is episturmian (resp. epi-
standard) if there exist strict episturmian (resp. epistandard) words m, t such that m = ϕ(t). ⊔⊓

Purely morphic episturmian words (i.e., those generated by morphisms) are discussed further
in Section 4, where we consider the relationship between spins and the shifts that they induce.
These ideas were used in [75] to obtain a complete answer to the question: if an episturmian
word is purely morphic, which shifts of it, if any, are also purely morphic? (See Theorem 4.19, to
follow.) Such rigidity issues are discussed in more detail in Sections 4.4 and 8.

In [75], Justin and Pirillo also made use of bi-infinite words, which often allow for more natural
formulations. Indeed, the characterization (Theorem 3.3) of right-infinite episturmian words by
a sequence (t(i))i≥0 extends to bi-infinite episturmian words, with all the t(i) now bi-infinite
episturmian words. That is, as for right-infinite episturmian words, we have bi-infinite words of
the form l(i).r(i) where l(i) is a left-infinite episturmian word and r(i) is a right-infinite episturmian
word. Moreover, if the bi-infinite episturmian word b = l.r is directed by ∆̆ with associated bi-
infinite episturmian words b(i) = l(i).r(i), then r is directed by ∆̆ with associated right-infinite
episturmian words r(i).
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4 Spins, shifts, and directive words

In this section, we discuss in more detail the notion of spins, the shifts they induce, and the
concept of block-equivalence in connection with directive words. These notions allow us to study
in particular when two different spinned infinite words direct the same episturmian word. Indeed,
as we shall see in Section 4.3, the correspondence between episturmian words and spinned directive
words is not one-to-one.

4.1 Notation for pure episturmian morphisms

For a ∈ A, let µa = ψa and µā = ψ̄a. This operator µ can be naturally extended (as done in [73])
to a pure episturmian morphism: for any spinned finite word w̆ = x̆1 · · · x̆n over A∪ Ā, we define
µw̆ := µx̆1

· · ·µx̆n
and set µε equal to the identity morphism Id.

Viewing w = x1x2 · · · xn as a prefix of the directive word ∆ = x1x2x3 · · · ∈ Aω, it is clear from
Theorem 3.1 that the words

µx1···xn−1
(xn), n ≥ 1,

are prefixes of the epistandard word s directed by ∆.

Example 4.1. We observe that any epistandard word s ∈ Aω has the form s = µw(s′) for some
uniquely determined finite word w and strict epistandard word s′. Indeed, if ∆ = x1x2x3 · · · ∈ Aω

is the directive word of s and m is the smallest positive integer such that Alph(xm+1xm+2 · · · ) =
Alph(∆), then x1 · · · xm is the shortest prefix of ∆ that contains all the letters not appearing
infinitely often in ∆. Moreover, by Theorem 3.1, s = µx1···xm

(s(m)) where s(m) is the epistandard
word directed by Tm(∆) = xm+1xm+2 · · · . Since Ult(Tm(∆)) = Alph(Tm(∆)) by construction,
the epistandard word s(m) is strict. For example, with ∆ = c(ab)ω , we have s = ψc(s

(1)) where
s(1) is directed by (ab)ω, i.e., s(1) is the well-known Fibonacci word over {a, b}.

For n ≥ 1, let un+1 := Pal(x1 · · · xn) and set u1 = ε. Then by part iv) of Theorem 2.3,
the epistandard word s directed by ∆ is given by s = limn→∞ un. We have the following useful
formula from [73]:

ui+1 = µx1···xi−1
(xi)ui for i > 0. (4.1)

For letters (xj)1≤j≤i, formula (4.1) inductively leads to:

ui+1 = µx1···xi−1
(xi) · · · µx1

(x2)x1 =
∏

1≤j≤i

µx1···xj−1
(xj). (4.2)

(Note that by convention, x1 · · · x0 = ε in the above product.) For example, with ∆ = abcb · · · ,
we compute:

u3 = Pal(abcb) = µabc(b)µab(c)µa(b)a = abacab · abac · ab · a.

4.2 Shifts

Now let w̆ = x̆1x̆2 · · · x̆n be a spinned version of w = x1x2 · · · xn (viewed as a prefix of a spinned
version ∆̆ of ∆). Then, for any finite word v, we have

µw̆(v) = S−1
w̆ µw(v)Sw̆ where Sw̆ =

∏
i=n,...,1
|x̆i=x̄i

µx1···xi−1
(xi). (4.3)

Observe that Sw̆ is a prefix of Pal(w); in particular Sw̄ = Pal(w) by equation (4.2). Note also
that µw̆(v) = T|Sw̆|(µw(v)). The word Sw̆ is called the shifting factor of µw̆ and its length |Sw̆| is
called the shift induced by the prefix w̆ of ∆̆ of length n [75].
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Example 4.2. If we take w̆ = ab̄cā, then

Sw̆ = µabc(a)µa(b) = abacaba · ab.

Thus since µabca(ca) = abacabaab · acabacaba, we have

µab̄cā(ca) = T9(µabca(ca)) = acabacaba · abacabaab.

Likewise, for any infinite word y ∈ Aω, µw̆(y) = S−1
w̆ µw(y). For example, if we take w̆ = āb̄,

then Sw̆ = Pal(ab) = aba, and hence µāb̄(y) = (aba)−1µab(y) for any infinite word y.

Note. The morphisms µw and µw̆ are conjugate morphisms [99].

4.3 Block-equivalence & directive words

By Theorem 2.3 (and also Theorem 3.1), any epistandard word s ∈ Aω has a unique directive
word over A, but s also has infinitely many other spinned directive words (see [73, 75, 63]). For
example, the Tribonacci word is directed by (abc)ω and also by (abc)nāb̄c̄(ab̄c̄)ω for each n ≥ 0,
as well as infinitely many other spinned words. The natural question: “does any spinned word
direct a unique episturmian word?” was answered in [73].

Proposition 4.3. [73]

1. Any spinned infinite word ∆̆ having infinitely many letters with spin 0 directs a unique
episturmian word beginning with the left-most letter having spin 0 in ∆̆.

2. Any spinned infinite word ∆̆ with all spins ultimately 1 directs exactly |Ult(∆)| episturmian
words.

3. Let ∆̆ be a spinned infinite word having all its letters with spin 1 and let a ∈ Ult(∆). Then
∆̆ directs exactly one episturmian word starting with a. ⊔⊓

Note. The above statement corrects a small error in Proposition 3.11 of [73] where item 3 was
stated in the more general case when ∆̆ has all spins ultimately 1. In this case, ∆̆ still directs
exactly one episturmian word for each letter a in Ult(∆), but contrary to what is written in [73],
nothing can be said about its first letter.

Block-equivalence for spinned words was introduced in [75] as a way of studying when ∆̆ and
∆̂ (two spinned versions of a directive word ∆) direct the same bi-infinite episturmian word. We
do not recall the full details here, only a few notions relating to it.

Notation. If v ∈ A+, then v̄ ∈ Ā+ is v with all spins 1.

A word of the form xvx, where x ∈ A and v ∈ (A \ {x})∗, is called a (x-based) block. A (x-
based) block-transformation is the replacement in a spinned word of an occurrence of xvx̄ (where
xvx is a block) by x̄v̄x or vice-versa. Two finite spinned words w, w′ are said to be block-equivalent
if we can pass from one to the other by a (possibly empty) chain of block-transformations, in
which case we write w ≡ w′. For example, b̄ābc̄bāc̄ and babcb̄āc̄ are block-equivalent because
b̄ābc̄bāc̄ → bab̄c̄bāc̄ → babcb̄āc̄ and vice-versa. Note that if w ≡ w′ then w and w′ are spinned
versions of the same word over A. Block-equivalence extends to (right-)infinite words as follows.

Let ∆1, ∆2 be spinned versions of ∆. We write ∆1  ∆2 if there exist infinitely many
prefixes fi of ∆1 and gi of ∆2 with the gi of strictly increasing lengths, and such that, for all i,
|gi| ≤ |fi| and fi ≡ gici for a suitable spinned word ci. Infinite words ∆1 and ∆2 are said to be
block-equivalent (denoted by ∆1 ≡ ∆2) if ∆1  ∆2 and ∆2  ∆1.
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Remark 4.4. If x is a letter and v ∈ A∗ is x-free, then x̄v̄x and xvx̄ are block-equivalent and they
induce the same shift, i.e., µx̄v̄x = µxvx̄ [75, Theorem 2.2]. Thus the monoid of pure episturmian
morphisms, Ep, is isomorphic to the quotient of (A ∪ Ā)∗ by the block-equivalence generated by

{x̄v̄x ≡ xvx̄ | x ∈ A, v is x-free}.

Note that this has some relation to the study of conjugacy and episturmian morphisms carried
out by Richomme [99].

From what we have already learned about bi-infinite episturmian words (in Sections 2.2 and
3.2), it is clear that Justin and Pirillo’s results about spinned infinite words directing the same
bi-infinite episturmian word are still valid for words directing the same (right-infinite) episturmian
word. Roughly speaking, two spinned infinite words direct the same episturmian word if and only
if they are block-equivalent. For instance, we have the following results for wavy spinned versions
of ∆ ∈ Aω. A spinned version ∆̆ of ∆ is said to be wavy if ∆̆ contains infinitely many letters of
spin 0 and infinitely many letters of spin 1.

Theorem 4.5. [75, Theorem 3.4] Suppose ∆̆ and ∆̂ are wavy versions of ∆ ∈ Aω with |Ult(∆)| >
1. Then ∆̆ and ∆̂ direct the same episturmian word if and only if ∆̆ ≡ ∆̂. ⊔⊓

For example, ba(b̄cā)ω and b̄āb(cāb̄)ω direct the same episturmian word, namely µbab̄c(cr)
(= µb̄ābc(cr)) where r is the Tribonacci word.

Theorem 4.6. [75, Prop. 3.6] Let ∆̆, ∆̂ be two spinned versions of ∆ ∈ Aω with |Ult(∆)| > 1,
∆̆ wavy, and ∆̂ having all spins ultimately 0 or 1. If ∆̆ and ∆̂ direct the same episturmian word,
then ∆̆ ∆̂. ⊔⊓

Similar results also hold when all spins are ultimately 0 or 1 and in the periodic case. See
Propositions 3.7 and 3.10 in [75].

Remark 4.7. In [75], the study of block-equivalence for finite spinned words led to numeration
systems that resemble the Ostrowski systems [20] associated with Sturmian words. A matrix
formula for computing the number of representations of an integer in such a system was also
given in [75, Section 2].

More recently, Glen, Levé, and Richomme [63] established the following complete character-
ization of pairs of spinned infinite words directing the same unique episturmian word. Not only
does the following theorem provide the relative forms of two spinned infinite words directing the
same episturmian word, but it also fully solves the periodic case, which was only partially solved
in [75].

Theorem 4.8. [63] Given two spinned infinite words ∆1 and ∆2, the following assertions are
equivalent.

i) ∆1 and ∆2 direct the same right-infinite episturmian word.

ii) One of the following cases holds for some i, j such that {i, j} = {1, 2}:

1. ∆i =
∏

n≥1 vn, ∆j =
∏

n≥1 zn where (vn)n≥1, (zn)n≥1 are spinned words such that
µvn

= µzn
for all n ≥ 1;
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2. ∆i = wx
∏

n≥1 vnx̆n, ∆j = w′x̄
∏

n≥1 v̄nx̂n where w, w′ are spinned words such that
µw = µw′, x is a letter, (vn)n≥1 is a sequence of non-empty x-free words, and (x̆n)n≥1,
(x̂n)n≥1 are sequences of non-empty spinned words over {x, x̄} such that, for all n ≥ 1,
|x̆n| = |x̂n| and |x̆n|x = |x̂n|x;

3. ∆1 = wx and ∆2 = w′y where w, w′ are spinned words, x and y are letters, and
x ∈ {x, x̄}ω, y ∈ {y, ȳ}ω are spinned infinite words such that µw(x) = µw′(y).

⊔⊓
In items 1 and 2 of Theorem 4.8, the two considered directive words are spinned versions of

the same infinite word. This does not hold in item 3, which concerns only periodic episturmian
words. In particular, we observe the following:

Remark 4.9. If an aperiodic episturmian word is directed by two different spinned infinite words
∆1 and ∆2, then ∆1 and ∆2 are spinned versions of the same word ∆.

As an example of item 3, one can consider the periodic episturmian word (bcba)ω which is
directed by both bcaω and bācω (since µbc(a) = µbā(c)). Note also that (bcba)ω is epistandard and
has the same set of factors as the epistandard word (babc)ω directed by bacω. Actually, in view
of Remark 3.5, we observe the following:

Remark 4.10. The subshift of any aperiodic episturmian word contains a unique (aperiodic)
epistandard word, whereas the subshift of a periodic episturmian word contains exactly two (pe-
riodic) epistandard words, except if this word is aω with a a letter.

We also observe that x and y can be equal in item 3 of Theorem 4.8; for example (ab)ω is
directed by ab̄bω and by abω.

Example 4.11. [63] For a, b, c three different letters in A, the spinned infinite words ∆1 = a(bcā)ω

and ∆2 = ā(b̄c̄ā)ω direct the same episturmian word that starts with the letter a. Indeed, these
two directive words fulfill item 2 of Theorem 4.8 with w = w′ = ε, x = a, and for all n, vn = bc
and x̆n = x̂n = ā. Moreover the fact that ∆1 starts with the letter a shows that the word it
directs starts with a. Similarly ∆′

1 = āb(cab̄)ω and ∆′
2 = āb̄(c̄āb̄)ω direct the same episturmian

word starting with the letter b. Since ∆2 = ∆′
2, this shows that the relation “direct the same

episturmian word” over spinned infinite words is not an equivalence relation.

Items 2 and 3 of Theorem 4.8 show that any episturmian word is directed by a spinned infinite
word having infinitely many letters of spin 0, but also by a spinned word having both infinitely
many letters of spin 0 and infinitely many letters of spin 1 (i.e., a wavy word). To emphasize the
importance of these facts, let us recall from Proposition 4.3 that if ∆̆ is a spinned infinite word
over A ∪ Ā with infinitely many letters of spin 0, then there exists a unique episturmian word t

directed by ∆̆. Uniqueness comes from the fact that the first letter of t is fixed by the first letter
of spin 0 in ∆̆. We also note that if an episturmian word t has two directive words satisfying
items 2 or 3, then t has infinitely many directive words (this was shown in [63]).

When studying repetitions in Sturmian words, Berthé, Holton, and Zamboni [23] proved that
any Sturmian word has a unique directive word over {a, b, ā, b̄} containing infinitely many letters of
spin 0, but no factor of the form āb̄na or b̄ānb with n an integer. Levé and Richomme [80] recently
generalized this result to episturmian words by introducing a way to ‘normalize’ the directive
word(s) of an episturmian word so that any episturmian word can be defined uniquely by its
so-called normalized directive word, defined by some factor avoidance, as follows. This idea has
since proved useful in the study of quasiperiodic episturmian words (see Section 8); in particular,
it provides an effective way to decide whether or not a given episturmian word is quasiperiodic.
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Theorem 4.12. [63, 80] Any episturmian word t ∈ Aω has a spinned directive word ∆̆ containing
infinitely many letters of spin 0, but no factor in

⋃
a∈AāĀ∗a. Such a directive word is unique if

t is aperiodic, in which case ∆̆ is called the normalized directive word for t. ⊔⊓

Note. Uniqueness does not necessarily hold for periodic episturmian words. For example, the
periodic episturmian word (ab)ω = ψa(b

ω) = ψ̄b(a
ω) is directed by abω and by b̄aω (since ψa(b) =

ab = ψ̄b(a)).

The following result tells us precisely which episturmian words have a unique directive word.

Theorem 4.13. [63] An episturmian word has a unique directive word if and only if its (normal-
ized) directive word contains:

1) infinitely many letters of spin 0,

2) infinitely many letters of spin 1,

3) no factor in
⋃

a∈AāĀ∗a,

4) and no factor in
⋃

a∈AaA∗ā.

Such an episturmian word is necessarily aperiodic.

For instance, a particular family of episturmian words having unique directive words consists
of those directed by regular wavy words [58, 64], i.e., spinned infinite words having both infinitely
many letters of spin 0 and infinitely many letters of spin 1 such that each letter occurs with the
same spin everywhere in the directive word. More formally, a spinned version w̆ of a finite or
infinite word w is said to be regular if, for each letter x ∈ Alph(w), all occurrences of x̆ in w̆ have
the same spin (0 or 1). For example, the regular wavy word (ab̄c̄)ω is the unique directive word
for the episturmian word ar = aabacabaabacab · · · where r is the Tribonacci word.

In the Sturmian case, we have:

Proposition 4.14. [63] Any Sturmian word has either a unique spinned directive word or in-
finitely many spinned directive words. Moreover, a Sturmian word has a unique directive word if
and only if its (normalized) directive word is regular wavy. ⊔⊓

As pointed out in [63], Proposition 4.14 shows a great difference between Sturmian words and
episturmian words constructed over alphabets with at least three letters. Indeed, when considering
words over a ternary alphabet, one can find episturmian words having exactly m directive words
for any m ≥ 1. For instance, the episturmian word t directed by ∆̆ = a(bā)m−1bc̄(abc̄)ω has
exactly m directive words, namely (āb̄)ia(bā)jbc̄(abc̄)ω with i+ j = m− 1. Notice that the suffix
bc̄(abc̄)ω of ∆̆ is regular wavy, and the other m− 1 spinned versions of ∆ that also direct t arise
from the m− 1 words that are block-equivalent to the prefix a(bā)m−1.

4.4 Periodic and purely morphic episturmian words

We are now ready to describe periodic and purely morphic episturmian words.
Recall from Remark 2.7 that the periodic episturmian words correspond to |Ult(∆)| = 1. The

following theorem gives the form of such words in terms of pure episturmian morphisms.

Theorem 4.15. [73] An episturmian word is periodic if and only if it is (µw̆(x))ω for some
spinned finite word w̆ and letter x. ⊔⊓
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For example, (µab̄(c))
ω = (acab)ω is the periodic episturmian word directed by ab̄cω (in fact,

it is epistandard as it is also directed by acbω).
The next theorem characterizes purely morphic episturmian words with respect to their di-

rective words.

Theorem 4.16. [73, Theorem 3.14] An aperiodic episturmian word is purely morphic (i.e., gen-
erated by a morphism) if and only if it is directed by a periodic spinned infinite word ∆̆ = (f̆)ω

for some spinned word f̆ . Moreover it can be generated by µ
f̆
. ⊔⊓

We observe from Theorem 4.16 that any purely morphic episturmian word is strict (i.e., an
Arnoux-Rauzy sequence) as Ult(∆) = Alph(f) = Alph(∆). The proof of this theorem makes use
of Proposition 4.3 and Theorem 3.9.

Example 4.17. The Tribonacci word is generated by µabc. Notice that µabc = σ3 where σ is the
Tribonacci morphism defined by σ : (a, b, c) 7→ (ab, ac, a).

Remark 4.18. Purely morphic standard Sturmian words were previously characterized indepen-
dently in the following papers: [16, 38, 77]. Yasutomi [118] has since established a characterization
of all purely morphic Sturmian words with respect to their slopes and intercepts (when viewed
as cutting sequences). An alternative geometric proof of Yasutomi’s result was recently given by
Berthé et al. in [21].

Using the notion of block-equivalence, Justin and Pirillo [75] explicitly determined which shifts,
if any, of a purely morphic episturmian word are also purely morphic.

Theorem 4.19. [75] If an episturmian word t is purely morphic, then its shift Ti(t) is also purely
morphic if and only if i belongs to some particular interval. ⊔⊓

See Section 4 of [75] for specific (and very technical) details.

Example 4.20. For the Tribonacci word r, only itself and T−1(r) are purely morphic. Note that
T−1(r) corresponds to three episturmian words: ar, br, cr, directed by (ab̄c̄)ω, (ābc̄)ω, (āb̄c)ω,
respectively.

Remark 4.21. Theorem 4.19 corrects an error in [73, Section 5.1] where it was mistakenly said
that if an episturmian word is purely morphic then any shift of it is also purely morphic. Indeed,
this is false even in the Sturmian case as Fagnot [48] has shown that if s is a purely morphic
standard Sturmian word on {a, b}, then as, bs, abs, bas (which are purely morphic [17]) are the
only purely morphic Sturmian words related to s by a shift.

5 Arnoux-Rauzy sequences

We now briefly turn our attention to Arnoux-Rauzy sequences since their combinatorial properties
are also considered in the sections that follow.

Arnoux-Rauzy sequences are uniformly recurrent infinite words over a finite alphabet A with
factor complexity (|A| − 1)n+ 1 for each n ∈ N, and exactly one right and one left special factor
of each length. They were introduced by Arnoux and Rauzy [97, 12], who studied them using
Rauzy graphs, with particular emphasis on the case |A| = 3. (Note that the foregoing definition
is equivalent to the one given in the introduction.)

As mentioned previously (in Section 2.3), Arnoux-Rauzy sequences are exactly the strict
episturmian words; in particular, any episturmian word has the form ϕ(t) with ϕ an episturmian
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morphism and t an Arnoux-Rauzy sequence. In this sense, episturmian words are only a slight
generalization of Arnoux-Rauzy sequences. For example, the family of episturmian words on
three letters {a, b, c} consists of the Arnoux-Rauzy sequences over {a, b, c}, the Sturmian words
over {a, b}, {b, c}, {a, c} and their images under episturmian morphisms on {a, b, c}, and periodic
infinite words of the form ϕ(x)ω where ϕ is an episturmian morphism on {a, b, c} and x ∈ {a, b, c}.

Arnoux-Rauzy sequences have deep properties studied in the framework of dynamical systems,
with connections to geometrical realizations such as Rauzy fractals [11] and interval exchanges.
When |A| = 3, the condition on the special factors distinguishes Arnoux-Rauzy sequences from
other infinite words of complexity 2n+1, such as those obtained by coding trajectories of 3-interval
exchange transformations (e.g., see [51]). In [12], it was shown how Arnoux-Rauzy sequences
of complexity 2n + 1 (i.e., the 3-strict episturmian words) can be geometrically realized by an
exchange of six intervals on the unit circle, which generalizes the representation of Sturmian
sequences by rotations.

An alternative way of introducing and studying Arnoux-Rauzy sequences is in the context of
S-adic dynamical systems, as done in [105] for instance (see our remarks following Theorem 3.3
in Section 3.2). In [40], Damanik and Zamboni give a kind of survey on this approach by con-
sidering Arnoux-Rauzy subshifts and answering various combinatorial questions concerning linear
recurrence, maximal powers of factors, and the number of palindromes of a given length. They
also present some applications of their results to the spectral theory of discrete one-dimensional
Schrödinger operators with potentials given by Arnoux-Rauzy sequences.

Arnoux-Rauzy sequences also have interesting arithmetical properties. For instance, if one
considers the frequencies of letters (as discussed later in Section 6.4), they are well-defined, and
renormalization by an episturmian morphism leads to a generalization of the continued fraction
algorithm that associates to each k-letter Arnoux-Rauzy sequence an infinite array of k×k rational
numbers. In the special case k = 2, these fractions are consecutive Farey numbers arising from
the continued fraction expansion of the frequencies of the two letters. More generally, given an
Arnoux-Rauzy sequence on k-letters, its directive word is determined by the ‘multi-dimensional’
continued fraction expansion of the frequencies of the first k − 1 letters. Unfortunately, this
generalized algorithm (except for the case k = 2 when it is exactly the usual continued fraction
algorithm) is only defined on a set of measure zero in R

k−1. This reduces its interest and explains
why it has not been appropriately studied since its inception (see Sections 6.2.1 and 6.4 for further
details). Nonetheless, a nice arithmetical characterization of 3-letter Arnoux-Rauzy sequences can
be given, as follows. We say that a triple (a, b, c) does not satisfy the triangular inequality if one
of the coordinates is larger than the sum of the other two (e.g., a > b+ c). In that case, we can
renormalize in a unique way to obtain the triple (a− b− c, b, c). The set of allowable frequencies
for 3-letter Arnouxy-Rauzy sequences is exactly the set of triples (a, b, c) that can be infinitely
renormalized, each time to a triple that does not satisfy the triangular inequality (see [12]). The
resulting picture exhibits a kind of Sierpinski carpet.

For further details on Arnoux-Rauzy sequences, we refer the reader to the interesting survey
[22] in which Berthé, Ferenczi, and Zamboni discuss connections between Arnoux-Rauzy sequences
and rotations of the 2-torus; coding of two-dimensional actions and two-dimensional Sturmian
words; and interval exchanges and sequences of low complexity. See also [35], Section 12.2.3 in
[96], and J. Berstel’s nice survey paper [15] in which he compares some combinatorial properties
of Arnoux-Rauzy sequences (as well as episturmian words) to those of Sturmian words.
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5.1 Finite Arnoux-Rauzy words

A finite word w is said to be finite episturmian if w is a factor of some infinite episturmian
word. When considering factors of (infinite) episturmian words, it suffices to consider only the
strict standard ones (i.e., the standard Arnoux-Rauzy sequences). Indeed, for any prefix u of an
epistandard word, there exists a strict epistandard word also having u as a prefix. In particular,
the words µw(x), with w ∈ A∗ and x ∈ A, are the standard ones (cf. standard words, e.g., [83,
Chapter 2]). They can be obtained by the Rauzy rules [98] (see also [43, Theorem 8]), and this
has a strong connection with the set of periods of the palindromes un+1 = Pal(x1 · · · xn) (given in
Theorem 2.3) and the Euclidean algorithm. This relation was studied by Castelli, Mignosi, and
Restivo [34], who extended the well-known Fine and Wilf Theorem [82] to words having three
periods. Justin [70] generalized this result even further to words having an arbitrary number of
periods, which led to a characterization of finite episturmian words.

Finite episturmian words are exactly the finite Arnoux-Rauzy words. Such words were enu-
merated by Mignosi and Zamboni [88], who described a multi-dimensional generalization of the
Euler phi-function that counts the number of finite Arnoux-Rauzy words of each length. Finite
episturmian words have also been characterized with respect to lexicographic orderings in [62]
(see Theorem 7.5 later).

6 Some properties of factors

6.1 Factor complexity

As mentioned previously, any k-strict episturmian word has complexity (k−1)n+1 for all n ∈ N.
More generally:

Theorem 6.1. [43, Theorem 7] Suppose t is an episturmian word directed by ∆̆ with |Ult(∆)| > 1.
Then, for n large enough, t has complexity (k−1)n+ q for some q ∈ N

+, where k = |Ult(∆)|. ⊔⊓
This theorem can be easily deduced from the fact that for sufficiently large n, any left special

factor of t of length at least n has exactly k = |Ult(∆)| different left extensions in t (by Theorem 6
in [43]).

6.2 Palindromic factors

The palindromic complexity of episturmian words was established in [73] by carrying out a similar
study to the one for Sturmian words in [44].

Theorem 6.2. [73, Theorem 4.4] If t is an A-strict episturmian word, then there exists exactly

• one palindrome of length n for all even n,

• one palindrome of length n and centre x for all odd n and x ∈ A. ⊔⊓
As shown in [44], the above property is characteristic in the Sturmian case, but not when A

contains more than two letters because it also holds for billiard words, which are not episturmian
(see Borel and Reutenauer [25]).

Theorem 6.3. [73, Section 4.2] If t is episturmian, then there exist |Ult(∆)| + 1 bi-infinite
episturmian words of the form m̃.m and m̃xm giving all but a finite number of palindromic
factors of t. The spinned versions of ∆ directing these bi-infinite episturmian words can be easily
constructed via a simple algorithm. ⊔⊓
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For more precise technical details, see Section 4.2 in [73].

Example 6.4. For the Tribonacci word, r̃.r is directed by (abcābcab̄cabc̄)ω.

6.2.1 Iterated palindromic closure

In [105], Risley and Zamboni gave an alternative construction of the sequence (un)n≥1 of palin-
dromic prefixes of an epistandard word (where u1 = ε and ui+1 = Pal(x1 · · · xi) for all i ≥ 1),
using a ‘hat operation’ as opposed to palindromic closure. The so-called hat operation is defined
as follows. We construct a new alphabet A′ := A ∪ Â where Â = {x̂ | x ∈ A} and denote by φ
the morphism φ : A′ → A defined by φ(x) = φ(x̂) = x for all letters x ∈ A. The morphism φ
extends to a morphism (also denoted by φ) from words over A′ to words over A. Now, from a
given directive word ∆ = x1x2x3 · · · ∈ Aω, we construct a sequence of words (pi)i≥1 as follows.
We begin with p1 = ε and p2 = x̂1. Then, for n ≥ 2, pn+1 is obtained from pn according to the
rule: if x̂n does not occur in pn, then pn+1 = pnx̂nφ(pn); otherwise pn+1 = pnx̂nφ(sn), where sn

is the longest palindromic suffix of pn containing no occurrence of x̂n.

Example 6.5. Let ∆ = (abc)ω. Then using the hat operation, we obtain:

p1 = ε

p2 = â

p3 = âb̂a

p4 = âb̂aĉaba

p5 = âb̂aĉabaâbacaba

p6 = âb̂aĉabaâbacabab̂acabaabacaba
...

Now removing all hats (by applying φ), we see that the pi’s are precisely the palindromic prefixes
of the Tribonacci word: abacabaabacababacabaabacaba · · · .

As demonstrated by the above example, the hat operation is clearly the same as iterated
palindromic closure; in fact, the relationship between these two constructions is evident by for-
mula (4.1), which we now rewrite as:

Pal(x1 · · · xn) = µx1···xn−1
(xn)Pal(x1 · · · xn−1) for n > 0.

The above formula is actually a special case of formula (3) from [71], which also happens to be
formula (3) in [73], namely:

Pal(vw) = µv(Pal(w))Pal(v) for any words w, v. (6.1)

This formula is commonly referred to as Justin’s Formula, from which we deduce the following
two special cases:

Pal(xw) = ψx(Pal(w))x and Pal(wx) = µw(x)Pal(w) for any word v and letter x. (6.2)

The first formula given in (6.2) tells us that Pal(xw) is obtained from Pal(w) simply by inserting
the letter x before each letter different from x and then appending x to the resulting word. For
example, Pal(bc) = bcb and Pal(abc) = abacaba. The second formula given in (6.2) provides
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another way to compute the palindromic right-closure of wx by placing the finite epistandard
word µw(x) in front of Pal(w). For example, to compute Pal(abcb) we need only compute the
words µabc(b) = abacab and Pal(abc) = abacaba, and then we have:

Pal(abcb) = µabc(a)Pal(abc) = abacab · abacaba.

In [71], Justin established some relations between the words Pal(w), µw, Pal(w̃), and µ ew where
w is any finite word. Moreover, he showed that his results can be explained by the similarity of the
incidence matrices of µw and µ ew. One curious result is that |Pal(w)| = |Pal(w̃)|. For example,
with w = abac, Pal(w) = abaabacabaaba and Pal(w̃) = cacbcacacacbcac, both of length 15.

Applying his results to a 2-letter alphabet, Justin [71] gave a new proof of a Galois theorem
on continued fractions, by considering the epistandard words that are fixed points of µw and
µ ew for any finite word w. From this point of view, Justin’s result highlights the relevance of
the previously mentioned ‘multi-dimensional’ continued fraction algorithm, proposed by Zamboni
[119, 117] (see also [96, Section 12.2]). However, there still remains much work to be done in
this direction, especially concerning the generalized intercept (coherent with the Sturmian case)
introduced in [73, Section 5.4] and the generalized Ostrowski numeration systems [20, 75] (recall
Remark 4.7).

Note. The aforementioned Galois theorem was used in the theory of Sturmian words to charac-
terize so-called Sturm numbers (see [83, Theorem 2.3.26]).

6.2.2 Palindromic richness

In [43], Droubay, Justin, and Pirillo observed that any finite word w contains at most |w| + 1
distinct palindromes (including the empty word). Even further, they proved that a word w
contains exactly |w| + 1 distinct palindromes if and only if the longest palindromic suffix of any
prefix p of w occurs exactly once in p (i.e., every prefix of w has Property Ju [43]). Such words are
‘rich’ in palindromes in the sense that they contain the maximum number of different palindromic
factors. Accordingly, we say that a finite word w is rich if it contains exactly |w| + 1 distinct
palindromes (or equivalently, if every prefix of w has Property Ju). For example, abac is rich since
it is of length 4 and contains the following five palindromes: ε, a, b, c, aba. Naturally, an infinite
word is rich if all of its factors are rich. For example, the periodic infinite words aω = aaa · · · and
(ab)ω = ababab · · · are clearly rich, whereas (abc)ω = abcabacabc · · · is not rich since it contains
the non-rich word abca.

Droubay et al. [43] showed that all finite and infinite episturmian words are rich. Specifically,
they proved that if an infinite word has property Pi (and hence is epistandard – see Theorem
2.3), then all of its prefixes have property Ju. Consequently, any factor u of an epistandard word
(and hence, of an episturmian word) contains exactly |u|+1 distinct palindromes, and is therefore
rich (see Corollary 2 in [43]).

Another special class of rich words that encompasses the episturmian words consists of Fis-
chler’s sequences with “abundant palindromic prefixes”. These words were introduced and studied
in [54, 55] in the context of Diophantine approximation. See also papers by Adamczewski and
Bugeaud [2, 3] concerning the transcendence of certain real numbers whose sequences of partial
quotients contain arbitrarily long palindromes.

The theory of rich words has recently been further developed in a series of papers [61, 29, 42,
30]. In independent work, Ambrož, Frougny, Masáková, and Pelantová [8] have considered the
same class of words which they call full words, following the earlier work of Brlek, Hamel, Nivat,
and Reutenauer in [26].
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6.3 Fractional powers & critical exponent

The study of fractional powers occurring in Sturmian words has been a topic of growing interest
in recent times. See for instance [14, 23, 39, 72, 86, 111], as well as [73, 105, 59] for similar results
concerning episturmian words and Arnoux-Rauzy sequences.

The following theorem extends the results in [72] on fractional powers in Sturmian words.
Throughout this section, we let s denote an epistandard word with directive word ∆ = x1x2 · · · ∈
Aω (as usual), and for all n ≥ 1, we denote by un+1 the palindromic prefix Pal(x1 · · · xn) of s given
in Theorem 2.3. As in [72], we denote by L(m) the length of the longest factor v ∈ F (s) having
period m ∈ N, and write L(m) = em + r, e ∈ N

+, 0 ≤ r < m. Given a finite or infinite word w,
we denote by w(i) (resp. w(i, j)) the letter in position i of w (resp. the factor of w beginning at
position i and ending at position j).

When L(m) ≥ 2m, all factors of s having period m and length L(m) are equal to a palindrome
v, and for 0 ≤ i < e, the word vi := v(1, im+ r) is a palindromic prefix of s by Lemma 4.1 in [73].
Moreover, with the preceding notation, we have:

Theorem 6.6. [73, Theorem 4.2] Let m, n ∈ N be such that |un| < m ≤ |un+1| and s(1,m) = w
is primitive with s(m) = x occurring in s(1,m− 1). Then the following properties hold.

i) L(m) ≥ 2m if and only if w = µx1···xn
(x) and x ∈ Alph(xn+1xn+2 · · · ).

ii) Suppose L(m) ≥ 2m and define p = max{i ≤ n | xi = x} and t = min{j ∈ N
+ | xn+j 6=

x}. Then un+t = wtup is the longest prefix of s having period m. Moreover, if x ∈
Alph(xn+t+1xn+t+2 · · · ), then e = t + 1; that is, v = wt+1up, otherwise e = t and v =
wtup. ⊔⊓

Remark 6.7. Let us mention a few noteworthy facts.

• Exponents of powers in s are bounded if and only if exponents of letters in ∆ are bounded [105,
73].

• Any Sturmian word has square prefixes and so do epistandard words [5, 105].

• Any episturmian word has infinitely many prefixes of the form uv2 with |u|/|v| bounded
above.

The latter fact is readily deduced from the following result of Risley and Zamboni [105].

Theorem 6.8. [105, Prop. I.3] If t is an Arnoux-Rauzy sequence, then there exists a positive
number ǫ such that t begins with infinitely many blocks of the form UV V V ′, where V ′ is a prefix
of V and min{|V ′|/|V |, |V |/|U |} > ǫ. ⊔⊓

Note. Such a result is motivated by transcendence issues; see for instance [52].

When s is purely morphic, it is possible to give a rather explicit formula for the critical
exponent: γ = lim supn→∞L(m)/m, as follows.

Notation. Let P be the function defined by P (n) = sup{i < n | xi = xn} if this integer exists,
undefined otherwise. That is, if xn = a, then P (n) is the position of the right-most occurrence of
the letter a in the prefix x1x2 · · · xn−1 of the directive word ∆ = x1x2x3 · · · ∈ Aω.
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Theorem 6.9. [73, Theorem 5.2] Let s be an A-strict epistandard word generated by a morphism
with directive word ∆ having period q. Further, let l ∈ N be maximal such that yl ∈ F (∆) for some
letter y, and define L = {r, 0 ≤ r < q | xr+1 = xr+2 = · · · = xr+l} and d(r) = r+q+1−P (r+q−1)
for 0 ≤ r < q. Then the critical exponent for s is given by

γ = l + 2 + sup
r∈L

{
lim
i→∞

|ur+iq+1−d(r)|/|hr+iq|
}
.

Moreover, for any letter x in s the limit above can be obtained as a rational function with rational
coefficients of the frequency αx of this letter. ⊔⊓

See also [86, 107, 111] for results on the critical exponent for the Fibonacci word, Tribonacci
word, and Sturmian words, respectively.

Example 6.10. For the ever-so popular Fibonacci word f , directed by (ab)ω, we have q = 2,
l = 1, d(0) = d(1) = 2. Hence, since |un−1|/|hn| has limit 1/ϕ where ϕ = (1+

√
5)/2 is the golden

ratio, we obtain the well-known value 2+ϕ for the critical exponent, originally proved by Mignosi
and Pirillo [86].

More generally, the k-bonacci word, directed by (a1a2 · · · ak)
ω, has critical exponent 2+1/(ϕk−

1), where the k-bonacci constant ϕk is the (unique) positive real root of the k-th degree monic
polynomial xk − xk−1 − · · · − x− 1.

6.4 Frequencies

Let w be a non-empty finite word. For any v ∈ F (w), the frequency of v in w is |w|v/|w| where |w|v
denotes the number of distinct occurrences of v in w. The notion of frequency can be extended
to infinite words in two ways, as follows.

Definition 6.11. Suppose v is a non-empty factor of an infinite word x. Then:

i) the frequency of v in x in the weak sense is limn→∞ |w(1, n)|v/n if this limit exists;

ii) v has frequency αv in x in the strong sense if, for any sequence (wn)n≥0 of factors of x with
increasing lengths, we have αv = limn→∞ |wn|v/|wn|.

In a purely combinatorial way, Justin and Pirillo [73, Section 6] proved that any factor occur-
ring in an episturmian word has frequency in the strong sense.

Wozny and Zamboni [117] also studied frequencies (in the weak sense) for Arnoux-Rauzy se-
quences. Using a reformulation of a vectorial division algorithm, originally introduced in [105],
they computed each allowable frequency of factors of the same length, as well as the number of
factors with a given frequency. In particular, the authors of [117] gave simultaneous rational ap-
proximations of the frequencies by unreduced fractions having a common denominator. From this
work, one recovers the results of Berthé [19] for Sturmian words in terms of Farey approximations
arising from the continued fraction expansions of the frequencies of the letters. For instance, the
frequencies of factors of the same length in a Sturmian word assume at most three values, which
were explicitly given by Berthé [19], who also discovered that this result is in strong connection
with the three distance theorem in Diophantine analysis.
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6.5 Return words

Let us now recall the notion of a return word, which was introduced independently by Durand
[45], and Holton and Zamboni [67] when studying primitive substitutive sequences.

Definition 6.12. Let v be a recurrent factor of y ∈ Aω, starting at positions n1 < n2 < n3 · · · .
Then each word ri = yni

yni+1 · · · yni+1−1 is called a return to v in y. Moreover, y can be factorized
in a unique way as y = y1 · · · yn1−1r1r2r3 · · · where r1r2r3 · · · , viewed as a word on the ri, is called
the derived word of y with respect to v.

That is, a return to v in y is a non-empty factor of y beginning at an occurrence of v and
ending exactly before the next occurrence of v in y. Thus, if r is a return to v in y, then rv is
a factor of y that contains exactly two occurrences of v, one as a prefix and one as a suffix. We
call rv a complete return to v [76].

Return words play an important role in the study of minimal subshifts in symbolic dynamics;
see for instance [45, 46, 47, 53, 106]. In the context of episturmian words, such words have recently
proven to be a useful tool in the study of quasiperiodicity (see Section 8 for further details). This
latest work made use of the following result of Justin and Vuillon [76] which completely describes
the returns to any factor of an epistandard word. In fact, their result actually characterizes
return words in episturmian words (not just epistandard words) since, by uniform recurrence, the
returns to any factor v in an epistandard word s are the same as the returns to v as a factor of
any episturmian word t having the same set of factors as s.

Theorem 6.13. [76] Let s be an epistandard word directed by ∆ = x1x2x3 · · · ∈ Aω and consider
any v ∈ F (s). If un+1 is the shortest palindromic prefix of s containing v with un+1 = fvg, then
the returns to v in s are the words f−1µx1···xn

(x)f where x ∈ Alph(xn+1xn+2 · · · ). Moreover, the
corresponding complete returns to v are the words f−1(un+1x)

(+)g−1 and the derived word of s

with respect to v is given by s(n) = µ−1
x1···xn

(s). ⊔⊓

Note. It follows immediately that any factor of an A-strict episturmian word has exactly |A|
return words.

Theorem 6.13 extends earlier work of Vuillon on return words in Sturmian words (see [114]).
In particular, Vuillon proved that Sturmian words are characterized by the property that any
non-empty factor has exactly 2 different return words in the given Sturmian word. However,
contrary to what one might expect, such a property with 2 replaced by a positive integer k ≥ 3
does not characterize k-strict episturmian words. For instance, infinite words coding 3-interval
exchange transformations, which constitute a different generalization of Sturmian words to 3-
letter alphabets, are known to have the property that every factor has 3 different return words
(see the work by Ferenczi, Holton, and Zamboni in [51]).

7 Balance & lexicographic order

7.1 q-Balance

Definition 7.1. A finite or infinite word is q-balanced if, for any two of its factors u, v with
|u| = |v|, we have

||u|x − |v|x| ≤ q for any letter x,

i.e., the number of x’s in each of u and v differs by at most q.
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Note. A 1-balanced word is simply said to be balanced.

The term ‘balanced’ is relatively new; it appeared in [16, 17] (also see [83, Chapter 2]), and the
notion itself dates back to [91, 37]. In the pioneering work of Morse and Hedlund [91], balanced
infinite words over a 2-letter alphabet were called ‘Sturmian trajectories’ and belong to three
classes: aperiodic Sturmian; periodic Sturmian; and infinite words that are ultimately periodic
(but not periodic), called skew words. That is, the family of balanced infinite words consists of
the (recurrent) Sturmian words and the (non-recurrent) skew infinite words, the factors of which
are balanced. Skew words are ultimately periodic (but not periodic) suffixes of words of the form
µ(apbaω), where µ is a pure standard Sturmian morphism and p ∈ N. For example, abaω and
ψb(aba

ω) = bab(ba)ω are skew. See also [108, 109, 66, 95] for further work on skew words.

Remark 7.2. Nowadays, for most authors, only the aperiodic Sturmian words are considered to
be ‘Sturmian’. However, from now on, we will use the term ‘Sturmian’ to refer to both aperiodic
and periodic Sturmian words. In the context of cutting sequences, the aperiodic (resp. periodic)
Sturmian words are precisely those with irrational slope (resp. rational slope).

It is important to note that a finite word is finite Sturmian (i.e., a factor of some Sturmian
word) if and only if it is balanced [83, Chapter 2]. Accordingly, the balanced infinite words
are precisely the infinite words whose factors are finite Sturmian. This concept was recently
generalized in [62] by showing that the set of all infinite words whose factors are finite episturmian
consists of the (recurrent) episturmian words and the (non-recurrent) episkew infinite words, as
defined in the next section.

7.2 Episkew words

Inspired by the skew words of Morse and Hedlund [91], episkew words were recently defined in
[62] as non-recurrent infinite words, all of whose factors are (finite) episturmian. The following
theorem gives a number of equivalent definitions of such words, similar to those for (recurrent)
episturmian words.

Theorem 7.3. [62] An infinite word t with Alph(t) = A is episkew if equivalently:

i) t is non-recurrent and all of its factors are (finite) episturmian;

ii) there exists an infinite sequence (t(i))i≥0 of non-recurrent infinite words and a directive word
x1x2x3 · · · (xi ∈ A) such that t(0) = t, . . . , t′(i−1) = ψxi

(t(i)), where t′(i−1) = t(i−1) if t(i−1)

begins with xi and t′
(i−1) = xit

(i−1) otherwise;

iii) there exists a letter x ∈ A and an epistandard word s on A\{x} such that t = vµ(s), where
µ is a pure epistandard morphism on A and v is a non-empty suffix of µ(s̃px) for some
p ∈ N.

Moreover, t is said to be strict episkew if s is strict on A \ {x}, i.e., if each letter in A \ {x}
occurs infinitely often in the directive word x1x2x3 · · · . ⊔⊓

A simple example of an episkew word on more than two letters is the infinite word cf =
cabaababa · · · where f is the Fibonacci word and c is a letter (see also Example 3.7).

Note that the episkew words on a 2-letter alphabet are precisely the skew words. Certainly,
in the Sturmian case, the word s̃pxs reduces to a word of the form apbaω.
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Remark 7.4. Thanks to Richomme [104], we recently determined that episkew words actually
have the following simpler characterization: an infinite word t is episkew if and only if t is non-
recurrent and t = ϕ(xs) where s is an epistandard word, x is a letter not occurring in s, and ϕ
is a pure episturmian morphism. Note that the given condition on the form of t is not sufficient
for t to be episkew, i.e., we must also assume that t is non-recurrent. Indeed, if we consider for
instance the infinite word t = ψx(xf) where f is the Fibonacci word and x is a letter different
from a and b, then t = xaxbxaxaxbxa · · · = ψ̄x(f) – a recurrent episturmian word (not episkew).

Episkew words were first alluded to (but not explicated) in the recent paper [60]. Following
that paper, these words showed up again in the study of inequalities characterizing finite and
infinite episturmian words with respect to lexicographic orderings [62]. In fact, as detailed in the
next section, episturmian words have similar extremal properties to Sturmian words. See also
[74, 69, 93, 94, 95, 60, 62] for other work in this direction.

7.3 Extremal properties

Suppose the alphabet A is totally ordered by the relation <. Then we can totally order A∗ by
the lexicographic order ≤ defined as follows. Given two words u, v ∈ A+, we have u ≤ v if and
only if either u is a prefix of v or u = xau′ and v = xbv′, for some x, u′, v′ ∈ A∗ and letters a, b
with a < b. This is the usual alphabetic ordering in a dictionary. We write u < v when u ≤ v and
u 6= v, in which case we say that u is (strictly) lexicographically smaller than v. The notion of
lexicographic order naturally extends to infinite words in Aω. We denote by min(A) the smallest
letter in A with respect to the given lexicographic order.

Let w be a finite or infinite word over A and let k be a positive integer. We denote by
min(w|k) (resp. max(w|k)) the lexicographically smallest (resp. greatest) factor of w of length k
for the given order (where |w| ≥ k if w is finite). If w is infinite, then it is clear that min(w|k)
and max(w|k) are prefixes of the respective words min(w|k + 1) and max(w|k + 1). So we can
define, by taking limits, the following two infinite words (see [94]):

min(w) = lim
k→∞

min(w|k) and max(w) = lim
k→∞

max(w|k).

That is, to any infinite word t we can associate two infinite words min(t) and max(t) such that
any prefix of min(t) (resp. max(t)) is the lexicographically smallest (resp. greatest) amongst the
factors of t of the same length.

For a finite word w over A and a given order on A, min(w) denotes min(w|k) where k is
maximal such that all min(w|j), j = 1, 2, . . . , k, are prefixes of min(w|k). In the case A = {a, b},
max(w) is defined similarly (see [62]).

In 2003, Pirillo [93] (see also [94]) proved that, for infinite words s on a 2-letter alphabet {a, b}
with a < b, the inequality

as ≤ min(s) ≤ max(s) ≤ bs (7.1)

characterizes standard Sturmian words (aperiodic and periodic). Actually, this result was known
much earlier, dating back to the work of P. Veerman [112, 113] in the mid 80’s. Since that time,
these ‘Sturmian inequalities’ have been rediscovered numerous times under different guises, as
discussed in the forthcoming survey paper [6].

Continuing his work in relation to inequality (7.1), Pirillo [94] proved further that, in the case
of an arbitrary finite alphabet A, an infinite word s ∈ Aω is epistandard if and only if, for any
lexicographic order, we have

as ≤ min(s) where a = min(A). (7.2)
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Moreover, s is a strict epistandard word if and only if (7.2) holds with strict equality for any
order [74].

In a similar spirit, Glen, Justin, and Pirillo [62] recently established new characterizations of
finite Sturmian and episturmian words via lexicographic orderings. As a consequence, they were
able to characterize by lexicographic order all episturmian and episkew words. Similarly, they
characterized by lexicographic order all balanced infinite words on a 2-letter alphabet; in other
words, all Sturmian and skew infinite words, the factors of which are (finite) Sturmian. In the
finite case:

Theorem 7.5. [62] A finite word w on A is episturmian if and only if there exists a finite word
u such that, for any lexicographic order,

au|m|−1 ≤ m (7.3)

where m = min(w) and a = min(A) for the considered order. ⊔⊓

Example 7.6. Consider the finite word w = baabacababac. For the different orders on {a, b, c},
we have

• a < b < c or a < c < b: min(w) = aabacababac,

• b < a < c or b < c < a: min(w) = babac,

• c < a < b or c < b < a: min(w) = cababac.

It can be verified that a finite word u satisfying (7.3) must begin with aba and one possibility is
u = abacaaaaaa; thus w is a finite episturmian word.

Note. In the above example, any two orders with the same minimum letter give the same min(w),
which is not true in general.

A corollary of Theorem 7.5 is the following new characterization of finite Sturmian words (i.e.,
finite balanced words).

Corollary 7.7. [62] A finite word w on A = {a, b}, a < b, is not Sturmian (in other words, not
balanced) if and only if there exists a finite word u such that aua is a prefix of min(w) and bub is
a prefix of max(w). ⊔⊓

In the infinite case, the following characterization of all infinite words whose factors are finite
episturmian follows almost immediately from Theorem 7.5.

Corollary 7.8. [62] An infinite word t on A is episturmian or episkew if and only if there exists
an infinite word u such that, for any lexicographic order,

au ≤ min(t) where a = min(A).
⊔⊓

Consequently, an infinite word s on {a, b} (a < b) is balanced (i.e., Sturmian or skew) if and
only if there exists an infinite word u such that

au ≤ min(s) ≤ max(s) ≤ bu.

Corollary 7.8 was recently refined in [58] where it was shown that, for any aperiodic episturmian
word t, the infinite word u (as given in the corollary) is the unique epistandard word with the
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same set of factors as t. As an easy consequence, we obtain the following characterization of strict
episturmian words that are infinite Lyndon words (Theorem 7.9). Recall that a non-empty finite
word w over A is a Lyndon word if it is lexicographically smaller than all of its proper suffixes
for the given order < on A. Equivalently, w is the lexicographically smallest primitive word in its
conjugacy class; that is, w < vu for all non-empty words u, v such that w = uv. The first of these
definitions extends to infinite words: an infinite word over A is an infinite Lyndon word if and
only if it is (strictly) lexicographically smaller than all of its proper suffixes for the given order
on A. That is, a finite or infinite word w is a Lyndon word if and only if w < Ti(w) for all i > 0.

Assuming that |A| > 1 (since there are no Lyndon words on a 1-letter alphabet), we have:

Theorem 7.9. [58] An A-strict episturmian word t is an infinite Lyndon word if and only if
t = as where a = min(A) for the given order on A and s is an (aperiodic) A-strict epistandard
word. Moreover, if ∆ = x1x2 · · · ∈ Aω is the directive word of s, then t = as is the unique
episturmian word in the subshift of s directed by the spinned version of ∆ having all spins 1,
except when xi = a. ⊔⊓

The above theorem is actually a generalization of a result on (aperiodic) Sturmian words given
by Borel and Laubie [24] (see also [102]).

Let A = {a1, . . . , am} be an alphabet ordered by a1 < a2 < · · · < am with m ≥ 2. Then
Theorem 7.9 says that an A-strict episturmian word t is an infinite Lyndon word if and only if
the (normalized) directive word of t belongs to {a1, ā2, . . . , ām}ω. This can be reformulated as a
generalization of Proposition 6.4 in [81]:

Corollary 7.10. [58] An A-strict episturmian word t is an infinite Lyndon word if and only if it
can be infinitely decomposed over the set of morphisms {ψa, ψ̄x | x ∈ A \ {a}} where a = min(A)
for the given order on A. ⊔⊓

We observe that, contrary to the fact that there exists |A|! possible orders of a finite alphabet
A, Theorem 7.9 shows that there exist exactly |A| infinite Lyndon words in the subshift of a given
A-strict epistandard word s (when |A| > 1). That is, for any order with min(A) = a, the subshift
of s contains a unique infinite Lyndon word beginning with a, namely as.

Example 7.11. With ∆ = (abc)ω , the spinned versions (ab̄c̄)ω, (ābc̄)ω, (āb̄c)ω and their ‘opposites’
(obtained by exchange of spins): (ābc)ω, (ab̄c)ω, (abc̄)ω direct episturmian words in the subshift
of the Tribonacci word r. Only the first three of these spinned infinite words direct episturmian
Lyndon words: ar, br, cr, respectively.

The above results on strict episturmian Lyndon words have very recently been generalized to
all episturmian words by Glen, Levé, and Richomme [64], as follows.

Theorem 7.12. [64] Let A = {a1, . . . , am} be an alphabet ordered by a1 < a2 < · · · < am and,
for 1 ≤ i ≤ m, let Bi = {ai, . . . , am}. An episturmian word t is an infinite Lyndon word if and
only if there exists an integer j such that 1 ≤ j < m and the (normalized) directive word of w

belongs to:
(B̄∗

2a1)
∗ · · · (B̄∗

j aj−1)
∗(B̄∗

j+1aj)
∗(B̄+

j+1{aj}+)ω.

⊔⊓

Note. In the above theorem, the word normalized appears between brackets since one can easily
verify from Theorem 4.13 that a spinned infinite word of the given form is the unique directive
word of exactly one episturmian word.
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Example 7.13. [64] Let A = {a, b, c, d}. Then the spinned infinite word (b̄c̄a)(d̄c̄b)2(d̄cc)ω directs
a Lyndon episturmian word, and so does aa(d̄c)ω, but c̄ab̄ad̄cdω does not (since this spinned word
directs a periodic word).

Remark 7.14. Theorems 4.13 and 7.12 show that any episturmian Lyndon word has a unique
spinned directive word, but the converse is not true. For example, the regular wavy word (ab̄c)ω

is the unique directive word of the strict episturmian word:

lim
n→∞

µn
ab̄c

(a) = acabaabacabacabaabaca · · ·

which is clearly not an infinite Lyndon word by Theorem 7.12 and also by the fact that acabaaw
is not a Lyndon word for any order on {a, b, c} and for any word w.

A key tool used in the proof of Theorem 7.12 was the following result of Richomme, which
characterizes episturmian morphisms that preserve Lyndon words. A morphism f is said to
preserve finite (resp. infinite) Lyndon words if for each finite (resp. infinite) Lyndon word w, f(w)
is a finite (resp. infinite) Lyndon word.

Theorem 7.15. [100, 103] Let A = {a1, . . . , am} be an alphabet ordered by a1 < a2 < · · · < am.
Then the following assertions are equivalent for an episturmian morphism:

• f preserves finite Lyndon words;

• f preserves infinite Lyndon words;

• f ∈ (Ψ̄∗
{a2,...,am}ψa1

)∗{Ψ̄am
}∗ where Ψ̄A = {ψ̄x | x ∈ A}. ⊔⊓

7.4 Imbalance

We now return our attention to the notion of balance.
Episturmian words on three or more letters are generally unbalanced in the sense of 1-balance,

except, of course, for those on a 2-letter alphabet, which are precisely the (periodic and aperiodic)
Sturmian words. In fact, Cassaigne, Ferenczi, and Zamboni [33] have proved, by construction,
that there exists an episturmian word that is not q-balanced for any q. Note, however, that the
Tribonacci word is 2-balanced, for example. More generally, it can be shown by induction that
the k-bonacci word, directed by (a1a2 · · · ak)

ω, is (k − 1)-balanced. Even further, one can prove
that any linearly recurrent strict episturmian word (or Arnoux-Rauzy sequence) is q-balanced for
some q. Linearly recurrent Arnoux-Rauzy sequences were completely described in [105, 32]; they
are the strict episturmian words for which each letter x occurs in ∆ with bounded gaps.

Using their main result on return words (Theorem 6.13), Justin and Vuillon [76] proved that
episturmian words do in fact satisfy a kind of balance property. Specifically:

Theorem 7.16. [76, Theorem 5.2] Let s ∈ Aω be an epistandard word and let {d, e} be a 2-letter
subset of A. Then, for any u, v ∈ F (s) ∩ {d, e}∗ with |u| = |v|, we have ||u|d − |v|d| ≤ 1. ⊔⊓

This property of episturmian words reduces to the balance property of Sturmian words when
A is a 2-letter alphabet (in which case it is characteristic); however, the property is far from being
characteristic when A consists of more than two letters.

More recently, Richomme [101] also proved that episturmian words and Arnoux-Rauzy se-
quences can be characterized via a nice ‘local balance property’. That is:
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Theorem 7.17. [101] For a recurrent infinite word t ∈ Aω, the following assertions are equiva-
lent:

i) t is episturmian;

ii) for each factor u of t, there exists a letter a such that AuA∩ F (t) ⊆ auA ∪Aua;

iii) for each palindromic factor u of t, there exists a letter a such that AuA ∩ F (t) ⊆ auA ∪
Aua. ⊔⊓

Roughly speaking, the above theorem says that for any factor u of a given episturmian word
t, there exists a unique letter a such that every occurrence of u in t is immediately preceded or
followed by a in t. When |A| = 2, property ii) of Theorem 7.17 is equivalent to the definition
of balance. Indeed, Coven and Hedlund [37] stated that an infinite word w over {a, b} is not
balanced if and only if there exists a palindrome u such that aua and bub are both factors of w.
As pointed out in [101], this property can be rephrased as follows: an infinite word w is Sturmian
if and only if w is aperiodic and, for any factor u of w, the set of factors belonging to AuA is a
subset of auA ∪Aua or a subset of buA ∪Aub.

7.5 Fraenkel’s conjecture

As discussed previously, the recurrent balanced infinite words on two letters are exactly the
Sturmian words (aperiodic and periodic). A natural question to ask is then: “What are the
balanced recurrent infinite words on more than two letters?” In this direction, Paquin and Vuillon
[92] recently characterized the balanced episturmian words by classifying these words into three
families, as follows.

Theorem 7.18. [92] Any balanced standard episturmian sequence s on a k-letter alphabet Ak =
{1, 2, . . . , k}, k ≥ 3, belongs to one of the following three families (up to letter permutation):

i) s = p(k − 1)p(kp(k − 1)p)ω, with p = Pal(1n2 · · · (k − 2));

ii) s = p(k − 1)p(kp(k − 1)p)ω, with

p = Pal(123 · · · (k − ℓ− 1)1(k − ℓ) · · · (k − 2));

iii) s = [Pal(123 · · · k)]ω. ⊔⊓

The importance of the above result lies in the fact that it supports Fraenkel’s conjecture [56]:
a problem that arose in a number-theoretic context and has remained unsolved for over thirty
years. Fraenkel conjectured that, for a fixed k ≥ 3, there is only one covering of Z by k Beatty
sequences of the form (⌊αn+β⌋)n≥1, where α, β are real numbers. A combinatorial interpretation
of this conjecture may be stated as follows (taken from [92]). Over a k-letter alphabet with k ≥ 3,
there is only one recurrent balanced infinite word, up to letter permutation and shifts, that has
mutually distinct letter frequencies. This supposedly unique infinite word is called Fraenkel’s
sequence and is given by (Fk)ω where the Fraenkel words (Fi)i≥1 are defined recursively by F1 = 1
and Fi = Fi−1iFi−1 for all i ≥ 2. (Note that Fk = Pal(12 · · · k).) For further details, see for
instance [92, 110] and references therein.

Amongst the classes of balanced episturmian words given in Theorem 7.18, only one class
has mutually distinct letter frequencies and, up to letter permutation and shifts, corresponds to
Fraenkel’s sequence. That is:
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Theorem 7.19 (Paquin-Vuillon [92]). Suppose t is a balanced episturmian word with Alph(t) =
{1, 2, . . . , k}, k ≥ 3. If t has mutually distinct letter frequencies, then up to letter permutation, t

is a shift of (Fk)
ω. ⊔⊓

More recently, it was proved in [61] that any recurrent balanced rich infinite word is necessarily
episturmian, and hence such words obey Fraenkel’s conjecture (recall that rich words were defined
Section 6.2.2).

Remark 7.20. An interesting known fact (e.g., see [68]) is that any balanced recurrent infinite
word x on k ≥ 3 letters having mutually distinct letter frequencies is necessarily periodic. Cer-
tainly, the image of x under any morphism of the form: (a 7→ a, other x 7→ b) is a Sturmian word.
If, for one letter, the corresponding Sturmian word is aperiodic (i.e., x has irrational slope as a
cutting sequence), then we meet impossibility; thus rather easily x must be periodic.

8 Concluding remarks

In closing, we mention a number of very recent works involving episturmian words.

Rigidity: Krieger [78] has shown that any strict purely morphic epistandard word s is rigid.
That is, all of the morphisms that generate s are powers of the same unique (epistandard)
morphism. Krieger also showed that a certain class of ‘ultimately strict’ purely morphic
epistandard words are not rigid, but it remains an open question as to whether or not all
strict purely morphic episturmian words are rigid.

Quasiperiodicity: A finite or infinite word w is said to be quasiperiodic if there exists a word
u (with u 6= w for finite w) such that the occurrences of u in w entirely cover w, i.e., every
position of w falls within some occurrence of u in w. Such a word u is called a quasiperiod
of w. For example, the word w = abaababaabaababaaba has quasiperiods aba, abaaba,
abaababaaba.

In the last fifteen years, quasiperiodicity and coverings of finite words has been extensively
studied (see [9] for a brief survey on quasiperiodicity in ‘strings’). Quasiperiodic finite
words were first introduced by Apostolico and Ehrenfeucht in [10]. The notion was later ex-
tended to infinite words by Marcus [85] who opened some questions, particularly concerning
quasiperiodicity of Sturmian words. After a brief answer to some of these questions in [79],
the Sturmian case was fully studied by Levé and Richomme [81] who proved that a Sturmian
word is non-quasiperiodic if and only if it is an infinite Lyndon word. The study of quasiperi-
odicity in Sturmian words was very recently extended to episturmian words by Glen, Levé,
and Richomme [58, 64, 80], who have completely described all of the quasiperiods of an
episturmian word, yielding a characterization of quasiperiodic episturmian words in terms
of their directive words. They have also characterized episturmian morphisms that map any
word onto a quasiperiodic one. These results show that, unlike the Sturmian case, there
exist non-quasiperiodic episturmian words that are not infinite Lyndon words. Key tools
used in the study of quasiperiodicity in episturmian words were episturmian morphisms,
normalized directive words (recall Theorem 4.12), and the following equivalent definition of
quasiperiodicity in terms of return words introduced by Glen in [58]: a finite word v is a
quasiperiod of an infinite word w if and only if v is a recurrent prefix of w such that all of
the returns to v in w have length at most |v|.

30



In [89], Monteil proved that any Sturmian subshift contains a multi-scale quasiperiodic word,
i.e., an infinite word having infinitely many quasiperiods. A shorter proof of this fact was
provided in [81] and this result has also been proven true for episturmian words in [64].

For more recent work on quasiperiodicity, see for instance [89, 90].

θ-episturmian words: Recall that an infinite word is episturmian if and only if its set of factors
is closed under reversal and it has at most one left special factor of each length. With this
definition in mind, Bucci, de Luca, De Luca, and Zamboni [27, 28] have recently introduced
and studied a further extension of episturmian words in which the reversal operator is
replaced by an arbitrary involutory antimorphism (i.e., a map θ : A∗ → A∗ such that θ2 =
Id and θ(uv) = θ(v)θ(u) for all u, v ∈ A∗). More precisely, an infinite word over A is said to
be θ-episturmian if it has at most one left special factor of each length and its set of factors
is closed under an involutory antimorphism θ of the free monoid A∗. Generalizing even
further, θ-episturmian words with seed are obtained by requiring the condition on special
factors only for sufficiently large lengths (see [28]).
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question de Morse et Hedlund, Ann. Inst. Fourier (Grenoble) 56 (2006) 2249–2270.

[33] J. Cassaigne, S. Ferenczi, L.Q. Zamboni, Imbalances in Arnoux-Rauzy sequences, Ann. Inst. Fourier
(Grenoble) 50 (2000) 1265–1276.

32



[34] M.G. Castelli, F. Mignosi, A. Restivo, Fine and Wilf’s theorem for three periods and a generalization
of Sturmian words, Theoret. Comput. Sci. 218 (1999) 83–94.

[35] N. Chekhova, P. Hubert, A. Messaoudi, Propriétés combinatoires, ergodiques et arithmétiques de la
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