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A characterization of fine words over a finite alphabet
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Abstract

To any infinite word t over a finite alphabet A we can associate two infinite words min(t) and max(t) such that any prefix
of min(t) (resp. max(t)) is the lexicographically smallest (resp. greatest) amongst the factors of t of the same length. We say
that an infinite word t over A is fine if there exists an infinite word s such that, for any lexicographic order, min(t) = as where
a = min(A). In this paper, we characterize fine words; specifically, we prove that an infinite word t is fine if and only if t is either
a strict episturmian word or a strict “skew episturmian word”. This characterization generalizes a recent result of G. Pirillo, who
proved that a fine word over a 2-letter alphabet is either an (aperiodic) Sturmian word, or an ultimately periodic (but not periodic)
infinite word, all of whose factors are (finite) Sturmian.
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1. Introduction

To any infinite word t over a finite alphabet A we can associate two infinite words min(t) and max(t) such that
any prefix of min(t) (resp. max(t)) is the lexicographically smallest (resp. greatest) amongst the factors of t of the
same length (see Pirillo [14]). In the recent paper [15], Pirillo defined fine words over two letters; specifically, an
infinite word t over a 2-letter alphabet {a, b} (a < b) is said to be fine if (min(t),max(t)) = (as, bs) for some infinite
word s. Pirillo [15] characterized these words, and remarked that perhaps his characterization can be generalized to
an arbitrary finite alphabet; we do just that in this paper. Firstly, we extend the definition of a fine word to more than
two letters. That is, we say that an infinite word t over A is fine if there exists an infinite word s such that, for any
lexicographic order, min(t) = as where a = min(A). Roughly speaking, our main result states that an infinite word t
is fine if and only if t is either a strict episturmian word or a strict “skew episturmian word” (i.e., a particular kind of
non-recurrent infinite word, all of whose factors are finite episturmian).

2. Notation and terminology

2.1. Finite and infinite words

Let A denote a finite alphabet. A (finite) word over A is an element of the free monoid A∗ generated by A, in
the sense of concatenation. The identity ε of A∗ is called the empty word, and the free semigroup, denoted by A+, is
defined by A+

:= A∗
\ {ε}.
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Given w = x1x2 · · · xm ∈ A+ with each xi ∈ A, the length of w is |w| = m (note that |ε| = 0). The reversal w̃ of
w is given by w̃ = xm xm−1 · · · x1, and if w = w̃, then w is called a palindrome.

An infinite word (or simply sequence) x is a sequence indexed by N with values in A, i.e., x = x0x1x2 · · · with
each xi ∈ A. The set of all infinite words over A is denoted by Aω, and we define A∞

:= A∗
∪ Aω. An ultimately

periodic infinite word can be written as uvω = uvvv · · · , for some u, v ∈ A∗, v 6= ε. If u = ε, then such a word is
periodic. An infinite word that is not ultimately periodic is said to be aperiodic.

A finite word w is a factor of z ∈ A∞ if z = uwv for some u ∈ A∗, v ∈ A∞. Further, w is called a prefix (resp.
suffix) of z if u = ε (resp. v = ε), and we write w ≺p z (resp. w ≺s z). We say that w is a proper factor (resp. prefix,
suffix) of z if uv 6= ε (resp. v 6= ε, u 6= ε). An infinite word x ∈ Aω is called a suffix of z ∈ Aω if there exists a word
w ∈ A∗ such that z = wx. A factor w of a word z ∈ A∞ is right (resp. left) special if wa, wb (resp. aw, bw) are
factors of z for some letters a, b ∈ A, a 6= b.

For x ∈ Aω, F(x) denotes the set of all its factors, and Fn(x) denotes the set of all factors of x of length n ∈ N,
i.e., Fn(x) := F(x) ∩ An . Moreover, the alphabet of x is Alph(x) := F(x) ∩ A, and we denote by Ult(x) the set of
all letters occurring infinitely often in x. Any two infinite words x, y ∈ Aω are said to be equivalent if F(x) = F(y),
i.e., if x and y have the same set of factors. A factor of an infinite word x is recurrent in x if it occurs infinitely many
times in x, and x itself is said to be recurrent if all of its factors are recurrent in it.

2.2. Lexicographic order

Suppose that the alphabetA is totally ordered by the relation<. Then we can totally orderA∗ by the lexicographic
order <, defined as follows. Given two words u, v ∈ A+, we have u < v if and only if either u is a proper prefix of v
or u = xau′ and v = xbv′, for some x , u′, v′

∈ A∗ and letters a, b with a < b. This is the usual alphabetic ordering
in a dictionary, and we say that u is lexicographically less than v. This notion naturally extends toAω, as follows. Let
u = u0u1u2 · · · and v = v0v1v2 · · · , where u j , v j ∈ A. We define u < v if there exists an index i ≥ 0 such that
u j = v j for all j = 0, . . . , i − 1 and ui < vi . Naturally, ≤ will mean < or =.

Letw ∈ A∞ and let k be a positive integer. We denote by min(w|k) (resp. max(w|k)) the lexicographically smallest
(resp. greatest) factor of w of length k for the given order (where |w| ≥ k for w finite). If w is infinite, then it is clear
that min(w|k) and max(w|k) are prefixes of the respective words min(w|k + 1) and max(w|k + 1). So we can define,
by taking limits, the following two infinite words (see [14])

min(w) = lim
k→∞

min(w|k) and max(w) = lim
k→∞

max(w|k).

2.3. Morphisms and the free group

A morphism on A is a map ψ : A∗
→ A∗ such that ψ(uv) = ψ(u)ψ(v) for all u, v ∈ A∗. It is uniquely

determined by its image on the alphabet A. All morphisms considered in this paper will be non-erasing: the image
of any non-empty word is never empty. Hence the action of a morphism ψ on A∗ naturally extends to infinite words;
that is, if x = x0x1x2 · · · ∈ Aω, then ψ(x) = ψ(x0)ψ(x1)ψ(x2) · · · .

The free monoidA∗ can be naturally embedded within a free group. We denote by F(A) the free group overA that
properly contains A, and is obtained from A by adjoining the inverse a−1 of each letter a ∈ A. More precisely, we
construct a new alphabet A± that consists of all letters a of A and their ‘inverses’ a−1, i.e., A±

= {a, a−1
| a ∈ A}.

If one defines on the free monoid (A±)∗ the involution (a−1)−1
= a for each a ∈ (A±)∗, then necessarily, we have

(uv)−1
= v−1u−1 for all u, v ∈ (A±)∗. The free group F(A) over A is the quotient of (A±)∗ under the relation:

aa−1
= a−1a = ε for all a ∈ A. In what follows, we use the notation p−1w and ws−1 to indicate the removal of a

prefix p (resp. suffix s) from a finite word w.
Any morphism ψ on A can be uniquely extended to an endomorphism of F(A) by defining ψ(a−1) = (ψ(a))−1

for each a ∈ A.

3. Episturmian words

An interesting generalization of Sturmian words (i.e., aperiodic infinite words of minimal complexity) to a finite
alphabet is the family of Arnoux–Rauzy sequences, the study of which began in [2] (also see [10,17] for example).
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More recently, a slightly wider class of infinite words, aptly called episturmian words, was introduced by Droubay,
Justin, and Pirillo [4] (also see [5,9,11,12] for instance). An infinite word t ∈ Aω is episturmian if F(t) is closed
under reversal and t has at most one right (or equivalently left) special factor of each length. Moreover, an episturmian
word is standard if all of its left special factors are prefixes of it. Sturmian words are exactly the aperiodic episturmian
words over a 2-letter alphabet.

Standard episturmian words were characterized in [4] using the concept of the palindromic right-closure w(+) of a
finite word w, which is the (unique) shortest palindrome having w as a prefix (see [3]). Specifically, an infinite word
s ∈ Aω is standard episturmian if and only if there exists an infinite word ∆(s) = x1x2x3 . . . (xi ∈ A), called the
directive word of s, such that the infinite sequence of palindromic prefixes u1 = ε, u2, u3, . . . of s (which exists by
results in [4]) is given by

un+1 = (un xn)
(+), n ∈ N+. (1)

This characterization extends to the case of an arbitrary finite alphabet a construction given in [3] for all standard
Sturmian words. An important point is that a standard episturmian word s can be constructed as a limit of an infinite
sequence of its palindromic prefixes, i.e., s = limn→∞ un .

Note. Episturmian words are (uniformly) recurrent [4].

3.1. Relation with episturmian morphisms

Let a ∈ A and denote by Ψa the morphism on A defined by

Ψa :

{
a 7→ a
x 7→ ax for all x ∈ A \ {a}.

Together with the permutations of the alphabet, all of the morphisms Ψa generate by composition the monoid of
epistandard morphisms (‘epistandard’ is an elegant shortcut for ‘standard episturmian’ due to Richomme [16]). The
submonoid generated by the Ψa only is the monoid of pure epistandard morphisms, which includes the identity
morphism IdA = Id, and consists of all the pure standard (Sturmian) morphisms when |A| = 2.

When viewed as an endomorphism of the free group F(A), the morphism Ψa is invertible; that is, Ψa is a positive
automorphism of F(A), and its inverse is given by

Ψ−1
a :

{
a 7→ a
x 7→ a−1x for all x ∈ A \ {a}.

It follows that every epistandard morphism is a (positive) automorphism of F(A). See [6,8,16,18] for work involving
the invertibility of episturmian morphisms.

Remark 3.1. If x = Ψa(y) or x = a−1Ψa(y) for some y ∈ Aω and a ∈ A, then the letter a is separating for x and its
factors; that is, any factor of x of length 2 contains the letter a.

Another useful characterization of standard episturmian words is the following (see [9]). An infinite word s ∈ Aω
is standard episturmian with directive word ∆(s) = x1x2x3 · · · (xi ∈ A) if and only if there exists an infinite sequence
of recurrent infinite words s(0) = s, s(1), s(2), . . . such that s(i−1)

= Ψxi (s
(i)) for all i ∈ N+. Moreover, each s(i) is a

standard episturmian word with directive word ∆(s(i)) = xi+1xi+2xi+3 · · · , the i th shift of ∆(s).
To the prefixes of the directive word ∆(s) = x1x2 · · · , we associate the morphisms

µ0 := Id, µn := Ψx1Ψx2 · · ·Ψxn , n ∈ N+,

and define the words

hn := µn(xn+1), n ∈ N,

which are clearly prefixes of s. For the palindromic prefixes (ui )i≥1 given by (1), we have the following useful formula
from [9]:

un+1 = hn−1un;
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whence, for n > 1 and 0 < p < n,

un = hn−2hn−3 · · · h1h0 = hn−2hn−3 · · · h p−1u p. (2)

Remark 3.2. Evidently, if a standard episturmian word s begins with the letter x ∈ A, then x is separating for s (see
[4, Lemma 4]).

3.2. Strict episturmian words

A standard episturmian word s ∈ Aω, or any equivalent (episturmian) word, is said to be B-strict (or k-strict if
|B| = k, or strict if B is understood) if Alph(∆(s)) = Ult(∆(s)) = B ⊆ A. In particular, a standard episturmian word
over A is A-strict if every letter in A occurs infinitely often in its directive word. The k-strict episturmian words have
complexity (k − 1)n + 1 for each n ∈ N; such words are exactly the k-letter Arnoux–Rauzy sequences. Note that the
2-strict episturmian words correspond to the (aperiodic) Sturmian words.

Remark 3.3. Suppose that s ∈ Aω is a standard episturmian word. If s is not A-strict, then Ult(∆(s)) = B ⊂ A and
there exists a B-strict standard episturmian word s′ and a pure epistandard morphism µ on A such that s = µ(s′).
More precisely, let ∆(s) = x1x2x3 · · · and let m be minimal such that Alph(xm+1xm+2 · · · ) = B ⊂ A. That is,
x1x2 · · · xm is the shortest prefix of ∆(s) that contains all the letters not appearing infinitely often in ∆(s), namely
the letters in A \ B. Then s = µm(s(m)) where s(m) is the B-strict standard episturmian word with directive word
∆(s(m)) = xm+1xm+2 · · · . For example, if ∆(s) = c(ab)ω, then s = Ψc(s(1)) where ∆(s(1)) = (ab)ω, i.e., s(1) is the
well-known Fibonacci word over {a, b}.

4. Fine words

Recall that an infinite word t over A is fine if there exists an infinite word s such that, for any lexicographic order,
min(t) = as where a = min(A).

Note. Since there are only two lexicographic orders on words over a 2-letter alphabet, a fine word t over {a, b} (a < b)
satisfies (min(t),max(t)) = (as, bs) for some infinite word s.

Recently, Pirillo [15] characterized fine words over a 2-letter alphabet. Specifically:

Proposition 4.1 ([15]). Suppose that t is an infinite word over {a, b}. Then the following properties are equivalent:

(i) t is fine;
(ii) either t is a Sturmian word, or t = vµ(x)ω where µ is a pure standard Sturmian morphism on {a, b}, and v is a

non-empty suffix of µ(x p y) for some p ∈ N and x, y ∈ {a, b} (x 6= y).

In other words, a fine word over two letters is either a Sturmian word or an ultimately periodic (but not periodic)
infinite word, all of whose factors are (finite) Sturmian, i.e., a so-called skew Sturmian word (see [13]). In this paper,
we generalize Pirillo’s result to infinite words over two or more letters.

The next two propositions are needed for the proof of our main result (Theorem 4.6, to follow). Recall that the
Arnoux–Rauzy sequences are precisely the strict episturmian words.

Proposition 4.2 ([10]). Suppose that s is an infinite word over a finite alphabet A. Then the following properties are
equivalent:

(i) s is a standard Arnoux–Rauzy sequence;
(ii) as = min(s) for any letter a ∈ A and lexicographic order < satisfying a = min(A).

Proposition 4.3 ([14]). Suppose that s is an infinite word over a finite alphabet A. Then the following properties are
equivalent:

(i) s is standard episturmian;
(ii) as ≤ min(s) for any letter a ∈ A and lexicographic order < satisfying a = min(A).

The following key lemma is also needed. From now on, it will be convenient to denote by vp the prefix of length
p of a given infinite word v.
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Lemma 4.4. LetA be a finite alphabet and let a ∈ A. Suppose that t, s ∈ Aω are infinite words such that t = Ψz(t(1))
and s = Ψz(s(1)) for some z ∈ Alph(t(1)). Then

min(t(1)) = as(1) ⇔ min(t) = as.

Remark 4.5. Let t, t(1), s, s(1) ∈ Aω be such that t = Ψz(t(1)) and s = Ψz(s(1)) for some letter z (not necessarily in
Alph(t(1))). Using similar reasoning as in the proof below, it can be shown that

min(t(1)) = as(1) ⇔ min(t) =

{
zas if z < a,

as if z ≥ a.

For example, let A = {a, b, c} with a < b < c and suppose f is the Fibonacci word over {a, b} (i.e., the standard
episturmian word directed by (ab)ω). Then min(f) = af, and hence min(Ψc(f)) = aΨc(f). On the other hand, if f′ is
the Fibonacci word over {b, c}, then min(f′) = bf′ and we have min(Ψa(f′)) = abΨa(f′). Lemma 4.4 is a special case
of this result with z ∈ Alph(t(1)) ⊆ A and is sufficient for our purposes.

Proof of Lemma 4.4. (⇐): We have min(t) = as. First observe that a ∈ Alph(t(1)). Indeed, if a = z, then a ∈

Alph(t(1)) since z ∈ Alph(t(1)) (in fact, zz ∈ F(t) since zz is a prefix of as = zs, and hence a = z ∈ Alph(t(1))). On
the other hand, if a 6= z, then we must have a ∈ Alph(t(1)), otherwise a is not in the alphabet of t = Ψz(t(1)), which
is impossible since F(as) ⊆ F(t).

Now we show that F(as(1)) ⊆ F(t(1)). Suppose not, i.e., suppose F(as(1)) 6⊆ F(t(1)). Then there exists a minimal
m ∈ N+ such that as(1)m 6∈ F(t(1)). Therefore, if s(1)m = s(1)m−1x where x ∈ A, then

as(1)m−1x 6∈ F(t(1)).

Letting sl = Ψz(s
(1)
m−1), we have

aΨz(s
(1)
m−1x) = aslΨz(x) ∈ F(as) ⊆ F(t),

and hence Ψz(a)slΨz(x) ∈ F(t) since z is separating for t. So, if x 6= z then as(1)m−1x ∈ F(t(1)), which is impossible;

whence x = z. But then, s(1)m+1 = s(1)m−1zy′ for some y′
∈ A and we have

aΨz(s
(1)
m+1) = asl zΨz(y

′) ∈ F(as) ⊆ F(t).

Thus,

Ψz(a)sl zz ∈ F(t),

and hence as(1)m−1z (=as(1)m−1x) is a factor of t(1); a contradiction. Therefore, we conclude that F(as(1)) ⊆ F(t(1)).
Now suppose on the contrary that min(t(1)) 6= as(1). Then there exists a word w(1) ∈ F(t(1)) of minimal length

|w(1)| = m such that

w(1) < as(1)m−1.

Let w(1) = u(1)x (x ∈ A) where u(1) is non-empty since a ∈ Alph(t (1)). Then, by minimality of m, u(1) ≥ as(1)m−2,

and therefore u(1) = as(1)m−2 (otherwise u(1) > as(1)m−2 implies that w(1) > as(1)m−1). Hence,

w(1) = as(1)m−2x with w(1) < as(1)m−1,

and therefore

s(1)m−1 = s(1)m−2 y for some y ∈ A, y > x .

Now, letting w = Ψz(w
(1)) and sl = Ψz(s

(1)
m−2), we have

w = Ψz(a)slΨz(x) ∈ F(t) and slΨz(y) ≺p s.
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Now consider x ′, y′
∈ A such that w(1)x ′

∈ F(t(1)) and s(1)m = s(1)m−2 yy′ is a prefix of s(1). Then Ψz(w
(1)x ′) is a

factor of t, where

Ψz(w
(1)x ′) = wΨz(x

′) = Ψz(a)slΨz(x)Ψz(x
′) =

{
Ψz(a)sl zΨz(x ′) if x = z,

Ψz(a)sl zxΨz(x ′) if x 6= z.

Therefore, the word v = asl zx is a factor of t. Moreover, Ψz(s
(1)
m ) is a prefix of s, where

Ψz(s(1)m ) =

{
sl zΨz(y′) if y = z,

sl zyΨz(y′) if y 6= z,

and hence sl+2 = sl zy is a prefix of s. Accordingly, v < asl+2 since x < y, contradicting the fact that the prefixes of
as are the lexicographically smallest factors of t. Thus, we conclude that min(t(1)) = as(1).

(⇒): We have min(t(1)) = as(1). As above, it is easily shown that F(as) ⊆ F(t); whence min(t) ≤ as. Let us suppose
min(t) 6= as. Then there exists a word w ∈ F(t) of minimal length |w| = l such that w < asl−1 If we let w = ux ,
x ∈ A, then u ≥ asl−2, and hence u = asl−2 (otherwise w > asl−1). Therefore,

w = asl−2x < asl−1

and hence sl−1 = sl−2 y where y ∈ A, y > x .
Since the letter z is separating for t, sl−2 must end with z; otherwise x = y = z, which is impossible. Thus,

w = asl−3zx and sl−1 = sl−3zy, y > x .

Let s(1)m−1 = Ψ−1
z (sl−1). We distinguish two cases: y = z and y 6= z.

Case 1: y = z. We have sl−1 = sl−3zz, and thus s(1)m−1 and s(1)m−2 both end with the letter z. Note that z 6= a because
a ≤ x < y = z. Therefore, since w begins with a and z is separating for t, we have zw ∈ F(t). Now,

Ψ−1
z (zw) = Ψ−1

z (zasl−1z−1x)

= as(1)m−1z−1Ψ−1
z (x)

= as(1)m−1z−1z−1x

= as(1)m−3x,

i.e., zw = Ψz(w
(1)) where w(1) = as(1)m−3x ∈ F(t(1)). Therefore, as s(1)m−2 ends with z > x , we have w(1) < as(1)m−2; a

contradiction.
Case 2: y 6= z. In this case, sl = sl−3zyz = sl−1z, and so s(1)m = s(1)m−1 y′

= s(1)m−2 yy′ for some y′
∈ A. If z 6= a, then

zw = zasl−3zx is a factor of t since w ∈ F(t) and z is separating for t. So, letting w′
= zw if z 6= a and w′

= w if
z = a, we have w′

∈ F(t) and

Ψ−1
z (w′) = aΨ−1

z (sl−3zx)

= aΨ−1
z (sl−1 y−1x)

= as(1)m−1(z
−1 y)−1Ψ−1

z (x)

= as(1)m−1 y−1zΨ−1
z (x)

= as(1)m−2zΨ−1
z (x).

That is, w′
= Ψz(w

(1)) where w(1) ∈ F(t(1)) is given by

w(1) =

{
as(1)m−2xx if x = z,

as(1)m−2x if x 6= z.

Therefore, since s(1)m = s(1)m−1 y′
= s(1)m−2 yy′ with y > x , we have w(1) < as(1)m−1; a contradiction.

Both Cases 1 and 2 lead to a contradiction; whence min(t) = as. �
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We now prove our main result: a characterization of fine words over a finite alphabet. (Recall that vp denotes the
prefix of length p of a given infinite word v, and ṽp denotes its reversal.)

Theorem 4.6. Suppose that t is an infinite word with Alph(t) = A. Then, t is fine if and only if one of the following
holds:

(i) t is a strict episturmian word;
(ii) t = vµ(v) where v is a B-strict standard episturmian word with B = A \ {x}, µ is a pure epistandard morphism

on A, and v is a non-empty suffix of µ(̃vpx) for some p ∈ N.

Proof. In what follows, let A denote the alphabet of t.
(⇒): t is fine, so there exists an infinite word s such that, for any letter a ∈ A and lexicographic order < satisfying
a = min(A), we have min(t) = as. Further, min(t) ≤ min(s) since F(s) ⊆ F(as) ⊆ F(t), and therefore as ≤ min(s).
Thus, Proposition 4.3 implies that s is a standard episturmian word over A. We distinguish two cases, below.

Case 1: as = min(s) for any a ∈ A and lexicographic order such that a = min(A).
By Proposition 4.2, s is an A-strict standard episturmian word.
Clearly, F(s) ⊆ F(t) and we show that F(s) = F(t) which implies that t is equivalent to s, and hence t is an

A-strict episturmian word. Suppose, on the contrary, F(s) 6= F(t). Then there exists a word u ∈ F(t) \ F(s), say
u = xv with |v| = m minimal and x ∈ A. Now, v is not a prefix of s; otherwise, zv is a factor of s for all z ∈ A
(since any prefix of s is left special and has |A| distinct left extensions in s), which contradicts the fact that xv 6∈ F(s).
Therefore, for some order such that x = min(A), we have u = xv < xsm , contradicting the fact that min(t) = xs;
whence F(t) = F(s).

Case 2: xs < min(s) for some x ∈ A and lexicographic order such that x = min(A).
In this case, it follows from Propositions 4.2 and 4.3 that s ∈ Aω is a standard episturmian word that is notA-strict.

Therefore, letting ∆(s) = x1x2x3 · · · , there exists a minimal n ∈ N such that s = Ψx1Ψx2 · · ·Ψxn (s
(n)) = µn(s(n)),

where s(n) is a B-strict standard episturmian word with B = Alph(∆(s(n))) = Alph(xn+1xn+2xn+3 · · · ) ⊂ A (see
Remark 3.3). Note that if s = s(0) is B-strict with B ⊂ A, then n = 0 and we take xn = x0 to be a letter in A \ B.

Clearly, s begins with x1 ∈ A and x1 is separating for s. Observe that x1 must also be separating for t. Indeed, let
us suppose that this is not true. Then, there exist letters z, z′

∈ A \ {x1} (possibly equal) such that zz′
∈ F(t). But, if

< is an order such that min(A) = z ≤ z′ < x1, then zx1 is a prefix of zs with zz′ < zx1, contradicting the fact that
min(t) = zs. Therefore, x1 must be separating for t.

Now, let < be an order with a = min(A). Let t′ = t if t begins with x1. Otherwise, if t begins with y 6= x1, let
t′ = x1t. In the latter case, ax1 ≺p as and x1 y ≺p t′ with ax1 < x1 y; thus min(t′) = min(t) = as. So we may
consider t′ instead of t.

Observe that s = Ψx1(s
(1)) and, since x1 is separating for s (and hence for t′), we have t′ = Ψx1(t

(1)) for some
t(1) ∈ Aω. Because min(t′) = xs for any letter x ∈ A and lexicographic order such that x = min(A), it follows that
Alph(t(1)) = A (see arguments in the first lines of the proof of Lemma 4.4); in particular x1 ∈ Alph(t(1)). So, by
Lemma 4.4, we have

min(t(1)) = as(1).

Continuing in the same way (and applying Lemma 4.4 repeatedly), we obtain sequences (s(i)), (t(i)), (t′(i)) for
i = 0, 1, 2, . . . , n such that s(i−1)

= Ψxi (s
(i)), t′(i−1)

= Ψxi (t
(i)), where t′(i−1)

= t(i−1) if t(i−1) begins with
xi , t′(i−1)

= xi t(i−1) otherwise, and t(0) = t, t′(0) = t′. In particular, we have Alph(t(n)) = A and

min(t(n)) = as(n)

for any a ∈ A and lexicographic order < satisfying a = min(A).
Now we show that B = A \ {xn}, i.e., A = B ∪ {xn}. First observe that xn ∈ A \ B by minimality of n.
Suppose that t(n) contains two occurrences of the letter xn . Then, since xn+1 is separating for t(n), we have

xnw
(n)xn ∈ F(t(n)) for some non-empty word w(n) for which xn+1 is separating, and the first and last letter of w(n)

is xn+1 (that is, w(n)xn = Ψxn+1(w
(n+1)xn), where w(n+1)

= Ψ−1
xn+1

(w(n)x−1
n+1)). Continuing the above procedure, we

obtain infinite words t(n+1), t(n+2), . . . containing similar shorter factors xnw
(n+1)xn , xnw

(n+2)xn , . . . until we reach
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t(q), which contains xn xn . But this is impossible because xq+1 ∈ B ⊆ A \ {xn} is separating for t(q). Therefore, t(n)

contains only one occurrence of xn and we have

t(n) = uxnv for some u ∈ (A \ {xn})∗ and v ∈ (A \ {xn})ω.

Note that the same reasoning allows us to prove the unicity of x0 ∈ A \ B when n = 0.
Clearly, for any order such that xn = min(A), we have min(t(n)) = xnv = xns(n); whence v = s(n) and so

t(n) = uxns(n). Note that if u 6= ε, then u ends with xn+1, and in particular xn+1 is separating for uxn since xn+1 is
separating for t(n).

Let u′
= xn+1u if u does not begin with xn+1; otherwise let u′

= u. Then u′xn is a prefix of t′(n). Moreover,
since xn+1 is separating for u′xn , we have u′xn = Ψxn+1(u

(n+1)xn) where u(n+1)
= Ψ−1

xn+1
(u′x−1

n+1). Hence

t(n+1)
= u(n+1)xns(n+1), where xn+2 is separating for u(n+1)xn (if u(n+1)

6= ε). Continuing in this way, we arrive
at the infinite word t(q) = xns(q) for some q ≥ n.

Now, reversing the procedure, we find that

t(n) = ws(n) where w = uxn is a non-empty suffix of Ψxn+1 · · ·Ψxq (xn).

Accordingly, u ∈ B∗ since xn+1, . . . , xq ∈ B; whence A = B ∪ {xn}.
Suppose (ui )i≥1 is the sequence of palindromic prefixes of s and the words (hi )i≥0 are the prefixes (µi (xi+1))i≥0

of s. Then, letting u(n)i , h(n)i , and µ(n)i denote the analogous elements for s(n), we have

µ
(n)
0 = Id, µ

(n)
i = Ψxn+1Ψxn+2 · · ·Ψxn+i = µ−1

n µn+i

and

h(n)0 = xn+1, h(n)i = µ
(n)
i (xn+1+i ) for i = 1, 2, . . . .

Now, if u 6= ε, then q ≥ n + 1, and we have

Ψxn+1 · · ·Ψxq (xn) = µ
(n)
q−n(xn) = µ

(n)
q−n−1Ψq(xn)

= µ
(n)
q−n−1(xq xn)

= h(n)q−n−1µ
(n)
q−n−1(xn)

...

= h(n)q−n−1 · · · h(n)1 µ
(n)
0 (xn+1xn)

= h(n)q−n−1 · · · h(n)1 h(n)0 xn = u(n)q−n+1xn (by (2)).

Therefore, w = uxn where u is a (possibly empty) suffix of the palindromic prefix u(n)q−n+1 of s(n). That is, u is the

reversal of some prefix of s(n) = v; in particular

u = ṽp for some p ∈ N,

and hence

t(n) = ṽpxnv.

So, passing back from t(n) to t, we find that

t = vµn(v) = vs where v is a non-empty suffix of µn (̃vpxn).

Cases 1 and 2 give properties (i) and (ii), respectively.

(⇐): Firstly, if t is an A-strict episturmian word, then Proposition 4.2 implies that t is fine.
Now suppose t = vµ(v) where v is a B-strict standard episturmian word with B = A \ {x}, µ is a pure epistandard

morphism on A, and v is a non-empty suffix of µ(̃vpx) for some p ∈ N. First observe that if µ = Id, then

t = ṽq xv for some q ≤ p.
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Consider an order < such that min(A) = a 6= x . Then, by Proposition 4.2, min(v) = av, and it follows that
min(t) = min(v) = av. Indeed, if t = xv (i.e., q = 0), then it is clear that min(t) = min(v). On the other hand, if
q ≥ 1, let us suppose, on the contrary, that min(t) 6= min(v). Then min(t) is a suffix of ṽq xv containing the letter x ,
i.e.,

min(t) = aṽl xv for some l with 0 ≤ l < q ≤ p,

where aṽl = ṽl+1 ∈ F(v). But, since min(v) = av, avl+1 is a factor of v (and hence a factor of t) with
avl+1 = avla < aṽl x ; a contradiction. Thus min(t) = min(v) = av. Moreover, it is clear that min(t) = xv for
any order such that x = min(A). So we have shown that min(t) = av for any letter a ∈ A and lexicographic order
satisfying a = min(A); whence t is fine.

Now consider the case when µ is not the identity. Let us suppose that t is not fine and let µ be minimal with this
property. Then, µ = Ψzη for some z ∈ A and pure epistandard morphism η.

Consider t′ = v′µ(v), where v′
= v if v begins with z and v′

= zv otherwise. Then v′ is also a non-empty suffix
of µ(̃vpx) since z is separating for the word µ(̃vpx) (which begins with z). Letting t(1) = Ψ−1

z (t′), we have

t(1) = wη(v)

where w = Ψ−1
z (v′) is a non-empty suffix of η(̃vpx). By minimality of µ, t(1) is fine, so there exists an infinite

word s(1) = Ψ−1
z (s) such that min(t(1)) = as(1) for any a ∈ A and order < satisfying a = min(A). But then

min(t) = min(t′) = as by Lemma 4.4. Thus t is fine. �

Example 4.7. Let A = {a, b, c} with a < b < c and suppose f is the Fibonacci word over {a, b}. Then, the following
infinite words are fine.

• f = abaababaabaaba · · ·

• cf = cabaababaabaaba · · ·

• f̃4cf = aabacabaababaabaaba · · ·

• Ψa(f) = aabaaabaabaaabaaaba · · ·

• Ψc(cf) = ccacbcacacbcacbcacacbcacacbca · · ·

• Ψc(f̃4cf) = cacacbcaccacbcacacbcacbcacacbcaca · · · .

Let us note, for example, that Ψc(f) is not fine since it is a non-strict standard episturmian word. That is, Ψc(f) is a
standard episturmian word with directive word c(ab)ω, so it is not strict, nor does it take the second form given in
Theorem 4.6.

5. Concluding remarks

It is easy to see that Proposition 4.1 is a special case of Theorem 4.6 because the 2-strict episturmian words are
precisely the Sturmian words and the 1-strict standard episturmian words are periodic infinite words of the form xω

where x is a letter (see [9, Proposition 2.9]).
As alluded to in the introduction, an infinite word taking form (ii) in Theorem 4.6 is said to be a strict skew

episturmian word. Skew episturmian words (now called episkew words [1,7]) are explicated in the paper [7], in which
we expand upon our work here by characterizing via lexicographic order all episturmian words in a wide sense, i.e.,
all infinite words whose factors are (finite) episturmian.

Acknowledgements

The author would like to thank Jacques Justin for suggesting the problem and giving many helpful comments on
preliminary versions of this paper. Thanks also to the referees for their careful reading of the paper and providing
thoughtful suggestions.

References

[1] J.-P. Allouche, A. Glen, Extremal properties of (epi)sturmian sequences and distribution modulo 1 (in preparation).
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