93,297 research outputs found

    Italian center for Astronomical Archives publishing solution: modular and distributed

    Get PDF
    The Italian center for Astronomical Archives tries to provide astronomical data resources as interoperable services based on IVOA standards. Its VO expertise and knowledge comes from active participation within IVOA and VO at European and international level, with a double-fold goal: learn from the collaboration and provide inputs to the community. The first solution to build an easy to configure and maintain resource publisher conformant to VO standards proved to be too optimistic. For this reason it has been necessary to re-think the architecture with a modular system built around the messaging concept, where each modular component speaks to the other interested parties through a system of broker-managed queues. The first implemented protocol, the Simple Cone Search, shows the messaging task architecture connecting the parametric HTTP interface to the database backend access module, the logging module, and allows multiple cone search resources to be managed together through a configuration manager module. Even if relatively young, it already proved the flexibility required by the overall system when the database backend changed from MySQL to PostgreSQL+PgSphere. Another implementation test has been made to leverage task distribution over multiple servers to serve simultaneously: FITS cubes direct linking, cubes cutout and cubes positional merging. Currently the implementation of the SIA-2.0 standard protocol is ongoing while for TAP we will be adapting the TAPlib library. Alongside these tools a first administration tool (TASMAN) has been developed to ease the build up and maintenance of TAP_SCHEMA-ta including also ObsCore maintenance capability. Future work will be devoted at widening the range of VO protocols covered by the set of available modules, improve the configuration management and develop specific purpose modules common to all the service components.Comment: SPIE Astronomical Telescopes + Instrumentation 2018, Software and Cyberinfrastructure for Astronomy V, pre-publishing draft proceeding (reduced abstract

    Towards Modular Attitude Determination and Control System (ADCS)

    Get PDF
    Objectives: Modular ADCS based on CubeSat flight experience, space heritage hardware and rad hard components for small satellites Project goal: Integration of independent modules based on electronic data sheets (EDS) configuration system Capabilities: Attitude determination and control Boot and self-recovery Plug and play interface to sensor and actuators Fault Detection, Isolation & Recovery (FDIR) Data management and storage External control interfac

    Application of ant based routing and intelligent control to telecommunications network management

    Get PDF
    This thesis investigates the use of novel Artificial Intelligence techniques to improve the control of telecommunications networks. The approaches include the use of Ant-Based Routing and software Agents to encapsulate learning mechanisms to improve the performance of the Ant-System and a highly modular approach to network-node configuration and management into which this routing system can be incorporated. The management system uses intelligent Agents distributed across the nodes of the network to automate the process of network configuration. This is important in the context of increasingly complex network management, which will be accentuated with the introduction of IPv6 and QoS-aware hardware. The proposed novel solution allows an Agent, with a Neural Network based Q-Learning capability, to adapt the response speed of the Ant-System - increasing it to counteract congestion, but reducing it to improve stability otherwise. It has the ability to adapt its strategy and learn new ones for different network topologies. The solution has been shown to improve the performance of the Ant-System, as well as outperform a simple non-learning strategy which was not able to adapt to different networks. This approach has a wide region of applicability to such areas as road-traffic management, and more generally, positioning of learning techniques into complex domains. Both Agent architectures are Subsumption style, blending short-term responses with longer term goal-driven behaviour. It is predicted that this will be an important approach for the application of AI, as it allows modular design of systems in a similar fashion to the frameworks developed for interoperability of telecommunications systems

    Robust configurable system design with built-in self-healing

    Get PDF
    The new generations of SRAM-based FPGA (Field Programmable Gate Array) devices, built on nanometre technology, are the preferred choice for the implementation of reconfigurable computing platforms. However, their vulnerability to hard and soft errors is a major weakness to robust system design based on FPGAs. In this paper, a novel Built-In Self-Healing (BISH) methodology, based on modular redundancy and on selfreconfiguration, is proposed. A soft microprocessor core implemented in the FPGA is responsible for the management and execution of all the BISH procedures. Fault detection and diagnosis is followed by repairing actions, taking advantage of the self-configuration features. Meanwhile, modular redundancy assures that the system still works correctly. This approach leads to a robust system design able to assure high reliability, availability and data integrity

    Capacity management of modular assembly systems

    Get PDF
    Companies handling large product portfolio often face challenges that stem from market dynamics. Therefore, in production management, efficient planning approaches are required that are able to cope with the variability of the order stream to maintain the desired rate of production. Modular assembly systems offer a flexible approach to react to these changes, however, there is no all-encompassing methodology yet to support long and medium term capacity management of these systems. The paper introduces a novel method for the management of product variety in assembly systems, by applying a new conceptual framework that supports the periodic revision of the capacity allocation and determines the proper system configuration. The framework has a hierarchical structure to support the capacity and production planning of the modular assembly systems both on the long and medium term horizons. On the higher level, a system configuration problem is solved to assign the product families to dedicated, flexible or reconfigurable resources, considering the uncertainty of the demand volumes. The lower level in the hierarchy ensures the cost optimal production planning of the system by optimizing the lot sizes as well as the required number of resources. The efficiency of the proposed methodology is demonstrated through the results of an industrial case study from the automotive sector. © 2017 The Society of Manufacturing Engineer

    Quattor: Tools and Techniques for the Configuration, Installation and Management of Large-Scale Grid Computing Fabrics

    Get PDF
    This paper describes the quattor tool suite, a new system for the installation, configuration, and management of operating systems and application software for computing fabrics. At present Unix derivatives such as Linux and Solaris are supported. Quattor is a powerful, portable and modular open source solution that has been shown to scale to thousands of computing nodes and offers a significant reduction in management costs for large computing fabrics. The quattor tool suite includes innovations compared to existing solutions which make it very useful for computing fabrics integrated into grid environments. Evaluations of the tool suite in current large scale computing environments are presented
    corecore