

Abstract—The new generations of SRAM-based FPGA

(Field Programmable Gate Array) devices, built on nanometre
technology, are the preferred choice for the implementation of
reconfigurable computing platforms. However, their
vulnerability to hard and soft errors is a major weakness to
robust system design based on FPGAs.

In this paper, a novel Built-In Self-Healing (BISH)
methodology, based on modular redundancy and on self-
reconfiguration, is proposed. A soft microprocessor core
implemented in the FPGA is responsible for the management
and execution of all the BISH procedures. Fault detection and
diagnosis is followed by repairing actions, taking advantage of
the self-configuration features. Meanwhile, modular
redundancy assures that the system still works correctly. This
approach leads to a robust system design able to assure high
reliability, availability and data integrity.

Index Terms—Built-In Self-Healing, reconfigurable
computing, robust system design, reliability

I. INTRODUCTION
HE incorporation of self-reconfiguration capabilities in
recent SRAM-based Field Programmable Gate Arrays

(FPGAs), allied to the inclusion of soft microprocessor
cores, enabled the development of autonomous configurable
computing platforms. By mapping compute-intensive
sections of an application to reconfigurable hardware, these
platforms tend to exhibit a significant speedup in
performance over traditional microprocessors.

These developments were made possible by the
introduction of Very Large Scale Integration (VLSI)
technologies, which raised substantially the reliability of
electronic systems, when compared with the previous use of
discrete components. Hence, the use of fault tolerance
techniques was confined only to specific applications
requiring high levels of security or operating on harsh
environments. The reduction in the size of transistors in
each new generation of semiconductor technology led to a
greater integration and to a per unit power reduction,
enabling chips to grow in size and complexity.

However, new nanometre scales also brought some
negative aspects, namely the vulnerability to soft errors, also
called single-event upsets (SEUs), which are radiation-

This work is supported by an FCT program under contract POSC/EEA-
ESE/55680/2004.

Manuel G. Gericota and Gustavo R. Alves are with the Department of
Electrical Engineering, School of Engineering - Polytechnic Institute of
Porto, Rua Dr. Antonio Bernardino de Almeida, 4200-072 Porto, Portugal
(e-mail: {mgg, galves}@dee.isep.ipp.pt).

José M. Ferreira is with the Department of Electrical and Computer
Engineering, Faculty of Engineering of the University of Porto, Rua Dr.
Roberto Frias, 4200-465 Porto, Portugal (e-mail: jmf@fe.up.pt).

induced transient errors caused by neutrons from cosmic
rays and alpha particles from packaging material. Until now,
they used to be a major concern only for space applications.
But, for designs manufactured at advanced technology
nodes – such as 90 nm, 65 nm, and downward – system-
level soft errors became an issue also at ground level. They
are now much more frequent than in previous generations
[1, 2].

Soft errors do not physically damage the chip, but the
values stored in memory cells may be affected, causing
incorrect data to be transmitted or an improper instruction to
be retrieved by a processor. This problem has a particular
impact on the reliability of SRAM-based FPGAs, because
the structural definition of the functions implemented relies
on memory cells. The exponential growing on the amount of
reconfigurable logic available at each new FPGA generation
implies also a similar increase on the amount of
configurable memory cells, which makes FPGAs especially
vulnerable to soft errors. Additionally, the amount of
embedded memory blocks available for user’s applications
is also increasing.

Another negative aspect due to the smaller technological
scales is the increased threat of electromigration, which may
result in permanent physical damages to the chip. The
number of defects related to small manufacturing
imperfections that are not detected by production testing has
been growing as scale goes down. These defects are
especially prone to electromigration phenomena, resulting,
after large periods of operation, in the emergence of
permanent faults.

The recent addition of new features, such as dynamic
reconfiguration and self-reconfiguration, the two most
advanced forms of reconfigurability, may help to cope with
the problems mentioned above, in particular when dealing
with critical applications that require a high reliability level.

Dynamic reconfiguration involves the reconfiguration of
a fraction of the configurable resources, without disturbing
the operation of those functions that are not modified. This
feature extends FPGA’s flexibility, enabling multiple
independent functions from different applications to share
the same logic resources in the spatial and temporal domain
[3]. More recently, and via self-reconfiguration [4], it
became possible for functions currently implemented to
control the dynamic reconfiguration of other areas of the
same FPGA.

The advantages of using dynamic reconfiguration in the
implementation of online structural test and fault tolerance
strategies were largely explored in previous works [5-8].
However, those previous approaches relied on a rotate and
test methodology, whose primary aim was the structural test

Robust Configurable System Design with
Built-In Self-Healing♦

Manuel Gericota, Gustavo Alves, José Ferreira

T

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Aberto da Universidade do Porto

https://core.ac.uk/display/143399805?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

of the FPGA. Moreover, only a small fraction of the
resources were configured to be tested at a time. These
solutions create a test latency that must be taken into
account since it degrades the performance of the test
strategy. If a defect, caused by a soft error, affects the
functionality of a given function, the resulting fault will be
propagated until the test function reaches the defective
resource. By then, the fault may already have caused the
irreversible malfunctioning of the whole system, eventually
interrupting its operation. In some cases, it may be
impossible to recover from this situation.

This paper presents a new methodology that aims to
increase the reliability of configurable computing platforms
implemented in dynamically reconfigurable FPGAs. The
drawback associated to previous approaches is avoided by
the introduction of fault tolerance techniques.

The next section analyses traditional hardware
redundancy techniques, and is followed by the presentation
of the proposed methodology. Several aspects related to its
practical implementation are then discussed, and future
research lines are presented in the concluding section.

II. HARDWARE REDUNDANCY
The reliability of a system is defined as the probability of

that system to be functioning correctly throughout an
interval of time, [t0, t], given that it was performing
correctly at time t0. Traditionally, highly critical
applications relied on hardware redundancy to increase their
reliability.

One of the best know of such approaches is Triple
Modular Redundancy (TMR), a static redundancy technique
that achieves fault tolerance without actually detecting any
fault. In this method, extra components are used to
instantaneously mask the effect of a faulty component,
meaning that no propagation of the fault will occur. The
concept of TMR was originally suggested by von Newmann
[9], and is illustrated in figure 1. Each module may be a
complete system, such as a computer, or a less complex
unit, like a microprocessor or even an adder or a gate. The
voting element accepts the outputs from the three sources
and delivers the majority vote at its output. This concept can
be extended to any number of redundant modules to
produce an N-modular redundant (NMR) system, which can
tolerate up to k module failures, where k=floor[(N-1)/2].

M

M

M

V outputinput

Fig. 1. Triple Modular Redundancy

The reliability equation for an NMR system is given by
[10]:

() ()iN
M

i
M

n

i
NMR tRtR

i
N

tR −

=

⋅−⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=∑)()(1)(

0
 (1)

In (1), RM is the reliability of each individual module in
the NMR system. In this case, it is assumed that the majority
voter does not fail, which is an unrealistic principle. When
this assumption is not verified, the reliability of the voter
element will determine the reliability of the circuit, since it
will fail if the voter fails. However, the reliability of a voter
in a redundant system can be improved by replicating this
element as well, in a scheme that is called N-NMR [10].

In new nanometre technology, the use of fault tolerance
mechanisms is essential, not only due to soft errors, but
because it is unrealistic to expect that a manufacturing test
will cover all possible faults. In particular, delay faults
emerging from defects of resistive type, or due to crosstalk
or ground bounce, are almost impossible to foresee [11].

Hardware redundancy is also a preferred choice to
improve the reliability of highly critical applications based
on FPGAs [12-16]. Due to their inherent configurability,
FPGAs are especially suitable for the implementation of
modular redundancy, since it does not require any new
architectural feature and it is function independent.

But other factors have to be considered, such as common-
-mode failures (CMFs). Despite the introduction of
hardware redundancy, hardware redundant FPGA-based
systems may fail because of the emergence of faults that
affect more than one module of the redundant system at the
same time, generally due to a common cause. These
possible systematic defects in specific parts of the
configurable logic space may eventually also lead to the
simultaneous failure of more than one module of the same
function (and consequently of the function itself), if all its
modules are identical and implemented using equal
resources [13]. Particularly, in FPGAs, soft errors affecting
the configuration control mechanism of the device may
cause the erroneous configuration of several modules,
depending on the number of data frames affected during its
partial or total reconfiguration. Another factor to be
considered is multiple-event upsets caused by a source of
radiation [17], which may also lead to multiple-module
failure in a redundant system.

The use of design diversity, where each redundant
module is synthesized using a different synthesis technique
(which leads to different implementations of the same logic
circuit), may help to prevent the consequences of CMFs,
further enhancing reliability [16]. Additionally, the use of
word-wise instead of bit-wise voters further averts the
occurrence of failures due to CMFs [18].

Possible soft errors in the on-chip configuration memory
cells may be recovered by simply performing a partial
readback operation of the configuration of the faulty
module. The retrieved bitstream is compared with its
original configuration, and if a modification is detected, the
correct bitstream can be re-established through partial
reconfiguration. This technique is known as scrubbing, and
defined as the process of re-writing the configuration
memory during (and without disturbing) normal FPGA
operation [19].

Readback and partial reconfiguration do not affect the
data stored in flip-flop registers, and consequently soft-
errors in data registers cannot be recovered using this
method. However, due to the transient nature of upsets, the

error will be recovered by the circuit when the affected flip-
flop is updated again. The propagation of soft-errors, either
affecting data registers or the functionality of the circuits, is
avoided by redundancy.

If it is clear that hardware redundancy increases the
reliability of a system, it is also obvious that no single
solution is able to cope with the whole universe of possible
identifiable problems and their consequences. Moreover,
any proposed methodology has also to take into
consideration the cumulative impact of single errors, as their
added effect may lead to the quick disruption of a system.
The great advantage of using reconfigurability is that this
issue may be solved without a significant rise in costs. In
fact, in the event of a module failure, a diagnose-and-repair
mechanism may be activated and the initial redundancy re-
-established. This may be done transparently and without
human intervention, since physical component replacement
is not needed. This means that a higher level of
maintainability1 is achieved, without even implying the
inoperability of the affected circuit, since it is protected by
TMR. This is both true to hard and soft errors, despite the
different repair mechanisms that must be adopted to
overcome them.

III. A METHODOLOGY TO IMPROVE THE RELIABILITY OF
FPGA-BASED SYSTEMS

The reliability of a circuit implemented in an FPGA is
intrinsically connected to the reliability of the component
itself. Nevertheless, the maintainability of the same circuit is
higher due to the dynamic and self-reconfiguration features
of new FPGAs. In a discrete implementation of a TMR
system, if a defect affects the functionality of one module,
reliability decreases, but the system still works correctly. A
second failure in one of the remaining modules may lead to
a malfunctioning of the system. Ideally, when a module
fails, it should be replaced to restore the original redundancy
index. However, this action may not be possible
immediately. In certain cases, like in space applications, it
may even be impossible. Besides, it is not easy to detect a
fault in a TMR implementation using traditional online test
strategies, due to the inherent masking properties of
redundancy.

In our approach we propose the implementation of a
Built-In Self-Healing (BISH) methodology, which
comprises built-in self-detection, built-in self-diagnosis and
built-in self-repair. In an initial stage, this methodology is
being applied only to soft-errors, but we plan to extend its
usage to hard errors, making use of active replication
techniques [3]. The methodology to be followed and several
of the issues involved are already discussed in this paper.

The BISH approach can be divided into three tasks:
detection, diagnosis and repair. These tasks are controlled
by a soft microprocessor core implemented in the same
FPGA, and having a compatible reliability index. Due to the
usual long time interval between module failures [20], a
generic soft microprocessor core that carries on other tasks

1 The probability that an inoperable system will be restored to an

operational state in case of failure within the time t.

related to the operation of the whole system may be used for
this purpose.

The detection of faults is done through a scan chain that
regularly captures the values at the outputs of all the
modules and voters, including those of the soft
microprocessor core, as shown in figure 2. Optionally, other
information may be included. For example, if word-wise
voters were used, apart from individual bit capture, the error
signal produced by the word-voter can also be included in
the scan chain.

A1 V1

V2

V3

A2

A3

B1

B2

B3

Fig. 2. Example of a T-TMR implementation with a scan chain

Upsets can also affect the values shifted through the scan

chain, thus leading to wrong fault diagnosis and
consequently to the extemporaneous activation of a
repairing mechanism. However, despite representing an
additional unnecessary task for the reconfiguration
mechanism, it does not affect system operation. A more
complicated situation happens if the structural configuration
of the scan chain is affected by a fault, either due to a hard
or soft error. In this case, several neighbouring bits in the
scan chain will be disturbed, indicating that a simultaneous
general failure in all modules of one or more functions is
taking place. If this happens, and since the probability of a
general failure is very low, the scan chain must be checked
first. The Boundary Scan (BS) chain may also be used to
capture each FPGA output [21]. As a hard-wired
implementation, this scan chain is less prone to soft errors.

The captured bitstream is shifted to the internal
microprocessor where it is analyzed. All bits at the outputs
of the same set of redundant modules and at the outputs of
their respective voters must be equal. If word-wise voters,
or any other fault tolerance mechanisms, are used, the error
signal produced has also to be checked. In the event of error
detection, a diagnosis phase follows-up.

Since the scan chain cells completely wrap the modules
and voters, it is possible to confine the origin of an error to
the space between them, corresponding to the module or
voter where the value was captured, and to the
interconnections in-between [22].

Three possible causes for a fault to appear may be
considered:

1. the faulty value is due to a soft error affecting one of
the circuit registers;

2. the faulty value is due to a soft error affecting a
configuration memory cell, which may lead to a change in
the functionality of the module or voter or in the routing of
signals;

3. the faulty value is due to a permanent physical defect
affecting the structure of the FPGA.

The first case may be immediately excluded if the error is
captured at the output of a voter, since voters are typically

implemented using combinational logic only. If it has its
origin in a module, one can expect that the fault will be
automatically corrected at the next register update. A new
scan chain capture operation may show that the error has
already been fixed and no further action is needed. If not,
the second situation may have occurred.

In this case, a background task is launched to readback
part of the configuration bitstream of the area where the
affected module is implemented. Comparison with the
original bitstream may be done by bit comparison or Cyclic
Redundancy Check (CRC). If an incoherency is found, the
microprocessor performs a partial reconfiguration of the
area where the supposedly affected module is implemented,
restoring the original configuration and eliminating the
cause of the failure. The output of the module should now
be captured again and its correctness verified.

If no error on the configuration bitstream is detected after
the readback-and-compare operation, but the fault persists,
the most probable reason is the existence of a physical
defect in the array. Therefore, in order to restore the
reliability index, the affected module has to be reconfigured
in a fault-free area and its input and output connections re-
established. Then, the resources occupied by the faulty
module are released and subsequently tested to detect and
diagnosis the origin of the fault [8]. This procedure is
controlled by the microprocessor. When the defect location
is identified, the defective resource is “marked down”, to
avoid its use in future reconfigurations. A list of faulty
resources is maintained in memory by the microprocessor.
This memory must also be protected against upsets using
error checking and correction techniques based on
Hamming or Hsiao codes [11].

The remaining resources that are tested OK can be reused
in later replacements of any other faulty module. In this
way, the available spare resources are almost entirely
restored for future replacements. Figure 3 shows the
diagram flow of the proposed methodology.

The detection, repair and test proceedings are controlled
by the internal microprocessor. To not affect the
performance of the system, these tasks should be executed
in background during normal operation exploiting regular
idle cycles. Meanwhile, the TMR implementation ensures
the correct operation of the system, and therefore the extra
overhead time has no critical influence over its operation.

This methodology extends the reliability of each function
and enables a smoother degradation of the global reliability
index. Despite being a static T-TMR implementation, a
faulty module or voter is dynamically repairable n times,
where n depends on the cause of the failure. If the origin is
not a permanent physical defect, then n is infinite.
Otherwise, n depends on the initial amount of spare
resources and on the location of the defects that affect the
structure of the FPGA.

The microprocessor is also implemented using T-TMR to
ensure a reliability index compatible with the remaining
blocks. The microprocessor is divided in small functional
modules, facilitating replacement in case of fault detection,
and reducing the spare space needed for replication. If the
defective module is part of one of the three implemented
processors, the remaining two will be responsible for the

replication of the malfunctioning module. Subsequent test
procedures will already be assumed by the whole three.

Error detection

Recapture

Transient fault - no
further action needed

N

Partial readback

Error persists ?

Configuration
error ?

Y
Partial reconfiguration

Module replacement

Test of released area

Diagnosis and signalling
of defect

Layout rearrangement

Y

N

Fig. 3. Flowchart of the detection-diagnose-and-repair methodology
proposed

Self-reconfiguration is necessary to embed the whole
system in a single FPGA, including the BISH features. The
Virtex-II and Virtex-II Pro families have an Internal
Configuration Access Port (ICAP) [23]. The ICAP enables a
soft microprocessor core to control its own dynamic
reconfiguration or the reconfiguration of any external
modules, without stopping or disturbing the operation of the
whole system.

IV. IMPLEMENTATION ISSUES
Despite the apparently easy steps necessary to implement

the proposed BISH methodology, many problems will have
to be overcome.

When the system is synthesized, each one of the different
modules from the various functions is configured in
contiguous resources so as to enable lower interconnection
delays and better performance. When a defect is found in an
area previously occupied by a module, the remaining
resources of that area may still be used in future
reconfigurations. However, when a new defective module
needs to be replicated, the presence of this “defective
island” may disperse the components of the module, and
thus lead to a degradation of performance. To avoid this
effect, a rearrangement of the modules in an area with
“defective islands” may be necessary [3].

Additionally, the spare area where a defective module is
replicated may be relatively far from its previous location,
resulting in longer path delays. Despite not leading to an
erroneous output from the voter that collects the results
from all the three modules of the function (if the remaining
two modules still working fine), in practice it reduces
module redundancy, making fault tolerance ineffective. To
prevent the perpetuation of this situation, after the test the

module may return approximately to the same area where it
was originally located (avoiding the defective resource).
However, since the area became probably smaller, a
rearrangement of the contiguous modules may be needed to
fit in the returning module, without dispersing its
components by different and possibly distant areas. Another
possibility, depending on the defect, may be a diverse
resynthesize of the module, avoiding the defective resource.

In this way, the previously occupied spare area is almost
entirely released for future replications of other modules.
Owing to lack of enough contiguous free resources, this
procedure avoids the fragmentation of the logic space,
which would eventually prevent the replication of new
defective modules. That rearrangement shall be achieved
without affecting the functionality or disturbing the
operation of the rearranged functions, by a dynamic
relocation mechanism [3]. Furthermore, to facilitate this
process, only one module of each function shall be
replicated at a time. This step-by-step procedure also avoids
a rise in the path delays, which would lead to degradation of
performance, and eventually (as referred above) to a false
indication of a defective module.

The initial replication of the module and the possible
subsequent rearrangement of the functions imply that the
microprocessor shall be able to manipulate directly the
FPGA configuration bitstream. This is necessary to create
partial reconfiguration files for the replication procedures
and to perform re-routing. To support this feature, a
software tool is being developed, based on the JBits
software − a set of Java classes that provide an Application
Programming Interface (API) to access the Xilinx FPGA
bitstream [24]. This tool will create the partial configuration
files and will carry out the partial and dynamic
reconfiguration of the FPGA through the ICAP interface.
Consequently, the microprocessor shall be prepared to run
this software. Two solutions are being considered: the use
of a generic microprocessor; or the use of a Java processor.
In the first case, a generic soft processor core will run a Java
Virtual Machine (Java VM) developed specifically for that
microprocessor and to support the set of Java classes used
by the reconfiguration tools. The disadvantage of this
solution is the amount of memory necessary to hold the
JAVA VM.

The second hypothesis, the use of a Java processor, seems
to be the most adequate solution for the inclusion of the
BISH feature, since the software necessary to its
implementation is developed using Java. These will also
speed up its execution, reducing time latency between
detection and correction of any fault. The disadvantage of
this solution is that any other applications concerning the
operation of the system, not related to the BISH feature,
have to be rewritten in JAVA, which, in some cases, may
not be feasible. However, this may not be a problem if a
new product is being developed from scratch.

Therefore, the option between the two proposals must
take into consideration not only the BISH implementation
but also the purpose of the whole system and the current
stage of its development cycle.

Since the partial configuration files that implement the
rearrangements defined by the repair procedures are

generated automatically (without designer intervention), the
inclusion of this methodology is expected to be quite
straightforward, and completely transparent for the final
user. Its incorporation at the design level will also be
automated in a later project phase.

V. CONCLUSIONS
The methodology presented in this paper is at an early

stage of implementation. Therefore, apart from the
description of the project and of the consolidated parts of its
implementation, the proposal presents a set of issues that are
being studied and must be sorted out to ensure its complete
success.

Excluding the already mentioned issues and in spite of
the generalized idea that TMR makes FPGAs virtually
immune to hard or soft errors, further research is necessary
and several issues related to their use in reconfigurable
systems have yet to be considered:

• the probability of total failure due to a single-event-
functional-interrupt (SEFI), caused by an upset in the device
Power-On Reset (POR), which leads to the total clearing of
the configuration memory and causes the loss of state data;

• the probability of a fault in a function output due to
bridging faults between modules;

• the possibility of a false module or voter failure
diagnosis caused by defects or upsets affecting the scan
chain that captures their outputs;

• the vulnerability of the configuration control
mechanism, of the ICAP and of the BS infrastructure, to
defects or upsets;

• the influence that the position of replicated modules
has over the effectiveness of fault tolerance features (due to
a variation on the path delay between modules and voters);

• the vulnerability of the memory holding the original or
current configuration file, which must also be protected
against upsets using error checking and correction
techniques;

• the probability of an upset to change the content of the
memory block holding the microprocessor program, since
TMR does not obviously offer any protection in case of
software errors.

Current work is being done towards the resolution of
these various issues and their integration into the proposed
methodology.

REFERENCES
[1] S. Mitra, N. Seifert, M. Zhang, Q. Shi, K. S. Kim, “Robust System

Design with Built-In Soft-Error Resilience,” Computer, vol. 38, no. 2,
pp. 43-52, February 2005.

[2] R. Baumann, “Soft Errors in Advanced Computer Systems,” IEEE
Design & Test of Computers, vol. 22, no. 3, pp. 258 – 266, May-June
2005.

[3] M. G. Gericota, G. Alves, M. L. Silva, J. M. Ferreira, “Run-Time
Management of Logic Resources on Reconfigurable Systems,” Proc.
of the Design, Automation and Test in Europe, pp. 974-979, 2003.

[4] B. J. Blodget, S. P. McMillan, P. Lysaght, “A lightweight approach
for embedded reconfiguration of FPGAs,” Proc. of the Design,
Automation and Test in Europe Designers' Forum, pp. 399-400, 2003.

[5] M. Abramovici, C. Stroud, S. Wijesuriya, C. Hamilton, V. Verma,
“On-Line Testing and Diagnosis of FPGAs with Roving STARs,”
Proc. of the 5th IEEE Intl. On-Line Testing Workshop, pp. 2-7, 1999.

[6] M. Abramovici, C. Stroud, C. Hamilton, S. Wijesuriya, V. Verma,
“Using Roving STARs for On-Line Testing and Diagnosis of FPGAs
in Fault-Tolerant Applications,” Proc. of the Intl. Test Conference, pp.
973-982, 1999.

[7] M. Abramovici, C. Stroud, B. Skaggs, J. Emmert, “Improving On-
Line BIST-Based Diagnosis for Roving STARs,” Proc. 6th IEEE Intl.
On-Line Testing Workshop, 2000.

[8] M. G. Gericota, G. Alves, M. L. Silva, J. M. Ferreira, “Active
Replication: Towards a Truly SRAM-based FPGA On-Line
Concurrent Testing,” Proc. of the 8th IEEE Intl. On-Line Testing
Workshop, pp. 165-169, 2002.

[9] J. von Neumann, “Probabilistic logics and the synthesis of reliable
organisms from unreliable components,” Automata Studies, vol. 34,
pp. 43-98. Princeton Univ. Press, 1956.

[10] P. K. Lala, Self-Checking and Fault-Tolerant Digital Design. San
Francisco, CA: Morgan Kaufman Publishers, 2001.

[11] M. Nicolaidis, L. Anghel, “Concurrent checking for VLSI,”
Microelectronics Journal, Vol. 49, Nos. 1-2, pp. 139-156, November
1999.

[12] J. Moore, “Design Security in SRAM-based FPGAs,” MAAPLD
Conf., 2003.

[13] C. Carmichael, “Triple Module Redundancy Design Techniques for
Virtex FPGAs,” XAPP 197 Application Note, Xilinx, Inc., 37 p.,
2001.

[14] TMRTool. Information available at:
http://www.xilinx.com/products/milaero/tmr/

[15] C. Carmichael, E. Fuller, P. Blain, M. Caffrey, “SEU Mitigation
Techniques for Virtex FPGAs in Space Applications,” MAAPLD
Conf., 1999.

[16] N. R. Saxena, S. Fernandez-Gomez, Wei-Je Huang, S. Mitra, Shu-Yi
Yu, E. J. McCluskey, “Dependable Computing and Online Testing in
Adaptive and Configurable Systems,” IEEE Design and Test of
Computers, Vol. 17, No. 1, pp. 29-41, January-March 2000.

[17] R.A. Reed et al., “Heavy Ion and Proton-Induced Single Event
Multiple Upset,” IEEE Transactions on Nuclear Science, Vol. 44,
No. 6, pp. 2224-2229, December 1997.

[18] S. Mitra, E. J. McCluskey, “Word-Voter: A New Voter Design for
Triple Modular Redundant Systems,” Proc. of the 18th IEEE VLSI
Test Symposium, pp. 465-470, 2000.

[19] C. Carmichael, M. Caffrey, A. Salazar, “Correcting single-event
upsets through Virtex Partial Configuration”, XAPP 216 Application
Note, Xilinx, Inc., 12 p., 2000.

[20] P. L. Murray, “Re-Programmable FPGAs in Space Environments”.
Available at: http://www.seakr.com/
data/Unsorted/reprogrammable_fpga_in_space1.doc

[21] IEEE Standard Test Access Port and Boundary Scan Architecture
(IEEE Std 1149.1), IEEE Std. Board, 2001.

[22] J. H. Lala; R. E. Harper, “Architectural principles for safety-critical
real-time applications,” Proceedings of the IEEE, Vol. 82, No. 1, pp.
25-40, January 1994.

[23] Virtex-II and Virtex-II Pro Data Sheets available at: www.xilinx.com
[24] S. A. Guccione, D. Levi, P. Sundararajan, “JBits Java based interface

for reconfigurable computing,” Proc. 2nd Military and Aerospace
Appl. of Prog. Devices and Technologies Conf., 1999.

