113 research outputs found

    Low-Noise Energy-Efficient Sensor Interface Circuits

    Full text link
    Today, the Internet of Things (IoT) refers to a concept of connecting any devices on network where environmental data around us is collected by sensors and shared across platforms. The IoT devices often have small form factors and limited battery capacity; they call for low-power, low-noise sensor interface circuits to achieve high resolution and long battery life. This dissertation focuses on CMOS sensor interface circuit techniques for a MEMS capacitive pressure sensor, thermopile array, and capacitive microphone. Ambient pressure is measured in the form of capacitance. This work propose two capacitance-to-digital converters (CDC): a dual-slope CDC employs an energy efficient charge subtraction and dual comparator scheme; an incremental zoom-in CDC largely reduces oversampling ratio by using 9b zoom-in SAR, significantly improving conversion energy. An infrared gesture recognition system-on-chip is then proposed. A hand emits infrared radiation, and it forms an image on a thermopile array. The signal is amplified by a low-noise instrumentation chopper amplifier, filtered by a low-power 30Hz LPF to remove out-band noise including the chopper frequency and its harmonics, and digitized by an ADC. Finally, a motion history image based DSP analyzes the waveform to detect specific hand gestures. Lastly, a microphone preamplifier represents one key challenge in enabling voice interfaces, which are expected to play a dominant role in future IoT devices. A newly proposed switched-bias preamplifier uses switched-MOSFET to reduce 1/f noise inherently.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/137061/1/chaseoh_1.pd

    12.8 kHz Energy-Efficient Read-Out IC for High Precision Bridge Sensor Sensing System

    Get PDF
    학위논문(박사) -- 서울대학교대학원 : 공과대학 전기·정보공학부, 2022.2. 김수환.In the thesis, a high energy-efficient read-out integrated circuit (read-out IC) for a high-precision bridge sensor sensing system is proposed. A low-noise capacitively-coupled chopper instrumentation amplifier (CCIA) followed by a high-resolution incremental discrete-time delta-sigma modulator (DTΔΣΜ) analog-to-digital converter (ADC) is implemented. To increase energy-efficiency, CCIA is chosen, which has the highest energy-efficiency among IA types. CCIA has a programmable gain of 1 to 128 that can amplify the small output of the bridge sensor. Impedance boosting loop (IBL) is applied to compensate for the low input impedance, which is a disadvantage of a CCIA. Also, the sensor offset cancellation technique was applied to CCIA to eliminate the offset resulting from the resistance mismatch of the bridge sensor, and the bridge sensor offset from -350 mV to 350 mV can be eliminated. In addition, the output data rate of the read-out IC is designed to be 12.8 kHz to quickly capture data and to reduce the power consumption of the sensor by turning off the sensor and read-out IC for the rest of the time. Generally, bridge sensor system is much slower than 12.8 kHz. To suppress 1/f noise, system level chopping and correlated double sampling (CDS) techniques are used. Implemented in a standard 0.13-μm CMOS process, the ROIC’s effective resolution is 17.0 bits at gain 1 and that of 14.6 bits at gain 128. The analog part draws the average current of 139.4 μA from 3-V supply, and 60.2 μA from a 1.8 V supply.본 논문에서는 고정밀 브리지 센서 센싱 시스템을 위한 에너지 효율이 높은 Read-out Integrated Circuit (read-out IC)를 제안한다. 저 잡음 Capacitively-Coupled Instrumentation Amplifier (CCIA)에 이은 고해상도 Discrete-time Delta-Sigma 변조기(DTΔΣΜ) 아날로그-디지털 변환기(ADC)를 구현하였다. 에너지 효율을 높이기 위해 IA 유형 중 에너지 효율이 가장 높은 CCIA를 선택하였다. CCIA는 브리지 센서의 작은 출력을 증폭할 수 있는 1 에서 128의 프로그래밍 가능한 전압 이득을 가진다. CCIA의 단점인 낮은 입력 임피던스를 보상하기 위해 Impedance Boosting Loop (IBL)을 적용하였다. 또한 CCIA에 센서 오프셋 제거 기술을 적용하여 브리지 센서의 저항 미스매치로 인한 오프셋을 제거 기능을 탑재하였으며 -350mV에서 350mV까지 브리지 센서 오프셋을 제거할 수 있다. Read-out IC의 출력 데이터 전송률은 12.8kHz로 설계하여 데이터를 빠르게 채고 나머지 시간 동안 센서와 read-out IC를 꺼서 센서의 전력 소비를 줄일 수 있도록 설계하였다. 일반적으로 브리지 센서 시스템은 12.8kHz보다 느리기 때문에 이것이 가능하다. 하지만, 일반적인 CCIA는 입력 임피던스 때문에 빠른 속도에서 설계가 불가능하다. 이를 해결하기 위해 demodulate 차핑을 앰프 내부가 아닌 시스템 차핑을 이용해 해결하였다. 1/f 노이즈를 억제하기 위해 시스템 레벨 차핑 및 상관 이중 샘플링(CDS) 기술이 사용되었다. 0.13μm CMOS 공정에서 구현된 read-out IC의 Effective Resolution (ER)은 전압 이득 1에서 17.0비트이고 전압 이득 128에서 14.6비트를 달성하였다. 아날로그 회로는 3 V 전원에서 139.4μA의 평균 전류를, 디지털 회로는 1.8 V 전원에서 60.2μA의 평균 전류를 사용한다.CHAPTER 1 INTRODUCTION 1 1.1 SMART DEVICES 1 1.2 SMART SENSOR SYSTEMS 4 1.3 WHEATSTONE BRIDGE SENSOR 5 1.4 MOTIVATION 8 1.5 PREVIOUS WORKS 10 1.6 INTRODUCTION OF THE PROPOSED SYSTEM 14 1.7 THESIS ORGANIZATION 16 CHAPTER 2 SYSTEM OVERVIEW 17 2.1 SYSTEM ARCHITECTURE 17 CHAPTER 3 IMPLEMENTATION OF THE CCIA 19 3.1 CAPACITIVELY-COUPLED CHOPPER INSTRUMENTATION AMPLIFIER 19 3.2 IMPEDANCE BOOSTING 22 3.3 SENSOR OFFSET CANCELLATION 25 3.4 AMPLIFIER OFFSET CANCELLATION 29 3.5 AMPLIFIER IMPLEMENTATION 32 3.6 IMPLEMENTATION OF THE CCIA 35 CHAPTER 4 INCREMENTAL ΔΣ ADC 37 4.1 INTRODUCTION OF INCREMENTAL ΔΣ ADC 37 4.2 IMPLEMENTATION OF INCREMENTAL ΔΣ MODULATOR 40 CHAPTER 5 SYSTEM-LEVEL DESIGN 43 5.1 DIGITAL FILTER 43 5.2 SYSTEM-LEVEL CHOPPING & TIMING 46 CHAPTER 5 MEASUREMENT RESULTS 48 6.1 MEASUREMENT SUMMARY 48 6.2 LINEARITY & NOISE MEASUREMENT 51 6.3 SENSOR OFFSET CANCELLATION MEASUREMENT 57 6.4 INPUT IMPEDANCE MEASUREMENT 59 6.5 TEMPERATURE VARIATION MEASUREMENT 63 6.6 PERFORMANCE SUMMARY 66 CHAPTER 7 CONCLUSION 68 APPENDIX A. 69 ENERGY-EFFICIENT READ-OUT IC FOR HIGH-PRECISION DC MEASUREMENT SYSTEM WITH IA POWER REDUCTION TECHNIQUE 69 BIBLIOGRAPHY 83 한글초록 87박

    Contribution to time domain readout circuits design for multi-standard sensing system for low voltage supply and high-resolution applications

    Get PDF
    Mención Internacional en el título de doctorThis research activity has the purpose of open new possibilities in the design of capacitance-to-digital converters (CDCs) by developing a solution based on time domain conversion. This can be applied to applications related with the Internet-of-Things (IoT). These applications are present in any electronic devices where sensing is needed. To be able to reduce the area of the whole system with the required performance, micro-electromechanical systems (MEMS) sensors are used in these applications. We propose a new family of sensor readout electronics to be integrated with MEMS sensors. Within the time domain converters, Dual Slope (DS) topology is very interesting to explore a new compromise between performances, area and power consumption. DS topology has been extensively used in instrumentation. The simplicity and robustness of the blocks inside classical DS converters it is the main advantage. However, they are not efficient for applications where higher bandwidth is required. To extend the bandwidth, DS converters have been introduced into ΔΣ loops. This topology has been named as integrating converters. They increase the bandwidth compare to classical DS architecture but at the expense of higher complexity. In this work we propose the use of a new family of DS converters that keep the advantages of the classical architecture and introduce noise shaping. This way the bandwidth is increased without extra blocks. The Self-Compensated noise-shaped DS converter (the name given to the new topology) keeps the signal transfer function (STF) and the noise transfer function (NTF) of Integrating converters. However, we introduce a new arrangement in the core of the converter to do noise shaping without extra circuitry. This way the simplicity of the architecture is preserved. We propose to use the Self-Compensated DS converter as a CDC for MEMS sensors. This work makes a study of the best possible integration of the two blocks to keep the signal integrity considering the electromechanical behavior of the sensor. The purpose of this front-end is to be connected to any kind of capacitive MEMS sensor. However, to prove the concepts developed in this thesis the architecture has been connected to a pressure MEMS sensor. An experimental prototype was implemented in 130-nm CMOS process using the architecture mentioned before. A peak SNR of 103.9 dB (equivalent to 1Pa) has been achieved within a time measurement of 20 ms. The final prototype has a power consumption of 220 μW with an effective area of 0.317 mm2. The designed architecture shows good performance having competitive numbers against high resolution topologies in amplitude domain.Esta actividad de investigación tiene el propósito de explorar nuevas posibilidades en el diseño de convertidores de capacitancia a digital (CDC) mediante el desarrollo de una solución basada en la conversión en el dominio del tiempo. Estos convertidores se pueden utilizar en aplicaciones relacionadas con el mercado del Internet-de-las-cosas (IoT). Hoy en día, estas aplicaciones están presentes en cualquier dispositivo electrónico donde se necesite sensar una magnitud. Para poder reducir el área de todo el sistema con el rendimiento requerido, se utilizan sensores de sistemas micro-electromecánicos (MEMS) en estas aplicaciones. Proponemos una nueva familia de electrónica de acondicionamiento para integrar con sensores MEMS. Dentro de los convertidores de dominio de tiempo, la topología del doble-rampa (DS) es muy interesante para explorar un nuevo compromiso entre rendimiento, área y consumo de energía. La topología de DS se ha usado ampliamente en instrumentación. La simplicidad y la solidez de los bloques dentro de los convertidores DS clásicos es la principal ventaja. Sin embargo, no son eficientes para aplicaciones donde se requiere mayor ancho de banda. Para ampliar el ancho de banda, los convertidores DS se han introducido en bucles ΔΣ. Esta topología ha sido nombrada como Integrating converters. Esta topología aumenta el ancho de banda en comparación con la arquitectura clásica de DS, pero a expensas de una mayor complejidad. En este trabajo, proponemos el uso de una nueva familia de convertidores DS que mantienen las ventajas de la arquitectura clásica e introducen la configuración del ruido. De esta forma, el ancho de banda aumenta sin bloques adicionales. El convertidor Self-Compensated noise-shaped DS (el nombre dado a la nueva topología) mantiene la función de transferencia de señal (STF) y la función de transferencia de ruido (NTF) de los Integrating converters. Sin embargo, presentamos una nueva topología en el núcleo del convertidor para conformar el ruido sin circuitos adicionales. De esta manera, se preserva la simplicidad de la arquitectura. Proponemos utilizar el Self-Compensated noise-shaped DS como un CDC para sensores MEMS. Este trabajo hace un estudio de la mejor integración posible de los dos bloques para mantener la integridad de la señal considerando el comportamiento electromecánico del sensor. El propósito de este circuito de acondicionamiento es conectarse a cualquier tipo de sensor MEMS capacitivo. Sin embargo, para demostrar los conceptos desarrollados en esta tesis, la arquitectura se ha conectado a un sensor MEMS de presión. Se ha implementado dos prototipos experimentales en un proceso CMOS de 130-nm utilizando la arquitectura mencionada anteriormente. Se ha logrado una relación señal-ruido máxima de 103.9 dB (equivalente a 1 Pa) con un tiempo de medida de 20 ms. El prototipo final tiene un consumo de energía de 220 μW con un área efectiva de 0.317 mm2. La arquitectura diseñada muestra un buen rendimiento comparable con las arquitecturas en el dominio de la amplitud que muestran resoluciones equivalentes.Programa Oficial de Doctorado en Ingeniería Eléctrica, Electrónica y AutomáticaPresidente: Pieter Rombouts.- Secretario: Alberto Rodríguez Pérez.- Vocal: Dietmar Strãußnig

    Design, analysis and optimization of a dynamically reconfi gurable regenerative comparator for ultra-low power 6-bit TC-ADCs in 90nm CMOS technology

    Get PDF
    In this work the threshold configurable regenerative comparator on which TC-ADCs are based is optimized to further reduce the power consumption for use in battery-less biomedical sensor applications.\nMoreover, the effect of device mismatches on the offset, gain and linearity errors of the ADC is analyzed by means of Monte Carlo simulations.\nThis optimized comparator reduces the power consumption from 13uW to 3uW, while maintaining the same full scale rang

    Analog Reconfigurable Circuits

    Get PDF
    The aim of this paper is to present an overview of a new branch of analog electronics represented by analog reconfigurable circuits. The reconfiguration of analog circuits has been known and used since the beginnings of electronics, but the universal reconfigurable circuits called Field Programmable Analog Arrays (FPAA) have been developed over the last two decades. This paper presents the classification of analog circuit reconfiguration, examples of FPAA solutions obtained as academic projects and commercially available ones, as well as some application examples of the dynamic reconfiguration of FPAA.

    Design and implementation of a wideband sigma delta ADC

    Get PDF
    Abstract. High-speed and wideband ADCs have become increasingly important in response to the growing demand for high-speed wireless communication services. Continuous time sigma delta modulators (CTƩ∆M), well-known for their oversampling and noise shaping properties, offer a promising solution for low-power and high-speed design in wireless applications. The objective of this thesis is to design and implement a wideband CTƩ∆M for a global navigation satellite system(GNSS) receiver. The targeted modulator architecture is a 3rdorder single-bit CTƩ∆M, specifically designed to operate within a 15 MHz signal bandwidth. With an oversampling ratio of 25, the ADC’s sampling frequency is set at 768 MHz. The design goal is to achieve a theoretical signal to noise ratio (SNR) of 55 dB. This thesis focuses on the design and implementation of the CTƩ∆M, building upon the principles of a discrete time Ʃ∆ modulator, and leveraging system-level simulation and formulations. A detailed explanation of the coefficient calculation procedure specific to CTƩ∆ modulators is provided, along with a "top-down" design approach that ensures the specified requirements are met. MATLAB scripts for coefficient calculation are also included. To overcome the challenges associated with the implementation of CTƩ∆ modulators, particularly excess loop delay and clock jitter sensitivity, this thesis explores two key strategies: the introduction of a delay compensation path and the utilization of a finite impulse response (FIR) feedback DAC. By incorporating a delay compensation path, the stability of the modulator can be ensured and its noise transfer function (NTF) can be restored. Additionally, the integration of an FIR feedback DAC addresses the issue of clock jitter sensitivity, enhancing the overall performance and robustness of the CTƩ∆M. The CTƩ∆Ms employ the cascade of integrators with feed forward (CIFF) and cascade of integrators with feedforward and feedback (CIFF-B) topologies, with a particular emphasis on the CIFF-B configuration using 22nm CMOS technology node and a supply voltage of 0.8 V. Various simulations are performed to validate the modulator’s performance. The simulation results demonstrate an achievable SNR of 55 dB with a power consumption of 1.36 mW. Furthermore, the adoption of NTF zero optimization techniques enhances the SNR to 62 dB.Laajakaistaisen jatkuva-aikaisen sigma delta-AD-muuntimen suunnittelu ja toteutus. Tiivistelmä. Nopeat ja laajakaistaiset AD-muuntimet ovat tulleet entistä tärkeämmiksi nopeiden langattomien kommunikaatiopalvelujen kysynnän kasvaessa. Jatkuva-aikaiset sigma delta -modulaattorit (CTƩ∆M), joissa käytetään ylinäytteistystä ja kohinanmuokkausta, tarjoavat lupaavan ratkaisun matalan tehonkulutuksen ja nopeiden langattomien sovellusten suunnitteluun. Tämän työn tarkoituksena on suunnitella ja toteuttaa laajakaistainen jatkuva -aikainen sigma delta -modulaattori satelliittipaikannusjärjestelmien (GNSS) vastaanottimeen. Arkkitehtuuriltaan modulaattori on kolmannen asteen 1-bittinen CTƩ∆M, jolla on 15MHz:n signaalikaistanleveys. Ylinäytteistyssuhde on 25 ja AD muuntimen näytteistystaajuus 768 MHz. Tavoitteena on saavuttaa teoreettinen 55 dB signaalikohinasuhde (SNR). Tämä työ keskittyy jatkuva-aikaisen sigma delta -modulaattorin suunnitteluun ja toteutukseen, perustuen diskreettiaikaisen Ʃ∆-modulaattorin periaatteisiin ja systeemitason simulointiin ja mallitukseen. Jatkuva-aikaisen sigma delta -modulaattorin kertoimien laskentamenetelmä esitetään yksityiskohtaisesti, ja vaatimusten täyttyminen varmistetaan “top-down” -suunnitteluperiaatteella. Liitteenä on kertoimien laskemiseen käytetty MATLAB-koodi. Jatkuva-aikaisten sigma delta -modulaattoreiden erityishaasteiden, liian pitkän silmukkaviiveen ja kellojitterin herkkyyden, voittamiseksi tutkitaan kahta strategiaa, viiveen kompensointipolkua ja FIR takaisinkytkentä -DA muunninta. Viivekompensointipolkua käyttämällä modulaattorin stabiilisuus ja kohinansuodatusfunktio saadaan varmistettua ja korjattua. Lisäksi FIR takaisinkytkentä -DA-muuntimen käyttö pienentää kellojitteriherkkyyttä, parantaen jatkuva aikaisen sigma delta -modulaattorin kokonaissuorituskykyä ja luotettavuutta. Toteutetuissa jatkuva-aikaisissa sigma delta -modulaattoreissa on kytketty peräkkäin integraattoreita myötäkytkentärakenteella (CIFF) ja toisessa sekä myötä- että takaisinkytkentärakenteella (CIFF-B). Päähuomio on CIFF-B rakenteessa, joka toteutetaan 22nm CMOS prosessissa käyttäen 0.8 voltin käyttöjännitettä. Suorityskyky varmistetaan erilaisilla simuloinneilla, joiden perusteella 55 dB SNR saavutetaan 1.36 mW tehonkulutuksella. Lisäksi kohinanmuokkausfunktion optimoinnilla SNR saadaan nostettua 62 desibeliin

    Integrated Circuits and Systems for Smart Sensory Applications

    Get PDF
    Connected intelligent sensing reshapes our society by empowering people with increasing new ways of mutual interactions. As integration technologies keep their scaling roadmap, the horizon of sensory applications is rapidly widening, thanks to myriad light-weight low-power or, in same cases even self-powered, smart devices with high-connectivity capabilities. CMOS integrated circuits technology is the best candidate to supply the required smartness and to pioneer these emerging sensory systems. As a result, new challenges are arising around the design of these integrated circuits and systems for sensory applications in terms of low-power edge computing, power management strategies, low-range wireless communications, integration with sensing devices. In this Special Issue recent advances in application-specific integrated circuits (ASIC) and systems for smart sensory applications in the following five emerging topics: (I) dedicated short-range communications transceivers; (II) digital smart sensors, (III) implantable neural interfaces, (IV) Power Management Strategies in wireless sensor nodes and (V) neuromorphic hardware

    Design of Analog Front-End of Touch-Screen Controller with Enhanced Noise Immunity and Configurable SNR and Frame Rate

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2017. 2. 정덕균.A design of analog front-end (AFE) for touch-screen controller (TSC) with highly enhanced noise immunity and configurable signal-to-noise ratio (SNR) and frame rate is proposed. First, the AFE for the mobile TSC is presented, which provides a configurable SNR and frame rate. The AFE configures its SNR and frame rate by adjusting the sampling cycles of the employed ADC. The test chip is fabricated in a 0.18-μm CMOS process and occupies a 2.2-mm2 active area. The test chip achieves 60-dB SNR and 200-Hz frame rate with 12 × 8 TSP. The SNR can be adjusted from 40 to 67 dB, while the frame rate is then inversely scaled from 50 Hz to 6.4 kHz. The test chip consumes 6.26 mW from a 3.3-V supply. The AFE for the tablet TSC is also presented, which provides highly enhanced noise immunity and configurable SNR and frame rate. The proposed AFE provides TX channels of 36 and RX channels of 64 in order to support a large-size TSP. A multi-driving TX structure with frequency-hopping signal generator is employed to improve the SNR and noise immunity. For a suppression of severe noise interference injected through the TSP, the RX sensing block adopts pre-filtering differential sensing method and high-order noise filtering structure. The AFE supports configurable SNR and frame rate with on-chip frame-rate controller. The test chip is fabri-cated in a 0.18-μm CMOS process. The active area of the test chip is 36 mm2. A 12.2-inch TSP with TX channels of 36 and RX channels of 64 is used in the measurement. The test chip achieves 54-dB SNR and 120-Hz frame rate with a finger touch. The frame rate can be adjusted from 85 to 385 Hz. The test chip achieves up to 20-Vpp noise immunity. The test chip consumes 94.5 mW with a 3.3-V supply.CHAPTER 1 INTRODUCTION 1 1.1 MOTIVATION 1 1.2 THESIS ORGANIZATION 3 CHAPTER 2 BASIC STUDY ON TOUCH-SCREEN CONTROLLER 5 2.1 TOUCH-SCREEN PANEL 5 2.2 TOUCH-SCREEN CONTROLLER 8 2.2.1 OVERVIEW ON TSC 8 2.3 ANALOG FRONT-END OF TSC 11 2.3.1 PERFORMANCE METRIC 12 2.3.2 DESIGN ISSUES OF AFE 15 CHAPTER 3 AFE OF MOBILE TSC WITH CONFIGURABLE SNR AND FRAME RATE 18 3.1 OVERVIEW 18 3.2 SYSTEM ARCHITECTURE 21 3.3 CONFIGURABLE SNR AND FRAME RATE 23 3.4 MEASUREMENT RESULTS 29 CHAPTER 4 AFE OF TABLET TSC WITH ENHANCED NOISE IMMUNITY 35 4.1 OVERVIEW 35 4.2 DESIGN ISSUES BY LARGE-SIZE TSP 38 4.3 DESIGN ISSUES BY NOISE INTERFERENCE 40 4.3.1 NOISE INTERFERENCE 40 4.3.2 DISPLAY NOISE REJECTION TECHNIQUE 43 4.3.3 CHARGER NOISE FILTERING TECHNIQUE 46 4.3.4 HIGH-VOLTAGE TX TECHNIQUE 50 4.3.5 MULTI-DRIVING TX TECHNIQUE 52 4.4 PROPOSED ARCHITECTURE 66 4.4.1 TX DRIVING ARCHITECTURE 67 4.4.2 RX SENSING ARCHITECTURE 71 4.5 MULTI-DRIVING TX STRUCTURE 75 4.5.1 CONSIDERATIONS FOR TX MODULATION SEQUENCE 75 4.5.2 COMPARISON OF MODULATION SEQUENCES 76 4.5.3 MODIFIED BUSH-TYPE HADAMARD MATRIX 79 4.6 NOISE FILTERING RX 83 4.6.1 PRE-FILTERING DIFFERENTIAL SENSING METHOD 83 4.6.2 NOISE-IMMUNE SENSING STRUCTURE 87 4.6.3 CONFIGURABLE SNR AND FRAME RATE 106 4.6.4 RX MODULATION 112 4.7 CIRCUIT IMPLEMENTATION 120 4.7.1 CHARGE AMPLIFIER AND BAND-PASS FILTER 121 4.7.2 CAPACITIVE DIFFERENTIAL AMPLIFIER 123 4.7.3 MIXER AND RX MODULATION 125 4.7.4 LOW-PASS FILTER 127 4.7.5 INCREMENTAL ΔΣ ADC 128 4.7.6 DIGITAL DEMODULATION 130 4.7.7 TX DRIVING BLOCK 131 4.8 MEASUREMENT RESULTS 132 4.8.1 TOUCH-SCREEN PANEL (TSP) 132 4.8.2 MEASUREMENT ENVIRONMENTS 133 4.8.3 FABRICATED AFE 134 4.8.4 OPERATION OF THE FABRICATED AFE 135 4.8.5 SNR MEASUREMENT 139 4.8.6 CONFIGURABLE SNR AND FRAME RATE 139 4.8.7 NOISE IMMUNITY 141 4.8.8 COMPARISON WITH OTHER WORKS 157 CHAPTER 5 CONCLUSION 158 BIBLIOGRAPHY 160 초 록 170Docto

    Low-Power Low-Noise CMOS Analog and Mixed-Signal Design towards Epileptic Seizure Detection

    Get PDF
    About 50 million people worldwide suffer from epilepsy and one third of them have seizures that are refractory to medication. In the past few decades, deep brain stimulation (DBS) has been explored by researchers and physicians as a promising way to control and treat epileptic seizures. To make the DBS therapy more efficient and effective, the feedback loop for titrating therapy is required. It means the implantable DBS devices should be smart enough to sense the brain signals and then adjust the stimulation parameters adaptively. This research proposes a signal-sensing channel configurable to various neural applications, which is a vital part for a future closed-loop epileptic seizure stimulation system. This doctoral study has two main contributions, 1) a micropower low-noise neural front-end circuit, and 2) a low-power configurable neural recording system for both neural action-potential (AP) and fast-ripple (FR) signals. The neural front end consists of a preamplifier followed by a bandpass filter (BPF). This design focuses on improving the noise-power efficiency of the preamplifier and the power/pole merit of the BPF at ultra-low power consumption. In measurement, the preamplifier exhibits 39.6-dB DC gain, 0.8 Hz to 5.2 kHz of bandwidth (BW), 5.86-μVrms input-referred noise in AP mode, while showing 39.4-dB DC gain, 0.36 Hz to 1.3 kHz of BW, 3.07-μVrms noise in FR mode. The preamplifier achieves noise efficiency factor (NEF) of 2.93 and 3.09 for AP and FR modes, respectively. The preamplifier power consumption is 2.4 μW from 2.8 V for both modes. The 6th-order follow-the-leader feedback elliptic BPF passes FR signals and provides -110 dB/decade attenuation to out-of-band interferers. It consumes 2.1 μW from 2.8 V (or 0.35 μW/pole) and is one of the most power-efficient high-order active filters reported to date. The complete front-end circuit achieves a mid-band gain of 38.5 dB, a BW from 250 to 486 Hz, and a total input-referred noise of 2.48 μVrms while consuming 4.5 μW from the 2.8 V power supply. The front-end NEF achieved is 7.6. The power efficiency of the complete front-end is 0.75 μW/pole. The chip is implemented in a standard 0.6-μm CMOS process with a die area of 0.45 mm^2. The neural recording system incorporates the front-end circuit and a sigma-delta analog-to-digital converter (ADC). The ADC has scalable BW and power consumption for digitizing both AP and FR signals captured by the front end. Various design techniques are applied to the improvement of power and area efficiency for the ADC. At 77-dB dynamic range (DR), the ADC has a peak SNR and SNDR of 75.9 dB and 67 dB, respectively, while consuming 2.75-mW power in AP mode. It achieves 78-dB DR, 76.2-dB peak SNR, 73.2-dB peak SNDR, and 588-μW power consumption in FR mode. Both analog and digital power supply voltages are 2.8 V. The chip is fabricated in a standard 0.6-μm CMOS process. The die size is 11.25 mm^2. The proposed circuits can be extended to a multi-channel system, with the ADC shared by all channels, as the sensing part of a future closed-loop DBS system for the treatment of intractable epilepsy
    corecore