187,227 research outputs found

    Conditions for effective smart learning environments

    Get PDF
    Reference: Koper, E.J.R. (2014) Conditions for effective smart learning environments. Smart Learning Environments,1(5), 1-17. http://www.slejournal.com/content/1/1/5/abstract doi:10.1186/s40561-014-0005-4Smart learning environments (SLEs) are defined in this paper as physical environments that are enriched with digital, context-aware and adaptive devices, to promote better and faster learning. In order to identify the requirements for ‘better and faster learning’, the idea of Human Learning Interfaces (HLI) is presented, i.e. the set of learning related interaction mechanisms that humans expose to the outside world that can be used to control, stimulate and facilitate their learning processes. It is assumed that humans have and use these HLIs for all types of learning, and that others, such as parents, teachers, friends, and digital devices can interact with the interface to help a person to learn something. Three basic HLIs are identified that represent three distinct types of learning: learning to deal with new situations (identification), learning to behave in a social group (socialization) and learning by creating something (creation). These three HLIs involve a change in cognitive representations and behavior. Performance can be increased using the practice HLI, and meta-cognitive development is supported by the reflection HLI. This analysis of HLIs is used to identify the conditions for the development of effective smart learning environments and a research agenda for SLEs

    Machine learning for internet of things classification using network traffic parameters

    Get PDF
    With the growth of the internet of things (IoT) smart objects, managing these objects becomes a very important challenge, to know the total number of interconnected objects on a heterogeneous network, and if they are functioning correctly; the use of IoT objects can have advantages in terms of comfort, efficiency, and cost. In this context, the identification of IoT objects is the first step to help owners manage them and ensure the security of their IoT environments such as smart homes, smart buildings, or smart cities. In this paper, to meet the need for IoT object identification, we have deployed an intelligent environment to collect all network traffic traces based on a diverse list of IoT in real-time conditions. In the exploratory phase of this traffic, we have developed learning models capable of identifying and classifying connected IoT objects in our environment. We have applied the six supervised machine learning algorithms: support vector machine, decision tree (DT), random forest (RF), k-nearest neighbors, naive Bayes, and stochastic gradient descent classifier. Finally, the experimental results indicate that the DT and RF models proved to be the most effective and demonstrate an accuracy of 97.72% on the analysis of network traffic data and more particularly information contained in network protocols. Most IoT objects are identified and classified with an accuracy of 99.21%

    Surveying human habit modeling and mining techniques in smart spaces

    Get PDF
    A smart space is an environment, mainly equipped with Internet-of-Things (IoT) technologies, able to provide services to humans, helping them to perform daily tasks by monitoring the space and autonomously executing actions, giving suggestions and sending alarms. Approaches suggested in the literature may differ in terms of required facilities, possible applications, amount of human intervention required, ability to support multiple users at the same time adapting to changing needs. In this paper, we propose a Systematic Literature Review (SLR) that classifies most influential approaches in the area of smart spaces according to a set of dimensions identified by answering a set of research questions. These dimensions allow to choose a specific method or approach according to available sensors, amount of labeled data, need for visual analysis, requirements in terms of enactment and decision-making on the environment. Additionally, the paper identifies a set of challenges to be addressed by future research in the field

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Big data analytics:Computational intelligence techniques and application areas

    Get PDF
    Big Data has significant impact in developing functional smart cities and supporting modern societies. In this paper, we investigate the importance of Big Data in modern life and economy, and discuss challenges arising from Big Data utilization. Different computational intelligence techniques have been considered as tools for Big Data analytics. We also explore the powerful combination of Big Data and Computational Intelligence (CI) and identify a number of areas, where novel applications in real world smart city problems can be developed by utilizing these powerful tools and techniques. We present a case study for intelligent transportation in the context of a smart city, and a novel data modelling methodology based on a biologically inspired universal generative modelling approach called Hierarchical Spatial-Temporal State Machine (HSTSM). We further discuss various implications of policy, protection, valuation and commercialization related to Big Data, its applications and deployment

    Fall Prediction and Prevention Systems: Recent Trends, Challenges, and Future Research Directions.

    Get PDF
    Fall prediction is a multifaceted problem that involves complex interactions between physiological, behavioral, and environmental factors. Existing fall detection and prediction systems mainly focus on physiological factors such as gait, vision, and cognition, and do not address the multifactorial nature of falls. In addition, these systems lack efficient user interfaces and feedback for preventing future falls. Recent advances in internet of things (IoT) and mobile technologies offer ample opportunities for integrating contextual information about patient behavior and environment along with physiological health data for predicting falls. This article reviews the state-of-the-art in fall detection and prediction systems. It also describes the challenges, limitations, and future directions in the design and implementation of effective fall prediction and prevention systems

    Non-Invasive Ambient Intelligence in Real Life: Dealing with Noisy Patterns to Help Older People

    Get PDF
    This paper aims to contribute to the field of ambient intelligence from the perspective of real environments, where noise levels in datasets are significant, by showing how machine learning techniques can contribute to the knowledge creation, by promoting software sensors. The created knowledge can be actionable to develop features helping to deal with problems related to minimally labelled datasets. A case study is presented and analysed, looking to infer high-level rules, which can help to anticipate abnormal activities, and potential benefits of the integration of these technologies are discussed in this context. The contribution also aims to analyse the usage of the models for the transfer of knowledge when different sensors with different settings contribute to the noise levels. Finally, based on the authors’ experience, a framework proposal for creating valuable and aggregated knowledge is depicted.This research was partially funded by Fundación Tecnalia Research & Innovation, and J.O.-M. also wants to recognise the support obtained from the EU RFCS program through project number 793505 ‘4.0 Lean system integrating workers and processes (WISEST)’ and from the grant PRX18/00036 given by the Spanish Secretaría de Estado de Universidades, Investigación, Desarrollo e Innovación del Ministerio de Ciencia, Innovación y Universidades

    Mobile Application Usability: Heuristic Evaluation and Evaluation of Heuristics

    Get PDF
    Ger Joyce, Mariana Lilley, Trevor Barker, and Amanda Jefferies, 'Mobile Application Usability: Heuristic Evaluation and Evaluation of Heuristics', paper presented at AHFE 2016 International Conference on Human Factors, Software, and Systems Engineering. Walt Disney World, Florida USA, 27-31 July 2016Many traditional usability evaluation methods do not consider mobile-specific issues. This can result in mobile applications that abound in usability issues. We empirically evaluate three sets of usability heuristics for use with mobile applications, including a set defined by the authors. While the set of heuristics defined by the authors surface more usability issues in a mobile application than other sets of heuristics, improvements to the set can be made
    corecore