1,267 research outputs found

    The susceptibility of programs to context switching

    Full text link

    Management Utilization of Computers in American Local Governments

    Get PDF
    Traditional concepts of management information systems (MIS) bear little relation to the information systems currently in use by top management in most US local governments. What exists is management-oriented computing, involving the use of relatively unsophisticated applications. Despite the unsophisticated nature of these systems, management use of computing is surprisingly common, but also varied in its extent among local governments. Management computing is most prevalent in those governments with professional management practices where top management is supportive of computing and tends to control computing decisions and where department users have less control over design and implementation activities. Finally, management computing clearly has impacts for top managers, mostly involving improvements in decision information. © 1978, ACM. All rights reserved

    Some queuing network models of computer systems

    Get PDF
    Queuing network models of a computer system operating with a single workload type are presented. Program algorithms are adapted for use on the Texas Instruments SR-52 programmable calculator. By slightly altering the algorithm to process the G and H matrices row by row instead of column by column, six devices and an unlimited job/terminal population could be handled on the SR-52. Techniques are also introduced for handling a simple load dependent server and for studying interactive systems with fixed multiprogramming limits

    "Virtual malleability" applied to MPI jobs to improve their execution in a multiprogrammed environment"

    Get PDF
    This work focuses on scheduling of MPI jobs when executing in shared-memory multiprocessors (SMPs). The objective was to obtain the best performance in response time in multiprogrammed multiprocessors systems using batch systems, assuming all the jobs have the same priority. To achieve that purpose, the benefits of supporting malleability on MPI jobs to reduce fragmentation and consequently improve the performance of the system were studied. The contributions made in this work can be summarized as follows:· Virtual malleability: A mechanism where a job is assigned a dynamic processor partition, where the number of processes is greater than the number of processors. The partition size is modified at runtime, according to external requirements such as the load of the system, by varying the multiprogramming level, making the job contend for resources with itself. In addition to this, a mechanism which decides at runtime if applying local or global process queues to an application depending on the load balancing between processes of it. · A job scheduling policy, that takes decisions such as how many processes to start with and the maximum multiprogramming degree based on the type and number of applications running and queued. Moreover, as soon as a job finishes execution and where there are queued jobs, this algorithm analyzes whether it is better to start execution of another job immediately or just wait until there are more resources available. · A new alternative to backfilling strategies for the problema of window execution time expiring. Virtual malleability is applied to the backfilled job, reducing its partition size but without aborting or suspending it as in traditional backfilling. The evaluation of this thesis has been done using a practical approach. All the proposals were implemented, modifying the three scheduling levels: queuing system, processor scheduler and runtime library. The impact of the contributions were studied under several types of workloads, varying machine utilization, communication and, balance degree of the applications, multiprogramming level, and job size. Results showed that it is possible to offer malleability over MPI jobs. An application obtained better performance when contending for the resources with itself than with other applications, especially in workloads with high machine utilization. Load imbalance was taken into account obtaining better performance if applying the right queue type to each application independently.The job scheduling policy proposed exploited virtual malleability by choosing at the beginning of execution some parameters like the number of processes and maximum multiprogramming level. It performed well under bursty workloads with low to medium machine utilizations. However as the load increases, virtual malleability was not enough. That is because, when the machine is heavily loaded, the jobs, once shrunk are not able to expand, so they must be executed all the time with a partition smaller than the job size, thus degrading performance. Thus, at this point the job scheduling policy concentrated just in moldability.Fragmentation was alleviated also by applying backfilling techniques to the job scheduling algorithm. Virtual malleability showed to be an interesting improvement in the window expiring problem. Backfilled jobs even on a smaller partition, can continue execution reducing memory swapping generated by aborts/suspensions In this way the queueing system is prevented from reinserting the backfilled job in the queue and re-executing it in the future.Postprint (published version

    Working Sets Past and Present

    Get PDF

    The evaluation of computer performance by means of state-dependent queueing network models

    Get PDF
    Imperial Users onl

    Data partitioning and load balancing in parallel disk systems

    Get PDF
    Parallel disk systems provide opportunities for exploiting I/O parallelism in two possible ways, namely via inter-request and intra-request parallelism. In this paper we discuss the main issues in performance tuning of such systems, namely striping and load balancing, and show their relationship to response time and throughput. We outline the main components of an intelligent file system that optimizes striping by taking into account the requirements of the applications, and performs load balancing by judicious file allocation and dynamic redistributions of the data when access patterns change. Our system uses simple but effective heuristics that incur only little overhead. We present performance experiments based on synthetic workloads and real-life traces

    A comparison of some performance evaluation techniques

    Get PDF
    In this thesis we look at three approaches to modelling interactive computer systems: Simulation, Operational analysis and Performance-Oriented design. The simulation approach, presented first, is applied to a general purpose, multiprogrammed, machine independent, virtual memory computer system. The model is used to study the effects of different performance parameters upon important performance indices. It is also used to compare or validate the results produced by the other two methods. The major drawback of the simulation model (i.e. its relatively high cost) has been overcome by combining regression techniques with simulation, using simple experimental case studies. Next, operational analysis was reviewed in a hierarchical way (starting by analysing a single-resource queue and ending up by analysing a multi-class customer general interactive system), to study the performance model of general interactive systems. The results of the model were compared with the performance indices produced using the simulation results. The performance-oriented design technique was the third method used for building system performance models. Here, several optimization design problems have been reviewed to minimize the response time or maximize the system throughput subject to a cost constraint. Again, the model results were compared with the simulation results using different cost constraints. We suggest finally, that the above methods should be used together to assist the designer in building computer performance models
    • …
    corecore