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ABSTRACT

The allocation of limited non-paged main memory among
users of a computer system 18 investigated as a zero-one
cost/priority problem in a free enterprise environment,

The work 18 divided into three phases,

The first phase 18 the investigation of the jobs'
parameters likely to influence scheduling decisions in a
critiocal way.

The second phase is to define and study the properties
of the major constrailnts of the zero-one machine used to
arrive at optimum scheduling decisions. The process 1is
regarded as the basic memory demand entity., Its system
characteristic 18 a palr (net-pay, memory demand). Net-pay
represents the net returns the scheduling of the process
will bring to the computer system, Maln memory demand
represents the process' immediate memory requirement
(intensity and duration),

Processes are segregated into two distinct classes at
the scheduling time. The first class, the wait class, \is
temporarily denied execution. The second class or ready
class is granted the use of central memory for the next
planning interval. The ready class contains those processes
whose system characteristics are solutions of the gero-one

problem, and which result in optimal revenue to the computer



system,

Simulation of the behavior of the zero-one linear
scheduler and comparative analysis of schedules derived by
the zero-one scheduler, the best fit and first fit
schedulers, constitute the basis of the work in the third
phase,

This work i1s intended to introduce a relatively new
approach to modelling scheduling operations. It is
intended to spark an economic/value way of thinking about

computer storage allocatlon,



I. | INTRODUCTION

\

A, Baokground

The extended capabilities of today's computer systess
have inoreased the need to control the sequence of jobs
which are processed by the ocomputer, Complex operating
systems have been designed to that effeot, Memory manage-
ment plays a very important role in the design of those
systems and has proven to be a major bottlonook[ﬁ]. In
today‘'s computer systems, programmable memory amounts to
one third of the systeas’ costs; hence, great care must be
exercised in the design of executable memory alloocators,
The displacement of serial prooessing systems by sophisti-
ocated multiprogramming systems is outstanding evidence of

the importance of memory resources utilization.

1, Multiprogramming

Multiprogramming in the simplest sense means that
more than one process® can be executing within the same
computing system and at the same time; those processes are
referred to as conocurrent proocesses, In the early serial

processing single allooation systems, only one job ocould

¢ A process or Jjob 18 the smallest unit of work that can
be presented to the computing system by the user, It
is defined through the Job Control Language (JCL).



be run at the same time, Note that the definition of
multiprogramming does not mean that simultaneous operations
are possible; parallel processing ocan take place only
where there 18 the possibility of simultaneous execution
of more than one instruction as for example in multipro-
cessing systems, In multiprogramming, conocurrent proocesses
oan, however, be in different states of execution as they
alternate in their use of the inatruotion proocessor., 1In
typloal schemes, the central processor unit (CPU) time 1is
allocated to each job on a time-slice priority basis, Por
each "quantum of time”, the operating system causes the
CPU to execute a program in 1its address-space until one of
the following conditions ocours,

-job is terminated;

-error 18 detected;

-program requests I/0 operations;

-quantum of time expires, '
The job is then purged from memory (first two cases) or 1is
temporarily suspended; the processor 1s automatically
assigned to the next Jjob with the highest priority. The
rationale behind multiprogramming systems is that a
computer system ocannot perform efficiently in a serial
processing scheme because of the rather large disparity
between the fast speed of the CPU and’ the slow activity

rate of the 1/0 devices, The larger that disparity, the



more concurrent processes should be executing in order to
minimize the total coaputing system wait time®, Although
many attempts have been made to improve to a maximum the
efficlency of I/0 processing (example; V32 Release 2
Operating System developed by IBM), it is indisputable
that much more needs to be acocomplished in that direotion
before multiprogramming 18 considered obsolete,

The advantages of multiprogramming are much more
obvious in situations wherein the job mix of proocesses
accessing the system 18 well balanced, i.e. when CPU bound
Jobs are evenly mixed with I/0 bound Jjobs®®, Maximua
system utilization 18 achieved when the job mix 1ls perfeot,
1.6, a jJob 18 always ready to use the CPU when it becomes

avallable,

2, The problem of fragmentation,

There oxists three states a job may assume once it
gains acoess to the computer system: Active, Ready, and
Wait, A Jjob 18 sald to be active when it 18 currently
using the CPU, If the job 18 ready to use the CPU and

cannot because of the exscution of another process, the jod

* VWalt time 18 defined as the time during which the systes
18 not utilizing fully its proocessing resources,

#*e CPU bound Jjobs make heavy use of the CPU and 1ittle use
of I/0 devices; I/0 bound jobs are the exact opposite,



18 sald to be in a ready state. A job temporarily
suspended and waiting for the completion of some activity
(Input/Output, operator's intervention ....) 18 said to
be in a walt state,

A well balanced situation will find the system fllled
with sufficient Jjobs so that the probability is high some

Jobs will always be in a ready state,

a., Storage fragmentation.

Jobs in a ready state are normally resident in core
memory. In partioned memory allocation, the ready jobs
residence status creates the lmportant problem of fragmen-
tation., Fragmentation 18 the development of unusable
"holes™ or fragments in memory and it has a statistical
nature, It 18 due to the fact that memory is allocated in
arbitrary slized segments whioch are in turn returned in an
essentially random order. Fragmentation degrades the
performance of the system by decreasing CPU utilization
and system throughput whenever the total interspersed free
space 18 sufficlient to honor a request but cannot be found
in a 8ingle segment, A number of different approaches can
be used to tackle the problem, some of which will be
assessed later in this chapter, Before this 18 done, we
shall consider the different kinds of fragmentation

encountered in multiprogramming systems.
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a.l. Internal) ntation

When memory is subdivided into fixed size partitions,
and when every Jjob 18 required to use one or more blooks
of fixed size, the resulting fragmentation, if any, 1is
called internal fragmentation, As shown in figure 1,la,
after a period of time, the core memory oonfiguration
ochanges into that of figure 1,1b, The resulting free
space of 60 units cannot accomodate a new arriving prooess

requesting 30 units because of internal fragmentation.
request 30K

OPRRATING SYSTEM] O 0
Process A 20K Process A 20
Process B 30K 1//1/1//7/7/7777

6
Process B 90K Process B 90 OK°
180K Process C 160
220k | /111111111111117 | o

Proocess D 200
//1/1/7///7/7/7/7 22%'

figure 1,1a

figure 1,10b
(1K = 1024 WORDS)

a.2, External fragmentation

If internal fragmentation becomes too severe, storage

allocation can be made dynamic and memory partitions can be



made to fit the process space request, After a period of
time, & checkerboard pattern of allocated spaces intersper-
sed with avallable spaces causes a loss of usable semory.
This type of fragmentation 1s sald to be external (figures
1.2a and 1.2b), Efforts to eliminate internal fragmenta-
tion have now introduced a different kind of memory waste,

request 40K

OPERATING SYSTEM ] O [OPERATING SYSTENM | O
Process A 30K ////////7//77//777 30K
Process B 90K Process B 90K (60K
' Pree
I, T
/
150K [117777/777/77//77/ 1 50K
figure 1.2a figure 1,2b

b. Measurement of fragmentation,

Bandell(ﬂ] and Shore [19] have developed some very
relevant methods for measuring storage fragmentation. The
conclusion of Randell’s simulations was that internal
fragmentation ocan rapidly exceed any saving in external
fragmentation as the rounding size increases, A measure
that would be a direoct funotion of the free storage
distribution would probably not provide a reasonabdle
measure of performance sinoce the usefulness of the free
storage depends on future segments requests, PFor example,

two requests of size 90 units on two free blocks of sige

8



100 units create very little fragmentation, whereas if the
next request is of size 110 units, the memory 1s highly
fragmented, Randell suggests that given a set of n
segments requests, fragmentation be measured as the ratio
of the time taken to allocate requests on a totally
compacted memory over the time taken to satiesfy the same
requests with the strategy in use, This 18 expressed
mathematically as:

- Tc(n)
n

R (n)
X

Bx(“) 18 always less than one and, in general, the greater
its value, the better the strategy X.

Shore suggested two different measures of performance;
they are the time memory product efficiency, E, and the
storage utllization fraction, U, If n requests ry,l = 1,
2, «cees,y N, are allocated for times ty, on a memory of
size M during a total elapsed time T, then the efficiency
i8 defined by Shore as:

n
E = 1 - Z r.t
MT i1 =] 171

Ir {ri(t)} 1s the set of requests that happen to be resident
in memory at time t, then U, -(1/r)’§: rl(t) and U is the
average of Uy over time,

Those three measures of performance are very useful



for statistics collection by simulators and the time
memory product efficlency measure will be used in the

simulations presented in chapter III of this thesis,

3. Some solutions to the fragmentation
problems.

There are two kinds of solutions that exist today;
they are: memory compaction and dynamic memory management

systems,

a, Memory compaction.

Memory compaction is a treatment of external
fragmentation and 18 Jjust one form of garbage collection®.
This technique 18 a simple stralghtforward approach which
lets fragmentation take place and then deals with it when
it becomes a problem. The technique is particularly used
with 1ist processing languages such as LISP which have the
pecullarity of requesting and releasing large amounts of
memory in an unpredictabtle way., The compaction algorithm
uses in fact a very simple scheme, Each request for space
is satisfied by allocating a block or a partition following
the most recently allocated block and no attempt i1s made to

reuse any memory that may have been released. When

appropriate, the algorithm performs memory compaction. All

* Garbage collection refers to any technique which makes
unused memory areas avallable for use,

10



allocated spaces are moved to one end of the memory in a
contiguous area and the available space is collected at the
other end of memory. (figure 1.,3). Decisions concerning
when and how to perform compaction are in general critiocal
and very decisive, Some systems elect to performs compac-
tion whenever the CPU 18 idle, e.,g. wailting for input, in

o>der to make the most efficlent use of the oontrol prooces-

sor,

0 0 COPRRATING SYSTER ] O
Process A 30K Process A 30K

111111117777777 60K r> Process B 120K 70K

Free

Process B 150K Process C 150K

1/////77//7//7/77 170K 1//////7/////777/ 220K
Process C 200K

111110071711177 | om0k

(1K = 1024 words)
Snapshot of memory Snapshot of memory
before GARBAGE after GARBAGE COLLECTIOR

COLLECTION
figure 1.3
The compaction process 18, however, very costly. On the
average, even with special hardware implementing Move
instructions, it costs one or more memory ocyoles (0.5 or
more miocroseoonds depending on the computer) to move each
word when compaction 18 required., Moreover, the compac-

tion overhead is increased by the requirements that all

11



address constants that refer to any segment that happened
to be moved be updated. This updating costs additional
exeocution time and requires extra space in order to keep a
record of every oconstant and the segment to which it refers.
The costs are particularly higher in multiprograsaing
systems where updating problems exist even without compao-
tion, in deciding which of the segmentas of an exeocuting
process should be kept in primary memory, which to move out
of memory and when to move them, These high costs have
made the compaction process very undesiradble and has
prompted the design of allocation algorithms which do not
require compaction. These algorithms are classified as
dynamic memory management algorithms and shall now be

investigated,

b, Dynamic Memory Management Systems,

Because garbage colleotion is limited to external
fragmentation only, and because the process itself is very
costly, 1t 18 recommended that it be used only when
unavoidable, A “"better” solution to the fragmentation
problem seems to be the prevention of fragmentation and the
reduction of the frequency of oompaction, The allocation
algorithms will then inorease in complexity but, through
careful management, external fragmentation can be oconsider-

ably reduced; internal fragmentation, paradoxiocally,

12



becomes the problem., Two very important algorithms will bdbe
described shortly; they are referred to as Best Pit and

First Fit strategies in the computer fileld,

b.1. Best Pit and Pirst Pit strategles,

The Best Fit algorithm searches through the entire
118t of avallable memory areas and allocates the smallest
area of suffioclent size to satisfy the request, The
algorithm allocates only the amount requested and returnms
the leftover space unless it 18 too small to be of any use,
in whioch case the entire blook is allocated,

The First Pit algorithm searches through the list
until it finds the first available block that is large
‘enough to hold the request, The unused portion is returned
to the list of available memory blooks,

Historilcally, the Best Fit method was widely used for
several years; 1t was Shought to be a good policy since it
saves the larger avallable areas for a later’/time when they
might be needed, Unfortunately, scanning the entire list
to find the best fit could use an exoessive amount of time,
whioch makes the strategy rather slow. PFurthermore, Best
Fit tends to increase the number of very small bloocks and
such a proliferation 18 not very desirable, There are many
8imple situations where the First Fit method is clearly

better than the Best Fit method. As an example, suppose

13



we are given the following list of available blooks: 1200,
1000, and 3000, and our list of requests is 700, 500, 900,
and 2200 units, Storage will be allocated in the following

%Ay
request for avallable areas available areas
memory Pirst Pit Best Pit
- 1200, 1000, 3000 1200, 1000, 3000
700 500, 1000, 3000 1200, 300, 3000
500 1000, 3000 700, 300, 3000
900 100, 3000 700, 300, 2100
2200 100, 800 @ ecea- 8tuCKkecccaa

There are, however, some simple instances where Best Pit

outperforms First Fit: example:

request for avallable areas Aavallable areas
memory Pirst Pit Best Pit
- 200, 150, 100, 50 200, 150, 100, SO
150 50, 150, 100, 50 200, 100, 50
100 s0, 50, 100, 50 200, S0
150 ce=BtUCKe~- 50, 50

In general, any system that offers its largest block first
to satisfy a requirement which 18 followed by exact dupli-
cates of the requests sizes will be better handled by Best
Fit, Extensive simulations of both strategies have been
conducted and Pirst Pit was found to be more efficient than
Best Fit under general operating conditions., It has never-
theless been ehown[}q] that Best Pit would outperfora Pirst

Fit whenever the distribution of requests is an oxponcntxil

14



distribution which has been truncated. The point of all
the complexity of the above two algorithms is the avoidance
of memory compaction. Sinoce compaction is required when no
free bloock 18 large enough to satisfy the current request,
the smaller the blocks are, the more likely compaction will
be needed. This fact oreates one of the worst disadvan-
tages of Best Pit when compared to Pirst Pit; as it was
pointed out earlier, Best Fit tends to multiply the number
of very small blocks whereas, First Pit tends to do exaotly
the reverse, By cleverly combining contiguous free blooks
and by using a oyclic search, that 1s always starting the
search after the free block from which the previous allo-
cation was taken, the First Pit algorithm tends to
distribute small blocks more uniformly through memory.
This uniform distribution inocreases the probability that
when & small blook 18 released it will be combined with a
larger block; simulation studies @q] have shown that for
some olasses of segments, these features are so effective
that if the need for compaction arises, the total amount of
free space avallable will not be large enough to satisfy
any request, Therefore, this approach virtually eliminates
the need for ocompaction.

A final word on those two strategies is that the
allocators may be given the ability to take into account

knowledge of the statistios of the requests sizes and

15



memory residence distributions. They ocould then conduot
thelir own look-ahead simulations., But at such a level of

sophistication, the overhead would be very high.

b.2 Other dynamic memory management systems,

The two strategles presented above are the most widely
used core allocation methods to date, However, other

systems have been developed and call for some attention,

- The Buddy System.

In this system, memory 18 always allooated in sirzes
which are a power of two. The 1dea of the method is to
keep separate l1lists of avallable blocks each of size 2
words, the entire memory consisting of 2" words, Original-
ly, the entire 2® words of memory are available. When a

block of size 2X

18 desired, and if nothing of that size
is avallable, a larger avallable bloock 18 split into two
equal parts, each of size being a power of two. These
bloocks are called buddies. If both buddies are available,
they coalesce into a single larger blook. The key faot
underlying the usefulness of the method 18 that the loca-
tion of a blook's buddy 18 easy to compute given the
address of the block and its size. This 18 because each

bloock 8size 18 a power of two and division can be done by

register shifting instead of by using any division

16



instruction which would be too slow. The possibility of
the simultaneous availnblilty of several blocks of the same
slze requires the inclusion of a link pointer within each
block of a given size, That link will point to the next
avallable block of the same size, This linking systen
evidently inoreases the overhead of the systen,

The Buddy system suffers external fragmentation when
free blocks of the same size cannot be combined into a
larger block because they are not buddies, Purthermore, \if
requests are not a power of two, they are rounded up to the
nearest power of two and the result may very well be
internal fragmentation. Even though the elimination of
fragmentation 18 not totally achieved, the Buddy systenm
minimizes memory waste by satisfying requests as much as
possible and by 1ts ability to split large blocks of memory

and coalesce buddies,

- Pibonacol Memory Management Szlten,

The Flbonacc)l system which 18 in fact a generalization

of the Buddy system, creates blooks of size Sn where Sn is

a generalized Fibonaccl sequence;

S -OI 31-82-83-oooooooooooo-shl-l

Sn = Sp.1 *+ Spka

for some integer k. When k = O, the Buddy System is

17



realized with blocks of size S = 2",

The central problem with generalized Fibonaccl systems
18 not in allocating, but in locating ad jacent buddies
subject to coalesce into free blocks. This probleam drives
the overhead of the system to a high level since numerous
buddy counters must be included in the systems programs

realizing the algorithm,

- Modified Pirst Pit,

Modified First Pit 18 similar to Pirst Fit except that
it uses a cyclic search, We have seen earlier that this
particular search tends to distribute small blooks more
uniformly through memory. This uniform distribution in-
creases the probability of combining free small blocks with
ad jacent larger ones, thus making it virtually needless to

provide for compaction,

- Half Pit,

This algorithm searches for a segment that is approxi-
mately twice the sire of the segment request, If the
search fails, the algorithm changes to Pirst Pit, Simula-
tions [9] have shown that this strategy performs rather
Buccessfully when there is a strong bias to segments of a

given sicze,

18



B, Statement of the Problem - Objeotive,

The performance of & computer system executing in a
multiprogramming environment 18 very much limited by the
capacity of its executable memory and the flexibllity of
the scheduling algorithm monitoring core memory allocation,
The core allocation strategies used in today's systems were
designed with the objective of reducing fragmentation to a
minimum; they have unfortunately proven to be relatively
unsuccessful 1n dealing adequately with other aspects of
scheduling, Worse, they do not allow the computer system
users to interact with their jobs and be able to influence
scheduling decisions, It is true that operating systems
should free the users from having to know detaills of the
computer internal processing; on the other hand, in most
computing environments, since billing 18 not directly
controlled by the users, there 18 no economic inocentive for
a user to request only that amount of core time resource
actually needed to execute hls or her programs,

The objective of this thesis 1s the development of a
storage allocation algorithm which will use an optimization
machine to arrive at scheduling decisions, Users®' interac-
tion with the scheduling algorithm will be permissible to
the extent that scheduling decisions will in fact be made

by the users in an indirect way, In the new algorithm's

19



environment, fragmentation will not always be a problem
and will not be considered as a performance measure. The
maximum amount of money every user will be willing to pay
in order to have a share of storage resources and the
optimum returns that scheduling will provide to the compu-
ter system will be the determining faotors for scheduling.
The chapters to follow will examine in more depth
the design of the algorithm, Chapter III 18 directed
toward establishing the feasibility of the new approach
to scheduling. The reader should realize that this
research presents an original oonoept which offers many

opportunities for additional exploration.

20



I, DESCRIPTION OF THE ALGORITHM

We have discussed in the preceding chapter the complex
nature of storage scheduling decisions that have to be made
within a computer system, Hegardless whether a systematio
schedulling process 18 followed or not, the schedules do get
made, These schedules may be prepared by default using a
very simple procedure like first-come, first-served or by
manipulation of some complex existing procedures such as
Best Fit, First Fit, Modified Pirst FPit, Half Fit that try
to minimize the amount of storage left unused, However,
none of the central memory pricing systems associated with
these different algorithms reflect the value the user at-
tributes to the information obtained through access to the
system. Nonetheless, the need for a cost/priority systen
has been discussed by Nilelsen [13]. whereas Marochand [123
has introduced a utility function model applicable to time
sharing systems in which a linear combination of individual
utility functions has to be maximized,

In this chapter, we will devise and develop a system
for allocation of executadble memory storage in a multl-
programming environment which will provide a cost of
storage subjective to the individual‘'s value for informa-
tion obtained., In this system, the data processing center

performs as a profit organization whose excess returns

21



are channeled back into the company or corporation

majintaining the system,

A, Justification of a Scheduling System Based On
Econonics,

The allocation 18 accomplished by considering
executable meméry as an economic good, In the systenm,
execution will be denied to those users whose subjective
proposed prices are below a fixed minimum price based on
the cost of malntenance, The system will be described in
the following section. This section 18 directed toward
desoribing the concept of a price based memory scheduling
system,

A computer system is similar to an economic system in
the sense that 1t must solve the problem of how to use and
distribute scarce resources and goods between customers,
The scarcity of finished goods forces the economic system
to be closed since any goods consumed by a customer reduces
the consumption possibilities of all others, A computer
system 18 analogous to a closed system, insofar as computer
resources are concerned,

Moreover, a price system 18 a mechanlsm by which
determination can be made of the preferences of different
economic units for the same economic resources or products,
It establishes a firiority of users and also a priority of
wants and it is generally designed to convey sufficient

information in order to determine the flow of resources
22



among different allocations over time, while optimally
distributing the goods and services among competing
consumers., Prices are not a mechanism for reocovering cost;
they are a rationing device and as such they are allowed to
fall below or rise above cost in order to convey the proper
information on the behavior of the consumers and of the
market., However, in the system presented here, prioces will
never be allowed to fall below cost; if they were, the
system would very rapldly degrade and would always be in
imbalance, This particular situation will be assessed in

more detall in the penultimate section of this chapter,
B. The Model,

The system consists of a single prooessor or CPU
operating in a multiprogramming environment on an execu-
table memory of size S words, The system contains two
queues ot.lnrlnlte capacity, It 18 multiprogrammed under
a variable number of tasks (MVT). The total core capaoity
of the machine 18 distributed into any size partitions
dynamically., The ocore 1s generally allocated to each
program according to its specific requirements, Storage is
therefore allocated in units of one word so that no more
than the requested amount 18 ever allocated, Dynamic
partitioning in general makes the scheduling function muoh

more complex than multiprogramming partitioning under a
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fixed number of tasks (MFT). Under MPT, the total core of
the machine {8 semilpermanently allocated into fixed size
partitions, For this system, MVT has been chosen instead
of MFT, because MVT tends to make better utilization of the
total core avallable,

The algorithm also utilizes a static sequencing
method, At the time of preparing the storage allocation
and schedule, information on the number of jobs that need
processing, i.e., jobs in the wait queue will be avallable.
The schedule and pricing for the next planning period 1is
then prepared assuming that these jobs are the only jobs
that will be processed during the planning period., 1In fact
Jobs will keep arriving throughout the scheduling period,
but static sequencing offers a means to plan allocation and
schedule with the information already known, It is also
less complex and easler to achieve than a sequencing that
will schedule the jobs dynamically.

Storage 18 thus priced and scheduled only for the next
planning period, also referred to as next operating
interval. Let T be the duration of the operating interval,
T 18 in effect the multiprogramming turnaround time for the

Jobstream present in the walt queue at the control periode,

* The control period 1s the point in time where scheduling
decisions are made for the next operating interval., It
18 a point in time in the current operating interval,
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and represents also the turnaround time of the jobstreas
if 1t were processed serially. Consequently if tJ is the
execution time limit requested by process j, then the maxi-
mum value of T can be determined as the summation of tJ'l
over all processes in the walt queue at the ocontrol period.

Prices fixed at the end of the control period will
remaln constant throughout the operating interval, and ocore
residency 18 guaranteed to any program for the length of
time necessary to complete execution. This says in effect
that swapping 18 not possible, Swapping, if permitted,
would make the algorithm much more sophisticated but would
complicate the prioing system to a great degree., The one
shot central memory residency requirement of this thesis
may introduce some imbalance in the system in cases where a
Job 18 killle. dropped® or temporarily suspended®® by the
system operator, Section D of this chapter will provide
more detalls on that point.

Sequencing is performed through a zero-one linear
machine whose objective 18 the maximization of the returns
to the system during the planning period considered at the

current control period. The zero-one machine is invoked at

. Drop, Kill: premature termination of a job due to an
operator Drop or Kill ocommand (Soope
operating system),

*®# Rerun: termination of a job due to an operator Rerun

command (Scope operating system).
(See Appendix for further details)
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each control period and determines optimum storage alloca-
tion, optimum sequencing and storage pricing. In fact,
storage is allocated to a process at the price the owner

of that process values the information he or she obtains
through the service of the system, provided that that price
is above a minimum cost of maintenance and overhead refer-
red to as min-pay in this thesis and noted by cJ.

Let BJ be the pay-will® of process j and cJ its min-
pay. For reasons of simplicity BJ and cJ will be expressed
in dollars (§). By represents in fact thé purchasing power
of the process and cannot exceed the amount of money avail-
able under the login account of the job, In the cases where
it does, the Jjob will be denled execution by the algorithnm
scheduler, The determination of © will be assessed later
in this section.

Not all processes present in the walt queue at the
control period will be selected for execution during the
next planning period. The processes which will be selected
will be placed in the second queue of the system, the ready
queue, The wait queue will then only contain those proces-
ses which were rejected; it will eventually comprise the

processes accessing the system after the control period and

* Pay-wlll 18 the maximum price the owner of the proocess
18 willing or able to pay to share storage.,
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during the operating interval, The order of the jobs 1in
the wait queue 18 immaterial and does not affect the
scheduling decisions of the algorithm, The relevant
parameters influencing the decislons are the processs BJ.
its execution field length sJ and its execution time tJ.
tJ is expressed in systems seconds®, The min-pay cJ is
determined as the cost of the memory time product require-
ment of Jjob J. If C represents the cost per unit of memory
time product, then cJ will be C'sJOtJ. The parameter C 1is
expressed in $/word/second and 18 independent of the users,
It 18 calculated and fixed by the administration of the
computer center and represents the cost of memory main-
tenance, C should be changed periodically in order to
reflect the stochastic short-run fluctuations of hardware
and software maintenance requirements,

The algorithm will issue periodically a report status
to the user community and will accept any changes made by

the users in the BJ of the processes they created,

C. Zero-one Programming Approach,

1. Variables definition,

Structuring the problem as a zero-one problem requires

* System seconds are accounting units whioch combine a
central memory factor, CP time and channels usages,
according to a formula predefined by the center,
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that we define variables and establish appropriate
relationships between them to reflect the probleam
constraints, We let J represent the number of the jobd

and t represent the time, Let us define two step functions

for each job., We will say about job

1 if job J 18 begun by period t
bJ t L
! 0 otherwise,

and also:

1 1f Job J 18 completed by the beginning
eJ't = of perlod t
0 otherwise,

Graphically, this appears as:

bJ.t = 1
: ->
process J 18 bolns oxocut
- 22777 7 7 77 —
o 27777 ///j//// T
t RS
¢ i epe =17
) e3,t =0

tz-tlﬁt"

for a job of execution time limit of cJ systems seconds,
With this definition, the following is true about any Jjob

J in any period t;

1 if job § 18 being processed during t

b (. ] -
J.e-"0.t 0 otherwise,

Graphiocally, this gives;,
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bj,t = (0 )

‘L
P —
TBJ.c-OJ.t- k bJ_!t - °J,t = i t2"1 L 4 t,’ T
ty ej,t =0 >

Py,em0y,e=0

>

°y,t = 1

We can guarantee algebraically that variables bJ t and
[
eyt have the required step characteristios by the follow-
’

ing inequalities:

Byt S Pyeeat OF Pyt - Pyeear SO (0
for all J and for t = At, 24¢t, ,,..., T - 4¢, T

e t + 6t < 0 for all ) and for (1)

L
t=4¢t, 28t, ,,0.., T~-4AT, T

where T represents the operating interval length and 4 ¢t
represents a small increment of time used to render the
continuous aspect of the problem, The length of At; i
left to the discretion of the computing center and 1is
dependent upon the accuracy required of the algoritha.

An upper bound for At would be Jjob mix dependent and would

be equal to the shortest execution time request present in

the walt queue at the control period. The Soheduler oould
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be designed and programmed to check that the upper bound on
At is not violated and to make the necessary ad justments
if required, The requirement that once a job i is begun,
processing continues until termination is algebrajcally

translated into:

b
(17) bl, - el. t ety for all t and 1.

Equation (1) enables us to eliminate variables b.’.t and
suggests that the zero-one formulation can be obtained with

variables e only.

ot
Moreover, by definition of ey ¢* it is olear that

eJ ¢ = 1 for all time t coming after time t, (on the dia-
’
gram) where execution of process j was oonpleted.1
°J,t = N

t2 7
‘ l i J
‘ 1§ A
0 ty T

begin execution end execution

In particular, will be equal to 1 if process )

°JT
completed execution during the operating interval®,

Because it 18 impossible to predict the job mix charac-
teristics, it 18 likely that some processes will begin

execution during T but will complete execution some time

after T, Por those processes, eJ T " 0. Although such
1)

® Operating Interval: also referred to as control inter-
val in the sequel,

30



-~

processes will contribute in the returns to the asystea
during T, the zero-one machine will consider only the
greater ma jority of processes with °J.T = 1, This approach
18 used in order to simplify the algorithm., More will bdbe
said about this situation (called overlap orisis) in

seotion E of this chapter.

2. Resouroces constraints,

At the control period the scheduler must determine
the number of processes waiting for acess to memory. This
number will be the number of Jjobs resident in the wait
Queue of the system, We will denote that number by the
letter q. Since we are conslidering a system operating in
a multiprogramming environment, adequate utilization of
memory capacity will be achieved if at least one job 18 in
process at any time period t during the planning interval

T. We can therefore formulate the second constraints as;

L, Py -0y 2 1 for t =at, 28t, .,..., T-ot,T
J'=

With the definition of bJ t and eJ L it 18 true that;
1) ? .

1 1f job § 18 being processed during t
b

- @8 =
J,t J.t 0 otherwise,

Since equation (1) byt =0yt 4 ¢ for all t and J,

3



suggests that variables bJ,t can be replaced without any
loss of generality by ® 5.t o tj' the reformulation of the

second constraints can be restated as;

q
- 4 -
Jz-: ) (OJ.C + tJ OJ,C) 1 for t At. ZAt. [ KEEEE] T
- AT, T (2)
where tJ represents the execution time of process j,

The factor bj,t - 04t «+ t 18 0 or 1 and indiocates
whether or not proocess J 18 in execution at time period t,
Ir aJ denotes the central memory fleld length allotted to
process J, then the product (°J,t +ty - °J,t)"J will
represent the memory area ocoupied by process j at time t,

Since central memory 18 limited and is of size S, it
18 clearly evident that memory space utilized by multi-
programmed Jjobs at any time period t cannot exceed S, This
18 algebraically expressed in the form of the third con-

straints as:
q
% 121 (ey,t + ty ~ °J,g)'83 33 for t = At, 2at,

ooooo.T (3)

qQ represents the number of jobs present in the walt queue
at the control period. Although not all the jobs in the
walt queue will be active in the next operating time

interval, the summation over all q is nonetheless utilized
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in constraints (3). The zero-one machine will perfors the
selection and hence constraints (3) in fact take only into
consideration those processes that will be permitted to
reside in central memory during T.

Constraints (3) impose an upper bound on memory space
utilized at any time t. The combination of constraints (2)
and (3) will force the zero-one machine to schedule at least
one program in central memory at any time of the control
interval, Constraints (3), however, do allow storage frag-
mentation, In order to minimize that fragmentation and
guarantee that the zero-one machine solution will reflect
the multiprogramming aspect of this application, the fol-
lowing constraint (4) must be satisflied. Constraint (&)
expresses the concept of maximum efficiency in the multi-
programming environment,

We have described in chapter 1 of this thesis a
measure of performance suggested by Shore [19] and oalled
the time memory product efficiency E. If n requests
Tyol = 1, 2, .....y n are allocated for times t, on a
memory of size M during a total elapsed time T, then the
time memory product efficiency is formulated as;

n

E = 1 A ) P
—— F,h
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We have argued earlier in this chapter that variable .J.T
would be equal to 1 if process j completed execution during
the operating time interval T. Moreover, we have decided
that the zero-one machine would not consider the future
possible returns to the computer oenter provided by those
processes in overlap orisis®, This attitude was adopted in
order to avold the introduction of complex job mix parame-
ters predictions in the algorithm., The time memory product

of a non-orisis-process®*® § will be mathematically expressed

eJ T'BJ'tJ, where 8, and t, represent the central
’

J J
memory fleld length request and the execution time of pro-~
cess .
1 1Af the process 18 selected by the
Recalling that e - zero-one machine
J,T 0 otherwise,
we can now formulate the maximum time product efficienocy

oonstraint as:

q
02 1 ef e s g,®t,) 81 (%)
— J);‘1 T8t

bl term used to desoribe situations where the exeoution of
a Jjob overlaps T,

¢4 a crisis-process is a process caught in overlap orisis,
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Constraint (4), combined with the objective function which
‘'will be described shortly will guarantee that the zero-oné
machine will attempt to keep fragmentation to a minimum,
Constraints (1), (2), (3), and (4) are believed to
desoribe the scheduling problem adequately enough.
Additional zero-one constraints are however necessary to
complete the constraints formulation of the zero-one

problem, Zero-one oconstraints (constraints 5) state that:

eJ L " 0, 1 for all jJ and t (s)

3. Objective function formulation,

The data processing center 18 considered as a profit
making service organization within the corporation. 1Its
objective 18 to deliver service (information) to a group
of users and make an optimum profit sufficient to at least
oover the cost of the center, Exocess profit will be chan-
neled back to the corporation, Let us assume that it costs
the center C $/word/second for maintenance of memory. The
soheduling system assligns to each Jjob accessing the systen
a min-pay equal to the product of C by the central memory
field request and by the execution time request. For a

process J, the min-pay would be o, = C'aJ'tJ.

J
The pay-will BJ of process j must exceed or at least
be equal to ° in order for the job to be acocepted in

either of the queues of the system, This restriotion adds
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other oconstraints to the zero-one machine. These oon-

satraints state that,

° (BJ - CJ) € 0 for all ) (6)

5.7 °

Constraints (6) are in fact impliocit and will not appear in
the zero-one formulation sinoce processes J such that BJ<oJ
are automatically rejected by the system at their entry in
the walt queue,

The pay-will BJ of job J will determine its priority
within the system job mix. A8 a means of refleoting the
importance of Jjobs relative to each other, we introduce the

parameter denoted as the Job priority index and algebrai-

cally defined as:

B1 - Cl
q
B
B
for any Jjob present in the queue at the control period,
The objective function of this formulation is expressed as;
: * (B c,)
[} -
4 Cur 3~ %y
The zero-one machine maximizes that objective function
while staying within the boundaries defined by constraints
1 thru 5.

The zero-one machine maximizes the sum of the differ-

ences between BJ and o, subject to the fact that process )
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be executed before expiration of T, in order to provide

every user with a "falr®" share of the computer storage

resources. An attempt at straightforward maximization of
the summation of BJ's for example could be disadvantageous

to urgent processes ) with small o With a formulation of

J.
Q
x>

would have the tendency of scheduling those processes

BJ as the objective funotion, the zero-one machine
1

which present a large pay-will, Urgent jobs with small
min-pay, 1.e, jobs not requiring excessive amount of time
memory product resource would then have to access the system
with a very large pay-will in order to have a chance of
being scheduled by the algorithm during T.

The priority index factor selected for this algorithm
18 thought to guarantee adequate fairness in the share of
storage resources, It 1s 1mplicit in the objective
function and indicates that users have a partial control
over the position in which they desire their jobs to

execute,

4, Summary of the zero-one fornulutlon,

The objective of this algorithm scheduler i1s to:

Q

Maximize z: e

J & %t (By - C,) over the next operating

interval, subject to the following constraints;
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(1) --

(2) --

(3) --

(4) --

(5) --

where J

owner's

e O for all j and for

3, T %3,t ¢+ At
t-At. 2At. JAt' ooooo.T-At.T

resources constralints:

q
J);l (o) ¢ by " ey,¢) €1 for t = At, 28t,

s 000 0 T -At. T

q
0 2 32;1 (°J,t . tJ"°J.t) *8,<S for t = At,

ZAC. DRI ) T

q
0< 1 '(Ze 'uj'tJ)Sl

3T %1 3T

zero-one constraints;

e -0, 1 for all Jandt-At. ooooo.T-At.T

Jot

represents a job, B, its owner's pay-will, o, its

J J
min-pay, tJ its execution time in systems seconds,

sJ 1ts execution fleld length in words of central aemory

and varlable

period t,

{1 Af job J 18 completed by the beginning of
e -
Jot

0 otherwise,

This zero-one machine will automatically select and sohedule

the processes for the next control interval T.
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D. Penultimate Section,

1. Users collusion,

We have pointed out 1in section B of this chapter that
prices should be conslidered not as a mechanism for
recovering cost, but rather as a rationing device and thus
should be permitted to fall below or rise above cost,

These fluctuations would be a reliable source of information
on the behavior of the consumers and of the market,

However, in this algorithm, prices are not allowed to fall
below coat, In fact, constraints (6) state that any user J
accessing the system with a pay-will BJ inferior to the
agsociated min-pay cJ. would be denied residency in central
memory. Thls apparent contradiction in the system 1is
necessary for this algorithm to perform effielently.

Let us consider the case where the user's BJ could be
allowed to be less than the user's corresponding min-pay,
oJ. The customers of the system will then tend to lower
their respective pay-will to the extent that the computer
is likely to be operating at loss. Without any minimum
level of acceptance for the user's pay-will, each user will
probably decide to fix his or her job's pay-will at a
common minimum level, O for example. This case of users
collusion will create a system imbalance and the price
system will no more reflect the importance the user atta-

ches to the services provided by the computer system:
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such an imbalance would degrade the performance of the
algorithm as far as maximization of revenues is concerned.
Moreover, there will not be any adequate rule to go about
for the scheduling of the programs in central memory since
the objective function of the zero-one formulation will
appear to be useless, The scheduling system will degene-
rate,

The restriction of this thesis that any Jjob‘'s pay-will
be greater than or at least equal to its min-pay 1s there-
fore necessary to guarantee an adequate performanoce of the
algorithm; in addition, that restriction justifies the
existence of the data processing center as a profit making

service department within the corporation,

2, System imbalance due to central memory

one shot residency.

We have assumed earlier in this chapter that central
memory residency 18 guaranteed to any program after it has
begun execution., This assumption has led us to conclude
that no swapping consideration needed to be included in the
design of the algorithm and has therefore simplified the
design process in itself. Unfortunately, this limitation
may have a degrading effect on the performance of the
algorithm. Most computer systems used today are provided

with a console and highly interactive capabilities enabdbling
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the operator to kill® or drop® a program if necessary.

when this occurs, the program 18 swapped out and the ocontrol
polnt®*® at which it was executing 18 freed and made avall-
able to another eventual process. The same policy 1s
followed whenever a job 18 suspended for rerun® or termi-
nates abnormally. In the system presented here, such
sltuatlions will not be handled similarly.

Since scheduling 1s determined via an optimization
algorithm, it 1s impossible for the system to ad just itself
to unforseen sjituations without the risk of running into a
bottleneck, The solution given by the zero-one machine 1is
optimal and represents the equilibrium of the system., Any
change to that solution is therefore likely to create a
system imbalance unless the change happens to reflect an
equivalent solution. Chances for obtaining an equivalent
basic solution are very slim and it might be better to
adopt a passive stand rather than free the control point
whenever a drop, kill, rerun or abnormal termination ocours,
The storage space occupied by the program in question will

be wasted, but the user will only be charged for the time

* Premature termination of a Job due to an operator Drop,
Rerun or Kill command, (see Appendix)

®* Control point area contains information such as the job
name, processing time accumulated, related control
statements, etc. ..... (Scope Operating Systea:; see
Appendix)
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memory product used up to the time of the condition. This
policy 18 however not refleoted in the objective function
since it is mathematically lmpossidle to introduce its
concept in the zero-one formulation, The frequency distri-
bution of operator drop, kill or rerun due to abnormal
situations 18 very much dependent upon the environment the
center 1s operating in and cannot be generalized, The
algorithm described in this chapter i1s fully valid only
under the assumption that all programs submitted to the
center will execute to completion without any problea,
-Further research 1s needed to encompass real situations
such as those described above, Another area requiring
further investigation 18 described below as “overlap

crisis”,

3. Overlap orisis,

Let t1 be the time at which process j gains access to
memory and t; = t; + tJ the time at which its execution 1is
completed, Suppose in addition that t1<T(t2. Por suoch a

process o will be equal to O, We say that the process

3,7
18 in overlap orisis, A8 pointed out earlier in this
chapter, the zero-one machine will not consider the contri-
butions of proocesses in overlap orisis,

Because it 18 impossible to know in advance the job

mix characteristics, it 18 probable that in applications,
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overlap orisis situations will ocour within each scheduling
decision. A polloy of not considering any ocrisis process
in the basic solution as contributing in the profit to the
center will be followed in this thesis in order to simplify
the complexity of the algorithm,

It was primarily thought that crisis processes could
be considered by the zero-one machine with the introduoction
of an additional varlable ©J,T + t in the sete® { ey.at’

SJ' CJ. BJ of variables desori-

[ s o 00 09 e C »
4,24t $,T° °
bing the scheduling characteristics of any process J,

Because of the step function character of variable eJ L
.

and by definition of e it 18 clear that e = 1

Jvt' J!T + tJ
and eJ ¢ =1 for any time t Tt tJ and any proocess Jj of
’

J

represents a dependable indication of whether or not prooess

execution time t,. Consequently, variable °y,T + t

J was selected i1n the basic solution by the zero-one pro-
gram. Thus, the formulation of the optimum profit
generated by the center during the next control interval
would seem to be more accufate with the introduction of

variable e on the other hand, maximum efficiency

3,T + ty!
would be impossible to achieve during T and storage space
left unused would increase because the scheduler would tend

to postpone the soheduling as much as possible, Por this

®* this set 18 referred to as the charaocteristic set in the
sequel.,
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reason, the approach was rejected and the policy described
in section B was adopted, Therefore, the characteristioc

set of any process ) contains only the following elements:

°j,att ©y, 2atr ccrecr Oy oper Og,T0 By 8y Gy By

It 18, however, possible to reduce the number of
variables involved in the scheduling decisions, We shall

now present how this could be done,

4, Simplifications,

Suppose that at the ourrent control period, the jobs
present in the wait queue have the following execution time

characteristios:

Jobs (J): 1 2 3 4 s 6 7 8 9 10
duration: 05 01 20 25 02 10 10 25 15 05

tJ'

Let us assume that all jobs are heavy CPU bound; the max)-
mum length of T 18 automatically determined to be 118
systems seconds (T = 21:01 tJ). With a Ot of 1 second,
which represents in rio: the upper bound permissible here,
the non-simplified zero-one linear programming formulation
will contain a total of 1180 variables (118¢10) and 2597
oonstraints (1180 of type (1), 118 of type (2), 118 of type

(3), 1180 of type (5) and 1 of type (4) ).
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A few variables can be eliminated, For erxaaple, no
job can be completed in a time period less than 1its
duration. Therefore, for each j, variables ey, tr for t =
Bt, 20, ees o tJ - At can be ignored., Approached 1in
this fashion, the zero-one linear programming problem
requires 1072 variables and 2381 constraints distributed

in the following manner;

number of constraints

jobs variables (1) (2) (3) (&) (s)
1 114 114
2 118 118
3 99 99
3 94 oL
5 117 117
6 109 109
7 109 109
8 94 U
9 104 104
10 114 114
total 1072 1072 118 118 1 1072

total number of constraints
,f[ is: 2381,

With the introduction of the above simplifications, the
zero-one linear formulation can be made substantially

smaller, This will result in faster scheduling decisions,

5. Macroscheduling.,

Because of the competitive nature of the priocing
system on which this algorithm 1s based, it may be diffi-

cult for users with limited budget to ever gain access to
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the computer system central memory. A system of prime,
non-prime and off hours costing and users charging could be
utilized that will attempt to lower the load on the systea
at critical periods of the day, It would then be much more
advantageous for some users to schedule their utilization
of the data processing center during non-prime or off-hours

time when the C parameter of the system i8s much lower,

E. Conclusions and Hemarks,

In this chapter, we have presented a conceptual
framework for developing an overall zero-one linear storage
allocator, The allocator prices storage resource according
to the individual user’'s estimate of the value of service
obtained through the computer system. In order to simplify
the design of the algorithm, we have had to assume that the
Job mix was uniform, and that all programs accessing the
system would terminate normally. In the next ochapter of
this thesis, we present simulations of the behavior of the
allocator for some Jjobstream.

We want to point out one final word., The storage
scheduling approach followed in this thesis is believed to
provide the data center user with a "feel” of what 1is
happening to his or her jobs at the microlevel. Provided
with the ability to interact with the scheduler and change

his or her processes priority through the modification of
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the pay-will parameters, the user will be encouraged to
take the external scheduling process more seriously and to
design his or her Jjobs very carefully before submission to
the data center. In this respect, the whole user's
attitude toward data processing oenter macroscheduling will
be changed from that of a relatively passive one to that of
a more active and dynamic one, With such encouragement
from the users community, the data center macroscheduling

could be made easler,
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III. SIMULATION KODEL

In a computing system with finite resouroes and a
demand for resources that periodically exceeds capacity,
the operating system has to make many policy decisions,
Policy decisions will include as many relevant factors as
possible, For example, the core allocator algorithm will
mostly consider such factors as the amount of memory
requested, the amount of memory available, the Jjob priority,
the estimated Jjob run time, other outstanding requests and
the avallability of other requested peripherals, Disa-
greement arises as to how factors should be weighed and the
strategies that are most appropriate for the installation
workload, The component of the operating system that
decides which Jjobs should be allowed to compete for the CPU
and hence for core storage 18 the job scheduler,

The first two chapters of this thesis were written
with the objective of fully describing the requirements and
problems intrinsic to the development and design of a
scheduler for any given computing environment, We have
discussed the theoretical framework for the design and the
description of a new type of scheduler in Chapter II. The
schedu}er 18 based on the concept that core memory should
be based on the value of the output to the user, We have

explained and emphasized how relevant scheduling decisions
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could be made through the solution of a zero-one linear
machine,

This chapter will present the results and analysis
of simulation experiments conducted in the course of the
design, Before such a presentation can be made, a brief
description of the hardware and software used, as well as

of the data operated upon 18 in order,

A, Simulation Environment,

The Lehigh University CDC 6400 computer system 18 1in
the environment in which the experiments were conducted,.
The system operates under the SCOPE 3.4.4 Operating System
and consists of one CPU and ten peripheral processors or
PP's. The peripheral processors are virtual machines with
their own CPU and memory, operating independently of each
other and of the main CPU. The PP's may access both cen-
tral memory and their own 4K of core (K = 1024 in octal).
Central memory consists of 120K (octal) 60 bits-words,

The operating system supports two conocurrent modes of
service; batch (local and remote) and time sharing., The
system 18 multiprogrammed up to fifteen jobs may be active
at one time, Each active job 18 said to reside at a
control point and may be in one of five stages of exeocution:
executing with the CPU, wailting for some PP activity to

complete, wailting for an operator action, or swapped out,
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The data used for the study were generated on the CDC
6400 and represent actual resource requests on the system
for a normal working day in the university. (appendix)

Part of the software used in the study is the MPOS
(Multi-purpose Optimization System) developed by North-
western University., MPOS 18 an integrated system of
computer programs to solve optimization problems on CDC
6000/CYBER computer systems., Beocause of 1ts relatively
simple structure and repertoire of algorithms, MPOS has
been used by many students in several universities across
the United States, The system is designed for university
uses of small to medium size optimization problems and was
a limiting factor in this study, Other commeroial mathe-
matical programming systems, such as CDC's APEX, directed
at the Bsolution of very large problems stemming from
corporate or industry models, were not available, Aococess
to such larger and often faster systems would have provided
greater flexibility to this study and would have facili-
tated the work greatly.

The computational procedure used in the interpretations
of the zero-one linear program 18 Gomory‘'s cutting plane
algorithm for the all-integer programming problem,
Gomory‘'s algorithm was chosen instead of other zero-one
algorithms such as the Branch and Bound Mixed Integer

Program, (BBMIP), or the DSZ1IP algorithm, because of its
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abllity to change the boundaries of the solution space
without slicing off any of the feasible integer solutions
to the original problem, BBMIP and DSZ1IP prooceed by
enumeration of all possible solutions to the integer pro-
blem and were prohibitively expensive in terms of storage

space required for their adequate execution,

B, Simulation Procedures,

1, Methodology,

The object of the simulation experiments was not the
study of the Lehigh University computer system operating
under a zero-one scheduler, The simulation study presented
in this chaﬁter was conducted in order to provide visibility

on the behavior of the zero-one scheduler, Thus the sample

data fille provided by the University Computing Center is
read and interpreted by a FORTRAN program [23] so as to
generate situations whereby the utilization of the zero-one
soheduler capabilities becomes a necessity. The FORTRAN
program does not take into account the jobs®' entry time in
the computer system, As the file is read, resource utili-
zation data such as memory requests, CPU time requests,

CP time requests and PP time requests are used by the pro-
gram in the generation of the zero-one linear formula. The
program translates the scheduling problem into the zero-one

formulation file which 18 in turn used as input to the MPOS
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package. MPOS then processes the formula via Gomory's
algorithm, MPOS output contains the optimum scheduling
decisions and the optimum value of the objective function
for the planning horizon considered, The output file 1is
analyzed for determination of which jobs are granted access
to memory, and which are not. The jobs J such that °J.T =
(where T 18 the length of the operating interval) are
released from the system and will not be considered aotive
during the next operating interval, Pilgure 3 - 1 displays
a partial representation of the flow of information within
the simulation model,

Actual schedules could be determined by further anal-
ysls of the MPOS output file., (see "Scheduling Decisions”
(section 8) for information on how this was done,)

At the control period, every Jjob in the wailt queue 1is
assigned a characteristic variable name,

The execution time limit request of the Jjob and the At
parameter are used by the FORTRAN program in the determina-
tion of the number of elements on the job's characteristic
set, In an attempt to simplify the design of the experi-
ments, the At parameter was chosen to be 1 system second.
The program then determines the oJ and BJ parameters of the
Jobs present in the queue and finally writes the objective

function of the zero-one problem, If after determination

of cJ and EJ. of a job J, it 18 discovered that BJ 18 less
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than cJ. then Jjob J will be flagged as invalid and will not
be considered in the zero-one formulation., In real 1life
situations, an appropriate message could be written in the
job's dayfile in order to make the user aware of the job's
Bituation during that particular processing period. The
user would then either increase the BJ parameter or resub-
mit the job in another processing period, or both,

The program finally writes resource constraints (1),
(3) and (4) only., The reason for the omission of
constraints of type 2 18 not readily apparent and will be
explained later in this chapter,

2. Variables Table Determination-Jobs'
Characteristic Sets,

The MPOS package was used with the standard input, The
standard input is the algebralc format where problems are
stated in natural mathematical format., Each variable must
have a distinct variable name, At the control period,
every Job in the queue 18 assigned a variable name A thru 2z,
Letters E and H are not used because of intrinsio restric-
tions of the MPOS package and of the Fortran Simulator,

A question frequently asked in the oourse of this
experimental work was: “"What 1s the optimum number of Jjobs
that should be permitted to reside in the ready queue at
the control period?". Too many ready Jjobs could produce

internal conflicts and degrade capacity compared to a
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smaller number of Jobs., Too few ready jobs may not achieve
maximum capacity and maximum utilization of the systeas, It
i8 evident that the number of jobs in the ready queue at
the control period will depend on the workload i1mposed on
the system,

Because of the excessive amount of storage required by
the MPOS package, particularly when the Gomory algorithm is
used, the number of concurrent ready and potentially active
jobs was restricted to a maximum of 8 at each control
period of the simulation study,

The number 8 18 the result of different tests oconduc-
ted prior to the simulations, in an effort to establish the
threshold at which central memory space required by the
simulation software package would exceed the maxlimum amount
of core memory available for use on the CDC 6400, Careful
analysis of the data provided by the Computing Center
further showed that a maximum of 8 ready/potentially active
Jobs at the control period was approximately equivalent to
a maximum cumulative time limit request of 35 system
sdoonds above which the simulation software will request
excess execution storage space, Consequently, the Fortran
program stops scanning and reading the ready queue as soon
as the cumulative execution time limit exceeds )5 systea
seconds, or when the number of Jjobs scanned is equal to 8,

whichever condition prevails, The program then begins the
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coding of the zero-one probdblem in algedbraioc format

(variables table only) for input to the MPOS package.
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3., Determination of CJ'a.

The Portran program reads the characteristics of each
test jobs 1n the attribute array, ATRIB (J, K), K = 1,9,
The CJ associated to any Jjob j 18 determined with the
values of ATRIB (J, 1), ATRIB (J, 5), ATRIB (J, 6), ATRIB
(J, 7) and ATRIB (J, 9).

The values of the attributes array for job } are the

following:
ATRIB ()3,1) 1+ oentral memory request (in deci-
mal)
ATRIB (J,2) 1 central processing time request
ATRIB (J,3) t+ channel time request
ATRIB (J,4) 1 peripheral processor time
request
ATRIB (J,5) t+ s8ystem seoonds
ATRIB (J,6) t Job card priority
ATRIB (3,7) '+ processing period:
1, for Prime-Time
2. for Non-Prime Time
3. for Off-Hours
ATRIB (J,8) 1+ Time of entry in the computer
system (time is in seconds of
the century)
ATRIB (3,9) 1 processing mode:

1, for Batch jobs
2, for Interactive jobs
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The formula used for the computation of the CJ'O is

the followlng:

CJ = ATHIB (J,1) ® ATHIB (J,5) ® CMP * C' * PP

[
where: C 18 the execution charge unit,

PF i1s the priority factor of the Jjob
and CML 18 a central memory factor,

Replacing ATRIB (J,1) and ATRIB (J,5) by 8, and tJ

.respectively, ylelds the formula:

= 'F * ? " e . ¢
CJ CVMF PF C BJ J

setting C = C * CMF * PF, the expression for C
a [ -
becomes; CJ c 8y tJ

which was arrived at differently in chapter 11, [he CMP
and PF factors are dimensionless whereas C' and therefore
C are expressed in §/word/system second,

The priority factor (PF) of the Jjob is established by
the scheduler as a function of the Jjob card priority of the
job., The Jjob card priority (JCP) /Priority factor (PP)
function or (JCP)/(PF) function for the study 1s represen-

ted by the following table: (batch jobs only)

JCP l 0 1 2 3 eeee-
PF T 1.2 1.5 5=

(JCP/PF function for batch jobs only)
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Por interactive jobs, the PP is also a function of the
processing period; interactive jobs have JCP equal to O,
The (JCP)/(PP) function for lnteractive jobs is the follow-

ing.

Processing Period
PF

Prime Non-Prime Off-Hours
2.6 2.2 1.7

(JCP/PF function for interactive jobs)

The central memory factor or CMP of the expression
depends on the level of central memory request for the
processing period., It is established through the lookup of
the following table,

CM
Request 30K 60K 100K 120K (octal units)
Processing 921 384 512 640 (system units)
Period
Prime Hours .38 .50 .62 .80
Non-Prime Hours .36 U5 .52 .64
Off-Hours 33 .36 .38 .40 h

CM Pactor Table
(X system units = (XB/IO)K octal units)
(Xg 18 the value of X expressed in octal)
K = 1024 words
For this simulation model, the short term fluctuations
of the C parameter will not be considered,

The formula used for the generation of any process C

J
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guarantees that the value of CJ is directly proportional to
the process request for time and only “"weakly® proportional
to the process request for space, Time 18 the most oriti-

cal and most limiting constraint of the scheduling process,

[ ]
4, Determination of B#-"

The BJ parameter represents the process maximum pay-
will for space ° time resource request, Processes entering
the system with a BJ parameter less than the corresponding
CJ parameter are automatically rejected by the scheduler,

For this simulation model, every proocess's B, is obtained

J
by uniformly randomizing around the process's corresponding
CJ. The randomization 18 performed in such a way that the

BJ will always exceed the C, ; the expression of BJ

J

generated by the simulator 18 as follows:

BJ = CJ * (1 + XxX), where XX 18 a uniform random
variable between 0 and 1,

The model does not simulate real 1life situations in
which, when the BJ is less than the ocorresponding CJ. the
computer system scheduler would flag the job as unacceptabdble.
The scheduler would then display a "rejection list® and
would accept interactive or batch modification of the
offending BJ's. Modification of the BJ'a is diffioult to
model since the distribution of users' changes cannot be

clearly characterized.
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S5, Objectlive Punction,

The coefficient for every e variadble is the 4iffer-

J,T
ence between the job's BJ and its corresponding CJ. The
program writes the objeotive function according to that

definition,

6, Constraints,

Constraints (1), (3) and (4) are written by the
progrgm exactly as it was explained in the previous chapter,

Constraints (2), however, are of the form,

q
_1);1 (8y,¢ + 6y " ej.t) €1 for t mAt, 24t, .....,

T -4¢t, T

and indicate that at least one job must be in execution at
any time period. These constraints guarantee (in theory)
that the system will be multiprogrammed, It was observed
during the experimental tests that the zero-one machine will
always attempt to schedule a job whenever possible because
of the MAXIMIZE clause of the zero-one formulation

For that matter, constraints of type 2 do not have any
effect on the basic solution of the algorithm when the
operating interval length is fixed in advance. Their
effect on the scheduling decisions 18 covered by the inher-

ent struocture of the zero-one algorithm, It was therefore
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decided to remove the constraints froms the MPOS input file,

The simulator creates a few additional oconstraints in
an attempt to reduce MPOS activity; MPOS will consider for
scheduling only those variables of the zero-one formulation
which are effectively active, (Chapter II, section

*"Simplification of the Zero-one Formulation,)

7. Optimum Length of the Operating Interval,

A question which arose often in the course of this
experimental work was: "What is the optimum length of the
control interval?”, It 1is undeniable that the length of T
18 oritical to the performance of the scheduler, A long
control interval would facilitate the scheduling decisions
but would tend to degrade storage capacity; a short opera-
ting interval would increase storage efficiency but would
complicate scheduling decisions. Let us denote by PERP
(Performance), the ratio of the cumulative time request for
all Jjobs in the ready queue over the length ochosen for the
control interval., The larger PERF, the more complex but
the more efficient scheduling becomes. Por the simulation
model presented here, the PERF factor has been chosen to be
5 because of the restraints of the MPOS package and the
limited avallability of executable central memory. 3Since
the maximum cumulative time request acceptable in the simu-

lation model 18 35 systems seconds, the corresponding
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maximum length of T 18 therefore 7 systems seoonds. It was
not possible to study the fluctuations of the scheduling
decisions for variations of T, This, we believe, would
have been possible and enriching had we been able to have
access to larger commercial industrial optimization
packages, Pigure 3 - 3 represents a typical KPOS input
file generated by the Fortran program., The characteriatics
of the jobs considered in figure 3 - 3 are displayed in

figure 3 - 2,

JOBS PARAMETERS (RUN NUMBER 1)

CM CPp CH PP (SS/10) JCP PPH MODE PAYMIM PAYWILL

160 1,0 .7 5.8 A 0 1 1 bs, 48,
129 3 .2 2.2 .1 0 1 1 9. 13.
168 b 4 1.9 .3 0 1 1 35, 67.
132 b .5 2.5 .3 0 1 1 28, 33.
160 2.0 .2 2,2 .7 0 1 1 68, 122,
224 1,7 1,1 13.0 .6 0 1 2 245, 459,
160 1.4 .9 3.5 .6 0 1 1 67. 113,
224 1,3 ,6 2.6 .6 0 1 1 oL, 135,

FIGURE 3 - 2,

(Paymin and Paywill are rounded to the nearest unit,)
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nPOos VERSION 3.2 NORTHUESTERN UNIVERSITY
S880308883080000000883008000808008308

. nros

VERSION 3.2

L]
 } ®
| J [
] ]
] ]
8 MULTI-PURPOSE OPTINIZATION SYSTEN 8
] L]
] ]

88888 PROPLEN NUNMBDER | sssss
TITLE

MUTEX
08888 USE CUTTING PLANE ALOORITHN OF CONMORY 8Ss3ss
OOMORY

88888 VARIANE TARE 88388
INTEGER

88888 CONTROL INTERVAL OF 7 SYSTEM SECONDS sss838

A3001 T0 A1007
p1001 70 91007
C1003 T0 C1007
D100} T0 01007
F1001 70 F1007
01001 T0 01007
11001 10 11007
41003 70 J1007

88888 OBJECTIVE FUNCTION DEFINITION 883883
RAXINIZE

+ 3A1007 ¢ 491007 ¢ 32C1007 ¢ 3D1007 ¢ 34F1007 ¢ 21401007
+ 4611007 ¢ 41J1007 ¢ N

88038 CONSTRAINTS DEFINITION es2883

CONSTRAINTS

68888 COMSTRAINTE OF TYPE 1! STEP FUNCTION ssSSS
1. AL1001 -A1002 LE. O.
2. A1002 -A1003 LE. O.
J. A1003 -A1004 LE, O.
4. A1004 -A1003 LE. O,
3. A1003 -A1004 «.LE. O.
6., AL0046 -A1007 {LE, O.
7. B1001 -§1002 LE. O.
9. B1002 -B1003 LE. O,
?. D1003 -P1004 LE. O.
10. 01004 -§1003 .LE. O.
11, D1003 -P1006 LK. O,

FIGURE 3 - 3
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12. BD1004 -D9100?7 K. O,

13. C€1001 -C1002 LK. O,
14, C1002 -C1003 L. O,
13, C1003 -C1004 K. O,
16. C1004 -C1003 LK. 0.
17. C1003 -C1004 L. O,
18. C1006 -C1007 L. 0.
17. D1001 -D1002 LK. O,
20. D1002 -D1003 LE. O.
21. D1003 -D1004 LE. O.
22. D1004 -D100S L. O.
23. D1003 -D1004 L. O.
24. D1004 -D1007 LE. O,
23. F1001 -F1002 LK. O.
26, F1002 -F1003 LE. O,
27. F1003 -F1004 LK. O,
20. F1004 -F1003 (K. O,
29. F1003 -F1004 L, O,
30. F1006 -F1007 LE. O,
31. 01001 -01002 LE. O,
32. 01002 -01003 {LE. O,
33. 01003 -01004 L. O,
34. 01004 -01003 LE. O.
33. 01003 -01004 LK. O.
34. 010046 -01007 LE. O,
37. 11001 -11002 LK. O,
38. 11002 -11003 {E. O,
37. 11003 -11004 {LE. O.
40. 11004 -131003 «{LE. O,
41. 11003 -11004 L. O.
2, 11004 -11007 {LEL. O,
4). J1001 -J1002 {LE. O,
44. J1002 -J3003 LE. O.
43. J1003 -J1004 LE. O,
44, J1004 -J1003 LE. O.
47. J1003 -J1004 {LE. O,
48. J1006 -J1007 LE. O,

88888 END CONSTRAINTS TYPE | 83888

38888 BCOIN SINPLIFICATION CONSTRAINTS 3888

88888 THESE CONSTRAINTS FORCE MrPOS 8888

88888 TO CONCENTRATE OMN EFFECTIVE CONSTRAINTS sS888
4%, A100) -£0. ©
30. C1002 .£0. ©
31. D1002 £0. ©
32. F1003 £0. ©
33. 01003 £0. ©
34. 11003 £0. ©
33. J1003 £0. ©

PIGURE 3 - 3 (continued)
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Sé.

37.

3r.

a1.

2.

88988 END CONSTRAINTS SINPLIFICATION 88988
88888 DEOIN CONSTRAINTS TYPE J! RLSOURCE CONSTRAINTS 88800
88888 SPACE USED AT ANY TIME MUST DL LESS THAN 440 UNITS sssss
¢ 16041003 - 14041001 ¢ 12991002 - 12901001 ¢ 148C1004¢ - 148C1001
¢ 13201004 ~ 132031001 ¢ 1460F1007 - 140F1001 ¢ 22401007 - 22401001
+ 16011007 - 146011001 ¢ 22441007 - 224J1001 ¢

AL, 440
¢+ 14041004 - 140A3002 ¢ 12991003 - 12901002 ¢ 148C1003 - 1468C1002
¢ 13201003 - 13201002 ¢ 160F1007 - 140F1002 ¢ 22401007 - 22481002
¢ 16011007 - 14011002 ¢ 22431007 - 22441002 ¢

Iu. “o
¢ 160A1007 - 140AL100] ¢ 12991004 - 12991003 ¢ 148C1006 - 148C1003
¢ 132010046 - 13201003 ¢ 1460F1007 - 160F1003 ¢ 22401007 - 22401001
¢+ 16011007 - 14011003 ¢ 22441007 ~ 22441003 ¢

L. 400
¢+ 160A1007 - 140A1004 ¢ 12901003 -~ 12991004 ¢ 1468C1007 - 1468C1004¢
4 13201007 - 13201004 ¢ 1460F1007 - 160F1004 ¢ 22401007 - 22401004
+ 16011007 - 160131004 ¢ 224J1007 - 224J1004 ¢

{LE. 640
¢ 160A1007 - 140A1003 ¢ 12991004 - 12951003 ¢ 148C1007 - 148C1003
+ 13201007 - 132D1003 ¢ 140F1007 - 140F1003 ¢ 22401007 - 22401003
4 16011007 - 14011003 ¢ 22401007 - 22441003 ¢

.L(. “o
+ 160A1007 ~ 1460A1004 ¢ 12993007 - 12951004 ¢ 148C1007 - 148C1006
¢+ 13201007 - 13201004 ¢ 140F1007 - 140F1004 ¢ 22401007 - 22401004
¢+ 16011007 - 14011004 ¢ 224J1007 - 22441004 ¢

LE. 440
38388 END CONSTRAINTS TYPE 3 s3888
83388 PECIN CONSTRAINTS TYPL 4 88333
$8888 MAXIMUN EFFICIENCY CONSTRAINT OF SMORL s388s
¢+ OG40A1007 ¢ 129P1007 ¢+ 304C1007 ¢ 3J94D1007 ¢ 94071007 ¢ 134401007
¢+ 964011007 ¢ 134441007 ¢

LK. 4480

83888 END CONSTRAINT TYPC 4 ss838
83883 CONSTRAINTS TYPL 3! ZERO-OME CONSTRAINTS ses30

BNDALL 1
LINIY 3000
OPTINIZE

FIGURE 3 - 3 (continued)
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3, MPOS> Solution,

The objective of the MPOS package is to determine a
zero-one integer solution from which a possible schedule
could be derived, The zero-one integer solution 1mplicitly
denotes those processes that will not get access to central
remory., The eJ.T varlable of such processes 18 always
equal to 0, Let us consider a job § and its associated

sequence of @, (1 @, 4, €4 51 cecens @4 b0 09ty e 1

o e 00 0 eJ.T
(At = 1 for this simulation study.)

Suppose e is the first of those e ‘s whose value
Jrty ot
is equal to 1 when reading from the left (°J.t1 is the
first non-zero variable). All other values to the right of
eJ ty will be equal to 1, whereas all values to the left of
e will be 0., e indicates the exact time at which
Jotl it

process J completed execution and was released from the
system; (the control point at which the job was executing
is made avajilable to another potential process). Since
swapping 18 not allowed, the knowledge of job jJ execution
time limit request permits determination of the execution
period of the job and, therefore, the Job's schedule, Job
J started executing at time tl - tJ.

The MPOS output for the input file shown in figures
3 -2 and 3 - 3 1s displayed in figure 3 - 4, The appropri-

ate schedule for the control interval considered is drawn
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in figure 3 - 5,

OBJECTIVE FUNCTION = 318 AT ITERATION 244
TIME = 29,228 SECS,

SUMMARY OF HESULTS

A1001 = 0 A1002 = 0 Al003 = O Al1004 = O
A1005 = 0 A1006 = 0 Al1007 = O B1001 = O
BE1002 = 0 B1003 = 0 B1oO4 = 0 B1005 = O
B1006 = 0 B1007 = 1 Ci001 = O C1002 = O
Cl1003 = 0 Cl004 = 0 Cl1005 = O Cl1006 = 0
Cl1007 = 0 D1001 = 0 D1002 = O D1003 = O
D1004 = 0 D1005 = 0] D1006 = O Dlogz = 0
F1001 = 0 F1002 = 0 F1003 = O F10 = 0
F1005 = 0 F1006 = 1 F1007 = 1 G1001 = O
G1002 = 0 G1003 = 0 G1004 = O G1005 = O
G1006 = 1 G1007 = 1 I1001 = O 11002 = O
I1003 = 0 11004 = 0 I1005 = O 11006 = 1
11007 = 1 J1001 = 0 J1002 = O Ji0o03 = O
J1004 = 0 J1005 = 0 J1006 = O J1007? = O
FIGURE 3 - &4
Partial Output
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FIGURE 3 - 5
(the number in parentheses represents CM requests)
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The value of the objective function is the optimum
schedule's differential return to the computer system. By
differential returns we mean the difference value between
the B and C parameters of the scheduled jobs, The dif-
ferential returns represent the net returns to the coaputer
system, For the example shown in figures 3 - 3, 3 - 4,
and 3 - 5, the objective function value 18 318 dollars,
The corresponding returns obtained in the same ocontrol
interval with a Best Fit and Pirst Fit strategies are 262
and 90 dollars respectively. Flgures 3 - 6 and 3 - ? show
the comparative schedules obtained with the Best FPit and
First Pit algorithms for the jobs of figures 3 - 3 and
3 -4,

BJ- ZERO- BEST PIRST
JOBS CM (85/10) PAYMIN PAYWILL CJ ONE FIT PIT

A 160 s Ls, 48, g. 0 1 1
B 129 .1 9. 13. . 1 1 1
C 168 3 35. 67. 32, 0 0 1
D 132 .3 28. 33. E° 0] 0 1
F 160 .7 68, 122, 54, 1 0 0
G 224 .6 245, Ls9, 214, 1 1 0
I 160 .6 67. 113, 46, 1 0 1
J 224 .6 94, 135, 41, 0 1 0

FIGURE 3 - 6

COMPARATIVE ZERO-ONE, BEST PIT AND
FIRST PIT SCHEDULES
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PIGURE 3 - ?7
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Pigure 3 - 8 represents partial results for 20 control
interval decisions., It was found that in terms of differen-
tial dollar returns, the zero-one algoritha outperformed
the Best Fit and FPirst Pit algorithms by factors of .095
and ,14 per control interval, respectively, The results
mean that under normal conditions of control interval
operations, one should expect the zero-one algorithm model
presented in this thesis to generate substantially more
dollar returns to the computer system than the Best Pit or

First FPit algorithms for example,

RUN NUMBER FIRST PFIT BEST FIT ZERO -ONE
1 90. 262, 318,
2 66,27 123,18 140.25
3 8.86 80.95 105.14
4 42,62 82,09 178.02
5 133.26 133,26 154,38
6 137.47 183.61 272,06
7 183.03 128,81 223.02
8 52.73 47.98 322,34
9 58.29 58.29 116,06
10 61,62 56.87 105.88
11 0.00 49,71 78.95
12 51.21 L46.18 84,95
13 15.77 70.61 86.96
14 62,93 81.69 14?.63
15 20,87 75.36 105.57
16 7.12 19.83 124,96
18 2.36 14,77 162,81
19 18,36 19.96 b9.58
20 23,57 23.57 105.8%

PIGURE 3 - 8
DIFFERENTIAL RETUHNS
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The zero-one algorithm concept 1s especially appliocabdble
when central memory 18 overcrowded, The results of the
simulation suggest that computer centers administrations
have, with the zero-one algorithm, a tool to use memory
overcrowding as a means to generate extra dollars returns,
In addition, the zero-one algorithm guarantees optimum
scheduling decisions for the control interval,

The control interval approach assumes that jobs arrive
in the system by intervals and that memory is overcrowded
at the control period*, Moreover, under the control
interval approach, it is not, in general, good polioy to
schedule a job during the current interval if there is a
possibllity to schedule the same Jjob during the following
control interval when the presence of other jobs will have
generated more competition for storage.

The control interval approach, therefore, generates
competition between the jobs or the customers of the system
before attempting any servicing. The example of figure

3 - 9 should help clarify this part of the concept,

* 9ocontrol period: 18 the time at which scheduling decis
slons for the next operating interval
are made,
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JOBS CM SS BJ'CJ ZERO -ONE
A 160 L 3. 0
B 129 2 ., 1
C 168 5 32, 0
D 132 5 5. 0
P 160 7 4. 1
G 224 5 214, 1
I 160 5 46, 1
J 224 5 41, 0
No 1 2 3 4 s 6
B(129)
P(160)
G(224)
I1(224)

51 units
of storage
free. No
scheduling
will take
place because
overlap ori-
8is 18 not
allowed (vol-
untary frag-
mentation)

FIGURE 3 - 9

The control interval approach in a computer mioro/

macroscheduling environment also means that the computer

system central authority as well as the computer system

users:

- are fully aware of the preciousness of computer
resources;

- recognize that precious resources are best used
under competitive circumstances;

- and are willing to bring an honest contribution to
achieving optimum utilization of the resources,
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In addition, the approach assumes that the computer
system functions as a completely closed system; that 1is
users of the system will never balk.

When all the above conditions are fulfilled, the ocon-
trol interval approach i1s sald to be operating under
"normal conditions",

The control interval approach creates the phenomenon
of voluntary fragmentation 1llustrated in figure 3 - 9,
The fragmentation 18 voluntary in the sense that 1t 1s
accepted or created by the scheduler as a means to genera-
ting additional dollars returns, Any cost inourred with
such voluntary fragmentation should be paid off by the
excess dollars returns, The fragmentation problem may,
nonetheless, be alleviated, in praotice, by switching froa
time to time and at the appropriate moment from the zero-
one algorithm to some other passive algorithms, This
technique of controlling fragmentation permits to effec-
tively write "Generalized Zero-One Schedulers”™, This sort
of scheduler will be the object of section 2 of chapter IV,
This problem of fragmentation is in fact a oconsequence of
the overlap orisis assumption mentioned in chapter 1I,

The control interval approach will occasionally delay
the execution of some Jjobs entitled to access executabdble
memory (Jjobs J with By > CJ). This should not be a problea

since the scheduler modifies scheduling decisions by
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accepting input from the user community. The feedback

loopr scheduler y users 'y scheduler
7 V4

enables every user to very easlly change his or her jobs

relative priority by increasing or decreasing the jobs'

B parameters,

C., Conclusion,

The search for ways to monitor the performance of the
*subjective zero-one™ algorithm presented in chapter II has
led to several simulation studies. Sowme important results
of the simulations were pregsented in this chapter,

The studies provided visibility of the utilization of
storage resources only and do not attempt to cover schedu-
ling of other resources such as CPU, channels and devices,
Analysis of the results showed that, in general, the zero-
one scheduler will always outperform the passive schedulers
described in chapter I, insofar as dollars returns to the
system are concerned, The performance of the scheduler has
been found to be dependent upon the user community maturity
and awareness of the preciousness of the resources to be
scheduled,

Conditions of optimum performance of the zero-one
scheduler have been defined and investigated; many of those

conditions exist in today's computer systems and centers,
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The scheduler creates additional fragmentation; but
that problem of fragmentation could be controlled with

generalized schedulers that will be presented in chapter 1V,
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IV, CONCLUSIONS

The objective of this thesis was the determination of
the feasibility of a non paged multiprogrammed memory
allocator based on the 1dea of users’ own pricing of
storage resources, By constructing an abstract model for a
zero-one linear scheduler, we have bullt a framework within
which we have analyzed different schedules developed by a
simulator program., It was found that a zero-one algorithm
is perfectly feasible and under certailn oonditions of
normality, will substantially outperform the best fit and
first it algorithm for example, insofar as dollars returns
to the system are oconcerned,

We have had to define the concept of control interval
approach which 18 the environment within which performance
of the zero-one scheduler is maximum, Once we had accepted
the i1dea that storage resouroes are best and most effi.
clently utilized under conditions of tight competition, we
have been able to more clearly define performance measures,

It has become clear that fragmentation was not to be
considered as a problem; as a matter of fact, fragmentation
has been found sometimes necessary to guarantee maximum
profitability of the overall scheduling process,

In this chapter, we intend to present some of the

peripheral aspects of the concept of subjective scheduling.
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We willl also present and discuss certain areas of the work

which appear to be disappointing,

1, Is the Zero-One Algorithm Palr?

The economic essence of sharing and multiprogramming
can be captured in this sentence:

"by sharing resources, the users distribute the
resources costs and each user pays less” [bJ. Sharing
benefits the system, too, for the system selects from & wide
range of instantaneous requests those that are most likely
to 1mprove its efficiency., However, sharing creates the
problem of priority rating.

The priority rating problem is very acute in a zero-
one algorithm environment, Because users can directly
influence their processes priority rating, a question natu-
rally arises;

"how can we guarantee fairness in an environment
whereby priority decisions are based on individual's
monetary wealth?7".

It takes little to realize that economic systems very
often fall to be as fair as they ought to be. The systems
protect themselves by the institution of laws and legisla-
tion,

We have wanted, in this thesis, to provide fairness in

the computer system users community. We have based our
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work on the assumption that conditions of control interval
approach exist in computer centers, or can be readlly
attained with minioum effort., In addition, we have impll-
citly hypothesized that pure competition exist in the
scheduling environment. Pure competition 18 realized when:
- the economic product under investigation is
homogeneous;
- each user 18 small relative to the market;

- all units possess complete lkmowledge of the
economic environment;

- the system 18 completely olosed,

We believe that memory, which is the economic product
under study in this thesis, 18 perfeotly homogeneous,
Fairness of the system 18 guaranteed by the second clause
of the definition which demands smallness of each buyer
relative to the market, This thesis assumes that there
cannot exist in the system a user with the largest differen-
tial parameter at all times, This 18 only an assumption
and will probably not be true in many oomputing centers,

It 18 the responsibility of the computing center admini-
stration to guarantee fairness in the environment should

any clause of the pure competition model be violated.
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2, S estions for lmprovements and Purther
tudies,

In chapter 11, we have presented constraints of type 2
as necessary constraints of the zero-one problem. Con-
straints (2) guarantee that at least one program 18 execu-
ting at any instant of the control interval. The removal
of constraints (2) from the simulation model presented in
chapter III, should not be taken as an indication of the
superfluity of the constraints,

One of the most obvious flaws of the simulation model
18 the presetting of the length of the oontrol interval,

We had to adopt that attltudelﬁacauae of the limitations of
the software utilized for the study. The presetting of the
length of the operating interval to a value T, introduces
the possibility that the whole core be left unused toward
the end of the control interval, when the scheduler is
walting for the next control period., Scheduling decisions
would nevertheless be optimum for the control interval as
displayed in figure 4,1 and 4,2,a., Storage would, however,
be better managed with the reduction of the control inter-
val length as in figure 4,2,b, To the management of space,
we have thus added the management of time, This 18 not
surprising since time and space are inseparable physical

entities,
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whole core 18 left unused
for 2 system seconds,
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The control interval time becomes unpredictable and a
random variable, Its distribution 18 a function of the
system workload., The introduction of a dynamic management
of time makes it difficult to study the behavior of the
scheduler through simulation, We suggest that the following
procedure be used. in real scheduling:

1. define scheduling decisions variables with a

preset value of T,

2, adjust T by reduction if possible,

We have introduced in chapter III the concept of
voluntary fragmentation, Voluntary fragmentation 1s a
sound policy under normal conditions of control interval
approach, Yet it becomes undeslirable if storage must be
left unused for a long period of time, Agaln, management
of time combines with management of space to remind us that
space and time cannot be separated from each other, Let X
be the amount of voluntary fragmentation created by the
scheduler for a length of time t, The product X ®* t is then
a random varlable whose distribution will depend on the
system workload. The longer the length of the control
interval, the larger the expected value of X ®* t, Note
that voluntary fragmentation only takes place toward the

end of the control interval.
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Two questions now arise;

1.) what 18 the optimum value of T which will
guarantee maximum memory time product
efficliency, and minimize the expected value
of the product X * t?

2.) Will that optimum value of T guarantee that
the system will not degenerate into a
“thrashing"-state?

By thrashing-states, we want to describe situations
whereby the length of the control intervals compels the
scheduler to spend more time making and revising scheduling
decisions, than effectively scheduling and allocating
storage.

The answers to the questions we have raised in the
above discussion wlll make it possible to design what we
have previously referred to as generalized zero-one sched-
ulers, Generalized zero-one schedulers would make full use
of all constraints defined in chapter II. They would be
able to conduct their own look ahead simulations for ad just-
ment of T,

Generalized schedulers, as well as the scheduler
presented in this thesis can be written in a higher proce-
dural language such as Pascal,

We have just described and discussed a few of the many
opportunities left opened for additional exploration of the
idea of a Subjective Zero-One scheduler in a free enter-

prise system,
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An area of the study which was somewhat disappointing
is the apparent overhead created by the zero-one scheduler
during the simulation experiments, It 18 not clear how
much overhead is involved, Moreover, there 18 no poss)-
bility to estimate the speed at which scheduling decisions
will be made. Processing speed 18 a very jimportant factor
in the design of any type of system program, The optimi-
zation software used for the simulation experiments was not
deslgned for real time processing and was therefore very
8low in arriving at useful scheduling decisions, The
objective of thias thesis was not the development of a
procedure for real time zero-one optimization,

The author nonetheless believes that much attention
should be directed to that effect before the storage allo-
cation algorithm presented in thlis thesis becomes practiocal.

We have tried in this thesis to develop a procedure
whereby users would have the ability to influence their
Jobs' priority rating through direct interaotion with the
Job scheduler, The question 18 to know how much the user
will be appreciative of the effort., The extent to which
the user would want to be concerned with the scheduling
process 18 not clearly understood. More work needs to be
done in order to determine the limits of acceptable users’

involvement in scheduling processes,
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Multiprogramming, multiprocessing, and all other
techniques are not solutions to the resources allocation
problem; they are tools by which a solution may be imple-
mented EQJ.

It was the purpose of this thesis to develop and
present a relatively new approach to modelling the behavior
of computational processes, to spark a different way of
thinking about microscheduling, to evolve a philosophy
about storage as an economic good of the computer environ-
ment,

We hope we have achieved that purpose, We also hope
that some effort will be expended in the future to develop
models of computer systems resources sharing and utilization

similar to the model presented in this thesis,
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APPENDIX 1

- CDC SCOPE Central Memory Usage and Allocation

- Operator/Scope communication,

Each job in proocess in the computer system occupies a
contiguous block of words in central memory. References to
all addresses within each block are made in relation to the
reference address (RA) which 18 the first address in the
block. The length of the block 18 the field length (FL) of
the jJob., A reference to a location outside the Jjob's fileld
length causes an abnormal termination of processing. Thus,
all other jobs and systems programs in central memory are
fully protected against accidental overwriting,

Every job in central memory 18 related to a SCOPE
control point. Each control point interrelates the follow-
ing elements common to a partlicular job: the central
memory fleld length allotted; other hardware and files used
by the Jjob; and a control point area in low core, that ocon-
tains reference information about the job, Heference
information are such information as the Jjob name, processing
time accumulated, related control statements and the job's
exchange jump package,

Up to 15 control points are avallable; therefore, up
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to 15 system or user Jjobs may be active at control points
simultaneously. Control point O (zero) 1s used to identify
all hardware and software resources not presently allocated
to user Jjobs or those used only by SCOPE,

The position of central memory storage allocated to
each job 18 related to the control point number to which
the job 1is asslgned. The assignment 18 made and majintained
in numerical order. The job at control point 2, for
instance, always follows the job at control point 1, and
the job at control point 3, will follow the job at control
point 2., Flgure A - 1 represents central memory allocation

as maintained by SCOPE.

used for mass
Last storage File
Address High Core reference infor-
mation
Job at Control Polnt 15§
Job at Control Polint 14
Job at Control Point 13
$ Unused Storage i
Job at Control Point 3
Unused Storage
Job at Control Point 2 used for the Central
Memory Hesident
Job at Control Point 1 portion of SCOPE
Pirst and for Control
Address L Low Core Point Areas

FIGURE A - 1 CENTRAL MEMORY ALLOCATION

CDC SCOPE 3.4 OPERATING SYSTEMS
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Through a dynamic relocation process, jobs are moved
up and down in storage to make room for new jobs assigned
to control points. The process is continuous., If an
arriving Jjob is assigned at a free control point and 1if
sufficient contiguous storage 18 not avallable for the new
Job, SCOPE will relocate other Jjobs as necessary to provide
sufficlient contiguous storage. Each Job will be moved as a
block, and only 1ts reference address (HA) will be changed
accordingly within the appropriate SCOPE reference tables,
The order of the jobs within central memory remains the
same, When the move 18 complete, the RA of the Jjob or jobdbs
are modified and Jobs' activity 1s resumed,

A program gains or relinquishes the central processor
through an exchange Jump instruction, When this instruo-
tion 18 executed, the program using the central processor
18 interrupted. The control point area contains a 16-word
exchange package which contains the information used
directly in exchange jumps: the most recent contents of
all processor registers, the RA and FL in central memory
and ECS and the program address, The program address 1is
the address of the next instruction to be executed,

SCOPE maintains in mass storage the job dayfile, a
chronological accounting of each job run, which i1s auto-
matically printed at job termination, It contains a copy

of all control cards processed, equipment assignments,
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dilagnostic messages, job accounting information, Jjob
statistics, and the date and time of day associated with

each processing event relative to the job,

- Job Termination

a) Normal Termination

when a job 18 processed without error, normal termina-
tion activity begins upon reaching the first end of the
record field or an EXIT or EXIT(S) control card, All
hardware devices assigned to the job are assigned to control

point 0 (zero), so they can be reassigned to other Jjobs,
b) Abnormal Termination

when an error occurs, SCOPE sets a flag indicating the
error, If the error has not been previously identified in
the job step by a call to the system program RECOVR, then
SCOPE continues with error processing. Otherwise, control
is returned to the user program for processing. A dlag-
nostic message, reflecting the reason for abnormal termina-
tion, 18 written to the job dayfile. SCOPE then clears the
error flag and searches the control cards record for an
EXIT control card, If no EXIT statement is found, the Jjob

terminates as described under normal termination.
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¢) Termination by an Operator Command

When the operator types in a DROP command, the Jjob
terminates prematurely. End-of-job procedures are
initiated as described under abnormal termination.

When the operator types in a KILL command, the jod
terminates prematurely, All files associated with the jodb
are dropped regardless of name or disposition. The pro-
grammer does not receive a dayfile 1listing,.

When the operator enters a HERUN command, the job 1is
terminated and its input file 18 returned to the input
queue, so that 1t can be run later, The output file 1is

dropped, and a new output file is created,
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219 E 1) s. 0 [) 1 1
2. 132 .0 (] 1 1
1 120 .0 ] 1 1
2 (1] .0 0 1 1
) 128 t A | ] 1 1
124 22N ~19 0 1 1
28 1640 0 ] 1 13
26 160 $. 0 ] 1 1
27 1 .0 ] 1 1
144} 168 LY ] ] 1 1
229 169 0 [ 1 1
30 22 6.0 [ 1 1
31 228 [ 2 ) [ 1 1
32 112 1. 0 0 1 1
233 160 a0 ] 1 1
236 192 0 ] 1 1
38 228 [ 7% ] 0 1 ?
13 1 192 s. 0 ) 1 1
237 L E4) 6. 8 [ 1 1
38 226 [ Y ] [ ] 1 1
239 132 e [ 1 1
L4 Y] 132 20 ] 1 1
261 192 S. 0 [ 1 3
N2 13 3.0 ° 1 1
283 1£4) [ Y ] [ 1 1
14 1) 168 .~ [ 1 1
209 144 [ | ] 1 1
t43) 160 L3 | ) 1 3
1 {34 120 1.8 [} t 1
141 ] [ £ 43 S. 0 L} 1 1
E{ 2 ) 160 e . 1 1
141 ) 160 (29 ] ] 1 1 er. 20 127.30
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T 13¢ L. . 1 1 .10 12.22
282 132 .0 0 1 1 19.80 ge.7¢
291 228 .~ . 1 ? 183,07 (128,
2% F3 1 $. 0 ] 1 1 .29 108,07
298 226 s. 0 ] 1 1
254 192 . . 1 1
87 12 .~ ] 1 ?
238 228 s 0 1 '
239 320 . 0 1 1
0 120 L ] 1 1
261 220 . ] 1 1
282 128 1.0 ' 1 1
263 2e 1.0 ] 1 ?
206 130 1.0 0 1 1
268 1ee . ¢ 1 1
2068 232 s. 0 ’ 1 1
287 192 5.0 ' 1 1
208 328 5.0 ' 1 1
269 168 .~ " 1 1
e 23 1.0 . 1 1
m 320 s (] 1 1
2 160 “s . 1 %
273 22 .- ] 1 1
27 228 .. . 1 1
ars 192 “ ] 1 1
re 180 . 0 1 ?
134 226 . ) 1 t
tre 226 s.0 ° 1 1
279 160 5.0 . 1 1
700 'Y L0 ] 1 1
281 28 - ] 1 1
202 32 .0 ’ 1 1
TS 166 . ¢ t 1
208 128 L ] 1 t
288 28¢ .0 . 1 1
FIT 22 . 0 1 1
wnr 228 .0 ' 1 1
200 1 “ ] 1 1
209 e 5. ¢ ] 1 1
e 132 e ¢ 1 %
FZT 228 5. ¢ ’ 1 1
22 160 .~ ] 1 1
293 12 . ’ 1 1
294 192 5.0 0 % 1
293 e 5.0 ’ t 1
296 228 5.0 0 1 1
297 160 5.0 ] 1 1
29 128 Le ] 1 %
299 PR . ° % 1
e 184 . s 1 1
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391 28 .0 ] 1 1 %. 00
302 192 (N ] [} 1 1 .00
303 120 1.0 [J 1 t 8. 9%
306 220 .0 0 1 1 19.9%
308 160 .0 ] 1 1 “Ww.
p1]) 132 %0 [ 1 1 16. 08
307 132 L ] 1 3 9.0
300 169 ~0 ] 1 1 o8, 88
Jee 192 . ] 1 1 .0
310 120 3.0 [ t 1 26. 00
Ji 29t 0 [} 1 1 1.0
n2 164 (1) ] 1 1 68,008
31 t£4) %0 ) 1 1 7.0
s 120 L0 . 1 1 17.9?
ns 220 L [ 1 1 a7.80
ne 160 [ ) ] 1 1 7.28
nz L 24 Lo ] 1 4 17.63
s 320 6.0 [} 1 1 138,00
319 192 s. 9 0 1 1 7. 00
320 169 s. 0 [ 1 1 $6.00
321 129 . [ 1} 1 °w0
322 160 50 [J 1 1 [ 17} ]
33 169 =0 ] 1 1 33.80
3126 120 2.0 ) 1 4 46.99
s 192 (Y] ] 1 1 0. n
326 169 o . 1 1 .
1234 120 e [J 1 1 17. 92
320 132 1.0 ] 1 1 9.2
329 160 .0 (] 1 1 8. 00
330 228 $. 0 0 1 1 re.00
N 160 a0 [ ] 1 t 8. 00
332 192 $. 0 [ 1 1 [ 182 4]
13 192 [ ) ] 1 3 0. 00
336 192 .0 L 1 1 er. 20
338 160 [ )] . 1 t er. 20
3136 132 1.0 [ 1 1 9.2
337 124} [ 2% ] ] 1 1 Nn.0
138 160 s. 0 ] 1 1 96. 00
339 t 4] s. 0 ] 1 1 78.08
o 132 a0 ] 1 1 r. T2
38 e s. 0 ] 1 1 79.00
pLY4 160 LY ] ] 1 t o4, 80
) 192 L3} L] 1 1 33.7¢
p11) 160 s. 0 [ 1 1 $6.00
388 169 (2 ] ] 1 1 .00
380 192 [ Y] ) 1 3 8. 00
INT 139 Lo ] 1 1 16.9%
368 28 (% ] 1 1 n. 0
e 129 L [ 1 1 17.9
%0 192 (2N ] ] 1 1 .00
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191 160 s. 8 L) 1 1
92 168 .0 ] 1 1
193 160 .0 ) 1 1
1% 22 (23] ] 1 1
198 192 [ 33 [} 1 1}
356 160 [ ] ] 1 1
38?7 L2 5 s. 0 [ 1 1
338 160 [ 3 ) [} 1 1
389 132 .0 9 1 1
360 13¢ .9 ] 1 1
361 19¢ .0 [ 1 1
382 13 1. 0 ] 1 1
Je3 22 6.0 . 1 )
364 192 . ¢ [] 1 1
368 132 .0 ] 1 1
b1 1) 192 (3% ] L} 4 1
367 160 3.0 ) 1 1
368 192 (Y ] [} 1 1
369 192 [ ] [J 1 4
bid) 166 (3] ] 1 1
7 1 0 ] 1 1
e 132 .0 0 1 1
pig ) 160 -0 [J 1 1
376 160 Le ] 1 1
b14 ] 184 .0 L} 1 4
376 120 .0 . 1 4
rr (.1} L ] 1 1
37 228 s.¢ ° 1 1
379 12 1.0 [J 1 1
380 180 3.9 ] 1 1
381 e S. 0 ] 1 1
302 192 $. 0 [J 1 1
383 192 [} ) . s 1
386 140 $. 0 0 1 1
388 160 [ 33 ] 1 1
p11) 22N $. 0 [J 1 1
17 E 4] (9 } [ 1 1
o8 132 1.0 ] 1 1
389 148 .. 0 ] 1 1
31%0 120 .90 L} 1 1
I 192 s. ¢ [} 1 1
92 132 .9 . 1 1
393 133 L [ 1 1
39% 120 s. 0 . 1 4
399 132 .0 [J 1 1
3% 160 (3 ) [ 1 1
b 14 120 Lo . 1 1
N *® 5.0 [J 1 ?
39 228 $. 0 (] 1 1
(Y1) 160 “9 ) 1 1
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(131 12¢ Le L 1 1}
a2 120 L . 1 1
.3 120 o (] 1 ?
(11} 228 [ ] ) 3 1
. 132 .0 [ t 1
a06 L 14 .0 . 1 ?
.7 164 Lo L 1 4
(Y] ) 114 Lo L] 1 1
(Y-} 192 -0 [ 1 1
810 169 .0 [ 1 1
M1 192 [ %) [ 1 1
(3% 188 E Ay ] ) 1 1
o1 169 ~0 L} 1 |}
M LL) 1.0 [J 1 4
s 120 L0 [} 1 1
.16 160 E ] [ 1 1
(134 13 1.8 (] 1 1
L34} 130 L0 (] 1 1
[ 31 ) 160 $. 0 [ 1 1Y
a29 132 .0 [} 1 1
s 21 228 6.0 ° 1 1
622 160 S. 8 [J 1 1
23 t 24 s. ¢ [J 1 1
(T4) 160 s. 0 [ ] 1 1
L2 4] 192 s. 0 ) t 1
[ 14 192 s [ ) 1 1
27 t4 1} ~ 0 ] 1 1
L4 ] 19 [ % ) L 1 1
29 124 [ 3 [} 1 1
a3 120 2.9 [ 1 1
L3 31 169 L0 ] 1 1
832 160 L0 0 1 1
“33 13 .0 [ 1 1
a3 160 6.0 L} 4 1
833 192 .0 J 1 1
a3 192 (39 ] ] 1 1
.37 160 L0 [} 1 1
(31} 132 e [ ) 1 1
A39 1¢0 L2 ) ] L 1
(Y] 192 [ 7% ] ] 1 1
(1] 163 (% ] ] 1 1
~N2 180 .~ [} 1 1
(L3 104 LY ] L} 1 2
(11 220 s. 0 0 1 1
WS e ~e [} 1 1
(11 180 $. 0 0 1 1
[ 134 1 Lo ] 1 1
(2] ] 160 () ] [} 1 1
(11} 169 $. 0 [ 1 1 $6.00 109,49
30 192 [ Y] [ 1 1 8. 00 127.08
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(13 160 s. 0 ] 1 1
.92 228 (9 } [) 1 1
(3 3] 18t 5.0 ] 1 1
(311} 192 [ ] [ 1 1
(32 184 .0 . 1 1
(3 1 192 s. 0 ) 1 |1
87 132 .0 [} 1 1
(3] 192 .0 [ ] 1 1}
.39 160 3.8 ] 1 1
(Y 1] 32 a~l ] 1 1
[T %} 192 [ ] [ 1 1
2 160 Lo [ 1 1
.83 N .0 L} 1 1
(113 160 .0 L} 1 1
(¥ 3] 30 [ ] ] 1 1
(Y1) 129 .0 ] 1 1
(Y 34 164 .t 0 3 1
(YY1} 22¢ [ ] [ 1 1
(Y] 168 L0 [} 1 1
(34} 320 [y ] L} 1 1
(141 160 [ ) (] 1 1
72 130 L [ 1 1
(18 ) 320 . 8 [ ] 1 1
(3 4% 228 [ S ) . 1 t
[ ¥4 ] 192 [ ] [ ] 1 1
(34 139 1.0 [ 1 1
(Y84 132 1.0 [] 1 1
(34} 226 3.0 ] 1 1
(34 ) 168 L [J 1 ?
(Y]] 132 [ ] ] 1 4
(Y }3 188 .0 [ 1 H
LY} 140 [y ] ] 1 1
(1} ) 160 L0 L} 1 1
(Y 1Y t 44} [y } ] 1 1
(Y1) 160 [ ] [} 1 1
(Y19 132 3.0 [] 1 H
(Y 34 139 1.9 . 1 1
(Y1} 132 .0 [] t 1
(Y1) Je6 [ ] ] 1 1
«90 180 [ ] 0 1 1
(3 3] " t. 0 . 1 4
2 168 0 [] 1 1
(3 2] 22N t Y ) [ 1 1
(1 1) 192 [ 3% ) [} 1 1
(1 1] 130 .0 [] 1 1
(Y1) t13e 1.0 ] 1 1
7 120 6.0 [} 1 1
(X 1] 124} [ | 1} t 1
o9 128 [ ) (] 1 4
$80 Jes [ %% ] 3 1 1
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